1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Frontend/CodeGenOptions.h"
20 #include "llvm/Type.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Support/raw_ostream.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                                llvm::Value *Array,
29                                llvm::Value *Value,
30                                unsigned FirstIndex,
31                                unsigned LastIndex) {
32   // Alternatively, we could emit this as a loop in the source.
33   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34     llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35     Builder.CreateStore(Value, Cell);
36   }
37 }
38 
39 static bool isAggregateTypeForABI(QualType T) {
40   return CodeGenFunction::hasAggregateLLVMType(T) ||
41          T->isMemberFunctionPointerType();
42 }
43 
44 ABIInfo::~ABIInfo() {}
45 
46 ASTContext &ABIInfo::getContext() const {
47   return CGT.getContext();
48 }
49 
50 llvm::LLVMContext &ABIInfo::getVMContext() const {
51   return CGT.getLLVMContext();
52 }
53 
54 const llvm::TargetData &ABIInfo::getTargetData() const {
55   return CGT.getTargetData();
56 }
57 
58 
59 void ABIArgInfo::dump() const {
60   llvm::raw_ostream &OS = llvm::errs();
61   OS << "(ABIArgInfo Kind=";
62   switch (TheKind) {
63   case Direct:
64     OS << "Direct Type=";
65     if (const llvm::Type *Ty = getCoerceToType())
66       Ty->print(OS);
67     else
68       OS << "null";
69     break;
70   case Extend:
71     OS << "Extend";
72     break;
73   case Ignore:
74     OS << "Ignore";
75     break;
76   case Indirect:
77     OS << "Indirect Align=" << getIndirectAlign()
78        << " Byal=" << getIndirectByVal()
79        << " Realign=" << getIndirectRealign();
80     break;
81   case Expand:
82     OS << "Expand";
83     break;
84   }
85   OS << ")\n";
86 }
87 
88 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89 
90 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
91 
92 /// isEmptyField - Return true iff a the field is "empty", that is it
93 /// is an unnamed bit-field or an (array of) empty record(s).
94 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
95                          bool AllowArrays) {
96   if (FD->isUnnamedBitfield())
97     return true;
98 
99   QualType FT = FD->getType();
100 
101     // Constant arrays of empty records count as empty, strip them off.
102   if (AllowArrays)
103     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
104       FT = AT->getElementType();
105 
106   const RecordType *RT = FT->getAs<RecordType>();
107   if (!RT)
108     return false;
109 
110   // C++ record fields are never empty, at least in the Itanium ABI.
111   //
112   // FIXME: We should use a predicate for whether this behavior is true in the
113   // current ABI.
114   if (isa<CXXRecordDecl>(RT->getDecl()))
115     return false;
116 
117   return isEmptyRecord(Context, FT, AllowArrays);
118 }
119 
120 /// isEmptyRecord - Return true iff a structure contains only empty
121 /// fields. Note that a structure with a flexible array member is not
122 /// considered empty.
123 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
124   const RecordType *RT = T->getAs<RecordType>();
125   if (!RT)
126     return 0;
127   const RecordDecl *RD = RT->getDecl();
128   if (RD->hasFlexibleArrayMember())
129     return false;
130 
131   // If this is a C++ record, check the bases first.
132   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
133     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
134            e = CXXRD->bases_end(); i != e; ++i)
135       if (!isEmptyRecord(Context, i->getType(), true))
136         return false;
137 
138   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
139          i != e; ++i)
140     if (!isEmptyField(Context, *i, AllowArrays))
141       return false;
142   return true;
143 }
144 
145 /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
146 /// a non-trivial destructor or a non-trivial copy constructor.
147 static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
148   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
149   if (!RD)
150     return false;
151 
152   return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
153 }
154 
155 /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
156 /// a record type with either a non-trivial destructor or a non-trivial copy
157 /// constructor.
158 static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
159   const RecordType *RT = T->getAs<RecordType>();
160   if (!RT)
161     return false;
162 
163   return hasNonTrivialDestructorOrCopyConstructor(RT);
164 }
165 
166 /// isSingleElementStruct - Determine if a structure is a "single
167 /// element struct", i.e. it has exactly one non-empty field or
168 /// exactly one field which is itself a single element
169 /// struct. Structures with flexible array members are never
170 /// considered single element structs.
171 ///
172 /// \return The field declaration for the single non-empty field, if
173 /// it exists.
174 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
175   const RecordType *RT = T->getAsStructureType();
176   if (!RT)
177     return 0;
178 
179   const RecordDecl *RD = RT->getDecl();
180   if (RD->hasFlexibleArrayMember())
181     return 0;
182 
183   const Type *Found = 0;
184 
185   // If this is a C++ record, check the bases first.
186   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
187     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
188            e = CXXRD->bases_end(); i != e; ++i) {
189       // Ignore empty records.
190       if (isEmptyRecord(Context, i->getType(), true))
191         continue;
192 
193       // If we already found an element then this isn't a single-element struct.
194       if (Found)
195         return 0;
196 
197       // If this is non-empty and not a single element struct, the composite
198       // cannot be a single element struct.
199       Found = isSingleElementStruct(i->getType(), Context);
200       if (!Found)
201         return 0;
202     }
203   }
204 
205   // Check for single element.
206   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
207          i != e; ++i) {
208     const FieldDecl *FD = *i;
209     QualType FT = FD->getType();
210 
211     // Ignore empty fields.
212     if (isEmptyField(Context, FD, true))
213       continue;
214 
215     // If we already found an element then this isn't a single-element
216     // struct.
217     if (Found)
218       return 0;
219 
220     // Treat single element arrays as the element.
221     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
222       if (AT->getSize().getZExtValue() != 1)
223         break;
224       FT = AT->getElementType();
225     }
226 
227     if (!isAggregateTypeForABI(FT)) {
228       Found = FT.getTypePtr();
229     } else {
230       Found = isSingleElementStruct(FT, Context);
231       if (!Found)
232         return 0;
233     }
234   }
235 
236   return Found;
237 }
238 
239 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
240   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
241       !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
242       !Ty->isBlockPointerType())
243     return false;
244 
245   uint64_t Size = Context.getTypeSize(Ty);
246   return Size == 32 || Size == 64;
247 }
248 
249 /// canExpandIndirectArgument - Test whether an argument type which is to be
250 /// passed indirectly (on the stack) would have the equivalent layout if it was
251 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
252 /// inhibiting optimizations.
253 ///
254 // FIXME: This predicate is missing many cases, currently it just follows
255 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
256 // should probably make this smarter, or better yet make the LLVM backend
257 // capable of handling it.
258 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
259   // We can only expand structure types.
260   const RecordType *RT = Ty->getAs<RecordType>();
261   if (!RT)
262     return false;
263 
264   // We can only expand (C) structures.
265   //
266   // FIXME: This needs to be generalized to handle classes as well.
267   const RecordDecl *RD = RT->getDecl();
268   if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
269     return false;
270 
271   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
272          i != e; ++i) {
273     const FieldDecl *FD = *i;
274 
275     if (!is32Or64BitBasicType(FD->getType(), Context))
276       return false;
277 
278     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
279     // how to expand them yet, and the predicate for telling if a bitfield still
280     // counts as "basic" is more complicated than what we were doing previously.
281     if (FD->isBitField())
282       return false;
283   }
284 
285   return true;
286 }
287 
288 namespace {
289 /// DefaultABIInfo - The default implementation for ABI specific
290 /// details. This implementation provides information which results in
291 /// self-consistent and sensible LLVM IR generation, but does not
292 /// conform to any particular ABI.
293 class DefaultABIInfo : public ABIInfo {
294 public:
295   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
296 
297   ABIArgInfo classifyReturnType(QualType RetTy) const;
298   ABIArgInfo classifyArgumentType(QualType RetTy) const;
299 
300   virtual void computeInfo(CGFunctionInfo &FI) const {
301     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
302     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
303          it != ie; ++it)
304       it->info = classifyArgumentType(it->type);
305   }
306 
307   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
308                                  CodeGenFunction &CGF) const;
309 };
310 
311 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
312 public:
313   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
314     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
315 };
316 
317 llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
318                                        CodeGenFunction &CGF) const {
319   return 0;
320 }
321 
322 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
323   if (isAggregateTypeForABI(Ty))
324     return ABIArgInfo::getIndirect(0);
325 
326   // Treat an enum type as its underlying type.
327   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
328     Ty = EnumTy->getDecl()->getIntegerType();
329 
330   return (Ty->isPromotableIntegerType() ?
331           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
332 }
333 
334 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
335   if (RetTy->isVoidType())
336     return ABIArgInfo::getIgnore();
337 
338   if (isAggregateTypeForABI(RetTy))
339     return ABIArgInfo::getIndirect(0);
340 
341   // Treat an enum type as its underlying type.
342   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
343     RetTy = EnumTy->getDecl()->getIntegerType();
344 
345   return (RetTy->isPromotableIntegerType() ?
346           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
347 }
348 
349 /// UseX86_MMXType - Return true if this is an MMX type that should use the special
350 /// x86_mmx type.
351 bool UseX86_MMXType(const llvm::Type *IRType) {
352   // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
353   // special x86_mmx type.
354   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
355     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
356     IRType->getScalarSizeInBits() != 64;
357 }
358 
359 static const llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
360                                                 llvm::StringRef Constraint,
361                                                 const llvm::Type* Ty) {
362   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
363     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
364   return Ty;
365 }
366 
367 //===----------------------------------------------------------------------===//
368 // X86-32 ABI Implementation
369 //===----------------------------------------------------------------------===//
370 
371 /// X86_32ABIInfo - The X86-32 ABI information.
372 class X86_32ABIInfo : public ABIInfo {
373   static const unsigned MinABIStackAlignInBytes = 4;
374 
375   bool IsDarwinVectorABI;
376   bool IsSmallStructInRegABI;
377 
378   static bool isRegisterSize(unsigned Size) {
379     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
380   }
381 
382   static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
383 
384   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
385   /// such that the argument will be passed in memory.
386   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
387 
388   /// \brief Return the alignment to use for the given type on the stack.
389   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
390 
391 public:
392 
393   ABIArgInfo classifyReturnType(QualType RetTy) const;
394   ABIArgInfo classifyArgumentType(QualType RetTy) const;
395 
396   virtual void computeInfo(CGFunctionInfo &FI) const {
397     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
398     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
399          it != ie; ++it)
400       it->info = classifyArgumentType(it->type);
401   }
402 
403   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
404                                  CodeGenFunction &CGF) const;
405 
406   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
407     : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
408 };
409 
410 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
411 public:
412   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
413     :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
414 
415   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
416                            CodeGen::CodeGenModule &CGM) const;
417 
418   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
419     // Darwin uses different dwarf register numbers for EH.
420     if (CGM.isTargetDarwin()) return 5;
421 
422     return 4;
423   }
424 
425   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
426                                llvm::Value *Address) const;
427 
428   const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
429                                         llvm::StringRef Constraint,
430                                         const llvm::Type* Ty) const {
431     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
432   }
433 
434 };
435 
436 }
437 
438 /// shouldReturnTypeInRegister - Determine if the given type should be
439 /// passed in a register (for the Darwin ABI).
440 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
441                                                ASTContext &Context) {
442   uint64_t Size = Context.getTypeSize(Ty);
443 
444   // Type must be register sized.
445   if (!isRegisterSize(Size))
446     return false;
447 
448   if (Ty->isVectorType()) {
449     // 64- and 128- bit vectors inside structures are not returned in
450     // registers.
451     if (Size == 64 || Size == 128)
452       return false;
453 
454     return true;
455   }
456 
457   // If this is a builtin, pointer, enum, complex type, member pointer, or
458   // member function pointer it is ok.
459   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
460       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
461       Ty->isBlockPointerType() || Ty->isMemberPointerType())
462     return true;
463 
464   // Arrays are treated like records.
465   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
466     return shouldReturnTypeInRegister(AT->getElementType(), Context);
467 
468   // Otherwise, it must be a record type.
469   const RecordType *RT = Ty->getAs<RecordType>();
470   if (!RT) return false;
471 
472   // FIXME: Traverse bases here too.
473 
474   // Structure types are passed in register if all fields would be
475   // passed in a register.
476   for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
477          e = RT->getDecl()->field_end(); i != e; ++i) {
478     const FieldDecl *FD = *i;
479 
480     // Empty fields are ignored.
481     if (isEmptyField(Context, FD, true))
482       continue;
483 
484     // Check fields recursively.
485     if (!shouldReturnTypeInRegister(FD->getType(), Context))
486       return false;
487   }
488 
489   return true;
490 }
491 
492 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
493   if (RetTy->isVoidType())
494     return ABIArgInfo::getIgnore();
495 
496   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
497     // On Darwin, some vectors are returned in registers.
498     if (IsDarwinVectorABI) {
499       uint64_t Size = getContext().getTypeSize(RetTy);
500 
501       // 128-bit vectors are a special case; they are returned in
502       // registers and we need to make sure to pick a type the LLVM
503       // backend will like.
504       if (Size == 128)
505         return ABIArgInfo::getDirect(llvm::VectorType::get(
506                   llvm::Type::getInt64Ty(getVMContext()), 2));
507 
508       // Always return in register if it fits in a general purpose
509       // register, or if it is 64 bits and has a single element.
510       if ((Size == 8 || Size == 16 || Size == 32) ||
511           (Size == 64 && VT->getNumElements() == 1))
512         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
513                                                             Size));
514 
515       return ABIArgInfo::getIndirect(0);
516     }
517 
518     return ABIArgInfo::getDirect();
519   }
520 
521   if (isAggregateTypeForABI(RetTy)) {
522     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
523       // Structures with either a non-trivial destructor or a non-trivial
524       // copy constructor are always indirect.
525       if (hasNonTrivialDestructorOrCopyConstructor(RT))
526         return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
527 
528       // Structures with flexible arrays are always indirect.
529       if (RT->getDecl()->hasFlexibleArrayMember())
530         return ABIArgInfo::getIndirect(0);
531     }
532 
533     // If specified, structs and unions are always indirect.
534     if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
535       return ABIArgInfo::getIndirect(0);
536 
537     // Classify "single element" structs as their element type.
538     if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
539       if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
540         if (BT->isIntegerType()) {
541           // We need to use the size of the structure, padding
542           // bit-fields can adjust that to be larger than the single
543           // element type.
544           uint64_t Size = getContext().getTypeSize(RetTy);
545           return ABIArgInfo::getDirect(
546             llvm::IntegerType::get(getVMContext(), (unsigned)Size));
547         }
548 
549         if (BT->getKind() == BuiltinType::Float) {
550           assert(getContext().getTypeSize(RetTy) ==
551                  getContext().getTypeSize(SeltTy) &&
552                  "Unexpect single element structure size!");
553           return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
554         }
555 
556         if (BT->getKind() == BuiltinType::Double) {
557           assert(getContext().getTypeSize(RetTy) ==
558                  getContext().getTypeSize(SeltTy) &&
559                  "Unexpect single element structure size!");
560           return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
561         }
562       } else if (SeltTy->isPointerType()) {
563         // FIXME: It would be really nice if this could come out as the proper
564         // pointer type.
565         const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
566         return ABIArgInfo::getDirect(PtrTy);
567       } else if (SeltTy->isVectorType()) {
568         // 64- and 128-bit vectors are never returned in a
569         // register when inside a structure.
570         uint64_t Size = getContext().getTypeSize(RetTy);
571         if (Size == 64 || Size == 128)
572           return ABIArgInfo::getIndirect(0);
573 
574         return classifyReturnType(QualType(SeltTy, 0));
575       }
576     }
577 
578     // Small structures which are register sized are generally returned
579     // in a register.
580     if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
581       uint64_t Size = getContext().getTypeSize(RetTy);
582       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
583     }
584 
585     return ABIArgInfo::getIndirect(0);
586   }
587 
588   // Treat an enum type as its underlying type.
589   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
590     RetTy = EnumTy->getDecl()->getIntegerType();
591 
592   return (RetTy->isPromotableIntegerType() ?
593           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
594 }
595 
596 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
597   const RecordType *RT = Ty->getAs<RecordType>();
598   if (!RT)
599     return 0;
600   const RecordDecl *RD = RT->getDecl();
601 
602   // If this is a C++ record, check the bases first.
603   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
604     for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
605            e = CXXRD->bases_end(); i != e; ++i)
606       if (!isRecordWithSSEVectorType(Context, i->getType()))
607         return false;
608 
609   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
610        i != e; ++i) {
611     QualType FT = i->getType();
612 
613     if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
614       return true;
615 
616     if (isRecordWithSSEVectorType(Context, FT))
617       return true;
618   }
619 
620   return false;
621 }
622 
623 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
624                                                  unsigned Align) const {
625   // Otherwise, if the alignment is less than or equal to the minimum ABI
626   // alignment, just use the default; the backend will handle this.
627   if (Align <= MinABIStackAlignInBytes)
628     return 0; // Use default alignment.
629 
630   // On non-Darwin, the stack type alignment is always 4.
631   if (!IsDarwinVectorABI) {
632     // Set explicit alignment, since we may need to realign the top.
633     return MinABIStackAlignInBytes;
634   }
635 
636   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
637   if (isRecordWithSSEVectorType(getContext(), Ty))
638     return 16;
639 
640   return MinABIStackAlignInBytes;
641 }
642 
643 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
644   if (!ByVal)
645     return ABIArgInfo::getIndirect(0, false);
646 
647   // Compute the byval alignment.
648   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
649   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
650   if (StackAlign == 0)
651     return ABIArgInfo::getIndirect(0);
652 
653   // If the stack alignment is less than the type alignment, realign the
654   // argument.
655   if (StackAlign < TypeAlign)
656     return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
657                                    /*Realign=*/true);
658 
659   return ABIArgInfo::getIndirect(StackAlign);
660 }
661 
662 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
663   // FIXME: Set alignment on indirect arguments.
664   if (isAggregateTypeForABI(Ty)) {
665     // Structures with flexible arrays are always indirect.
666     if (const RecordType *RT = Ty->getAs<RecordType>()) {
667       // Structures with either a non-trivial destructor or a non-trivial
668       // copy constructor are always indirect.
669       if (hasNonTrivialDestructorOrCopyConstructor(RT))
670         return getIndirectResult(Ty, /*ByVal=*/false);
671 
672       if (RT->getDecl()->hasFlexibleArrayMember())
673         return getIndirectResult(Ty);
674     }
675 
676     // Ignore empty structs.
677     if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
678       return ABIArgInfo::getIgnore();
679 
680     // Expand small (<= 128-bit) record types when we know that the stack layout
681     // of those arguments will match the struct. This is important because the
682     // LLVM backend isn't smart enough to remove byval, which inhibits many
683     // optimizations.
684     if (getContext().getTypeSize(Ty) <= 4*32 &&
685         canExpandIndirectArgument(Ty, getContext()))
686       return ABIArgInfo::getExpand();
687 
688     return getIndirectResult(Ty);
689   }
690 
691   if (const VectorType *VT = Ty->getAs<VectorType>()) {
692     // On Darwin, some vectors are passed in memory, we handle this by passing
693     // it as an i8/i16/i32/i64.
694     if (IsDarwinVectorABI) {
695       uint64_t Size = getContext().getTypeSize(Ty);
696       if ((Size == 8 || Size == 16 || Size == 32) ||
697           (Size == 64 && VT->getNumElements() == 1))
698         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
699                                                             Size));
700     }
701 
702     const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
703     if (UseX86_MMXType(IRType)) {
704       ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
705       AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
706       return AAI;
707     }
708 
709     return ABIArgInfo::getDirect();
710   }
711 
712 
713   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
714     Ty = EnumTy->getDecl()->getIntegerType();
715 
716   return (Ty->isPromotableIntegerType() ?
717           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
718 }
719 
720 llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
721                                       CodeGenFunction &CGF) const {
722   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
723   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
724 
725   CGBuilderTy &Builder = CGF.Builder;
726   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
727                                                        "ap");
728   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
729   llvm::Type *PTy =
730     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
731   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
732 
733   uint64_t Offset =
734     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
735   llvm::Value *NextAddr =
736     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
737                       "ap.next");
738   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
739 
740   return AddrTyped;
741 }
742 
743 void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
744                                                   llvm::GlobalValue *GV,
745                                             CodeGen::CodeGenModule &CGM) const {
746   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
747     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
748       // Get the LLVM function.
749       llvm::Function *Fn = cast<llvm::Function>(GV);
750 
751       // Now add the 'alignstack' attribute with a value of 16.
752       Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
753     }
754   }
755 }
756 
757 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
758                                                CodeGen::CodeGenFunction &CGF,
759                                                llvm::Value *Address) const {
760   CodeGen::CGBuilderTy &Builder = CGF.Builder;
761   llvm::LLVMContext &Context = CGF.getLLVMContext();
762 
763   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
764   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
765 
766   // 0-7 are the eight integer registers;  the order is different
767   //   on Darwin (for EH), but the range is the same.
768   // 8 is %eip.
769   AssignToArrayRange(Builder, Address, Four8, 0, 8);
770 
771   if (CGF.CGM.isTargetDarwin()) {
772     // 12-16 are st(0..4).  Not sure why we stop at 4.
773     // These have size 16, which is sizeof(long double) on
774     // platforms with 8-byte alignment for that type.
775     llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
776     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
777 
778   } else {
779     // 9 is %eflags, which doesn't get a size on Darwin for some
780     // reason.
781     Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
782 
783     // 11-16 are st(0..5).  Not sure why we stop at 5.
784     // These have size 12, which is sizeof(long double) on
785     // platforms with 4-byte alignment for that type.
786     llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
787     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
788   }
789 
790   return false;
791 }
792 
793 //===----------------------------------------------------------------------===//
794 // X86-64 ABI Implementation
795 //===----------------------------------------------------------------------===//
796 
797 
798 namespace {
799 /// X86_64ABIInfo - The X86_64 ABI information.
800 class X86_64ABIInfo : public ABIInfo {
801   enum Class {
802     Integer = 0,
803     SSE,
804     SSEUp,
805     X87,
806     X87Up,
807     ComplexX87,
808     NoClass,
809     Memory
810   };
811 
812   /// merge - Implement the X86_64 ABI merging algorithm.
813   ///
814   /// Merge an accumulating classification \arg Accum with a field
815   /// classification \arg Field.
816   ///
817   /// \param Accum - The accumulating classification. This should
818   /// always be either NoClass or the result of a previous merge
819   /// call. In addition, this should never be Memory (the caller
820   /// should just return Memory for the aggregate).
821   static Class merge(Class Accum, Class Field);
822 
823   /// classify - Determine the x86_64 register classes in which the
824   /// given type T should be passed.
825   ///
826   /// \param Lo - The classification for the parts of the type
827   /// residing in the low word of the containing object.
828   ///
829   /// \param Hi - The classification for the parts of the type
830   /// residing in the high word of the containing object.
831   ///
832   /// \param OffsetBase - The bit offset of this type in the
833   /// containing object.  Some parameters are classified different
834   /// depending on whether they straddle an eightbyte boundary.
835   ///
836   /// If a word is unused its result will be NoClass; if a type should
837   /// be passed in Memory then at least the classification of \arg Lo
838   /// will be Memory.
839   ///
840   /// The \arg Lo class will be NoClass iff the argument is ignored.
841   ///
842   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
843   /// also be ComplexX87.
844   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
845 
846   const llvm::Type *Get16ByteVectorType(QualType Ty) const;
847   const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
848                                        unsigned IROffset, QualType SourceTy,
849                                        unsigned SourceOffset) const;
850   const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
851                                            unsigned IROffset, QualType SourceTy,
852                                            unsigned SourceOffset) const;
853 
854   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
855   /// such that the argument will be returned in memory.
856   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
857 
858   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
859   /// such that the argument will be passed in memory.
860   ABIArgInfo getIndirectResult(QualType Ty) const;
861 
862   ABIArgInfo classifyReturnType(QualType RetTy) const;
863 
864   ABIArgInfo classifyArgumentType(QualType Ty,
865                                   unsigned &neededInt,
866                                   unsigned &neededSSE) const;
867 
868 public:
869   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
870 
871   virtual void computeInfo(CGFunctionInfo &FI) const;
872 
873   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
874                                  CodeGenFunction &CGF) const;
875 };
876 
877 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
878 class WinX86_64ABIInfo : public ABIInfo {
879 
880   ABIArgInfo classify(QualType Ty) const;
881 
882 public:
883   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
884 
885   virtual void computeInfo(CGFunctionInfo &FI) const;
886 
887   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
888                                  CodeGenFunction &CGF) const;
889 };
890 
891 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
892 public:
893   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
894     : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
895 
896   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
897     return 7;
898   }
899 
900   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
901                                llvm::Value *Address) const {
902     CodeGen::CGBuilderTy &Builder = CGF.Builder;
903     llvm::LLVMContext &Context = CGF.getLLVMContext();
904 
905     const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
906     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
907 
908     // 0-15 are the 16 integer registers.
909     // 16 is %rip.
910     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
911 
912     return false;
913   }
914 
915   const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
916                                         llvm::StringRef Constraint,
917                                         const llvm::Type* Ty) const {
918     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
919   }
920 
921 };
922 
923 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
924 public:
925   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
926     : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
927 
928   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
929     return 7;
930   }
931 
932   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
933                                llvm::Value *Address) const {
934     CodeGen::CGBuilderTy &Builder = CGF.Builder;
935     llvm::LLVMContext &Context = CGF.getLLVMContext();
936 
937     const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
938     llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
939 
940     // 0-15 are the 16 integer registers.
941     // 16 is %rip.
942     AssignToArrayRange(Builder, Address, Eight8, 0, 16);
943 
944     return false;
945   }
946 };
947 
948 }
949 
950 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
951   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
952   // classified recursively so that always two fields are
953   // considered. The resulting class is calculated according to
954   // the classes of the fields in the eightbyte:
955   //
956   // (a) If both classes are equal, this is the resulting class.
957   //
958   // (b) If one of the classes is NO_CLASS, the resulting class is
959   // the other class.
960   //
961   // (c) If one of the classes is MEMORY, the result is the MEMORY
962   // class.
963   //
964   // (d) If one of the classes is INTEGER, the result is the
965   // INTEGER.
966   //
967   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
968   // MEMORY is used as class.
969   //
970   // (f) Otherwise class SSE is used.
971 
972   // Accum should never be memory (we should have returned) or
973   // ComplexX87 (because this cannot be passed in a structure).
974   assert((Accum != Memory && Accum != ComplexX87) &&
975          "Invalid accumulated classification during merge.");
976   if (Accum == Field || Field == NoClass)
977     return Accum;
978   if (Field == Memory)
979     return Memory;
980   if (Accum == NoClass)
981     return Field;
982   if (Accum == Integer || Field == Integer)
983     return Integer;
984   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
985       Accum == X87 || Accum == X87Up)
986     return Memory;
987   return SSE;
988 }
989 
990 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
991                              Class &Lo, Class &Hi) const {
992   // FIXME: This code can be simplified by introducing a simple value class for
993   // Class pairs with appropriate constructor methods for the various
994   // situations.
995 
996   // FIXME: Some of the split computations are wrong; unaligned vectors
997   // shouldn't be passed in registers for example, so there is no chance they
998   // can straddle an eightbyte. Verify & simplify.
999 
1000   Lo = Hi = NoClass;
1001 
1002   Class &Current = OffsetBase < 64 ? Lo : Hi;
1003   Current = Memory;
1004 
1005   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1006     BuiltinType::Kind k = BT->getKind();
1007 
1008     if (k == BuiltinType::Void) {
1009       Current = NoClass;
1010     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1011       Lo = Integer;
1012       Hi = Integer;
1013     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1014       Current = Integer;
1015     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1016       Current = SSE;
1017     } else if (k == BuiltinType::LongDouble) {
1018       Lo = X87;
1019       Hi = X87Up;
1020     }
1021     // FIXME: _Decimal32 and _Decimal64 are SSE.
1022     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1023     return;
1024   }
1025 
1026   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1027     // Classify the underlying integer type.
1028     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1029     return;
1030   }
1031 
1032   if (Ty->hasPointerRepresentation()) {
1033     Current = Integer;
1034     return;
1035   }
1036 
1037   if (Ty->isMemberPointerType()) {
1038     if (Ty->isMemberFunctionPointerType())
1039       Lo = Hi = Integer;
1040     else
1041       Current = Integer;
1042     return;
1043   }
1044 
1045   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1046     uint64_t Size = getContext().getTypeSize(VT);
1047     if (Size == 32) {
1048       // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1049       // float> as integer.
1050       Current = Integer;
1051 
1052       // If this type crosses an eightbyte boundary, it should be
1053       // split.
1054       uint64_t EB_Real = (OffsetBase) / 64;
1055       uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1056       if (EB_Real != EB_Imag)
1057         Hi = Lo;
1058     } else if (Size == 64) {
1059       // gcc passes <1 x double> in memory. :(
1060       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1061         return;
1062 
1063       // gcc passes <1 x long long> as INTEGER.
1064       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1065           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1066           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1067           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1068         Current = Integer;
1069       else
1070         Current = SSE;
1071 
1072       // If this type crosses an eightbyte boundary, it should be
1073       // split.
1074       if (OffsetBase && OffsetBase != 64)
1075         Hi = Lo;
1076     } else if (Size == 128) {
1077       Lo = SSE;
1078       Hi = SSEUp;
1079     }
1080     return;
1081   }
1082 
1083   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1084     QualType ET = getContext().getCanonicalType(CT->getElementType());
1085 
1086     uint64_t Size = getContext().getTypeSize(Ty);
1087     if (ET->isIntegralOrEnumerationType()) {
1088       if (Size <= 64)
1089         Current = Integer;
1090       else if (Size <= 128)
1091         Lo = Hi = Integer;
1092     } else if (ET == getContext().FloatTy)
1093       Current = SSE;
1094     else if (ET == getContext().DoubleTy)
1095       Lo = Hi = SSE;
1096     else if (ET == getContext().LongDoubleTy)
1097       Current = ComplexX87;
1098 
1099     // If this complex type crosses an eightbyte boundary then it
1100     // should be split.
1101     uint64_t EB_Real = (OffsetBase) / 64;
1102     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1103     if (Hi == NoClass && EB_Real != EB_Imag)
1104       Hi = Lo;
1105 
1106     return;
1107   }
1108 
1109   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1110     // Arrays are treated like structures.
1111 
1112     uint64_t Size = getContext().getTypeSize(Ty);
1113 
1114     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1115     // than two eightbytes, ..., it has class MEMORY.
1116     if (Size > 128)
1117       return;
1118 
1119     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1120     // fields, it has class MEMORY.
1121     //
1122     // Only need to check alignment of array base.
1123     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1124       return;
1125 
1126     // Otherwise implement simplified merge. We could be smarter about
1127     // this, but it isn't worth it and would be harder to verify.
1128     Current = NoClass;
1129     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1130     uint64_t ArraySize = AT->getSize().getZExtValue();
1131     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1132       Class FieldLo, FieldHi;
1133       classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1134       Lo = merge(Lo, FieldLo);
1135       Hi = merge(Hi, FieldHi);
1136       if (Lo == Memory || Hi == Memory)
1137         break;
1138     }
1139 
1140     // Do post merger cleanup (see below). Only case we worry about is Memory.
1141     if (Hi == Memory)
1142       Lo = Memory;
1143     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1144     return;
1145   }
1146 
1147   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1148     uint64_t Size = getContext().getTypeSize(Ty);
1149 
1150     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1151     // than two eightbytes, ..., it has class MEMORY.
1152     if (Size > 128)
1153       return;
1154 
1155     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1156     // copy constructor or a non-trivial destructor, it is passed by invisible
1157     // reference.
1158     if (hasNonTrivialDestructorOrCopyConstructor(RT))
1159       return;
1160 
1161     const RecordDecl *RD = RT->getDecl();
1162 
1163     // Assume variable sized types are passed in memory.
1164     if (RD->hasFlexibleArrayMember())
1165       return;
1166 
1167     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1168 
1169     // Reset Lo class, this will be recomputed.
1170     Current = NoClass;
1171 
1172     // If this is a C++ record, classify the bases first.
1173     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1174       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1175              e = CXXRD->bases_end(); i != e; ++i) {
1176         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1177                "Unexpected base class!");
1178         const CXXRecordDecl *Base =
1179           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1180 
1181         // Classify this field.
1182         //
1183         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1184         // single eightbyte, each is classified separately. Each eightbyte gets
1185         // initialized to class NO_CLASS.
1186         Class FieldLo, FieldHi;
1187         uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1188         classify(i->getType(), Offset, FieldLo, FieldHi);
1189         Lo = merge(Lo, FieldLo);
1190         Hi = merge(Hi, FieldHi);
1191         if (Lo == Memory || Hi == Memory)
1192           break;
1193       }
1194     }
1195 
1196     // Classify the fields one at a time, merging the results.
1197     unsigned idx = 0;
1198     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1199            i != e; ++i, ++idx) {
1200       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1201       bool BitField = i->isBitField();
1202 
1203       // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1204       // fields, it has class MEMORY.
1205       //
1206       // Note, skip this test for bit-fields, see below.
1207       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1208         Lo = Memory;
1209         return;
1210       }
1211 
1212       // Classify this field.
1213       //
1214       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1215       // exceeds a single eightbyte, each is classified
1216       // separately. Each eightbyte gets initialized to class
1217       // NO_CLASS.
1218       Class FieldLo, FieldHi;
1219 
1220       // Bit-fields require special handling, they do not force the
1221       // structure to be passed in memory even if unaligned, and
1222       // therefore they can straddle an eightbyte.
1223       if (BitField) {
1224         // Ignore padding bit-fields.
1225         if (i->isUnnamedBitfield())
1226           continue;
1227 
1228         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1229         uint64_t Size =
1230           i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1231 
1232         uint64_t EB_Lo = Offset / 64;
1233         uint64_t EB_Hi = (Offset + Size - 1) / 64;
1234         FieldLo = FieldHi = NoClass;
1235         if (EB_Lo) {
1236           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1237           FieldLo = NoClass;
1238           FieldHi = Integer;
1239         } else {
1240           FieldLo = Integer;
1241           FieldHi = EB_Hi ? Integer : NoClass;
1242         }
1243       } else
1244         classify(i->getType(), Offset, FieldLo, FieldHi);
1245       Lo = merge(Lo, FieldLo);
1246       Hi = merge(Hi, FieldHi);
1247       if (Lo == Memory || Hi == Memory)
1248         break;
1249     }
1250 
1251     // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1252     //
1253     // (a) If one of the classes is MEMORY, the whole argument is
1254     // passed in memory.
1255     //
1256     // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1257 
1258     // The first of these conditions is guaranteed by how we implement
1259     // the merge (just bail).
1260     //
1261     // The second condition occurs in the case of unions; for example
1262     // union { _Complex double; unsigned; }.
1263     if (Hi == Memory)
1264       Lo = Memory;
1265     if (Hi == SSEUp && Lo != SSE)
1266       Hi = SSE;
1267   }
1268 }
1269 
1270 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1271   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1272   // place naturally.
1273   if (!isAggregateTypeForABI(Ty)) {
1274     // Treat an enum type as its underlying type.
1275     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1276       Ty = EnumTy->getDecl()->getIntegerType();
1277 
1278     return (Ty->isPromotableIntegerType() ?
1279             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1280   }
1281 
1282   return ABIArgInfo::getIndirect(0);
1283 }
1284 
1285 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1286   // If this is a scalar LLVM value then assume LLVM will pass it in the right
1287   // place naturally.
1288   if (!isAggregateTypeForABI(Ty)) {
1289     // Treat an enum type as its underlying type.
1290     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1291       Ty = EnumTy->getDecl()->getIntegerType();
1292 
1293     return (Ty->isPromotableIntegerType() ?
1294             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1295   }
1296 
1297   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1298     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1299 
1300   // Compute the byval alignment. We trust the back-end to honor the
1301   // minimum ABI alignment for byval, to make cleaner IR.
1302   const unsigned MinABIAlign = 8;
1303   unsigned Align = getContext().getTypeAlign(Ty) / 8;
1304   if (Align > MinABIAlign)
1305     return ABIArgInfo::getIndirect(Align);
1306   return ABIArgInfo::getIndirect(0);
1307 }
1308 
1309 /// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1310 /// full vector XMM register.  Pick an LLVM IR type that will be passed as a
1311 /// vector register.
1312 const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
1313   const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1314 
1315   // Wrapper structs that just contain vectors are passed just like vectors,
1316   // strip them off if present.
1317   const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1318   while (STy && STy->getNumElements() == 1) {
1319     IRType = STy->getElementType(0);
1320     STy = dyn_cast<llvm::StructType>(IRType);
1321   }
1322 
1323   // If the preferred type is a 16-byte vector, prefer to pass it.
1324   if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1325     const llvm::Type *EltTy = VT->getElementType();
1326     if (VT->getBitWidth() == 128 &&
1327         (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1328          EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1329          EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1330          EltTy->isIntegerTy(128)))
1331       return VT;
1332   }
1333 
1334   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1335 }
1336 
1337 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
1338 /// is known to either be off the end of the specified type or being in
1339 /// alignment padding.  The user type specified is known to be at most 128 bits
1340 /// in size, and have passed through X86_64ABIInfo::classify with a successful
1341 /// classification that put one of the two halves in the INTEGER class.
1342 ///
1343 /// It is conservatively correct to return false.
1344 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1345                                   unsigned EndBit, ASTContext &Context) {
1346   // If the bytes being queried are off the end of the type, there is no user
1347   // data hiding here.  This handles analysis of builtins, vectors and other
1348   // types that don't contain interesting padding.
1349   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1350   if (TySize <= StartBit)
1351     return true;
1352 
1353   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1354     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1355     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1356 
1357     // Check each element to see if the element overlaps with the queried range.
1358     for (unsigned i = 0; i != NumElts; ++i) {
1359       // If the element is after the span we care about, then we're done..
1360       unsigned EltOffset = i*EltSize;
1361       if (EltOffset >= EndBit) break;
1362 
1363       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1364       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1365                                  EndBit-EltOffset, Context))
1366         return false;
1367     }
1368     // If it overlaps no elements, then it is safe to process as padding.
1369     return true;
1370   }
1371 
1372   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1373     const RecordDecl *RD = RT->getDecl();
1374     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1375 
1376     // If this is a C++ record, check the bases first.
1377     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1378       for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1379            e = CXXRD->bases_end(); i != e; ++i) {
1380         assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1381                "Unexpected base class!");
1382         const CXXRecordDecl *Base =
1383           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1384 
1385         // If the base is after the span we care about, ignore it.
1386         unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1387         if (BaseOffset >= EndBit) continue;
1388 
1389         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1390         if (!BitsContainNoUserData(i->getType(), BaseStart,
1391                                    EndBit-BaseOffset, Context))
1392           return false;
1393       }
1394     }
1395 
1396     // Verify that no field has data that overlaps the region of interest.  Yes
1397     // this could be sped up a lot by being smarter about queried fields,
1398     // however we're only looking at structs up to 16 bytes, so we don't care
1399     // much.
1400     unsigned idx = 0;
1401     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1402          i != e; ++i, ++idx) {
1403       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1404 
1405       // If we found a field after the region we care about, then we're done.
1406       if (FieldOffset >= EndBit) break;
1407 
1408       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1409       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1410                                  Context))
1411         return false;
1412     }
1413 
1414     // If nothing in this record overlapped the area of interest, then we're
1415     // clean.
1416     return true;
1417   }
1418 
1419   return false;
1420 }
1421 
1422 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1423 /// float member at the specified offset.  For example, {int,{float}} has a
1424 /// float at offset 4.  It is conservatively correct for this routine to return
1425 /// false.
1426 static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1427                                   const llvm::TargetData &TD) {
1428   // Base case if we find a float.
1429   if (IROffset == 0 && IRType->isFloatTy())
1430     return true;
1431 
1432   // If this is a struct, recurse into the field at the specified offset.
1433   if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1434     const llvm::StructLayout *SL = TD.getStructLayout(STy);
1435     unsigned Elt = SL->getElementContainingOffset(IROffset);
1436     IROffset -= SL->getElementOffset(Elt);
1437     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1438   }
1439 
1440   // If this is an array, recurse into the field at the specified offset.
1441   if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1442     const llvm::Type *EltTy = ATy->getElementType();
1443     unsigned EltSize = TD.getTypeAllocSize(EltTy);
1444     IROffset -= IROffset/EltSize*EltSize;
1445     return ContainsFloatAtOffset(EltTy, IROffset, TD);
1446   }
1447 
1448   return false;
1449 }
1450 
1451 
1452 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1453 /// low 8 bytes of an XMM register, corresponding to the SSE class.
1454 const llvm::Type *X86_64ABIInfo::
1455 GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1456                    QualType SourceTy, unsigned SourceOffset) const {
1457   // The only three choices we have are either double, <2 x float>, or float. We
1458   // pass as float if the last 4 bytes is just padding.  This happens for
1459   // structs that contain 3 floats.
1460   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1461                             SourceOffset*8+64, getContext()))
1462     return llvm::Type::getFloatTy(getVMContext());
1463 
1464   // We want to pass as <2 x float> if the LLVM IR type contains a float at
1465   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1466   // case.
1467   if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1468       ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1469     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1470 
1471   return llvm::Type::getDoubleTy(getVMContext());
1472 }
1473 
1474 
1475 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1476 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
1477 /// about the high or low part of an up-to-16-byte struct.  This routine picks
1478 /// the best LLVM IR type to represent this, which may be i64 or may be anything
1479 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1480 /// etc).
1481 ///
1482 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1483 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1484 /// the 8-byte value references.  PrefType may be null.
1485 ///
1486 /// SourceTy is the source level type for the entire argument.  SourceOffset is
1487 /// an offset into this that we're processing (which is always either 0 or 8).
1488 ///
1489 const llvm::Type *X86_64ABIInfo::
1490 GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1491                        QualType SourceTy, unsigned SourceOffset) const {
1492   // If we're dealing with an un-offset LLVM IR type, then it means that we're
1493   // returning an 8-byte unit starting with it.  See if we can safely use it.
1494   if (IROffset == 0) {
1495     // Pointers and int64's always fill the 8-byte unit.
1496     if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1497       return IRType;
1498 
1499     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1500     // goodness in the source type is just tail padding.  This is allowed to
1501     // kick in for struct {double,int} on the int, but not on
1502     // struct{double,int,int} because we wouldn't return the second int.  We
1503     // have to do this analysis on the source type because we can't depend on
1504     // unions being lowered a specific way etc.
1505     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1506         IRType->isIntegerTy(32)) {
1507       unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1508 
1509       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1510                                 SourceOffset*8+64, getContext()))
1511         return IRType;
1512     }
1513   }
1514 
1515   if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1516     // If this is a struct, recurse into the field at the specified offset.
1517     const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1518     if (IROffset < SL->getSizeInBytes()) {
1519       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1520       IROffset -= SL->getElementOffset(FieldIdx);
1521 
1522       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1523                                     SourceTy, SourceOffset);
1524     }
1525   }
1526 
1527   if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1528     const llvm::Type *EltTy = ATy->getElementType();
1529     unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1530     unsigned EltOffset = IROffset/EltSize*EltSize;
1531     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1532                                   SourceOffset);
1533   }
1534 
1535   // Okay, we don't have any better idea of what to pass, so we pass this in an
1536   // integer register that isn't too big to fit the rest of the struct.
1537   unsigned TySizeInBytes =
1538     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1539 
1540   assert(TySizeInBytes != SourceOffset && "Empty field?");
1541 
1542   // It is always safe to classify this as an integer type up to i64 that
1543   // isn't larger than the structure.
1544   return llvm::IntegerType::get(getVMContext(),
1545                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
1546 }
1547 
1548 
1549 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1550 /// be used as elements of a two register pair to pass or return, return a
1551 /// first class aggregate to represent them.  For example, if the low part of
1552 /// a by-value argument should be passed as i32* and the high part as float,
1553 /// return {i32*, float}.
1554 static const llvm::Type *
1555 GetX86_64ByValArgumentPair(const llvm::Type *Lo, const llvm::Type *Hi,
1556                            const llvm::TargetData &TD) {
1557   // In order to correctly satisfy the ABI, we need to the high part to start
1558   // at offset 8.  If the high and low parts we inferred are both 4-byte types
1559   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1560   // the second element at offset 8.  Check for this:
1561   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1562   unsigned HiAlign = TD.getABITypeAlignment(Hi);
1563   unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1564   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1565 
1566   // To handle this, we have to increase the size of the low part so that the
1567   // second element will start at an 8 byte offset.  We can't increase the size
1568   // of the second element because it might make us access off the end of the
1569   // struct.
1570   if (HiStart != 8) {
1571     // There are only two sorts of types the ABI generation code can produce for
1572     // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1573     // Promote these to a larger type.
1574     if (Lo->isFloatTy())
1575       Lo = llvm::Type::getDoubleTy(Lo->getContext());
1576     else {
1577       assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1578       Lo = llvm::Type::getInt64Ty(Lo->getContext());
1579     }
1580   }
1581 
1582   const llvm::StructType *Result =
1583     llvm::StructType::get(Lo->getContext(), Lo, Hi, NULL);
1584 
1585 
1586   // Verify that the second element is at an 8-byte offset.
1587   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1588          "Invalid x86-64 argument pair!");
1589   return Result;
1590 }
1591 
1592 ABIArgInfo X86_64ABIInfo::
1593 classifyReturnType(QualType RetTy) const {
1594   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1595   // classification algorithm.
1596   X86_64ABIInfo::Class Lo, Hi;
1597   classify(RetTy, 0, Lo, Hi);
1598 
1599   // Check some invariants.
1600   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1601   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1602 
1603   const llvm::Type *ResType = 0;
1604   switch (Lo) {
1605   case NoClass:
1606     if (Hi == NoClass)
1607       return ABIArgInfo::getIgnore();
1608     // If the low part is just padding, it takes no register, leave ResType
1609     // null.
1610     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1611            "Unknown missing lo part");
1612     break;
1613 
1614   case SSEUp:
1615   case X87Up:
1616     assert(0 && "Invalid classification for lo word.");
1617 
1618     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1619     // hidden argument.
1620   case Memory:
1621     return getIndirectReturnResult(RetTy);
1622 
1623     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1624     // available register of the sequence %rax, %rdx is used.
1625   case Integer:
1626     ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1627                                      RetTy, 0);
1628 
1629     // If we have a sign or zero extended integer, make sure to return Extend
1630     // so that the parameter gets the right LLVM IR attributes.
1631     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1632       // Treat an enum type as its underlying type.
1633       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1634         RetTy = EnumTy->getDecl()->getIntegerType();
1635 
1636       if (RetTy->isIntegralOrEnumerationType() &&
1637           RetTy->isPromotableIntegerType())
1638         return ABIArgInfo::getExtend();
1639     }
1640     break;
1641 
1642     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1643     // available SSE register of the sequence %xmm0, %xmm1 is used.
1644   case SSE:
1645     ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
1646     break;
1647 
1648     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1649     // returned on the X87 stack in %st0 as 80-bit x87 number.
1650   case X87:
1651     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1652     break;
1653 
1654     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1655     // part of the value is returned in %st0 and the imaginary part in
1656     // %st1.
1657   case ComplexX87:
1658     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1659     ResType = llvm::StructType::get(getVMContext(),
1660                                     llvm::Type::getX86_FP80Ty(getVMContext()),
1661                                     llvm::Type::getX86_FP80Ty(getVMContext()),
1662                                     NULL);
1663     break;
1664   }
1665 
1666   const llvm::Type *HighPart = 0;
1667   switch (Hi) {
1668     // Memory was handled previously and X87 should
1669     // never occur as a hi class.
1670   case Memory:
1671   case X87:
1672     assert(0 && "Invalid classification for hi word.");
1673 
1674   case ComplexX87: // Previously handled.
1675   case NoClass:
1676     break;
1677 
1678   case Integer:
1679     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1680                                       8, RetTy, 8);
1681     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1682       return ABIArgInfo::getDirect(HighPart, 8);
1683     break;
1684   case SSE:
1685     HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1686     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1687       return ABIArgInfo::getDirect(HighPart, 8);
1688     break;
1689 
1690     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1691     // is passed in the upper half of the last used SSE register.
1692     //
1693     // SSEUP should always be preceeded by SSE, just widen.
1694   case SSEUp:
1695     assert(Lo == SSE && "Unexpected SSEUp classification.");
1696     ResType = Get16ByteVectorType(RetTy);
1697     break;
1698 
1699     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1700     // returned together with the previous X87 value in %st0.
1701   case X87Up:
1702     // If X87Up is preceeded by X87, we don't need to do
1703     // anything. However, in some cases with unions it may not be
1704     // preceeded by X87. In such situations we follow gcc and pass the
1705     // extra bits in an SSE reg.
1706     if (Lo != X87) {
1707       HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1708                                     8, RetTy, 8);
1709       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1710         return ABIArgInfo::getDirect(HighPart, 8);
1711     }
1712     break;
1713   }
1714 
1715   // If a high part was specified, merge it together with the low part.  It is
1716   // known to pass in the high eightbyte of the result.  We do this by forming a
1717   // first class struct aggregate with the high and low part: {low, high}
1718   if (HighPart)
1719     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1720 
1721   return ABIArgInfo::getDirect(ResType);
1722 }
1723 
1724 ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1725                                                unsigned &neededSSE) const {
1726   X86_64ABIInfo::Class Lo, Hi;
1727   classify(Ty, 0, Lo, Hi);
1728 
1729   // Check some invariants.
1730   // FIXME: Enforce these by construction.
1731   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1732   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1733 
1734   neededInt = 0;
1735   neededSSE = 0;
1736   const llvm::Type *ResType = 0;
1737   switch (Lo) {
1738   case NoClass:
1739     if (Hi == NoClass)
1740       return ABIArgInfo::getIgnore();
1741     // If the low part is just padding, it takes no register, leave ResType
1742     // null.
1743     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1744            "Unknown missing lo part");
1745     break;
1746 
1747     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1748     // on the stack.
1749   case Memory:
1750 
1751     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1752     // COMPLEX_X87, it is passed in memory.
1753   case X87:
1754   case ComplexX87:
1755     return getIndirectResult(Ty);
1756 
1757   case SSEUp:
1758   case X87Up:
1759     assert(0 && "Invalid classification for lo word.");
1760 
1761     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1762     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1763     // and %r9 is used.
1764   case Integer:
1765     ++neededInt;
1766 
1767     // Pick an 8-byte type based on the preferred type.
1768     ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1769 
1770     // If we have a sign or zero extended integer, make sure to return Extend
1771     // so that the parameter gets the right LLVM IR attributes.
1772     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1773       // Treat an enum type as its underlying type.
1774       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1775         Ty = EnumTy->getDecl()->getIntegerType();
1776 
1777       if (Ty->isIntegralOrEnumerationType() &&
1778           Ty->isPromotableIntegerType())
1779         return ABIArgInfo::getExtend();
1780     }
1781 
1782     break;
1783 
1784     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1785     // available SSE register is used, the registers are taken in the
1786     // order from %xmm0 to %xmm7.
1787   case SSE: {
1788     const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1789     if (Hi != NoClass || !UseX86_MMXType(IRType))
1790       ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1791     else
1792       // This is an MMX type. Treat it as such.
1793       ResType = llvm::Type::getX86_MMXTy(getVMContext());
1794 
1795     ++neededSSE;
1796     break;
1797   }
1798   }
1799 
1800   const llvm::Type *HighPart = 0;
1801   switch (Hi) {
1802     // Memory was handled previously, ComplexX87 and X87 should
1803     // never occur as hi classes, and X87Up must be preceed by X87,
1804     // which is passed in memory.
1805   case Memory:
1806   case X87:
1807   case ComplexX87:
1808     assert(0 && "Invalid classification for hi word.");
1809     break;
1810 
1811   case NoClass: break;
1812 
1813   case Integer:
1814     ++neededInt;
1815     // Pick an 8-byte type based on the preferred type.
1816     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1817 
1818     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1819       return ABIArgInfo::getDirect(HighPart, 8);
1820     break;
1821 
1822     // X87Up generally doesn't occur here (long double is passed in
1823     // memory), except in situations involving unions.
1824   case X87Up:
1825   case SSE:
1826     HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1827 
1828     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1829       return ABIArgInfo::getDirect(HighPart, 8);
1830 
1831     ++neededSSE;
1832     break;
1833 
1834     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1835     // eightbyte is passed in the upper half of the last used SSE
1836     // register.  This only happens when 128-bit vectors are passed.
1837   case SSEUp:
1838     assert(Lo == SSE && "Unexpected SSEUp classification");
1839     ResType = Get16ByteVectorType(Ty);
1840     break;
1841   }
1842 
1843   // If a high part was specified, merge it together with the low part.  It is
1844   // known to pass in the high eightbyte of the result.  We do this by forming a
1845   // first class struct aggregate with the high and low part: {low, high}
1846   if (HighPart)
1847     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1848 
1849   return ABIArgInfo::getDirect(ResType);
1850 }
1851 
1852 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1853 
1854   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1855 
1856   // Keep track of the number of assigned registers.
1857   unsigned freeIntRegs = 6, freeSSERegs = 8;
1858 
1859   // If the return value is indirect, then the hidden argument is consuming one
1860   // integer register.
1861   if (FI.getReturnInfo().isIndirect())
1862     --freeIntRegs;
1863 
1864   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1865   // get assigned (in left-to-right order) for passing as follows...
1866   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1867        it != ie; ++it) {
1868     unsigned neededInt, neededSSE;
1869     it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1870 
1871     // AMD64-ABI 3.2.3p3: If there are no registers available for any
1872     // eightbyte of an argument, the whole argument is passed on the
1873     // stack. If registers have already been assigned for some
1874     // eightbytes of such an argument, the assignments get reverted.
1875     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1876       freeIntRegs -= neededInt;
1877       freeSSERegs -= neededSSE;
1878     } else {
1879       it->info = getIndirectResult(it->type);
1880     }
1881   }
1882 }
1883 
1884 static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1885                                         QualType Ty,
1886                                         CodeGenFunction &CGF) {
1887   llvm::Value *overflow_arg_area_p =
1888     CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1889   llvm::Value *overflow_arg_area =
1890     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1891 
1892   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1893   // byte boundary if alignment needed by type exceeds 8 byte boundary.
1894   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1895   if (Align > 8) {
1896     // Note that we follow the ABI & gcc here, even though the type
1897     // could in theory have an alignment greater than 16. This case
1898     // shouldn't ever matter in practice.
1899 
1900     // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1901     llvm::Value *Offset =
1902       llvm::ConstantInt::get(CGF.Int32Ty, 15);
1903     overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1904     llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1905                                                     CGF.Int64Ty);
1906     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1907     overflow_arg_area =
1908       CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1909                                  overflow_arg_area->getType(),
1910                                  "overflow_arg_area.align");
1911   }
1912 
1913   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1914   const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1915   llvm::Value *Res =
1916     CGF.Builder.CreateBitCast(overflow_arg_area,
1917                               llvm::PointerType::getUnqual(LTy));
1918 
1919   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1920   // l->overflow_arg_area + sizeof(type).
1921   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1922   // an 8 byte boundary.
1923 
1924   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1925   llvm::Value *Offset =
1926       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1927   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1928                                             "overflow_arg_area.next");
1929   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1930 
1931   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1932   return Res;
1933 }
1934 
1935 llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1936                                       CodeGenFunction &CGF) const {
1937   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1938 
1939   // Assume that va_list type is correct; should be pointer to LLVM type:
1940   // struct {
1941   //   i32 gp_offset;
1942   //   i32 fp_offset;
1943   //   i8* overflow_arg_area;
1944   //   i8* reg_save_area;
1945   // };
1946   unsigned neededInt, neededSSE;
1947 
1948   Ty = CGF.getContext().getCanonicalType(Ty);
1949   ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
1950 
1951   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1952   // in the registers. If not go to step 7.
1953   if (!neededInt && !neededSSE)
1954     return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1955 
1956   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1957   // general purpose registers needed to pass type and num_fp to hold
1958   // the number of floating point registers needed.
1959 
1960   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1961   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1962   // l->fp_offset > 304 - num_fp * 16 go to step 7.
1963   //
1964   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1965   // register save space).
1966 
1967   llvm::Value *InRegs = 0;
1968   llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1969   llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1970   if (neededInt) {
1971     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1972     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1973     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1974     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
1975   }
1976 
1977   if (neededSSE) {
1978     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1979     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1980     llvm::Value *FitsInFP =
1981       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
1982     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
1983     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1984   }
1985 
1986   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1987   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1988   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1989   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1990 
1991   // Emit code to load the value if it was passed in registers.
1992 
1993   CGF.EmitBlock(InRegBlock);
1994 
1995   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1996   // an offset of l->gp_offset and/or l->fp_offset. This may require
1997   // copying to a temporary location in case the parameter is passed
1998   // in different register classes or requires an alignment greater
1999   // than 8 for general purpose registers and 16 for XMM registers.
2000   //
2001   // FIXME: This really results in shameful code when we end up needing to
2002   // collect arguments from different places; often what should result in a
2003   // simple assembling of a structure from scattered addresses has many more
2004   // loads than necessary. Can we clean this up?
2005   const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2006   llvm::Value *RegAddr =
2007     CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2008                            "reg_save_area");
2009   if (neededInt && neededSSE) {
2010     // FIXME: Cleanup.
2011     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2012     const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2013     llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2014     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2015     const llvm::Type *TyLo = ST->getElementType(0);
2016     const llvm::Type *TyHi = ST->getElementType(1);
2017     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2018            "Unexpected ABI info for mixed regs");
2019     const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2020     const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2021     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2022     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2023     llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2024     llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2025     llvm::Value *V =
2026       CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2027     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2028     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2029     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2030 
2031     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2032                                         llvm::PointerType::getUnqual(LTy));
2033   } else if (neededInt) {
2034     RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2035     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2036                                         llvm::PointerType::getUnqual(LTy));
2037   } else if (neededSSE == 1) {
2038     RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2039     RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2040                                         llvm::PointerType::getUnqual(LTy));
2041   } else {
2042     assert(neededSSE == 2 && "Invalid number of needed registers!");
2043     // SSE registers are spaced 16 bytes apart in the register save
2044     // area, we need to collect the two eightbytes together.
2045     llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2046     llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2047     const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2048     const llvm::Type *DblPtrTy =
2049       llvm::PointerType::getUnqual(DoubleTy);
2050     const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
2051                                                        DoubleTy, NULL);
2052     llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2053     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2054                                                          DblPtrTy));
2055     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2056     V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2057                                                          DblPtrTy));
2058     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2059     RegAddr = CGF.Builder.CreateBitCast(Tmp,
2060                                         llvm::PointerType::getUnqual(LTy));
2061   }
2062 
2063   // AMD64-ABI 3.5.7p5: Step 5. Set:
2064   // l->gp_offset = l->gp_offset + num_gp * 8
2065   // l->fp_offset = l->fp_offset + num_fp * 16.
2066   if (neededInt) {
2067     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2068     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2069                             gp_offset_p);
2070   }
2071   if (neededSSE) {
2072     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2073     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2074                             fp_offset_p);
2075   }
2076   CGF.EmitBranch(ContBlock);
2077 
2078   // Emit code to load the value if it was passed in memory.
2079 
2080   CGF.EmitBlock(InMemBlock);
2081   llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2082 
2083   // Return the appropriate result.
2084 
2085   CGF.EmitBlock(ContBlock);
2086   llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2087                                                  "vaarg.addr");
2088   ResAddr->addIncoming(RegAddr, InRegBlock);
2089   ResAddr->addIncoming(MemAddr, InMemBlock);
2090   return ResAddr;
2091 }
2092 
2093 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2094 
2095   if (Ty->isVoidType())
2096     return ABIArgInfo::getIgnore();
2097 
2098   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2099     Ty = EnumTy->getDecl()->getIntegerType();
2100 
2101   uint64_t Size = getContext().getTypeSize(Ty);
2102 
2103   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2104     if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2105         RT->getDecl()->hasFlexibleArrayMember())
2106       return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2107 
2108     // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2109     if (Size == 128 &&
2110         getContext().Target.getTriple().getOS() == llvm::Triple::MinGW32)
2111       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2112                                                           Size));
2113 
2114     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2115     // not 1, 2, 4, or 8 bytes, must be passed by reference."
2116     if (Size <= 64 &&
2117         (Size & (Size - 1)) == 0)
2118       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2119                                                           Size));
2120 
2121     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2122   }
2123 
2124   if (Ty->isPromotableIntegerType())
2125     return ABIArgInfo::getExtend();
2126 
2127   return ABIArgInfo::getDirect();
2128 }
2129 
2130 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2131 
2132   QualType RetTy = FI.getReturnType();
2133   FI.getReturnInfo() = classify(RetTy);
2134 
2135   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2136        it != ie; ++it)
2137     it->info = classify(it->type);
2138 }
2139 
2140 llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2141                                       CodeGenFunction &CGF) const {
2142   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2143   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2144 
2145   CGBuilderTy &Builder = CGF.Builder;
2146   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2147                                                        "ap");
2148   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2149   llvm::Type *PTy =
2150     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2151   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2152 
2153   uint64_t Offset =
2154     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2155   llvm::Value *NextAddr =
2156     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2157                       "ap.next");
2158   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2159 
2160   return AddrTyped;
2161 }
2162 
2163 // PowerPC-32
2164 
2165 namespace {
2166 class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2167 public:
2168   PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2169 
2170   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2171     // This is recovered from gcc output.
2172     return 1; // r1 is the dedicated stack pointer
2173   }
2174 
2175   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2176                                llvm::Value *Address) const;
2177 };
2178 
2179 }
2180 
2181 bool
2182 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2183                                                 llvm::Value *Address) const {
2184   // This is calculated from the LLVM and GCC tables and verified
2185   // against gcc output.  AFAIK all ABIs use the same encoding.
2186 
2187   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2188   llvm::LLVMContext &Context = CGF.getLLVMContext();
2189 
2190   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2191   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2192   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2193   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2194 
2195   // 0-31: r0-31, the 4-byte general-purpose registers
2196   AssignToArrayRange(Builder, Address, Four8, 0, 31);
2197 
2198   // 32-63: fp0-31, the 8-byte floating-point registers
2199   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2200 
2201   // 64-76 are various 4-byte special-purpose registers:
2202   // 64: mq
2203   // 65: lr
2204   // 66: ctr
2205   // 67: ap
2206   // 68-75 cr0-7
2207   // 76: xer
2208   AssignToArrayRange(Builder, Address, Four8, 64, 76);
2209 
2210   // 77-108: v0-31, the 16-byte vector registers
2211   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2212 
2213   // 109: vrsave
2214   // 110: vscr
2215   // 111: spe_acc
2216   // 112: spefscr
2217   // 113: sfp
2218   AssignToArrayRange(Builder, Address, Four8, 109, 113);
2219 
2220   return false;
2221 }
2222 
2223 
2224 //===----------------------------------------------------------------------===//
2225 // ARM ABI Implementation
2226 //===----------------------------------------------------------------------===//
2227 
2228 namespace {
2229 
2230 class ARMABIInfo : public ABIInfo {
2231 public:
2232   enum ABIKind {
2233     APCS = 0,
2234     AAPCS = 1,
2235     AAPCS_VFP
2236   };
2237 
2238 private:
2239   ABIKind Kind;
2240 
2241 public:
2242   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2243 
2244 private:
2245   ABIKind getABIKind() const { return Kind; }
2246 
2247   ABIArgInfo classifyReturnType(QualType RetTy) const;
2248   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2249 
2250   virtual void computeInfo(CGFunctionInfo &FI) const;
2251 
2252   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2253                                  CodeGenFunction &CGF) const;
2254 };
2255 
2256 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2257 public:
2258   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2259     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2260 
2261   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2262     return 13;
2263   }
2264 };
2265 
2266 }
2267 
2268 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2269   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2270   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2271        it != ie; ++it)
2272     it->info = classifyArgumentType(it->type);
2273 
2274   // Always honor user-specified calling convention.
2275   if (FI.getCallingConvention() != llvm::CallingConv::C)
2276     return;
2277 
2278   // Calling convention as default by an ABI.
2279   llvm::CallingConv::ID DefaultCC;
2280   llvm::StringRef Env = getContext().Target.getTriple().getEnvironmentName();
2281   if (Env == "gnueabi" || Env == "eabi")
2282     DefaultCC = llvm::CallingConv::ARM_AAPCS;
2283   else
2284     DefaultCC = llvm::CallingConv::ARM_APCS;
2285 
2286   // If user did not ask for specific calling convention explicitly (e.g. via
2287   // pcs attribute), set effective calling convention if it's different than ABI
2288   // default.
2289   switch (getABIKind()) {
2290   case APCS:
2291     if (DefaultCC != llvm::CallingConv::ARM_APCS)
2292       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2293     break;
2294   case AAPCS:
2295     if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2296       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2297     break;
2298   case AAPCS_VFP:
2299     if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2300       FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2301     break;
2302   }
2303 }
2304 
2305 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2306   if (!isAggregateTypeForABI(Ty)) {
2307     // Treat an enum type as its underlying type.
2308     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2309       Ty = EnumTy->getDecl()->getIntegerType();
2310 
2311     return (Ty->isPromotableIntegerType() ?
2312             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2313   }
2314 
2315   // Ignore empty records.
2316   if (isEmptyRecord(getContext(), Ty, true))
2317     return ABIArgInfo::getIgnore();
2318 
2319   // Structures with either a non-trivial destructor or a non-trivial
2320   // copy constructor are always indirect.
2321   if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2322     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2323 
2324   // Otherwise, pass by coercing to a structure of the appropriate size.
2325   //
2326   // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2327   // backend doesn't support byval.
2328   // FIXME: This doesn't handle alignment > 64 bits.
2329   const llvm::Type* ElemTy;
2330   unsigned SizeRegs;
2331   if (getContext().getTypeAlign(Ty) > 32) {
2332     ElemTy = llvm::Type::getInt64Ty(getVMContext());
2333     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2334   } else {
2335     ElemTy = llvm::Type::getInt32Ty(getVMContext());
2336     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2337   }
2338   std::vector<const llvm::Type*> LLVMFields;
2339   LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
2340   const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
2341                                                 true);
2342   return ABIArgInfo::getDirect(STy);
2343 }
2344 
2345 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2346                               llvm::LLVMContext &VMContext) {
2347   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2348   // is called integer-like if its size is less than or equal to one word, and
2349   // the offset of each of its addressable sub-fields is zero.
2350 
2351   uint64_t Size = Context.getTypeSize(Ty);
2352 
2353   // Check that the type fits in a word.
2354   if (Size > 32)
2355     return false;
2356 
2357   // FIXME: Handle vector types!
2358   if (Ty->isVectorType())
2359     return false;
2360 
2361   // Float types are never treated as "integer like".
2362   if (Ty->isRealFloatingType())
2363     return false;
2364 
2365   // If this is a builtin or pointer type then it is ok.
2366   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2367     return true;
2368 
2369   // Small complex integer types are "integer like".
2370   if (const ComplexType *CT = Ty->getAs<ComplexType>())
2371     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2372 
2373   // Single element and zero sized arrays should be allowed, by the definition
2374   // above, but they are not.
2375 
2376   // Otherwise, it must be a record type.
2377   const RecordType *RT = Ty->getAs<RecordType>();
2378   if (!RT) return false;
2379 
2380   // Ignore records with flexible arrays.
2381   const RecordDecl *RD = RT->getDecl();
2382   if (RD->hasFlexibleArrayMember())
2383     return false;
2384 
2385   // Check that all sub-fields are at offset 0, and are themselves "integer
2386   // like".
2387   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2388 
2389   bool HadField = false;
2390   unsigned idx = 0;
2391   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2392        i != e; ++i, ++idx) {
2393     const FieldDecl *FD = *i;
2394 
2395     // Bit-fields are not addressable, we only need to verify they are "integer
2396     // like". We still have to disallow a subsequent non-bitfield, for example:
2397     //   struct { int : 0; int x }
2398     // is non-integer like according to gcc.
2399     if (FD->isBitField()) {
2400       if (!RD->isUnion())
2401         HadField = true;
2402 
2403       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2404         return false;
2405 
2406       continue;
2407     }
2408 
2409     // Check if this field is at offset 0.
2410     if (Layout.getFieldOffset(idx) != 0)
2411       return false;
2412 
2413     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2414       return false;
2415 
2416     // Only allow at most one field in a structure. This doesn't match the
2417     // wording above, but follows gcc in situations with a field following an
2418     // empty structure.
2419     if (!RD->isUnion()) {
2420       if (HadField)
2421         return false;
2422 
2423       HadField = true;
2424     }
2425   }
2426 
2427   return true;
2428 }
2429 
2430 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2431   if (RetTy->isVoidType())
2432     return ABIArgInfo::getIgnore();
2433 
2434   // Large vector types should be returned via memory.
2435   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2436     return ABIArgInfo::getIndirect(0);
2437 
2438   if (!isAggregateTypeForABI(RetTy)) {
2439     // Treat an enum type as its underlying type.
2440     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2441       RetTy = EnumTy->getDecl()->getIntegerType();
2442 
2443     return (RetTy->isPromotableIntegerType() ?
2444             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2445   }
2446 
2447   // Structures with either a non-trivial destructor or a non-trivial
2448   // copy constructor are always indirect.
2449   if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2450     return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2451 
2452   // Are we following APCS?
2453   if (getABIKind() == APCS) {
2454     if (isEmptyRecord(getContext(), RetTy, false))
2455       return ABIArgInfo::getIgnore();
2456 
2457     // Complex types are all returned as packed integers.
2458     //
2459     // FIXME: Consider using 2 x vector types if the back end handles them
2460     // correctly.
2461     if (RetTy->isAnyComplexType())
2462       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2463                                               getContext().getTypeSize(RetTy)));
2464 
2465     // Integer like structures are returned in r0.
2466     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2467       // Return in the smallest viable integer type.
2468       uint64_t Size = getContext().getTypeSize(RetTy);
2469       if (Size <= 8)
2470         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2471       if (Size <= 16)
2472         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2473       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2474     }
2475 
2476     // Otherwise return in memory.
2477     return ABIArgInfo::getIndirect(0);
2478   }
2479 
2480   // Otherwise this is an AAPCS variant.
2481 
2482   if (isEmptyRecord(getContext(), RetTy, true))
2483     return ABIArgInfo::getIgnore();
2484 
2485   // Aggregates <= 4 bytes are returned in r0; other aggregates
2486   // are returned indirectly.
2487   uint64_t Size = getContext().getTypeSize(RetTy);
2488   if (Size <= 32) {
2489     // Return in the smallest viable integer type.
2490     if (Size <= 8)
2491       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2492     if (Size <= 16)
2493       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2494     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2495   }
2496 
2497   return ABIArgInfo::getIndirect(0);
2498 }
2499 
2500 llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2501                                    CodeGenFunction &CGF) const {
2502   // FIXME: Need to handle alignment
2503   const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2504   const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2505 
2506   CGBuilderTy &Builder = CGF.Builder;
2507   llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2508                                                        "ap");
2509   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2510   llvm::Type *PTy =
2511     llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2512   llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2513 
2514   uint64_t Offset =
2515     llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2516   llvm::Value *NextAddr =
2517     Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2518                       "ap.next");
2519   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2520 
2521   return AddrTyped;
2522 }
2523 
2524 //===----------------------------------------------------------------------===//
2525 // SystemZ ABI Implementation
2526 //===----------------------------------------------------------------------===//
2527 
2528 namespace {
2529 
2530 class SystemZABIInfo : public ABIInfo {
2531 public:
2532   SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2533 
2534   bool isPromotableIntegerType(QualType Ty) const;
2535 
2536   ABIArgInfo classifyReturnType(QualType RetTy) const;
2537   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2538 
2539   virtual void computeInfo(CGFunctionInfo &FI) const {
2540     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2541     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2542          it != ie; ++it)
2543       it->info = classifyArgumentType(it->type);
2544   }
2545 
2546   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2547                                  CodeGenFunction &CGF) const;
2548 };
2549 
2550 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2551 public:
2552   SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2553     : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2554 };
2555 
2556 }
2557 
2558 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2559   // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2560   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2561     switch (BT->getKind()) {
2562     case BuiltinType::Bool:
2563     case BuiltinType::Char_S:
2564     case BuiltinType::Char_U:
2565     case BuiltinType::SChar:
2566     case BuiltinType::UChar:
2567     case BuiltinType::Short:
2568     case BuiltinType::UShort:
2569     case BuiltinType::Int:
2570     case BuiltinType::UInt:
2571       return true;
2572     default:
2573       return false;
2574     }
2575   return false;
2576 }
2577 
2578 llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2579                                        CodeGenFunction &CGF) const {
2580   // FIXME: Implement
2581   return 0;
2582 }
2583 
2584 
2585 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2586   if (RetTy->isVoidType())
2587     return ABIArgInfo::getIgnore();
2588   if (isAggregateTypeForABI(RetTy))
2589     return ABIArgInfo::getIndirect(0);
2590 
2591   return (isPromotableIntegerType(RetTy) ?
2592           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2593 }
2594 
2595 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2596   if (isAggregateTypeForABI(Ty))
2597     return ABIArgInfo::getIndirect(0);
2598 
2599   return (isPromotableIntegerType(Ty) ?
2600           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2601 }
2602 
2603 //===----------------------------------------------------------------------===//
2604 // MBlaze ABI Implementation
2605 //===----------------------------------------------------------------------===//
2606 
2607 namespace {
2608 
2609 class MBlazeABIInfo : public ABIInfo {
2610 public:
2611   MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2612 
2613   bool isPromotableIntegerType(QualType Ty) const;
2614 
2615   ABIArgInfo classifyReturnType(QualType RetTy) const;
2616   ABIArgInfo classifyArgumentType(QualType RetTy) const;
2617 
2618   virtual void computeInfo(CGFunctionInfo &FI) const {
2619     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2620     for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2621          it != ie; ++it)
2622       it->info = classifyArgumentType(it->type);
2623   }
2624 
2625   virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2626                                  CodeGenFunction &CGF) const;
2627 };
2628 
2629 class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2630 public:
2631   MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2632     : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2633   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2634                            CodeGen::CodeGenModule &M) const;
2635 };
2636 
2637 }
2638 
2639 bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2640   // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2641   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2642     switch (BT->getKind()) {
2643     case BuiltinType::Bool:
2644     case BuiltinType::Char_S:
2645     case BuiltinType::Char_U:
2646     case BuiltinType::SChar:
2647     case BuiltinType::UChar:
2648     case BuiltinType::Short:
2649     case BuiltinType::UShort:
2650       return true;
2651     default:
2652       return false;
2653     }
2654   return false;
2655 }
2656 
2657 llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2658                                       CodeGenFunction &CGF) const {
2659   // FIXME: Implement
2660   return 0;
2661 }
2662 
2663 
2664 ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2665   if (RetTy->isVoidType())
2666     return ABIArgInfo::getIgnore();
2667   if (isAggregateTypeForABI(RetTy))
2668     return ABIArgInfo::getIndirect(0);
2669 
2670   return (isPromotableIntegerType(RetTy) ?
2671           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2672 }
2673 
2674 ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2675   if (isAggregateTypeForABI(Ty))
2676     return ABIArgInfo::getIndirect(0);
2677 
2678   return (isPromotableIntegerType(Ty) ?
2679           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2680 }
2681 
2682 void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2683                                                   llvm::GlobalValue *GV,
2684                                                   CodeGen::CodeGenModule &M)
2685                                                   const {
2686   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2687   if (!FD) return;
2688 
2689   llvm::CallingConv::ID CC = llvm::CallingConv::C;
2690   if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2691     CC = llvm::CallingConv::MBLAZE_INTR;
2692   else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2693     CC = llvm::CallingConv::MBLAZE_SVOL;
2694 
2695   if (CC != llvm::CallingConv::C) {
2696       // Handle 'interrupt_handler' attribute:
2697       llvm::Function *F = cast<llvm::Function>(GV);
2698 
2699       // Step 1: Set ISR calling convention.
2700       F->setCallingConv(CC);
2701 
2702       // Step 2: Add attributes goodness.
2703       F->addFnAttr(llvm::Attribute::NoInline);
2704   }
2705 
2706   // Step 3: Emit _interrupt_handler alias.
2707   if (CC == llvm::CallingConv::MBLAZE_INTR)
2708     new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2709                           "_interrupt_handler", GV, &M.getModule());
2710 }
2711 
2712 
2713 //===----------------------------------------------------------------------===//
2714 // MSP430 ABI Implementation
2715 //===----------------------------------------------------------------------===//
2716 
2717 namespace {
2718 
2719 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2720 public:
2721   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2722     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2723   void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2724                            CodeGen::CodeGenModule &M) const;
2725 };
2726 
2727 }
2728 
2729 void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2730                                                   llvm::GlobalValue *GV,
2731                                              CodeGen::CodeGenModule &M) const {
2732   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2733     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2734       // Handle 'interrupt' attribute:
2735       llvm::Function *F = cast<llvm::Function>(GV);
2736 
2737       // Step 1: Set ISR calling convention.
2738       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2739 
2740       // Step 2: Add attributes goodness.
2741       F->addFnAttr(llvm::Attribute::NoInline);
2742 
2743       // Step 3: Emit ISR vector alias.
2744       unsigned Num = attr->getNumber() + 0xffe0;
2745       new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2746                             "vector_" + llvm::Twine::utohexstr(Num),
2747                             GV, &M.getModule());
2748     }
2749   }
2750 }
2751 
2752 //===----------------------------------------------------------------------===//
2753 // MIPS ABI Implementation.  This works for both little-endian and
2754 // big-endian variants.
2755 //===----------------------------------------------------------------------===//
2756 
2757 namespace {
2758 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2759 public:
2760   MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2761     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2762 
2763   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2764     return 29;
2765   }
2766 
2767   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2768                                llvm::Value *Address) const;
2769 };
2770 }
2771 
2772 bool
2773 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2774                                                llvm::Value *Address) const {
2775   // This information comes from gcc's implementation, which seems to
2776   // as canonical as it gets.
2777 
2778   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2779   llvm::LLVMContext &Context = CGF.getLLVMContext();
2780 
2781   // Everything on MIPS is 4 bytes.  Double-precision FP registers
2782   // are aliased to pairs of single-precision FP registers.
2783   const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2784   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2785 
2786   // 0-31 are the general purpose registers, $0 - $31.
2787   // 32-63 are the floating-point registers, $f0 - $f31.
2788   // 64 and 65 are the multiply/divide registers, $hi and $lo.
2789   // 66 is the (notional, I think) register for signal-handler return.
2790   AssignToArrayRange(Builder, Address, Four8, 0, 65);
2791 
2792   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2793   // They are one bit wide and ignored here.
2794 
2795   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2796   // (coprocessor 1 is the FP unit)
2797   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2798   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2799   // 176-181 are the DSP accumulator registers.
2800   AssignToArrayRange(Builder, Address, Four8, 80, 181);
2801 
2802   return false;
2803 }
2804 
2805 
2806 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
2807   if (TheTargetCodeGenInfo)
2808     return *TheTargetCodeGenInfo;
2809 
2810   // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2811   // free it.
2812 
2813   const llvm::Triple &Triple = getContext().Target.getTriple();
2814   switch (Triple.getArch()) {
2815   default:
2816     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
2817 
2818   case llvm::Triple::mips:
2819   case llvm::Triple::mipsel:
2820     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
2821 
2822   case llvm::Triple::arm:
2823   case llvm::Triple::thumb:
2824     {
2825       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
2826 
2827       if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2828         Kind = ARMABIInfo::APCS;
2829       else if (CodeGenOpts.FloatABI == "hard")
2830         Kind = ARMABIInfo::AAPCS_VFP;
2831 
2832       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
2833     }
2834 
2835   case llvm::Triple::ppc:
2836     return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
2837 
2838   case llvm::Triple::systemz:
2839     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
2840 
2841   case llvm::Triple::mblaze:
2842     return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
2843 
2844   case llvm::Triple::msp430:
2845     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
2846 
2847   case llvm::Triple::x86:
2848     switch (Triple.getOS()) {
2849     case llvm::Triple::Darwin:
2850       return *(TheTargetCodeGenInfo =
2851                new X86_32TargetCodeGenInfo(Types, true, true));
2852     case llvm::Triple::Cygwin:
2853     case llvm::Triple::MinGW32:
2854     case llvm::Triple::AuroraUX:
2855     case llvm::Triple::DragonFly:
2856     case llvm::Triple::FreeBSD:
2857     case llvm::Triple::OpenBSD:
2858     case llvm::Triple::NetBSD:
2859       return *(TheTargetCodeGenInfo =
2860                new X86_32TargetCodeGenInfo(Types, false, true));
2861 
2862     default:
2863       return *(TheTargetCodeGenInfo =
2864                new X86_32TargetCodeGenInfo(Types, false, false));
2865     }
2866 
2867   case llvm::Triple::x86_64:
2868     switch (Triple.getOS()) {
2869     case llvm::Triple::Win32:
2870     case llvm::Triple::MinGW32:
2871     case llvm::Triple::Cygwin:
2872       return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
2873     default:
2874       return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
2875     }
2876   }
2877 }
2878