1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/CodeGen/SwiftCallingConv.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/IntrinsicsNVPTX.h"
34 #include "llvm/IR/IntrinsicsS390.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm> // std::sort
38 
39 using namespace clang;
40 using namespace CodeGen;
41 
42 // Helper for coercing an aggregate argument or return value into an integer
43 // array of the same size (including padding) and alignment.  This alternate
44 // coercion happens only for the RenderScript ABI and can be removed after
45 // runtimes that rely on it are no longer supported.
46 //
47 // RenderScript assumes that the size of the argument / return value in the IR
48 // is the same as the size of the corresponding qualified type. This helper
49 // coerces the aggregate type into an array of the same size (including
50 // padding).  This coercion is used in lieu of expansion of struct members or
51 // other canonical coercions that return a coerced-type of larger size.
52 //
53 // Ty          - The argument / return value type
54 // Context     - The associated ASTContext
55 // LLVMContext - The associated LLVMContext
56 static ABIArgInfo coerceToIntArray(QualType Ty,
57                                    ASTContext &Context,
58                                    llvm::LLVMContext &LLVMContext) {
59   // Alignment and Size are measured in bits.
60   const uint64_t Size = Context.getTypeSize(Ty);
61   const uint64_t Alignment = Context.getTypeAlign(Ty);
62   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
63   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
64   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
65 }
66 
67 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
68                                llvm::Value *Array,
69                                llvm::Value *Value,
70                                unsigned FirstIndex,
71                                unsigned LastIndex) {
72   // Alternatively, we could emit this as a loop in the source.
73   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
74     llvm::Value *Cell =
75         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
76     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
77   }
78 }
79 
80 static bool isAggregateTypeForABI(QualType T) {
81   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
82          T->isMemberFunctionPointerType();
83 }
84 
85 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
86                                             bool Realign,
87                                             llvm::Type *Padding) const {
88   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
89                                  Realign, Padding);
90 }
91 
92 ABIArgInfo
93 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
94   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
95                                       /*ByVal*/ false, Realign);
96 }
97 
98 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
99                              QualType Ty) const {
100   return Address::invalid();
101 }
102 
103 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
104   if (Ty->isPromotableIntegerType())
105     return true;
106 
107   if (const auto *EIT = Ty->getAs<ExtIntType>())
108     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
109       return true;
110 
111   return false;
112 }
113 
114 ABIInfo::~ABIInfo() {}
115 
116 /// Does the given lowering require more than the given number of
117 /// registers when expanded?
118 ///
119 /// This is intended to be the basis of a reasonable basic implementation
120 /// of should{Pass,Return}IndirectlyForSwift.
121 ///
122 /// For most targets, a limit of four total registers is reasonable; this
123 /// limits the amount of code required in order to move around the value
124 /// in case it wasn't produced immediately prior to the call by the caller
125 /// (or wasn't produced in exactly the right registers) or isn't used
126 /// immediately within the callee.  But some targets may need to further
127 /// limit the register count due to an inability to support that many
128 /// return registers.
129 static bool occupiesMoreThan(CodeGenTypes &cgt,
130                              ArrayRef<llvm::Type*> scalarTypes,
131                              unsigned maxAllRegisters) {
132   unsigned intCount = 0, fpCount = 0;
133   for (llvm::Type *type : scalarTypes) {
134     if (type->isPointerTy()) {
135       intCount++;
136     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
137       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
138       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
139     } else {
140       assert(type->isVectorTy() || type->isFloatingPointTy());
141       fpCount++;
142     }
143   }
144 
145   return (intCount + fpCount > maxAllRegisters);
146 }
147 
148 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
149                                              llvm::Type *eltTy,
150                                              unsigned numElts) const {
151   // The default implementation of this assumes that the target guarantees
152   // 128-bit SIMD support but nothing more.
153   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
154 }
155 
156 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
157                                               CGCXXABI &CXXABI) {
158   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
159   if (!RD) {
160     if (!RT->getDecl()->canPassInRegisters())
161       return CGCXXABI::RAA_Indirect;
162     return CGCXXABI::RAA_Default;
163   }
164   return CXXABI.getRecordArgABI(RD);
165 }
166 
167 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
168                                               CGCXXABI &CXXABI) {
169   const RecordType *RT = T->getAs<RecordType>();
170   if (!RT)
171     return CGCXXABI::RAA_Default;
172   return getRecordArgABI(RT, CXXABI);
173 }
174 
175 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
176                                const ABIInfo &Info) {
177   QualType Ty = FI.getReturnType();
178 
179   if (const auto *RT = Ty->getAs<RecordType>())
180     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
181         !RT->getDecl()->canPassInRegisters()) {
182       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
183       return true;
184     }
185 
186   return CXXABI.classifyReturnType(FI);
187 }
188 
189 /// Pass transparent unions as if they were the type of the first element. Sema
190 /// should ensure that all elements of the union have the same "machine type".
191 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
192   if (const RecordType *UT = Ty->getAsUnionType()) {
193     const RecordDecl *UD = UT->getDecl();
194     if (UD->hasAttr<TransparentUnionAttr>()) {
195       assert(!UD->field_empty() && "sema created an empty transparent union");
196       return UD->field_begin()->getType();
197     }
198   }
199   return Ty;
200 }
201 
202 CGCXXABI &ABIInfo::getCXXABI() const {
203   return CGT.getCXXABI();
204 }
205 
206 ASTContext &ABIInfo::getContext() const {
207   return CGT.getContext();
208 }
209 
210 llvm::LLVMContext &ABIInfo::getVMContext() const {
211   return CGT.getLLVMContext();
212 }
213 
214 const llvm::DataLayout &ABIInfo::getDataLayout() const {
215   return CGT.getDataLayout();
216 }
217 
218 const TargetInfo &ABIInfo::getTarget() const {
219   return CGT.getTarget();
220 }
221 
222 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
223   return CGT.getCodeGenOpts();
224 }
225 
226 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
227 
228 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
229   return false;
230 }
231 
232 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
233                                                 uint64_t Members) const {
234   return false;
235 }
236 
237 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
238   raw_ostream &OS = llvm::errs();
239   OS << "(ABIArgInfo Kind=";
240   switch (TheKind) {
241   case Direct:
242     OS << "Direct Type=";
243     if (llvm::Type *Ty = getCoerceToType())
244       Ty->print(OS);
245     else
246       OS << "null";
247     break;
248   case Extend:
249     OS << "Extend";
250     break;
251   case Ignore:
252     OS << "Ignore";
253     break;
254   case InAlloca:
255     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
256     break;
257   case Indirect:
258     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
259        << " ByVal=" << getIndirectByVal()
260        << " Realign=" << getIndirectRealign();
261     break;
262   case IndirectAliased:
263     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
264        << " AadrSpace=" << getIndirectAddrSpace()
265        << " Realign=" << getIndirectRealign();
266     break;
267   case Expand:
268     OS << "Expand";
269     break;
270   case CoerceAndExpand:
271     OS << "CoerceAndExpand Type=";
272     getCoerceAndExpandType()->print(OS);
273     break;
274   }
275   OS << ")\n";
276 }
277 
278 // Dynamically round a pointer up to a multiple of the given alignment.
279 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
280                                                   llvm::Value *Ptr,
281                                                   CharUnits Align) {
282   llvm::Value *PtrAsInt = Ptr;
283   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
284   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
285   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
286         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
287   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
288            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
289   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
290                                         Ptr->getType(),
291                                         Ptr->getName() + ".aligned");
292   return PtrAsInt;
293 }
294 
295 /// Emit va_arg for a platform using the common void* representation,
296 /// where arguments are simply emitted in an array of slots on the stack.
297 ///
298 /// This version implements the core direct-value passing rules.
299 ///
300 /// \param SlotSize - The size and alignment of a stack slot.
301 ///   Each argument will be allocated to a multiple of this number of
302 ///   slots, and all the slots will be aligned to this value.
303 /// \param AllowHigherAlign - The slot alignment is not a cap;
304 ///   an argument type with an alignment greater than the slot size
305 ///   will be emitted on a higher-alignment address, potentially
306 ///   leaving one or more empty slots behind as padding.  If this
307 ///   is false, the returned address might be less-aligned than
308 ///   DirectAlign.
309 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
310                                       Address VAListAddr,
311                                       llvm::Type *DirectTy,
312                                       CharUnits DirectSize,
313                                       CharUnits DirectAlign,
314                                       CharUnits SlotSize,
315                                       bool AllowHigherAlign) {
316   // Cast the element type to i8* if necessary.  Some platforms define
317   // va_list as a struct containing an i8* instead of just an i8*.
318   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
319     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
320 
321   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
322 
323   // If the CC aligns values higher than the slot size, do so if needed.
324   Address Addr = Address::invalid();
325   if (AllowHigherAlign && DirectAlign > SlotSize) {
326     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
327                                                  DirectAlign);
328   } else {
329     Addr = Address(Ptr, SlotSize);
330   }
331 
332   // Advance the pointer past the argument, then store that back.
333   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
334   Address NextPtr =
335       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
336   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
337 
338   // If the argument is smaller than a slot, and this is a big-endian
339   // target, the argument will be right-adjusted in its slot.
340   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
341       !DirectTy->isStructTy()) {
342     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
343   }
344 
345   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
346   return Addr;
347 }
348 
349 /// Emit va_arg for a platform using the common void* representation,
350 /// where arguments are simply emitted in an array of slots on the stack.
351 ///
352 /// \param IsIndirect - Values of this type are passed indirectly.
353 /// \param ValueInfo - The size and alignment of this type, generally
354 ///   computed with getContext().getTypeInfoInChars(ValueTy).
355 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
356 ///   Each argument will be allocated to a multiple of this number of
357 ///   slots, and all the slots will be aligned to this value.
358 /// \param AllowHigherAlign - The slot alignment is not a cap;
359 ///   an argument type with an alignment greater than the slot size
360 ///   will be emitted on a higher-alignment address, potentially
361 ///   leaving one or more empty slots behind as padding.
362 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
363                                 QualType ValueTy, bool IsIndirect,
364                                 TypeInfoChars ValueInfo,
365                                 CharUnits SlotSizeAndAlign,
366                                 bool AllowHigherAlign) {
367   // The size and alignment of the value that was passed directly.
368   CharUnits DirectSize, DirectAlign;
369   if (IsIndirect) {
370     DirectSize = CGF.getPointerSize();
371     DirectAlign = CGF.getPointerAlign();
372   } else {
373     DirectSize = ValueInfo.Width;
374     DirectAlign = ValueInfo.Align;
375   }
376 
377   // Cast the address we've calculated to the right type.
378   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
379   if (IsIndirect)
380     DirectTy = DirectTy->getPointerTo(0);
381 
382   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
383                                         DirectSize, DirectAlign,
384                                         SlotSizeAndAlign,
385                                         AllowHigherAlign);
386 
387   if (IsIndirect) {
388     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
389   }
390 
391   return Addr;
392 
393 }
394 
395 static Address emitMergePHI(CodeGenFunction &CGF,
396                             Address Addr1, llvm::BasicBlock *Block1,
397                             Address Addr2, llvm::BasicBlock *Block2,
398                             const llvm::Twine &Name = "") {
399   assert(Addr1.getType() == Addr2.getType());
400   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
401   PHI->addIncoming(Addr1.getPointer(), Block1);
402   PHI->addIncoming(Addr2.getPointer(), Block2);
403   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
404   return Address(PHI, Align);
405 }
406 
407 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
408 
409 // If someone can figure out a general rule for this, that would be great.
410 // It's probably just doomed to be platform-dependent, though.
411 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
412   // Verified for:
413   //   x86-64     FreeBSD, Linux, Darwin
414   //   x86-32     FreeBSD, Linux, Darwin
415   //   PowerPC    Linux, Darwin
416   //   ARM        Darwin (*not* EABI)
417   //   AArch64    Linux
418   return 32;
419 }
420 
421 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
422                                      const FunctionNoProtoType *fnType) const {
423   // The following conventions are known to require this to be false:
424   //   x86_stdcall
425   //   MIPS
426   // For everything else, we just prefer false unless we opt out.
427   return false;
428 }
429 
430 void
431 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
432                                              llvm::SmallString<24> &Opt) const {
433   // This assumes the user is passing a library name like "rt" instead of a
434   // filename like "librt.a/so", and that they don't care whether it's static or
435   // dynamic.
436   Opt = "-l";
437   Opt += Lib;
438 }
439 
440 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
441   // OpenCL kernels are called via an explicit runtime API with arguments
442   // set with clSetKernelArg(), not as normal sub-functions.
443   // Return SPIR_KERNEL by default as the kernel calling convention to
444   // ensure the fingerprint is fixed such way that each OpenCL argument
445   // gets one matching argument in the produced kernel function argument
446   // list to enable feasible implementation of clSetKernelArg() with
447   // aggregates etc. In case we would use the default C calling conv here,
448   // clSetKernelArg() might break depending on the target-specific
449   // conventions; different targets might split structs passed as values
450   // to multiple function arguments etc.
451   return llvm::CallingConv::SPIR_KERNEL;
452 }
453 
454 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
455     llvm::PointerType *T, QualType QT) const {
456   return llvm::ConstantPointerNull::get(T);
457 }
458 
459 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
460                                                    const VarDecl *D) const {
461   assert(!CGM.getLangOpts().OpenCL &&
462          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
463          "Address space agnostic languages only");
464   return D ? D->getType().getAddressSpace() : LangAS::Default;
465 }
466 
467 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
468     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
469     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
470   // Since target may map different address spaces in AST to the same address
471   // space, an address space conversion may end up as a bitcast.
472   if (auto *C = dyn_cast<llvm::Constant>(Src))
473     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
474   // Try to preserve the source's name to make IR more readable.
475   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
476       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
477 }
478 
479 llvm::Constant *
480 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
481                                         LangAS SrcAddr, LangAS DestAddr,
482                                         llvm::Type *DestTy) const {
483   // Since target may map different address spaces in AST to the same address
484   // space, an address space conversion may end up as a bitcast.
485   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
486 }
487 
488 llvm::SyncScope::ID
489 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
490                                       SyncScope Scope,
491                                       llvm::AtomicOrdering Ordering,
492                                       llvm::LLVMContext &Ctx) const {
493   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
494 }
495 
496 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
497 
498 /// isEmptyField - Return true iff a the field is "empty", that is it
499 /// is an unnamed bit-field or an (array of) empty record(s).
500 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
501                          bool AllowArrays) {
502   if (FD->isUnnamedBitfield())
503     return true;
504 
505   QualType FT = FD->getType();
506 
507   // Constant arrays of empty records count as empty, strip them off.
508   // Constant arrays of zero length always count as empty.
509   bool WasArray = false;
510   if (AllowArrays)
511     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
512       if (AT->getSize() == 0)
513         return true;
514       FT = AT->getElementType();
515       // The [[no_unique_address]] special case below does not apply to
516       // arrays of C++ empty records, so we need to remember this fact.
517       WasArray = true;
518     }
519 
520   const RecordType *RT = FT->getAs<RecordType>();
521   if (!RT)
522     return false;
523 
524   // C++ record fields are never empty, at least in the Itanium ABI.
525   //
526   // FIXME: We should use a predicate for whether this behavior is true in the
527   // current ABI.
528   //
529   // The exception to the above rule are fields marked with the
530   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
531   // according to the Itanium ABI.  The exception applies only to records,
532   // not arrays of records, so we must also check whether we stripped off an
533   // array type above.
534   if (isa<CXXRecordDecl>(RT->getDecl()) &&
535       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
536     return false;
537 
538   return isEmptyRecord(Context, FT, AllowArrays);
539 }
540 
541 /// isEmptyRecord - Return true iff a structure contains only empty
542 /// fields. Note that a structure with a flexible array member is not
543 /// considered empty.
544 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
545   const RecordType *RT = T->getAs<RecordType>();
546   if (!RT)
547     return false;
548   const RecordDecl *RD = RT->getDecl();
549   if (RD->hasFlexibleArrayMember())
550     return false;
551 
552   // If this is a C++ record, check the bases first.
553   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
554     for (const auto &I : CXXRD->bases())
555       if (!isEmptyRecord(Context, I.getType(), true))
556         return false;
557 
558   for (const auto *I : RD->fields())
559     if (!isEmptyField(Context, I, AllowArrays))
560       return false;
561   return true;
562 }
563 
564 /// isSingleElementStruct - Determine if a structure is a "single
565 /// element struct", i.e. it has exactly one non-empty field or
566 /// exactly one field which is itself a single element
567 /// struct. Structures with flexible array members are never
568 /// considered single element structs.
569 ///
570 /// \return The field declaration for the single non-empty field, if
571 /// it exists.
572 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
573   const RecordType *RT = T->getAs<RecordType>();
574   if (!RT)
575     return nullptr;
576 
577   const RecordDecl *RD = RT->getDecl();
578   if (RD->hasFlexibleArrayMember())
579     return nullptr;
580 
581   const Type *Found = nullptr;
582 
583   // If this is a C++ record, check the bases first.
584   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
585     for (const auto &I : CXXRD->bases()) {
586       // Ignore empty records.
587       if (isEmptyRecord(Context, I.getType(), true))
588         continue;
589 
590       // If we already found an element then this isn't a single-element struct.
591       if (Found)
592         return nullptr;
593 
594       // If this is non-empty and not a single element struct, the composite
595       // cannot be a single element struct.
596       Found = isSingleElementStruct(I.getType(), Context);
597       if (!Found)
598         return nullptr;
599     }
600   }
601 
602   // Check for single element.
603   for (const auto *FD : RD->fields()) {
604     QualType FT = FD->getType();
605 
606     // Ignore empty fields.
607     if (isEmptyField(Context, FD, true))
608       continue;
609 
610     // If we already found an element then this isn't a single-element
611     // struct.
612     if (Found)
613       return nullptr;
614 
615     // Treat single element arrays as the element.
616     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
617       if (AT->getSize().getZExtValue() != 1)
618         break;
619       FT = AT->getElementType();
620     }
621 
622     if (!isAggregateTypeForABI(FT)) {
623       Found = FT.getTypePtr();
624     } else {
625       Found = isSingleElementStruct(FT, Context);
626       if (!Found)
627         return nullptr;
628     }
629   }
630 
631   // We don't consider a struct a single-element struct if it has
632   // padding beyond the element type.
633   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
634     return nullptr;
635 
636   return Found;
637 }
638 
639 namespace {
640 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
641                        const ABIArgInfo &AI) {
642   // This default implementation defers to the llvm backend's va_arg
643   // instruction. It can handle only passing arguments directly
644   // (typically only handled in the backend for primitive types), or
645   // aggregates passed indirectly by pointer (NOTE: if the "byval"
646   // flag has ABI impact in the callee, this implementation cannot
647   // work.)
648 
649   // Only a few cases are covered here at the moment -- those needed
650   // by the default abi.
651   llvm::Value *Val;
652 
653   if (AI.isIndirect()) {
654     assert(!AI.getPaddingType() &&
655            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
656     assert(
657         !AI.getIndirectRealign() &&
658         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
659 
660     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
661     CharUnits TyAlignForABI = TyInfo.Align;
662 
663     llvm::Type *BaseTy =
664         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
665     llvm::Value *Addr =
666         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
667     return Address(Addr, TyAlignForABI);
668   } else {
669     assert((AI.isDirect() || AI.isExtend()) &&
670            "Unexpected ArgInfo Kind in generic VAArg emitter!");
671 
672     assert(!AI.getInReg() &&
673            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
674     assert(!AI.getPaddingType() &&
675            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
676     assert(!AI.getDirectOffset() &&
677            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
678     assert(!AI.getCoerceToType() &&
679            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
680 
681     Address Temp = CGF.CreateMemTemp(Ty, "varet");
682     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
683     CGF.Builder.CreateStore(Val, Temp);
684     return Temp;
685   }
686 }
687 
688 /// DefaultABIInfo - The default implementation for ABI specific
689 /// details. This implementation provides information which results in
690 /// self-consistent and sensible LLVM IR generation, but does not
691 /// conform to any particular ABI.
692 class DefaultABIInfo : public ABIInfo {
693 public:
694   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
695 
696   ABIArgInfo classifyReturnType(QualType RetTy) const;
697   ABIArgInfo classifyArgumentType(QualType RetTy) const;
698 
699   void computeInfo(CGFunctionInfo &FI) const override {
700     if (!getCXXABI().classifyReturnType(FI))
701       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
702     for (auto &I : FI.arguments())
703       I.info = classifyArgumentType(I.type);
704   }
705 
706   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
707                     QualType Ty) const override {
708     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
709   }
710 };
711 
712 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
713 public:
714   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
715       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
716 };
717 
718 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
719   Ty = useFirstFieldIfTransparentUnion(Ty);
720 
721   if (isAggregateTypeForABI(Ty)) {
722     // Records with non-trivial destructors/copy-constructors should not be
723     // passed by value.
724     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
725       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
726 
727     return getNaturalAlignIndirect(Ty);
728   }
729 
730   // Treat an enum type as its underlying type.
731   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
732     Ty = EnumTy->getDecl()->getIntegerType();
733 
734   ASTContext &Context = getContext();
735   if (const auto *EIT = Ty->getAs<ExtIntType>())
736     if (EIT->getNumBits() >
737         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
738                                 ? Context.Int128Ty
739                                 : Context.LongLongTy))
740       return getNaturalAlignIndirect(Ty);
741 
742   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
743                                             : ABIArgInfo::getDirect());
744 }
745 
746 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
747   if (RetTy->isVoidType())
748     return ABIArgInfo::getIgnore();
749 
750   if (isAggregateTypeForABI(RetTy))
751     return getNaturalAlignIndirect(RetTy);
752 
753   // Treat an enum type as its underlying type.
754   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
755     RetTy = EnumTy->getDecl()->getIntegerType();
756 
757   if (const auto *EIT = RetTy->getAs<ExtIntType>())
758     if (EIT->getNumBits() >
759         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
760                                      ? getContext().Int128Ty
761                                      : getContext().LongLongTy))
762       return getNaturalAlignIndirect(RetTy);
763 
764   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
765                                                : ABIArgInfo::getDirect());
766 }
767 
768 //===----------------------------------------------------------------------===//
769 // WebAssembly ABI Implementation
770 //
771 // This is a very simple ABI that relies a lot on DefaultABIInfo.
772 //===----------------------------------------------------------------------===//
773 
774 class WebAssemblyABIInfo final : public SwiftABIInfo {
775 public:
776   enum ABIKind {
777     MVP = 0,
778     ExperimentalMV = 1,
779   };
780 
781 private:
782   DefaultABIInfo defaultInfo;
783   ABIKind Kind;
784 
785 public:
786   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
787       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
788 
789 private:
790   ABIArgInfo classifyReturnType(QualType RetTy) const;
791   ABIArgInfo classifyArgumentType(QualType Ty) const;
792 
793   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
794   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
795   // overload them.
796   void computeInfo(CGFunctionInfo &FI) const override {
797     if (!getCXXABI().classifyReturnType(FI))
798       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
799     for (auto &Arg : FI.arguments())
800       Arg.info = classifyArgumentType(Arg.type);
801   }
802 
803   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
804                     QualType Ty) const override;
805 
806   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
807                                     bool asReturnValue) const override {
808     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
809   }
810 
811   bool isSwiftErrorInRegister() const override {
812     return false;
813   }
814 };
815 
816 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
817 public:
818   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
819                                         WebAssemblyABIInfo::ABIKind K)
820       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
821 
822   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
823                            CodeGen::CodeGenModule &CGM) const override {
824     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
825     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
826       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
827         llvm::Function *Fn = cast<llvm::Function>(GV);
828         llvm::AttrBuilder B;
829         B.addAttribute("wasm-import-module", Attr->getImportModule());
830         Fn->addFnAttrs(B);
831       }
832       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
833         llvm::Function *Fn = cast<llvm::Function>(GV);
834         llvm::AttrBuilder B;
835         B.addAttribute("wasm-import-name", Attr->getImportName());
836         Fn->addFnAttrs(B);
837       }
838       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
839         llvm::Function *Fn = cast<llvm::Function>(GV);
840         llvm::AttrBuilder B;
841         B.addAttribute("wasm-export-name", Attr->getExportName());
842         Fn->addFnAttrs(B);
843       }
844     }
845 
846     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
847       llvm::Function *Fn = cast<llvm::Function>(GV);
848       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
849         Fn->addFnAttr("no-prototype");
850     }
851   }
852 };
853 
854 /// Classify argument of given type \p Ty.
855 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
856   Ty = useFirstFieldIfTransparentUnion(Ty);
857 
858   if (isAggregateTypeForABI(Ty)) {
859     // Records with non-trivial destructors/copy-constructors should not be
860     // passed by value.
861     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
862       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
863     // Ignore empty structs/unions.
864     if (isEmptyRecord(getContext(), Ty, true))
865       return ABIArgInfo::getIgnore();
866     // Lower single-element structs to just pass a regular value. TODO: We
867     // could do reasonable-size multiple-element structs too, using getExpand(),
868     // though watch out for things like bitfields.
869     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
870       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
871     // For the experimental multivalue ABI, fully expand all other aggregates
872     if (Kind == ABIKind::ExperimentalMV) {
873       const RecordType *RT = Ty->getAs<RecordType>();
874       assert(RT);
875       bool HasBitField = false;
876       for (auto *Field : RT->getDecl()->fields()) {
877         if (Field->isBitField()) {
878           HasBitField = true;
879           break;
880         }
881       }
882       if (!HasBitField)
883         return ABIArgInfo::getExpand();
884     }
885   }
886 
887   // Otherwise just do the default thing.
888   return defaultInfo.classifyArgumentType(Ty);
889 }
890 
891 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
892   if (isAggregateTypeForABI(RetTy)) {
893     // Records with non-trivial destructors/copy-constructors should not be
894     // returned by value.
895     if (!getRecordArgABI(RetTy, getCXXABI())) {
896       // Ignore empty structs/unions.
897       if (isEmptyRecord(getContext(), RetTy, true))
898         return ABIArgInfo::getIgnore();
899       // Lower single-element structs to just return a regular value. TODO: We
900       // could do reasonable-size multiple-element structs too, using
901       // ABIArgInfo::getDirect().
902       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
903         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
904       // For the experimental multivalue ABI, return all other aggregates
905       if (Kind == ABIKind::ExperimentalMV)
906         return ABIArgInfo::getDirect();
907     }
908   }
909 
910   // Otherwise just do the default thing.
911   return defaultInfo.classifyReturnType(RetTy);
912 }
913 
914 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
915                                       QualType Ty) const {
916   bool IsIndirect = isAggregateTypeForABI(Ty) &&
917                     !isEmptyRecord(getContext(), Ty, true) &&
918                     !isSingleElementStruct(Ty, getContext());
919   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
920                           getContext().getTypeInfoInChars(Ty),
921                           CharUnits::fromQuantity(4),
922                           /*AllowHigherAlign=*/true);
923 }
924 
925 //===----------------------------------------------------------------------===//
926 // le32/PNaCl bitcode ABI Implementation
927 //
928 // This is a simplified version of the x86_32 ABI.  Arguments and return values
929 // are always passed on the stack.
930 //===----------------------------------------------------------------------===//
931 
932 class PNaClABIInfo : public ABIInfo {
933  public:
934   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
935 
936   ABIArgInfo classifyReturnType(QualType RetTy) const;
937   ABIArgInfo classifyArgumentType(QualType RetTy) const;
938 
939   void computeInfo(CGFunctionInfo &FI) const override;
940   Address EmitVAArg(CodeGenFunction &CGF,
941                     Address VAListAddr, QualType Ty) const override;
942 };
943 
944 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
945  public:
946    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
947        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
948 };
949 
950 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
951   if (!getCXXABI().classifyReturnType(FI))
952     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
953 
954   for (auto &I : FI.arguments())
955     I.info = classifyArgumentType(I.type);
956 }
957 
958 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
959                                 QualType Ty) const {
960   // The PNaCL ABI is a bit odd, in that varargs don't use normal
961   // function classification. Structs get passed directly for varargs
962   // functions, through a rewriting transform in
963   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
964   // this target to actually support a va_arg instructions with an
965   // aggregate type, unlike other targets.
966   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
967 }
968 
969 /// Classify argument of given type \p Ty.
970 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
971   if (isAggregateTypeForABI(Ty)) {
972     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
973       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
974     return getNaturalAlignIndirect(Ty);
975   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
976     // Treat an enum type as its underlying type.
977     Ty = EnumTy->getDecl()->getIntegerType();
978   } else if (Ty->isFloatingType()) {
979     // Floating-point types don't go inreg.
980     return ABIArgInfo::getDirect();
981   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
982     // Treat extended integers as integers if <=64, otherwise pass indirectly.
983     if (EIT->getNumBits() > 64)
984       return getNaturalAlignIndirect(Ty);
985     return ABIArgInfo::getDirect();
986   }
987 
988   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
989                                             : ABIArgInfo::getDirect());
990 }
991 
992 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
993   if (RetTy->isVoidType())
994     return ABIArgInfo::getIgnore();
995 
996   // In the PNaCl ABI we always return records/structures on the stack.
997   if (isAggregateTypeForABI(RetTy))
998     return getNaturalAlignIndirect(RetTy);
999 
1000   // Treat extended integers as integers if <=64, otherwise pass indirectly.
1001   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1002     if (EIT->getNumBits() > 64)
1003       return getNaturalAlignIndirect(RetTy);
1004     return ABIArgInfo::getDirect();
1005   }
1006 
1007   // Treat an enum type as its underlying type.
1008   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1009     RetTy = EnumTy->getDecl()->getIntegerType();
1010 
1011   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1012                                                : ABIArgInfo::getDirect());
1013 }
1014 
1015 /// IsX86_MMXType - Return true if this is an MMX type.
1016 bool IsX86_MMXType(llvm::Type *IRType) {
1017   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1018   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1019     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1020     IRType->getScalarSizeInBits() != 64;
1021 }
1022 
1023 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1024                                           StringRef Constraint,
1025                                           llvm::Type* Ty) {
1026   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1027                      .Cases("y", "&y", "^Ym", true)
1028                      .Default(false);
1029   if (IsMMXCons && Ty->isVectorTy()) {
1030     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1031         64) {
1032       // Invalid MMX constraint
1033       return nullptr;
1034     }
1035 
1036     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1037   }
1038 
1039   // No operation needed
1040   return Ty;
1041 }
1042 
1043 /// Returns true if this type can be passed in SSE registers with the
1044 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1045 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1046   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1047     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1048       if (BT->getKind() == BuiltinType::LongDouble) {
1049         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1050             &llvm::APFloat::x87DoubleExtended())
1051           return false;
1052       }
1053       return true;
1054     }
1055   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1056     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1057     // registers specially.
1058     unsigned VecSize = Context.getTypeSize(VT);
1059     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1060       return true;
1061   }
1062   return false;
1063 }
1064 
1065 /// Returns true if this aggregate is small enough to be passed in SSE registers
1066 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1067 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1068   return NumMembers <= 4;
1069 }
1070 
1071 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1072 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1073   auto AI = ABIArgInfo::getDirect(T);
1074   AI.setInReg(true);
1075   AI.setCanBeFlattened(false);
1076   return AI;
1077 }
1078 
1079 //===----------------------------------------------------------------------===//
1080 // X86-32 ABI Implementation
1081 //===----------------------------------------------------------------------===//
1082 
1083 /// Similar to llvm::CCState, but for Clang.
1084 struct CCState {
1085   CCState(CGFunctionInfo &FI)
1086       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1087 
1088   llvm::SmallBitVector IsPreassigned;
1089   unsigned CC = CallingConv::CC_C;
1090   unsigned FreeRegs = 0;
1091   unsigned FreeSSERegs = 0;
1092 };
1093 
1094 /// X86_32ABIInfo - The X86-32 ABI information.
1095 class X86_32ABIInfo : public SwiftABIInfo {
1096   enum Class {
1097     Integer,
1098     Float
1099   };
1100 
1101   static const unsigned MinABIStackAlignInBytes = 4;
1102 
1103   bool IsDarwinVectorABI;
1104   bool IsRetSmallStructInRegABI;
1105   bool IsWin32StructABI;
1106   bool IsSoftFloatABI;
1107   bool IsMCUABI;
1108   bool IsLinuxABI;
1109   unsigned DefaultNumRegisterParameters;
1110 
1111   static bool isRegisterSize(unsigned Size) {
1112     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1113   }
1114 
1115   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1116     // FIXME: Assumes vectorcall is in use.
1117     return isX86VectorTypeForVectorCall(getContext(), Ty);
1118   }
1119 
1120   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1121                                          uint64_t NumMembers) const override {
1122     // FIXME: Assumes vectorcall is in use.
1123     return isX86VectorCallAggregateSmallEnough(NumMembers);
1124   }
1125 
1126   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1127 
1128   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1129   /// such that the argument will be passed in memory.
1130   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1131 
1132   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1133 
1134   /// Return the alignment to use for the given type on the stack.
1135   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1136 
1137   Class classify(QualType Ty) const;
1138   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1139   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1140 
1141   /// Updates the number of available free registers, returns
1142   /// true if any registers were allocated.
1143   bool updateFreeRegs(QualType Ty, CCState &State) const;
1144 
1145   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1146                                 bool &NeedsPadding) const;
1147   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1148 
1149   bool canExpandIndirectArgument(QualType Ty) const;
1150 
1151   /// Rewrite the function info so that all memory arguments use
1152   /// inalloca.
1153   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1154 
1155   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1156                            CharUnits &StackOffset, ABIArgInfo &Info,
1157                            QualType Type) const;
1158   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1159 
1160 public:
1161 
1162   void computeInfo(CGFunctionInfo &FI) const override;
1163   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1164                     QualType Ty) const override;
1165 
1166   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1167                 bool RetSmallStructInRegABI, bool Win32StructABI,
1168                 unsigned NumRegisterParameters, bool SoftFloatABI)
1169     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1170       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1171       IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
1172       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1173       IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
1174                  CGT.getTarget().getTriple().isOSCygMing()),
1175       DefaultNumRegisterParameters(NumRegisterParameters) {}
1176 
1177   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1178                                     bool asReturnValue) const override {
1179     // LLVM's x86-32 lowering currently only assigns up to three
1180     // integer registers and three fp registers.  Oddly, it'll use up to
1181     // four vector registers for vectors, but those can overlap with the
1182     // scalar registers.
1183     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1184   }
1185 
1186   bool isSwiftErrorInRegister() const override {
1187     // x86-32 lowering does not support passing swifterror in a register.
1188     return false;
1189   }
1190 };
1191 
1192 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1193 public:
1194   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1195                           bool RetSmallStructInRegABI, bool Win32StructABI,
1196                           unsigned NumRegisterParameters, bool SoftFloatABI)
1197       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1198             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1199             NumRegisterParameters, SoftFloatABI)) {}
1200 
1201   static bool isStructReturnInRegABI(
1202       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1203 
1204   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1205                            CodeGen::CodeGenModule &CGM) const override;
1206 
1207   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1208     // Darwin uses different dwarf register numbers for EH.
1209     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1210     return 4;
1211   }
1212 
1213   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1214                                llvm::Value *Address) const override;
1215 
1216   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1217                                   StringRef Constraint,
1218                                   llvm::Type* Ty) const override {
1219     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1220   }
1221 
1222   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1223                                 std::string &Constraints,
1224                                 std::vector<llvm::Type *> &ResultRegTypes,
1225                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1226                                 std::vector<LValue> &ResultRegDests,
1227                                 std::string &AsmString,
1228                                 unsigned NumOutputs) const override;
1229 
1230   llvm::Constant *
1231   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1232     unsigned Sig = (0xeb << 0) |  // jmp rel8
1233                    (0x06 << 8) |  //           .+0x08
1234                    ('v' << 16) |
1235                    ('2' << 24);
1236     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1237   }
1238 
1239   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1240     return "movl\t%ebp, %ebp"
1241            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1242   }
1243 };
1244 
1245 }
1246 
1247 /// Rewrite input constraint references after adding some output constraints.
1248 /// In the case where there is one output and one input and we add one output,
1249 /// we need to replace all operand references greater than or equal to 1:
1250 ///     mov $0, $1
1251 ///     mov eax, $1
1252 /// The result will be:
1253 ///     mov $0, $2
1254 ///     mov eax, $2
1255 static void rewriteInputConstraintReferences(unsigned FirstIn,
1256                                              unsigned NumNewOuts,
1257                                              std::string &AsmString) {
1258   std::string Buf;
1259   llvm::raw_string_ostream OS(Buf);
1260   size_t Pos = 0;
1261   while (Pos < AsmString.size()) {
1262     size_t DollarStart = AsmString.find('$', Pos);
1263     if (DollarStart == std::string::npos)
1264       DollarStart = AsmString.size();
1265     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1266     if (DollarEnd == std::string::npos)
1267       DollarEnd = AsmString.size();
1268     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1269     Pos = DollarEnd;
1270     size_t NumDollars = DollarEnd - DollarStart;
1271     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1272       // We have an operand reference.
1273       size_t DigitStart = Pos;
1274       if (AsmString[DigitStart] == '{') {
1275         OS << '{';
1276         ++DigitStart;
1277       }
1278       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1279       if (DigitEnd == std::string::npos)
1280         DigitEnd = AsmString.size();
1281       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1282       unsigned OperandIndex;
1283       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1284         if (OperandIndex >= FirstIn)
1285           OperandIndex += NumNewOuts;
1286         OS << OperandIndex;
1287       } else {
1288         OS << OperandStr;
1289       }
1290       Pos = DigitEnd;
1291     }
1292   }
1293   AsmString = std::move(OS.str());
1294 }
1295 
1296 /// Add output constraints for EAX:EDX because they are return registers.
1297 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1298     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1299     std::vector<llvm::Type *> &ResultRegTypes,
1300     std::vector<llvm::Type *> &ResultTruncRegTypes,
1301     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1302     unsigned NumOutputs) const {
1303   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1304 
1305   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1306   // larger.
1307   if (!Constraints.empty())
1308     Constraints += ',';
1309   if (RetWidth <= 32) {
1310     Constraints += "={eax}";
1311     ResultRegTypes.push_back(CGF.Int32Ty);
1312   } else {
1313     // Use the 'A' constraint for EAX:EDX.
1314     Constraints += "=A";
1315     ResultRegTypes.push_back(CGF.Int64Ty);
1316   }
1317 
1318   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1319   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1320   ResultTruncRegTypes.push_back(CoerceTy);
1321 
1322   // Coerce the integer by bitcasting the return slot pointer.
1323   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1324                                                   CoerceTy->getPointerTo()));
1325   ResultRegDests.push_back(ReturnSlot);
1326 
1327   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1328 }
1329 
1330 /// shouldReturnTypeInRegister - Determine if the given type should be
1331 /// returned in a register (for the Darwin and MCU ABI).
1332 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1333                                                ASTContext &Context) const {
1334   uint64_t Size = Context.getTypeSize(Ty);
1335 
1336   // For i386, type must be register sized.
1337   // For the MCU ABI, it only needs to be <= 8-byte
1338   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1339    return false;
1340 
1341   if (Ty->isVectorType()) {
1342     // 64- and 128- bit vectors inside structures are not returned in
1343     // registers.
1344     if (Size == 64 || Size == 128)
1345       return false;
1346 
1347     return true;
1348   }
1349 
1350   // If this is a builtin, pointer, enum, complex type, member pointer, or
1351   // member function pointer it is ok.
1352   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1353       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1354       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1355     return true;
1356 
1357   // Arrays are treated like records.
1358   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1359     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1360 
1361   // Otherwise, it must be a record type.
1362   const RecordType *RT = Ty->getAs<RecordType>();
1363   if (!RT) return false;
1364 
1365   // FIXME: Traverse bases here too.
1366 
1367   // Structure types are passed in register if all fields would be
1368   // passed in a register.
1369   for (const auto *FD : RT->getDecl()->fields()) {
1370     // Empty fields are ignored.
1371     if (isEmptyField(Context, FD, true))
1372       continue;
1373 
1374     // Check fields recursively.
1375     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1376       return false;
1377   }
1378   return true;
1379 }
1380 
1381 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1382   // Treat complex types as the element type.
1383   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1384     Ty = CTy->getElementType();
1385 
1386   // Check for a type which we know has a simple scalar argument-passing
1387   // convention without any padding.  (We're specifically looking for 32
1388   // and 64-bit integer and integer-equivalents, float, and double.)
1389   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1390       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1391     return false;
1392 
1393   uint64_t Size = Context.getTypeSize(Ty);
1394   return Size == 32 || Size == 64;
1395 }
1396 
1397 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1398                           uint64_t &Size) {
1399   for (const auto *FD : RD->fields()) {
1400     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1401     // argument is smaller than 32-bits, expanding the struct will create
1402     // alignment padding.
1403     if (!is32Or64BitBasicType(FD->getType(), Context))
1404       return false;
1405 
1406     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1407     // how to expand them yet, and the predicate for telling if a bitfield still
1408     // counts as "basic" is more complicated than what we were doing previously.
1409     if (FD->isBitField())
1410       return false;
1411 
1412     Size += Context.getTypeSize(FD->getType());
1413   }
1414   return true;
1415 }
1416 
1417 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1418                                  uint64_t &Size) {
1419   // Don't do this if there are any non-empty bases.
1420   for (const CXXBaseSpecifier &Base : RD->bases()) {
1421     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1422                               Size))
1423       return false;
1424   }
1425   if (!addFieldSizes(Context, RD, Size))
1426     return false;
1427   return true;
1428 }
1429 
1430 /// Test whether an argument type which is to be passed indirectly (on the
1431 /// stack) would have the equivalent layout if it was expanded into separate
1432 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1433 /// optimizations.
1434 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1435   // We can only expand structure types.
1436   const RecordType *RT = Ty->getAs<RecordType>();
1437   if (!RT)
1438     return false;
1439   const RecordDecl *RD = RT->getDecl();
1440   uint64_t Size = 0;
1441   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1442     if (!IsWin32StructABI) {
1443       // On non-Windows, we have to conservatively match our old bitcode
1444       // prototypes in order to be ABI-compatible at the bitcode level.
1445       if (!CXXRD->isCLike())
1446         return false;
1447     } else {
1448       // Don't do this for dynamic classes.
1449       if (CXXRD->isDynamicClass())
1450         return false;
1451     }
1452     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1453       return false;
1454   } else {
1455     if (!addFieldSizes(getContext(), RD, Size))
1456       return false;
1457   }
1458 
1459   // We can do this if there was no alignment padding.
1460   return Size == getContext().getTypeSize(Ty);
1461 }
1462 
1463 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1464   // If the return value is indirect, then the hidden argument is consuming one
1465   // integer register.
1466   if (State.FreeRegs) {
1467     --State.FreeRegs;
1468     if (!IsMCUABI)
1469       return getNaturalAlignIndirectInReg(RetTy);
1470   }
1471   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1472 }
1473 
1474 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1475                                              CCState &State) const {
1476   if (RetTy->isVoidType())
1477     return ABIArgInfo::getIgnore();
1478 
1479   const Type *Base = nullptr;
1480   uint64_t NumElts = 0;
1481   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1482        State.CC == llvm::CallingConv::X86_RegCall) &&
1483       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1484     // The LLVM struct type for such an aggregate should lower properly.
1485     return ABIArgInfo::getDirect();
1486   }
1487 
1488   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1489     // On Darwin, some vectors are returned in registers.
1490     if (IsDarwinVectorABI) {
1491       uint64_t Size = getContext().getTypeSize(RetTy);
1492 
1493       // 128-bit vectors are a special case; they are returned in
1494       // registers and we need to make sure to pick a type the LLVM
1495       // backend will like.
1496       if (Size == 128)
1497         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1498             llvm::Type::getInt64Ty(getVMContext()), 2));
1499 
1500       // Always return in register if it fits in a general purpose
1501       // register, or if it is 64 bits and has a single element.
1502       if ((Size == 8 || Size == 16 || Size == 32) ||
1503           (Size == 64 && VT->getNumElements() == 1))
1504         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1505                                                             Size));
1506 
1507       return getIndirectReturnResult(RetTy, State);
1508     }
1509 
1510     return ABIArgInfo::getDirect();
1511   }
1512 
1513   if (isAggregateTypeForABI(RetTy)) {
1514     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1515       // Structures with flexible arrays are always indirect.
1516       if (RT->getDecl()->hasFlexibleArrayMember())
1517         return getIndirectReturnResult(RetTy, State);
1518     }
1519 
1520     // If specified, structs and unions are always indirect.
1521     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1522       return getIndirectReturnResult(RetTy, State);
1523 
1524     // Ignore empty structs/unions.
1525     if (isEmptyRecord(getContext(), RetTy, true))
1526       return ABIArgInfo::getIgnore();
1527 
1528     // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
1529     if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
1530       QualType ET = getContext().getCanonicalType(CT->getElementType());
1531       if (ET->isFloat16Type())
1532         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1533             llvm::Type::getHalfTy(getVMContext()), 2));
1534     }
1535 
1536     // Small structures which are register sized are generally returned
1537     // in a register.
1538     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1539       uint64_t Size = getContext().getTypeSize(RetTy);
1540 
1541       // As a special-case, if the struct is a "single-element" struct, and
1542       // the field is of type "float" or "double", return it in a
1543       // floating-point register. (MSVC does not apply this special case.)
1544       // We apply a similar transformation for pointer types to improve the
1545       // quality of the generated IR.
1546       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1547         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1548             || SeltTy->hasPointerRepresentation())
1549           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1550 
1551       // FIXME: We should be able to narrow this integer in cases with dead
1552       // padding.
1553       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1554     }
1555 
1556     return getIndirectReturnResult(RetTy, State);
1557   }
1558 
1559   // Treat an enum type as its underlying type.
1560   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1561     RetTy = EnumTy->getDecl()->getIntegerType();
1562 
1563   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1564     if (EIT->getNumBits() > 64)
1565       return getIndirectReturnResult(RetTy, State);
1566 
1567   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1568                                                : ABIArgInfo::getDirect());
1569 }
1570 
1571 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1572   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1573 }
1574 
1575 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1576   const RecordType *RT = Ty->getAs<RecordType>();
1577   if (!RT)
1578     return 0;
1579   const RecordDecl *RD = RT->getDecl();
1580 
1581   // If this is a C++ record, check the bases first.
1582   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1583     for (const auto &I : CXXRD->bases())
1584       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1585         return false;
1586 
1587   for (const auto *i : RD->fields()) {
1588     QualType FT = i->getType();
1589 
1590     if (isSIMDVectorType(Context, FT))
1591       return true;
1592 
1593     if (isRecordWithSIMDVectorType(Context, FT))
1594       return true;
1595   }
1596 
1597   return false;
1598 }
1599 
1600 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1601                                                  unsigned Align) const {
1602   // Otherwise, if the alignment is less than or equal to the minimum ABI
1603   // alignment, just use the default; the backend will handle this.
1604   if (Align <= MinABIStackAlignInBytes)
1605     return 0; // Use default alignment.
1606 
1607   if (IsLinuxABI) {
1608     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
1609     // want to spend any effort dealing with the ramifications of ABI breaks.
1610     //
1611     // If the vector type is __m128/__m256/__m512, return the default alignment.
1612     if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
1613       return Align;
1614   }
1615   // On non-Darwin, the stack type alignment is always 4.
1616   if (!IsDarwinVectorABI) {
1617     // Set explicit alignment, since we may need to realign the top.
1618     return MinABIStackAlignInBytes;
1619   }
1620 
1621   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1622   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1623                       isRecordWithSIMDVectorType(getContext(), Ty)))
1624     return 16;
1625 
1626   return MinABIStackAlignInBytes;
1627 }
1628 
1629 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1630                                             CCState &State) const {
1631   if (!ByVal) {
1632     if (State.FreeRegs) {
1633       --State.FreeRegs; // Non-byval indirects just use one pointer.
1634       if (!IsMCUABI)
1635         return getNaturalAlignIndirectInReg(Ty);
1636     }
1637     return getNaturalAlignIndirect(Ty, false);
1638   }
1639 
1640   // Compute the byval alignment.
1641   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1642   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1643   if (StackAlign == 0)
1644     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1645 
1646   // If the stack alignment is less than the type alignment, realign the
1647   // argument.
1648   bool Realign = TypeAlign > StackAlign;
1649   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1650                                  /*ByVal=*/true, Realign);
1651 }
1652 
1653 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1654   const Type *T = isSingleElementStruct(Ty, getContext());
1655   if (!T)
1656     T = Ty.getTypePtr();
1657 
1658   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1659     BuiltinType::Kind K = BT->getKind();
1660     if (K == BuiltinType::Float || K == BuiltinType::Double)
1661       return Float;
1662   }
1663   return Integer;
1664 }
1665 
1666 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1667   if (!IsSoftFloatABI) {
1668     Class C = classify(Ty);
1669     if (C == Float)
1670       return false;
1671   }
1672 
1673   unsigned Size = getContext().getTypeSize(Ty);
1674   unsigned SizeInRegs = (Size + 31) / 32;
1675 
1676   if (SizeInRegs == 0)
1677     return false;
1678 
1679   if (!IsMCUABI) {
1680     if (SizeInRegs > State.FreeRegs) {
1681       State.FreeRegs = 0;
1682       return false;
1683     }
1684   } else {
1685     // The MCU psABI allows passing parameters in-reg even if there are
1686     // earlier parameters that are passed on the stack. Also,
1687     // it does not allow passing >8-byte structs in-register,
1688     // even if there are 3 free registers available.
1689     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1690       return false;
1691   }
1692 
1693   State.FreeRegs -= SizeInRegs;
1694   return true;
1695 }
1696 
1697 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1698                                              bool &InReg,
1699                                              bool &NeedsPadding) const {
1700   // On Windows, aggregates other than HFAs are never passed in registers, and
1701   // they do not consume register slots. Homogenous floating-point aggregates
1702   // (HFAs) have already been dealt with at this point.
1703   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1704     return false;
1705 
1706   NeedsPadding = false;
1707   InReg = !IsMCUABI;
1708 
1709   if (!updateFreeRegs(Ty, State))
1710     return false;
1711 
1712   if (IsMCUABI)
1713     return true;
1714 
1715   if (State.CC == llvm::CallingConv::X86_FastCall ||
1716       State.CC == llvm::CallingConv::X86_VectorCall ||
1717       State.CC == llvm::CallingConv::X86_RegCall) {
1718     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1719       NeedsPadding = true;
1720 
1721     return false;
1722   }
1723 
1724   return true;
1725 }
1726 
1727 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1728   if (!updateFreeRegs(Ty, State))
1729     return false;
1730 
1731   if (IsMCUABI)
1732     return false;
1733 
1734   if (State.CC == llvm::CallingConv::X86_FastCall ||
1735       State.CC == llvm::CallingConv::X86_VectorCall ||
1736       State.CC == llvm::CallingConv::X86_RegCall) {
1737     if (getContext().getTypeSize(Ty) > 32)
1738       return false;
1739 
1740     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1741         Ty->isReferenceType());
1742   }
1743 
1744   return true;
1745 }
1746 
1747 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1748   // Vectorcall x86 works subtly different than in x64, so the format is
1749   // a bit different than the x64 version.  First, all vector types (not HVAs)
1750   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1751   // This differs from the x64 implementation, where the first 6 by INDEX get
1752   // registers.
1753   // In the second pass over the arguments, HVAs are passed in the remaining
1754   // vector registers if possible, or indirectly by address. The address will be
1755   // passed in ECX/EDX if available. Any other arguments are passed according to
1756   // the usual fastcall rules.
1757   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1758   for (int I = 0, E = Args.size(); I < E; ++I) {
1759     const Type *Base = nullptr;
1760     uint64_t NumElts = 0;
1761     const QualType &Ty = Args[I].type;
1762     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1763         isHomogeneousAggregate(Ty, Base, NumElts)) {
1764       if (State.FreeSSERegs >= NumElts) {
1765         State.FreeSSERegs -= NumElts;
1766         Args[I].info = ABIArgInfo::getDirectInReg();
1767         State.IsPreassigned.set(I);
1768       }
1769     }
1770   }
1771 }
1772 
1773 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1774                                                CCState &State) const {
1775   // FIXME: Set alignment on indirect arguments.
1776   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1777   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1778   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1779 
1780   Ty = useFirstFieldIfTransparentUnion(Ty);
1781   TypeInfo TI = getContext().getTypeInfo(Ty);
1782 
1783   // Check with the C++ ABI first.
1784   const RecordType *RT = Ty->getAs<RecordType>();
1785   if (RT) {
1786     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1787     if (RAA == CGCXXABI::RAA_Indirect) {
1788       return getIndirectResult(Ty, false, State);
1789     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1790       // The field index doesn't matter, we'll fix it up later.
1791       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1792     }
1793   }
1794 
1795   // Regcall uses the concept of a homogenous vector aggregate, similar
1796   // to other targets.
1797   const Type *Base = nullptr;
1798   uint64_t NumElts = 0;
1799   if ((IsRegCall || IsVectorCall) &&
1800       isHomogeneousAggregate(Ty, Base, NumElts)) {
1801     if (State.FreeSSERegs >= NumElts) {
1802       State.FreeSSERegs -= NumElts;
1803 
1804       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1805       // does.
1806       if (IsVectorCall)
1807         return getDirectX86Hva();
1808 
1809       if (Ty->isBuiltinType() || Ty->isVectorType())
1810         return ABIArgInfo::getDirect();
1811       return ABIArgInfo::getExpand();
1812     }
1813     return getIndirectResult(Ty, /*ByVal=*/false, State);
1814   }
1815 
1816   if (isAggregateTypeForABI(Ty)) {
1817     // Structures with flexible arrays are always indirect.
1818     // FIXME: This should not be byval!
1819     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1820       return getIndirectResult(Ty, true, State);
1821 
1822     // Ignore empty structs/unions on non-Windows.
1823     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1824       return ABIArgInfo::getIgnore();
1825 
1826     llvm::LLVMContext &LLVMContext = getVMContext();
1827     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1828     bool NeedsPadding = false;
1829     bool InReg;
1830     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1831       unsigned SizeInRegs = (TI.Width + 31) / 32;
1832       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1833       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1834       if (InReg)
1835         return ABIArgInfo::getDirectInReg(Result);
1836       else
1837         return ABIArgInfo::getDirect(Result);
1838     }
1839     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1840 
1841     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1842     // added in MSVC 2015.
1843     if (IsWin32StructABI && TI.isAlignRequired() && TI.Align > 32)
1844       return getIndirectResult(Ty, /*ByVal=*/false, State);
1845 
1846     // Expand small (<= 128-bit) record types when we know that the stack layout
1847     // of those arguments will match the struct. This is important because the
1848     // LLVM backend isn't smart enough to remove byval, which inhibits many
1849     // optimizations.
1850     // Don't do this for the MCU if there are still free integer registers
1851     // (see X86_64 ABI for full explanation).
1852     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1853         canExpandIndirectArgument(Ty))
1854       return ABIArgInfo::getExpandWithPadding(
1855           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1856 
1857     return getIndirectResult(Ty, true, State);
1858   }
1859 
1860   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1861     // On Windows, vectors are passed directly if registers are available, or
1862     // indirectly if not. This avoids the need to align argument memory. Pass
1863     // user-defined vector types larger than 512 bits indirectly for simplicity.
1864     if (IsWin32StructABI) {
1865       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1866         --State.FreeSSERegs;
1867         return ABIArgInfo::getDirectInReg();
1868       }
1869       return getIndirectResult(Ty, /*ByVal=*/false, State);
1870     }
1871 
1872     // On Darwin, some vectors are passed in memory, we handle this by passing
1873     // it as an i8/i16/i32/i64.
1874     if (IsDarwinVectorABI) {
1875       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1876           (TI.Width == 64 && VT->getNumElements() == 1))
1877         return ABIArgInfo::getDirect(
1878             llvm::IntegerType::get(getVMContext(), TI.Width));
1879     }
1880 
1881     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1882       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1883 
1884     return ABIArgInfo::getDirect();
1885   }
1886 
1887 
1888   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1889     Ty = EnumTy->getDecl()->getIntegerType();
1890 
1891   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1892 
1893   if (isPromotableIntegerTypeForABI(Ty)) {
1894     if (InReg)
1895       return ABIArgInfo::getExtendInReg(Ty);
1896     return ABIArgInfo::getExtend(Ty);
1897   }
1898 
1899   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1900     if (EIT->getNumBits() <= 64) {
1901       if (InReg)
1902         return ABIArgInfo::getDirectInReg();
1903       return ABIArgInfo::getDirect();
1904     }
1905     return getIndirectResult(Ty, /*ByVal=*/false, State);
1906   }
1907 
1908   if (InReg)
1909     return ABIArgInfo::getDirectInReg();
1910   return ABIArgInfo::getDirect();
1911 }
1912 
1913 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1914   CCState State(FI);
1915   if (IsMCUABI)
1916     State.FreeRegs = 3;
1917   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1918     State.FreeRegs = 2;
1919     State.FreeSSERegs = 3;
1920   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1921     State.FreeRegs = 2;
1922     State.FreeSSERegs = 6;
1923   } else if (FI.getHasRegParm())
1924     State.FreeRegs = FI.getRegParm();
1925   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1926     State.FreeRegs = 5;
1927     State.FreeSSERegs = 8;
1928   } else if (IsWin32StructABI) {
1929     // Since MSVC 2015, the first three SSE vectors have been passed in
1930     // registers. The rest are passed indirectly.
1931     State.FreeRegs = DefaultNumRegisterParameters;
1932     State.FreeSSERegs = 3;
1933   } else
1934     State.FreeRegs = DefaultNumRegisterParameters;
1935 
1936   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1937     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1938   } else if (FI.getReturnInfo().isIndirect()) {
1939     // The C++ ABI is not aware of register usage, so we have to check if the
1940     // return value was sret and put it in a register ourselves if appropriate.
1941     if (State.FreeRegs) {
1942       --State.FreeRegs;  // The sret parameter consumes a register.
1943       if (!IsMCUABI)
1944         FI.getReturnInfo().setInReg(true);
1945     }
1946   }
1947 
1948   // The chain argument effectively gives us another free register.
1949   if (FI.isChainCall())
1950     ++State.FreeRegs;
1951 
1952   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1953   // arguments to XMM registers as available.
1954   if (State.CC == llvm::CallingConv::X86_VectorCall)
1955     runVectorCallFirstPass(FI, State);
1956 
1957   bool UsedInAlloca = false;
1958   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1959   for (int I = 0, E = Args.size(); I < E; ++I) {
1960     // Skip arguments that have already been assigned.
1961     if (State.IsPreassigned.test(I))
1962       continue;
1963 
1964     Args[I].info = classifyArgumentType(Args[I].type, State);
1965     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1966   }
1967 
1968   // If we needed to use inalloca for any argument, do a second pass and rewrite
1969   // all the memory arguments to use inalloca.
1970   if (UsedInAlloca)
1971     rewriteWithInAlloca(FI);
1972 }
1973 
1974 void
1975 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1976                                    CharUnits &StackOffset, ABIArgInfo &Info,
1977                                    QualType Type) const {
1978   // Arguments are always 4-byte-aligned.
1979   CharUnits WordSize = CharUnits::fromQuantity(4);
1980   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1981 
1982   // sret pointers and indirect things will require an extra pointer
1983   // indirection, unless they are byval. Most things are byval, and will not
1984   // require this indirection.
1985   bool IsIndirect = false;
1986   if (Info.isIndirect() && !Info.getIndirectByVal())
1987     IsIndirect = true;
1988   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1989   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1990   if (IsIndirect)
1991     LLTy = LLTy->getPointerTo(0);
1992   FrameFields.push_back(LLTy);
1993   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1994 
1995   // Insert padding bytes to respect alignment.
1996   CharUnits FieldEnd = StackOffset;
1997   StackOffset = FieldEnd.alignTo(WordSize);
1998   if (StackOffset != FieldEnd) {
1999     CharUnits NumBytes = StackOffset - FieldEnd;
2000     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
2001     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
2002     FrameFields.push_back(Ty);
2003   }
2004 }
2005 
2006 static bool isArgInAlloca(const ABIArgInfo &Info) {
2007   // Leave ignored and inreg arguments alone.
2008   switch (Info.getKind()) {
2009   case ABIArgInfo::InAlloca:
2010     return true;
2011   case ABIArgInfo::Ignore:
2012   case ABIArgInfo::IndirectAliased:
2013     return false;
2014   case ABIArgInfo::Indirect:
2015   case ABIArgInfo::Direct:
2016   case ABIArgInfo::Extend:
2017     return !Info.getInReg();
2018   case ABIArgInfo::Expand:
2019   case ABIArgInfo::CoerceAndExpand:
2020     // These are aggregate types which are never passed in registers when
2021     // inalloca is involved.
2022     return true;
2023   }
2024   llvm_unreachable("invalid enum");
2025 }
2026 
2027 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2028   assert(IsWin32StructABI && "inalloca only supported on win32");
2029 
2030   // Build a packed struct type for all of the arguments in memory.
2031   SmallVector<llvm::Type *, 6> FrameFields;
2032 
2033   // The stack alignment is always 4.
2034   CharUnits StackAlign = CharUnits::fromQuantity(4);
2035 
2036   CharUnits StackOffset;
2037   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2038 
2039   // Put 'this' into the struct before 'sret', if necessary.
2040   bool IsThisCall =
2041       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2042   ABIArgInfo &Ret = FI.getReturnInfo();
2043   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2044       isArgInAlloca(I->info)) {
2045     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2046     ++I;
2047   }
2048 
2049   // Put the sret parameter into the inalloca struct if it's in memory.
2050   if (Ret.isIndirect() && !Ret.getInReg()) {
2051     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2052     // On Windows, the hidden sret parameter is always returned in eax.
2053     Ret.setInAllocaSRet(IsWin32StructABI);
2054   }
2055 
2056   // Skip the 'this' parameter in ecx.
2057   if (IsThisCall)
2058     ++I;
2059 
2060   // Put arguments passed in memory into the struct.
2061   for (; I != E; ++I) {
2062     if (isArgInAlloca(I->info))
2063       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2064   }
2065 
2066   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2067                                         /*isPacked=*/true),
2068                   StackAlign);
2069 }
2070 
2071 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2072                                  Address VAListAddr, QualType Ty) const {
2073 
2074   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2075 
2076   // x86-32 changes the alignment of certain arguments on the stack.
2077   //
2078   // Just messing with TypeInfo like this works because we never pass
2079   // anything indirectly.
2080   TypeInfo.Align = CharUnits::fromQuantity(
2081                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2082 
2083   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2084                           TypeInfo, CharUnits::fromQuantity(4),
2085                           /*AllowHigherAlign*/ true);
2086 }
2087 
2088 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2089     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2090   assert(Triple.getArch() == llvm::Triple::x86);
2091 
2092   switch (Opts.getStructReturnConvention()) {
2093   case CodeGenOptions::SRCK_Default:
2094     break;
2095   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2096     return false;
2097   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2098     return true;
2099   }
2100 
2101   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2102     return true;
2103 
2104   switch (Triple.getOS()) {
2105   case llvm::Triple::DragonFly:
2106   case llvm::Triple::FreeBSD:
2107   case llvm::Triple::OpenBSD:
2108   case llvm::Triple::Win32:
2109     return true;
2110   default:
2111     return false;
2112   }
2113 }
2114 
2115 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
2116                                  CodeGen::CodeGenModule &CGM) {
2117   if (!FD->hasAttr<AnyX86InterruptAttr>())
2118     return;
2119 
2120   llvm::Function *Fn = cast<llvm::Function>(GV);
2121   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2122   if (FD->getNumParams() == 0)
2123     return;
2124 
2125   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
2126   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
2127   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
2128     Fn->getContext(), ByValTy);
2129   Fn->addParamAttr(0, NewAttr);
2130 }
2131 
2132 void X86_32TargetCodeGenInfo::setTargetAttributes(
2133     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2134   if (GV->isDeclaration())
2135     return;
2136   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2137     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2138       llvm::Function *Fn = cast<llvm::Function>(GV);
2139       Fn->addFnAttr("stackrealign");
2140     }
2141 
2142     addX86InterruptAttrs(FD, GV, CGM);
2143   }
2144 }
2145 
2146 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2147                                                CodeGen::CodeGenFunction &CGF,
2148                                                llvm::Value *Address) const {
2149   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2150 
2151   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2152 
2153   // 0-7 are the eight integer registers;  the order is different
2154   //   on Darwin (for EH), but the range is the same.
2155   // 8 is %eip.
2156   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2157 
2158   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2159     // 12-16 are st(0..4).  Not sure why we stop at 4.
2160     // These have size 16, which is sizeof(long double) on
2161     // platforms with 8-byte alignment for that type.
2162     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2163     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2164 
2165   } else {
2166     // 9 is %eflags, which doesn't get a size on Darwin for some
2167     // reason.
2168     Builder.CreateAlignedStore(
2169         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2170                                CharUnits::One());
2171 
2172     // 11-16 are st(0..5).  Not sure why we stop at 5.
2173     // These have size 12, which is sizeof(long double) on
2174     // platforms with 4-byte alignment for that type.
2175     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2176     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2177   }
2178 
2179   return false;
2180 }
2181 
2182 //===----------------------------------------------------------------------===//
2183 // X86-64 ABI Implementation
2184 //===----------------------------------------------------------------------===//
2185 
2186 
2187 namespace {
2188 /// The AVX ABI level for X86 targets.
2189 enum class X86AVXABILevel {
2190   None,
2191   AVX,
2192   AVX512
2193 };
2194 
2195 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2196 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2197   switch (AVXLevel) {
2198   case X86AVXABILevel::AVX512:
2199     return 512;
2200   case X86AVXABILevel::AVX:
2201     return 256;
2202   case X86AVXABILevel::None:
2203     return 128;
2204   }
2205   llvm_unreachable("Unknown AVXLevel");
2206 }
2207 
2208 /// X86_64ABIInfo - The X86_64 ABI information.
2209 class X86_64ABIInfo : public SwiftABIInfo {
2210   enum Class {
2211     Integer = 0,
2212     SSE,
2213     SSEUp,
2214     X87,
2215     X87Up,
2216     ComplexX87,
2217     NoClass,
2218     Memory
2219   };
2220 
2221   /// merge - Implement the X86_64 ABI merging algorithm.
2222   ///
2223   /// Merge an accumulating classification \arg Accum with a field
2224   /// classification \arg Field.
2225   ///
2226   /// \param Accum - The accumulating classification. This should
2227   /// always be either NoClass or the result of a previous merge
2228   /// call. In addition, this should never be Memory (the caller
2229   /// should just return Memory for the aggregate).
2230   static Class merge(Class Accum, Class Field);
2231 
2232   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2233   ///
2234   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2235   /// final MEMORY or SSE classes when necessary.
2236   ///
2237   /// \param AggregateSize - The size of the current aggregate in
2238   /// the classification process.
2239   ///
2240   /// \param Lo - The classification for the parts of the type
2241   /// residing in the low word of the containing object.
2242   ///
2243   /// \param Hi - The classification for the parts of the type
2244   /// residing in the higher words of the containing object.
2245   ///
2246   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2247 
2248   /// classify - Determine the x86_64 register classes in which the
2249   /// given type T should be passed.
2250   ///
2251   /// \param Lo - The classification for the parts of the type
2252   /// residing in the low word of the containing object.
2253   ///
2254   /// \param Hi - The classification for the parts of the type
2255   /// residing in the high word of the containing object.
2256   ///
2257   /// \param OffsetBase - The bit offset of this type in the
2258   /// containing object.  Some parameters are classified different
2259   /// depending on whether they straddle an eightbyte boundary.
2260   ///
2261   /// \param isNamedArg - Whether the argument in question is a "named"
2262   /// argument, as used in AMD64-ABI 3.5.7.
2263   ///
2264   /// If a word is unused its result will be NoClass; if a type should
2265   /// be passed in Memory then at least the classification of \arg Lo
2266   /// will be Memory.
2267   ///
2268   /// The \arg Lo class will be NoClass iff the argument is ignored.
2269   ///
2270   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2271   /// also be ComplexX87.
2272   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2273                 bool isNamedArg) const;
2274 
2275   llvm::Type *GetByteVectorType(QualType Ty) const;
2276   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2277                                  unsigned IROffset, QualType SourceTy,
2278                                  unsigned SourceOffset) const;
2279   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2280                                      unsigned IROffset, QualType SourceTy,
2281                                      unsigned SourceOffset) const;
2282 
2283   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2284   /// such that the argument will be returned in memory.
2285   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2286 
2287   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2288   /// such that the argument will be passed in memory.
2289   ///
2290   /// \param freeIntRegs - The number of free integer registers remaining
2291   /// available.
2292   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2293 
2294   ABIArgInfo classifyReturnType(QualType RetTy) const;
2295 
2296   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2297                                   unsigned &neededInt, unsigned &neededSSE,
2298                                   bool isNamedArg) const;
2299 
2300   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2301                                        unsigned &NeededSSE) const;
2302 
2303   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2304                                            unsigned &NeededSSE) const;
2305 
2306   bool IsIllegalVectorType(QualType Ty) const;
2307 
2308   /// The 0.98 ABI revision clarified a lot of ambiguities,
2309   /// unfortunately in ways that were not always consistent with
2310   /// certain previous compilers.  In particular, platforms which
2311   /// required strict binary compatibility with older versions of GCC
2312   /// may need to exempt themselves.
2313   bool honorsRevision0_98() const {
2314     return !getTarget().getTriple().isOSDarwin();
2315   }
2316 
2317   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2318   /// classify it as INTEGER (for compatibility with older clang compilers).
2319   bool classifyIntegerMMXAsSSE() const {
2320     // Clang <= 3.8 did not do this.
2321     if (getContext().getLangOpts().getClangABICompat() <=
2322         LangOptions::ClangABI::Ver3_8)
2323       return false;
2324 
2325     const llvm::Triple &Triple = getTarget().getTriple();
2326     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2327       return false;
2328     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2329       return false;
2330     return true;
2331   }
2332 
2333   // GCC classifies vectors of __int128 as memory.
2334   bool passInt128VectorsInMem() const {
2335     // Clang <= 9.0 did not do this.
2336     if (getContext().getLangOpts().getClangABICompat() <=
2337         LangOptions::ClangABI::Ver9)
2338       return false;
2339 
2340     const llvm::Triple &T = getTarget().getTriple();
2341     return T.isOSLinux() || T.isOSNetBSD();
2342   }
2343 
2344   X86AVXABILevel AVXLevel;
2345   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2346   // 64-bit hardware.
2347   bool Has64BitPointers;
2348 
2349 public:
2350   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2351       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2352       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2353   }
2354 
2355   bool isPassedUsingAVXType(QualType type) const {
2356     unsigned neededInt, neededSSE;
2357     // The freeIntRegs argument doesn't matter here.
2358     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2359                                            /*isNamedArg*/true);
2360     if (info.isDirect()) {
2361       llvm::Type *ty = info.getCoerceToType();
2362       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2363         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2364     }
2365     return false;
2366   }
2367 
2368   void computeInfo(CGFunctionInfo &FI) const override;
2369 
2370   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2371                     QualType Ty) const override;
2372   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2373                       QualType Ty) const override;
2374 
2375   bool has64BitPointers() const {
2376     return Has64BitPointers;
2377   }
2378 
2379   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2380                                     bool asReturnValue) const override {
2381     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2382   }
2383   bool isSwiftErrorInRegister() const override {
2384     return true;
2385   }
2386 };
2387 
2388 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2389 class WinX86_64ABIInfo : public SwiftABIInfo {
2390 public:
2391   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2392       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2393         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2394 
2395   void computeInfo(CGFunctionInfo &FI) const override;
2396 
2397   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2398                     QualType Ty) const override;
2399 
2400   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2401     // FIXME: Assumes vectorcall is in use.
2402     return isX86VectorTypeForVectorCall(getContext(), Ty);
2403   }
2404 
2405   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2406                                          uint64_t NumMembers) const override {
2407     // FIXME: Assumes vectorcall is in use.
2408     return isX86VectorCallAggregateSmallEnough(NumMembers);
2409   }
2410 
2411   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2412                                     bool asReturnValue) const override {
2413     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2414   }
2415 
2416   bool isSwiftErrorInRegister() const override {
2417     return true;
2418   }
2419 
2420 private:
2421   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2422                       bool IsVectorCall, bool IsRegCall) const;
2423   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
2424                                            const ABIArgInfo &current) const;
2425 
2426   X86AVXABILevel AVXLevel;
2427 
2428   bool IsMingw64;
2429 };
2430 
2431 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2432 public:
2433   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2434       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2435 
2436   const X86_64ABIInfo &getABIInfo() const {
2437     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2438   }
2439 
2440   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2441   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2442   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2443 
2444   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2445     return 7;
2446   }
2447 
2448   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2449                                llvm::Value *Address) const override {
2450     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2451 
2452     // 0-15 are the 16 integer registers.
2453     // 16 is %rip.
2454     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2455     return false;
2456   }
2457 
2458   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2459                                   StringRef Constraint,
2460                                   llvm::Type* Ty) const override {
2461     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2462   }
2463 
2464   bool isNoProtoCallVariadic(const CallArgList &args,
2465                              const FunctionNoProtoType *fnType) const override {
2466     // The default CC on x86-64 sets %al to the number of SSA
2467     // registers used, and GCC sets this when calling an unprototyped
2468     // function, so we override the default behavior.  However, don't do
2469     // that when AVX types are involved: the ABI explicitly states it is
2470     // undefined, and it doesn't work in practice because of how the ABI
2471     // defines varargs anyway.
2472     if (fnType->getCallConv() == CC_C) {
2473       bool HasAVXType = false;
2474       for (CallArgList::const_iterator
2475              it = args.begin(), ie = args.end(); it != ie; ++it) {
2476         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2477           HasAVXType = true;
2478           break;
2479         }
2480       }
2481 
2482       if (!HasAVXType)
2483         return true;
2484     }
2485 
2486     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2487   }
2488 
2489   llvm::Constant *
2490   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2491     unsigned Sig = (0xeb << 0) | // jmp rel8
2492                    (0x06 << 8) | //           .+0x08
2493                    ('v' << 16) |
2494                    ('2' << 24);
2495     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2496   }
2497 
2498   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2499                            CodeGen::CodeGenModule &CGM) const override {
2500     if (GV->isDeclaration())
2501       return;
2502     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2503       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2504         llvm::Function *Fn = cast<llvm::Function>(GV);
2505         Fn->addFnAttr("stackrealign");
2506       }
2507 
2508       addX86InterruptAttrs(FD, GV, CGM);
2509     }
2510   }
2511 
2512   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2513                             const FunctionDecl *Caller,
2514                             const FunctionDecl *Callee,
2515                             const CallArgList &Args) const override;
2516 };
2517 
2518 static void initFeatureMaps(const ASTContext &Ctx,
2519                             llvm::StringMap<bool> &CallerMap,
2520                             const FunctionDecl *Caller,
2521                             llvm::StringMap<bool> &CalleeMap,
2522                             const FunctionDecl *Callee) {
2523   if (CalleeMap.empty() && CallerMap.empty()) {
2524     // The caller is potentially nullptr in the case where the call isn't in a
2525     // function.  In this case, the getFunctionFeatureMap ensures we just get
2526     // the TU level setting (since it cannot be modified by 'target'..
2527     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2528     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2529   }
2530 }
2531 
2532 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2533                                  SourceLocation CallLoc,
2534                                  const llvm::StringMap<bool> &CallerMap,
2535                                  const llvm::StringMap<bool> &CalleeMap,
2536                                  QualType Ty, StringRef Feature,
2537                                  bool IsArgument) {
2538   bool CallerHasFeat = CallerMap.lookup(Feature);
2539   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2540   if (!CallerHasFeat && !CalleeHasFeat)
2541     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2542            << IsArgument << Ty << Feature;
2543 
2544   // Mixing calling conventions here is very clearly an error.
2545   if (!CallerHasFeat || !CalleeHasFeat)
2546     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2547            << IsArgument << Ty << Feature;
2548 
2549   // Else, both caller and callee have the required feature, so there is no need
2550   // to diagnose.
2551   return false;
2552 }
2553 
2554 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2555                           SourceLocation CallLoc,
2556                           const llvm::StringMap<bool> &CallerMap,
2557                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2558                           bool IsArgument) {
2559   uint64_t Size = Ctx.getTypeSize(Ty);
2560   if (Size > 256)
2561     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2562                                 "avx512f", IsArgument);
2563 
2564   if (Size > 128)
2565     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2566                                 IsArgument);
2567 
2568   return false;
2569 }
2570 
2571 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2572     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2573     const FunctionDecl *Callee, const CallArgList &Args) const {
2574   llvm::StringMap<bool> CallerMap;
2575   llvm::StringMap<bool> CalleeMap;
2576   unsigned ArgIndex = 0;
2577 
2578   // We need to loop through the actual call arguments rather than the the
2579   // function's parameters, in case this variadic.
2580   for (const CallArg &Arg : Args) {
2581     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2582     // additionally changes how vectors >256 in size are passed. Like GCC, we
2583     // warn when a function is called with an argument where this will change.
2584     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2585     // the caller and callee features are mismatched.
2586     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2587     // change its ABI with attribute-target after this call.
2588     if (Arg.getType()->isVectorType() &&
2589         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2590       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2591       QualType Ty = Arg.getType();
2592       // The CallArg seems to have desugared the type already, so for clearer
2593       // diagnostics, replace it with the type in the FunctionDecl if possible.
2594       if (ArgIndex < Callee->getNumParams())
2595         Ty = Callee->getParamDecl(ArgIndex)->getType();
2596 
2597       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2598                         CalleeMap, Ty, /*IsArgument*/ true))
2599         return;
2600     }
2601     ++ArgIndex;
2602   }
2603 
2604   // Check return always, as we don't have a good way of knowing in codegen
2605   // whether this value is used, tail-called, etc.
2606   if (Callee->getReturnType()->isVectorType() &&
2607       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2608     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2609     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2610                   CalleeMap, Callee->getReturnType(),
2611                   /*IsArgument*/ false);
2612   }
2613 }
2614 
2615 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2616   // If the argument does not end in .lib, automatically add the suffix.
2617   // If the argument contains a space, enclose it in quotes.
2618   // This matches the behavior of MSVC.
2619   bool Quote = (Lib.find(' ') != StringRef::npos);
2620   std::string ArgStr = Quote ? "\"" : "";
2621   ArgStr += Lib;
2622   if (!Lib.endswith_insensitive(".lib") && !Lib.endswith_insensitive(".a"))
2623     ArgStr += ".lib";
2624   ArgStr += Quote ? "\"" : "";
2625   return ArgStr;
2626 }
2627 
2628 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2629 public:
2630   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2631         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2632         unsigned NumRegisterParameters)
2633     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2634         Win32StructABI, NumRegisterParameters, false) {}
2635 
2636   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2637                            CodeGen::CodeGenModule &CGM) const override;
2638 
2639   void getDependentLibraryOption(llvm::StringRef Lib,
2640                                  llvm::SmallString<24> &Opt) const override {
2641     Opt = "/DEFAULTLIB:";
2642     Opt += qualifyWindowsLibrary(Lib);
2643   }
2644 
2645   void getDetectMismatchOption(llvm::StringRef Name,
2646                                llvm::StringRef Value,
2647                                llvm::SmallString<32> &Opt) const override {
2648     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2649   }
2650 };
2651 
2652 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2653                                           CodeGen::CodeGenModule &CGM) {
2654   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2655 
2656     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2657       Fn->addFnAttr("stack-probe-size",
2658                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2659     if (CGM.getCodeGenOpts().NoStackArgProbe)
2660       Fn->addFnAttr("no-stack-arg-probe");
2661   }
2662 }
2663 
2664 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2665     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2666   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2667   if (GV->isDeclaration())
2668     return;
2669   addStackProbeTargetAttributes(D, GV, CGM);
2670 }
2671 
2672 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2673 public:
2674   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2675                              X86AVXABILevel AVXLevel)
2676       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2677 
2678   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2679                            CodeGen::CodeGenModule &CGM) const override;
2680 
2681   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2682     return 7;
2683   }
2684 
2685   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2686                                llvm::Value *Address) const override {
2687     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2688 
2689     // 0-15 are the 16 integer registers.
2690     // 16 is %rip.
2691     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2692     return false;
2693   }
2694 
2695   void getDependentLibraryOption(llvm::StringRef Lib,
2696                                  llvm::SmallString<24> &Opt) const override {
2697     Opt = "/DEFAULTLIB:";
2698     Opt += qualifyWindowsLibrary(Lib);
2699   }
2700 
2701   void getDetectMismatchOption(llvm::StringRef Name,
2702                                llvm::StringRef Value,
2703                                llvm::SmallString<32> &Opt) const override {
2704     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2705   }
2706 };
2707 
2708 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2709     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2710   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2711   if (GV->isDeclaration())
2712     return;
2713   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2714     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2715       llvm::Function *Fn = cast<llvm::Function>(GV);
2716       Fn->addFnAttr("stackrealign");
2717     }
2718 
2719     addX86InterruptAttrs(FD, GV, CGM);
2720   }
2721 
2722   addStackProbeTargetAttributes(D, GV, CGM);
2723 }
2724 }
2725 
2726 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2727                               Class &Hi) const {
2728   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2729   //
2730   // (a) If one of the classes is Memory, the whole argument is passed in
2731   //     memory.
2732   //
2733   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2734   //     memory.
2735   //
2736   // (c) If the size of the aggregate exceeds two eightbytes and the first
2737   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2738   //     argument is passed in memory. NOTE: This is necessary to keep the
2739   //     ABI working for processors that don't support the __m256 type.
2740   //
2741   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2742   //
2743   // Some of these are enforced by the merging logic.  Others can arise
2744   // only with unions; for example:
2745   //   union { _Complex double; unsigned; }
2746   //
2747   // Note that clauses (b) and (c) were added in 0.98.
2748   //
2749   if (Hi == Memory)
2750     Lo = Memory;
2751   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2752     Lo = Memory;
2753   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2754     Lo = Memory;
2755   if (Hi == SSEUp && Lo != SSE)
2756     Hi = SSE;
2757 }
2758 
2759 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2760   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2761   // classified recursively so that always two fields are
2762   // considered. The resulting class is calculated according to
2763   // the classes of the fields in the eightbyte:
2764   //
2765   // (a) If both classes are equal, this is the resulting class.
2766   //
2767   // (b) If one of the classes is NO_CLASS, the resulting class is
2768   // the other class.
2769   //
2770   // (c) If one of the classes is MEMORY, the result is the MEMORY
2771   // class.
2772   //
2773   // (d) If one of the classes is INTEGER, the result is the
2774   // INTEGER.
2775   //
2776   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2777   // MEMORY is used as class.
2778   //
2779   // (f) Otherwise class SSE is used.
2780 
2781   // Accum should never be memory (we should have returned) or
2782   // ComplexX87 (because this cannot be passed in a structure).
2783   assert((Accum != Memory && Accum != ComplexX87) &&
2784          "Invalid accumulated classification during merge.");
2785   if (Accum == Field || Field == NoClass)
2786     return Accum;
2787   if (Field == Memory)
2788     return Memory;
2789   if (Accum == NoClass)
2790     return Field;
2791   if (Accum == Integer || Field == Integer)
2792     return Integer;
2793   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2794       Accum == X87 || Accum == X87Up)
2795     return Memory;
2796   return SSE;
2797 }
2798 
2799 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2800                              Class &Lo, Class &Hi, bool isNamedArg) const {
2801   // FIXME: This code can be simplified by introducing a simple value class for
2802   // Class pairs with appropriate constructor methods for the various
2803   // situations.
2804 
2805   // FIXME: Some of the split computations are wrong; unaligned vectors
2806   // shouldn't be passed in registers for example, so there is no chance they
2807   // can straddle an eightbyte. Verify & simplify.
2808 
2809   Lo = Hi = NoClass;
2810 
2811   Class &Current = OffsetBase < 64 ? Lo : Hi;
2812   Current = Memory;
2813 
2814   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2815     BuiltinType::Kind k = BT->getKind();
2816 
2817     if (k == BuiltinType::Void) {
2818       Current = NoClass;
2819     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2820       Lo = Integer;
2821       Hi = Integer;
2822     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2823       Current = Integer;
2824     } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
2825                k == BuiltinType::Float16) {
2826       Current = SSE;
2827     } else if (k == BuiltinType::LongDouble) {
2828       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2829       if (LDF == &llvm::APFloat::IEEEquad()) {
2830         Lo = SSE;
2831         Hi = SSEUp;
2832       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2833         Lo = X87;
2834         Hi = X87Up;
2835       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2836         Current = SSE;
2837       } else
2838         llvm_unreachable("unexpected long double representation!");
2839     }
2840     // FIXME: _Decimal32 and _Decimal64 are SSE.
2841     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2842     return;
2843   }
2844 
2845   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2846     // Classify the underlying integer type.
2847     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2848     return;
2849   }
2850 
2851   if (Ty->hasPointerRepresentation()) {
2852     Current = Integer;
2853     return;
2854   }
2855 
2856   if (Ty->isMemberPointerType()) {
2857     if (Ty->isMemberFunctionPointerType()) {
2858       if (Has64BitPointers) {
2859         // If Has64BitPointers, this is an {i64, i64}, so classify both
2860         // Lo and Hi now.
2861         Lo = Hi = Integer;
2862       } else {
2863         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2864         // straddles an eightbyte boundary, Hi should be classified as well.
2865         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2866         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2867         if (EB_FuncPtr != EB_ThisAdj) {
2868           Lo = Hi = Integer;
2869         } else {
2870           Current = Integer;
2871         }
2872       }
2873     } else {
2874       Current = Integer;
2875     }
2876     return;
2877   }
2878 
2879   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2880     uint64_t Size = getContext().getTypeSize(VT);
2881     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2882       // gcc passes the following as integer:
2883       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2884       // 2 bytes - <2 x char>, <1 x short>
2885       // 1 byte  - <1 x char>
2886       Current = Integer;
2887 
2888       // If this type crosses an eightbyte boundary, it should be
2889       // split.
2890       uint64_t EB_Lo = (OffsetBase) / 64;
2891       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2892       if (EB_Lo != EB_Hi)
2893         Hi = Lo;
2894     } else if (Size == 64) {
2895       QualType ElementType = VT->getElementType();
2896 
2897       // gcc passes <1 x double> in memory. :(
2898       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2899         return;
2900 
2901       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2902       // pass them as integer.  For platforms where clang is the de facto
2903       // platform compiler, we must continue to use integer.
2904       if (!classifyIntegerMMXAsSSE() &&
2905           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2906            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2907            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2908            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2909         Current = Integer;
2910       else
2911         Current = SSE;
2912 
2913       // If this type crosses an eightbyte boundary, it should be
2914       // split.
2915       if (OffsetBase && OffsetBase != 64)
2916         Hi = Lo;
2917     } else if (Size == 128 ||
2918                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2919       QualType ElementType = VT->getElementType();
2920 
2921       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2922       if (passInt128VectorsInMem() && Size != 128 &&
2923           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2924            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2925         return;
2926 
2927       // Arguments of 256-bits are split into four eightbyte chunks. The
2928       // least significant one belongs to class SSE and all the others to class
2929       // SSEUP. The original Lo and Hi design considers that types can't be
2930       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2931       // This design isn't correct for 256-bits, but since there're no cases
2932       // where the upper parts would need to be inspected, avoid adding
2933       // complexity and just consider Hi to match the 64-256 part.
2934       //
2935       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2936       // registers if they are "named", i.e. not part of the "..." of a
2937       // variadic function.
2938       //
2939       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2940       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2941       Lo = SSE;
2942       Hi = SSEUp;
2943     }
2944     return;
2945   }
2946 
2947   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2948     QualType ET = getContext().getCanonicalType(CT->getElementType());
2949 
2950     uint64_t Size = getContext().getTypeSize(Ty);
2951     if (ET->isIntegralOrEnumerationType()) {
2952       if (Size <= 64)
2953         Current = Integer;
2954       else if (Size <= 128)
2955         Lo = Hi = Integer;
2956     } else if (ET->isFloat16Type() || ET == getContext().FloatTy) {
2957       Current = SSE;
2958     } else if (ET == getContext().DoubleTy) {
2959       Lo = Hi = SSE;
2960     } else if (ET == getContext().LongDoubleTy) {
2961       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2962       if (LDF == &llvm::APFloat::IEEEquad())
2963         Current = Memory;
2964       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2965         Current = ComplexX87;
2966       else if (LDF == &llvm::APFloat::IEEEdouble())
2967         Lo = Hi = SSE;
2968       else
2969         llvm_unreachable("unexpected long double representation!");
2970     }
2971 
2972     // If this complex type crosses an eightbyte boundary then it
2973     // should be split.
2974     uint64_t EB_Real = (OffsetBase) / 64;
2975     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2976     if (Hi == NoClass && EB_Real != EB_Imag)
2977       Hi = Lo;
2978 
2979     return;
2980   }
2981 
2982   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2983     if (EITy->getNumBits() <= 64)
2984       Current = Integer;
2985     else if (EITy->getNumBits() <= 128)
2986       Lo = Hi = Integer;
2987     // Larger values need to get passed in memory.
2988     return;
2989   }
2990 
2991   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2992     // Arrays are treated like structures.
2993 
2994     uint64_t Size = getContext().getTypeSize(Ty);
2995 
2996     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2997     // than eight eightbytes, ..., it has class MEMORY.
2998     if (Size > 512)
2999       return;
3000 
3001     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
3002     // fields, it has class MEMORY.
3003     //
3004     // Only need to check alignment of array base.
3005     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
3006       return;
3007 
3008     // Otherwise implement simplified merge. We could be smarter about
3009     // this, but it isn't worth it and would be harder to verify.
3010     Current = NoClass;
3011     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
3012     uint64_t ArraySize = AT->getSize().getZExtValue();
3013 
3014     // The only case a 256-bit wide vector could be used is when the array
3015     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3016     // to work for sizes wider than 128, early check and fallback to memory.
3017     //
3018     if (Size > 128 &&
3019         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
3020       return;
3021 
3022     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
3023       Class FieldLo, FieldHi;
3024       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3025       Lo = merge(Lo, FieldLo);
3026       Hi = merge(Hi, FieldHi);
3027       if (Lo == Memory || Hi == Memory)
3028         break;
3029     }
3030 
3031     postMerge(Size, Lo, Hi);
3032     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3033     return;
3034   }
3035 
3036   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3037     uint64_t Size = getContext().getTypeSize(Ty);
3038 
3039     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3040     // than eight eightbytes, ..., it has class MEMORY.
3041     if (Size > 512)
3042       return;
3043 
3044     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3045     // copy constructor or a non-trivial destructor, it is passed by invisible
3046     // reference.
3047     if (getRecordArgABI(RT, getCXXABI()))
3048       return;
3049 
3050     const RecordDecl *RD = RT->getDecl();
3051 
3052     // Assume variable sized types are passed in memory.
3053     if (RD->hasFlexibleArrayMember())
3054       return;
3055 
3056     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3057 
3058     // Reset Lo class, this will be recomputed.
3059     Current = NoClass;
3060 
3061     // If this is a C++ record, classify the bases first.
3062     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3063       for (const auto &I : CXXRD->bases()) {
3064         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3065                "Unexpected base class!");
3066         const auto *Base =
3067             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3068 
3069         // Classify this field.
3070         //
3071         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3072         // single eightbyte, each is classified separately. Each eightbyte gets
3073         // initialized to class NO_CLASS.
3074         Class FieldLo, FieldHi;
3075         uint64_t Offset =
3076           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3077         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3078         Lo = merge(Lo, FieldLo);
3079         Hi = merge(Hi, FieldHi);
3080         if (Lo == Memory || Hi == Memory) {
3081           postMerge(Size, Lo, Hi);
3082           return;
3083         }
3084       }
3085     }
3086 
3087     // Classify the fields one at a time, merging the results.
3088     unsigned idx = 0;
3089     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3090                                 LangOptions::ClangABI::Ver11 ||
3091                             getContext().getTargetInfo().getTriple().isPS4();
3092     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3093 
3094     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3095            i != e; ++i, ++idx) {
3096       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3097       bool BitField = i->isBitField();
3098 
3099       // Ignore padding bit-fields.
3100       if (BitField && i->isUnnamedBitfield())
3101         continue;
3102 
3103       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3104       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3105       //
3106       // The only case a 256-bit or a 512-bit wide vector could be used is when
3107       // the struct contains a single 256-bit or 512-bit element. Early check
3108       // and fallback to memory.
3109       //
3110       // FIXME: Extended the Lo and Hi logic properly to work for size wider
3111       // than 128.
3112       if (Size > 128 &&
3113           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3114            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3115         Lo = Memory;
3116         postMerge(Size, Lo, Hi);
3117         return;
3118       }
3119       // Note, skip this test for bit-fields, see below.
3120       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3121         Lo = Memory;
3122         postMerge(Size, Lo, Hi);
3123         return;
3124       }
3125 
3126       // Classify this field.
3127       //
3128       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3129       // exceeds a single eightbyte, each is classified
3130       // separately. Each eightbyte gets initialized to class
3131       // NO_CLASS.
3132       Class FieldLo, FieldHi;
3133 
3134       // Bit-fields require special handling, they do not force the
3135       // structure to be passed in memory even if unaligned, and
3136       // therefore they can straddle an eightbyte.
3137       if (BitField) {
3138         assert(!i->isUnnamedBitfield());
3139         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3140         uint64_t Size = i->getBitWidthValue(getContext());
3141 
3142         uint64_t EB_Lo = Offset / 64;
3143         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3144 
3145         if (EB_Lo) {
3146           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3147           FieldLo = NoClass;
3148           FieldHi = Integer;
3149         } else {
3150           FieldLo = Integer;
3151           FieldHi = EB_Hi ? Integer : NoClass;
3152         }
3153       } else
3154         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3155       Lo = merge(Lo, FieldLo);
3156       Hi = merge(Hi, FieldHi);
3157       if (Lo == Memory || Hi == Memory)
3158         break;
3159     }
3160 
3161     postMerge(Size, Lo, Hi);
3162   }
3163 }
3164 
3165 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3166   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3167   // place naturally.
3168   if (!isAggregateTypeForABI(Ty)) {
3169     // Treat an enum type as its underlying type.
3170     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3171       Ty = EnumTy->getDecl()->getIntegerType();
3172 
3173     if (Ty->isExtIntType())
3174       return getNaturalAlignIndirect(Ty);
3175 
3176     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3177                                               : ABIArgInfo::getDirect());
3178   }
3179 
3180   return getNaturalAlignIndirect(Ty);
3181 }
3182 
3183 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3184   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3185     uint64_t Size = getContext().getTypeSize(VecTy);
3186     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3187     if (Size <= 64 || Size > LargestVector)
3188       return true;
3189     QualType EltTy = VecTy->getElementType();
3190     if (passInt128VectorsInMem() &&
3191         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3192          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3193       return true;
3194   }
3195 
3196   return false;
3197 }
3198 
3199 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3200                                             unsigned freeIntRegs) const {
3201   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3202   // place naturally.
3203   //
3204   // This assumption is optimistic, as there could be free registers available
3205   // when we need to pass this argument in memory, and LLVM could try to pass
3206   // the argument in the free register. This does not seem to happen currently,
3207   // but this code would be much safer if we could mark the argument with
3208   // 'onstack'. See PR12193.
3209   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3210       !Ty->isExtIntType()) {
3211     // Treat an enum type as its underlying type.
3212     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3213       Ty = EnumTy->getDecl()->getIntegerType();
3214 
3215     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3216                                               : ABIArgInfo::getDirect());
3217   }
3218 
3219   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3220     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3221 
3222   // Compute the byval alignment. We specify the alignment of the byval in all
3223   // cases so that the mid-level optimizer knows the alignment of the byval.
3224   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3225 
3226   // Attempt to avoid passing indirect results using byval when possible. This
3227   // is important for good codegen.
3228   //
3229   // We do this by coercing the value into a scalar type which the backend can
3230   // handle naturally (i.e., without using byval).
3231   //
3232   // For simplicity, we currently only do this when we have exhausted all of the
3233   // free integer registers. Doing this when there are free integer registers
3234   // would require more care, as we would have to ensure that the coerced value
3235   // did not claim the unused register. That would require either reording the
3236   // arguments to the function (so that any subsequent inreg values came first),
3237   // or only doing this optimization when there were no following arguments that
3238   // might be inreg.
3239   //
3240   // We currently expect it to be rare (particularly in well written code) for
3241   // arguments to be passed on the stack when there are still free integer
3242   // registers available (this would typically imply large structs being passed
3243   // by value), so this seems like a fair tradeoff for now.
3244   //
3245   // We can revisit this if the backend grows support for 'onstack' parameter
3246   // attributes. See PR12193.
3247   if (freeIntRegs == 0) {
3248     uint64_t Size = getContext().getTypeSize(Ty);
3249 
3250     // If this type fits in an eightbyte, coerce it into the matching integral
3251     // type, which will end up on the stack (with alignment 8).
3252     if (Align == 8 && Size <= 64)
3253       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3254                                                           Size));
3255   }
3256 
3257   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3258 }
3259 
3260 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3261 /// register. Pick an LLVM IR type that will be passed as a vector register.
3262 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3263   // Wrapper structs/arrays that only contain vectors are passed just like
3264   // vectors; strip them off if present.
3265   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3266     Ty = QualType(InnerTy, 0);
3267 
3268   llvm::Type *IRType = CGT.ConvertType(Ty);
3269   if (isa<llvm::VectorType>(IRType)) {
3270     // Don't pass vXi128 vectors in their native type, the backend can't
3271     // legalize them.
3272     if (passInt128VectorsInMem() &&
3273         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3274       // Use a vXi64 vector.
3275       uint64_t Size = getContext().getTypeSize(Ty);
3276       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3277                                         Size / 64);
3278     }
3279 
3280     return IRType;
3281   }
3282 
3283   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3284     return IRType;
3285 
3286   // We couldn't find the preferred IR vector type for 'Ty'.
3287   uint64_t Size = getContext().getTypeSize(Ty);
3288   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3289 
3290 
3291   // Return a LLVM IR vector type based on the size of 'Ty'.
3292   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3293                                     Size / 64);
3294 }
3295 
3296 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3297 /// is known to either be off the end of the specified type or being in
3298 /// alignment padding.  The user type specified is known to be at most 128 bits
3299 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3300 /// classification that put one of the two halves in the INTEGER class.
3301 ///
3302 /// It is conservatively correct to return false.
3303 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3304                                   unsigned EndBit, ASTContext &Context) {
3305   // If the bytes being queried are off the end of the type, there is no user
3306   // data hiding here.  This handles analysis of builtins, vectors and other
3307   // types that don't contain interesting padding.
3308   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3309   if (TySize <= StartBit)
3310     return true;
3311 
3312   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3313     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3314     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3315 
3316     // Check each element to see if the element overlaps with the queried range.
3317     for (unsigned i = 0; i != NumElts; ++i) {
3318       // If the element is after the span we care about, then we're done..
3319       unsigned EltOffset = i*EltSize;
3320       if (EltOffset >= EndBit) break;
3321 
3322       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3323       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3324                                  EndBit-EltOffset, Context))
3325         return false;
3326     }
3327     // If it overlaps no elements, then it is safe to process as padding.
3328     return true;
3329   }
3330 
3331   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3332     const RecordDecl *RD = RT->getDecl();
3333     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3334 
3335     // If this is a C++ record, check the bases first.
3336     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3337       for (const auto &I : CXXRD->bases()) {
3338         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3339                "Unexpected base class!");
3340         const auto *Base =
3341             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3342 
3343         // If the base is after the span we care about, ignore it.
3344         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3345         if (BaseOffset >= EndBit) continue;
3346 
3347         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3348         if (!BitsContainNoUserData(I.getType(), BaseStart,
3349                                    EndBit-BaseOffset, Context))
3350           return false;
3351       }
3352     }
3353 
3354     // Verify that no field has data that overlaps the region of interest.  Yes
3355     // this could be sped up a lot by being smarter about queried fields,
3356     // however we're only looking at structs up to 16 bytes, so we don't care
3357     // much.
3358     unsigned idx = 0;
3359     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3360          i != e; ++i, ++idx) {
3361       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3362 
3363       // If we found a field after the region we care about, then we're done.
3364       if (FieldOffset >= EndBit) break;
3365 
3366       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3367       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3368                                  Context))
3369         return false;
3370     }
3371 
3372     // If nothing in this record overlapped the area of interest, then we're
3373     // clean.
3374     return true;
3375   }
3376 
3377   return false;
3378 }
3379 
3380 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3381 /// float member at the specified offset.  For example, {int,{float}} has a
3382 /// float at offset 4.  It is conservatively correct for this routine to return
3383 /// false.
3384 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3385                                   const llvm::DataLayout &TD) {
3386   // Base case if we find a float.
3387   if (IROffset == 0 && IRType->isFloatTy())
3388     return true;
3389 
3390   // If this is a struct, recurse into the field at the specified offset.
3391   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3392     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3393     unsigned Elt = SL->getElementContainingOffset(IROffset);
3394     IROffset -= SL->getElementOffset(Elt);
3395     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3396   }
3397 
3398   // If this is an array, recurse into the field at the specified offset.
3399   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3400     llvm::Type *EltTy = ATy->getElementType();
3401     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3402     IROffset -= IROffset/EltSize*EltSize;
3403     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3404   }
3405 
3406   return false;
3407 }
3408 
3409 /// ContainsHalfAtOffset - Return true if the specified LLVM IR type has a
3410 /// half member at the specified offset.  For example, {int,{half}} has a
3411 /// half at offset 4.  It is conservatively correct for this routine to return
3412 /// false.
3413 /// FIXME: Merge with ContainsFloatAtOffset
3414 static bool ContainsHalfAtOffset(llvm::Type *IRType, unsigned IROffset,
3415                                  const llvm::DataLayout &TD) {
3416   // Base case if we find a float.
3417   if (IROffset == 0 && IRType->isHalfTy())
3418     return true;
3419 
3420   // If this is a struct, recurse into the field at the specified offset.
3421   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3422     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3423     unsigned Elt = SL->getElementContainingOffset(IROffset);
3424     IROffset -= SL->getElementOffset(Elt);
3425     return ContainsHalfAtOffset(STy->getElementType(Elt), IROffset, TD);
3426   }
3427 
3428   // If this is an array, recurse into the field at the specified offset.
3429   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3430     llvm::Type *EltTy = ATy->getElementType();
3431     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3432     IROffset -= IROffset / EltSize * EltSize;
3433     return ContainsHalfAtOffset(EltTy, IROffset, TD);
3434   }
3435 
3436   return false;
3437 }
3438 
3439 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3440 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3441 llvm::Type *X86_64ABIInfo::
3442 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3443                    QualType SourceTy, unsigned SourceOffset) const {
3444   // If the high 32 bits are not used, we have three choices. Single half,
3445   // single float or two halfs.
3446   if (BitsContainNoUserData(SourceTy, SourceOffset * 8 + 32,
3447                             SourceOffset * 8 + 64, getContext())) {
3448     if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()))
3449       return llvm::Type::getFloatTy(getVMContext());
3450     if (ContainsHalfAtOffset(IRType, IROffset + 2, getDataLayout()))
3451       return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()),
3452                                         2);
3453 
3454     return llvm::Type::getHalfTy(getVMContext());
3455   }
3456 
3457   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3458   // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
3459   // case.
3460   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3461       ContainsFloatAtOffset(IRType, IROffset + 4, getDataLayout()))
3462     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3463                                       2);
3464 
3465   // We want to pass as <4 x half> if the LLVM IR type contains a half at
3466   // offset+0, +2, +4. Walk the LLVM IR type to find out if this is the case.
3467   if (ContainsHalfAtOffset(IRType, IROffset, getDataLayout()) &&
3468       ContainsHalfAtOffset(IRType, IROffset + 2, getDataLayout()) &&
3469       ContainsHalfAtOffset(IRType, IROffset + 4, getDataLayout()))
3470     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
3471 
3472   // We want to pass as <4 x half> if the LLVM IR type contains a mix of float
3473   // and half.
3474   // FIXME: Do we have a better representation for the mixed type?
3475   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) ||
3476       ContainsFloatAtOffset(IRType, IROffset + 4, getDataLayout()))
3477     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
3478 
3479   return llvm::Type::getDoubleTy(getVMContext());
3480 }
3481 
3482 
3483 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3484 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3485 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3486 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3487 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3488 /// etc).
3489 ///
3490 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3491 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3492 /// the 8-byte value references.  PrefType may be null.
3493 ///
3494 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3495 /// an offset into this that we're processing (which is always either 0 or 8).
3496 ///
3497 llvm::Type *X86_64ABIInfo::
3498 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3499                        QualType SourceTy, unsigned SourceOffset) const {
3500   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3501   // returning an 8-byte unit starting with it.  See if we can safely use it.
3502   if (IROffset == 0) {
3503     // Pointers and int64's always fill the 8-byte unit.
3504     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3505         IRType->isIntegerTy(64))
3506       return IRType;
3507 
3508     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3509     // goodness in the source type is just tail padding.  This is allowed to
3510     // kick in for struct {double,int} on the int, but not on
3511     // struct{double,int,int} because we wouldn't return the second int.  We
3512     // have to do this analysis on the source type because we can't depend on
3513     // unions being lowered a specific way etc.
3514     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3515         IRType->isIntegerTy(32) ||
3516         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3517       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3518           cast<llvm::IntegerType>(IRType)->getBitWidth();
3519 
3520       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3521                                 SourceOffset*8+64, getContext()))
3522         return IRType;
3523     }
3524   }
3525 
3526   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3527     // If this is a struct, recurse into the field at the specified offset.
3528     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3529     if (IROffset < SL->getSizeInBytes()) {
3530       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3531       IROffset -= SL->getElementOffset(FieldIdx);
3532 
3533       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3534                                     SourceTy, SourceOffset);
3535     }
3536   }
3537 
3538   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3539     llvm::Type *EltTy = ATy->getElementType();
3540     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3541     unsigned EltOffset = IROffset/EltSize*EltSize;
3542     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3543                                   SourceOffset);
3544   }
3545 
3546   // Okay, we don't have any better idea of what to pass, so we pass this in an
3547   // integer register that isn't too big to fit the rest of the struct.
3548   unsigned TySizeInBytes =
3549     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3550 
3551   assert(TySizeInBytes != SourceOffset && "Empty field?");
3552 
3553   // It is always safe to classify this as an integer type up to i64 that
3554   // isn't larger than the structure.
3555   return llvm::IntegerType::get(getVMContext(),
3556                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3557 }
3558 
3559 
3560 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3561 /// be used as elements of a two register pair to pass or return, return a
3562 /// first class aggregate to represent them.  For example, if the low part of
3563 /// a by-value argument should be passed as i32* and the high part as float,
3564 /// return {i32*, float}.
3565 static llvm::Type *
3566 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3567                            const llvm::DataLayout &TD) {
3568   // In order to correctly satisfy the ABI, we need to the high part to start
3569   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3570   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3571   // the second element at offset 8.  Check for this:
3572   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3573   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3574   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3575   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3576 
3577   // To handle this, we have to increase the size of the low part so that the
3578   // second element will start at an 8 byte offset.  We can't increase the size
3579   // of the second element because it might make us access off the end of the
3580   // struct.
3581   if (HiStart != 8) {
3582     // There are usually two sorts of types the ABI generation code can produce
3583     // for the low part of a pair that aren't 8 bytes in size: half, float or
3584     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3585     // NaCl).
3586     // Promote these to a larger type.
3587     if (Lo->isHalfTy() || Lo->isFloatTy())
3588       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3589     else {
3590       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3591              && "Invalid/unknown lo type");
3592       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3593     }
3594   }
3595 
3596   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3597 
3598   // Verify that the second element is at an 8-byte offset.
3599   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3600          "Invalid x86-64 argument pair!");
3601   return Result;
3602 }
3603 
3604 ABIArgInfo X86_64ABIInfo::
3605 classifyReturnType(QualType RetTy) const {
3606   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3607   // classification algorithm.
3608   X86_64ABIInfo::Class Lo, Hi;
3609   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3610 
3611   // Check some invariants.
3612   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3613   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3614 
3615   llvm::Type *ResType = nullptr;
3616   switch (Lo) {
3617   case NoClass:
3618     if (Hi == NoClass)
3619       return ABIArgInfo::getIgnore();
3620     // If the low part is just padding, it takes no register, leave ResType
3621     // null.
3622     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3623            "Unknown missing lo part");
3624     break;
3625 
3626   case SSEUp:
3627   case X87Up:
3628     llvm_unreachable("Invalid classification for lo word.");
3629 
3630     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3631     // hidden argument.
3632   case Memory:
3633     return getIndirectReturnResult(RetTy);
3634 
3635     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3636     // available register of the sequence %rax, %rdx is used.
3637   case Integer:
3638     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3639 
3640     // If we have a sign or zero extended integer, make sure to return Extend
3641     // so that the parameter gets the right LLVM IR attributes.
3642     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3643       // Treat an enum type as its underlying type.
3644       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3645         RetTy = EnumTy->getDecl()->getIntegerType();
3646 
3647       if (RetTy->isIntegralOrEnumerationType() &&
3648           isPromotableIntegerTypeForABI(RetTy))
3649         return ABIArgInfo::getExtend(RetTy);
3650     }
3651     break;
3652 
3653     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3654     // available SSE register of the sequence %xmm0, %xmm1 is used.
3655   case SSE:
3656     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3657     break;
3658 
3659     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3660     // returned on the X87 stack in %st0 as 80-bit x87 number.
3661   case X87:
3662     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3663     break;
3664 
3665     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3666     // part of the value is returned in %st0 and the imaginary part in
3667     // %st1.
3668   case ComplexX87:
3669     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3670     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3671                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3672     break;
3673   }
3674 
3675   llvm::Type *HighPart = nullptr;
3676   switch (Hi) {
3677     // Memory was handled previously and X87 should
3678     // never occur as a hi class.
3679   case Memory:
3680   case X87:
3681     llvm_unreachable("Invalid classification for hi word.");
3682 
3683   case ComplexX87: // Previously handled.
3684   case NoClass:
3685     break;
3686 
3687   case Integer:
3688     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3689     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3690       return ABIArgInfo::getDirect(HighPart, 8);
3691     break;
3692   case SSE:
3693     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3694     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3695       return ABIArgInfo::getDirect(HighPart, 8);
3696     break;
3697 
3698     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3699     // is passed in the next available eightbyte chunk if the last used
3700     // vector register.
3701     //
3702     // SSEUP should always be preceded by SSE, just widen.
3703   case SSEUp:
3704     assert(Lo == SSE && "Unexpected SSEUp classification.");
3705     ResType = GetByteVectorType(RetTy);
3706     break;
3707 
3708     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3709     // returned together with the previous X87 value in %st0.
3710   case X87Up:
3711     // If X87Up is preceded by X87, we don't need to do
3712     // anything. However, in some cases with unions it may not be
3713     // preceded by X87. In such situations we follow gcc and pass the
3714     // extra bits in an SSE reg.
3715     if (Lo != X87) {
3716       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3717       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3718         return ABIArgInfo::getDirect(HighPart, 8);
3719     }
3720     break;
3721   }
3722 
3723   // If a high part was specified, merge it together with the low part.  It is
3724   // known to pass in the high eightbyte of the result.  We do this by forming a
3725   // first class struct aggregate with the high and low part: {low, high}
3726   if (HighPart)
3727     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3728 
3729   return ABIArgInfo::getDirect(ResType);
3730 }
3731 
3732 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3733   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3734   bool isNamedArg)
3735   const
3736 {
3737   Ty = useFirstFieldIfTransparentUnion(Ty);
3738 
3739   X86_64ABIInfo::Class Lo, Hi;
3740   classify(Ty, 0, Lo, Hi, isNamedArg);
3741 
3742   // Check some invariants.
3743   // FIXME: Enforce these by construction.
3744   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3745   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3746 
3747   neededInt = 0;
3748   neededSSE = 0;
3749   llvm::Type *ResType = nullptr;
3750   switch (Lo) {
3751   case NoClass:
3752     if (Hi == NoClass)
3753       return ABIArgInfo::getIgnore();
3754     // If the low part is just padding, it takes no register, leave ResType
3755     // null.
3756     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3757            "Unknown missing lo part");
3758     break;
3759 
3760     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3761     // on the stack.
3762   case Memory:
3763 
3764     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3765     // COMPLEX_X87, it is passed in memory.
3766   case X87:
3767   case ComplexX87:
3768     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3769       ++neededInt;
3770     return getIndirectResult(Ty, freeIntRegs);
3771 
3772   case SSEUp:
3773   case X87Up:
3774     llvm_unreachable("Invalid classification for lo word.");
3775 
3776     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3777     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3778     // and %r9 is used.
3779   case Integer:
3780     ++neededInt;
3781 
3782     // Pick an 8-byte type based on the preferred type.
3783     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3784 
3785     // If we have a sign or zero extended integer, make sure to return Extend
3786     // so that the parameter gets the right LLVM IR attributes.
3787     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3788       // Treat an enum type as its underlying type.
3789       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3790         Ty = EnumTy->getDecl()->getIntegerType();
3791 
3792       if (Ty->isIntegralOrEnumerationType() &&
3793           isPromotableIntegerTypeForABI(Ty))
3794         return ABIArgInfo::getExtend(Ty);
3795     }
3796 
3797     break;
3798 
3799     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3800     // available SSE register is used, the registers are taken in the
3801     // order from %xmm0 to %xmm7.
3802   case SSE: {
3803     llvm::Type *IRType = CGT.ConvertType(Ty);
3804     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3805     ++neededSSE;
3806     break;
3807   }
3808   }
3809 
3810   llvm::Type *HighPart = nullptr;
3811   switch (Hi) {
3812     // Memory was handled previously, ComplexX87 and X87 should
3813     // never occur as hi classes, and X87Up must be preceded by X87,
3814     // which is passed in memory.
3815   case Memory:
3816   case X87:
3817   case ComplexX87:
3818     llvm_unreachable("Invalid classification for hi word.");
3819 
3820   case NoClass: break;
3821 
3822   case Integer:
3823     ++neededInt;
3824     // Pick an 8-byte type based on the preferred type.
3825     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3826 
3827     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3828       return ABIArgInfo::getDirect(HighPart, 8);
3829     break;
3830 
3831     // X87Up generally doesn't occur here (long double is passed in
3832     // memory), except in situations involving unions.
3833   case X87Up:
3834   case SSE:
3835     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3836 
3837     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3838       return ABIArgInfo::getDirect(HighPart, 8);
3839 
3840     ++neededSSE;
3841     break;
3842 
3843     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3844     // eightbyte is passed in the upper half of the last used SSE
3845     // register.  This only happens when 128-bit vectors are passed.
3846   case SSEUp:
3847     assert(Lo == SSE && "Unexpected SSEUp classification");
3848     ResType = GetByteVectorType(Ty);
3849     break;
3850   }
3851 
3852   // If a high part was specified, merge it together with the low part.  It is
3853   // known to pass in the high eightbyte of the result.  We do this by forming a
3854   // first class struct aggregate with the high and low part: {low, high}
3855   if (HighPart)
3856     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3857 
3858   return ABIArgInfo::getDirect(ResType);
3859 }
3860 
3861 ABIArgInfo
3862 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3863                                              unsigned &NeededSSE) const {
3864   auto RT = Ty->getAs<RecordType>();
3865   assert(RT && "classifyRegCallStructType only valid with struct types");
3866 
3867   if (RT->getDecl()->hasFlexibleArrayMember())
3868     return getIndirectReturnResult(Ty);
3869 
3870   // Sum up bases
3871   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3872     if (CXXRD->isDynamicClass()) {
3873       NeededInt = NeededSSE = 0;
3874       return getIndirectReturnResult(Ty);
3875     }
3876 
3877     for (const auto &I : CXXRD->bases())
3878       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3879               .isIndirect()) {
3880         NeededInt = NeededSSE = 0;
3881         return getIndirectReturnResult(Ty);
3882       }
3883   }
3884 
3885   // Sum up members
3886   for (const auto *FD : RT->getDecl()->fields()) {
3887     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3888       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3889               .isIndirect()) {
3890         NeededInt = NeededSSE = 0;
3891         return getIndirectReturnResult(Ty);
3892       }
3893     } else {
3894       unsigned LocalNeededInt, LocalNeededSSE;
3895       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3896                                LocalNeededSSE, true)
3897               .isIndirect()) {
3898         NeededInt = NeededSSE = 0;
3899         return getIndirectReturnResult(Ty);
3900       }
3901       NeededInt += LocalNeededInt;
3902       NeededSSE += LocalNeededSSE;
3903     }
3904   }
3905 
3906   return ABIArgInfo::getDirect();
3907 }
3908 
3909 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3910                                                     unsigned &NeededInt,
3911                                                     unsigned &NeededSSE) const {
3912 
3913   NeededInt = 0;
3914   NeededSSE = 0;
3915 
3916   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3917 }
3918 
3919 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3920 
3921   const unsigned CallingConv = FI.getCallingConvention();
3922   // It is possible to force Win64 calling convention on any x86_64 target by
3923   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3924   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3925   if (CallingConv == llvm::CallingConv::Win64) {
3926     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3927     Win64ABIInfo.computeInfo(FI);
3928     return;
3929   }
3930 
3931   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3932 
3933   // Keep track of the number of assigned registers.
3934   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3935   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3936   unsigned NeededInt, NeededSSE;
3937 
3938   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3939     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3940         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3941       FI.getReturnInfo() =
3942           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3943       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3944         FreeIntRegs -= NeededInt;
3945         FreeSSERegs -= NeededSSE;
3946       } else {
3947         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3948       }
3949     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3950                getContext().getCanonicalType(FI.getReturnType()
3951                                                  ->getAs<ComplexType>()
3952                                                  ->getElementType()) ==
3953                    getContext().LongDoubleTy)
3954       // Complex Long Double Type is passed in Memory when Regcall
3955       // calling convention is used.
3956       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3957     else
3958       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3959   }
3960 
3961   // If the return value is indirect, then the hidden argument is consuming one
3962   // integer register.
3963   if (FI.getReturnInfo().isIndirect())
3964     --FreeIntRegs;
3965 
3966   // The chain argument effectively gives us another free register.
3967   if (FI.isChainCall())
3968     ++FreeIntRegs;
3969 
3970   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3971   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3972   // get assigned (in left-to-right order) for passing as follows...
3973   unsigned ArgNo = 0;
3974   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3975        it != ie; ++it, ++ArgNo) {
3976     bool IsNamedArg = ArgNo < NumRequiredArgs;
3977 
3978     if (IsRegCall && it->type->isStructureOrClassType())
3979       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3980     else
3981       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3982                                       NeededSSE, IsNamedArg);
3983 
3984     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3985     // eightbyte of an argument, the whole argument is passed on the
3986     // stack. If registers have already been assigned for some
3987     // eightbytes of such an argument, the assignments get reverted.
3988     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3989       FreeIntRegs -= NeededInt;
3990       FreeSSERegs -= NeededSSE;
3991     } else {
3992       it->info = getIndirectResult(it->type, FreeIntRegs);
3993     }
3994   }
3995 }
3996 
3997 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3998                                          Address VAListAddr, QualType Ty) {
3999   Address overflow_arg_area_p =
4000       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
4001   llvm::Value *overflow_arg_area =
4002     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
4003 
4004   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
4005   // byte boundary if alignment needed by type exceeds 8 byte boundary.
4006   // It isn't stated explicitly in the standard, but in practice we use
4007   // alignment greater than 16 where necessary.
4008   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4009   if (Align > CharUnits::fromQuantity(8)) {
4010     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
4011                                                       Align);
4012   }
4013 
4014   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
4015   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4016   llvm::Value *Res =
4017     CGF.Builder.CreateBitCast(overflow_arg_area,
4018                               llvm::PointerType::getUnqual(LTy));
4019 
4020   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
4021   // l->overflow_arg_area + sizeof(type).
4022   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
4023   // an 8 byte boundary.
4024 
4025   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
4026   llvm::Value *Offset =
4027       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
4028   overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
4029                                             Offset, "overflow_arg_area.next");
4030   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
4031 
4032   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
4033   return Address(Res, Align);
4034 }
4035 
4036 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4037                                  QualType Ty) const {
4038   // Assume that va_list type is correct; should be pointer to LLVM type:
4039   // struct {
4040   //   i32 gp_offset;
4041   //   i32 fp_offset;
4042   //   i8* overflow_arg_area;
4043   //   i8* reg_save_area;
4044   // };
4045   unsigned neededInt, neededSSE;
4046 
4047   Ty = getContext().getCanonicalType(Ty);
4048   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
4049                                        /*isNamedArg*/false);
4050 
4051   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
4052   // in the registers. If not go to step 7.
4053   if (!neededInt && !neededSSE)
4054     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4055 
4056   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
4057   // general purpose registers needed to pass type and num_fp to hold
4058   // the number of floating point registers needed.
4059 
4060   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
4061   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
4062   // l->fp_offset > 304 - num_fp * 16 go to step 7.
4063   //
4064   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
4065   // register save space).
4066 
4067   llvm::Value *InRegs = nullptr;
4068   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
4069   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
4070   if (neededInt) {
4071     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
4072     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
4073     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4074     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4075   }
4076 
4077   if (neededSSE) {
4078     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4079     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4080     llvm::Value *FitsInFP =
4081       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4082     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4083     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4084   }
4085 
4086   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4087   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4088   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4089   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4090 
4091   // Emit code to load the value if it was passed in registers.
4092 
4093   CGF.EmitBlock(InRegBlock);
4094 
4095   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4096   // an offset of l->gp_offset and/or l->fp_offset. This may require
4097   // copying to a temporary location in case the parameter is passed
4098   // in different register classes or requires an alignment greater
4099   // than 8 for general purpose registers and 16 for XMM registers.
4100   //
4101   // FIXME: This really results in shameful code when we end up needing to
4102   // collect arguments from different places; often what should result in a
4103   // simple assembling of a structure from scattered addresses has many more
4104   // loads than necessary. Can we clean this up?
4105   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4106   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4107       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4108 
4109   Address RegAddr = Address::invalid();
4110   if (neededInt && neededSSE) {
4111     // FIXME: Cleanup.
4112     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4113     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4114     Address Tmp = CGF.CreateMemTemp(Ty);
4115     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4116     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4117     llvm::Type *TyLo = ST->getElementType(0);
4118     llvm::Type *TyHi = ST->getElementType(1);
4119     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4120            "Unexpected ABI info for mixed regs");
4121     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4122     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4123     llvm::Value *GPAddr =
4124         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
4125     llvm::Value *FPAddr =
4126         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
4127     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4128     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4129 
4130     // Copy the first element.
4131     // FIXME: Our choice of alignment here and below is probably pessimistic.
4132     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4133         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4134         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4135     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4136 
4137     // Copy the second element.
4138     V = CGF.Builder.CreateAlignedLoad(
4139         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4140         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4141     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4142 
4143     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4144   } else if (neededInt) {
4145     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
4146                       CharUnits::fromQuantity(8));
4147     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4148 
4149     // Copy to a temporary if necessary to ensure the appropriate alignment.
4150     auto TInfo = getContext().getTypeInfoInChars(Ty);
4151     uint64_t TySize = TInfo.Width.getQuantity();
4152     CharUnits TyAlign = TInfo.Align;
4153 
4154     // Copy into a temporary if the type is more aligned than the
4155     // register save area.
4156     if (TyAlign.getQuantity() > 8) {
4157       Address Tmp = CGF.CreateMemTemp(Ty);
4158       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4159       RegAddr = Tmp;
4160     }
4161 
4162   } else if (neededSSE == 1) {
4163     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
4164                       CharUnits::fromQuantity(16));
4165     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4166   } else {
4167     assert(neededSSE == 2 && "Invalid number of needed registers!");
4168     // SSE registers are spaced 16 bytes apart in the register save
4169     // area, we need to collect the two eightbytes together.
4170     // The ABI isn't explicit about this, but it seems reasonable
4171     // to assume that the slots are 16-byte aligned, since the stack is
4172     // naturally 16-byte aligned and the prologue is expected to store
4173     // all the SSE registers to the RSA.
4174     Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
4175                                                       fp_offset),
4176                                 CharUnits::fromQuantity(16));
4177     Address RegAddrHi =
4178       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4179                                              CharUnits::fromQuantity(16));
4180     llvm::Type *ST = AI.canHaveCoerceToType()
4181                          ? AI.getCoerceToType()
4182                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4183     llvm::Value *V;
4184     Address Tmp = CGF.CreateMemTemp(Ty);
4185     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4186     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4187         RegAddrLo, ST->getStructElementType(0)));
4188     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4189     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4190         RegAddrHi, ST->getStructElementType(1)));
4191     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4192 
4193     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4194   }
4195 
4196   // AMD64-ABI 3.5.7p5: Step 5. Set:
4197   // l->gp_offset = l->gp_offset + num_gp * 8
4198   // l->fp_offset = l->fp_offset + num_fp * 16.
4199   if (neededInt) {
4200     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4201     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4202                             gp_offset_p);
4203   }
4204   if (neededSSE) {
4205     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4206     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4207                             fp_offset_p);
4208   }
4209   CGF.EmitBranch(ContBlock);
4210 
4211   // Emit code to load the value if it was passed in memory.
4212 
4213   CGF.EmitBlock(InMemBlock);
4214   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4215 
4216   // Return the appropriate result.
4217 
4218   CGF.EmitBlock(ContBlock);
4219   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4220                                  "vaarg.addr");
4221   return ResAddr;
4222 }
4223 
4224 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4225                                    QualType Ty) const {
4226   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4227   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4228   uint64_t Width = getContext().getTypeSize(Ty);
4229   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4230 
4231   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4232                           CGF.getContext().getTypeInfoInChars(Ty),
4233                           CharUnits::fromQuantity(8),
4234                           /*allowHigherAlign*/ false);
4235 }
4236 
4237 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
4238     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
4239   const Type *Base = nullptr;
4240   uint64_t NumElts = 0;
4241 
4242   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4243       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4244     FreeSSERegs -= NumElts;
4245     return getDirectX86Hva();
4246   }
4247   return current;
4248 }
4249 
4250 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4251                                       bool IsReturnType, bool IsVectorCall,
4252                                       bool IsRegCall) const {
4253 
4254   if (Ty->isVoidType())
4255     return ABIArgInfo::getIgnore();
4256 
4257   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4258     Ty = EnumTy->getDecl()->getIntegerType();
4259 
4260   TypeInfo Info = getContext().getTypeInfo(Ty);
4261   uint64_t Width = Info.Width;
4262   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4263 
4264   const RecordType *RT = Ty->getAs<RecordType>();
4265   if (RT) {
4266     if (!IsReturnType) {
4267       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4268         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4269     }
4270 
4271     if (RT->getDecl()->hasFlexibleArrayMember())
4272       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4273 
4274   }
4275 
4276   const Type *Base = nullptr;
4277   uint64_t NumElts = 0;
4278   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4279   // other targets.
4280   if ((IsVectorCall || IsRegCall) &&
4281       isHomogeneousAggregate(Ty, Base, NumElts)) {
4282     if (IsRegCall) {
4283       if (FreeSSERegs >= NumElts) {
4284         FreeSSERegs -= NumElts;
4285         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4286           return ABIArgInfo::getDirect();
4287         return ABIArgInfo::getExpand();
4288       }
4289       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4290     } else if (IsVectorCall) {
4291       if (FreeSSERegs >= NumElts &&
4292           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4293         FreeSSERegs -= NumElts;
4294         return ABIArgInfo::getDirect();
4295       } else if (IsReturnType) {
4296         return ABIArgInfo::getExpand();
4297       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4298         // HVAs are delayed and reclassified in the 2nd step.
4299         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4300       }
4301     }
4302   }
4303 
4304   if (Ty->isMemberPointerType()) {
4305     // If the member pointer is represented by an LLVM int or ptr, pass it
4306     // directly.
4307     llvm::Type *LLTy = CGT.ConvertType(Ty);
4308     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4309       return ABIArgInfo::getDirect();
4310   }
4311 
4312   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4313     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4314     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4315     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4316       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4317 
4318     // Otherwise, coerce it to a small integer.
4319     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4320   }
4321 
4322   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4323     switch (BT->getKind()) {
4324     case BuiltinType::Bool:
4325       // Bool type is always extended to the ABI, other builtin types are not
4326       // extended.
4327       return ABIArgInfo::getExtend(Ty);
4328 
4329     case BuiltinType::LongDouble:
4330       // Mingw64 GCC uses the old 80 bit extended precision floating point
4331       // unit. It passes them indirectly through memory.
4332       if (IsMingw64) {
4333         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4334         if (LDF == &llvm::APFloat::x87DoubleExtended())
4335           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4336       }
4337       break;
4338 
4339     case BuiltinType::Int128:
4340     case BuiltinType::UInt128:
4341       // If it's a parameter type, the normal ABI rule is that arguments larger
4342       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4343       // even though it isn't particularly efficient.
4344       if (!IsReturnType)
4345         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4346 
4347       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4348       // Clang matches them for compatibility.
4349       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4350           llvm::Type::getInt64Ty(getVMContext()), 2));
4351 
4352     default:
4353       break;
4354     }
4355   }
4356 
4357   if (Ty->isExtIntType()) {
4358     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4359     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4360     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4361     // anyway as long is it fits in them, so we don't have to check the power of
4362     // 2.
4363     if (Width <= 64)
4364       return ABIArgInfo::getDirect();
4365     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4366   }
4367 
4368   return ABIArgInfo::getDirect();
4369 }
4370 
4371 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4372   const unsigned CC = FI.getCallingConvention();
4373   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4374   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4375 
4376   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4377   // classification rules.
4378   if (CC == llvm::CallingConv::X86_64_SysV) {
4379     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4380     SysVABIInfo.computeInfo(FI);
4381     return;
4382   }
4383 
4384   unsigned FreeSSERegs = 0;
4385   if (IsVectorCall) {
4386     // We can use up to 4 SSE return registers with vectorcall.
4387     FreeSSERegs = 4;
4388   } else if (IsRegCall) {
4389     // RegCall gives us 16 SSE registers.
4390     FreeSSERegs = 16;
4391   }
4392 
4393   if (!getCXXABI().classifyReturnType(FI))
4394     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4395                                   IsVectorCall, IsRegCall);
4396 
4397   if (IsVectorCall) {
4398     // We can use up to 6 SSE register parameters with vectorcall.
4399     FreeSSERegs = 6;
4400   } else if (IsRegCall) {
4401     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4402     FreeSSERegs = 16;
4403   }
4404 
4405   unsigned ArgNum = 0;
4406   unsigned ZeroSSERegs = 0;
4407   for (auto &I : FI.arguments()) {
4408     // Vectorcall in x64 only permits the first 6 arguments to be passed as
4409     // XMM/YMM registers. After the sixth argument, pretend no vector
4410     // registers are left.
4411     unsigned *MaybeFreeSSERegs =
4412         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
4413     I.info =
4414         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
4415     ++ArgNum;
4416   }
4417 
4418   if (IsVectorCall) {
4419     // For vectorcall, assign aggregate HVAs to any free vector registers in a
4420     // second pass.
4421     for (auto &I : FI.arguments())
4422       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
4423   }
4424 }
4425 
4426 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4427                                     QualType Ty) const {
4428   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4429   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4430   uint64_t Width = getContext().getTypeSize(Ty);
4431   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4432 
4433   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4434                           CGF.getContext().getTypeInfoInChars(Ty),
4435                           CharUnits::fromQuantity(8),
4436                           /*allowHigherAlign*/ false);
4437 }
4438 
4439 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4440                                         llvm::Value *Address, bool Is64Bit,
4441                                         bool IsAIX) {
4442   // This is calculated from the LLVM and GCC tables and verified
4443   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4444 
4445   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4446 
4447   llvm::IntegerType *i8 = CGF.Int8Ty;
4448   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4449   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4450   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4451 
4452   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4453   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4454 
4455   // 32-63: fp0-31, the 8-byte floating-point registers
4456   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4457 
4458   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4459   // 64: mq
4460   // 65: lr
4461   // 66: ctr
4462   // 67: ap
4463   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4464 
4465   // 68-76 are various 4-byte special-purpose registers:
4466   // 68-75 cr0-7
4467   // 76: xer
4468   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4469 
4470   // 77-108: v0-31, the 16-byte vector registers
4471   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4472 
4473   // 109: vrsave
4474   // 110: vscr
4475   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4476 
4477   // AIX does not utilize the rest of the registers.
4478   if (IsAIX)
4479     return false;
4480 
4481   // 111: spe_acc
4482   // 112: spefscr
4483   // 113: sfp
4484   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4485 
4486   if (!Is64Bit)
4487     return false;
4488 
4489   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4490   // or above CPU.
4491   // 64-bit only registers:
4492   // 114: tfhar
4493   // 115: tfiar
4494   // 116: texasr
4495   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4496 
4497   return false;
4498 }
4499 
4500 // AIX
4501 namespace {
4502 /// AIXABIInfo - The AIX XCOFF ABI information.
4503 class AIXABIInfo : public ABIInfo {
4504   const bool Is64Bit;
4505   const unsigned PtrByteSize;
4506   CharUnits getParamTypeAlignment(QualType Ty) const;
4507 
4508 public:
4509   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4510       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4511 
4512   bool isPromotableTypeForABI(QualType Ty) const;
4513 
4514   ABIArgInfo classifyReturnType(QualType RetTy) const;
4515   ABIArgInfo classifyArgumentType(QualType Ty) const;
4516 
4517   void computeInfo(CGFunctionInfo &FI) const override {
4518     if (!getCXXABI().classifyReturnType(FI))
4519       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4520 
4521     for (auto &I : FI.arguments())
4522       I.info = classifyArgumentType(I.type);
4523   }
4524 
4525   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4526                     QualType Ty) const override;
4527 };
4528 
4529 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4530   const bool Is64Bit;
4531 
4532 public:
4533   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4534       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4535         Is64Bit(Is64Bit) {}
4536   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4537     return 1; // r1 is the dedicated stack pointer
4538   }
4539 
4540   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4541                                llvm::Value *Address) const override;
4542 };
4543 } // namespace
4544 
4545 // Return true if the ABI requires Ty to be passed sign- or zero-
4546 // extended to 32/64 bits.
4547 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4548   // Treat an enum type as its underlying type.
4549   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4550     Ty = EnumTy->getDecl()->getIntegerType();
4551 
4552   // Promotable integer types are required to be promoted by the ABI.
4553   if (Ty->isPromotableIntegerType())
4554     return true;
4555 
4556   if (!Is64Bit)
4557     return false;
4558 
4559   // For 64 bit mode, in addition to the usual promotable integer types, we also
4560   // need to extend all 32-bit types, since the ABI requires promotion to 64
4561   // bits.
4562   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4563     switch (BT->getKind()) {
4564     case BuiltinType::Int:
4565     case BuiltinType::UInt:
4566       return true;
4567     default:
4568       break;
4569     }
4570 
4571   return false;
4572 }
4573 
4574 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4575   if (RetTy->isAnyComplexType())
4576     return ABIArgInfo::getDirect();
4577 
4578   if (RetTy->isVectorType())
4579     return ABIArgInfo::getDirect();
4580 
4581   if (RetTy->isVoidType())
4582     return ABIArgInfo::getIgnore();
4583 
4584   if (isAggregateTypeForABI(RetTy))
4585     return getNaturalAlignIndirect(RetTy);
4586 
4587   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4588                                         : ABIArgInfo::getDirect());
4589 }
4590 
4591 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4592   Ty = useFirstFieldIfTransparentUnion(Ty);
4593 
4594   if (Ty->isAnyComplexType())
4595     return ABIArgInfo::getDirect();
4596 
4597   if (Ty->isVectorType())
4598     return ABIArgInfo::getDirect();
4599 
4600   if (isAggregateTypeForABI(Ty)) {
4601     // Records with non-trivial destructors/copy-constructors should not be
4602     // passed by value.
4603     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4604       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4605 
4606     CharUnits CCAlign = getParamTypeAlignment(Ty);
4607     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4608 
4609     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4610                                    /*Realign*/ TyAlign > CCAlign);
4611   }
4612 
4613   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4614                                      : ABIArgInfo::getDirect());
4615 }
4616 
4617 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4618   // Complex types are passed just like their elements.
4619   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4620     Ty = CTy->getElementType();
4621 
4622   if (Ty->isVectorType())
4623     return CharUnits::fromQuantity(16);
4624 
4625   // If the structure contains a vector type, the alignment is 16.
4626   if (isRecordWithSIMDVectorType(getContext(), Ty))
4627     return CharUnits::fromQuantity(16);
4628 
4629   return CharUnits::fromQuantity(PtrByteSize);
4630 }
4631 
4632 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4633                               QualType Ty) const {
4634   if (Ty->isAnyComplexType())
4635     llvm::report_fatal_error("complex type is not supported on AIX yet");
4636 
4637   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4638   TypeInfo.Align = getParamTypeAlignment(Ty);
4639 
4640   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4641 
4642   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4643                           SlotSize, /*AllowHigher*/ true);
4644 }
4645 
4646 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4647     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4648   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4649 }
4650 
4651 // PowerPC-32
4652 namespace {
4653 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4654 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4655   bool IsSoftFloatABI;
4656   bool IsRetSmallStructInRegABI;
4657 
4658   CharUnits getParamTypeAlignment(QualType Ty) const;
4659 
4660 public:
4661   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4662                      bool RetSmallStructInRegABI)
4663       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4664         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4665 
4666   ABIArgInfo classifyReturnType(QualType RetTy) const;
4667 
4668   void computeInfo(CGFunctionInfo &FI) const override {
4669     if (!getCXXABI().classifyReturnType(FI))
4670       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4671     for (auto &I : FI.arguments())
4672       I.info = classifyArgumentType(I.type);
4673   }
4674 
4675   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4676                     QualType Ty) const override;
4677 };
4678 
4679 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4680 public:
4681   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4682                          bool RetSmallStructInRegABI)
4683       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4684             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4685 
4686   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4687                                      const CodeGenOptions &Opts);
4688 
4689   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4690     // This is recovered from gcc output.
4691     return 1; // r1 is the dedicated stack pointer
4692   }
4693 
4694   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4695                                llvm::Value *Address) const override;
4696 };
4697 }
4698 
4699 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4700   // Complex types are passed just like their elements.
4701   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4702     Ty = CTy->getElementType();
4703 
4704   if (Ty->isVectorType())
4705     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4706                                                                        : 4);
4707 
4708   // For single-element float/vector structs, we consider the whole type
4709   // to have the same alignment requirements as its single element.
4710   const Type *AlignTy = nullptr;
4711   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4712     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4713     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4714         (BT && BT->isFloatingPoint()))
4715       AlignTy = EltType;
4716   }
4717 
4718   if (AlignTy)
4719     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4720   return CharUnits::fromQuantity(4);
4721 }
4722 
4723 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4724   uint64_t Size;
4725 
4726   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4727   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4728       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4729     // System V ABI (1995), page 3-22, specified:
4730     // > A structure or union whose size is less than or equal to 8 bytes
4731     // > shall be returned in r3 and r4, as if it were first stored in the
4732     // > 8-byte aligned memory area and then the low addressed word were
4733     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4734     // > the last member of the structure or union are not defined.
4735     //
4736     // GCC for big-endian PPC32 inserts the pad before the first member,
4737     // not "beyond the last member" of the struct.  To stay compatible
4738     // with GCC, we coerce the struct to an integer of the same size.
4739     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4740     if (Size == 0)
4741       return ABIArgInfo::getIgnore();
4742     else {
4743       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4744       return ABIArgInfo::getDirect(CoerceTy);
4745     }
4746   }
4747 
4748   return DefaultABIInfo::classifyReturnType(RetTy);
4749 }
4750 
4751 // TODO: this implementation is now likely redundant with
4752 // DefaultABIInfo::EmitVAArg.
4753 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4754                                       QualType Ty) const {
4755   if (getTarget().getTriple().isOSDarwin()) {
4756     auto TI = getContext().getTypeInfoInChars(Ty);
4757     TI.Align = getParamTypeAlignment(Ty);
4758 
4759     CharUnits SlotSize = CharUnits::fromQuantity(4);
4760     return emitVoidPtrVAArg(CGF, VAList, Ty,
4761                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4762                             /*AllowHigherAlign=*/true);
4763   }
4764 
4765   const unsigned OverflowLimit = 8;
4766   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4767     // TODO: Implement this. For now ignore.
4768     (void)CTy;
4769     return Address::invalid(); // FIXME?
4770   }
4771 
4772   // struct __va_list_tag {
4773   //   unsigned char gpr;
4774   //   unsigned char fpr;
4775   //   unsigned short reserved;
4776   //   void *overflow_arg_area;
4777   //   void *reg_save_area;
4778   // };
4779 
4780   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4781   bool isInt = !Ty->isFloatingType();
4782   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4783 
4784   // All aggregates are passed indirectly?  That doesn't seem consistent
4785   // with the argument-lowering code.
4786   bool isIndirect = isAggregateTypeForABI(Ty);
4787 
4788   CGBuilderTy &Builder = CGF.Builder;
4789 
4790   // The calling convention either uses 1-2 GPRs or 1 FPR.
4791   Address NumRegsAddr = Address::invalid();
4792   if (isInt || IsSoftFloatABI) {
4793     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4794   } else {
4795     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4796   }
4797 
4798   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4799 
4800   // "Align" the register count when TY is i64.
4801   if (isI64 || (isF64 && IsSoftFloatABI)) {
4802     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4803     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4804   }
4805 
4806   llvm::Value *CC =
4807       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4808 
4809   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4810   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4811   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4812 
4813   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4814 
4815   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4816   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4817 
4818   // Case 1: consume registers.
4819   Address RegAddr = Address::invalid();
4820   {
4821     CGF.EmitBlock(UsingRegs);
4822 
4823     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4824     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4825                       CharUnits::fromQuantity(8));
4826     assert(RegAddr.getElementType() == CGF.Int8Ty);
4827 
4828     // Floating-point registers start after the general-purpose registers.
4829     if (!(isInt || IsSoftFloatABI)) {
4830       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4831                                                    CharUnits::fromQuantity(32));
4832     }
4833 
4834     // Get the address of the saved value by scaling the number of
4835     // registers we've used by the number of
4836     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4837     llvm::Value *RegOffset =
4838       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4839     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4840                                             RegAddr.getPointer(), RegOffset),
4841                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4842     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4843 
4844     // Increase the used-register count.
4845     NumRegs =
4846       Builder.CreateAdd(NumRegs,
4847                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4848     Builder.CreateStore(NumRegs, NumRegsAddr);
4849 
4850     CGF.EmitBranch(Cont);
4851   }
4852 
4853   // Case 2: consume space in the overflow area.
4854   Address MemAddr = Address::invalid();
4855   {
4856     CGF.EmitBlock(UsingOverflow);
4857 
4858     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4859 
4860     // Everything in the overflow area is rounded up to a size of at least 4.
4861     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4862 
4863     CharUnits Size;
4864     if (!isIndirect) {
4865       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4866       Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4867     } else {
4868       Size = CGF.getPointerSize();
4869     }
4870 
4871     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4872     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4873                          OverflowAreaAlign);
4874     // Round up address of argument to alignment
4875     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4876     if (Align > OverflowAreaAlign) {
4877       llvm::Value *Ptr = OverflowArea.getPointer();
4878       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4879                                                            Align);
4880     }
4881 
4882     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4883 
4884     // Increase the overflow area.
4885     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4886     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4887     CGF.EmitBranch(Cont);
4888   }
4889 
4890   CGF.EmitBlock(Cont);
4891 
4892   // Merge the cases with a phi.
4893   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4894                                 "vaarg.addr");
4895 
4896   // Load the pointer if the argument was passed indirectly.
4897   if (isIndirect) {
4898     Result = Address(Builder.CreateLoad(Result, "aggr"),
4899                      getContext().getTypeAlignInChars(Ty));
4900   }
4901 
4902   return Result;
4903 }
4904 
4905 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4906     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4907   assert(Triple.isPPC32());
4908 
4909   switch (Opts.getStructReturnConvention()) {
4910   case CodeGenOptions::SRCK_Default:
4911     break;
4912   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4913     return false;
4914   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4915     return true;
4916   }
4917 
4918   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4919     return true;
4920 
4921   return false;
4922 }
4923 
4924 bool
4925 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4926                                                 llvm::Value *Address) const {
4927   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4928                                      /*IsAIX*/ false);
4929 }
4930 
4931 // PowerPC-64
4932 
4933 namespace {
4934 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4935 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4936 public:
4937   enum ABIKind {
4938     ELFv1 = 0,
4939     ELFv2
4940   };
4941 
4942 private:
4943   static const unsigned GPRBits = 64;
4944   ABIKind Kind;
4945   bool IsSoftFloatABI;
4946 
4947 public:
4948   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind,
4949                      bool SoftFloatABI)
4950       : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
4951 
4952   bool isPromotableTypeForABI(QualType Ty) const;
4953   CharUnits getParamTypeAlignment(QualType Ty) const;
4954 
4955   ABIArgInfo classifyReturnType(QualType RetTy) const;
4956   ABIArgInfo classifyArgumentType(QualType Ty) const;
4957 
4958   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4959   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4960                                          uint64_t Members) const override;
4961 
4962   // TODO: We can add more logic to computeInfo to improve performance.
4963   // Example: For aggregate arguments that fit in a register, we could
4964   // use getDirectInReg (as is done below for structs containing a single
4965   // floating-point value) to avoid pushing them to memory on function
4966   // entry.  This would require changing the logic in PPCISelLowering
4967   // when lowering the parameters in the caller and args in the callee.
4968   void computeInfo(CGFunctionInfo &FI) const override {
4969     if (!getCXXABI().classifyReturnType(FI))
4970       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4971     for (auto &I : FI.arguments()) {
4972       // We rely on the default argument classification for the most part.
4973       // One exception:  An aggregate containing a single floating-point
4974       // or vector item must be passed in a register if one is available.
4975       const Type *T = isSingleElementStruct(I.type, getContext());
4976       if (T) {
4977         const BuiltinType *BT = T->getAs<BuiltinType>();
4978         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4979             (BT && BT->isFloatingPoint())) {
4980           QualType QT(T, 0);
4981           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4982           continue;
4983         }
4984       }
4985       I.info = classifyArgumentType(I.type);
4986     }
4987   }
4988 
4989   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4990                     QualType Ty) const override;
4991 
4992   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4993                                     bool asReturnValue) const override {
4994     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4995   }
4996 
4997   bool isSwiftErrorInRegister() const override {
4998     return false;
4999   }
5000 };
5001 
5002 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
5003 
5004 public:
5005   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
5006                                PPC64_SVR4_ABIInfo::ABIKind Kind,
5007                                bool SoftFloatABI)
5008       : TargetCodeGenInfo(
5009             std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {}
5010 
5011   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5012     // This is recovered from gcc output.
5013     return 1; // r1 is the dedicated stack pointer
5014   }
5015 
5016   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5017                                llvm::Value *Address) const override;
5018 };
5019 
5020 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5021 public:
5022   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
5023 
5024   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5025     // This is recovered from gcc output.
5026     return 1; // r1 is the dedicated stack pointer
5027   }
5028 
5029   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5030                                llvm::Value *Address) const override;
5031 };
5032 
5033 }
5034 
5035 // Return true if the ABI requires Ty to be passed sign- or zero-
5036 // extended to 64 bits.
5037 bool
5038 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5039   // Treat an enum type as its underlying type.
5040   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5041     Ty = EnumTy->getDecl()->getIntegerType();
5042 
5043   // Promotable integer types are required to be promoted by the ABI.
5044   if (isPromotableIntegerTypeForABI(Ty))
5045     return true;
5046 
5047   // In addition to the usual promotable integer types, we also need to
5048   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5049   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5050     switch (BT->getKind()) {
5051     case BuiltinType::Int:
5052     case BuiltinType::UInt:
5053       return true;
5054     default:
5055       break;
5056     }
5057 
5058   if (const auto *EIT = Ty->getAs<ExtIntType>())
5059     if (EIT->getNumBits() < 64)
5060       return true;
5061 
5062   return false;
5063 }
5064 
5065 /// isAlignedParamType - Determine whether a type requires 16-byte or
5066 /// higher alignment in the parameter area.  Always returns at least 8.
5067 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5068   // Complex types are passed just like their elements.
5069   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5070     Ty = CTy->getElementType();
5071 
5072   // Only vector types of size 16 bytes need alignment (larger types are
5073   // passed via reference, smaller types are not aligned).
5074   if (Ty->isVectorType()) {
5075     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5076   } else if (Ty->isRealFloatingType() &&
5077              &getContext().getFloatTypeSemantics(Ty) ==
5078                  &llvm::APFloat::IEEEquad()) {
5079     // According to ABI document section 'Optional Save Areas': If extended
5080     // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
5081     // format are supported, map them to a single quadword, quadword aligned.
5082     return CharUnits::fromQuantity(16);
5083   }
5084 
5085   // For single-element float/vector structs, we consider the whole type
5086   // to have the same alignment requirements as its single element.
5087   const Type *AlignAsType = nullptr;
5088   const Type *EltType = isSingleElementStruct(Ty, getContext());
5089   if (EltType) {
5090     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5091     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
5092         (BT && BT->isFloatingPoint()))
5093       AlignAsType = EltType;
5094   }
5095 
5096   // Likewise for ELFv2 homogeneous aggregates.
5097   const Type *Base = nullptr;
5098   uint64_t Members = 0;
5099   if (!AlignAsType && Kind == ELFv2 &&
5100       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5101     AlignAsType = Base;
5102 
5103   // With special case aggregates, only vector base types need alignment.
5104   if (AlignAsType) {
5105     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5106   }
5107 
5108   // Otherwise, we only need alignment for any aggregate type that
5109   // has an alignment requirement of >= 16 bytes.
5110   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5111     return CharUnits::fromQuantity(16);
5112   }
5113 
5114   return CharUnits::fromQuantity(8);
5115 }
5116 
5117 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5118 /// aggregate.  Base is set to the base element type, and Members is set
5119 /// to the number of base elements.
5120 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5121                                      uint64_t &Members) const {
5122   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5123     uint64_t NElements = AT->getSize().getZExtValue();
5124     if (NElements == 0)
5125       return false;
5126     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5127       return false;
5128     Members *= NElements;
5129   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5130     const RecordDecl *RD = RT->getDecl();
5131     if (RD->hasFlexibleArrayMember())
5132       return false;
5133 
5134     Members = 0;
5135 
5136     // If this is a C++ record, check the properties of the record such as
5137     // bases and ABI specific restrictions
5138     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5139       if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
5140         return false;
5141 
5142       for (const auto &I : CXXRD->bases()) {
5143         // Ignore empty records.
5144         if (isEmptyRecord(getContext(), I.getType(), true))
5145           continue;
5146 
5147         uint64_t FldMembers;
5148         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5149           return false;
5150 
5151         Members += FldMembers;
5152       }
5153     }
5154 
5155     for (const auto *FD : RD->fields()) {
5156       // Ignore (non-zero arrays of) empty records.
5157       QualType FT = FD->getType();
5158       while (const ConstantArrayType *AT =
5159              getContext().getAsConstantArrayType(FT)) {
5160         if (AT->getSize().getZExtValue() == 0)
5161           return false;
5162         FT = AT->getElementType();
5163       }
5164       if (isEmptyRecord(getContext(), FT, true))
5165         continue;
5166 
5167       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5168       if (getContext().getLangOpts().CPlusPlus &&
5169           FD->isZeroLengthBitField(getContext()))
5170         continue;
5171 
5172       uint64_t FldMembers;
5173       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5174         return false;
5175 
5176       Members = (RD->isUnion() ?
5177                  std::max(Members, FldMembers) : Members + FldMembers);
5178     }
5179 
5180     if (!Base)
5181       return false;
5182 
5183     // Ensure there is no padding.
5184     if (getContext().getTypeSize(Base) * Members !=
5185         getContext().getTypeSize(Ty))
5186       return false;
5187   } else {
5188     Members = 1;
5189     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5190       Members = 2;
5191       Ty = CT->getElementType();
5192     }
5193 
5194     // Most ABIs only support float, double, and some vector type widths.
5195     if (!isHomogeneousAggregateBaseType(Ty))
5196       return false;
5197 
5198     // The base type must be the same for all members.  Types that
5199     // agree in both total size and mode (float vs. vector) are
5200     // treated as being equivalent here.
5201     const Type *TyPtr = Ty.getTypePtr();
5202     if (!Base) {
5203       Base = TyPtr;
5204       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5205       // so make sure to widen it explicitly.
5206       if (const VectorType *VT = Base->getAs<VectorType>()) {
5207         QualType EltTy = VT->getElementType();
5208         unsigned NumElements =
5209             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5210         Base = getContext()
5211                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5212                    .getTypePtr();
5213       }
5214     }
5215 
5216     if (Base->isVectorType() != TyPtr->isVectorType() ||
5217         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5218       return false;
5219   }
5220   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5221 }
5222 
5223 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5224   // Homogeneous aggregates for ELFv2 must have base types of float,
5225   // double, long double, or 128-bit vectors.
5226   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5227     if (BT->getKind() == BuiltinType::Float ||
5228         BT->getKind() == BuiltinType::Double ||
5229         BT->getKind() == BuiltinType::LongDouble ||
5230         BT->getKind() == BuiltinType::Ibm128 ||
5231         (getContext().getTargetInfo().hasFloat128Type() &&
5232          (BT->getKind() == BuiltinType::Float128))) {
5233       if (IsSoftFloatABI)
5234         return false;
5235       return true;
5236     }
5237   }
5238   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5239     if (getContext().getTypeSize(VT) == 128)
5240       return true;
5241   }
5242   return false;
5243 }
5244 
5245 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5246     const Type *Base, uint64_t Members) const {
5247   // Vector and fp128 types require one register, other floating point types
5248   // require one or two registers depending on their size.
5249   uint32_t NumRegs =
5250       ((getContext().getTargetInfo().hasFloat128Type() &&
5251           Base->isFloat128Type()) ||
5252         Base->isVectorType()) ? 1
5253                               : (getContext().getTypeSize(Base) + 63) / 64;
5254 
5255   // Homogeneous Aggregates may occupy at most 8 registers.
5256   return Members * NumRegs <= 8;
5257 }
5258 
5259 ABIArgInfo
5260 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5261   Ty = useFirstFieldIfTransparentUnion(Ty);
5262 
5263   if (Ty->isAnyComplexType())
5264     return ABIArgInfo::getDirect();
5265 
5266   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5267   // or via reference (larger than 16 bytes).
5268   if (Ty->isVectorType()) {
5269     uint64_t Size = getContext().getTypeSize(Ty);
5270     if (Size > 128)
5271       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5272     else if (Size < 128) {
5273       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5274       return ABIArgInfo::getDirect(CoerceTy);
5275     }
5276   }
5277 
5278   if (const auto *EIT = Ty->getAs<ExtIntType>())
5279     if (EIT->getNumBits() > 128)
5280       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5281 
5282   if (isAggregateTypeForABI(Ty)) {
5283     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5284       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5285 
5286     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5287     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5288 
5289     // ELFv2 homogeneous aggregates are passed as array types.
5290     const Type *Base = nullptr;
5291     uint64_t Members = 0;
5292     if (Kind == ELFv2 &&
5293         isHomogeneousAggregate(Ty, Base, Members)) {
5294       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5295       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5296       return ABIArgInfo::getDirect(CoerceTy);
5297     }
5298 
5299     // If an aggregate may end up fully in registers, we do not
5300     // use the ByVal method, but pass the aggregate as array.
5301     // This is usually beneficial since we avoid forcing the
5302     // back-end to store the argument to memory.
5303     uint64_t Bits = getContext().getTypeSize(Ty);
5304     if (Bits > 0 && Bits <= 8 * GPRBits) {
5305       llvm::Type *CoerceTy;
5306 
5307       // Types up to 8 bytes are passed as integer type (which will be
5308       // properly aligned in the argument save area doubleword).
5309       if (Bits <= GPRBits)
5310         CoerceTy =
5311             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5312       // Larger types are passed as arrays, with the base type selected
5313       // according to the required alignment in the save area.
5314       else {
5315         uint64_t RegBits = ABIAlign * 8;
5316         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5317         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5318         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5319       }
5320 
5321       return ABIArgInfo::getDirect(CoerceTy);
5322     }
5323 
5324     // All other aggregates are passed ByVal.
5325     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5326                                    /*ByVal=*/true,
5327                                    /*Realign=*/TyAlign > ABIAlign);
5328   }
5329 
5330   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5331                                      : ABIArgInfo::getDirect());
5332 }
5333 
5334 ABIArgInfo
5335 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5336   if (RetTy->isVoidType())
5337     return ABIArgInfo::getIgnore();
5338 
5339   if (RetTy->isAnyComplexType())
5340     return ABIArgInfo::getDirect();
5341 
5342   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5343   // or via reference (larger than 16 bytes).
5344   if (RetTy->isVectorType()) {
5345     uint64_t Size = getContext().getTypeSize(RetTy);
5346     if (Size > 128)
5347       return getNaturalAlignIndirect(RetTy);
5348     else if (Size < 128) {
5349       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5350       return ABIArgInfo::getDirect(CoerceTy);
5351     }
5352   }
5353 
5354   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5355     if (EIT->getNumBits() > 128)
5356       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5357 
5358   if (isAggregateTypeForABI(RetTy)) {
5359     // ELFv2 homogeneous aggregates are returned as array types.
5360     const Type *Base = nullptr;
5361     uint64_t Members = 0;
5362     if (Kind == ELFv2 &&
5363         isHomogeneousAggregate(RetTy, Base, Members)) {
5364       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5365       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5366       return ABIArgInfo::getDirect(CoerceTy);
5367     }
5368 
5369     // ELFv2 small aggregates are returned in up to two registers.
5370     uint64_t Bits = getContext().getTypeSize(RetTy);
5371     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5372       if (Bits == 0)
5373         return ABIArgInfo::getIgnore();
5374 
5375       llvm::Type *CoerceTy;
5376       if (Bits > GPRBits) {
5377         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5378         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5379       } else
5380         CoerceTy =
5381             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5382       return ABIArgInfo::getDirect(CoerceTy);
5383     }
5384 
5385     // All other aggregates are returned indirectly.
5386     return getNaturalAlignIndirect(RetTy);
5387   }
5388 
5389   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5390                                         : ABIArgInfo::getDirect());
5391 }
5392 
5393 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5394 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5395                                       QualType Ty) const {
5396   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5397   TypeInfo.Align = getParamTypeAlignment(Ty);
5398 
5399   CharUnits SlotSize = CharUnits::fromQuantity(8);
5400 
5401   // If we have a complex type and the base type is smaller than 8 bytes,
5402   // the ABI calls for the real and imaginary parts to be right-adjusted
5403   // in separate doublewords.  However, Clang expects us to produce a
5404   // pointer to a structure with the two parts packed tightly.  So generate
5405   // loads of the real and imaginary parts relative to the va_list pointer,
5406   // and store them to a temporary structure.
5407   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5408     CharUnits EltSize = TypeInfo.Width / 2;
5409     if (EltSize < SlotSize) {
5410       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5411                                             SlotSize * 2, SlotSize,
5412                                             SlotSize, /*AllowHigher*/ true);
5413 
5414       Address RealAddr = Addr;
5415       Address ImagAddr = RealAddr;
5416       if (CGF.CGM.getDataLayout().isBigEndian()) {
5417         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5418                                                           SlotSize - EltSize);
5419         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5420                                                       2 * SlotSize - EltSize);
5421       } else {
5422         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5423       }
5424 
5425       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5426       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5427       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5428       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5429       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5430 
5431       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5432       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5433                              /*init*/ true);
5434       return Temp;
5435     }
5436   }
5437 
5438   // Otherwise, just use the general rule.
5439   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5440                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5441 }
5442 
5443 bool
5444 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5445   CodeGen::CodeGenFunction &CGF,
5446   llvm::Value *Address) const {
5447   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5448                                      /*IsAIX*/ false);
5449 }
5450 
5451 bool
5452 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5453                                                 llvm::Value *Address) const {
5454   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5455                                      /*IsAIX*/ false);
5456 }
5457 
5458 //===----------------------------------------------------------------------===//
5459 // AArch64 ABI Implementation
5460 //===----------------------------------------------------------------------===//
5461 
5462 namespace {
5463 
5464 class AArch64ABIInfo : public SwiftABIInfo {
5465 public:
5466   enum ABIKind {
5467     AAPCS = 0,
5468     DarwinPCS,
5469     Win64
5470   };
5471 
5472 private:
5473   ABIKind Kind;
5474 
5475 public:
5476   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5477     : SwiftABIInfo(CGT), Kind(Kind) {}
5478 
5479 private:
5480   ABIKind getABIKind() const { return Kind; }
5481   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5482 
5483   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5484   ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
5485                                   unsigned CallingConvention) const;
5486   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5487   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5488   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5489                                          uint64_t Members) const override;
5490 
5491   bool isIllegalVectorType(QualType Ty) const;
5492 
5493   void computeInfo(CGFunctionInfo &FI) const override {
5494     if (!::classifyReturnType(getCXXABI(), FI, *this))
5495       FI.getReturnInfo() =
5496           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5497 
5498     for (auto &it : FI.arguments())
5499       it.info = classifyArgumentType(it.type, FI.isVariadic(),
5500                                      FI.getCallingConvention());
5501   }
5502 
5503   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5504                           CodeGenFunction &CGF) const;
5505 
5506   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5507                          CodeGenFunction &CGF) const;
5508 
5509   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5510                     QualType Ty) const override {
5511     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5512     if (isa<llvm::ScalableVectorType>(BaseTy))
5513       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5514                                "currently not supported");
5515 
5516     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5517                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5518                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5519   }
5520 
5521   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5522                       QualType Ty) const override;
5523 
5524   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5525                                     bool asReturnValue) const override {
5526     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5527   }
5528   bool isSwiftErrorInRegister() const override {
5529     return true;
5530   }
5531 
5532   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5533                                  unsigned elts) const override;
5534 
5535   bool allowBFloatArgsAndRet() const override {
5536     return getTarget().hasBFloat16Type();
5537   }
5538 };
5539 
5540 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5541 public:
5542   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5543       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5544 
5545   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5546     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5547   }
5548 
5549   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5550     return 31;
5551   }
5552 
5553   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5554 
5555   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5556                            CodeGen::CodeGenModule &CGM) const override {
5557     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5558     if (!FD)
5559       return;
5560 
5561     const auto *TA = FD->getAttr<TargetAttr>();
5562     if (TA == nullptr)
5563       return;
5564 
5565     ParsedTargetAttr Attr = TA->parse();
5566     if (Attr.BranchProtection.empty())
5567       return;
5568 
5569     TargetInfo::BranchProtectionInfo BPI;
5570     StringRef Error;
5571     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5572                                                    BPI, Error);
5573     assert(Error.empty());
5574 
5575     auto *Fn = cast<llvm::Function>(GV);
5576     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5577     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5578 
5579     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5580       Fn->addFnAttr("sign-return-address-key",
5581                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5582                         ? "a_key"
5583                         : "b_key");
5584     }
5585 
5586     Fn->addFnAttr("branch-target-enforcement",
5587                   BPI.BranchTargetEnforcement ? "true" : "false");
5588   }
5589 
5590   bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
5591                                 llvm::Type *Ty) const override {
5592     if (CGF.getTarget().hasFeature("ls64")) {
5593       auto *ST = dyn_cast<llvm::StructType>(Ty);
5594       if (ST && ST->getNumElements() == 1) {
5595         auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
5596         if (AT && AT->getNumElements() == 8 &&
5597             AT->getElementType()->isIntegerTy(64))
5598           return true;
5599       }
5600     }
5601     return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
5602   }
5603 };
5604 
5605 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5606 public:
5607   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5608       : AArch64TargetCodeGenInfo(CGT, K) {}
5609 
5610   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5611                            CodeGen::CodeGenModule &CGM) const override;
5612 
5613   void getDependentLibraryOption(llvm::StringRef Lib,
5614                                  llvm::SmallString<24> &Opt) const override {
5615     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5616   }
5617 
5618   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5619                                llvm::SmallString<32> &Opt) const override {
5620     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5621   }
5622 };
5623 
5624 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5625     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5626   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5627   if (GV->isDeclaration())
5628     return;
5629   addStackProbeTargetAttributes(D, GV, CGM);
5630 }
5631 }
5632 
5633 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5634   assert(Ty->isVectorType() && "expected vector type!");
5635 
5636   const auto *VT = Ty->castAs<VectorType>();
5637   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5638     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5639     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5640                BuiltinType::UChar &&
5641            "unexpected builtin type for SVE predicate!");
5642     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5643         llvm::Type::getInt1Ty(getVMContext()), 16));
5644   }
5645 
5646   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5647     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5648 
5649     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5650     llvm::ScalableVectorType *ResType = nullptr;
5651     switch (BT->getKind()) {
5652     default:
5653       llvm_unreachable("unexpected builtin type for SVE vector!");
5654     case BuiltinType::SChar:
5655     case BuiltinType::UChar:
5656       ResType = llvm::ScalableVectorType::get(
5657           llvm::Type::getInt8Ty(getVMContext()), 16);
5658       break;
5659     case BuiltinType::Short:
5660     case BuiltinType::UShort:
5661       ResType = llvm::ScalableVectorType::get(
5662           llvm::Type::getInt16Ty(getVMContext()), 8);
5663       break;
5664     case BuiltinType::Int:
5665     case BuiltinType::UInt:
5666       ResType = llvm::ScalableVectorType::get(
5667           llvm::Type::getInt32Ty(getVMContext()), 4);
5668       break;
5669     case BuiltinType::Long:
5670     case BuiltinType::ULong:
5671       ResType = llvm::ScalableVectorType::get(
5672           llvm::Type::getInt64Ty(getVMContext()), 2);
5673       break;
5674     case BuiltinType::Half:
5675       ResType = llvm::ScalableVectorType::get(
5676           llvm::Type::getHalfTy(getVMContext()), 8);
5677       break;
5678     case BuiltinType::Float:
5679       ResType = llvm::ScalableVectorType::get(
5680           llvm::Type::getFloatTy(getVMContext()), 4);
5681       break;
5682     case BuiltinType::Double:
5683       ResType = llvm::ScalableVectorType::get(
5684           llvm::Type::getDoubleTy(getVMContext()), 2);
5685       break;
5686     case BuiltinType::BFloat16:
5687       ResType = llvm::ScalableVectorType::get(
5688           llvm::Type::getBFloatTy(getVMContext()), 8);
5689       break;
5690     }
5691     return ABIArgInfo::getDirect(ResType);
5692   }
5693 
5694   uint64_t Size = getContext().getTypeSize(Ty);
5695   // Android promotes <2 x i8> to i16, not i32
5696   if (isAndroid() && (Size <= 16)) {
5697     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5698     return ABIArgInfo::getDirect(ResType);
5699   }
5700   if (Size <= 32) {
5701     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5702     return ABIArgInfo::getDirect(ResType);
5703   }
5704   if (Size == 64) {
5705     auto *ResType =
5706         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5707     return ABIArgInfo::getDirect(ResType);
5708   }
5709   if (Size == 128) {
5710     auto *ResType =
5711         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5712     return ABIArgInfo::getDirect(ResType);
5713   }
5714   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5715 }
5716 
5717 ABIArgInfo
5718 AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
5719                                      unsigned CallingConvention) const {
5720   Ty = useFirstFieldIfTransparentUnion(Ty);
5721 
5722   // Handle illegal vector types here.
5723   if (isIllegalVectorType(Ty))
5724     return coerceIllegalVector(Ty);
5725 
5726   if (!isAggregateTypeForABI(Ty)) {
5727     // Treat an enum type as its underlying type.
5728     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5729       Ty = EnumTy->getDecl()->getIntegerType();
5730 
5731     if (const auto *EIT = Ty->getAs<ExtIntType>())
5732       if (EIT->getNumBits() > 128)
5733         return getNaturalAlignIndirect(Ty);
5734 
5735     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5736                 ? ABIArgInfo::getExtend(Ty)
5737                 : ABIArgInfo::getDirect());
5738   }
5739 
5740   // Structures with either a non-trivial destructor or a non-trivial
5741   // copy constructor are always indirect.
5742   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5743     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5744                                      CGCXXABI::RAA_DirectInMemory);
5745   }
5746 
5747   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5748   // elsewhere for GNU compatibility.
5749   uint64_t Size = getContext().getTypeSize(Ty);
5750   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5751   if (IsEmpty || Size == 0) {
5752     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5753       return ABIArgInfo::getIgnore();
5754 
5755     // GNU C mode. The only argument that gets ignored is an empty one with size
5756     // 0.
5757     if (IsEmpty && Size == 0)
5758       return ABIArgInfo::getIgnore();
5759     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5760   }
5761 
5762   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5763   const Type *Base = nullptr;
5764   uint64_t Members = 0;
5765   bool IsWin64 = Kind == Win64 || CallingConvention == llvm::CallingConv::Win64;
5766   bool IsWinVariadic = IsWin64 && IsVariadic;
5767   // In variadic functions on Windows, all composite types are treated alike,
5768   // no special handling of HFAs/HVAs.
5769   if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
5770     if (Kind != AArch64ABIInfo::AAPCS)
5771       return ABIArgInfo::getDirect(
5772           llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5773 
5774     // For alignment adjusted HFAs, cap the argument alignment to 16, leave it
5775     // default otherwise.
5776     unsigned Align =
5777         getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
5778     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
5779     Align = (Align > BaseAlign && Align >= 16) ? 16 : 0;
5780     return ABIArgInfo::getDirect(
5781         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
5782         nullptr, true, Align);
5783   }
5784 
5785   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5786   if (Size <= 128) {
5787     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5788     // same size and alignment.
5789     if (getTarget().isRenderScriptTarget()) {
5790       return coerceToIntArray(Ty, getContext(), getVMContext());
5791     }
5792     unsigned Alignment;
5793     if (Kind == AArch64ABIInfo::AAPCS) {
5794       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5795       Alignment = Alignment < 128 ? 64 : 128;
5796     } else {
5797       Alignment = std::max(getContext().getTypeAlign(Ty),
5798                            (unsigned)getTarget().getPointerWidth(0));
5799     }
5800     Size = llvm::alignTo(Size, Alignment);
5801 
5802     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5803     // For aggregates with 16-byte alignment, we use i128.
5804     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5805     return ABIArgInfo::getDirect(
5806         Size == Alignment ? BaseTy
5807                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5808   }
5809 
5810   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5811 }
5812 
5813 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5814                                               bool IsVariadic) const {
5815   if (RetTy->isVoidType())
5816     return ABIArgInfo::getIgnore();
5817 
5818   if (const auto *VT = RetTy->getAs<VectorType>()) {
5819     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5820         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5821       return coerceIllegalVector(RetTy);
5822   }
5823 
5824   // Large vector types should be returned via memory.
5825   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5826     return getNaturalAlignIndirect(RetTy);
5827 
5828   if (!isAggregateTypeForABI(RetTy)) {
5829     // Treat an enum type as its underlying type.
5830     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5831       RetTy = EnumTy->getDecl()->getIntegerType();
5832 
5833     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5834       if (EIT->getNumBits() > 128)
5835         return getNaturalAlignIndirect(RetTy);
5836 
5837     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5838                 ? ABIArgInfo::getExtend(RetTy)
5839                 : ABIArgInfo::getDirect());
5840   }
5841 
5842   uint64_t Size = getContext().getTypeSize(RetTy);
5843   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5844     return ABIArgInfo::getIgnore();
5845 
5846   const Type *Base = nullptr;
5847   uint64_t Members = 0;
5848   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5849       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5850         IsVariadic))
5851     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5852     return ABIArgInfo::getDirect();
5853 
5854   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5855   if (Size <= 128) {
5856     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5857     // same size and alignment.
5858     if (getTarget().isRenderScriptTarget()) {
5859       return coerceToIntArray(RetTy, getContext(), getVMContext());
5860     }
5861 
5862     if (Size <= 64 && getDataLayout().isLittleEndian()) {
5863       // Composite types are returned in lower bits of a 64-bit register for LE,
5864       // and in higher bits for BE. However, integer types are always returned
5865       // in lower bits for both LE and BE, and they are not rounded up to
5866       // 64-bits. We can skip rounding up of composite types for LE, but not for
5867       // BE, otherwise composite types will be indistinguishable from integer
5868       // types.
5869       return ABIArgInfo::getDirect(
5870           llvm::IntegerType::get(getVMContext(), Size));
5871     }
5872 
5873     unsigned Alignment = getContext().getTypeAlign(RetTy);
5874     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5875 
5876     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5877     // For aggregates with 16-byte alignment, we use i128.
5878     if (Alignment < 128 && Size == 128) {
5879       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5880       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5881     }
5882     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5883   }
5884 
5885   return getNaturalAlignIndirect(RetTy);
5886 }
5887 
5888 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5889 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5890   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5891     // Check whether VT is a fixed-length SVE vector. These types are
5892     // represented as scalable vectors in function args/return and must be
5893     // coerced from fixed vectors.
5894     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5895         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5896       return true;
5897 
5898     // Check whether VT is legal.
5899     unsigned NumElements = VT->getNumElements();
5900     uint64_t Size = getContext().getTypeSize(VT);
5901     // NumElements should be power of 2.
5902     if (!llvm::isPowerOf2_32(NumElements))
5903       return true;
5904 
5905     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5906     // vectors for some reason.
5907     llvm::Triple Triple = getTarget().getTriple();
5908     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5909         Triple.isOSBinFormatMachO())
5910       return Size <= 32;
5911 
5912     return Size != 64 && (Size != 128 || NumElements == 1);
5913   }
5914   return false;
5915 }
5916 
5917 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5918                                                llvm::Type *eltTy,
5919                                                unsigned elts) const {
5920   if (!llvm::isPowerOf2_32(elts))
5921     return false;
5922   if (totalSize.getQuantity() != 8 &&
5923       (totalSize.getQuantity() != 16 || elts == 1))
5924     return false;
5925   return true;
5926 }
5927 
5928 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5929   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5930   // point type or a short-vector type. This is the same as the 32-bit ABI,
5931   // but with the difference that any floating-point type is allowed,
5932   // including __fp16.
5933   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5934     if (BT->isFloatingPoint())
5935       return true;
5936   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5937     unsigned VecSize = getContext().getTypeSize(VT);
5938     if (VecSize == 64 || VecSize == 128)
5939       return true;
5940   }
5941   return false;
5942 }
5943 
5944 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5945                                                        uint64_t Members) const {
5946   return Members <= 4;
5947 }
5948 
5949 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5950                                        CodeGenFunction &CGF) const {
5951   ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
5952                                        CGF.CurFnInfo->getCallingConvention());
5953   bool IsIndirect = AI.isIndirect();
5954 
5955   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5956   if (IsIndirect)
5957     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5958   else if (AI.getCoerceToType())
5959     BaseTy = AI.getCoerceToType();
5960 
5961   unsigned NumRegs = 1;
5962   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5963     BaseTy = ArrTy->getElementType();
5964     NumRegs = ArrTy->getNumElements();
5965   }
5966   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5967 
5968   // The AArch64 va_list type and handling is specified in the Procedure Call
5969   // Standard, section B.4:
5970   //
5971   // struct {
5972   //   void *__stack;
5973   //   void *__gr_top;
5974   //   void *__vr_top;
5975   //   int __gr_offs;
5976   //   int __vr_offs;
5977   // };
5978 
5979   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5980   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5981   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5982   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5983 
5984   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5985   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5986 
5987   Address reg_offs_p = Address::invalid();
5988   llvm::Value *reg_offs = nullptr;
5989   int reg_top_index;
5990   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5991   if (!IsFPR) {
5992     // 3 is the field number of __gr_offs
5993     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5994     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5995     reg_top_index = 1; // field number for __gr_top
5996     RegSize = llvm::alignTo(RegSize, 8);
5997   } else {
5998     // 4 is the field number of __vr_offs.
5999     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
6000     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
6001     reg_top_index = 2; // field number for __vr_top
6002     RegSize = 16 * NumRegs;
6003   }
6004 
6005   //=======================================
6006   // Find out where argument was passed
6007   //=======================================
6008 
6009   // If reg_offs >= 0 we're already using the stack for this type of
6010   // argument. We don't want to keep updating reg_offs (in case it overflows,
6011   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
6012   // whatever they get).
6013   llvm::Value *UsingStack = nullptr;
6014   UsingStack = CGF.Builder.CreateICmpSGE(
6015       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
6016 
6017   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
6018 
6019   // Otherwise, at least some kind of argument could go in these registers, the
6020   // question is whether this particular type is too big.
6021   CGF.EmitBlock(MaybeRegBlock);
6022 
6023   // Integer arguments may need to correct register alignment (for example a
6024   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
6025   // align __gr_offs to calculate the potential address.
6026   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
6027     int Align = TyAlign.getQuantity();
6028 
6029     reg_offs = CGF.Builder.CreateAdd(
6030         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
6031         "align_regoffs");
6032     reg_offs = CGF.Builder.CreateAnd(
6033         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
6034         "aligned_regoffs");
6035   }
6036 
6037   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
6038   // The fact that this is done unconditionally reflects the fact that
6039   // allocating an argument to the stack also uses up all the remaining
6040   // registers of the appropriate kind.
6041   llvm::Value *NewOffset = nullptr;
6042   NewOffset = CGF.Builder.CreateAdd(
6043       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
6044   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
6045 
6046   // Now we're in a position to decide whether this argument really was in
6047   // registers or not.
6048   llvm::Value *InRegs = nullptr;
6049   InRegs = CGF.Builder.CreateICmpSLE(
6050       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
6051 
6052   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
6053 
6054   //=======================================
6055   // Argument was in registers
6056   //=======================================
6057 
6058   // Now we emit the code for if the argument was originally passed in
6059   // registers. First start the appropriate block:
6060   CGF.EmitBlock(InRegBlock);
6061 
6062   llvm::Value *reg_top = nullptr;
6063   Address reg_top_p =
6064       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
6065   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
6066   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
6067                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
6068   Address RegAddr = Address::invalid();
6069   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
6070 
6071   if (IsIndirect) {
6072     // If it's been passed indirectly (actually a struct), whatever we find from
6073     // stored registers or on the stack will actually be a struct **.
6074     MemTy = llvm::PointerType::getUnqual(MemTy);
6075   }
6076 
6077   const Type *Base = nullptr;
6078   uint64_t NumMembers = 0;
6079   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
6080   if (IsHFA && NumMembers > 1) {
6081     // Homogeneous aggregates passed in registers will have their elements split
6082     // and stored 16-bytes apart regardless of size (they're notionally in qN,
6083     // qN+1, ...). We reload and store into a temporary local variable
6084     // contiguously.
6085     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
6086     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
6087     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
6088     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
6089     Address Tmp = CGF.CreateTempAlloca(HFATy,
6090                                        std::max(TyAlign, BaseTyInfo.Align));
6091 
6092     // On big-endian platforms, the value will be right-aligned in its slot.
6093     int Offset = 0;
6094     if (CGF.CGM.getDataLayout().isBigEndian() &&
6095         BaseTyInfo.Width.getQuantity() < 16)
6096       Offset = 16 - BaseTyInfo.Width.getQuantity();
6097 
6098     for (unsigned i = 0; i < NumMembers; ++i) {
6099       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
6100       Address LoadAddr =
6101         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
6102       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
6103 
6104       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
6105 
6106       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6107       CGF.Builder.CreateStore(Elem, StoreAddr);
6108     }
6109 
6110     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6111   } else {
6112     // Otherwise the object is contiguous in memory.
6113 
6114     // It might be right-aligned in its slot.
6115     CharUnits SlotSize = BaseAddr.getAlignment();
6116     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6117         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6118         TySize < SlotSize) {
6119       CharUnits Offset = SlotSize - TySize;
6120       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6121     }
6122 
6123     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6124   }
6125 
6126   CGF.EmitBranch(ContBlock);
6127 
6128   //=======================================
6129   // Argument was on the stack
6130   //=======================================
6131   CGF.EmitBlock(OnStackBlock);
6132 
6133   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6134   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6135 
6136   // Again, stack arguments may need realignment. In this case both integer and
6137   // floating-point ones might be affected.
6138   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6139     int Align = TyAlign.getQuantity();
6140 
6141     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6142 
6143     OnStackPtr = CGF.Builder.CreateAdd(
6144         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6145         "align_stack");
6146     OnStackPtr = CGF.Builder.CreateAnd(
6147         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6148         "align_stack");
6149 
6150     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6151   }
6152   Address OnStackAddr(OnStackPtr,
6153                       std::max(CharUnits::fromQuantity(8), TyAlign));
6154 
6155   // All stack slots are multiples of 8 bytes.
6156   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6157   CharUnits StackSize;
6158   if (IsIndirect)
6159     StackSize = StackSlotSize;
6160   else
6161     StackSize = TySize.alignTo(StackSlotSize);
6162 
6163   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6164   llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
6165       CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
6166 
6167   // Write the new value of __stack for the next call to va_arg
6168   CGF.Builder.CreateStore(NewStack, stack_p);
6169 
6170   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6171       TySize < StackSlotSize) {
6172     CharUnits Offset = StackSlotSize - TySize;
6173     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6174   }
6175 
6176   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6177 
6178   CGF.EmitBranch(ContBlock);
6179 
6180   //=======================================
6181   // Tidy up
6182   //=======================================
6183   CGF.EmitBlock(ContBlock);
6184 
6185   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6186                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6187 
6188   if (IsIndirect)
6189     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6190                    TyAlign);
6191 
6192   return ResAddr;
6193 }
6194 
6195 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6196                                         CodeGenFunction &CGF) const {
6197   // The backend's lowering doesn't support va_arg for aggregates or
6198   // illegal vector types.  Lower VAArg here for these cases and use
6199   // the LLVM va_arg instruction for everything else.
6200   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6201     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6202 
6203   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6204   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6205 
6206   // Empty records are ignored for parameter passing purposes.
6207   if (isEmptyRecord(getContext(), Ty, true)) {
6208     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6209     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6210     return Addr;
6211   }
6212 
6213   // The size of the actual thing passed, which might end up just
6214   // being a pointer for indirect types.
6215   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6216 
6217   // Arguments bigger than 16 bytes which aren't homogeneous
6218   // aggregates should be passed indirectly.
6219   bool IsIndirect = false;
6220   if (TyInfo.Width.getQuantity() > 16) {
6221     const Type *Base = nullptr;
6222     uint64_t Members = 0;
6223     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6224   }
6225 
6226   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6227                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6228 }
6229 
6230 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6231                                     QualType Ty) const {
6232   bool IsIndirect = false;
6233 
6234   // Composites larger than 16 bytes are passed by reference.
6235   if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
6236     IsIndirect = true;
6237 
6238   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6239                           CGF.getContext().getTypeInfoInChars(Ty),
6240                           CharUnits::fromQuantity(8),
6241                           /*allowHigherAlign*/ false);
6242 }
6243 
6244 //===----------------------------------------------------------------------===//
6245 // ARM ABI Implementation
6246 //===----------------------------------------------------------------------===//
6247 
6248 namespace {
6249 
6250 class ARMABIInfo : public SwiftABIInfo {
6251 public:
6252   enum ABIKind {
6253     APCS = 0,
6254     AAPCS = 1,
6255     AAPCS_VFP = 2,
6256     AAPCS16_VFP = 3,
6257   };
6258 
6259 private:
6260   ABIKind Kind;
6261   bool IsFloatABISoftFP;
6262 
6263 public:
6264   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6265       : SwiftABIInfo(CGT), Kind(_Kind) {
6266     setCCs();
6267     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6268         CGT.getCodeGenOpts().FloatABI == ""; // default
6269   }
6270 
6271   bool isEABI() const {
6272     switch (getTarget().getTriple().getEnvironment()) {
6273     case llvm::Triple::Android:
6274     case llvm::Triple::EABI:
6275     case llvm::Triple::EABIHF:
6276     case llvm::Triple::GNUEABI:
6277     case llvm::Triple::GNUEABIHF:
6278     case llvm::Triple::MuslEABI:
6279     case llvm::Triple::MuslEABIHF:
6280       return true;
6281     default:
6282       return false;
6283     }
6284   }
6285 
6286   bool isEABIHF() const {
6287     switch (getTarget().getTriple().getEnvironment()) {
6288     case llvm::Triple::EABIHF:
6289     case llvm::Triple::GNUEABIHF:
6290     case llvm::Triple::MuslEABIHF:
6291       return true;
6292     default:
6293       return false;
6294     }
6295   }
6296 
6297   ABIKind getABIKind() const { return Kind; }
6298 
6299   bool allowBFloatArgsAndRet() const override {
6300     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6301   }
6302 
6303 private:
6304   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6305                                 unsigned functionCallConv) const;
6306   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6307                                   unsigned functionCallConv) const;
6308   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6309                                           uint64_t Members) const;
6310   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6311   bool isIllegalVectorType(QualType Ty) const;
6312   bool containsAnyFP16Vectors(QualType Ty) const;
6313 
6314   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6315   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6316                                          uint64_t Members) const override;
6317 
6318   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6319 
6320   void computeInfo(CGFunctionInfo &FI) const override;
6321 
6322   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6323                     QualType Ty) const override;
6324 
6325   llvm::CallingConv::ID getLLVMDefaultCC() const;
6326   llvm::CallingConv::ID getABIDefaultCC() const;
6327   void setCCs();
6328 
6329   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6330                                     bool asReturnValue) const override {
6331     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6332   }
6333   bool isSwiftErrorInRegister() const override {
6334     return true;
6335   }
6336   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6337                                  unsigned elts) const override;
6338 };
6339 
6340 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6341 public:
6342   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6343       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6344 
6345   const ARMABIInfo &getABIInfo() const {
6346     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6347   }
6348 
6349   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6350     return 13;
6351   }
6352 
6353   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6354     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6355   }
6356 
6357   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6358                                llvm::Value *Address) const override {
6359     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6360 
6361     // 0-15 are the 16 integer registers.
6362     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6363     return false;
6364   }
6365 
6366   unsigned getSizeOfUnwindException() const override {
6367     if (getABIInfo().isEABI()) return 88;
6368     return TargetCodeGenInfo::getSizeOfUnwindException();
6369   }
6370 
6371   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6372                            CodeGen::CodeGenModule &CGM) const override {
6373     if (GV->isDeclaration())
6374       return;
6375     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6376     if (!FD)
6377       return;
6378 
6379     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6380     if (!Attr)
6381       return;
6382 
6383     const char *Kind;
6384     switch (Attr->getInterrupt()) {
6385     case ARMInterruptAttr::Generic: Kind = ""; break;
6386     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6387     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6388     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6389     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6390     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6391     }
6392 
6393     llvm::Function *Fn = cast<llvm::Function>(GV);
6394 
6395     Fn->addFnAttr("interrupt", Kind);
6396 
6397     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6398     if (ABI == ARMABIInfo::APCS)
6399       return;
6400 
6401     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6402     // however this is not necessarily true on taking any interrupt. Instruct
6403     // the backend to perform a realignment as part of the function prologue.
6404     llvm::AttrBuilder B;
6405     B.addStackAlignmentAttr(8);
6406     Fn->addFnAttrs(B);
6407   }
6408 };
6409 
6410 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6411 public:
6412   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6413       : ARMTargetCodeGenInfo(CGT, K) {}
6414 
6415   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6416                            CodeGen::CodeGenModule &CGM) const override;
6417 
6418   void getDependentLibraryOption(llvm::StringRef Lib,
6419                                  llvm::SmallString<24> &Opt) const override {
6420     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6421   }
6422 
6423   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6424                                llvm::SmallString<32> &Opt) const override {
6425     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6426   }
6427 };
6428 
6429 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6430     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6431   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6432   if (GV->isDeclaration())
6433     return;
6434   addStackProbeTargetAttributes(D, GV, CGM);
6435 }
6436 }
6437 
6438 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6439   if (!::classifyReturnType(getCXXABI(), FI, *this))
6440     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6441                                             FI.getCallingConvention());
6442 
6443   for (auto &I : FI.arguments())
6444     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6445                                   FI.getCallingConvention());
6446 
6447 
6448   // Always honor user-specified calling convention.
6449   if (FI.getCallingConvention() != llvm::CallingConv::C)
6450     return;
6451 
6452   llvm::CallingConv::ID cc = getRuntimeCC();
6453   if (cc != llvm::CallingConv::C)
6454     FI.setEffectiveCallingConvention(cc);
6455 }
6456 
6457 /// Return the default calling convention that LLVM will use.
6458 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6459   // The default calling convention that LLVM will infer.
6460   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6461     return llvm::CallingConv::ARM_AAPCS_VFP;
6462   else if (isEABI())
6463     return llvm::CallingConv::ARM_AAPCS;
6464   else
6465     return llvm::CallingConv::ARM_APCS;
6466 }
6467 
6468 /// Return the calling convention that our ABI would like us to use
6469 /// as the C calling convention.
6470 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6471   switch (getABIKind()) {
6472   case APCS: return llvm::CallingConv::ARM_APCS;
6473   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6474   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6475   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6476   }
6477   llvm_unreachable("bad ABI kind");
6478 }
6479 
6480 void ARMABIInfo::setCCs() {
6481   assert(getRuntimeCC() == llvm::CallingConv::C);
6482 
6483   // Don't muddy up the IR with a ton of explicit annotations if
6484   // they'd just match what LLVM will infer from the triple.
6485   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6486   if (abiCC != getLLVMDefaultCC())
6487     RuntimeCC = abiCC;
6488 }
6489 
6490 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6491   uint64_t Size = getContext().getTypeSize(Ty);
6492   if (Size <= 32) {
6493     llvm::Type *ResType =
6494         llvm::Type::getInt32Ty(getVMContext());
6495     return ABIArgInfo::getDirect(ResType);
6496   }
6497   if (Size == 64 || Size == 128) {
6498     auto *ResType = llvm::FixedVectorType::get(
6499         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6500     return ABIArgInfo::getDirect(ResType);
6501   }
6502   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6503 }
6504 
6505 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6506                                                     const Type *Base,
6507                                                     uint64_t Members) const {
6508   assert(Base && "Base class should be set for homogeneous aggregate");
6509   // Base can be a floating-point or a vector.
6510   if (const VectorType *VT = Base->getAs<VectorType>()) {
6511     // FP16 vectors should be converted to integer vectors
6512     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6513       uint64_t Size = getContext().getTypeSize(VT);
6514       auto *NewVecTy = llvm::FixedVectorType::get(
6515           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6516       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6517       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6518     }
6519   }
6520   unsigned Align = 0;
6521   if (getABIKind() == ARMABIInfo::AAPCS ||
6522       getABIKind() == ARMABIInfo::AAPCS_VFP) {
6523     // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
6524     // default otherwise.
6525     Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6526     unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
6527     Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
6528   }
6529   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
6530 }
6531 
6532 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6533                                             unsigned functionCallConv) const {
6534   // 6.1.2.1 The following argument types are VFP CPRCs:
6535   //   A single-precision floating-point type (including promoted
6536   //   half-precision types); A double-precision floating-point type;
6537   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6538   //   with a Base Type of a single- or double-precision floating-point type,
6539   //   64-bit containerized vectors or 128-bit containerized vectors with one
6540   //   to four Elements.
6541   // Variadic functions should always marshal to the base standard.
6542   bool IsAAPCS_VFP =
6543       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6544 
6545   Ty = useFirstFieldIfTransparentUnion(Ty);
6546 
6547   // Handle illegal vector types here.
6548   if (isIllegalVectorType(Ty))
6549     return coerceIllegalVector(Ty);
6550 
6551   if (!isAggregateTypeForABI(Ty)) {
6552     // Treat an enum type as its underlying type.
6553     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6554       Ty = EnumTy->getDecl()->getIntegerType();
6555     }
6556 
6557     if (const auto *EIT = Ty->getAs<ExtIntType>())
6558       if (EIT->getNumBits() > 64)
6559         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6560 
6561     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6562                                               : ABIArgInfo::getDirect());
6563   }
6564 
6565   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6566     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6567   }
6568 
6569   // Ignore empty records.
6570   if (isEmptyRecord(getContext(), Ty, true))
6571     return ABIArgInfo::getIgnore();
6572 
6573   if (IsAAPCS_VFP) {
6574     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6575     // into VFP registers.
6576     const Type *Base = nullptr;
6577     uint64_t Members = 0;
6578     if (isHomogeneousAggregate(Ty, Base, Members))
6579       return classifyHomogeneousAggregate(Ty, Base, Members);
6580   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6581     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6582     // this convention even for a variadic function: the backend will use GPRs
6583     // if needed.
6584     const Type *Base = nullptr;
6585     uint64_t Members = 0;
6586     if (isHomogeneousAggregate(Ty, Base, Members)) {
6587       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6588       llvm::Type *Ty =
6589         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6590       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6591     }
6592   }
6593 
6594   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6595       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6596     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6597     // bigger than 128-bits, they get placed in space allocated by the caller,
6598     // and a pointer is passed.
6599     return ABIArgInfo::getIndirect(
6600         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6601   }
6602 
6603   // Support byval for ARM.
6604   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6605   // most 8-byte. We realign the indirect argument if type alignment is bigger
6606   // than ABI alignment.
6607   uint64_t ABIAlign = 4;
6608   uint64_t TyAlign;
6609   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6610       getABIKind() == ARMABIInfo::AAPCS) {
6611     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6612     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6613   } else {
6614     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6615   }
6616   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6617     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6618     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6619                                    /*ByVal=*/true,
6620                                    /*Realign=*/TyAlign > ABIAlign);
6621   }
6622 
6623   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6624   // same size and alignment.
6625   if (getTarget().isRenderScriptTarget()) {
6626     return coerceToIntArray(Ty, getContext(), getVMContext());
6627   }
6628 
6629   // Otherwise, pass by coercing to a structure of the appropriate size.
6630   llvm::Type* ElemTy;
6631   unsigned SizeRegs;
6632   // FIXME: Try to match the types of the arguments more accurately where
6633   // we can.
6634   if (TyAlign <= 4) {
6635     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6636     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6637   } else {
6638     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6639     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6640   }
6641 
6642   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6643 }
6644 
6645 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6646                               llvm::LLVMContext &VMContext) {
6647   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6648   // is called integer-like if its size is less than or equal to one word, and
6649   // the offset of each of its addressable sub-fields is zero.
6650 
6651   uint64_t Size = Context.getTypeSize(Ty);
6652 
6653   // Check that the type fits in a word.
6654   if (Size > 32)
6655     return false;
6656 
6657   // FIXME: Handle vector types!
6658   if (Ty->isVectorType())
6659     return false;
6660 
6661   // Float types are never treated as "integer like".
6662   if (Ty->isRealFloatingType())
6663     return false;
6664 
6665   // If this is a builtin or pointer type then it is ok.
6666   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6667     return true;
6668 
6669   // Small complex integer types are "integer like".
6670   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6671     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6672 
6673   // Single element and zero sized arrays should be allowed, by the definition
6674   // above, but they are not.
6675 
6676   // Otherwise, it must be a record type.
6677   const RecordType *RT = Ty->getAs<RecordType>();
6678   if (!RT) return false;
6679 
6680   // Ignore records with flexible arrays.
6681   const RecordDecl *RD = RT->getDecl();
6682   if (RD->hasFlexibleArrayMember())
6683     return false;
6684 
6685   // Check that all sub-fields are at offset 0, and are themselves "integer
6686   // like".
6687   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6688 
6689   bool HadField = false;
6690   unsigned idx = 0;
6691   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6692        i != e; ++i, ++idx) {
6693     const FieldDecl *FD = *i;
6694 
6695     // Bit-fields are not addressable, we only need to verify they are "integer
6696     // like". We still have to disallow a subsequent non-bitfield, for example:
6697     //   struct { int : 0; int x }
6698     // is non-integer like according to gcc.
6699     if (FD->isBitField()) {
6700       if (!RD->isUnion())
6701         HadField = true;
6702 
6703       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6704         return false;
6705 
6706       continue;
6707     }
6708 
6709     // Check if this field is at offset 0.
6710     if (Layout.getFieldOffset(idx) != 0)
6711       return false;
6712 
6713     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6714       return false;
6715 
6716     // Only allow at most one field in a structure. This doesn't match the
6717     // wording above, but follows gcc in situations with a field following an
6718     // empty structure.
6719     if (!RD->isUnion()) {
6720       if (HadField)
6721         return false;
6722 
6723       HadField = true;
6724     }
6725   }
6726 
6727   return true;
6728 }
6729 
6730 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6731                                           unsigned functionCallConv) const {
6732 
6733   // Variadic functions should always marshal to the base standard.
6734   bool IsAAPCS_VFP =
6735       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6736 
6737   if (RetTy->isVoidType())
6738     return ABIArgInfo::getIgnore();
6739 
6740   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6741     // Large vector types should be returned via memory.
6742     if (getContext().getTypeSize(RetTy) > 128)
6743       return getNaturalAlignIndirect(RetTy);
6744     // TODO: FP16/BF16 vectors should be converted to integer vectors
6745     // This check is similar  to isIllegalVectorType - refactor?
6746     if ((!getTarget().hasLegalHalfType() &&
6747         (VT->getElementType()->isFloat16Type() ||
6748          VT->getElementType()->isHalfType())) ||
6749         (IsFloatABISoftFP &&
6750          VT->getElementType()->isBFloat16Type()))
6751       return coerceIllegalVector(RetTy);
6752   }
6753 
6754   if (!isAggregateTypeForABI(RetTy)) {
6755     // Treat an enum type as its underlying type.
6756     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6757       RetTy = EnumTy->getDecl()->getIntegerType();
6758 
6759     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6760       if (EIT->getNumBits() > 64)
6761         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6762 
6763     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6764                                                 : ABIArgInfo::getDirect();
6765   }
6766 
6767   // Are we following APCS?
6768   if (getABIKind() == APCS) {
6769     if (isEmptyRecord(getContext(), RetTy, false))
6770       return ABIArgInfo::getIgnore();
6771 
6772     // Complex types are all returned as packed integers.
6773     //
6774     // FIXME: Consider using 2 x vector types if the back end handles them
6775     // correctly.
6776     if (RetTy->isAnyComplexType())
6777       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6778           getVMContext(), getContext().getTypeSize(RetTy)));
6779 
6780     // Integer like structures are returned in r0.
6781     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6782       // Return in the smallest viable integer type.
6783       uint64_t Size = getContext().getTypeSize(RetTy);
6784       if (Size <= 8)
6785         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6786       if (Size <= 16)
6787         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6788       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6789     }
6790 
6791     // Otherwise return in memory.
6792     return getNaturalAlignIndirect(RetTy);
6793   }
6794 
6795   // Otherwise this is an AAPCS variant.
6796 
6797   if (isEmptyRecord(getContext(), RetTy, true))
6798     return ABIArgInfo::getIgnore();
6799 
6800   // Check for homogeneous aggregates with AAPCS-VFP.
6801   if (IsAAPCS_VFP) {
6802     const Type *Base = nullptr;
6803     uint64_t Members = 0;
6804     if (isHomogeneousAggregate(RetTy, Base, Members))
6805       return classifyHomogeneousAggregate(RetTy, Base, Members);
6806   }
6807 
6808   // Aggregates <= 4 bytes are returned in r0; other aggregates
6809   // are returned indirectly.
6810   uint64_t Size = getContext().getTypeSize(RetTy);
6811   if (Size <= 32) {
6812     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6813     // same size and alignment.
6814     if (getTarget().isRenderScriptTarget()) {
6815       return coerceToIntArray(RetTy, getContext(), getVMContext());
6816     }
6817     if (getDataLayout().isBigEndian())
6818       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6819       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6820 
6821     // Return in the smallest viable integer type.
6822     if (Size <= 8)
6823       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6824     if (Size <= 16)
6825       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6826     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6827   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6828     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6829     llvm::Type *CoerceTy =
6830         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6831     return ABIArgInfo::getDirect(CoerceTy);
6832   }
6833 
6834   return getNaturalAlignIndirect(RetTy);
6835 }
6836 
6837 /// isIllegalVector - check whether Ty is an illegal vector type.
6838 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6839   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6840     // On targets that don't support half, fp16 or bfloat, they are expanded
6841     // into float, and we don't want the ABI to depend on whether or not they
6842     // are supported in hardware. Thus return false to coerce vectors of these
6843     // types into integer vectors.
6844     // We do not depend on hasLegalHalfType for bfloat as it is a
6845     // separate IR type.
6846     if ((!getTarget().hasLegalHalfType() &&
6847         (VT->getElementType()->isFloat16Type() ||
6848          VT->getElementType()->isHalfType())) ||
6849         (IsFloatABISoftFP &&
6850          VT->getElementType()->isBFloat16Type()))
6851       return true;
6852     if (isAndroid()) {
6853       // Android shipped using Clang 3.1, which supported a slightly different
6854       // vector ABI. The primary differences were that 3-element vector types
6855       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6856       // accepts that legacy behavior for Android only.
6857       // Check whether VT is legal.
6858       unsigned NumElements = VT->getNumElements();
6859       // NumElements should be power of 2 or equal to 3.
6860       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6861         return true;
6862     } else {
6863       // Check whether VT is legal.
6864       unsigned NumElements = VT->getNumElements();
6865       uint64_t Size = getContext().getTypeSize(VT);
6866       // NumElements should be power of 2.
6867       if (!llvm::isPowerOf2_32(NumElements))
6868         return true;
6869       // Size should be greater than 32 bits.
6870       return Size <= 32;
6871     }
6872   }
6873   return false;
6874 }
6875 
6876 /// Return true if a type contains any 16-bit floating point vectors
6877 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6878   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6879     uint64_t NElements = AT->getSize().getZExtValue();
6880     if (NElements == 0)
6881       return false;
6882     return containsAnyFP16Vectors(AT->getElementType());
6883   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6884     const RecordDecl *RD = RT->getDecl();
6885 
6886     // If this is a C++ record, check the bases first.
6887     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6888       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6889             return containsAnyFP16Vectors(B.getType());
6890           }))
6891         return true;
6892 
6893     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6894           return FD && containsAnyFP16Vectors(FD->getType());
6895         }))
6896       return true;
6897 
6898     return false;
6899   } else {
6900     if (const VectorType *VT = Ty->getAs<VectorType>())
6901       return (VT->getElementType()->isFloat16Type() ||
6902               VT->getElementType()->isBFloat16Type() ||
6903               VT->getElementType()->isHalfType());
6904     return false;
6905   }
6906 }
6907 
6908 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6909                                            llvm::Type *eltTy,
6910                                            unsigned numElts) const {
6911   if (!llvm::isPowerOf2_32(numElts))
6912     return false;
6913   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6914   if (size > 64)
6915     return false;
6916   if (vectorSize.getQuantity() != 8 &&
6917       (vectorSize.getQuantity() != 16 || numElts == 1))
6918     return false;
6919   return true;
6920 }
6921 
6922 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6923   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6924   // double, or 64-bit or 128-bit vectors.
6925   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6926     if (BT->getKind() == BuiltinType::Float ||
6927         BT->getKind() == BuiltinType::Double ||
6928         BT->getKind() == BuiltinType::LongDouble)
6929       return true;
6930   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6931     unsigned VecSize = getContext().getTypeSize(VT);
6932     if (VecSize == 64 || VecSize == 128)
6933       return true;
6934   }
6935   return false;
6936 }
6937 
6938 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6939                                                    uint64_t Members) const {
6940   return Members <= 4;
6941 }
6942 
6943 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6944                                         bool acceptHalf) const {
6945   // Give precedence to user-specified calling conventions.
6946   if (callConvention != llvm::CallingConv::C)
6947     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6948   else
6949     return (getABIKind() == AAPCS_VFP) ||
6950            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6951 }
6952 
6953 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6954                               QualType Ty) const {
6955   CharUnits SlotSize = CharUnits::fromQuantity(4);
6956 
6957   // Empty records are ignored for parameter passing purposes.
6958   if (isEmptyRecord(getContext(), Ty, true)) {
6959     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6960     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6961     return Addr;
6962   }
6963 
6964   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6965   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6966 
6967   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6968   bool IsIndirect = false;
6969   const Type *Base = nullptr;
6970   uint64_t Members = 0;
6971   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6972     IsIndirect = true;
6973 
6974   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6975   // allocated by the caller.
6976   } else if (TySize > CharUnits::fromQuantity(16) &&
6977              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6978              !isHomogeneousAggregate(Ty, Base, Members)) {
6979     IsIndirect = true;
6980 
6981   // Otherwise, bound the type's ABI alignment.
6982   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6983   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6984   // Our callers should be prepared to handle an under-aligned address.
6985   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6986              getABIKind() == ARMABIInfo::AAPCS) {
6987     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6988     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6989   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6990     // ARMv7k allows type alignment up to 16 bytes.
6991     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6992     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6993   } else {
6994     TyAlignForABI = CharUnits::fromQuantity(4);
6995   }
6996 
6997   TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None);
6998   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6999                           SlotSize, /*AllowHigherAlign*/ true);
7000 }
7001 
7002 //===----------------------------------------------------------------------===//
7003 // NVPTX ABI Implementation
7004 //===----------------------------------------------------------------------===//
7005 
7006 namespace {
7007 
7008 class NVPTXTargetCodeGenInfo;
7009 
7010 class NVPTXABIInfo : public ABIInfo {
7011   NVPTXTargetCodeGenInfo &CGInfo;
7012 
7013 public:
7014   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
7015       : ABIInfo(CGT), CGInfo(Info) {}
7016 
7017   ABIArgInfo classifyReturnType(QualType RetTy) const;
7018   ABIArgInfo classifyArgumentType(QualType Ty) const;
7019 
7020   void computeInfo(CGFunctionInfo &FI) const override;
7021   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7022                     QualType Ty) const override;
7023   bool isUnsupportedType(QualType T) const;
7024   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
7025 };
7026 
7027 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
7028 public:
7029   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
7030       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
7031 
7032   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7033                            CodeGen::CodeGenModule &M) const override;
7034   bool shouldEmitStaticExternCAliases() const override;
7035 
7036   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
7037     // On the device side, surface reference is represented as an object handle
7038     // in 64-bit integer.
7039     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7040   }
7041 
7042   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
7043     // On the device side, texture reference is represented as an object handle
7044     // in 64-bit integer.
7045     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
7046   }
7047 
7048   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7049                                               LValue Src) const override {
7050     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7051     return true;
7052   }
7053 
7054   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7055                                               LValue Src) const override {
7056     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
7057     return true;
7058   }
7059 
7060 private:
7061   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
7062   // resulting MDNode to the nvvm.annotations MDNode.
7063   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
7064                               int Operand);
7065 
7066   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
7067                                            LValue Src) {
7068     llvm::Value *Handle = nullptr;
7069     llvm::Constant *C =
7070         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
7071     // Lookup `addrspacecast` through the constant pointer if any.
7072     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
7073       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
7074     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
7075       // Load the handle from the specific global variable using
7076       // `nvvm.texsurf.handle.internal` intrinsic.
7077       Handle = CGF.EmitRuntimeCall(
7078           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
7079                                {GV->getType()}),
7080           {GV}, "texsurf_handle");
7081     } else
7082       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
7083     CGF.EmitStoreOfScalar(Handle, Dst);
7084   }
7085 };
7086 
7087 /// Checks if the type is unsupported directly by the current target.
7088 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
7089   ASTContext &Context = getContext();
7090   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
7091     return true;
7092   if (!Context.getTargetInfo().hasFloat128Type() &&
7093       (T->isFloat128Type() ||
7094        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
7095     return true;
7096   if (const auto *EIT = T->getAs<ExtIntType>())
7097     return EIT->getNumBits() >
7098            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
7099   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
7100       Context.getTypeSize(T) > 64U)
7101     return true;
7102   if (const auto *AT = T->getAsArrayTypeUnsafe())
7103     return isUnsupportedType(AT->getElementType());
7104   const auto *RT = T->getAs<RecordType>();
7105   if (!RT)
7106     return false;
7107   const RecordDecl *RD = RT->getDecl();
7108 
7109   // If this is a C++ record, check the bases first.
7110   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7111     for (const CXXBaseSpecifier &I : CXXRD->bases())
7112       if (isUnsupportedType(I.getType()))
7113         return true;
7114 
7115   for (const FieldDecl *I : RD->fields())
7116     if (isUnsupportedType(I->getType()))
7117       return true;
7118   return false;
7119 }
7120 
7121 /// Coerce the given type into an array with maximum allowed size of elements.
7122 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7123                                                    unsigned MaxSize) const {
7124   // Alignment and Size are measured in bits.
7125   const uint64_t Size = getContext().getTypeSize(Ty);
7126   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7127   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7128   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7129   const uint64_t NumElements = (Size + Div - 1) / Div;
7130   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7131 }
7132 
7133 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7134   if (RetTy->isVoidType())
7135     return ABIArgInfo::getIgnore();
7136 
7137   if (getContext().getLangOpts().OpenMP &&
7138       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7139     return coerceToIntArrayWithLimit(RetTy, 64);
7140 
7141   // note: this is different from default ABI
7142   if (!RetTy->isScalarType())
7143     return ABIArgInfo::getDirect();
7144 
7145   // Treat an enum type as its underlying type.
7146   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7147     RetTy = EnumTy->getDecl()->getIntegerType();
7148 
7149   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7150                                                : ABIArgInfo::getDirect());
7151 }
7152 
7153 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7154   // Treat an enum type as its underlying type.
7155   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7156     Ty = EnumTy->getDecl()->getIntegerType();
7157 
7158   // Return aggregates type as indirect by value
7159   if (isAggregateTypeForABI(Ty)) {
7160     // Under CUDA device compilation, tex/surf builtin types are replaced with
7161     // object types and passed directly.
7162     if (getContext().getLangOpts().CUDAIsDevice) {
7163       if (Ty->isCUDADeviceBuiltinSurfaceType())
7164         return ABIArgInfo::getDirect(
7165             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7166       if (Ty->isCUDADeviceBuiltinTextureType())
7167         return ABIArgInfo::getDirect(
7168             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7169     }
7170     return getNaturalAlignIndirect(Ty, /* byval */ true);
7171   }
7172 
7173   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7174     if ((EIT->getNumBits() > 128) ||
7175         (!getContext().getTargetInfo().hasInt128Type() &&
7176          EIT->getNumBits() > 64))
7177       return getNaturalAlignIndirect(Ty, /* byval */ true);
7178   }
7179 
7180   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7181                                             : ABIArgInfo::getDirect());
7182 }
7183 
7184 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7185   if (!getCXXABI().classifyReturnType(FI))
7186     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7187   for (auto &I : FI.arguments())
7188     I.info = classifyArgumentType(I.type);
7189 
7190   // Always honor user-specified calling convention.
7191   if (FI.getCallingConvention() != llvm::CallingConv::C)
7192     return;
7193 
7194   FI.setEffectiveCallingConvention(getRuntimeCC());
7195 }
7196 
7197 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7198                                 QualType Ty) const {
7199   llvm_unreachable("NVPTX does not support varargs");
7200 }
7201 
7202 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7203     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7204   if (GV->isDeclaration())
7205     return;
7206   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7207   if (VD) {
7208     if (M.getLangOpts().CUDA) {
7209       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7210         addNVVMMetadata(GV, "surface", 1);
7211       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7212         addNVVMMetadata(GV, "texture", 1);
7213       return;
7214     }
7215   }
7216 
7217   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7218   if (!FD) return;
7219 
7220   llvm::Function *F = cast<llvm::Function>(GV);
7221 
7222   // Perform special handling in OpenCL mode
7223   if (M.getLangOpts().OpenCL) {
7224     // Use OpenCL function attributes to check for kernel functions
7225     // By default, all functions are device functions
7226     if (FD->hasAttr<OpenCLKernelAttr>()) {
7227       // OpenCL __kernel functions get kernel metadata
7228       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7229       addNVVMMetadata(F, "kernel", 1);
7230       // And kernel functions are not subject to inlining
7231       F->addFnAttr(llvm::Attribute::NoInline);
7232     }
7233   }
7234 
7235   // Perform special handling in CUDA mode.
7236   if (M.getLangOpts().CUDA) {
7237     // CUDA __global__ functions get a kernel metadata entry.  Since
7238     // __global__ functions cannot be called from the device, we do not
7239     // need to set the noinline attribute.
7240     if (FD->hasAttr<CUDAGlobalAttr>()) {
7241       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7242       addNVVMMetadata(F, "kernel", 1);
7243     }
7244     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7245       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7246       llvm::APSInt MaxThreads(32);
7247       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7248       if (MaxThreads > 0)
7249         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7250 
7251       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7252       // not specified in __launch_bounds__ or if the user specified a 0 value,
7253       // we don't have to add a PTX directive.
7254       if (Attr->getMinBlocks()) {
7255         llvm::APSInt MinBlocks(32);
7256         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7257         if (MinBlocks > 0)
7258           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7259           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7260       }
7261     }
7262   }
7263 }
7264 
7265 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7266                                              StringRef Name, int Operand) {
7267   llvm::Module *M = GV->getParent();
7268   llvm::LLVMContext &Ctx = M->getContext();
7269 
7270   // Get "nvvm.annotations" metadata node
7271   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7272 
7273   llvm::Metadata *MDVals[] = {
7274       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7275       llvm::ConstantAsMetadata::get(
7276           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7277   // Append metadata to nvvm.annotations
7278   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7279 }
7280 
7281 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7282   return false;
7283 }
7284 }
7285 
7286 //===----------------------------------------------------------------------===//
7287 // SystemZ ABI Implementation
7288 //===----------------------------------------------------------------------===//
7289 
7290 namespace {
7291 
7292 class SystemZABIInfo : public SwiftABIInfo {
7293   bool HasVector;
7294   bool IsSoftFloatABI;
7295 
7296 public:
7297   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7298     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7299 
7300   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7301   bool isCompoundType(QualType Ty) const;
7302   bool isVectorArgumentType(QualType Ty) const;
7303   bool isFPArgumentType(QualType Ty) const;
7304   QualType GetSingleElementType(QualType Ty) const;
7305 
7306   ABIArgInfo classifyReturnType(QualType RetTy) const;
7307   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7308 
7309   void computeInfo(CGFunctionInfo &FI) const override {
7310     if (!getCXXABI().classifyReturnType(FI))
7311       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7312     for (auto &I : FI.arguments())
7313       I.info = classifyArgumentType(I.type);
7314   }
7315 
7316   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7317                     QualType Ty) const override;
7318 
7319   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7320                                     bool asReturnValue) const override {
7321     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7322   }
7323   bool isSwiftErrorInRegister() const override {
7324     return false;
7325   }
7326 };
7327 
7328 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7329 public:
7330   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7331       : TargetCodeGenInfo(
7332             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7333 
7334   llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
7335                           CGBuilderTy &Builder,
7336                           CodeGenModule &CGM) const override {
7337     assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
7338     // Only use TDC in constrained FP mode.
7339     if (!Builder.getIsFPConstrained())
7340       return nullptr;
7341 
7342     llvm::Type *Ty = V->getType();
7343     if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
7344       llvm::Module &M = CGM.getModule();
7345       auto &Ctx = M.getContext();
7346       llvm::Function *TDCFunc =
7347           llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
7348       unsigned TDCBits = 0;
7349       switch (BuiltinID) {
7350       case Builtin::BI__builtin_isnan:
7351         TDCBits = 0xf;
7352         break;
7353       case Builtin::BIfinite:
7354       case Builtin::BI__finite:
7355       case Builtin::BIfinitef:
7356       case Builtin::BI__finitef:
7357       case Builtin::BIfinitel:
7358       case Builtin::BI__finitel:
7359       case Builtin::BI__builtin_isfinite:
7360         TDCBits = 0xfc0;
7361         break;
7362       case Builtin::BI__builtin_isinf:
7363         TDCBits = 0x30;
7364         break;
7365       default:
7366         break;
7367       }
7368       if (TDCBits)
7369         return Builder.CreateCall(
7370             TDCFunc,
7371             {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
7372     }
7373     return nullptr;
7374   }
7375 };
7376 }
7377 
7378 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7379   // Treat an enum type as its underlying type.
7380   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7381     Ty = EnumTy->getDecl()->getIntegerType();
7382 
7383   // Promotable integer types are required to be promoted by the ABI.
7384   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7385     return true;
7386 
7387   if (const auto *EIT = Ty->getAs<ExtIntType>())
7388     if (EIT->getNumBits() < 64)
7389       return true;
7390 
7391   // 32-bit values must also be promoted.
7392   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7393     switch (BT->getKind()) {
7394     case BuiltinType::Int:
7395     case BuiltinType::UInt:
7396       return true;
7397     default:
7398       return false;
7399     }
7400   return false;
7401 }
7402 
7403 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7404   return (Ty->isAnyComplexType() ||
7405           Ty->isVectorType() ||
7406           isAggregateTypeForABI(Ty));
7407 }
7408 
7409 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7410   return (HasVector &&
7411           Ty->isVectorType() &&
7412           getContext().getTypeSize(Ty) <= 128);
7413 }
7414 
7415 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7416   if (IsSoftFloatABI)
7417     return false;
7418 
7419   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7420     switch (BT->getKind()) {
7421     case BuiltinType::Float:
7422     case BuiltinType::Double:
7423       return true;
7424     default:
7425       return false;
7426     }
7427 
7428   return false;
7429 }
7430 
7431 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7432   const RecordType *RT = Ty->getAs<RecordType>();
7433 
7434   if (RT && RT->isStructureOrClassType()) {
7435     const RecordDecl *RD = RT->getDecl();
7436     QualType Found;
7437 
7438     // If this is a C++ record, check the bases first.
7439     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7440       for (const auto &I : CXXRD->bases()) {
7441         QualType Base = I.getType();
7442 
7443         // Empty bases don't affect things either way.
7444         if (isEmptyRecord(getContext(), Base, true))
7445           continue;
7446 
7447         if (!Found.isNull())
7448           return Ty;
7449         Found = GetSingleElementType(Base);
7450       }
7451 
7452     // Check the fields.
7453     for (const auto *FD : RD->fields()) {
7454       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7455       // Unlike isSingleElementStruct(), empty structure and array fields
7456       // do count.  So do anonymous bitfields that aren't zero-sized.
7457       if (getContext().getLangOpts().CPlusPlus &&
7458           FD->isZeroLengthBitField(getContext()))
7459         continue;
7460       // Like isSingleElementStruct(), ignore C++20 empty data members.
7461       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7462           isEmptyRecord(getContext(), FD->getType(), true))
7463         continue;
7464 
7465       // Unlike isSingleElementStruct(), arrays do not count.
7466       // Nested structures still do though.
7467       if (!Found.isNull())
7468         return Ty;
7469       Found = GetSingleElementType(FD->getType());
7470     }
7471 
7472     // Unlike isSingleElementStruct(), trailing padding is allowed.
7473     // An 8-byte aligned struct s { float f; } is passed as a double.
7474     if (!Found.isNull())
7475       return Found;
7476   }
7477 
7478   return Ty;
7479 }
7480 
7481 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7482                                   QualType Ty) const {
7483   // Assume that va_list type is correct; should be pointer to LLVM type:
7484   // struct {
7485   //   i64 __gpr;
7486   //   i64 __fpr;
7487   //   i8 *__overflow_arg_area;
7488   //   i8 *__reg_save_area;
7489   // };
7490 
7491   // Every non-vector argument occupies 8 bytes and is passed by preference
7492   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7493   // always passed on the stack.
7494   Ty = getContext().getCanonicalType(Ty);
7495   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7496   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7497   llvm::Type *DirectTy = ArgTy;
7498   ABIArgInfo AI = classifyArgumentType(Ty);
7499   bool IsIndirect = AI.isIndirect();
7500   bool InFPRs = false;
7501   bool IsVector = false;
7502   CharUnits UnpaddedSize;
7503   CharUnits DirectAlign;
7504   if (IsIndirect) {
7505     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7506     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7507   } else {
7508     if (AI.getCoerceToType())
7509       ArgTy = AI.getCoerceToType();
7510     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7511     IsVector = ArgTy->isVectorTy();
7512     UnpaddedSize = TyInfo.Width;
7513     DirectAlign = TyInfo.Align;
7514   }
7515   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7516   if (IsVector && UnpaddedSize > PaddedSize)
7517     PaddedSize = CharUnits::fromQuantity(16);
7518   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7519 
7520   CharUnits Padding = (PaddedSize - UnpaddedSize);
7521 
7522   llvm::Type *IndexTy = CGF.Int64Ty;
7523   llvm::Value *PaddedSizeV =
7524     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7525 
7526   if (IsVector) {
7527     // Work out the address of a vector argument on the stack.
7528     // Vector arguments are always passed in the high bits of a
7529     // single (8 byte) or double (16 byte) stack slot.
7530     Address OverflowArgAreaPtr =
7531         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7532     Address OverflowArgArea =
7533       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7534               TyInfo.Align);
7535     Address MemAddr =
7536       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7537 
7538     // Update overflow_arg_area_ptr pointer
7539     llvm::Value *NewOverflowArgArea =
7540       CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7541                             OverflowArgArea.getPointer(), PaddedSizeV,
7542                             "overflow_arg_area");
7543     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7544 
7545     return MemAddr;
7546   }
7547 
7548   assert(PaddedSize.getQuantity() == 8);
7549 
7550   unsigned MaxRegs, RegCountField, RegSaveIndex;
7551   CharUnits RegPadding;
7552   if (InFPRs) {
7553     MaxRegs = 4; // Maximum of 4 FPR arguments
7554     RegCountField = 1; // __fpr
7555     RegSaveIndex = 16; // save offset for f0
7556     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7557   } else {
7558     MaxRegs = 5; // Maximum of 5 GPR arguments
7559     RegCountField = 0; // __gpr
7560     RegSaveIndex = 2; // save offset for r2
7561     RegPadding = Padding; // values are passed in the low bits of a GPR
7562   }
7563 
7564   Address RegCountPtr =
7565       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7566   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7567   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7568   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7569                                                  "fits_in_regs");
7570 
7571   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7572   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7573   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7574   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7575 
7576   // Emit code to load the value if it was passed in registers.
7577   CGF.EmitBlock(InRegBlock);
7578 
7579   // Work out the address of an argument register.
7580   llvm::Value *ScaledRegCount =
7581     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7582   llvm::Value *RegBase =
7583     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7584                                       + RegPadding.getQuantity());
7585   llvm::Value *RegOffset =
7586     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7587   Address RegSaveAreaPtr =
7588       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7589   llvm::Value *RegSaveArea =
7590     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7591   Address RawRegAddr(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset,
7592                                            "raw_reg_addr"),
7593                      PaddedSize);
7594   Address RegAddr =
7595     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7596 
7597   // Update the register count
7598   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7599   llvm::Value *NewRegCount =
7600     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7601   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7602   CGF.EmitBranch(ContBlock);
7603 
7604   // Emit code to load the value if it was passed in memory.
7605   CGF.EmitBlock(InMemBlock);
7606 
7607   // Work out the address of a stack argument.
7608   Address OverflowArgAreaPtr =
7609       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7610   Address OverflowArgArea =
7611     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7612             PaddedSize);
7613   Address RawMemAddr =
7614     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7615   Address MemAddr =
7616     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7617 
7618   // Update overflow_arg_area_ptr pointer
7619   llvm::Value *NewOverflowArgArea =
7620     CGF.Builder.CreateGEP(OverflowArgArea.getElementType(),
7621                           OverflowArgArea.getPointer(), PaddedSizeV,
7622                           "overflow_arg_area");
7623   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7624   CGF.EmitBranch(ContBlock);
7625 
7626   // Return the appropriate result.
7627   CGF.EmitBlock(ContBlock);
7628   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7629                                  MemAddr, InMemBlock, "va_arg.addr");
7630 
7631   if (IsIndirect)
7632     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7633                       TyInfo.Align);
7634 
7635   return ResAddr;
7636 }
7637 
7638 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7639   if (RetTy->isVoidType())
7640     return ABIArgInfo::getIgnore();
7641   if (isVectorArgumentType(RetTy))
7642     return ABIArgInfo::getDirect();
7643   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7644     return getNaturalAlignIndirect(RetTy);
7645   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7646                                                : ABIArgInfo::getDirect());
7647 }
7648 
7649 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7650   // Handle the generic C++ ABI.
7651   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7652     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7653 
7654   // Integers and enums are extended to full register width.
7655   if (isPromotableIntegerTypeForABI(Ty))
7656     return ABIArgInfo::getExtend(Ty);
7657 
7658   // Handle vector types and vector-like structure types.  Note that
7659   // as opposed to float-like structure types, we do not allow any
7660   // padding for vector-like structures, so verify the sizes match.
7661   uint64_t Size = getContext().getTypeSize(Ty);
7662   QualType SingleElementTy = GetSingleElementType(Ty);
7663   if (isVectorArgumentType(SingleElementTy) &&
7664       getContext().getTypeSize(SingleElementTy) == Size)
7665     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7666 
7667   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7668   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7669     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7670 
7671   // Handle small structures.
7672   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7673     // Structures with flexible arrays have variable length, so really
7674     // fail the size test above.
7675     const RecordDecl *RD = RT->getDecl();
7676     if (RD->hasFlexibleArrayMember())
7677       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7678 
7679     // The structure is passed as an unextended integer, a float, or a double.
7680     llvm::Type *PassTy;
7681     if (isFPArgumentType(SingleElementTy)) {
7682       assert(Size == 32 || Size == 64);
7683       if (Size == 32)
7684         PassTy = llvm::Type::getFloatTy(getVMContext());
7685       else
7686         PassTy = llvm::Type::getDoubleTy(getVMContext());
7687     } else
7688       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7689     return ABIArgInfo::getDirect(PassTy);
7690   }
7691 
7692   // Non-structure compounds are passed indirectly.
7693   if (isCompoundType(Ty))
7694     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7695 
7696   return ABIArgInfo::getDirect(nullptr);
7697 }
7698 
7699 //===----------------------------------------------------------------------===//
7700 // MSP430 ABI Implementation
7701 //===----------------------------------------------------------------------===//
7702 
7703 namespace {
7704 
7705 class MSP430ABIInfo : public DefaultABIInfo {
7706   static ABIArgInfo complexArgInfo() {
7707     ABIArgInfo Info = ABIArgInfo::getDirect();
7708     Info.setCanBeFlattened(false);
7709     return Info;
7710   }
7711 
7712 public:
7713   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7714 
7715   ABIArgInfo classifyReturnType(QualType RetTy) const {
7716     if (RetTy->isAnyComplexType())
7717       return complexArgInfo();
7718 
7719     return DefaultABIInfo::classifyReturnType(RetTy);
7720   }
7721 
7722   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7723     if (RetTy->isAnyComplexType())
7724       return complexArgInfo();
7725 
7726     return DefaultABIInfo::classifyArgumentType(RetTy);
7727   }
7728 
7729   // Just copy the original implementations because
7730   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7731   void computeInfo(CGFunctionInfo &FI) const override {
7732     if (!getCXXABI().classifyReturnType(FI))
7733       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7734     for (auto &I : FI.arguments())
7735       I.info = classifyArgumentType(I.type);
7736   }
7737 
7738   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7739                     QualType Ty) const override {
7740     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7741   }
7742 };
7743 
7744 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7745 public:
7746   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7747       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7748   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7749                            CodeGen::CodeGenModule &M) const override;
7750 };
7751 
7752 }
7753 
7754 void MSP430TargetCodeGenInfo::setTargetAttributes(
7755     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7756   if (GV->isDeclaration())
7757     return;
7758   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7759     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7760     if (!InterruptAttr)
7761       return;
7762 
7763     // Handle 'interrupt' attribute:
7764     llvm::Function *F = cast<llvm::Function>(GV);
7765 
7766     // Step 1: Set ISR calling convention.
7767     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7768 
7769     // Step 2: Add attributes goodness.
7770     F->addFnAttr(llvm::Attribute::NoInline);
7771     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7772   }
7773 }
7774 
7775 //===----------------------------------------------------------------------===//
7776 // MIPS ABI Implementation.  This works for both little-endian and
7777 // big-endian variants.
7778 //===----------------------------------------------------------------------===//
7779 
7780 namespace {
7781 class MipsABIInfo : public ABIInfo {
7782   bool IsO32;
7783   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7784   void CoerceToIntArgs(uint64_t TySize,
7785                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7786   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7787   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7788   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7789 public:
7790   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7791     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7792     StackAlignInBytes(IsO32 ? 8 : 16) {}
7793 
7794   ABIArgInfo classifyReturnType(QualType RetTy) const;
7795   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7796   void computeInfo(CGFunctionInfo &FI) const override;
7797   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7798                     QualType Ty) const override;
7799   ABIArgInfo extendType(QualType Ty) const;
7800 };
7801 
7802 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7803   unsigned SizeOfUnwindException;
7804 public:
7805   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7806       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7807         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7808 
7809   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7810     return 29;
7811   }
7812 
7813   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7814                            CodeGen::CodeGenModule &CGM) const override {
7815     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7816     if (!FD) return;
7817     llvm::Function *Fn = cast<llvm::Function>(GV);
7818 
7819     if (FD->hasAttr<MipsLongCallAttr>())
7820       Fn->addFnAttr("long-call");
7821     else if (FD->hasAttr<MipsShortCallAttr>())
7822       Fn->addFnAttr("short-call");
7823 
7824     // Other attributes do not have a meaning for declarations.
7825     if (GV->isDeclaration())
7826       return;
7827 
7828     if (FD->hasAttr<Mips16Attr>()) {
7829       Fn->addFnAttr("mips16");
7830     }
7831     else if (FD->hasAttr<NoMips16Attr>()) {
7832       Fn->addFnAttr("nomips16");
7833     }
7834 
7835     if (FD->hasAttr<MicroMipsAttr>())
7836       Fn->addFnAttr("micromips");
7837     else if (FD->hasAttr<NoMicroMipsAttr>())
7838       Fn->addFnAttr("nomicromips");
7839 
7840     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7841     if (!Attr)
7842       return;
7843 
7844     const char *Kind;
7845     switch (Attr->getInterrupt()) {
7846     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7847     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7848     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7849     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7850     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7851     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7852     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7853     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7854     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7855     }
7856 
7857     Fn->addFnAttr("interrupt", Kind);
7858 
7859   }
7860 
7861   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7862                                llvm::Value *Address) const override;
7863 
7864   unsigned getSizeOfUnwindException() const override {
7865     return SizeOfUnwindException;
7866   }
7867 };
7868 }
7869 
7870 void MipsABIInfo::CoerceToIntArgs(
7871     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7872   llvm::IntegerType *IntTy =
7873     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7874 
7875   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7876   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7877     ArgList.push_back(IntTy);
7878 
7879   // If necessary, add one more integer type to ArgList.
7880   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7881 
7882   if (R)
7883     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7884 }
7885 
7886 // In N32/64, an aligned double precision floating point field is passed in
7887 // a register.
7888 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7889   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7890 
7891   if (IsO32) {
7892     CoerceToIntArgs(TySize, ArgList);
7893     return llvm::StructType::get(getVMContext(), ArgList);
7894   }
7895 
7896   if (Ty->isComplexType())
7897     return CGT.ConvertType(Ty);
7898 
7899   const RecordType *RT = Ty->getAs<RecordType>();
7900 
7901   // Unions/vectors are passed in integer registers.
7902   if (!RT || !RT->isStructureOrClassType()) {
7903     CoerceToIntArgs(TySize, ArgList);
7904     return llvm::StructType::get(getVMContext(), ArgList);
7905   }
7906 
7907   const RecordDecl *RD = RT->getDecl();
7908   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7909   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7910 
7911   uint64_t LastOffset = 0;
7912   unsigned idx = 0;
7913   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7914 
7915   // Iterate over fields in the struct/class and check if there are any aligned
7916   // double fields.
7917   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7918        i != e; ++i, ++idx) {
7919     const QualType Ty = i->getType();
7920     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7921 
7922     if (!BT || BT->getKind() != BuiltinType::Double)
7923       continue;
7924 
7925     uint64_t Offset = Layout.getFieldOffset(idx);
7926     if (Offset % 64) // Ignore doubles that are not aligned.
7927       continue;
7928 
7929     // Add ((Offset - LastOffset) / 64) args of type i64.
7930     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7931       ArgList.push_back(I64);
7932 
7933     // Add double type.
7934     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7935     LastOffset = Offset + 64;
7936   }
7937 
7938   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7939   ArgList.append(IntArgList.begin(), IntArgList.end());
7940 
7941   return llvm::StructType::get(getVMContext(), ArgList);
7942 }
7943 
7944 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7945                                         uint64_t Offset) const {
7946   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7947     return nullptr;
7948 
7949   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7950 }
7951 
7952 ABIArgInfo
7953 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7954   Ty = useFirstFieldIfTransparentUnion(Ty);
7955 
7956   uint64_t OrigOffset = Offset;
7957   uint64_t TySize = getContext().getTypeSize(Ty);
7958   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7959 
7960   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7961                    (uint64_t)StackAlignInBytes);
7962   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7963   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7964 
7965   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7966     // Ignore empty aggregates.
7967     if (TySize == 0)
7968       return ABIArgInfo::getIgnore();
7969 
7970     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7971       Offset = OrigOffset + MinABIStackAlignInBytes;
7972       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7973     }
7974 
7975     // If we have reached here, aggregates are passed directly by coercing to
7976     // another structure type. Padding is inserted if the offset of the
7977     // aggregate is unaligned.
7978     ABIArgInfo ArgInfo =
7979         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7980                               getPaddingType(OrigOffset, CurrOffset));
7981     ArgInfo.setInReg(true);
7982     return ArgInfo;
7983   }
7984 
7985   // Treat an enum type as its underlying type.
7986   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7987     Ty = EnumTy->getDecl()->getIntegerType();
7988 
7989   // Make sure we pass indirectly things that are too large.
7990   if (const auto *EIT = Ty->getAs<ExtIntType>())
7991     if (EIT->getNumBits() > 128 ||
7992         (EIT->getNumBits() > 64 &&
7993          !getContext().getTargetInfo().hasInt128Type()))
7994       return getNaturalAlignIndirect(Ty);
7995 
7996   // All integral types are promoted to the GPR width.
7997   if (Ty->isIntegralOrEnumerationType())
7998     return extendType(Ty);
7999 
8000   return ABIArgInfo::getDirect(
8001       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
8002 }
8003 
8004 llvm::Type*
8005 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
8006   const RecordType *RT = RetTy->getAs<RecordType>();
8007   SmallVector<llvm::Type*, 8> RTList;
8008 
8009   if (RT && RT->isStructureOrClassType()) {
8010     const RecordDecl *RD = RT->getDecl();
8011     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
8012     unsigned FieldCnt = Layout.getFieldCount();
8013 
8014     // N32/64 returns struct/classes in floating point registers if the
8015     // following conditions are met:
8016     // 1. The size of the struct/class is no larger than 128-bit.
8017     // 2. The struct/class has one or two fields all of which are floating
8018     //    point types.
8019     // 3. The offset of the first field is zero (this follows what gcc does).
8020     //
8021     // Any other composite results are returned in integer registers.
8022     //
8023     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
8024       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
8025       for (; b != e; ++b) {
8026         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
8027 
8028         if (!BT || !BT->isFloatingPoint())
8029           break;
8030 
8031         RTList.push_back(CGT.ConvertType(b->getType()));
8032       }
8033 
8034       if (b == e)
8035         return llvm::StructType::get(getVMContext(), RTList,
8036                                      RD->hasAttr<PackedAttr>());
8037 
8038       RTList.clear();
8039     }
8040   }
8041 
8042   CoerceToIntArgs(Size, RTList);
8043   return llvm::StructType::get(getVMContext(), RTList);
8044 }
8045 
8046 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
8047   uint64_t Size = getContext().getTypeSize(RetTy);
8048 
8049   if (RetTy->isVoidType())
8050     return ABIArgInfo::getIgnore();
8051 
8052   // O32 doesn't treat zero-sized structs differently from other structs.
8053   // However, N32/N64 ignores zero sized return values.
8054   if (!IsO32 && Size == 0)
8055     return ABIArgInfo::getIgnore();
8056 
8057   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
8058     if (Size <= 128) {
8059       if (RetTy->isAnyComplexType())
8060         return ABIArgInfo::getDirect();
8061 
8062       // O32 returns integer vectors in registers and N32/N64 returns all small
8063       // aggregates in registers.
8064       if (!IsO32 ||
8065           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
8066         ABIArgInfo ArgInfo =
8067             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
8068         ArgInfo.setInReg(true);
8069         return ArgInfo;
8070       }
8071     }
8072 
8073     return getNaturalAlignIndirect(RetTy);
8074   }
8075 
8076   // Treat an enum type as its underlying type.
8077   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8078     RetTy = EnumTy->getDecl()->getIntegerType();
8079 
8080   // Make sure we pass indirectly things that are too large.
8081   if (const auto *EIT = RetTy->getAs<ExtIntType>())
8082     if (EIT->getNumBits() > 128 ||
8083         (EIT->getNumBits() > 64 &&
8084          !getContext().getTargetInfo().hasInt128Type()))
8085       return getNaturalAlignIndirect(RetTy);
8086 
8087   if (isPromotableIntegerTypeForABI(RetTy))
8088     return ABIArgInfo::getExtend(RetTy);
8089 
8090   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
8091       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
8092     return ABIArgInfo::getSignExtend(RetTy);
8093 
8094   return ABIArgInfo::getDirect();
8095 }
8096 
8097 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
8098   ABIArgInfo &RetInfo = FI.getReturnInfo();
8099   if (!getCXXABI().classifyReturnType(FI))
8100     RetInfo = classifyReturnType(FI.getReturnType());
8101 
8102   // Check if a pointer to an aggregate is passed as a hidden argument.
8103   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
8104 
8105   for (auto &I : FI.arguments())
8106     I.info = classifyArgumentType(I.type, Offset);
8107 }
8108 
8109 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8110                                QualType OrigTy) const {
8111   QualType Ty = OrigTy;
8112 
8113   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
8114   // Pointers are also promoted in the same way but this only matters for N32.
8115   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
8116   unsigned PtrWidth = getTarget().getPointerWidth(0);
8117   bool DidPromote = false;
8118   if ((Ty->isIntegerType() &&
8119           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
8120       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
8121     DidPromote = true;
8122     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
8123                                             Ty->isSignedIntegerType());
8124   }
8125 
8126   auto TyInfo = getContext().getTypeInfoInChars(Ty);
8127 
8128   // The alignment of things in the argument area is never larger than
8129   // StackAlignInBytes.
8130   TyInfo.Align =
8131     std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
8132 
8133   // MinABIStackAlignInBytes is the size of argument slots on the stack.
8134   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
8135 
8136   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8137                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
8138 
8139 
8140   // If there was a promotion, "unpromote" into a temporary.
8141   // TODO: can we just use a pointer into a subset of the original slot?
8142   if (DidPromote) {
8143     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
8144     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
8145 
8146     // Truncate down to the right width.
8147     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
8148                                                  : CGF.IntPtrTy);
8149     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
8150     if (OrigTy->isPointerType())
8151       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
8152 
8153     CGF.Builder.CreateStore(V, Temp);
8154     Addr = Temp;
8155   }
8156 
8157   return Addr;
8158 }
8159 
8160 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
8161   int TySize = getContext().getTypeSize(Ty);
8162 
8163   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
8164   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8165     return ABIArgInfo::getSignExtend(Ty);
8166 
8167   return ABIArgInfo::getExtend(Ty);
8168 }
8169 
8170 bool
8171 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8172                                                llvm::Value *Address) const {
8173   // This information comes from gcc's implementation, which seems to
8174   // as canonical as it gets.
8175 
8176   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8177   // are aliased to pairs of single-precision FP registers.
8178   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8179 
8180   // 0-31 are the general purpose registers, $0 - $31.
8181   // 32-63 are the floating-point registers, $f0 - $f31.
8182   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8183   // 66 is the (notional, I think) register for signal-handler return.
8184   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8185 
8186   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8187   // They are one bit wide and ignored here.
8188 
8189   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8190   // (coprocessor 1 is the FP unit)
8191   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8192   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8193   // 176-181 are the DSP accumulator registers.
8194   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8195   return false;
8196 }
8197 
8198 //===----------------------------------------------------------------------===//
8199 // M68k ABI Implementation
8200 //===----------------------------------------------------------------------===//
8201 
8202 namespace {
8203 
8204 class M68kTargetCodeGenInfo : public TargetCodeGenInfo {
8205 public:
8206   M68kTargetCodeGenInfo(CodeGenTypes &CGT)
8207       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8208   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8209                            CodeGen::CodeGenModule &M) const override;
8210 };
8211 
8212 } // namespace
8213 
8214 void M68kTargetCodeGenInfo::setTargetAttributes(
8215     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8216   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
8217     if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) {
8218       // Handle 'interrupt' attribute:
8219       llvm::Function *F = cast<llvm::Function>(GV);
8220 
8221       // Step 1: Set ISR calling convention.
8222       F->setCallingConv(llvm::CallingConv::M68k_INTR);
8223 
8224       // Step 2: Add attributes goodness.
8225       F->addFnAttr(llvm::Attribute::NoInline);
8226 
8227       // Step 3: Emit ISR vector alias.
8228       unsigned Num = attr->getNumber() / 2;
8229       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
8230                                 "__isr_" + Twine(Num), F);
8231     }
8232   }
8233 }
8234 
8235 //===----------------------------------------------------------------------===//
8236 // AVR ABI Implementation. Documented at
8237 // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
8238 // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny
8239 //===----------------------------------------------------------------------===//
8240 
8241 namespace {
8242 class AVRABIInfo : public DefaultABIInfo {
8243 public:
8244   AVRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8245 
8246   ABIArgInfo classifyReturnType(QualType Ty) const {
8247     // A return struct with size less than or equal to 8 bytes is returned
8248     // directly via registers R18-R25.
8249     if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) <= 64)
8250       return ABIArgInfo::getDirect();
8251     else
8252       return DefaultABIInfo::classifyReturnType(Ty);
8253   }
8254 
8255   // Just copy the original implementation of DefaultABIInfo::computeInfo(),
8256   // since DefaultABIInfo::classify{Return,Argument}Type() are not virtual.
8257   void computeInfo(CGFunctionInfo &FI) const override {
8258     if (!getCXXABI().classifyReturnType(FI))
8259       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8260     for (auto &I : FI.arguments())
8261       I.info = classifyArgumentType(I.type);
8262   }
8263 };
8264 
8265 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8266 public:
8267   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8268       : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT)) {}
8269 
8270   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8271                                   const VarDecl *D) const override {
8272     // Check if a global/static variable is defined within address space 1
8273     // but not constant.
8274     LangAS AS = D->getType().getAddressSpace();
8275     if (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 1 &&
8276         !D->getType().isConstQualified())
8277       CGM.getDiags().Report(D->getLocation(),
8278                             diag::err_verify_nonconst_addrspace)
8279           << "__flash";
8280     return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D);
8281   }
8282 
8283   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8284                            CodeGen::CodeGenModule &CGM) const override {
8285     if (GV->isDeclaration())
8286       return;
8287     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8288     if (!FD) return;
8289     auto *Fn = cast<llvm::Function>(GV);
8290 
8291     if (FD->getAttr<AVRInterruptAttr>())
8292       Fn->addFnAttr("interrupt");
8293 
8294     if (FD->getAttr<AVRSignalAttr>())
8295       Fn->addFnAttr("signal");
8296   }
8297 };
8298 }
8299 
8300 //===----------------------------------------------------------------------===//
8301 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8302 // Currently subclassed only to implement custom OpenCL C function attribute
8303 // handling.
8304 //===----------------------------------------------------------------------===//
8305 
8306 namespace {
8307 
8308 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8309 public:
8310   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8311     : DefaultTargetCodeGenInfo(CGT) {}
8312 
8313   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8314                            CodeGen::CodeGenModule &M) const override;
8315 };
8316 
8317 void TCETargetCodeGenInfo::setTargetAttributes(
8318     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8319   if (GV->isDeclaration())
8320     return;
8321   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8322   if (!FD) return;
8323 
8324   llvm::Function *F = cast<llvm::Function>(GV);
8325 
8326   if (M.getLangOpts().OpenCL) {
8327     if (FD->hasAttr<OpenCLKernelAttr>()) {
8328       // OpenCL C Kernel functions are not subject to inlining
8329       F->addFnAttr(llvm::Attribute::NoInline);
8330       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8331       if (Attr) {
8332         // Convert the reqd_work_group_size() attributes to metadata.
8333         llvm::LLVMContext &Context = F->getContext();
8334         llvm::NamedMDNode *OpenCLMetadata =
8335             M.getModule().getOrInsertNamedMetadata(
8336                 "opencl.kernel_wg_size_info");
8337 
8338         SmallVector<llvm::Metadata *, 5> Operands;
8339         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8340 
8341         Operands.push_back(
8342             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8343                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8344         Operands.push_back(
8345             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8346                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8347         Operands.push_back(
8348             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8349                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8350 
8351         // Add a boolean constant operand for "required" (true) or "hint"
8352         // (false) for implementing the work_group_size_hint attr later.
8353         // Currently always true as the hint is not yet implemented.
8354         Operands.push_back(
8355             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8356         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8357       }
8358     }
8359   }
8360 }
8361 
8362 }
8363 
8364 //===----------------------------------------------------------------------===//
8365 // Hexagon ABI Implementation
8366 //===----------------------------------------------------------------------===//
8367 
8368 namespace {
8369 
8370 class HexagonABIInfo : public DefaultABIInfo {
8371 public:
8372   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8373 
8374 private:
8375   ABIArgInfo classifyReturnType(QualType RetTy) const;
8376   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8377   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8378 
8379   void computeInfo(CGFunctionInfo &FI) const override;
8380 
8381   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8382                     QualType Ty) const override;
8383   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8384                               QualType Ty) const;
8385   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8386                               QualType Ty) const;
8387   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8388                                    QualType Ty) const;
8389 };
8390 
8391 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8392 public:
8393   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8394       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8395 
8396   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8397     return 29;
8398   }
8399 
8400   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8401                            CodeGen::CodeGenModule &GCM) const override {
8402     if (GV->isDeclaration())
8403       return;
8404     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8405     if (!FD)
8406       return;
8407   }
8408 };
8409 
8410 } // namespace
8411 
8412 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8413   unsigned RegsLeft = 6;
8414   if (!getCXXABI().classifyReturnType(FI))
8415     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8416   for (auto &I : FI.arguments())
8417     I.info = classifyArgumentType(I.type, &RegsLeft);
8418 }
8419 
8420 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8421   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8422                        " through registers");
8423 
8424   if (*RegsLeft == 0)
8425     return false;
8426 
8427   if (Size <= 32) {
8428     (*RegsLeft)--;
8429     return true;
8430   }
8431 
8432   if (2 <= (*RegsLeft & (~1U))) {
8433     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8434     return true;
8435   }
8436 
8437   // Next available register was r5 but candidate was greater than 32-bits so it
8438   // has to go on the stack. However we still consume r5
8439   if (*RegsLeft == 1)
8440     *RegsLeft = 0;
8441 
8442   return false;
8443 }
8444 
8445 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8446                                                 unsigned *RegsLeft) const {
8447   if (!isAggregateTypeForABI(Ty)) {
8448     // Treat an enum type as its underlying type.
8449     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8450       Ty = EnumTy->getDecl()->getIntegerType();
8451 
8452     uint64_t Size = getContext().getTypeSize(Ty);
8453     if (Size <= 64)
8454       HexagonAdjustRegsLeft(Size, RegsLeft);
8455 
8456     if (Size > 64 && Ty->isExtIntType())
8457       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8458 
8459     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8460                                              : ABIArgInfo::getDirect();
8461   }
8462 
8463   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8464     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8465 
8466   // Ignore empty records.
8467   if (isEmptyRecord(getContext(), Ty, true))
8468     return ABIArgInfo::getIgnore();
8469 
8470   uint64_t Size = getContext().getTypeSize(Ty);
8471   unsigned Align = getContext().getTypeAlign(Ty);
8472 
8473   if (Size > 64)
8474     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8475 
8476   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8477     Align = Size <= 32 ? 32 : 64;
8478   if (Size <= Align) {
8479     // Pass in the smallest viable integer type.
8480     if (!llvm::isPowerOf2_64(Size))
8481       Size = llvm::NextPowerOf2(Size);
8482     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8483   }
8484   return DefaultABIInfo::classifyArgumentType(Ty);
8485 }
8486 
8487 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8488   if (RetTy->isVoidType())
8489     return ABIArgInfo::getIgnore();
8490 
8491   const TargetInfo &T = CGT.getTarget();
8492   uint64_t Size = getContext().getTypeSize(RetTy);
8493 
8494   if (RetTy->getAs<VectorType>()) {
8495     // HVX vectors are returned in vector registers or register pairs.
8496     if (T.hasFeature("hvx")) {
8497       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8498       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8499       if (Size == VecSize || Size == 2*VecSize)
8500         return ABIArgInfo::getDirectInReg();
8501     }
8502     // Large vector types should be returned via memory.
8503     if (Size > 64)
8504       return getNaturalAlignIndirect(RetTy);
8505   }
8506 
8507   if (!isAggregateTypeForABI(RetTy)) {
8508     // Treat an enum type as its underlying type.
8509     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8510       RetTy = EnumTy->getDecl()->getIntegerType();
8511 
8512     if (Size > 64 && RetTy->isExtIntType())
8513       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8514 
8515     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8516                                                 : ABIArgInfo::getDirect();
8517   }
8518 
8519   if (isEmptyRecord(getContext(), RetTy, true))
8520     return ABIArgInfo::getIgnore();
8521 
8522   // Aggregates <= 8 bytes are returned in registers, other aggregates
8523   // are returned indirectly.
8524   if (Size <= 64) {
8525     // Return in the smallest viable integer type.
8526     if (!llvm::isPowerOf2_64(Size))
8527       Size = llvm::NextPowerOf2(Size);
8528     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8529   }
8530   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8531 }
8532 
8533 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8534                                             Address VAListAddr,
8535                                             QualType Ty) const {
8536   // Load the overflow area pointer.
8537   Address __overflow_area_pointer_p =
8538       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8539   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8540       __overflow_area_pointer_p, "__overflow_area_pointer");
8541 
8542   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8543   if (Align > 4) {
8544     // Alignment should be a power of 2.
8545     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8546 
8547     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8548     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8549 
8550     // Add offset to the current pointer to access the argument.
8551     __overflow_area_pointer =
8552         CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset);
8553     llvm::Value *AsInt =
8554         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8555 
8556     // Create a mask which should be "AND"ed
8557     // with (overflow_arg_area + align - 1)
8558     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8559     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8560         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8561         "__overflow_area_pointer.align");
8562   }
8563 
8564   // Get the type of the argument from memory and bitcast
8565   // overflow area pointer to the argument type.
8566   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8567   Address AddrTyped = CGF.Builder.CreateBitCast(
8568       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8569       llvm::PointerType::getUnqual(PTy));
8570 
8571   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8572   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8573 
8574   __overflow_area_pointer = CGF.Builder.CreateGEP(
8575       CGF.Int8Ty, __overflow_area_pointer,
8576       llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8577       "__overflow_area_pointer.next");
8578   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8579 
8580   return AddrTyped;
8581 }
8582 
8583 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8584                                             Address VAListAddr,
8585                                             QualType Ty) const {
8586   // FIXME: Need to handle alignment
8587   llvm::Type *BP = CGF.Int8PtrTy;
8588   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8589   CGBuilderTy &Builder = CGF.Builder;
8590   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8591   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8592   // Handle address alignment for type alignment > 32 bits
8593   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8594   if (TyAlign > 4) {
8595     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8596     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8597     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8598     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8599     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8600   }
8601   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8602   Address AddrTyped = Builder.CreateBitCast(
8603       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8604 
8605   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8606   llvm::Value *NextAddr = Builder.CreateGEP(
8607       CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8608   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8609 
8610   return AddrTyped;
8611 }
8612 
8613 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8614                                                  Address VAListAddr,
8615                                                  QualType Ty) const {
8616   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8617 
8618   if (ArgSize > 8)
8619     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8620 
8621   // Here we have check if the argument is in register area or
8622   // in overflow area.
8623   // If the saved register area pointer + argsize rounded up to alignment >
8624   // saved register area end pointer, argument is in overflow area.
8625   unsigned RegsLeft = 6;
8626   Ty = CGF.getContext().getCanonicalType(Ty);
8627   (void)classifyArgumentType(Ty, &RegsLeft);
8628 
8629   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8630   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8631   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8632   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8633 
8634   // Get rounded size of the argument.GCC does not allow vararg of
8635   // size < 4 bytes. We follow the same logic here.
8636   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8637   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8638 
8639   // Argument may be in saved register area
8640   CGF.EmitBlock(MaybeRegBlock);
8641 
8642   // Load the current saved register area pointer.
8643   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8644       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8645   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8646       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8647 
8648   // Load the saved register area end pointer.
8649   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8650       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8651   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8652       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8653 
8654   // If the size of argument is > 4 bytes, check if the stack
8655   // location is aligned to 8 bytes
8656   if (ArgAlign > 4) {
8657 
8658     llvm::Value *__current_saved_reg_area_pointer_int =
8659         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8660                                    CGF.Int32Ty);
8661 
8662     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8663         __current_saved_reg_area_pointer_int,
8664         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8665         "align_current_saved_reg_area_pointer");
8666 
8667     __current_saved_reg_area_pointer_int =
8668         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8669                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8670                               "align_current_saved_reg_area_pointer");
8671 
8672     __current_saved_reg_area_pointer =
8673         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8674                                    __current_saved_reg_area_pointer->getType(),
8675                                    "align_current_saved_reg_area_pointer");
8676   }
8677 
8678   llvm::Value *__new_saved_reg_area_pointer =
8679       CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer,
8680                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8681                             "__new_saved_reg_area_pointer");
8682 
8683   llvm::Value *UsingStack = 0;
8684   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8685                                          __saved_reg_area_end_pointer);
8686 
8687   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8688 
8689   // Argument in saved register area
8690   // Implement the block where argument is in register saved area
8691   CGF.EmitBlock(InRegBlock);
8692 
8693   llvm::Type *PTy = CGF.ConvertType(Ty);
8694   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8695       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8696 
8697   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8698                           __current_saved_reg_area_pointer_p);
8699 
8700   CGF.EmitBranch(ContBlock);
8701 
8702   // Argument in overflow area
8703   // Implement the block where the argument is in overflow area.
8704   CGF.EmitBlock(OnStackBlock);
8705 
8706   // Load the overflow area pointer
8707   Address __overflow_area_pointer_p =
8708       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8709   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8710       __overflow_area_pointer_p, "__overflow_area_pointer");
8711 
8712   // Align the overflow area pointer according to the alignment of the argument
8713   if (ArgAlign > 4) {
8714     llvm::Value *__overflow_area_pointer_int =
8715         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8716 
8717     __overflow_area_pointer_int =
8718         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8719                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8720                               "align_overflow_area_pointer");
8721 
8722     __overflow_area_pointer_int =
8723         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8724                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8725                               "align_overflow_area_pointer");
8726 
8727     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8728         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8729         "align_overflow_area_pointer");
8730   }
8731 
8732   // Get the pointer for next argument in overflow area and store it
8733   // to overflow area pointer.
8734   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8735       CGF.Int8Ty, __overflow_area_pointer,
8736       llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8737       "__overflow_area_pointer.next");
8738 
8739   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8740                           __overflow_area_pointer_p);
8741 
8742   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8743                           __current_saved_reg_area_pointer_p);
8744 
8745   // Bitcast the overflow area pointer to the type of argument.
8746   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8747   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8748       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8749 
8750   CGF.EmitBranch(ContBlock);
8751 
8752   // Get the correct pointer to load the variable argument
8753   // Implement the ContBlock
8754   CGF.EmitBlock(ContBlock);
8755 
8756   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8757   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8758   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8759   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8760 
8761   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8762 }
8763 
8764 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8765                                   QualType Ty) const {
8766 
8767   if (getTarget().getTriple().isMusl())
8768     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8769 
8770   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8771 }
8772 
8773 //===----------------------------------------------------------------------===//
8774 // Lanai ABI Implementation
8775 //===----------------------------------------------------------------------===//
8776 
8777 namespace {
8778 class LanaiABIInfo : public DefaultABIInfo {
8779 public:
8780   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8781 
8782   bool shouldUseInReg(QualType Ty, CCState &State) const;
8783 
8784   void computeInfo(CGFunctionInfo &FI) const override {
8785     CCState State(FI);
8786     // Lanai uses 4 registers to pass arguments unless the function has the
8787     // regparm attribute set.
8788     if (FI.getHasRegParm()) {
8789       State.FreeRegs = FI.getRegParm();
8790     } else {
8791       State.FreeRegs = 4;
8792     }
8793 
8794     if (!getCXXABI().classifyReturnType(FI))
8795       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8796     for (auto &I : FI.arguments())
8797       I.info = classifyArgumentType(I.type, State);
8798   }
8799 
8800   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8801   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8802 };
8803 } // end anonymous namespace
8804 
8805 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8806   unsigned Size = getContext().getTypeSize(Ty);
8807   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8808 
8809   if (SizeInRegs == 0)
8810     return false;
8811 
8812   if (SizeInRegs > State.FreeRegs) {
8813     State.FreeRegs = 0;
8814     return false;
8815   }
8816 
8817   State.FreeRegs -= SizeInRegs;
8818 
8819   return true;
8820 }
8821 
8822 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8823                                            CCState &State) const {
8824   if (!ByVal) {
8825     if (State.FreeRegs) {
8826       --State.FreeRegs; // Non-byval indirects just use one pointer.
8827       return getNaturalAlignIndirectInReg(Ty);
8828     }
8829     return getNaturalAlignIndirect(Ty, false);
8830   }
8831 
8832   // Compute the byval alignment.
8833   const unsigned MinABIStackAlignInBytes = 4;
8834   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8835   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8836                                  /*Realign=*/TypeAlign >
8837                                      MinABIStackAlignInBytes);
8838 }
8839 
8840 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8841                                               CCState &State) const {
8842   // Check with the C++ ABI first.
8843   const RecordType *RT = Ty->getAs<RecordType>();
8844   if (RT) {
8845     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8846     if (RAA == CGCXXABI::RAA_Indirect) {
8847       return getIndirectResult(Ty, /*ByVal=*/false, State);
8848     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8849       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8850     }
8851   }
8852 
8853   if (isAggregateTypeForABI(Ty)) {
8854     // Structures with flexible arrays are always indirect.
8855     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8856       return getIndirectResult(Ty, /*ByVal=*/true, State);
8857 
8858     // Ignore empty structs/unions.
8859     if (isEmptyRecord(getContext(), Ty, true))
8860       return ABIArgInfo::getIgnore();
8861 
8862     llvm::LLVMContext &LLVMContext = getVMContext();
8863     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8864     if (SizeInRegs <= State.FreeRegs) {
8865       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8866       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8867       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8868       State.FreeRegs -= SizeInRegs;
8869       return ABIArgInfo::getDirectInReg(Result);
8870     } else {
8871       State.FreeRegs = 0;
8872     }
8873     return getIndirectResult(Ty, true, State);
8874   }
8875 
8876   // Treat an enum type as its underlying type.
8877   if (const auto *EnumTy = Ty->getAs<EnumType>())
8878     Ty = EnumTy->getDecl()->getIntegerType();
8879 
8880   bool InReg = shouldUseInReg(Ty, State);
8881 
8882   // Don't pass >64 bit integers in registers.
8883   if (const auto *EIT = Ty->getAs<ExtIntType>())
8884     if (EIT->getNumBits() > 64)
8885       return getIndirectResult(Ty, /*ByVal=*/true, State);
8886 
8887   if (isPromotableIntegerTypeForABI(Ty)) {
8888     if (InReg)
8889       return ABIArgInfo::getDirectInReg();
8890     return ABIArgInfo::getExtend(Ty);
8891   }
8892   if (InReg)
8893     return ABIArgInfo::getDirectInReg();
8894   return ABIArgInfo::getDirect();
8895 }
8896 
8897 namespace {
8898 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8899 public:
8900   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8901       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8902 };
8903 }
8904 
8905 //===----------------------------------------------------------------------===//
8906 // AMDGPU ABI Implementation
8907 //===----------------------------------------------------------------------===//
8908 
8909 namespace {
8910 
8911 class AMDGPUABIInfo final : public DefaultABIInfo {
8912 private:
8913   static const unsigned MaxNumRegsForArgsRet = 16;
8914 
8915   unsigned numRegsForType(QualType Ty) const;
8916 
8917   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8918   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8919                                          uint64_t Members) const override;
8920 
8921   // Coerce HIP scalar pointer arguments from generic pointers to global ones.
8922   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8923                                        unsigned ToAS) const {
8924     // Single value types.
8925     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8926       return llvm::PointerType::get(
8927           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8928     return Ty;
8929   }
8930 
8931 public:
8932   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8933     DefaultABIInfo(CGT) {}
8934 
8935   ABIArgInfo classifyReturnType(QualType RetTy) const;
8936   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8937   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8938 
8939   void computeInfo(CGFunctionInfo &FI) const override;
8940   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8941                     QualType Ty) const override;
8942 };
8943 
8944 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8945   return true;
8946 }
8947 
8948 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8949   const Type *Base, uint64_t Members) const {
8950   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8951 
8952   // Homogeneous Aggregates may occupy at most 16 registers.
8953   return Members * NumRegs <= MaxNumRegsForArgsRet;
8954 }
8955 
8956 /// Estimate number of registers the type will use when passed in registers.
8957 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8958   unsigned NumRegs = 0;
8959 
8960   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8961     // Compute from the number of elements. The reported size is based on the
8962     // in-memory size, which includes the padding 4th element for 3-vectors.
8963     QualType EltTy = VT->getElementType();
8964     unsigned EltSize = getContext().getTypeSize(EltTy);
8965 
8966     // 16-bit element vectors should be passed as packed.
8967     if (EltSize == 16)
8968       return (VT->getNumElements() + 1) / 2;
8969 
8970     unsigned EltNumRegs = (EltSize + 31) / 32;
8971     return EltNumRegs * VT->getNumElements();
8972   }
8973 
8974   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8975     const RecordDecl *RD = RT->getDecl();
8976     assert(!RD->hasFlexibleArrayMember());
8977 
8978     for (const FieldDecl *Field : RD->fields()) {
8979       QualType FieldTy = Field->getType();
8980       NumRegs += numRegsForType(FieldTy);
8981     }
8982 
8983     return NumRegs;
8984   }
8985 
8986   return (getContext().getTypeSize(Ty) + 31) / 32;
8987 }
8988 
8989 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8990   llvm::CallingConv::ID CC = FI.getCallingConvention();
8991 
8992   if (!getCXXABI().classifyReturnType(FI))
8993     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8994 
8995   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8996   for (auto &Arg : FI.arguments()) {
8997     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8998       Arg.info = classifyKernelArgumentType(Arg.type);
8999     } else {
9000       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
9001     }
9002   }
9003 }
9004 
9005 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9006                                  QualType Ty) const {
9007   llvm_unreachable("AMDGPU does not support varargs");
9008 }
9009 
9010 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
9011   if (isAggregateTypeForABI(RetTy)) {
9012     // Records with non-trivial destructors/copy-constructors should not be
9013     // returned by value.
9014     if (!getRecordArgABI(RetTy, getCXXABI())) {
9015       // Ignore empty structs/unions.
9016       if (isEmptyRecord(getContext(), RetTy, true))
9017         return ABIArgInfo::getIgnore();
9018 
9019       // Lower single-element structs to just return a regular value.
9020       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
9021         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9022 
9023       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
9024         const RecordDecl *RD = RT->getDecl();
9025         if (RD->hasFlexibleArrayMember())
9026           return DefaultABIInfo::classifyReturnType(RetTy);
9027       }
9028 
9029       // Pack aggregates <= 4 bytes into single VGPR or pair.
9030       uint64_t Size = getContext().getTypeSize(RetTy);
9031       if (Size <= 16)
9032         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9033 
9034       if (Size <= 32)
9035         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9036 
9037       if (Size <= 64) {
9038         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9039         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9040       }
9041 
9042       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
9043         return ABIArgInfo::getDirect();
9044     }
9045   }
9046 
9047   // Otherwise just do the default thing.
9048   return DefaultABIInfo::classifyReturnType(RetTy);
9049 }
9050 
9051 /// For kernels all parameters are really passed in a special buffer. It doesn't
9052 /// make sense to pass anything byval, so everything must be direct.
9053 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
9054   Ty = useFirstFieldIfTransparentUnion(Ty);
9055 
9056   // TODO: Can we omit empty structs?
9057 
9058   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9059     Ty = QualType(SeltTy, 0);
9060 
9061   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
9062   llvm::Type *LTy = OrigLTy;
9063   if (getContext().getLangOpts().HIP) {
9064     LTy = coerceKernelArgumentType(
9065         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
9066         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
9067   }
9068 
9069   // FIXME: Should also use this for OpenCL, but it requires addressing the
9070   // problem of kernels being called.
9071   //
9072   // FIXME: This doesn't apply the optimization of coercing pointers in structs
9073   // to global address space when using byref. This would require implementing a
9074   // new kind of coercion of the in-memory type when for indirect arguments.
9075   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
9076       isAggregateTypeForABI(Ty)) {
9077     return ABIArgInfo::getIndirectAliased(
9078         getContext().getTypeAlignInChars(Ty),
9079         getContext().getTargetAddressSpace(LangAS::opencl_constant),
9080         false /*Realign*/, nullptr /*Padding*/);
9081   }
9082 
9083   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
9084   // individual elements, which confuses the Clover OpenCL backend; therefore we
9085   // have to set it to false here. Other args of getDirect() are just defaults.
9086   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
9087 }
9088 
9089 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
9090                                                unsigned &NumRegsLeft) const {
9091   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
9092 
9093   Ty = useFirstFieldIfTransparentUnion(Ty);
9094 
9095   if (isAggregateTypeForABI(Ty)) {
9096     // Records with non-trivial destructors/copy-constructors should not be
9097     // passed by value.
9098     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
9099       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9100 
9101     // Ignore empty structs/unions.
9102     if (isEmptyRecord(getContext(), Ty, true))
9103       return ABIArgInfo::getIgnore();
9104 
9105     // Lower single-element structs to just pass a regular value. TODO: We
9106     // could do reasonable-size multiple-element structs too, using getExpand(),
9107     // though watch out for things like bitfields.
9108     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
9109       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
9110 
9111     if (const RecordType *RT = Ty->getAs<RecordType>()) {
9112       const RecordDecl *RD = RT->getDecl();
9113       if (RD->hasFlexibleArrayMember())
9114         return DefaultABIInfo::classifyArgumentType(Ty);
9115     }
9116 
9117     // Pack aggregates <= 8 bytes into single VGPR or pair.
9118     uint64_t Size = getContext().getTypeSize(Ty);
9119     if (Size <= 64) {
9120       unsigned NumRegs = (Size + 31) / 32;
9121       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
9122 
9123       if (Size <= 16)
9124         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
9125 
9126       if (Size <= 32)
9127         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
9128 
9129       // XXX: Should this be i64 instead, and should the limit increase?
9130       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
9131       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
9132     }
9133 
9134     if (NumRegsLeft > 0) {
9135       unsigned NumRegs = numRegsForType(Ty);
9136       if (NumRegsLeft >= NumRegs) {
9137         NumRegsLeft -= NumRegs;
9138         return ABIArgInfo::getDirect();
9139       }
9140     }
9141   }
9142 
9143   // Otherwise just do the default thing.
9144   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
9145   if (!ArgInfo.isIndirect()) {
9146     unsigned NumRegs = numRegsForType(Ty);
9147     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
9148   }
9149 
9150   return ArgInfo;
9151 }
9152 
9153 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
9154 public:
9155   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
9156       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
9157   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
9158                            CodeGen::CodeGenModule &M) const override;
9159   unsigned getOpenCLKernelCallingConv() const override;
9160 
9161   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
9162       llvm::PointerType *T, QualType QT) const override;
9163 
9164   LangAS getASTAllocaAddressSpace() const override {
9165     return getLangASFromTargetAS(
9166         getABIInfo().getDataLayout().getAllocaAddrSpace());
9167   }
9168   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
9169                                   const VarDecl *D) const override;
9170   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
9171                                          SyncScope Scope,
9172                                          llvm::AtomicOrdering Ordering,
9173                                          llvm::LLVMContext &Ctx) const override;
9174   llvm::Function *
9175   createEnqueuedBlockKernel(CodeGenFunction &CGF,
9176                             llvm::Function *BlockInvokeFunc,
9177                             llvm::Value *BlockLiteral) const override;
9178   bool shouldEmitStaticExternCAliases() const override;
9179   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
9180 };
9181 }
9182 
9183 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
9184                                               llvm::GlobalValue *GV) {
9185   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
9186     return false;
9187 
9188   return D->hasAttr<OpenCLKernelAttr>() ||
9189          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
9190          (isa<VarDecl>(D) &&
9191           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
9192            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
9193            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
9194 }
9195 
9196 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
9197     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
9198   if (requiresAMDGPUProtectedVisibility(D, GV)) {
9199     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
9200     GV->setDSOLocal(true);
9201   }
9202 
9203   if (GV->isDeclaration())
9204     return;
9205   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
9206   if (!FD)
9207     return;
9208 
9209   llvm::Function *F = cast<llvm::Function>(GV);
9210 
9211   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
9212     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
9213 
9214 
9215   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
9216                               FD->hasAttr<OpenCLKernelAttr>();
9217   const bool IsHIPKernel = M.getLangOpts().HIP &&
9218                            FD->hasAttr<CUDAGlobalAttr>();
9219   if ((IsOpenCLKernel || IsHIPKernel) &&
9220       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
9221     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
9222 
9223   if (IsHIPKernel)
9224     F->addFnAttr("uniform-work-group-size", "true");
9225 
9226 
9227   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
9228   if (ReqdWGS || FlatWGS) {
9229     unsigned Min = 0;
9230     unsigned Max = 0;
9231     if (FlatWGS) {
9232       Min = FlatWGS->getMin()
9233                 ->EvaluateKnownConstInt(M.getContext())
9234                 .getExtValue();
9235       Max = FlatWGS->getMax()
9236                 ->EvaluateKnownConstInt(M.getContext())
9237                 .getExtValue();
9238     }
9239     if (ReqdWGS && Min == 0 && Max == 0)
9240       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
9241 
9242     if (Min != 0) {
9243       assert(Min <= Max && "Min must be less than or equal Max");
9244 
9245       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9246       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9247     } else
9248       assert(Max == 0 && "Max must be zero");
9249   } else if (IsOpenCLKernel || IsHIPKernel) {
9250     // By default, restrict the maximum size to a value specified by
9251     // --gpu-max-threads-per-block=n or its default value for HIP.
9252     const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
9253     const unsigned DefaultMaxWorkGroupSize =
9254         IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
9255                        : M.getLangOpts().GPUMaxThreadsPerBlock;
9256     std::string AttrVal =
9257         std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
9258     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9259   }
9260 
9261   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9262     unsigned Min =
9263         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9264     unsigned Max = Attr->getMax() ? Attr->getMax()
9265                                         ->EvaluateKnownConstInt(M.getContext())
9266                                         .getExtValue()
9267                                   : 0;
9268 
9269     if (Min != 0) {
9270       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9271 
9272       std::string AttrVal = llvm::utostr(Min);
9273       if (Max != 0)
9274         AttrVal = AttrVal + "," + llvm::utostr(Max);
9275       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9276     } else
9277       assert(Max == 0 && "Max must be zero");
9278   }
9279 
9280   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9281     unsigned NumSGPR = Attr->getNumSGPR();
9282 
9283     if (NumSGPR != 0)
9284       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9285   }
9286 
9287   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9288     uint32_t NumVGPR = Attr->getNumVGPR();
9289 
9290     if (NumVGPR != 0)
9291       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9292   }
9293 
9294   if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9295     F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9296 
9297   if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
9298     F->addFnAttr("amdgpu-ieee", "false");
9299 }
9300 
9301 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9302   return llvm::CallingConv::AMDGPU_KERNEL;
9303 }
9304 
9305 // Currently LLVM assumes null pointers always have value 0,
9306 // which results in incorrectly transformed IR. Therefore, instead of
9307 // emitting null pointers in private and local address spaces, a null
9308 // pointer in generic address space is emitted which is casted to a
9309 // pointer in local or private address space.
9310 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9311     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9312     QualType QT) const {
9313   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9314     return llvm::ConstantPointerNull::get(PT);
9315 
9316   auto &Ctx = CGM.getContext();
9317   auto NPT = llvm::PointerType::get(PT->getElementType(),
9318       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9319   return llvm::ConstantExpr::getAddrSpaceCast(
9320       llvm::ConstantPointerNull::get(NPT), PT);
9321 }
9322 
9323 LangAS
9324 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9325                                                   const VarDecl *D) const {
9326   assert(!CGM.getLangOpts().OpenCL &&
9327          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9328          "Address space agnostic languages only");
9329   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9330       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9331   if (!D)
9332     return DefaultGlobalAS;
9333 
9334   LangAS AddrSpace = D->getType().getAddressSpace();
9335   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9336   if (AddrSpace != LangAS::Default)
9337     return AddrSpace;
9338 
9339   if (CGM.isTypeConstant(D->getType(), false)) {
9340     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9341       return ConstAS.getValue();
9342   }
9343   return DefaultGlobalAS;
9344 }
9345 
9346 llvm::SyncScope::ID
9347 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9348                                             SyncScope Scope,
9349                                             llvm::AtomicOrdering Ordering,
9350                                             llvm::LLVMContext &Ctx) const {
9351   std::string Name;
9352   switch (Scope) {
9353   case SyncScope::OpenCLWorkGroup:
9354     Name = "workgroup";
9355     break;
9356   case SyncScope::OpenCLDevice:
9357     Name = "agent";
9358     break;
9359   case SyncScope::OpenCLAllSVMDevices:
9360     Name = "";
9361     break;
9362   case SyncScope::OpenCLSubGroup:
9363     Name = "wavefront";
9364   }
9365 
9366   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9367     if (!Name.empty())
9368       Name = Twine(Twine(Name) + Twine("-")).str();
9369 
9370     Name = Twine(Twine(Name) + Twine("one-as")).str();
9371   }
9372 
9373   return Ctx.getOrInsertSyncScopeID(Name);
9374 }
9375 
9376 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9377   return false;
9378 }
9379 
9380 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9381     const FunctionType *&FT) const {
9382   FT = getABIInfo().getContext().adjustFunctionType(
9383       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9384 }
9385 
9386 //===----------------------------------------------------------------------===//
9387 // SPARC v8 ABI Implementation.
9388 // Based on the SPARC Compliance Definition version 2.4.1.
9389 //
9390 // Ensures that complex values are passed in registers.
9391 //
9392 namespace {
9393 class SparcV8ABIInfo : public DefaultABIInfo {
9394 public:
9395   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9396 
9397 private:
9398   ABIArgInfo classifyReturnType(QualType RetTy) const;
9399   void computeInfo(CGFunctionInfo &FI) const override;
9400 };
9401 } // end anonymous namespace
9402 
9403 
9404 ABIArgInfo
9405 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9406   if (Ty->isAnyComplexType()) {
9407     return ABIArgInfo::getDirect();
9408   }
9409   else {
9410     return DefaultABIInfo::classifyReturnType(Ty);
9411   }
9412 }
9413 
9414 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9415 
9416   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9417   for (auto &Arg : FI.arguments())
9418     Arg.info = classifyArgumentType(Arg.type);
9419 }
9420 
9421 namespace {
9422 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9423 public:
9424   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9425       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9426 };
9427 } // end anonymous namespace
9428 
9429 //===----------------------------------------------------------------------===//
9430 // SPARC v9 ABI Implementation.
9431 // Based on the SPARC Compliance Definition version 2.4.1.
9432 //
9433 // Function arguments a mapped to a nominal "parameter array" and promoted to
9434 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9435 // the array, structs larger than 16 bytes are passed indirectly.
9436 //
9437 // One case requires special care:
9438 //
9439 //   struct mixed {
9440 //     int i;
9441 //     float f;
9442 //   };
9443 //
9444 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9445 // parameter array, but the int is passed in an integer register, and the float
9446 // is passed in a floating point register. This is represented as two arguments
9447 // with the LLVM IR inreg attribute:
9448 //
9449 //   declare void f(i32 inreg %i, float inreg %f)
9450 //
9451 // The code generator will only allocate 4 bytes from the parameter array for
9452 // the inreg arguments. All other arguments are allocated a multiple of 8
9453 // bytes.
9454 //
9455 namespace {
9456 class SparcV9ABIInfo : public ABIInfo {
9457 public:
9458   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9459 
9460 private:
9461   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9462   void computeInfo(CGFunctionInfo &FI) const override;
9463   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9464                     QualType Ty) const override;
9465 
9466   // Coercion type builder for structs passed in registers. The coercion type
9467   // serves two purposes:
9468   //
9469   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9470   //    in registers.
9471   // 2. Expose aligned floating point elements as first-level elements, so the
9472   //    code generator knows to pass them in floating point registers.
9473   //
9474   // We also compute the InReg flag which indicates that the struct contains
9475   // aligned 32-bit floats.
9476   //
9477   struct CoerceBuilder {
9478     llvm::LLVMContext &Context;
9479     const llvm::DataLayout &DL;
9480     SmallVector<llvm::Type*, 8> Elems;
9481     uint64_t Size;
9482     bool InReg;
9483 
9484     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9485       : Context(c), DL(dl), Size(0), InReg(false) {}
9486 
9487     // Pad Elems with integers until Size is ToSize.
9488     void pad(uint64_t ToSize) {
9489       assert(ToSize >= Size && "Cannot remove elements");
9490       if (ToSize == Size)
9491         return;
9492 
9493       // Finish the current 64-bit word.
9494       uint64_t Aligned = llvm::alignTo(Size, 64);
9495       if (Aligned > Size && Aligned <= ToSize) {
9496         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9497         Size = Aligned;
9498       }
9499 
9500       // Add whole 64-bit words.
9501       while (Size + 64 <= ToSize) {
9502         Elems.push_back(llvm::Type::getInt64Ty(Context));
9503         Size += 64;
9504       }
9505 
9506       // Final in-word padding.
9507       if (Size < ToSize) {
9508         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9509         Size = ToSize;
9510       }
9511     }
9512 
9513     // Add a floating point element at Offset.
9514     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9515       // Unaligned floats are treated as integers.
9516       if (Offset % Bits)
9517         return;
9518       // The InReg flag is only required if there are any floats < 64 bits.
9519       if (Bits < 64)
9520         InReg = true;
9521       pad(Offset);
9522       Elems.push_back(Ty);
9523       Size = Offset + Bits;
9524     }
9525 
9526     // Add a struct type to the coercion type, starting at Offset (in bits).
9527     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9528       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9529       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9530         llvm::Type *ElemTy = StrTy->getElementType(i);
9531         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9532         switch (ElemTy->getTypeID()) {
9533         case llvm::Type::StructTyID:
9534           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9535           break;
9536         case llvm::Type::FloatTyID:
9537           addFloat(ElemOffset, ElemTy, 32);
9538           break;
9539         case llvm::Type::DoubleTyID:
9540           addFloat(ElemOffset, ElemTy, 64);
9541           break;
9542         case llvm::Type::FP128TyID:
9543           addFloat(ElemOffset, ElemTy, 128);
9544           break;
9545         case llvm::Type::PointerTyID:
9546           if (ElemOffset % 64 == 0) {
9547             pad(ElemOffset);
9548             Elems.push_back(ElemTy);
9549             Size += 64;
9550           }
9551           break;
9552         default:
9553           break;
9554         }
9555       }
9556     }
9557 
9558     // Check if Ty is a usable substitute for the coercion type.
9559     bool isUsableType(llvm::StructType *Ty) const {
9560       return llvm::makeArrayRef(Elems) == Ty->elements();
9561     }
9562 
9563     // Get the coercion type as a literal struct type.
9564     llvm::Type *getType() const {
9565       if (Elems.size() == 1)
9566         return Elems.front();
9567       else
9568         return llvm::StructType::get(Context, Elems);
9569     }
9570   };
9571 };
9572 } // end anonymous namespace
9573 
9574 ABIArgInfo
9575 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9576   if (Ty->isVoidType())
9577     return ABIArgInfo::getIgnore();
9578 
9579   uint64_t Size = getContext().getTypeSize(Ty);
9580 
9581   // Anything too big to fit in registers is passed with an explicit indirect
9582   // pointer / sret pointer.
9583   if (Size > SizeLimit)
9584     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9585 
9586   // Treat an enum type as its underlying type.
9587   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9588     Ty = EnumTy->getDecl()->getIntegerType();
9589 
9590   // Integer types smaller than a register are extended.
9591   if (Size < 64 && Ty->isIntegerType())
9592     return ABIArgInfo::getExtend(Ty);
9593 
9594   if (const auto *EIT = Ty->getAs<ExtIntType>())
9595     if (EIT->getNumBits() < 64)
9596       return ABIArgInfo::getExtend(Ty);
9597 
9598   // Other non-aggregates go in registers.
9599   if (!isAggregateTypeForABI(Ty))
9600     return ABIArgInfo::getDirect();
9601 
9602   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9603   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9604   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9605     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9606 
9607   // This is a small aggregate type that should be passed in registers.
9608   // Build a coercion type from the LLVM struct type.
9609   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9610   if (!StrTy)
9611     return ABIArgInfo::getDirect();
9612 
9613   CoerceBuilder CB(getVMContext(), getDataLayout());
9614   CB.addStruct(0, StrTy);
9615   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9616 
9617   // Try to use the original type for coercion.
9618   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9619 
9620   if (CB.InReg)
9621     return ABIArgInfo::getDirectInReg(CoerceTy);
9622   else
9623     return ABIArgInfo::getDirect(CoerceTy);
9624 }
9625 
9626 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9627                                   QualType Ty) const {
9628   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9629   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9630   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9631     AI.setCoerceToType(ArgTy);
9632 
9633   CharUnits SlotSize = CharUnits::fromQuantity(8);
9634 
9635   CGBuilderTy &Builder = CGF.Builder;
9636   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9637   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9638 
9639   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9640 
9641   Address ArgAddr = Address::invalid();
9642   CharUnits Stride;
9643   switch (AI.getKind()) {
9644   case ABIArgInfo::Expand:
9645   case ABIArgInfo::CoerceAndExpand:
9646   case ABIArgInfo::InAlloca:
9647     llvm_unreachable("Unsupported ABI kind for va_arg");
9648 
9649   case ABIArgInfo::Extend: {
9650     Stride = SlotSize;
9651     CharUnits Offset = SlotSize - TypeInfo.Width;
9652     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9653     break;
9654   }
9655 
9656   case ABIArgInfo::Direct: {
9657     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9658     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9659     ArgAddr = Addr;
9660     break;
9661   }
9662 
9663   case ABIArgInfo::Indirect:
9664   case ABIArgInfo::IndirectAliased:
9665     Stride = SlotSize;
9666     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9667     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9668                       TypeInfo.Align);
9669     break;
9670 
9671   case ABIArgInfo::Ignore:
9672     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
9673   }
9674 
9675   // Update VAList.
9676   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9677   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9678 
9679   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9680 }
9681 
9682 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9683   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9684   for (auto &I : FI.arguments())
9685     I.info = classifyType(I.type, 16 * 8);
9686 }
9687 
9688 namespace {
9689 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9690 public:
9691   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9692       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9693 
9694   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9695     return 14;
9696   }
9697 
9698   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9699                                llvm::Value *Address) const override;
9700 };
9701 } // end anonymous namespace
9702 
9703 bool
9704 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9705                                                 llvm::Value *Address) const {
9706   // This is calculated from the LLVM and GCC tables and verified
9707   // against gcc output.  AFAIK all ABIs use the same encoding.
9708 
9709   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9710 
9711   llvm::IntegerType *i8 = CGF.Int8Ty;
9712   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9713   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9714 
9715   // 0-31: the 8-byte general-purpose registers
9716   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9717 
9718   // 32-63: f0-31, the 4-byte floating-point registers
9719   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9720 
9721   //   Y   = 64
9722   //   PSR = 65
9723   //   WIM = 66
9724   //   TBR = 67
9725   //   PC  = 68
9726   //   NPC = 69
9727   //   FSR = 70
9728   //   CSR = 71
9729   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9730 
9731   // 72-87: d0-15, the 8-byte floating-point registers
9732   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9733 
9734   return false;
9735 }
9736 
9737 // ARC ABI implementation.
9738 namespace {
9739 
9740 class ARCABIInfo : public DefaultABIInfo {
9741 public:
9742   using DefaultABIInfo::DefaultABIInfo;
9743 
9744 private:
9745   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9746                     QualType Ty) const override;
9747 
9748   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9749     if (!State.FreeRegs)
9750       return;
9751     if (Info.isIndirect() && Info.getInReg())
9752       State.FreeRegs--;
9753     else if (Info.isDirect() && Info.getInReg()) {
9754       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9755       if (sz < State.FreeRegs)
9756         State.FreeRegs -= sz;
9757       else
9758         State.FreeRegs = 0;
9759     }
9760   }
9761 
9762   void computeInfo(CGFunctionInfo &FI) const override {
9763     CCState State(FI);
9764     // ARC uses 8 registers to pass arguments.
9765     State.FreeRegs = 8;
9766 
9767     if (!getCXXABI().classifyReturnType(FI))
9768       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9769     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9770     for (auto &I : FI.arguments()) {
9771       I.info = classifyArgumentType(I.type, State.FreeRegs);
9772       updateState(I.info, I.type, State);
9773     }
9774   }
9775 
9776   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9777   ABIArgInfo getIndirectByValue(QualType Ty) const;
9778   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9779   ABIArgInfo classifyReturnType(QualType RetTy) const;
9780 };
9781 
9782 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9783 public:
9784   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9785       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9786 };
9787 
9788 
9789 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9790   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9791                        getNaturalAlignIndirect(Ty, false);
9792 }
9793 
9794 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9795   // Compute the byval alignment.
9796   const unsigned MinABIStackAlignInBytes = 4;
9797   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9798   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9799                                  TypeAlign > MinABIStackAlignInBytes);
9800 }
9801 
9802 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9803                               QualType Ty) const {
9804   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9805                           getContext().getTypeInfoInChars(Ty),
9806                           CharUnits::fromQuantity(4), true);
9807 }
9808 
9809 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9810                                             uint8_t FreeRegs) const {
9811   // Handle the generic C++ ABI.
9812   const RecordType *RT = Ty->getAs<RecordType>();
9813   if (RT) {
9814     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9815     if (RAA == CGCXXABI::RAA_Indirect)
9816       return getIndirectByRef(Ty, FreeRegs > 0);
9817 
9818     if (RAA == CGCXXABI::RAA_DirectInMemory)
9819       return getIndirectByValue(Ty);
9820   }
9821 
9822   // Treat an enum type as its underlying type.
9823   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9824     Ty = EnumTy->getDecl()->getIntegerType();
9825 
9826   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9827 
9828   if (isAggregateTypeForABI(Ty)) {
9829     // Structures with flexible arrays are always indirect.
9830     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9831       return getIndirectByValue(Ty);
9832 
9833     // Ignore empty structs/unions.
9834     if (isEmptyRecord(getContext(), Ty, true))
9835       return ABIArgInfo::getIgnore();
9836 
9837     llvm::LLVMContext &LLVMContext = getVMContext();
9838 
9839     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9840     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9841     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9842 
9843     return FreeRegs >= SizeInRegs ?
9844         ABIArgInfo::getDirectInReg(Result) :
9845         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9846   }
9847 
9848   if (const auto *EIT = Ty->getAs<ExtIntType>())
9849     if (EIT->getNumBits() > 64)
9850       return getIndirectByValue(Ty);
9851 
9852   return isPromotableIntegerTypeForABI(Ty)
9853              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9854                                        : ABIArgInfo::getExtend(Ty))
9855              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9856                                        : ABIArgInfo::getDirect());
9857 }
9858 
9859 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9860   if (RetTy->isAnyComplexType())
9861     return ABIArgInfo::getDirectInReg();
9862 
9863   // Arguments of size > 4 registers are indirect.
9864   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9865   if (RetSize > 4)
9866     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9867 
9868   return DefaultABIInfo::classifyReturnType(RetTy);
9869 }
9870 
9871 } // End anonymous namespace.
9872 
9873 //===----------------------------------------------------------------------===//
9874 // XCore ABI Implementation
9875 //===----------------------------------------------------------------------===//
9876 
9877 namespace {
9878 
9879 /// A SmallStringEnc instance is used to build up the TypeString by passing
9880 /// it by reference between functions that append to it.
9881 typedef llvm::SmallString<128> SmallStringEnc;
9882 
9883 /// TypeStringCache caches the meta encodings of Types.
9884 ///
9885 /// The reason for caching TypeStrings is two fold:
9886 ///   1. To cache a type's encoding for later uses;
9887 ///   2. As a means to break recursive member type inclusion.
9888 ///
9889 /// A cache Entry can have a Status of:
9890 ///   NonRecursive:   The type encoding is not recursive;
9891 ///   Recursive:      The type encoding is recursive;
9892 ///   Incomplete:     An incomplete TypeString;
9893 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9894 ///                   Recursive type encoding.
9895 ///
9896 /// A NonRecursive entry will have all of its sub-members expanded as fully
9897 /// as possible. Whilst it may contain types which are recursive, the type
9898 /// itself is not recursive and thus its encoding may be safely used whenever
9899 /// the type is encountered.
9900 ///
9901 /// A Recursive entry will have all of its sub-members expanded as fully as
9902 /// possible. The type itself is recursive and it may contain other types which
9903 /// are recursive. The Recursive encoding must not be used during the expansion
9904 /// of a recursive type's recursive branch. For simplicity the code uses
9905 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9906 ///
9907 /// An Incomplete entry is always a RecordType and only encodes its
9908 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9909 /// are placed into the cache during type expansion as a means to identify and
9910 /// handle recursive inclusion of types as sub-members. If there is recursion
9911 /// the entry becomes IncompleteUsed.
9912 ///
9913 /// During the expansion of a RecordType's members:
9914 ///
9915 ///   If the cache contains a NonRecursive encoding for the member type, the
9916 ///   cached encoding is used;
9917 ///
9918 ///   If the cache contains a Recursive encoding for the member type, the
9919 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9920 ///
9921 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9922 ///   cache to break potential recursive inclusion of itself as a sub-member;
9923 ///
9924 ///   Once a member RecordType has been expanded, its temporary incomplete
9925 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9926 ///   it is swapped back in;
9927 ///
9928 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9929 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9930 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9931 ///
9932 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9933 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9934 ///   Else the member is part of a recursive type and thus the recursion has
9935 ///   been exited too soon for the encoding to be correct for the member.
9936 ///
9937 class TypeStringCache {
9938   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9939   struct Entry {
9940     std::string Str;     // The encoded TypeString for the type.
9941     enum Status State;   // Information about the encoding in 'Str'.
9942     std::string Swapped; // A temporary place holder for a Recursive encoding
9943                          // during the expansion of RecordType's members.
9944   };
9945   std::map<const IdentifierInfo *, struct Entry> Map;
9946   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9947   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9948 public:
9949   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9950   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9951   bool removeIncomplete(const IdentifierInfo *ID);
9952   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9953                      bool IsRecursive);
9954   StringRef lookupStr(const IdentifierInfo *ID);
9955 };
9956 
9957 /// TypeString encodings for enum & union fields must be order.
9958 /// FieldEncoding is a helper for this ordering process.
9959 class FieldEncoding {
9960   bool HasName;
9961   std::string Enc;
9962 public:
9963   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9964   StringRef str() { return Enc; }
9965   bool operator<(const FieldEncoding &rhs) const {
9966     if (HasName != rhs.HasName) return HasName;
9967     return Enc < rhs.Enc;
9968   }
9969 };
9970 
9971 class XCoreABIInfo : public DefaultABIInfo {
9972 public:
9973   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9974   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9975                     QualType Ty) const override;
9976 };
9977 
9978 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9979   mutable TypeStringCache TSC;
9980   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9981                     const CodeGen::CodeGenModule &M) const;
9982 
9983 public:
9984   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9985       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9986   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9987                           const llvm::MapVector<GlobalDecl, StringRef>
9988                               &MangledDeclNames) const override;
9989 };
9990 
9991 } // End anonymous namespace.
9992 
9993 // TODO: this implementation is likely now redundant with the default
9994 // EmitVAArg.
9995 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9996                                 QualType Ty) const {
9997   CGBuilderTy &Builder = CGF.Builder;
9998 
9999   // Get the VAList.
10000   CharUnits SlotSize = CharUnits::fromQuantity(4);
10001   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
10002 
10003   // Handle the argument.
10004   ABIArgInfo AI = classifyArgumentType(Ty);
10005   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
10006   llvm::Type *ArgTy = CGT.ConvertType(Ty);
10007   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
10008     AI.setCoerceToType(ArgTy);
10009   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
10010 
10011   Address Val = Address::invalid();
10012   CharUnits ArgSize = CharUnits::Zero();
10013   switch (AI.getKind()) {
10014   case ABIArgInfo::Expand:
10015   case ABIArgInfo::CoerceAndExpand:
10016   case ABIArgInfo::InAlloca:
10017     llvm_unreachable("Unsupported ABI kind for va_arg");
10018   case ABIArgInfo::Ignore:
10019     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
10020     ArgSize = CharUnits::Zero();
10021     break;
10022   case ABIArgInfo::Extend:
10023   case ABIArgInfo::Direct:
10024     Val = Builder.CreateBitCast(AP, ArgPtrTy);
10025     ArgSize = CharUnits::fromQuantity(
10026                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
10027     ArgSize = ArgSize.alignTo(SlotSize);
10028     break;
10029   case ABIArgInfo::Indirect:
10030   case ABIArgInfo::IndirectAliased:
10031     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
10032     Val = Address(Builder.CreateLoad(Val), TypeAlign);
10033     ArgSize = SlotSize;
10034     break;
10035   }
10036 
10037   // Increment the VAList.
10038   if (!ArgSize.isZero()) {
10039     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
10040     Builder.CreateStore(APN.getPointer(), VAListAddr);
10041   }
10042 
10043   return Val;
10044 }
10045 
10046 /// During the expansion of a RecordType, an incomplete TypeString is placed
10047 /// into the cache as a means to identify and break recursion.
10048 /// If there is a Recursive encoding in the cache, it is swapped out and will
10049 /// be reinserted by removeIncomplete().
10050 /// All other types of encoding should have been used rather than arriving here.
10051 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
10052                                     std::string StubEnc) {
10053   if (!ID)
10054     return;
10055   Entry &E = Map[ID];
10056   assert( (E.Str.empty() || E.State == Recursive) &&
10057          "Incorrectly use of addIncomplete");
10058   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
10059   E.Swapped.swap(E.Str); // swap out the Recursive
10060   E.Str.swap(StubEnc);
10061   E.State = Incomplete;
10062   ++IncompleteCount;
10063 }
10064 
10065 /// Once the RecordType has been expanded, the temporary incomplete TypeString
10066 /// must be removed from the cache.
10067 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
10068 /// Returns true if the RecordType was defined recursively.
10069 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
10070   if (!ID)
10071     return false;
10072   auto I = Map.find(ID);
10073   assert(I != Map.end() && "Entry not present");
10074   Entry &E = I->second;
10075   assert( (E.State == Incomplete ||
10076            E.State == IncompleteUsed) &&
10077          "Entry must be an incomplete type");
10078   bool IsRecursive = false;
10079   if (E.State == IncompleteUsed) {
10080     // We made use of our Incomplete encoding, thus we are recursive.
10081     IsRecursive = true;
10082     --IncompleteUsedCount;
10083   }
10084   if (E.Swapped.empty())
10085     Map.erase(I);
10086   else {
10087     // Swap the Recursive back.
10088     E.Swapped.swap(E.Str);
10089     E.Swapped.clear();
10090     E.State = Recursive;
10091   }
10092   --IncompleteCount;
10093   return IsRecursive;
10094 }
10095 
10096 /// Add the encoded TypeString to the cache only if it is NonRecursive or
10097 /// Recursive (viz: all sub-members were expanded as fully as possible).
10098 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
10099                                     bool IsRecursive) {
10100   if (!ID || IncompleteUsedCount)
10101     return; // No key or it is is an incomplete sub-type so don't add.
10102   Entry &E = Map[ID];
10103   if (IsRecursive && !E.Str.empty()) {
10104     assert(E.State==Recursive && E.Str.size() == Str.size() &&
10105            "This is not the same Recursive entry");
10106     // The parent container was not recursive after all, so we could have used
10107     // this Recursive sub-member entry after all, but we assumed the worse when
10108     // we started viz: IncompleteCount!=0.
10109     return;
10110   }
10111   assert(E.Str.empty() && "Entry already present");
10112   E.Str = Str.str();
10113   E.State = IsRecursive? Recursive : NonRecursive;
10114 }
10115 
10116 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
10117 /// are recursively expanding a type (IncompleteCount != 0) and the cached
10118 /// encoding is Recursive, return an empty StringRef.
10119 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
10120   if (!ID)
10121     return StringRef();   // We have no key.
10122   auto I = Map.find(ID);
10123   if (I == Map.end())
10124     return StringRef();   // We have no encoding.
10125   Entry &E = I->second;
10126   if (E.State == Recursive && IncompleteCount)
10127     return StringRef();   // We don't use Recursive encodings for member types.
10128 
10129   if (E.State == Incomplete) {
10130     // The incomplete type is being used to break out of recursion.
10131     E.State = IncompleteUsed;
10132     ++IncompleteUsedCount;
10133   }
10134   return E.Str;
10135 }
10136 
10137 /// The XCore ABI includes a type information section that communicates symbol
10138 /// type information to the linker. The linker uses this information to verify
10139 /// safety/correctness of things such as array bound and pointers et al.
10140 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
10141 /// This type information (TypeString) is emitted into meta data for all global
10142 /// symbols: definitions, declarations, functions & variables.
10143 ///
10144 /// The TypeString carries type, qualifier, name, size & value details.
10145 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
10146 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
10147 /// The output is tested by test/CodeGen/xcore-stringtype.c.
10148 ///
10149 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10150                           const CodeGen::CodeGenModule &CGM,
10151                           TypeStringCache &TSC);
10152 
10153 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
10154 void XCoreTargetCodeGenInfo::emitTargetMD(
10155     const Decl *D, llvm::GlobalValue *GV,
10156     const CodeGen::CodeGenModule &CGM) const {
10157   SmallStringEnc Enc;
10158   if (getTypeString(Enc, D, CGM, TSC)) {
10159     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
10160     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
10161                                 llvm::MDString::get(Ctx, Enc.str())};
10162     llvm::NamedMDNode *MD =
10163       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
10164     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
10165   }
10166 }
10167 
10168 void XCoreTargetCodeGenInfo::emitTargetMetadata(
10169     CodeGen::CodeGenModule &CGM,
10170     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
10171   // Warning, new MangledDeclNames may be appended within this loop.
10172   // We rely on MapVector insertions adding new elements to the end
10173   // of the container.
10174   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
10175     auto Val = *(MangledDeclNames.begin() + I);
10176     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
10177     if (GV) {
10178       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
10179       emitTargetMD(D, GV, CGM);
10180     }
10181   }
10182 }
10183 //===----------------------------------------------------------------------===//
10184 // SPIR ABI Implementation
10185 //===----------------------------------------------------------------------===//
10186 
10187 namespace {
10188 class SPIRABIInfo : public DefaultABIInfo {
10189 public:
10190   SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
10191 
10192 private:
10193   void setCCs();
10194 };
10195 } // end anonymous namespace
10196 namespace {
10197 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
10198 public:
10199   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
10200       : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {}
10201 
10202   LangAS getASTAllocaAddressSpace() const override {
10203     return getLangASFromTargetAS(
10204         getABIInfo().getDataLayout().getAllocaAddrSpace());
10205   }
10206 
10207   unsigned getOpenCLKernelCallingConv() const override;
10208 };
10209 
10210 } // End anonymous namespace.
10211 void SPIRABIInfo::setCCs() {
10212   assert(getRuntimeCC() == llvm::CallingConv::C);
10213   RuntimeCC = llvm::CallingConv::SPIR_FUNC;
10214 }
10215 
10216 namespace clang {
10217 namespace CodeGen {
10218 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
10219   DefaultABIInfo SPIRABI(CGM.getTypes());
10220   SPIRABI.computeInfo(FI);
10221 }
10222 }
10223 }
10224 
10225 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
10226   return llvm::CallingConv::SPIR_KERNEL;
10227 }
10228 
10229 static bool appendType(SmallStringEnc &Enc, QualType QType,
10230                        const CodeGen::CodeGenModule &CGM,
10231                        TypeStringCache &TSC);
10232 
10233 /// Helper function for appendRecordType().
10234 /// Builds a SmallVector containing the encoded field types in declaration
10235 /// order.
10236 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
10237                              const RecordDecl *RD,
10238                              const CodeGen::CodeGenModule &CGM,
10239                              TypeStringCache &TSC) {
10240   for (const auto *Field : RD->fields()) {
10241     SmallStringEnc Enc;
10242     Enc += "m(";
10243     Enc += Field->getName();
10244     Enc += "){";
10245     if (Field->isBitField()) {
10246       Enc += "b(";
10247       llvm::raw_svector_ostream OS(Enc);
10248       OS << Field->getBitWidthValue(CGM.getContext());
10249       Enc += ':';
10250     }
10251     if (!appendType(Enc, Field->getType(), CGM, TSC))
10252       return false;
10253     if (Field->isBitField())
10254       Enc += ')';
10255     Enc += '}';
10256     FE.emplace_back(!Field->getName().empty(), Enc);
10257   }
10258   return true;
10259 }
10260 
10261 /// Appends structure and union types to Enc and adds encoding to cache.
10262 /// Recursively calls appendType (via extractFieldType) for each field.
10263 /// Union types have their fields ordered according to the ABI.
10264 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10265                              const CodeGen::CodeGenModule &CGM,
10266                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10267   // Append the cached TypeString if we have one.
10268   StringRef TypeString = TSC.lookupStr(ID);
10269   if (!TypeString.empty()) {
10270     Enc += TypeString;
10271     return true;
10272   }
10273 
10274   // Start to emit an incomplete TypeString.
10275   size_t Start = Enc.size();
10276   Enc += (RT->isUnionType()? 'u' : 's');
10277   Enc += '(';
10278   if (ID)
10279     Enc += ID->getName();
10280   Enc += "){";
10281 
10282   // We collect all encoded fields and order as necessary.
10283   bool IsRecursive = false;
10284   const RecordDecl *RD = RT->getDecl()->getDefinition();
10285   if (RD && !RD->field_empty()) {
10286     // An incomplete TypeString stub is placed in the cache for this RecordType
10287     // so that recursive calls to this RecordType will use it whilst building a
10288     // complete TypeString for this RecordType.
10289     SmallVector<FieldEncoding, 16> FE;
10290     std::string StubEnc(Enc.substr(Start).str());
10291     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10292     TSC.addIncomplete(ID, std::move(StubEnc));
10293     if (!extractFieldType(FE, RD, CGM, TSC)) {
10294       (void) TSC.removeIncomplete(ID);
10295       return false;
10296     }
10297     IsRecursive = TSC.removeIncomplete(ID);
10298     // The ABI requires unions to be sorted but not structures.
10299     // See FieldEncoding::operator< for sort algorithm.
10300     if (RT->isUnionType())
10301       llvm::sort(FE);
10302     // We can now complete the TypeString.
10303     unsigned E = FE.size();
10304     for (unsigned I = 0; I != E; ++I) {
10305       if (I)
10306         Enc += ',';
10307       Enc += FE[I].str();
10308     }
10309   }
10310   Enc += '}';
10311   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10312   return true;
10313 }
10314 
10315 /// Appends enum types to Enc and adds the encoding to the cache.
10316 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10317                            TypeStringCache &TSC,
10318                            const IdentifierInfo *ID) {
10319   // Append the cached TypeString if we have one.
10320   StringRef TypeString = TSC.lookupStr(ID);
10321   if (!TypeString.empty()) {
10322     Enc += TypeString;
10323     return true;
10324   }
10325 
10326   size_t Start = Enc.size();
10327   Enc += "e(";
10328   if (ID)
10329     Enc += ID->getName();
10330   Enc += "){";
10331 
10332   // We collect all encoded enumerations and order them alphanumerically.
10333   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10334     SmallVector<FieldEncoding, 16> FE;
10335     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10336          ++I) {
10337       SmallStringEnc EnumEnc;
10338       EnumEnc += "m(";
10339       EnumEnc += I->getName();
10340       EnumEnc += "){";
10341       I->getInitVal().toString(EnumEnc);
10342       EnumEnc += '}';
10343       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10344     }
10345     llvm::sort(FE);
10346     unsigned E = FE.size();
10347     for (unsigned I = 0; I != E; ++I) {
10348       if (I)
10349         Enc += ',';
10350       Enc += FE[I].str();
10351     }
10352   }
10353   Enc += '}';
10354   TSC.addIfComplete(ID, Enc.substr(Start), false);
10355   return true;
10356 }
10357 
10358 /// Appends type's qualifier to Enc.
10359 /// This is done prior to appending the type's encoding.
10360 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10361   // Qualifiers are emitted in alphabetical order.
10362   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10363   int Lookup = 0;
10364   if (QT.isConstQualified())
10365     Lookup += 1<<0;
10366   if (QT.isRestrictQualified())
10367     Lookup += 1<<1;
10368   if (QT.isVolatileQualified())
10369     Lookup += 1<<2;
10370   Enc += Table[Lookup];
10371 }
10372 
10373 /// Appends built-in types to Enc.
10374 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10375   const char *EncType;
10376   switch (BT->getKind()) {
10377     case BuiltinType::Void:
10378       EncType = "0";
10379       break;
10380     case BuiltinType::Bool:
10381       EncType = "b";
10382       break;
10383     case BuiltinType::Char_U:
10384       EncType = "uc";
10385       break;
10386     case BuiltinType::UChar:
10387       EncType = "uc";
10388       break;
10389     case BuiltinType::SChar:
10390       EncType = "sc";
10391       break;
10392     case BuiltinType::UShort:
10393       EncType = "us";
10394       break;
10395     case BuiltinType::Short:
10396       EncType = "ss";
10397       break;
10398     case BuiltinType::UInt:
10399       EncType = "ui";
10400       break;
10401     case BuiltinType::Int:
10402       EncType = "si";
10403       break;
10404     case BuiltinType::ULong:
10405       EncType = "ul";
10406       break;
10407     case BuiltinType::Long:
10408       EncType = "sl";
10409       break;
10410     case BuiltinType::ULongLong:
10411       EncType = "ull";
10412       break;
10413     case BuiltinType::LongLong:
10414       EncType = "sll";
10415       break;
10416     case BuiltinType::Float:
10417       EncType = "ft";
10418       break;
10419     case BuiltinType::Double:
10420       EncType = "d";
10421       break;
10422     case BuiltinType::LongDouble:
10423       EncType = "ld";
10424       break;
10425     default:
10426       return false;
10427   }
10428   Enc += EncType;
10429   return true;
10430 }
10431 
10432 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10433 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10434                               const CodeGen::CodeGenModule &CGM,
10435                               TypeStringCache &TSC) {
10436   Enc += "p(";
10437   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10438     return false;
10439   Enc += ')';
10440   return true;
10441 }
10442 
10443 /// Appends array encoding to Enc before calling appendType for the element.
10444 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10445                             const ArrayType *AT,
10446                             const CodeGen::CodeGenModule &CGM,
10447                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10448   if (AT->getSizeModifier() != ArrayType::Normal)
10449     return false;
10450   Enc += "a(";
10451   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10452     CAT->getSize().toStringUnsigned(Enc);
10453   else
10454     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10455   Enc += ':';
10456   // The Qualifiers should be attached to the type rather than the array.
10457   appendQualifier(Enc, QT);
10458   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10459     return false;
10460   Enc += ')';
10461   return true;
10462 }
10463 
10464 /// Appends a function encoding to Enc, calling appendType for the return type
10465 /// and the arguments.
10466 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10467                              const CodeGen::CodeGenModule &CGM,
10468                              TypeStringCache &TSC) {
10469   Enc += "f{";
10470   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10471     return false;
10472   Enc += "}(";
10473   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10474     // N.B. we are only interested in the adjusted param types.
10475     auto I = FPT->param_type_begin();
10476     auto E = FPT->param_type_end();
10477     if (I != E) {
10478       do {
10479         if (!appendType(Enc, *I, CGM, TSC))
10480           return false;
10481         ++I;
10482         if (I != E)
10483           Enc += ',';
10484       } while (I != E);
10485       if (FPT->isVariadic())
10486         Enc += ",va";
10487     } else {
10488       if (FPT->isVariadic())
10489         Enc += "va";
10490       else
10491         Enc += '0';
10492     }
10493   }
10494   Enc += ')';
10495   return true;
10496 }
10497 
10498 /// Handles the type's qualifier before dispatching a call to handle specific
10499 /// type encodings.
10500 static bool appendType(SmallStringEnc &Enc, QualType QType,
10501                        const CodeGen::CodeGenModule &CGM,
10502                        TypeStringCache &TSC) {
10503 
10504   QualType QT = QType.getCanonicalType();
10505 
10506   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10507     // The Qualifiers should be attached to the type rather than the array.
10508     // Thus we don't call appendQualifier() here.
10509     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10510 
10511   appendQualifier(Enc, QT);
10512 
10513   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10514     return appendBuiltinType(Enc, BT);
10515 
10516   if (const PointerType *PT = QT->getAs<PointerType>())
10517     return appendPointerType(Enc, PT, CGM, TSC);
10518 
10519   if (const EnumType *ET = QT->getAs<EnumType>())
10520     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10521 
10522   if (const RecordType *RT = QT->getAsStructureType())
10523     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10524 
10525   if (const RecordType *RT = QT->getAsUnionType())
10526     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10527 
10528   if (const FunctionType *FT = QT->getAs<FunctionType>())
10529     return appendFunctionType(Enc, FT, CGM, TSC);
10530 
10531   return false;
10532 }
10533 
10534 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10535                           const CodeGen::CodeGenModule &CGM,
10536                           TypeStringCache &TSC) {
10537   if (!D)
10538     return false;
10539 
10540   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10541     if (FD->getLanguageLinkage() != CLanguageLinkage)
10542       return false;
10543     return appendType(Enc, FD->getType(), CGM, TSC);
10544   }
10545 
10546   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10547     if (VD->getLanguageLinkage() != CLanguageLinkage)
10548       return false;
10549     QualType QT = VD->getType().getCanonicalType();
10550     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10551       // Global ArrayTypes are given a size of '*' if the size is unknown.
10552       // The Qualifiers should be attached to the type rather than the array.
10553       // Thus we don't call appendQualifier() here.
10554       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10555     }
10556     return appendType(Enc, QT, CGM, TSC);
10557   }
10558   return false;
10559 }
10560 
10561 //===----------------------------------------------------------------------===//
10562 // RISCV ABI Implementation
10563 //===----------------------------------------------------------------------===//
10564 
10565 namespace {
10566 class RISCVABIInfo : public DefaultABIInfo {
10567 private:
10568   // Size of the integer ('x') registers in bits.
10569   unsigned XLen;
10570   // Size of the floating point ('f') registers in bits. Note that the target
10571   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10572   // with soft float ABI has FLen==0).
10573   unsigned FLen;
10574   static const int NumArgGPRs = 8;
10575   static const int NumArgFPRs = 8;
10576   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10577                                       llvm::Type *&Field1Ty,
10578                                       CharUnits &Field1Off,
10579                                       llvm::Type *&Field2Ty,
10580                                       CharUnits &Field2Off) const;
10581 
10582 public:
10583   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10584       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10585 
10586   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10587   // non-virtual, but computeInfo is virtual, so we overload it.
10588   void computeInfo(CGFunctionInfo &FI) const override;
10589 
10590   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10591                                   int &ArgFPRsLeft) const;
10592   ABIArgInfo classifyReturnType(QualType RetTy) const;
10593 
10594   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10595                     QualType Ty) const override;
10596 
10597   ABIArgInfo extendType(QualType Ty) const;
10598 
10599   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10600                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10601                                 CharUnits &Field2Off, int &NeededArgGPRs,
10602                                 int &NeededArgFPRs) const;
10603   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10604                                                CharUnits Field1Off,
10605                                                llvm::Type *Field2Ty,
10606                                                CharUnits Field2Off) const;
10607 };
10608 } // end anonymous namespace
10609 
10610 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10611   QualType RetTy = FI.getReturnType();
10612   if (!getCXXABI().classifyReturnType(FI))
10613     FI.getReturnInfo() = classifyReturnType(RetTy);
10614 
10615   // IsRetIndirect is true if classifyArgumentType indicated the value should
10616   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10617   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10618   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10619   // list and pass indirectly on RV32.
10620   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10621   if (!IsRetIndirect && RetTy->isScalarType() &&
10622       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10623     if (RetTy->isComplexType() && FLen) {
10624       QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10625       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10626     } else {
10627       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10628       IsRetIndirect = true;
10629     }
10630   }
10631 
10632   // We must track the number of GPRs used in order to conform to the RISC-V
10633   // ABI, as integer scalars passed in registers should have signext/zeroext
10634   // when promoted, but are anyext if passed on the stack. As GPR usage is
10635   // different for variadic arguments, we must also track whether we are
10636   // examining a vararg or not.
10637   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10638   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10639   int NumFixedArgs = FI.getNumRequiredArgs();
10640 
10641   int ArgNum = 0;
10642   for (auto &ArgInfo : FI.arguments()) {
10643     bool IsFixed = ArgNum < NumFixedArgs;
10644     ArgInfo.info =
10645         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10646     ArgNum++;
10647   }
10648 }
10649 
10650 // Returns true if the struct is a potential candidate for the floating point
10651 // calling convention. If this function returns true, the caller is
10652 // responsible for checking that if there is only a single field then that
10653 // field is a float.
10654 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10655                                                   llvm::Type *&Field1Ty,
10656                                                   CharUnits &Field1Off,
10657                                                   llvm::Type *&Field2Ty,
10658                                                   CharUnits &Field2Off) const {
10659   bool IsInt = Ty->isIntegralOrEnumerationType();
10660   bool IsFloat = Ty->isRealFloatingType();
10661 
10662   if (IsInt || IsFloat) {
10663     uint64_t Size = getContext().getTypeSize(Ty);
10664     if (IsInt && Size > XLen)
10665       return false;
10666     // Can't be eligible if larger than the FP registers. Half precision isn't
10667     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10668     // default to the integer ABI in that case.
10669     if (IsFloat && (Size > FLen || Size < 32))
10670       return false;
10671     // Can't be eligible if an integer type was already found (int+int pairs
10672     // are not eligible).
10673     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10674       return false;
10675     if (!Field1Ty) {
10676       Field1Ty = CGT.ConvertType(Ty);
10677       Field1Off = CurOff;
10678       return true;
10679     }
10680     if (!Field2Ty) {
10681       Field2Ty = CGT.ConvertType(Ty);
10682       Field2Off = CurOff;
10683       return true;
10684     }
10685     return false;
10686   }
10687 
10688   if (auto CTy = Ty->getAs<ComplexType>()) {
10689     if (Field1Ty)
10690       return false;
10691     QualType EltTy = CTy->getElementType();
10692     if (getContext().getTypeSize(EltTy) > FLen)
10693       return false;
10694     Field1Ty = CGT.ConvertType(EltTy);
10695     Field1Off = CurOff;
10696     Field2Ty = Field1Ty;
10697     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10698     return true;
10699   }
10700 
10701   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10702     uint64_t ArraySize = ATy->getSize().getZExtValue();
10703     QualType EltTy = ATy->getElementType();
10704     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10705     for (uint64_t i = 0; i < ArraySize; ++i) {
10706       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10707                                                 Field1Off, Field2Ty, Field2Off);
10708       if (!Ret)
10709         return false;
10710       CurOff += EltSize;
10711     }
10712     return true;
10713   }
10714 
10715   if (const auto *RTy = Ty->getAs<RecordType>()) {
10716     // Structures with either a non-trivial destructor or a non-trivial
10717     // copy constructor are not eligible for the FP calling convention.
10718     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10719       return false;
10720     if (isEmptyRecord(getContext(), Ty, true))
10721       return true;
10722     const RecordDecl *RD = RTy->getDecl();
10723     // Unions aren't eligible unless they're empty (which is caught above).
10724     if (RD->isUnion())
10725       return false;
10726     int ZeroWidthBitFieldCount = 0;
10727     for (const FieldDecl *FD : RD->fields()) {
10728       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10729       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10730       QualType QTy = FD->getType();
10731       if (FD->isBitField()) {
10732         unsigned BitWidth = FD->getBitWidthValue(getContext());
10733         // Allow a bitfield with a type greater than XLen as long as the
10734         // bitwidth is XLen or less.
10735         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10736           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10737         if (BitWidth == 0) {
10738           ZeroWidthBitFieldCount++;
10739           continue;
10740         }
10741       }
10742 
10743       bool Ret = detectFPCCEligibleStructHelper(
10744           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10745           Field1Ty, Field1Off, Field2Ty, Field2Off);
10746       if (!Ret)
10747         return false;
10748 
10749       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10750       // or int+fp structs, but are ignored for a struct with an fp field and
10751       // any number of zero-width bitfields.
10752       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10753         return false;
10754     }
10755     return Field1Ty != nullptr;
10756   }
10757 
10758   return false;
10759 }
10760 
10761 // Determine if a struct is eligible for passing according to the floating
10762 // point calling convention (i.e., when flattened it contains a single fp
10763 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10764 // NeededArgGPRs are incremented appropriately.
10765 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10766                                             CharUnits &Field1Off,
10767                                             llvm::Type *&Field2Ty,
10768                                             CharUnits &Field2Off,
10769                                             int &NeededArgGPRs,
10770                                             int &NeededArgFPRs) const {
10771   Field1Ty = nullptr;
10772   Field2Ty = nullptr;
10773   NeededArgGPRs = 0;
10774   NeededArgFPRs = 0;
10775   bool IsCandidate = detectFPCCEligibleStructHelper(
10776       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10777   // Not really a candidate if we have a single int but no float.
10778   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10779     return false;
10780   if (!IsCandidate)
10781     return false;
10782   if (Field1Ty && Field1Ty->isFloatingPointTy())
10783     NeededArgFPRs++;
10784   else if (Field1Ty)
10785     NeededArgGPRs++;
10786   if (Field2Ty && Field2Ty->isFloatingPointTy())
10787     NeededArgFPRs++;
10788   else if (Field2Ty)
10789     NeededArgGPRs++;
10790   return true;
10791 }
10792 
10793 // Call getCoerceAndExpand for the two-element flattened struct described by
10794 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10795 // appropriate coerceToType and unpaddedCoerceToType.
10796 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10797     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10798     CharUnits Field2Off) const {
10799   SmallVector<llvm::Type *, 3> CoerceElts;
10800   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10801   if (!Field1Off.isZero())
10802     CoerceElts.push_back(llvm::ArrayType::get(
10803         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10804 
10805   CoerceElts.push_back(Field1Ty);
10806   UnpaddedCoerceElts.push_back(Field1Ty);
10807 
10808   if (!Field2Ty) {
10809     return ABIArgInfo::getCoerceAndExpand(
10810         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10811         UnpaddedCoerceElts[0]);
10812   }
10813 
10814   CharUnits Field2Align =
10815       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10816   CharUnits Field1End = Field1Off +
10817       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10818   CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
10819 
10820   CharUnits Padding = CharUnits::Zero();
10821   if (Field2Off > Field2OffNoPadNoPack)
10822     Padding = Field2Off - Field2OffNoPadNoPack;
10823   else if (Field2Off != Field2Align && Field2Off > Field1End)
10824     Padding = Field2Off - Field1End;
10825 
10826   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10827 
10828   if (!Padding.isZero())
10829     CoerceElts.push_back(llvm::ArrayType::get(
10830         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10831 
10832   CoerceElts.push_back(Field2Ty);
10833   UnpaddedCoerceElts.push_back(Field2Ty);
10834 
10835   auto CoerceToType =
10836       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10837   auto UnpaddedCoerceToType =
10838       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10839 
10840   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10841 }
10842 
10843 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10844                                               int &ArgGPRsLeft,
10845                                               int &ArgFPRsLeft) const {
10846   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10847   Ty = useFirstFieldIfTransparentUnion(Ty);
10848 
10849   // Structures with either a non-trivial destructor or a non-trivial
10850   // copy constructor are always passed indirectly.
10851   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10852     if (ArgGPRsLeft)
10853       ArgGPRsLeft -= 1;
10854     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10855                                            CGCXXABI::RAA_DirectInMemory);
10856   }
10857 
10858   // Ignore empty structs/unions.
10859   if (isEmptyRecord(getContext(), Ty, true))
10860     return ABIArgInfo::getIgnore();
10861 
10862   uint64_t Size = getContext().getTypeSize(Ty);
10863 
10864   // Pass floating point values via FPRs if possible.
10865   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10866       FLen >= Size && ArgFPRsLeft) {
10867     ArgFPRsLeft--;
10868     return ABIArgInfo::getDirect();
10869   }
10870 
10871   // Complex types for the hard float ABI must be passed direct rather than
10872   // using CoerceAndExpand.
10873   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10874     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10875     if (getContext().getTypeSize(EltTy) <= FLen) {
10876       ArgFPRsLeft -= 2;
10877       return ABIArgInfo::getDirect();
10878     }
10879   }
10880 
10881   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10882     llvm::Type *Field1Ty = nullptr;
10883     llvm::Type *Field2Ty = nullptr;
10884     CharUnits Field1Off = CharUnits::Zero();
10885     CharUnits Field2Off = CharUnits::Zero();
10886     int NeededArgGPRs = 0;
10887     int NeededArgFPRs = 0;
10888     bool IsCandidate =
10889         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10890                                  NeededArgGPRs, NeededArgFPRs);
10891     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10892         NeededArgFPRs <= ArgFPRsLeft) {
10893       ArgGPRsLeft -= NeededArgGPRs;
10894       ArgFPRsLeft -= NeededArgFPRs;
10895       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10896                                                Field2Off);
10897     }
10898   }
10899 
10900   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10901   bool MustUseStack = false;
10902   // Determine the number of GPRs needed to pass the current argument
10903   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10904   // register pairs, so may consume 3 registers.
10905   int NeededArgGPRs = 1;
10906   if (!IsFixed && NeededAlign == 2 * XLen)
10907     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10908   else if (Size > XLen && Size <= 2 * XLen)
10909     NeededArgGPRs = 2;
10910 
10911   if (NeededArgGPRs > ArgGPRsLeft) {
10912     MustUseStack = true;
10913     NeededArgGPRs = ArgGPRsLeft;
10914   }
10915 
10916   ArgGPRsLeft -= NeededArgGPRs;
10917 
10918   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10919     // Treat an enum type as its underlying type.
10920     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10921       Ty = EnumTy->getDecl()->getIntegerType();
10922 
10923     // All integral types are promoted to XLen width, unless passed on the
10924     // stack.
10925     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10926       return extendType(Ty);
10927     }
10928 
10929     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10930       if (EIT->getNumBits() < XLen && !MustUseStack)
10931         return extendType(Ty);
10932       if (EIT->getNumBits() > 128 ||
10933           (!getContext().getTargetInfo().hasInt128Type() &&
10934            EIT->getNumBits() > 64))
10935         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10936     }
10937 
10938     return ABIArgInfo::getDirect();
10939   }
10940 
10941   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10942   // so coerce to integers.
10943   if (Size <= 2 * XLen) {
10944     unsigned Alignment = getContext().getTypeAlign(Ty);
10945 
10946     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10947     // required, and a 2-element XLen array if only XLen alignment is required.
10948     if (Size <= XLen) {
10949       return ABIArgInfo::getDirect(
10950           llvm::IntegerType::get(getVMContext(), XLen));
10951     } else if (Alignment == 2 * XLen) {
10952       return ABIArgInfo::getDirect(
10953           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10954     } else {
10955       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10956           llvm::IntegerType::get(getVMContext(), XLen), 2));
10957     }
10958   }
10959   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10960 }
10961 
10962 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10963   if (RetTy->isVoidType())
10964     return ABIArgInfo::getIgnore();
10965 
10966   int ArgGPRsLeft = 2;
10967   int ArgFPRsLeft = FLen ? 2 : 0;
10968 
10969   // The rules for return and argument types are the same, so defer to
10970   // classifyArgumentType.
10971   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10972                               ArgFPRsLeft);
10973 }
10974 
10975 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10976                                 QualType Ty) const {
10977   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10978 
10979   // Empty records are ignored for parameter passing purposes.
10980   if (isEmptyRecord(getContext(), Ty, true)) {
10981     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10982     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10983     return Addr;
10984   }
10985 
10986   auto TInfo = getContext().getTypeInfoInChars(Ty);
10987 
10988   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10989   bool IsIndirect = TInfo.Width > 2 * SlotSize;
10990 
10991   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
10992                           SlotSize, /*AllowHigherAlign=*/true);
10993 }
10994 
10995 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10996   int TySize = getContext().getTypeSize(Ty);
10997   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10998   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10999     return ABIArgInfo::getSignExtend(Ty);
11000   return ABIArgInfo::getExtend(Ty);
11001 }
11002 
11003 namespace {
11004 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
11005 public:
11006   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
11007                          unsigned FLen)
11008       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
11009 
11010   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
11011                            CodeGen::CodeGenModule &CGM) const override {
11012     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
11013     if (!FD) return;
11014 
11015     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
11016     if (!Attr)
11017       return;
11018 
11019     const char *Kind;
11020     switch (Attr->getInterrupt()) {
11021     case RISCVInterruptAttr::user: Kind = "user"; break;
11022     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
11023     case RISCVInterruptAttr::machine: Kind = "machine"; break;
11024     }
11025 
11026     auto *Fn = cast<llvm::Function>(GV);
11027 
11028     Fn->addFnAttr("interrupt", Kind);
11029   }
11030 };
11031 } // namespace
11032 
11033 //===----------------------------------------------------------------------===//
11034 // VE ABI Implementation.
11035 //
11036 namespace {
11037 class VEABIInfo : public DefaultABIInfo {
11038 public:
11039   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
11040 
11041 private:
11042   ABIArgInfo classifyReturnType(QualType RetTy) const;
11043   ABIArgInfo classifyArgumentType(QualType RetTy) const;
11044   void computeInfo(CGFunctionInfo &FI) const override;
11045 };
11046 } // end anonymous namespace
11047 
11048 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
11049   if (Ty->isAnyComplexType())
11050     return ABIArgInfo::getDirect();
11051   uint64_t Size = getContext().getTypeSize(Ty);
11052   if (Size < 64 && Ty->isIntegerType())
11053     return ABIArgInfo::getExtend(Ty);
11054   return DefaultABIInfo::classifyReturnType(Ty);
11055 }
11056 
11057 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
11058   if (Ty->isAnyComplexType())
11059     return ABIArgInfo::getDirect();
11060   uint64_t Size = getContext().getTypeSize(Ty);
11061   if (Size < 64 && Ty->isIntegerType())
11062     return ABIArgInfo::getExtend(Ty);
11063   return DefaultABIInfo::classifyArgumentType(Ty);
11064 }
11065 
11066 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
11067   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
11068   for (auto &Arg : FI.arguments())
11069     Arg.info = classifyArgumentType(Arg.type);
11070 }
11071 
11072 namespace {
11073 class VETargetCodeGenInfo : public TargetCodeGenInfo {
11074 public:
11075   VETargetCodeGenInfo(CodeGenTypes &CGT)
11076       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
11077   // VE ABI requires the arguments of variadic and prototype-less functions
11078   // are passed in both registers and memory.
11079   bool isNoProtoCallVariadic(const CallArgList &args,
11080                              const FunctionNoProtoType *fnType) const override {
11081     return true;
11082   }
11083 };
11084 } // end anonymous namespace
11085 
11086 //===----------------------------------------------------------------------===//
11087 // Driver code
11088 //===----------------------------------------------------------------------===//
11089 
11090 bool CodeGenModule::supportsCOMDAT() const {
11091   return getTriple().supportsCOMDAT();
11092 }
11093 
11094 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
11095   if (TheTargetCodeGenInfo)
11096     return *TheTargetCodeGenInfo;
11097 
11098   // Helper to set the unique_ptr while still keeping the return value.
11099   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
11100     this->TheTargetCodeGenInfo.reset(P);
11101     return *P;
11102   };
11103 
11104   const llvm::Triple &Triple = getTarget().getTriple();
11105   switch (Triple.getArch()) {
11106   default:
11107     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
11108 
11109   case llvm::Triple::le32:
11110     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11111   case llvm::Triple::m68k:
11112     return SetCGInfo(new M68kTargetCodeGenInfo(Types));
11113   case llvm::Triple::mips:
11114   case llvm::Triple::mipsel:
11115     if (Triple.getOS() == llvm::Triple::NaCl)
11116       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
11117     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
11118 
11119   case llvm::Triple::mips64:
11120   case llvm::Triple::mips64el:
11121     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
11122 
11123   case llvm::Triple::avr:
11124     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
11125 
11126   case llvm::Triple::aarch64:
11127   case llvm::Triple::aarch64_32:
11128   case llvm::Triple::aarch64_be: {
11129     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
11130     if (getTarget().getABI() == "darwinpcs")
11131       Kind = AArch64ABIInfo::DarwinPCS;
11132     else if (Triple.isOSWindows())
11133       return SetCGInfo(
11134           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
11135 
11136     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
11137   }
11138 
11139   case llvm::Triple::wasm32:
11140   case llvm::Triple::wasm64: {
11141     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
11142     if (getTarget().getABI() == "experimental-mv")
11143       Kind = WebAssemblyABIInfo::ExperimentalMV;
11144     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
11145   }
11146 
11147   case llvm::Triple::arm:
11148   case llvm::Triple::armeb:
11149   case llvm::Triple::thumb:
11150   case llvm::Triple::thumbeb: {
11151     if (Triple.getOS() == llvm::Triple::Win32) {
11152       return SetCGInfo(
11153           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
11154     }
11155 
11156     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
11157     StringRef ABIStr = getTarget().getABI();
11158     if (ABIStr == "apcs-gnu")
11159       Kind = ARMABIInfo::APCS;
11160     else if (ABIStr == "aapcs16")
11161       Kind = ARMABIInfo::AAPCS16_VFP;
11162     else if (CodeGenOpts.FloatABI == "hard" ||
11163              (CodeGenOpts.FloatABI != "soft" &&
11164               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
11165                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
11166                Triple.getEnvironment() == llvm::Triple::EABIHF)))
11167       Kind = ARMABIInfo::AAPCS_VFP;
11168 
11169     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
11170   }
11171 
11172   case llvm::Triple::ppc: {
11173     if (Triple.isOSAIX())
11174       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
11175 
11176     bool IsSoftFloat =
11177         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
11178     bool RetSmallStructInRegABI =
11179         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11180     return SetCGInfo(
11181         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11182   }
11183   case llvm::Triple::ppcle: {
11184     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11185     bool RetSmallStructInRegABI =
11186         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11187     return SetCGInfo(
11188         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
11189   }
11190   case llvm::Triple::ppc64:
11191     if (Triple.isOSAIX())
11192       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
11193 
11194     if (Triple.isOSBinFormatELF()) {
11195       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
11196       if (getTarget().getABI() == "elfv2")
11197         Kind = PPC64_SVR4_ABIInfo::ELFv2;
11198       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11199 
11200       return SetCGInfo(
11201           new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11202     }
11203     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
11204   case llvm::Triple::ppc64le: {
11205     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
11206     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
11207     if (getTarget().getABI() == "elfv1")
11208       Kind = PPC64_SVR4_ABIInfo::ELFv1;
11209     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
11210 
11211     return SetCGInfo(
11212         new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
11213   }
11214 
11215   case llvm::Triple::nvptx:
11216   case llvm::Triple::nvptx64:
11217     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
11218 
11219   case llvm::Triple::msp430:
11220     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
11221 
11222   case llvm::Triple::riscv32:
11223   case llvm::Triple::riscv64: {
11224     StringRef ABIStr = getTarget().getABI();
11225     unsigned XLen = getTarget().getPointerWidth(0);
11226     unsigned ABIFLen = 0;
11227     if (ABIStr.endswith("f"))
11228       ABIFLen = 32;
11229     else if (ABIStr.endswith("d"))
11230       ABIFLen = 64;
11231     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
11232   }
11233 
11234   case llvm::Triple::systemz: {
11235     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
11236     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
11237     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
11238   }
11239 
11240   case llvm::Triple::tce:
11241   case llvm::Triple::tcele:
11242     return SetCGInfo(new TCETargetCodeGenInfo(Types));
11243 
11244   case llvm::Triple::x86: {
11245     bool IsDarwinVectorABI = Triple.isOSDarwin();
11246     bool RetSmallStructInRegABI =
11247         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
11248     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
11249 
11250     if (Triple.getOS() == llvm::Triple::Win32) {
11251       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
11252           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11253           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
11254     } else {
11255       return SetCGInfo(new X86_32TargetCodeGenInfo(
11256           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
11257           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
11258           CodeGenOpts.FloatABI == "soft"));
11259     }
11260   }
11261 
11262   case llvm::Triple::x86_64: {
11263     StringRef ABI = getTarget().getABI();
11264     X86AVXABILevel AVXLevel =
11265         (ABI == "avx512"
11266              ? X86AVXABILevel::AVX512
11267              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11268 
11269     switch (Triple.getOS()) {
11270     case llvm::Triple::Win32:
11271       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11272     default:
11273       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11274     }
11275   }
11276   case llvm::Triple::hexagon:
11277     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11278   case llvm::Triple::lanai:
11279     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11280   case llvm::Triple::r600:
11281     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11282   case llvm::Triple::amdgcn:
11283     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11284   case llvm::Triple::sparc:
11285     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11286   case llvm::Triple::sparcv9:
11287     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11288   case llvm::Triple::xcore:
11289     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11290   case llvm::Triple::arc:
11291     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11292   case llvm::Triple::spir:
11293   case llvm::Triple::spir64:
11294     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11295   case llvm::Triple::ve:
11296     return SetCGInfo(new VETargetCodeGenInfo(Types));
11297   }
11298 }
11299 
11300 /// Create an OpenCL kernel for an enqueued block.
11301 ///
11302 /// The kernel has the same function type as the block invoke function. Its
11303 /// name is the name of the block invoke function postfixed with "_kernel".
11304 /// It simply calls the block invoke function then returns.
11305 llvm::Function *
11306 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11307                                              llvm::Function *Invoke,
11308                                              llvm::Value *BlockLiteral) const {
11309   auto *InvokeFT = Invoke->getFunctionType();
11310   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11311   for (auto &P : InvokeFT->params())
11312     ArgTys.push_back(P);
11313   auto &C = CGF.getLLVMContext();
11314   std::string Name = Invoke->getName().str() + "_kernel";
11315   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11316   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11317                                    &CGF.CGM.getModule());
11318   auto IP = CGF.Builder.saveIP();
11319   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11320   auto &Builder = CGF.Builder;
11321   Builder.SetInsertPoint(BB);
11322   llvm::SmallVector<llvm::Value *, 2> Args;
11323   for (auto &A : F->args())
11324     Args.push_back(&A);
11325   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11326   call->setCallingConv(Invoke->getCallingConv());
11327   Builder.CreateRetVoid();
11328   Builder.restoreIP(IP);
11329   return F;
11330 }
11331 
11332 /// Create an OpenCL kernel for an enqueued block.
11333 ///
11334 /// The type of the first argument (the block literal) is the struct type
11335 /// of the block literal instead of a pointer type. The first argument
11336 /// (block literal) is passed directly by value to the kernel. The kernel
11337 /// allocates the same type of struct on stack and stores the block literal
11338 /// to it and passes its pointer to the block invoke function. The kernel
11339 /// has "enqueued-block" function attribute and kernel argument metadata.
11340 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11341     CodeGenFunction &CGF, llvm::Function *Invoke,
11342     llvm::Value *BlockLiteral) const {
11343   auto &Builder = CGF.Builder;
11344   auto &C = CGF.getLLVMContext();
11345 
11346   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11347   auto *InvokeFT = Invoke->getFunctionType();
11348   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11349   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11350   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11351   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11352   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11353   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11354   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11355 
11356   ArgTys.push_back(BlockTy);
11357   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11358   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11359   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11360   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11361   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11362   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11363   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11364     ArgTys.push_back(InvokeFT->getParamType(I));
11365     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11366     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11367     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11368     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11369     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11370     ArgNames.push_back(
11371         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11372   }
11373   std::string Name = Invoke->getName().str() + "_kernel";
11374   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11375   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11376                                    &CGF.CGM.getModule());
11377   F->addFnAttr("enqueued-block");
11378   auto IP = CGF.Builder.saveIP();
11379   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11380   Builder.SetInsertPoint(BB);
11381   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11382   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11383   BlockPtr->setAlignment(BlockAlign);
11384   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11385   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11386   llvm::SmallVector<llvm::Value *, 2> Args;
11387   Args.push_back(Cast);
11388   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11389     Args.push_back(I);
11390   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11391   call->setCallingConv(Invoke->getCallingConv());
11392   Builder.CreateRetVoid();
11393   Builder.restoreIP(IP);
11394 
11395   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11396   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11397   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11398   F->setMetadata("kernel_arg_base_type",
11399                  llvm::MDNode::get(C, ArgBaseTypeNames));
11400   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11401   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11402     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11403 
11404   return F;
11405 }
11406