1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "clang/CodeGen/SwiftCallingConv.h"
25 #include "llvm/ADT/SmallBitVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm> // std::sort
34 
35 using namespace clang;
36 using namespace CodeGen;
37 
38 // Helper for coercing an aggregate argument or return value into an integer
39 // array of the same size (including padding) and alignment.  This alternate
40 // coercion happens only for the RenderScript ABI and can be removed after
41 // runtimes that rely on it are no longer supported.
42 //
43 // RenderScript assumes that the size of the argument / return value in the IR
44 // is the same as the size of the corresponding qualified type. This helper
45 // coerces the aggregate type into an array of the same size (including
46 // padding).  This coercion is used in lieu of expansion of struct members or
47 // other canonical coercions that return a coerced-type of larger size.
48 //
49 // Ty          - The argument / return value type
50 // Context     - The associated ASTContext
51 // LLVMContext - The associated LLVMContext
52 static ABIArgInfo coerceToIntArray(QualType Ty,
53                                    ASTContext &Context,
54                                    llvm::LLVMContext &LLVMContext) {
55   // Alignment and Size are measured in bits.
56   const uint64_t Size = Context.getTypeSize(Ty);
57   const uint64_t Alignment = Context.getTypeAlign(Ty);
58   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
59   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
60   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
61 }
62 
63 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
64                                llvm::Value *Array,
65                                llvm::Value *Value,
66                                unsigned FirstIndex,
67                                unsigned LastIndex) {
68   // Alternatively, we could emit this as a loop in the source.
69   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
70     llvm::Value *Cell =
71         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
72     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
73   }
74 }
75 
76 static bool isAggregateTypeForABI(QualType T) {
77   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
78          T->isMemberFunctionPointerType();
79 }
80 
81 ABIArgInfo
82 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
83                                  llvm::Type *Padding) const {
84   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
85                                  ByRef, Realign, Padding);
86 }
87 
88 ABIArgInfo
89 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
90   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
91                                       /*ByRef*/ false, Realign);
92 }
93 
94 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
95                              QualType Ty) const {
96   return Address::invalid();
97 }
98 
99 ABIInfo::~ABIInfo() {}
100 
101 /// Does the given lowering require more than the given number of
102 /// registers when expanded?
103 ///
104 /// This is intended to be the basis of a reasonable basic implementation
105 /// of should{Pass,Return}IndirectlyForSwift.
106 ///
107 /// For most targets, a limit of four total registers is reasonable; this
108 /// limits the amount of code required in order to move around the value
109 /// in case it wasn't produced immediately prior to the call by the caller
110 /// (or wasn't produced in exactly the right registers) or isn't used
111 /// immediately within the callee.  But some targets may need to further
112 /// limit the register count due to an inability to support that many
113 /// return registers.
114 static bool occupiesMoreThan(CodeGenTypes &cgt,
115                              ArrayRef<llvm::Type*> scalarTypes,
116                              unsigned maxAllRegisters) {
117   unsigned intCount = 0, fpCount = 0;
118   for (llvm::Type *type : scalarTypes) {
119     if (type->isPointerTy()) {
120       intCount++;
121     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
122       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
123       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
124     } else {
125       assert(type->isVectorTy() || type->isFloatingPointTy());
126       fpCount++;
127     }
128   }
129 
130   return (intCount + fpCount > maxAllRegisters);
131 }
132 
133 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
134                                              llvm::Type *eltTy,
135                                              unsigned numElts) const {
136   // The default implementation of this assumes that the target guarantees
137   // 128-bit SIMD support but nothing more.
138   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
139 }
140 
141 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
142                                               CGCXXABI &CXXABI) {
143   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
144   if (!RD) {
145     if (!RT->getDecl()->canPassInRegisters())
146       return CGCXXABI::RAA_Indirect;
147     return CGCXXABI::RAA_Default;
148   }
149   return CXXABI.getRecordArgABI(RD);
150 }
151 
152 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
153                                               CGCXXABI &CXXABI) {
154   const RecordType *RT = T->getAs<RecordType>();
155   if (!RT)
156     return CGCXXABI::RAA_Default;
157   return getRecordArgABI(RT, CXXABI);
158 }
159 
160 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
161                                const ABIInfo &Info) {
162   QualType Ty = FI.getReturnType();
163 
164   if (const auto *RT = Ty->getAs<RecordType>())
165     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
166         !RT->getDecl()->canPassInRegisters()) {
167       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
168       return true;
169     }
170 
171   return CXXABI.classifyReturnType(FI);
172 }
173 
174 /// Pass transparent unions as if they were the type of the first element. Sema
175 /// should ensure that all elements of the union have the same "machine type".
176 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
177   if (const RecordType *UT = Ty->getAsUnionType()) {
178     const RecordDecl *UD = UT->getDecl();
179     if (UD->hasAttr<TransparentUnionAttr>()) {
180       assert(!UD->field_empty() && "sema created an empty transparent union");
181       return UD->field_begin()->getType();
182     }
183   }
184   return Ty;
185 }
186 
187 CGCXXABI &ABIInfo::getCXXABI() const {
188   return CGT.getCXXABI();
189 }
190 
191 ASTContext &ABIInfo::getContext() const {
192   return CGT.getContext();
193 }
194 
195 llvm::LLVMContext &ABIInfo::getVMContext() const {
196   return CGT.getLLVMContext();
197 }
198 
199 const llvm::DataLayout &ABIInfo::getDataLayout() const {
200   return CGT.getDataLayout();
201 }
202 
203 const TargetInfo &ABIInfo::getTarget() const {
204   return CGT.getTarget();
205 }
206 
207 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
208   return CGT.getCodeGenOpts();
209 }
210 
211 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
212 
213 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
214   return false;
215 }
216 
217 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
218                                                 uint64_t Members) const {
219   return false;
220 }
221 
222 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
223   raw_ostream &OS = llvm::errs();
224   OS << "(ABIArgInfo Kind=";
225   switch (TheKind) {
226   case Direct:
227     OS << "Direct Type=";
228     if (llvm::Type *Ty = getCoerceToType())
229       Ty->print(OS);
230     else
231       OS << "null";
232     break;
233   case Extend:
234     OS << "Extend";
235     break;
236   case Ignore:
237     OS << "Ignore";
238     break;
239   case InAlloca:
240     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
241     break;
242   case Indirect:
243     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
244        << " ByVal=" << getIndirectByVal()
245        << " Realign=" << getIndirectRealign();
246     break;
247   case Expand:
248     OS << "Expand";
249     break;
250   case CoerceAndExpand:
251     OS << "CoerceAndExpand Type=";
252     getCoerceAndExpandType()->print(OS);
253     break;
254   }
255   OS << ")\n";
256 }
257 
258 // Dynamically round a pointer up to a multiple of the given alignment.
259 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
260                                                   llvm::Value *Ptr,
261                                                   CharUnits Align) {
262   llvm::Value *PtrAsInt = Ptr;
263   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
264   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
265   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
266         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
267   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
268            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
269   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
270                                         Ptr->getType(),
271                                         Ptr->getName() + ".aligned");
272   return PtrAsInt;
273 }
274 
275 /// Emit va_arg for a platform using the common void* representation,
276 /// where arguments are simply emitted in an array of slots on the stack.
277 ///
278 /// This version implements the core direct-value passing rules.
279 ///
280 /// \param SlotSize - The size and alignment of a stack slot.
281 ///   Each argument will be allocated to a multiple of this number of
282 ///   slots, and all the slots will be aligned to this value.
283 /// \param AllowHigherAlign - The slot alignment is not a cap;
284 ///   an argument type with an alignment greater than the slot size
285 ///   will be emitted on a higher-alignment address, potentially
286 ///   leaving one or more empty slots behind as padding.  If this
287 ///   is false, the returned address might be less-aligned than
288 ///   DirectAlign.
289 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
290                                       Address VAListAddr,
291                                       llvm::Type *DirectTy,
292                                       CharUnits DirectSize,
293                                       CharUnits DirectAlign,
294                                       CharUnits SlotSize,
295                                       bool AllowHigherAlign) {
296   // Cast the element type to i8* if necessary.  Some platforms define
297   // va_list as a struct containing an i8* instead of just an i8*.
298   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
299     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
300 
301   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
302 
303   // If the CC aligns values higher than the slot size, do so if needed.
304   Address Addr = Address::invalid();
305   if (AllowHigherAlign && DirectAlign > SlotSize) {
306     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
307                                                  DirectAlign);
308   } else {
309     Addr = Address(Ptr, SlotSize);
310   }
311 
312   // Advance the pointer past the argument, then store that back.
313   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
314   Address NextPtr =
315       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
316   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
317 
318   // If the argument is smaller than a slot, and this is a big-endian
319   // target, the argument will be right-adjusted in its slot.
320   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
321       !DirectTy->isStructTy()) {
322     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
323   }
324 
325   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
326   return Addr;
327 }
328 
329 /// Emit va_arg for a platform using the common void* representation,
330 /// where arguments are simply emitted in an array of slots on the stack.
331 ///
332 /// \param IsIndirect - Values of this type are passed indirectly.
333 /// \param ValueInfo - The size and alignment of this type, generally
334 ///   computed with getContext().getTypeInfoInChars(ValueTy).
335 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
336 ///   Each argument will be allocated to a multiple of this number of
337 ///   slots, and all the slots will be aligned to this value.
338 /// \param AllowHigherAlign - The slot alignment is not a cap;
339 ///   an argument type with an alignment greater than the slot size
340 ///   will be emitted on a higher-alignment address, potentially
341 ///   leaving one or more empty slots behind as padding.
342 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
343                                 QualType ValueTy, bool IsIndirect,
344                                 std::pair<CharUnits, CharUnits> ValueInfo,
345                                 CharUnits SlotSizeAndAlign,
346                                 bool AllowHigherAlign) {
347   // The size and alignment of the value that was passed directly.
348   CharUnits DirectSize, DirectAlign;
349   if (IsIndirect) {
350     DirectSize = CGF.getPointerSize();
351     DirectAlign = CGF.getPointerAlign();
352   } else {
353     DirectSize = ValueInfo.first;
354     DirectAlign = ValueInfo.second;
355   }
356 
357   // Cast the address we've calculated to the right type.
358   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
359   if (IsIndirect)
360     DirectTy = DirectTy->getPointerTo(0);
361 
362   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
363                                         DirectSize, DirectAlign,
364                                         SlotSizeAndAlign,
365                                         AllowHigherAlign);
366 
367   if (IsIndirect) {
368     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
369   }
370 
371   return Addr;
372 
373 }
374 
375 static Address emitMergePHI(CodeGenFunction &CGF,
376                             Address Addr1, llvm::BasicBlock *Block1,
377                             Address Addr2, llvm::BasicBlock *Block2,
378                             const llvm::Twine &Name = "") {
379   assert(Addr1.getType() == Addr2.getType());
380   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
381   PHI->addIncoming(Addr1.getPointer(), Block1);
382   PHI->addIncoming(Addr2.getPointer(), Block2);
383   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
384   return Address(PHI, Align);
385 }
386 
387 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
388 
389 // If someone can figure out a general rule for this, that would be great.
390 // It's probably just doomed to be platform-dependent, though.
391 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
392   // Verified for:
393   //   x86-64     FreeBSD, Linux, Darwin
394   //   x86-32     FreeBSD, Linux, Darwin
395   //   PowerPC    Linux, Darwin
396   //   ARM        Darwin (*not* EABI)
397   //   AArch64    Linux
398   return 32;
399 }
400 
401 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
402                                      const FunctionNoProtoType *fnType) const {
403   // The following conventions are known to require this to be false:
404   //   x86_stdcall
405   //   MIPS
406   // For everything else, we just prefer false unless we opt out.
407   return false;
408 }
409 
410 void
411 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
412                                              llvm::SmallString<24> &Opt) const {
413   // This assumes the user is passing a library name like "rt" instead of a
414   // filename like "librt.a/so", and that they don't care whether it's static or
415   // dynamic.
416   Opt = "-l";
417   Opt += Lib;
418 }
419 
420 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
421   // OpenCL kernels are called via an explicit runtime API with arguments
422   // set with clSetKernelArg(), not as normal sub-functions.
423   // Return SPIR_KERNEL by default as the kernel calling convention to
424   // ensure the fingerprint is fixed such way that each OpenCL argument
425   // gets one matching argument in the produced kernel function argument
426   // list to enable feasible implementation of clSetKernelArg() with
427   // aggregates etc. In case we would use the default C calling conv here,
428   // clSetKernelArg() might break depending on the target-specific
429   // conventions; different targets might split structs passed as values
430   // to multiple function arguments etc.
431   return llvm::CallingConv::SPIR_KERNEL;
432 }
433 
434 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
435     llvm::PointerType *T, QualType QT) const {
436   return llvm::ConstantPointerNull::get(T);
437 }
438 
439 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
440                                                    const VarDecl *D) const {
441   assert(!CGM.getLangOpts().OpenCL &&
442          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
443          "Address space agnostic languages only");
444   return D ? D->getType().getAddressSpace() : LangAS::Default;
445 }
446 
447 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
448     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
449     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
450   // Since target may map different address spaces in AST to the same address
451   // space, an address space conversion may end up as a bitcast.
452   if (auto *C = dyn_cast<llvm::Constant>(Src))
453     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
454   // Try to preserve the source's name to make IR more readable.
455   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
456       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
457 }
458 
459 llvm::Constant *
460 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
461                                         LangAS SrcAddr, LangAS DestAddr,
462                                         llvm::Type *DestTy) const {
463   // Since target may map different address spaces in AST to the same address
464   // space, an address space conversion may end up as a bitcast.
465   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
466 }
467 
468 llvm::SyncScope::ID
469 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
470                                       SyncScope Scope,
471                                       llvm::AtomicOrdering Ordering,
472                                       llvm::LLVMContext &Ctx) const {
473   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
474 }
475 
476 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
477 
478 /// isEmptyField - Return true iff a the field is "empty", that is it
479 /// is an unnamed bit-field or an (array of) empty record(s).
480 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
481                          bool AllowArrays) {
482   if (FD->isUnnamedBitfield())
483     return true;
484 
485   QualType FT = FD->getType();
486 
487   // Constant arrays of empty records count as empty, strip them off.
488   // Constant arrays of zero length always count as empty.
489   if (AllowArrays)
490     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
491       if (AT->getSize() == 0)
492         return true;
493       FT = AT->getElementType();
494     }
495 
496   const RecordType *RT = FT->getAs<RecordType>();
497   if (!RT)
498     return false;
499 
500   // C++ record fields are never empty, at least in the Itanium ABI.
501   //
502   // FIXME: We should use a predicate for whether this behavior is true in the
503   // current ABI.
504   if (isa<CXXRecordDecl>(RT->getDecl()))
505     return false;
506 
507   return isEmptyRecord(Context, FT, AllowArrays);
508 }
509 
510 /// isEmptyRecord - Return true iff a structure contains only empty
511 /// fields. Note that a structure with a flexible array member is not
512 /// considered empty.
513 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
514   const RecordType *RT = T->getAs<RecordType>();
515   if (!RT)
516     return false;
517   const RecordDecl *RD = RT->getDecl();
518   if (RD->hasFlexibleArrayMember())
519     return false;
520 
521   // If this is a C++ record, check the bases first.
522   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
523     for (const auto &I : CXXRD->bases())
524       if (!isEmptyRecord(Context, I.getType(), true))
525         return false;
526 
527   for (const auto *I : RD->fields())
528     if (!isEmptyField(Context, I, AllowArrays))
529       return false;
530   return true;
531 }
532 
533 /// isSingleElementStruct - Determine if a structure is a "single
534 /// element struct", i.e. it has exactly one non-empty field or
535 /// exactly one field which is itself a single element
536 /// struct. Structures with flexible array members are never
537 /// considered single element structs.
538 ///
539 /// \return The field declaration for the single non-empty field, if
540 /// it exists.
541 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
542   const RecordType *RT = T->getAs<RecordType>();
543   if (!RT)
544     return nullptr;
545 
546   const RecordDecl *RD = RT->getDecl();
547   if (RD->hasFlexibleArrayMember())
548     return nullptr;
549 
550   const Type *Found = nullptr;
551 
552   // If this is a C++ record, check the bases first.
553   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
554     for (const auto &I : CXXRD->bases()) {
555       // Ignore empty records.
556       if (isEmptyRecord(Context, I.getType(), true))
557         continue;
558 
559       // If we already found an element then this isn't a single-element struct.
560       if (Found)
561         return nullptr;
562 
563       // If this is non-empty and not a single element struct, the composite
564       // cannot be a single element struct.
565       Found = isSingleElementStruct(I.getType(), Context);
566       if (!Found)
567         return nullptr;
568     }
569   }
570 
571   // Check for single element.
572   for (const auto *FD : RD->fields()) {
573     QualType FT = FD->getType();
574 
575     // Ignore empty fields.
576     if (isEmptyField(Context, FD, true))
577       continue;
578 
579     // If we already found an element then this isn't a single-element
580     // struct.
581     if (Found)
582       return nullptr;
583 
584     // Treat single element arrays as the element.
585     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
586       if (AT->getSize().getZExtValue() != 1)
587         break;
588       FT = AT->getElementType();
589     }
590 
591     if (!isAggregateTypeForABI(FT)) {
592       Found = FT.getTypePtr();
593     } else {
594       Found = isSingleElementStruct(FT, Context);
595       if (!Found)
596         return nullptr;
597     }
598   }
599 
600   // We don't consider a struct a single-element struct if it has
601   // padding beyond the element type.
602   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
603     return nullptr;
604 
605   return Found;
606 }
607 
608 namespace {
609 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
610                        const ABIArgInfo &AI) {
611   // This default implementation defers to the llvm backend's va_arg
612   // instruction. It can handle only passing arguments directly
613   // (typically only handled in the backend for primitive types), or
614   // aggregates passed indirectly by pointer (NOTE: if the "byval"
615   // flag has ABI impact in the callee, this implementation cannot
616   // work.)
617 
618   // Only a few cases are covered here at the moment -- those needed
619   // by the default abi.
620   llvm::Value *Val;
621 
622   if (AI.isIndirect()) {
623     assert(!AI.getPaddingType() &&
624            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
625     assert(
626         !AI.getIndirectRealign() &&
627         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
628 
629     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
630     CharUnits TyAlignForABI = TyInfo.second;
631 
632     llvm::Type *BaseTy =
633         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
634     llvm::Value *Addr =
635         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
636     return Address(Addr, TyAlignForABI);
637   } else {
638     assert((AI.isDirect() || AI.isExtend()) &&
639            "Unexpected ArgInfo Kind in generic VAArg emitter!");
640 
641     assert(!AI.getInReg() &&
642            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
643     assert(!AI.getPaddingType() &&
644            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
645     assert(!AI.getDirectOffset() &&
646            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
647     assert(!AI.getCoerceToType() &&
648            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
649 
650     Address Temp = CGF.CreateMemTemp(Ty, "varet");
651     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
652     CGF.Builder.CreateStore(Val, Temp);
653     return Temp;
654   }
655 }
656 
657 /// DefaultABIInfo - The default implementation for ABI specific
658 /// details. This implementation provides information which results in
659 /// self-consistent and sensible LLVM IR generation, but does not
660 /// conform to any particular ABI.
661 class DefaultABIInfo : public ABIInfo {
662 public:
663   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
664 
665   ABIArgInfo classifyReturnType(QualType RetTy) const;
666   ABIArgInfo classifyArgumentType(QualType RetTy) const;
667 
668   void computeInfo(CGFunctionInfo &FI) const override {
669     if (!getCXXABI().classifyReturnType(FI))
670       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
671     for (auto &I : FI.arguments())
672       I.info = classifyArgumentType(I.type);
673   }
674 
675   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
676                     QualType Ty) const override {
677     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
678   }
679 };
680 
681 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
682 public:
683   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
684     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
685 };
686 
687 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
688   Ty = useFirstFieldIfTransparentUnion(Ty);
689 
690   if (isAggregateTypeForABI(Ty)) {
691     // Records with non-trivial destructors/copy-constructors should not be
692     // passed by value.
693     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
694       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
695 
696     return getNaturalAlignIndirect(Ty);
697   }
698 
699   // Treat an enum type as its underlying type.
700   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
701     Ty = EnumTy->getDecl()->getIntegerType();
702 
703   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
704                                         : ABIArgInfo::getDirect());
705 }
706 
707 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
708   if (RetTy->isVoidType())
709     return ABIArgInfo::getIgnore();
710 
711   if (isAggregateTypeForABI(RetTy))
712     return getNaturalAlignIndirect(RetTy);
713 
714   // Treat an enum type as its underlying type.
715   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
716     RetTy = EnumTy->getDecl()->getIntegerType();
717 
718   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
719                                            : ABIArgInfo::getDirect());
720 }
721 
722 //===----------------------------------------------------------------------===//
723 // WebAssembly ABI Implementation
724 //
725 // This is a very simple ABI that relies a lot on DefaultABIInfo.
726 //===----------------------------------------------------------------------===//
727 
728 class WebAssemblyABIInfo final : public SwiftABIInfo {
729 public:
730   enum ABIKind {
731     MVP = 0,
732     ExperimentalMV = 1,
733   };
734 
735 private:
736   DefaultABIInfo defaultInfo;
737   ABIKind Kind;
738 
739 public:
740   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
741       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
742 
743 private:
744   ABIArgInfo classifyReturnType(QualType RetTy) const;
745   ABIArgInfo classifyArgumentType(QualType Ty) const;
746 
747   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
748   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
749   // overload them.
750   void computeInfo(CGFunctionInfo &FI) const override {
751     if (!getCXXABI().classifyReturnType(FI))
752       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
753     for (auto &Arg : FI.arguments())
754       Arg.info = classifyArgumentType(Arg.type);
755   }
756 
757   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
758                     QualType Ty) const override;
759 
760   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
761                                     bool asReturnValue) const override {
762     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
763   }
764 
765   bool isSwiftErrorInRegister() const override {
766     return false;
767   }
768 };
769 
770 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
771 public:
772   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
773                                         WebAssemblyABIInfo::ABIKind K)
774       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT, K)) {}
775 
776   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
777                            CodeGen::CodeGenModule &CGM) const override {
778     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
779     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
780       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
781         llvm::Function *Fn = cast<llvm::Function>(GV);
782         llvm::AttrBuilder B;
783         B.addAttribute("wasm-import-module", Attr->getImportModule());
784         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
785       }
786       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
787         llvm::Function *Fn = cast<llvm::Function>(GV);
788         llvm::AttrBuilder B;
789         B.addAttribute("wasm-import-name", Attr->getImportName());
790         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
791       }
792       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
793         llvm::Function *Fn = cast<llvm::Function>(GV);
794         llvm::AttrBuilder B;
795         B.addAttribute("wasm-export-name", Attr->getExportName());
796         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
797       }
798     }
799 
800     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
801       llvm::Function *Fn = cast<llvm::Function>(GV);
802       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
803         Fn->addFnAttr("no-prototype");
804     }
805   }
806 };
807 
808 /// Classify argument of given type \p Ty.
809 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
810   Ty = useFirstFieldIfTransparentUnion(Ty);
811 
812   if (isAggregateTypeForABI(Ty)) {
813     // Records with non-trivial destructors/copy-constructors should not be
814     // passed by value.
815     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
816       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
817     // Ignore empty structs/unions.
818     if (isEmptyRecord(getContext(), Ty, true))
819       return ABIArgInfo::getIgnore();
820     // Lower single-element structs to just pass a regular value. TODO: We
821     // could do reasonable-size multiple-element structs too, using getExpand(),
822     // though watch out for things like bitfields.
823     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
824       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
825     // For the experimental multivalue ABI, fully expand all other aggregates
826     if (Kind == ABIKind::ExperimentalMV) {
827       const RecordType *RT = Ty->getAs<RecordType>();
828       assert(RT);
829       bool HasBitField = false;
830       for (auto *Field : RT->getDecl()->fields()) {
831         if (Field->isBitField()) {
832           HasBitField = true;
833           break;
834         }
835       }
836       if (!HasBitField)
837         return ABIArgInfo::getExpand();
838     }
839   }
840 
841   // Otherwise just do the default thing.
842   return defaultInfo.classifyArgumentType(Ty);
843 }
844 
845 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
846   if (isAggregateTypeForABI(RetTy)) {
847     // Records with non-trivial destructors/copy-constructors should not be
848     // returned by value.
849     if (!getRecordArgABI(RetTy, getCXXABI())) {
850       // Ignore empty structs/unions.
851       if (isEmptyRecord(getContext(), RetTy, true))
852         return ABIArgInfo::getIgnore();
853       // Lower single-element structs to just return a regular value. TODO: We
854       // could do reasonable-size multiple-element structs too, using
855       // ABIArgInfo::getDirect().
856       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
857         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
858       // For the experimental multivalue ABI, return all other aggregates
859       if (Kind == ABIKind::ExperimentalMV)
860         return ABIArgInfo::getDirect();
861     }
862   }
863 
864   // Otherwise just do the default thing.
865   return defaultInfo.classifyReturnType(RetTy);
866 }
867 
868 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
869                                       QualType Ty) const {
870   bool IsIndirect = isAggregateTypeForABI(Ty) &&
871                     !isEmptyRecord(getContext(), Ty, true) &&
872                     !isSingleElementStruct(Ty, getContext());
873   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
874                           getContext().getTypeInfoInChars(Ty),
875                           CharUnits::fromQuantity(4),
876                           /*AllowHigherAlign=*/true);
877 }
878 
879 //===----------------------------------------------------------------------===//
880 // le32/PNaCl bitcode ABI Implementation
881 //
882 // This is a simplified version of the x86_32 ABI.  Arguments and return values
883 // are always passed on the stack.
884 //===----------------------------------------------------------------------===//
885 
886 class PNaClABIInfo : public ABIInfo {
887  public:
888   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
889 
890   ABIArgInfo classifyReturnType(QualType RetTy) const;
891   ABIArgInfo classifyArgumentType(QualType RetTy) const;
892 
893   void computeInfo(CGFunctionInfo &FI) const override;
894   Address EmitVAArg(CodeGenFunction &CGF,
895                     Address VAListAddr, QualType Ty) const override;
896 };
897 
898 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
899  public:
900   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
901     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
902 };
903 
904 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
905   if (!getCXXABI().classifyReturnType(FI))
906     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
907 
908   for (auto &I : FI.arguments())
909     I.info = classifyArgumentType(I.type);
910 }
911 
912 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
913                                 QualType Ty) const {
914   // The PNaCL ABI is a bit odd, in that varargs don't use normal
915   // function classification. Structs get passed directly for varargs
916   // functions, through a rewriting transform in
917   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
918   // this target to actually support a va_arg instructions with an
919   // aggregate type, unlike other targets.
920   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
921 }
922 
923 /// Classify argument of given type \p Ty.
924 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
925   if (isAggregateTypeForABI(Ty)) {
926     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
927       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
928     return getNaturalAlignIndirect(Ty);
929   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
930     // Treat an enum type as its underlying type.
931     Ty = EnumTy->getDecl()->getIntegerType();
932   } else if (Ty->isFloatingType()) {
933     // Floating-point types don't go inreg.
934     return ABIArgInfo::getDirect();
935   }
936 
937   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
938                                         : ABIArgInfo::getDirect());
939 }
940 
941 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
942   if (RetTy->isVoidType())
943     return ABIArgInfo::getIgnore();
944 
945   // In the PNaCl ABI we always return records/structures on the stack.
946   if (isAggregateTypeForABI(RetTy))
947     return getNaturalAlignIndirect(RetTy);
948 
949   // Treat an enum type as its underlying type.
950   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
951     RetTy = EnumTy->getDecl()->getIntegerType();
952 
953   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
954                                            : ABIArgInfo::getDirect());
955 }
956 
957 /// IsX86_MMXType - Return true if this is an MMX type.
958 bool IsX86_MMXType(llvm::Type *IRType) {
959   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
960   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
961     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
962     IRType->getScalarSizeInBits() != 64;
963 }
964 
965 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
966                                           StringRef Constraint,
967                                           llvm::Type* Ty) {
968   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
969                      .Cases("y", "&y", "^Ym", true)
970                      .Default(false);
971   if (IsMMXCons && Ty->isVectorTy()) {
972     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
973       // Invalid MMX constraint
974       return nullptr;
975     }
976 
977     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
978   }
979 
980   // No operation needed
981   return Ty;
982 }
983 
984 /// Returns true if this type can be passed in SSE registers with the
985 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
986 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
987   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
988     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
989       if (BT->getKind() == BuiltinType::LongDouble) {
990         if (&Context.getTargetInfo().getLongDoubleFormat() ==
991             &llvm::APFloat::x87DoubleExtended())
992           return false;
993       }
994       return true;
995     }
996   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
997     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
998     // registers specially.
999     unsigned VecSize = Context.getTypeSize(VT);
1000     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1001       return true;
1002   }
1003   return false;
1004 }
1005 
1006 /// Returns true if this aggregate is small enough to be passed in SSE registers
1007 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1008 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1009   return NumMembers <= 4;
1010 }
1011 
1012 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1013 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1014   auto AI = ABIArgInfo::getDirect(T);
1015   AI.setInReg(true);
1016   AI.setCanBeFlattened(false);
1017   return AI;
1018 }
1019 
1020 //===----------------------------------------------------------------------===//
1021 // X86-32 ABI Implementation
1022 //===----------------------------------------------------------------------===//
1023 
1024 /// Similar to llvm::CCState, but for Clang.
1025 struct CCState {
1026   CCState(CGFunctionInfo &FI)
1027       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1028 
1029   llvm::SmallBitVector IsPreassigned;
1030   unsigned CC = CallingConv::CC_C;
1031   unsigned FreeRegs = 0;
1032   unsigned FreeSSERegs = 0;
1033 };
1034 
1035 enum {
1036   // Vectorcall only allows the first 6 parameters to be passed in registers.
1037   VectorcallMaxParamNumAsReg = 6
1038 };
1039 
1040 /// X86_32ABIInfo - The X86-32 ABI information.
1041 class X86_32ABIInfo : public SwiftABIInfo {
1042   enum Class {
1043     Integer,
1044     Float
1045   };
1046 
1047   static const unsigned MinABIStackAlignInBytes = 4;
1048 
1049   bool IsDarwinVectorABI;
1050   bool IsRetSmallStructInRegABI;
1051   bool IsWin32StructABI;
1052   bool IsSoftFloatABI;
1053   bool IsMCUABI;
1054   unsigned DefaultNumRegisterParameters;
1055 
1056   static bool isRegisterSize(unsigned Size) {
1057     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1058   }
1059 
1060   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1061     // FIXME: Assumes vectorcall is in use.
1062     return isX86VectorTypeForVectorCall(getContext(), Ty);
1063   }
1064 
1065   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1066                                          uint64_t NumMembers) const override {
1067     // FIXME: Assumes vectorcall is in use.
1068     return isX86VectorCallAggregateSmallEnough(NumMembers);
1069   }
1070 
1071   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1072 
1073   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1074   /// such that the argument will be passed in memory.
1075   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1076 
1077   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1078 
1079   /// Return the alignment to use for the given type on the stack.
1080   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1081 
1082   Class classify(QualType Ty) const;
1083   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1084   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1085 
1086   /// Updates the number of available free registers, returns
1087   /// true if any registers were allocated.
1088   bool updateFreeRegs(QualType Ty, CCState &State) const;
1089 
1090   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1091                                 bool &NeedsPadding) const;
1092   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1093 
1094   bool canExpandIndirectArgument(QualType Ty) const;
1095 
1096   /// Rewrite the function info so that all memory arguments use
1097   /// inalloca.
1098   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1099 
1100   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1101                            CharUnits &StackOffset, ABIArgInfo &Info,
1102                            QualType Type) const;
1103   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1104 
1105 public:
1106 
1107   void computeInfo(CGFunctionInfo &FI) const override;
1108   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1109                     QualType Ty) const override;
1110 
1111   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1112                 bool RetSmallStructInRegABI, bool Win32StructABI,
1113                 unsigned NumRegisterParameters, bool SoftFloatABI)
1114     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1115       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1116       IsWin32StructABI(Win32StructABI),
1117       IsSoftFloatABI(SoftFloatABI),
1118       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1119       DefaultNumRegisterParameters(NumRegisterParameters) {}
1120 
1121   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1122                                     bool asReturnValue) const override {
1123     // LLVM's x86-32 lowering currently only assigns up to three
1124     // integer registers and three fp registers.  Oddly, it'll use up to
1125     // four vector registers for vectors, but those can overlap with the
1126     // scalar registers.
1127     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1128   }
1129 
1130   bool isSwiftErrorInRegister() const override {
1131     // x86-32 lowering does not support passing swifterror in a register.
1132     return false;
1133   }
1134 };
1135 
1136 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1137 public:
1138   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1139                           bool RetSmallStructInRegABI, bool Win32StructABI,
1140                           unsigned NumRegisterParameters, bool SoftFloatABI)
1141       : TargetCodeGenInfo(new X86_32ABIInfo(
1142             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1143             NumRegisterParameters, SoftFloatABI)) {}
1144 
1145   static bool isStructReturnInRegABI(
1146       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1147 
1148   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1149                            CodeGen::CodeGenModule &CGM) const override;
1150 
1151   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1152     // Darwin uses different dwarf register numbers for EH.
1153     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1154     return 4;
1155   }
1156 
1157   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1158                                llvm::Value *Address) const override;
1159 
1160   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1161                                   StringRef Constraint,
1162                                   llvm::Type* Ty) const override {
1163     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1164   }
1165 
1166   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1167                                 std::string &Constraints,
1168                                 std::vector<llvm::Type *> &ResultRegTypes,
1169                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1170                                 std::vector<LValue> &ResultRegDests,
1171                                 std::string &AsmString,
1172                                 unsigned NumOutputs) const override;
1173 
1174   llvm::Constant *
1175   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1176     unsigned Sig = (0xeb << 0) |  // jmp rel8
1177                    (0x06 << 8) |  //           .+0x08
1178                    ('v' << 16) |
1179                    ('2' << 24);
1180     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1181   }
1182 
1183   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1184     return "movl\t%ebp, %ebp"
1185            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1186   }
1187 };
1188 
1189 }
1190 
1191 /// Rewrite input constraint references after adding some output constraints.
1192 /// In the case where there is one output and one input and we add one output,
1193 /// we need to replace all operand references greater than or equal to 1:
1194 ///     mov $0, $1
1195 ///     mov eax, $1
1196 /// The result will be:
1197 ///     mov $0, $2
1198 ///     mov eax, $2
1199 static void rewriteInputConstraintReferences(unsigned FirstIn,
1200                                              unsigned NumNewOuts,
1201                                              std::string &AsmString) {
1202   std::string Buf;
1203   llvm::raw_string_ostream OS(Buf);
1204   size_t Pos = 0;
1205   while (Pos < AsmString.size()) {
1206     size_t DollarStart = AsmString.find('$', Pos);
1207     if (DollarStart == std::string::npos)
1208       DollarStart = AsmString.size();
1209     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1210     if (DollarEnd == std::string::npos)
1211       DollarEnd = AsmString.size();
1212     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1213     Pos = DollarEnd;
1214     size_t NumDollars = DollarEnd - DollarStart;
1215     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1216       // We have an operand reference.
1217       size_t DigitStart = Pos;
1218       if (AsmString[DigitStart] == '{') {
1219         OS << '{';
1220         ++DigitStart;
1221       }
1222       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1223       if (DigitEnd == std::string::npos)
1224         DigitEnd = AsmString.size();
1225       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1226       unsigned OperandIndex;
1227       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1228         if (OperandIndex >= FirstIn)
1229           OperandIndex += NumNewOuts;
1230         OS << OperandIndex;
1231       } else {
1232         OS << OperandStr;
1233       }
1234       Pos = DigitEnd;
1235     }
1236   }
1237   AsmString = std::move(OS.str());
1238 }
1239 
1240 /// Add output constraints for EAX:EDX because they are return registers.
1241 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1242     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1243     std::vector<llvm::Type *> &ResultRegTypes,
1244     std::vector<llvm::Type *> &ResultTruncRegTypes,
1245     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1246     unsigned NumOutputs) const {
1247   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1248 
1249   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1250   // larger.
1251   if (!Constraints.empty())
1252     Constraints += ',';
1253   if (RetWidth <= 32) {
1254     Constraints += "={eax}";
1255     ResultRegTypes.push_back(CGF.Int32Ty);
1256   } else {
1257     // Use the 'A' constraint for EAX:EDX.
1258     Constraints += "=A";
1259     ResultRegTypes.push_back(CGF.Int64Ty);
1260   }
1261 
1262   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1263   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1264   ResultTruncRegTypes.push_back(CoerceTy);
1265 
1266   // Coerce the integer by bitcasting the return slot pointer.
1267   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1268                                                   CoerceTy->getPointerTo()));
1269   ResultRegDests.push_back(ReturnSlot);
1270 
1271   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1272 }
1273 
1274 /// shouldReturnTypeInRegister - Determine if the given type should be
1275 /// returned in a register (for the Darwin and MCU ABI).
1276 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1277                                                ASTContext &Context) const {
1278   uint64_t Size = Context.getTypeSize(Ty);
1279 
1280   // For i386, type must be register sized.
1281   // For the MCU ABI, it only needs to be <= 8-byte
1282   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1283    return false;
1284 
1285   if (Ty->isVectorType()) {
1286     // 64- and 128- bit vectors inside structures are not returned in
1287     // registers.
1288     if (Size == 64 || Size == 128)
1289       return false;
1290 
1291     return true;
1292   }
1293 
1294   // If this is a builtin, pointer, enum, complex type, member pointer, or
1295   // member function pointer it is ok.
1296   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1297       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1298       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1299     return true;
1300 
1301   // Arrays are treated like records.
1302   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1303     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1304 
1305   // Otherwise, it must be a record type.
1306   const RecordType *RT = Ty->getAs<RecordType>();
1307   if (!RT) return false;
1308 
1309   // FIXME: Traverse bases here too.
1310 
1311   // Structure types are passed in register if all fields would be
1312   // passed in a register.
1313   for (const auto *FD : RT->getDecl()->fields()) {
1314     // Empty fields are ignored.
1315     if (isEmptyField(Context, FD, true))
1316       continue;
1317 
1318     // Check fields recursively.
1319     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1320       return false;
1321   }
1322   return true;
1323 }
1324 
1325 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1326   // Treat complex types as the element type.
1327   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1328     Ty = CTy->getElementType();
1329 
1330   // Check for a type which we know has a simple scalar argument-passing
1331   // convention without any padding.  (We're specifically looking for 32
1332   // and 64-bit integer and integer-equivalents, float, and double.)
1333   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1334       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1335     return false;
1336 
1337   uint64_t Size = Context.getTypeSize(Ty);
1338   return Size == 32 || Size == 64;
1339 }
1340 
1341 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1342                           uint64_t &Size) {
1343   for (const auto *FD : RD->fields()) {
1344     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1345     // argument is smaller than 32-bits, expanding the struct will create
1346     // alignment padding.
1347     if (!is32Or64BitBasicType(FD->getType(), Context))
1348       return false;
1349 
1350     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1351     // how to expand them yet, and the predicate for telling if a bitfield still
1352     // counts as "basic" is more complicated than what we were doing previously.
1353     if (FD->isBitField())
1354       return false;
1355 
1356     Size += Context.getTypeSize(FD->getType());
1357   }
1358   return true;
1359 }
1360 
1361 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1362                                  uint64_t &Size) {
1363   // Don't do this if there are any non-empty bases.
1364   for (const CXXBaseSpecifier &Base : RD->bases()) {
1365     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1366                               Size))
1367       return false;
1368   }
1369   if (!addFieldSizes(Context, RD, Size))
1370     return false;
1371   return true;
1372 }
1373 
1374 /// Test whether an argument type which is to be passed indirectly (on the
1375 /// stack) would have the equivalent layout if it was expanded into separate
1376 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1377 /// optimizations.
1378 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1379   // We can only expand structure types.
1380   const RecordType *RT = Ty->getAs<RecordType>();
1381   if (!RT)
1382     return false;
1383   const RecordDecl *RD = RT->getDecl();
1384   uint64_t Size = 0;
1385   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1386     if (!IsWin32StructABI) {
1387       // On non-Windows, we have to conservatively match our old bitcode
1388       // prototypes in order to be ABI-compatible at the bitcode level.
1389       if (!CXXRD->isCLike())
1390         return false;
1391     } else {
1392       // Don't do this for dynamic classes.
1393       if (CXXRD->isDynamicClass())
1394         return false;
1395     }
1396     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1397       return false;
1398   } else {
1399     if (!addFieldSizes(getContext(), RD, Size))
1400       return false;
1401   }
1402 
1403   // We can do this if there was no alignment padding.
1404   return Size == getContext().getTypeSize(Ty);
1405 }
1406 
1407 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1408   // If the return value is indirect, then the hidden argument is consuming one
1409   // integer register.
1410   if (State.FreeRegs) {
1411     --State.FreeRegs;
1412     if (!IsMCUABI)
1413       return getNaturalAlignIndirectInReg(RetTy);
1414   }
1415   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1416 }
1417 
1418 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1419                                              CCState &State) const {
1420   if (RetTy->isVoidType())
1421     return ABIArgInfo::getIgnore();
1422 
1423   const Type *Base = nullptr;
1424   uint64_t NumElts = 0;
1425   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1426        State.CC == llvm::CallingConv::X86_RegCall) &&
1427       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1428     // The LLVM struct type for such an aggregate should lower properly.
1429     return ABIArgInfo::getDirect();
1430   }
1431 
1432   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1433     // On Darwin, some vectors are returned in registers.
1434     if (IsDarwinVectorABI) {
1435       uint64_t Size = getContext().getTypeSize(RetTy);
1436 
1437       // 128-bit vectors are a special case; they are returned in
1438       // registers and we need to make sure to pick a type the LLVM
1439       // backend will like.
1440       if (Size == 128)
1441         return ABIArgInfo::getDirect(llvm::VectorType::get(
1442                   llvm::Type::getInt64Ty(getVMContext()), 2));
1443 
1444       // Always return in register if it fits in a general purpose
1445       // register, or if it is 64 bits and has a single element.
1446       if ((Size == 8 || Size == 16 || Size == 32) ||
1447           (Size == 64 && VT->getNumElements() == 1))
1448         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1449                                                             Size));
1450 
1451       return getIndirectReturnResult(RetTy, State);
1452     }
1453 
1454     return ABIArgInfo::getDirect();
1455   }
1456 
1457   if (isAggregateTypeForABI(RetTy)) {
1458     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1459       // Structures with flexible arrays are always indirect.
1460       if (RT->getDecl()->hasFlexibleArrayMember())
1461         return getIndirectReturnResult(RetTy, State);
1462     }
1463 
1464     // If specified, structs and unions are always indirect.
1465     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1466       return getIndirectReturnResult(RetTy, State);
1467 
1468     // Ignore empty structs/unions.
1469     if (isEmptyRecord(getContext(), RetTy, true))
1470       return ABIArgInfo::getIgnore();
1471 
1472     // Small structures which are register sized are generally returned
1473     // in a register.
1474     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1475       uint64_t Size = getContext().getTypeSize(RetTy);
1476 
1477       // As a special-case, if the struct is a "single-element" struct, and
1478       // the field is of type "float" or "double", return it in a
1479       // floating-point register. (MSVC does not apply this special case.)
1480       // We apply a similar transformation for pointer types to improve the
1481       // quality of the generated IR.
1482       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1483         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1484             || SeltTy->hasPointerRepresentation())
1485           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1486 
1487       // FIXME: We should be able to narrow this integer in cases with dead
1488       // padding.
1489       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1490     }
1491 
1492     return getIndirectReturnResult(RetTy, State);
1493   }
1494 
1495   // Treat an enum type as its underlying type.
1496   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1497     RetTy = EnumTy->getDecl()->getIntegerType();
1498 
1499   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
1500                                            : ABIArgInfo::getDirect());
1501 }
1502 
1503 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1504   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1505 }
1506 
1507 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1508   const RecordType *RT = Ty->getAs<RecordType>();
1509   if (!RT)
1510     return 0;
1511   const RecordDecl *RD = RT->getDecl();
1512 
1513   // If this is a C++ record, check the bases first.
1514   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1515     for (const auto &I : CXXRD->bases())
1516       if (!isRecordWithSSEVectorType(Context, I.getType()))
1517         return false;
1518 
1519   for (const auto *i : RD->fields()) {
1520     QualType FT = i->getType();
1521 
1522     if (isSSEVectorType(Context, FT))
1523       return true;
1524 
1525     if (isRecordWithSSEVectorType(Context, FT))
1526       return true;
1527   }
1528 
1529   return false;
1530 }
1531 
1532 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1533                                                  unsigned Align) const {
1534   // Otherwise, if the alignment is less than or equal to the minimum ABI
1535   // alignment, just use the default; the backend will handle this.
1536   if (Align <= MinABIStackAlignInBytes)
1537     return 0; // Use default alignment.
1538 
1539   // On non-Darwin, the stack type alignment is always 4.
1540   if (!IsDarwinVectorABI) {
1541     // Set explicit alignment, since we may need to realign the top.
1542     return MinABIStackAlignInBytes;
1543   }
1544 
1545   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1546   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1547                       isRecordWithSSEVectorType(getContext(), Ty)))
1548     return 16;
1549 
1550   return MinABIStackAlignInBytes;
1551 }
1552 
1553 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1554                                             CCState &State) const {
1555   if (!ByVal) {
1556     if (State.FreeRegs) {
1557       --State.FreeRegs; // Non-byval indirects just use one pointer.
1558       if (!IsMCUABI)
1559         return getNaturalAlignIndirectInReg(Ty);
1560     }
1561     return getNaturalAlignIndirect(Ty, false);
1562   }
1563 
1564   // Compute the byval alignment.
1565   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1566   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1567   if (StackAlign == 0)
1568     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1569 
1570   // If the stack alignment is less than the type alignment, realign the
1571   // argument.
1572   bool Realign = TypeAlign > StackAlign;
1573   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1574                                  /*ByVal=*/true, Realign);
1575 }
1576 
1577 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1578   const Type *T = isSingleElementStruct(Ty, getContext());
1579   if (!T)
1580     T = Ty.getTypePtr();
1581 
1582   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1583     BuiltinType::Kind K = BT->getKind();
1584     if (K == BuiltinType::Float || K == BuiltinType::Double)
1585       return Float;
1586   }
1587   return Integer;
1588 }
1589 
1590 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1591   if (!IsSoftFloatABI) {
1592     Class C = classify(Ty);
1593     if (C == Float)
1594       return false;
1595   }
1596 
1597   unsigned Size = getContext().getTypeSize(Ty);
1598   unsigned SizeInRegs = (Size + 31) / 32;
1599 
1600   if (SizeInRegs == 0)
1601     return false;
1602 
1603   if (!IsMCUABI) {
1604     if (SizeInRegs > State.FreeRegs) {
1605       State.FreeRegs = 0;
1606       return false;
1607     }
1608   } else {
1609     // The MCU psABI allows passing parameters in-reg even if there are
1610     // earlier parameters that are passed on the stack. Also,
1611     // it does not allow passing >8-byte structs in-register,
1612     // even if there are 3 free registers available.
1613     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1614       return false;
1615   }
1616 
1617   State.FreeRegs -= SizeInRegs;
1618   return true;
1619 }
1620 
1621 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1622                                              bool &InReg,
1623                                              bool &NeedsPadding) const {
1624   // On Windows, aggregates other than HFAs are never passed in registers, and
1625   // they do not consume register slots. Homogenous floating-point aggregates
1626   // (HFAs) have already been dealt with at this point.
1627   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1628     return false;
1629 
1630   NeedsPadding = false;
1631   InReg = !IsMCUABI;
1632 
1633   if (!updateFreeRegs(Ty, State))
1634     return false;
1635 
1636   if (IsMCUABI)
1637     return true;
1638 
1639   if (State.CC == llvm::CallingConv::X86_FastCall ||
1640       State.CC == llvm::CallingConv::X86_VectorCall ||
1641       State.CC == llvm::CallingConv::X86_RegCall) {
1642     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1643       NeedsPadding = true;
1644 
1645     return false;
1646   }
1647 
1648   return true;
1649 }
1650 
1651 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1652   if (!updateFreeRegs(Ty, State))
1653     return false;
1654 
1655   if (IsMCUABI)
1656     return false;
1657 
1658   if (State.CC == llvm::CallingConv::X86_FastCall ||
1659       State.CC == llvm::CallingConv::X86_VectorCall ||
1660       State.CC == llvm::CallingConv::X86_RegCall) {
1661     if (getContext().getTypeSize(Ty) > 32)
1662       return false;
1663 
1664     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1665         Ty->isReferenceType());
1666   }
1667 
1668   return true;
1669 }
1670 
1671 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1672   // Vectorcall x86 works subtly different than in x64, so the format is
1673   // a bit different than the x64 version.  First, all vector types (not HVAs)
1674   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1675   // This differs from the x64 implementation, where the first 6 by INDEX get
1676   // registers.
1677   // In the second pass over the arguments, HVAs are passed in the remaining
1678   // vector registers if possible, or indirectly by address. The address will be
1679   // passed in ECX/EDX if available. Any other arguments are passed according to
1680   // the usual fastcall rules.
1681   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1682   for (int I = 0, E = Args.size(); I < E; ++I) {
1683     const Type *Base = nullptr;
1684     uint64_t NumElts = 0;
1685     const QualType &Ty = Args[I].type;
1686     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1687         isHomogeneousAggregate(Ty, Base, NumElts)) {
1688       if (State.FreeSSERegs >= NumElts) {
1689         State.FreeSSERegs -= NumElts;
1690         Args[I].info = ABIArgInfo::getDirectInReg();
1691         State.IsPreassigned.set(I);
1692       }
1693     }
1694   }
1695 }
1696 
1697 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1698                                                CCState &State) const {
1699   // FIXME: Set alignment on indirect arguments.
1700   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1701   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1702   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1703 
1704   Ty = useFirstFieldIfTransparentUnion(Ty);
1705   TypeInfo TI = getContext().getTypeInfo(Ty);
1706 
1707   // Check with the C++ ABI first.
1708   const RecordType *RT = Ty->getAs<RecordType>();
1709   if (RT) {
1710     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1711     if (RAA == CGCXXABI::RAA_Indirect) {
1712       return getIndirectResult(Ty, false, State);
1713     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1714       // The field index doesn't matter, we'll fix it up later.
1715       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1716     }
1717   }
1718 
1719   // Regcall uses the concept of a homogenous vector aggregate, similar
1720   // to other targets.
1721   const Type *Base = nullptr;
1722   uint64_t NumElts = 0;
1723   if ((IsRegCall || IsVectorCall) &&
1724       isHomogeneousAggregate(Ty, Base, NumElts)) {
1725     if (State.FreeSSERegs >= NumElts) {
1726       State.FreeSSERegs -= NumElts;
1727 
1728       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1729       // does.
1730       if (IsVectorCall)
1731         return getDirectX86Hva();
1732 
1733       if (Ty->isBuiltinType() || Ty->isVectorType())
1734         return ABIArgInfo::getDirect();
1735       return ABIArgInfo::getExpand();
1736     }
1737     return getIndirectResult(Ty, /*ByVal=*/false, State);
1738   }
1739 
1740   if (isAggregateTypeForABI(Ty)) {
1741     // Structures with flexible arrays are always indirect.
1742     // FIXME: This should not be byval!
1743     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1744       return getIndirectResult(Ty, true, State);
1745 
1746     // Ignore empty structs/unions on non-Windows.
1747     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1748       return ABIArgInfo::getIgnore();
1749 
1750     llvm::LLVMContext &LLVMContext = getVMContext();
1751     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1752     bool NeedsPadding = false;
1753     bool InReg;
1754     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1755       unsigned SizeInRegs = (TI.Width + 31) / 32;
1756       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1757       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1758       if (InReg)
1759         return ABIArgInfo::getDirectInReg(Result);
1760       else
1761         return ABIArgInfo::getDirect(Result);
1762     }
1763     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1764 
1765     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1766     // added in MSVC 2015.
1767     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1768       return getIndirectResult(Ty, /*ByVal=*/false, State);
1769 
1770     // Expand small (<= 128-bit) record types when we know that the stack layout
1771     // of those arguments will match the struct. This is important because the
1772     // LLVM backend isn't smart enough to remove byval, which inhibits many
1773     // optimizations.
1774     // Don't do this for the MCU if there are still free integer registers
1775     // (see X86_64 ABI for full explanation).
1776     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1777         canExpandIndirectArgument(Ty))
1778       return ABIArgInfo::getExpandWithPadding(
1779           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1780 
1781     return getIndirectResult(Ty, true, State);
1782   }
1783 
1784   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1785     // On Windows, vectors are passed directly if registers are available, or
1786     // indirectly if not. This avoids the need to align argument memory. Pass
1787     // user-defined vector types larger than 512 bits indirectly for simplicity.
1788     if (IsWin32StructABI) {
1789       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1790         --State.FreeSSERegs;
1791         return ABIArgInfo::getDirectInReg();
1792       }
1793       return getIndirectResult(Ty, /*ByVal=*/false, State);
1794     }
1795 
1796     // On Darwin, some vectors are passed in memory, we handle this by passing
1797     // it as an i8/i16/i32/i64.
1798     if (IsDarwinVectorABI) {
1799       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1800           (TI.Width == 64 && VT->getNumElements() == 1))
1801         return ABIArgInfo::getDirect(
1802             llvm::IntegerType::get(getVMContext(), TI.Width));
1803     }
1804 
1805     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1806       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1807 
1808     return ABIArgInfo::getDirect();
1809   }
1810 
1811 
1812   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1813     Ty = EnumTy->getDecl()->getIntegerType();
1814 
1815   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1816 
1817   if (Ty->isPromotableIntegerType()) {
1818     if (InReg)
1819       return ABIArgInfo::getExtendInReg(Ty);
1820     return ABIArgInfo::getExtend(Ty);
1821   }
1822 
1823   if (InReg)
1824     return ABIArgInfo::getDirectInReg();
1825   return ABIArgInfo::getDirect();
1826 }
1827 
1828 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1829   CCState State(FI);
1830   if (IsMCUABI)
1831     State.FreeRegs = 3;
1832   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1833     State.FreeRegs = 2;
1834     State.FreeSSERegs = 3;
1835   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1836     State.FreeRegs = 2;
1837     State.FreeSSERegs = 6;
1838   } else if (FI.getHasRegParm())
1839     State.FreeRegs = FI.getRegParm();
1840   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1841     State.FreeRegs = 5;
1842     State.FreeSSERegs = 8;
1843   } else if (IsWin32StructABI) {
1844     // Since MSVC 2015, the first three SSE vectors have been passed in
1845     // registers. The rest are passed indirectly.
1846     State.FreeRegs = DefaultNumRegisterParameters;
1847     State.FreeSSERegs = 3;
1848   } else
1849     State.FreeRegs = DefaultNumRegisterParameters;
1850 
1851   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1852     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1853   } else if (FI.getReturnInfo().isIndirect()) {
1854     // The C++ ABI is not aware of register usage, so we have to check if the
1855     // return value was sret and put it in a register ourselves if appropriate.
1856     if (State.FreeRegs) {
1857       --State.FreeRegs;  // The sret parameter consumes a register.
1858       if (!IsMCUABI)
1859         FI.getReturnInfo().setInReg(true);
1860     }
1861   }
1862 
1863   // The chain argument effectively gives us another free register.
1864   if (FI.isChainCall())
1865     ++State.FreeRegs;
1866 
1867   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1868   // arguments to XMM registers as available.
1869   if (State.CC == llvm::CallingConv::X86_VectorCall)
1870     runVectorCallFirstPass(FI, State);
1871 
1872   bool UsedInAlloca = false;
1873   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1874   for (int I = 0, E = Args.size(); I < E; ++I) {
1875     // Skip arguments that have already been assigned.
1876     if (State.IsPreassigned.test(I))
1877       continue;
1878 
1879     Args[I].info = classifyArgumentType(Args[I].type, State);
1880     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1881   }
1882 
1883   // If we needed to use inalloca for any argument, do a second pass and rewrite
1884   // all the memory arguments to use inalloca.
1885   if (UsedInAlloca)
1886     rewriteWithInAlloca(FI);
1887 }
1888 
1889 void
1890 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1891                                    CharUnits &StackOffset, ABIArgInfo &Info,
1892                                    QualType Type) const {
1893   // Arguments are always 4-byte-aligned.
1894   CharUnits WordSize = CharUnits::fromQuantity(4);
1895   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1896 
1897   // sret pointers and indirect things will require an extra pointer
1898   // indirection, unless they are byval. Most things are byval, and will not
1899   // require this indirection.
1900   bool IsIndirect = false;
1901   if (Info.isIndirect() && !Info.getIndirectByVal())
1902     IsIndirect = true;
1903   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1904   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1905   if (IsIndirect)
1906     LLTy = LLTy->getPointerTo(0);
1907   FrameFields.push_back(LLTy);
1908   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1909 
1910   // Insert padding bytes to respect alignment.
1911   CharUnits FieldEnd = StackOffset;
1912   StackOffset = FieldEnd.alignTo(WordSize);
1913   if (StackOffset != FieldEnd) {
1914     CharUnits NumBytes = StackOffset - FieldEnd;
1915     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1916     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1917     FrameFields.push_back(Ty);
1918   }
1919 }
1920 
1921 static bool isArgInAlloca(const ABIArgInfo &Info) {
1922   // Leave ignored and inreg arguments alone.
1923   switch (Info.getKind()) {
1924   case ABIArgInfo::InAlloca:
1925     return true;
1926   case ABIArgInfo::Ignore:
1927     return false;
1928   case ABIArgInfo::Indirect:
1929   case ABIArgInfo::Direct:
1930   case ABIArgInfo::Extend:
1931     return !Info.getInReg();
1932   case ABIArgInfo::Expand:
1933   case ABIArgInfo::CoerceAndExpand:
1934     // These are aggregate types which are never passed in registers when
1935     // inalloca is involved.
1936     return true;
1937   }
1938   llvm_unreachable("invalid enum");
1939 }
1940 
1941 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1942   assert(IsWin32StructABI && "inalloca only supported on win32");
1943 
1944   // Build a packed struct type for all of the arguments in memory.
1945   SmallVector<llvm::Type *, 6> FrameFields;
1946 
1947   // The stack alignment is always 4.
1948   CharUnits StackAlign = CharUnits::fromQuantity(4);
1949 
1950   CharUnits StackOffset;
1951   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1952 
1953   // Put 'this' into the struct before 'sret', if necessary.
1954   bool IsThisCall =
1955       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1956   ABIArgInfo &Ret = FI.getReturnInfo();
1957   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1958       isArgInAlloca(I->info)) {
1959     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1960     ++I;
1961   }
1962 
1963   // Put the sret parameter into the inalloca struct if it's in memory.
1964   if (Ret.isIndirect() && !Ret.getInReg()) {
1965     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
1966     // On Windows, the hidden sret parameter is always returned in eax.
1967     Ret.setInAllocaSRet(IsWin32StructABI);
1968   }
1969 
1970   // Skip the 'this' parameter in ecx.
1971   if (IsThisCall)
1972     ++I;
1973 
1974   // Put arguments passed in memory into the struct.
1975   for (; I != E; ++I) {
1976     if (isArgInAlloca(I->info))
1977       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1978   }
1979 
1980   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1981                                         /*isPacked=*/true),
1982                   StackAlign);
1983 }
1984 
1985 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1986                                  Address VAListAddr, QualType Ty) const {
1987 
1988   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1989 
1990   // x86-32 changes the alignment of certain arguments on the stack.
1991   //
1992   // Just messing with TypeInfo like this works because we never pass
1993   // anything indirectly.
1994   TypeInfo.second = CharUnits::fromQuantity(
1995                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1996 
1997   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1998                           TypeInfo, CharUnits::fromQuantity(4),
1999                           /*AllowHigherAlign*/ true);
2000 }
2001 
2002 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2003     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2004   assert(Triple.getArch() == llvm::Triple::x86);
2005 
2006   switch (Opts.getStructReturnConvention()) {
2007   case CodeGenOptions::SRCK_Default:
2008     break;
2009   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2010     return false;
2011   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2012     return true;
2013   }
2014 
2015   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2016     return true;
2017 
2018   switch (Triple.getOS()) {
2019   case llvm::Triple::DragonFly:
2020   case llvm::Triple::FreeBSD:
2021   case llvm::Triple::OpenBSD:
2022   case llvm::Triple::Win32:
2023     return true;
2024   default:
2025     return false;
2026   }
2027 }
2028 
2029 void X86_32TargetCodeGenInfo::setTargetAttributes(
2030     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2031   if (GV->isDeclaration())
2032     return;
2033   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2034     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2035       llvm::Function *Fn = cast<llvm::Function>(GV);
2036       Fn->addFnAttr("stackrealign");
2037     }
2038     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2039       llvm::Function *Fn = cast<llvm::Function>(GV);
2040       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2041     }
2042   }
2043 }
2044 
2045 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2046                                                CodeGen::CodeGenFunction &CGF,
2047                                                llvm::Value *Address) const {
2048   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2049 
2050   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2051 
2052   // 0-7 are the eight integer registers;  the order is different
2053   //   on Darwin (for EH), but the range is the same.
2054   // 8 is %eip.
2055   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2056 
2057   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2058     // 12-16 are st(0..4).  Not sure why we stop at 4.
2059     // These have size 16, which is sizeof(long double) on
2060     // platforms with 8-byte alignment for that type.
2061     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2062     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2063 
2064   } else {
2065     // 9 is %eflags, which doesn't get a size on Darwin for some
2066     // reason.
2067     Builder.CreateAlignedStore(
2068         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2069                                CharUnits::One());
2070 
2071     // 11-16 are st(0..5).  Not sure why we stop at 5.
2072     // These have size 12, which is sizeof(long double) on
2073     // platforms with 4-byte alignment for that type.
2074     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2075     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2076   }
2077 
2078   return false;
2079 }
2080 
2081 //===----------------------------------------------------------------------===//
2082 // X86-64 ABI Implementation
2083 //===----------------------------------------------------------------------===//
2084 
2085 
2086 namespace {
2087 /// The AVX ABI level for X86 targets.
2088 enum class X86AVXABILevel {
2089   None,
2090   AVX,
2091   AVX512
2092 };
2093 
2094 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2095 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2096   switch (AVXLevel) {
2097   case X86AVXABILevel::AVX512:
2098     return 512;
2099   case X86AVXABILevel::AVX:
2100     return 256;
2101   case X86AVXABILevel::None:
2102     return 128;
2103   }
2104   llvm_unreachable("Unknown AVXLevel");
2105 }
2106 
2107 /// X86_64ABIInfo - The X86_64 ABI information.
2108 class X86_64ABIInfo : public SwiftABIInfo {
2109   enum Class {
2110     Integer = 0,
2111     SSE,
2112     SSEUp,
2113     X87,
2114     X87Up,
2115     ComplexX87,
2116     NoClass,
2117     Memory
2118   };
2119 
2120   /// merge - Implement the X86_64 ABI merging algorithm.
2121   ///
2122   /// Merge an accumulating classification \arg Accum with a field
2123   /// classification \arg Field.
2124   ///
2125   /// \param Accum - The accumulating classification. This should
2126   /// always be either NoClass or the result of a previous merge
2127   /// call. In addition, this should never be Memory (the caller
2128   /// should just return Memory for the aggregate).
2129   static Class merge(Class Accum, Class Field);
2130 
2131   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2132   ///
2133   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2134   /// final MEMORY or SSE classes when necessary.
2135   ///
2136   /// \param AggregateSize - The size of the current aggregate in
2137   /// the classification process.
2138   ///
2139   /// \param Lo - The classification for the parts of the type
2140   /// residing in the low word of the containing object.
2141   ///
2142   /// \param Hi - The classification for the parts of the type
2143   /// residing in the higher words of the containing object.
2144   ///
2145   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2146 
2147   /// classify - Determine the x86_64 register classes in which the
2148   /// given type T should be passed.
2149   ///
2150   /// \param Lo - The classification for the parts of the type
2151   /// residing in the low word of the containing object.
2152   ///
2153   /// \param Hi - The classification for the parts of the type
2154   /// residing in the high word of the containing object.
2155   ///
2156   /// \param OffsetBase - The bit offset of this type in the
2157   /// containing object.  Some parameters are classified different
2158   /// depending on whether they straddle an eightbyte boundary.
2159   ///
2160   /// \param isNamedArg - Whether the argument in question is a "named"
2161   /// argument, as used in AMD64-ABI 3.5.7.
2162   ///
2163   /// If a word is unused its result will be NoClass; if a type should
2164   /// be passed in Memory then at least the classification of \arg Lo
2165   /// will be Memory.
2166   ///
2167   /// The \arg Lo class will be NoClass iff the argument is ignored.
2168   ///
2169   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2170   /// also be ComplexX87.
2171   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2172                 bool isNamedArg) const;
2173 
2174   llvm::Type *GetByteVectorType(QualType Ty) const;
2175   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2176                                  unsigned IROffset, QualType SourceTy,
2177                                  unsigned SourceOffset) const;
2178   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2179                                      unsigned IROffset, QualType SourceTy,
2180                                      unsigned SourceOffset) const;
2181 
2182   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2183   /// such that the argument will be returned in memory.
2184   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2185 
2186   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2187   /// such that the argument will be passed in memory.
2188   ///
2189   /// \param freeIntRegs - The number of free integer registers remaining
2190   /// available.
2191   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2192 
2193   ABIArgInfo classifyReturnType(QualType RetTy) const;
2194 
2195   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2196                                   unsigned &neededInt, unsigned &neededSSE,
2197                                   bool isNamedArg) const;
2198 
2199   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2200                                        unsigned &NeededSSE) const;
2201 
2202   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2203                                            unsigned &NeededSSE) const;
2204 
2205   bool IsIllegalVectorType(QualType Ty) const;
2206 
2207   /// The 0.98 ABI revision clarified a lot of ambiguities,
2208   /// unfortunately in ways that were not always consistent with
2209   /// certain previous compilers.  In particular, platforms which
2210   /// required strict binary compatibility with older versions of GCC
2211   /// may need to exempt themselves.
2212   bool honorsRevision0_98() const {
2213     return !getTarget().getTriple().isOSDarwin();
2214   }
2215 
2216   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2217   /// classify it as INTEGER (for compatibility with older clang compilers).
2218   bool classifyIntegerMMXAsSSE() const {
2219     // Clang <= 3.8 did not do this.
2220     if (getContext().getLangOpts().getClangABICompat() <=
2221         LangOptions::ClangABI::Ver3_8)
2222       return false;
2223 
2224     const llvm::Triple &Triple = getTarget().getTriple();
2225     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2226       return false;
2227     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2228       return false;
2229     return true;
2230   }
2231 
2232   // GCC classifies vectors of __int128 as memory.
2233   bool passInt128VectorsInMem() const {
2234     // Clang <= 9.0 did not do this.
2235     if (getContext().getLangOpts().getClangABICompat() <=
2236         LangOptions::ClangABI::Ver9)
2237       return false;
2238 
2239     const llvm::Triple &T = getTarget().getTriple();
2240     return T.isOSLinux() || T.isOSNetBSD();
2241   }
2242 
2243   X86AVXABILevel AVXLevel;
2244   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2245   // 64-bit hardware.
2246   bool Has64BitPointers;
2247 
2248 public:
2249   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2250       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2251       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2252   }
2253 
2254   bool isPassedUsingAVXType(QualType type) const {
2255     unsigned neededInt, neededSSE;
2256     // The freeIntRegs argument doesn't matter here.
2257     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2258                                            /*isNamedArg*/true);
2259     if (info.isDirect()) {
2260       llvm::Type *ty = info.getCoerceToType();
2261       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2262         return (vectorTy->getBitWidth() > 128);
2263     }
2264     return false;
2265   }
2266 
2267   void computeInfo(CGFunctionInfo &FI) const override;
2268 
2269   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2270                     QualType Ty) const override;
2271   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2272                       QualType Ty) const override;
2273 
2274   bool has64BitPointers() const {
2275     return Has64BitPointers;
2276   }
2277 
2278   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2279                                     bool asReturnValue) const override {
2280     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2281   }
2282   bool isSwiftErrorInRegister() const override {
2283     return true;
2284   }
2285 };
2286 
2287 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2288 class WinX86_64ABIInfo : public SwiftABIInfo {
2289 public:
2290   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2291       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2292         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2293 
2294   void computeInfo(CGFunctionInfo &FI) const override;
2295 
2296   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2297                     QualType Ty) const override;
2298 
2299   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2300     // FIXME: Assumes vectorcall is in use.
2301     return isX86VectorTypeForVectorCall(getContext(), Ty);
2302   }
2303 
2304   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2305                                          uint64_t NumMembers) const override {
2306     // FIXME: Assumes vectorcall is in use.
2307     return isX86VectorCallAggregateSmallEnough(NumMembers);
2308   }
2309 
2310   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2311                                     bool asReturnValue) const override {
2312     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2313   }
2314 
2315   bool isSwiftErrorInRegister() const override {
2316     return true;
2317   }
2318 
2319 private:
2320   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2321                       bool IsVectorCall, bool IsRegCall) const;
2322   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2323                                       const ABIArgInfo &current) const;
2324   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2325                              bool IsVectorCall, bool IsRegCall) const;
2326 
2327   X86AVXABILevel AVXLevel;
2328 
2329   bool IsMingw64;
2330 };
2331 
2332 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2333 public:
2334   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2335       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
2336 
2337   const X86_64ABIInfo &getABIInfo() const {
2338     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2339   }
2340 
2341   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2342   /// the autoreleaseRV/retainRV optimization.
2343   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2344     return true;
2345   }
2346 
2347   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2348     return 7;
2349   }
2350 
2351   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2352                                llvm::Value *Address) const override {
2353     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2354 
2355     // 0-15 are the 16 integer registers.
2356     // 16 is %rip.
2357     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2358     return false;
2359   }
2360 
2361   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2362                                   StringRef Constraint,
2363                                   llvm::Type* Ty) const override {
2364     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2365   }
2366 
2367   bool isNoProtoCallVariadic(const CallArgList &args,
2368                              const FunctionNoProtoType *fnType) const override {
2369     // The default CC on x86-64 sets %al to the number of SSA
2370     // registers used, and GCC sets this when calling an unprototyped
2371     // function, so we override the default behavior.  However, don't do
2372     // that when AVX types are involved: the ABI explicitly states it is
2373     // undefined, and it doesn't work in practice because of how the ABI
2374     // defines varargs anyway.
2375     if (fnType->getCallConv() == CC_C) {
2376       bool HasAVXType = false;
2377       for (CallArgList::const_iterator
2378              it = args.begin(), ie = args.end(); it != ie; ++it) {
2379         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2380           HasAVXType = true;
2381           break;
2382         }
2383       }
2384 
2385       if (!HasAVXType)
2386         return true;
2387     }
2388 
2389     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2390   }
2391 
2392   llvm::Constant *
2393   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2394     unsigned Sig = (0xeb << 0) | // jmp rel8
2395                    (0x06 << 8) | //           .+0x08
2396                    ('v' << 16) |
2397                    ('2' << 24);
2398     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2399   }
2400 
2401   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2402                            CodeGen::CodeGenModule &CGM) const override {
2403     if (GV->isDeclaration())
2404       return;
2405     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2406       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2407         llvm::Function *Fn = cast<llvm::Function>(GV);
2408         Fn->addFnAttr("stackrealign");
2409       }
2410       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2411         llvm::Function *Fn = cast<llvm::Function>(GV);
2412         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2413       }
2414     }
2415   }
2416 };
2417 
2418 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2419   // If the argument does not end in .lib, automatically add the suffix.
2420   // If the argument contains a space, enclose it in quotes.
2421   // This matches the behavior of MSVC.
2422   bool Quote = (Lib.find(" ") != StringRef::npos);
2423   std::string ArgStr = Quote ? "\"" : "";
2424   ArgStr += Lib;
2425   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2426     ArgStr += ".lib";
2427   ArgStr += Quote ? "\"" : "";
2428   return ArgStr;
2429 }
2430 
2431 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2432 public:
2433   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2434         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2435         unsigned NumRegisterParameters)
2436     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2437         Win32StructABI, NumRegisterParameters, false) {}
2438 
2439   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2440                            CodeGen::CodeGenModule &CGM) const override;
2441 
2442   void getDependentLibraryOption(llvm::StringRef Lib,
2443                                  llvm::SmallString<24> &Opt) const override {
2444     Opt = "/DEFAULTLIB:";
2445     Opt += qualifyWindowsLibrary(Lib);
2446   }
2447 
2448   void getDetectMismatchOption(llvm::StringRef Name,
2449                                llvm::StringRef Value,
2450                                llvm::SmallString<32> &Opt) const override {
2451     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2452   }
2453 };
2454 
2455 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2456                                           CodeGen::CodeGenModule &CGM) {
2457   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2458 
2459     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2460       Fn->addFnAttr("stack-probe-size",
2461                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2462     if (CGM.getCodeGenOpts().NoStackArgProbe)
2463       Fn->addFnAttr("no-stack-arg-probe");
2464   }
2465 }
2466 
2467 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2468     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2469   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2470   if (GV->isDeclaration())
2471     return;
2472   addStackProbeTargetAttributes(D, GV, CGM);
2473 }
2474 
2475 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2476 public:
2477   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2478                              X86AVXABILevel AVXLevel)
2479       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {}
2480 
2481   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2482                            CodeGen::CodeGenModule &CGM) const override;
2483 
2484   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2485     return 7;
2486   }
2487 
2488   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2489                                llvm::Value *Address) const override {
2490     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2491 
2492     // 0-15 are the 16 integer registers.
2493     // 16 is %rip.
2494     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2495     return false;
2496   }
2497 
2498   void getDependentLibraryOption(llvm::StringRef Lib,
2499                                  llvm::SmallString<24> &Opt) const override {
2500     Opt = "/DEFAULTLIB:";
2501     Opt += qualifyWindowsLibrary(Lib);
2502   }
2503 
2504   void getDetectMismatchOption(llvm::StringRef Name,
2505                                llvm::StringRef Value,
2506                                llvm::SmallString<32> &Opt) const override {
2507     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2508   }
2509 };
2510 
2511 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2512     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2513   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2514   if (GV->isDeclaration())
2515     return;
2516   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2517     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2518       llvm::Function *Fn = cast<llvm::Function>(GV);
2519       Fn->addFnAttr("stackrealign");
2520     }
2521     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2522       llvm::Function *Fn = cast<llvm::Function>(GV);
2523       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2524     }
2525   }
2526 
2527   addStackProbeTargetAttributes(D, GV, CGM);
2528 }
2529 }
2530 
2531 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2532                               Class &Hi) const {
2533   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2534   //
2535   // (a) If one of the classes is Memory, the whole argument is passed in
2536   //     memory.
2537   //
2538   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2539   //     memory.
2540   //
2541   // (c) If the size of the aggregate exceeds two eightbytes and the first
2542   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2543   //     argument is passed in memory. NOTE: This is necessary to keep the
2544   //     ABI working for processors that don't support the __m256 type.
2545   //
2546   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2547   //
2548   // Some of these are enforced by the merging logic.  Others can arise
2549   // only with unions; for example:
2550   //   union { _Complex double; unsigned; }
2551   //
2552   // Note that clauses (b) and (c) were added in 0.98.
2553   //
2554   if (Hi == Memory)
2555     Lo = Memory;
2556   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2557     Lo = Memory;
2558   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2559     Lo = Memory;
2560   if (Hi == SSEUp && Lo != SSE)
2561     Hi = SSE;
2562 }
2563 
2564 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2565   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2566   // classified recursively so that always two fields are
2567   // considered. The resulting class is calculated according to
2568   // the classes of the fields in the eightbyte:
2569   //
2570   // (a) If both classes are equal, this is the resulting class.
2571   //
2572   // (b) If one of the classes is NO_CLASS, the resulting class is
2573   // the other class.
2574   //
2575   // (c) If one of the classes is MEMORY, the result is the MEMORY
2576   // class.
2577   //
2578   // (d) If one of the classes is INTEGER, the result is the
2579   // INTEGER.
2580   //
2581   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2582   // MEMORY is used as class.
2583   //
2584   // (f) Otherwise class SSE is used.
2585 
2586   // Accum should never be memory (we should have returned) or
2587   // ComplexX87 (because this cannot be passed in a structure).
2588   assert((Accum != Memory && Accum != ComplexX87) &&
2589          "Invalid accumulated classification during merge.");
2590   if (Accum == Field || Field == NoClass)
2591     return Accum;
2592   if (Field == Memory)
2593     return Memory;
2594   if (Accum == NoClass)
2595     return Field;
2596   if (Accum == Integer || Field == Integer)
2597     return Integer;
2598   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2599       Accum == X87 || Accum == X87Up)
2600     return Memory;
2601   return SSE;
2602 }
2603 
2604 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2605                              Class &Lo, Class &Hi, bool isNamedArg) const {
2606   // FIXME: This code can be simplified by introducing a simple value class for
2607   // Class pairs with appropriate constructor methods for the various
2608   // situations.
2609 
2610   // FIXME: Some of the split computations are wrong; unaligned vectors
2611   // shouldn't be passed in registers for example, so there is no chance they
2612   // can straddle an eightbyte. Verify & simplify.
2613 
2614   Lo = Hi = NoClass;
2615 
2616   Class &Current = OffsetBase < 64 ? Lo : Hi;
2617   Current = Memory;
2618 
2619   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2620     BuiltinType::Kind k = BT->getKind();
2621 
2622     if (k == BuiltinType::Void) {
2623       Current = NoClass;
2624     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2625       Lo = Integer;
2626       Hi = Integer;
2627     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2628       Current = Integer;
2629     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2630       Current = SSE;
2631     } else if (k == BuiltinType::LongDouble) {
2632       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2633       if (LDF == &llvm::APFloat::IEEEquad()) {
2634         Lo = SSE;
2635         Hi = SSEUp;
2636       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2637         Lo = X87;
2638         Hi = X87Up;
2639       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2640         Current = SSE;
2641       } else
2642         llvm_unreachable("unexpected long double representation!");
2643     }
2644     // FIXME: _Decimal32 and _Decimal64 are SSE.
2645     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2646     return;
2647   }
2648 
2649   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2650     // Classify the underlying integer type.
2651     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2652     return;
2653   }
2654 
2655   if (Ty->hasPointerRepresentation()) {
2656     Current = Integer;
2657     return;
2658   }
2659 
2660   if (Ty->isMemberPointerType()) {
2661     if (Ty->isMemberFunctionPointerType()) {
2662       if (Has64BitPointers) {
2663         // If Has64BitPointers, this is an {i64, i64}, so classify both
2664         // Lo and Hi now.
2665         Lo = Hi = Integer;
2666       } else {
2667         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2668         // straddles an eightbyte boundary, Hi should be classified as well.
2669         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2670         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2671         if (EB_FuncPtr != EB_ThisAdj) {
2672           Lo = Hi = Integer;
2673         } else {
2674           Current = Integer;
2675         }
2676       }
2677     } else {
2678       Current = Integer;
2679     }
2680     return;
2681   }
2682 
2683   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2684     uint64_t Size = getContext().getTypeSize(VT);
2685     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2686       // gcc passes the following as integer:
2687       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2688       // 2 bytes - <2 x char>, <1 x short>
2689       // 1 byte  - <1 x char>
2690       Current = Integer;
2691 
2692       // If this type crosses an eightbyte boundary, it should be
2693       // split.
2694       uint64_t EB_Lo = (OffsetBase) / 64;
2695       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2696       if (EB_Lo != EB_Hi)
2697         Hi = Lo;
2698     } else if (Size == 64) {
2699       QualType ElementType = VT->getElementType();
2700 
2701       // gcc passes <1 x double> in memory. :(
2702       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2703         return;
2704 
2705       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2706       // pass them as integer.  For platforms where clang is the de facto
2707       // platform compiler, we must continue to use integer.
2708       if (!classifyIntegerMMXAsSSE() &&
2709           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2710            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2711            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2712            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2713         Current = Integer;
2714       else
2715         Current = SSE;
2716 
2717       // If this type crosses an eightbyte boundary, it should be
2718       // split.
2719       if (OffsetBase && OffsetBase != 64)
2720         Hi = Lo;
2721     } else if (Size == 128 ||
2722                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2723       QualType ElementType = VT->getElementType();
2724 
2725       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2726       if (passInt128VectorsInMem() && Size != 128 &&
2727           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2728            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2729         return;
2730 
2731       // Arguments of 256-bits are split into four eightbyte chunks. The
2732       // least significant one belongs to class SSE and all the others to class
2733       // SSEUP. The original Lo and Hi design considers that types can't be
2734       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2735       // This design isn't correct for 256-bits, but since there're no cases
2736       // where the upper parts would need to be inspected, avoid adding
2737       // complexity and just consider Hi to match the 64-256 part.
2738       //
2739       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2740       // registers if they are "named", i.e. not part of the "..." of a
2741       // variadic function.
2742       //
2743       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2744       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2745       Lo = SSE;
2746       Hi = SSEUp;
2747     }
2748     return;
2749   }
2750 
2751   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2752     QualType ET = getContext().getCanonicalType(CT->getElementType());
2753 
2754     uint64_t Size = getContext().getTypeSize(Ty);
2755     if (ET->isIntegralOrEnumerationType()) {
2756       if (Size <= 64)
2757         Current = Integer;
2758       else if (Size <= 128)
2759         Lo = Hi = Integer;
2760     } else if (ET == getContext().FloatTy) {
2761       Current = SSE;
2762     } else if (ET == getContext().DoubleTy) {
2763       Lo = Hi = SSE;
2764     } else if (ET == getContext().LongDoubleTy) {
2765       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2766       if (LDF == &llvm::APFloat::IEEEquad())
2767         Current = Memory;
2768       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2769         Current = ComplexX87;
2770       else if (LDF == &llvm::APFloat::IEEEdouble())
2771         Lo = Hi = SSE;
2772       else
2773         llvm_unreachable("unexpected long double representation!");
2774     }
2775 
2776     // If this complex type crosses an eightbyte boundary then it
2777     // should be split.
2778     uint64_t EB_Real = (OffsetBase) / 64;
2779     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2780     if (Hi == NoClass && EB_Real != EB_Imag)
2781       Hi = Lo;
2782 
2783     return;
2784   }
2785 
2786   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2787     // Arrays are treated like structures.
2788 
2789     uint64_t Size = getContext().getTypeSize(Ty);
2790 
2791     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2792     // than eight eightbytes, ..., it has class MEMORY.
2793     if (Size > 512)
2794       return;
2795 
2796     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2797     // fields, it has class MEMORY.
2798     //
2799     // Only need to check alignment of array base.
2800     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2801       return;
2802 
2803     // Otherwise implement simplified merge. We could be smarter about
2804     // this, but it isn't worth it and would be harder to verify.
2805     Current = NoClass;
2806     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2807     uint64_t ArraySize = AT->getSize().getZExtValue();
2808 
2809     // The only case a 256-bit wide vector could be used is when the array
2810     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2811     // to work for sizes wider than 128, early check and fallback to memory.
2812     //
2813     if (Size > 128 &&
2814         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2815       return;
2816 
2817     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2818       Class FieldLo, FieldHi;
2819       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2820       Lo = merge(Lo, FieldLo);
2821       Hi = merge(Hi, FieldHi);
2822       if (Lo == Memory || Hi == Memory)
2823         break;
2824     }
2825 
2826     postMerge(Size, Lo, Hi);
2827     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2828     return;
2829   }
2830 
2831   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2832     uint64_t Size = getContext().getTypeSize(Ty);
2833 
2834     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2835     // than eight eightbytes, ..., it has class MEMORY.
2836     if (Size > 512)
2837       return;
2838 
2839     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2840     // copy constructor or a non-trivial destructor, it is passed by invisible
2841     // reference.
2842     if (getRecordArgABI(RT, getCXXABI()))
2843       return;
2844 
2845     const RecordDecl *RD = RT->getDecl();
2846 
2847     // Assume variable sized types are passed in memory.
2848     if (RD->hasFlexibleArrayMember())
2849       return;
2850 
2851     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2852 
2853     // Reset Lo class, this will be recomputed.
2854     Current = NoClass;
2855 
2856     // If this is a C++ record, classify the bases first.
2857     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2858       for (const auto &I : CXXRD->bases()) {
2859         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2860                "Unexpected base class!");
2861         const auto *Base =
2862             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2863 
2864         // Classify this field.
2865         //
2866         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2867         // single eightbyte, each is classified separately. Each eightbyte gets
2868         // initialized to class NO_CLASS.
2869         Class FieldLo, FieldHi;
2870         uint64_t Offset =
2871           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2872         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2873         Lo = merge(Lo, FieldLo);
2874         Hi = merge(Hi, FieldHi);
2875         if (Lo == Memory || Hi == Memory) {
2876           postMerge(Size, Lo, Hi);
2877           return;
2878         }
2879       }
2880     }
2881 
2882     // Classify the fields one at a time, merging the results.
2883     unsigned idx = 0;
2884     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2885            i != e; ++i, ++idx) {
2886       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2887       bool BitField = i->isBitField();
2888 
2889       // Ignore padding bit-fields.
2890       if (BitField && i->isUnnamedBitfield())
2891         continue;
2892 
2893       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2894       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2895       //
2896       // The only case a 256-bit wide vector could be used is when the struct
2897       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2898       // to work for sizes wider than 128, early check and fallback to memory.
2899       //
2900       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
2901                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2902         Lo = Memory;
2903         postMerge(Size, Lo, Hi);
2904         return;
2905       }
2906       // Note, skip this test for bit-fields, see below.
2907       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2908         Lo = Memory;
2909         postMerge(Size, Lo, Hi);
2910         return;
2911       }
2912 
2913       // Classify this field.
2914       //
2915       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2916       // exceeds a single eightbyte, each is classified
2917       // separately. Each eightbyte gets initialized to class
2918       // NO_CLASS.
2919       Class FieldLo, FieldHi;
2920 
2921       // Bit-fields require special handling, they do not force the
2922       // structure to be passed in memory even if unaligned, and
2923       // therefore they can straddle an eightbyte.
2924       if (BitField) {
2925         assert(!i->isUnnamedBitfield());
2926         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2927         uint64_t Size = i->getBitWidthValue(getContext());
2928 
2929         uint64_t EB_Lo = Offset / 64;
2930         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2931 
2932         if (EB_Lo) {
2933           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2934           FieldLo = NoClass;
2935           FieldHi = Integer;
2936         } else {
2937           FieldLo = Integer;
2938           FieldHi = EB_Hi ? Integer : NoClass;
2939         }
2940       } else
2941         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2942       Lo = merge(Lo, FieldLo);
2943       Hi = merge(Hi, FieldHi);
2944       if (Lo == Memory || Hi == Memory)
2945         break;
2946     }
2947 
2948     postMerge(Size, Lo, Hi);
2949   }
2950 }
2951 
2952 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2953   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2954   // place naturally.
2955   if (!isAggregateTypeForABI(Ty)) {
2956     // Treat an enum type as its underlying type.
2957     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2958       Ty = EnumTy->getDecl()->getIntegerType();
2959 
2960     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2961                                           : ABIArgInfo::getDirect());
2962   }
2963 
2964   return getNaturalAlignIndirect(Ty);
2965 }
2966 
2967 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2968   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2969     uint64_t Size = getContext().getTypeSize(VecTy);
2970     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2971     if (Size <= 64 || Size > LargestVector)
2972       return true;
2973     QualType EltTy = VecTy->getElementType();
2974     if (passInt128VectorsInMem() &&
2975         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
2976          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
2977       return true;
2978   }
2979 
2980   return false;
2981 }
2982 
2983 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2984                                             unsigned freeIntRegs) const {
2985   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2986   // place naturally.
2987   //
2988   // This assumption is optimistic, as there could be free registers available
2989   // when we need to pass this argument in memory, and LLVM could try to pass
2990   // the argument in the free register. This does not seem to happen currently,
2991   // but this code would be much safer if we could mark the argument with
2992   // 'onstack'. See PR12193.
2993   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2994     // Treat an enum type as its underlying type.
2995     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2996       Ty = EnumTy->getDecl()->getIntegerType();
2997 
2998     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
2999                                           : ABIArgInfo::getDirect());
3000   }
3001 
3002   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3003     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3004 
3005   // Compute the byval alignment. We specify the alignment of the byval in all
3006   // cases so that the mid-level optimizer knows the alignment of the byval.
3007   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3008 
3009   // Attempt to avoid passing indirect results using byval when possible. This
3010   // is important for good codegen.
3011   //
3012   // We do this by coercing the value into a scalar type which the backend can
3013   // handle naturally (i.e., without using byval).
3014   //
3015   // For simplicity, we currently only do this when we have exhausted all of the
3016   // free integer registers. Doing this when there are free integer registers
3017   // would require more care, as we would have to ensure that the coerced value
3018   // did not claim the unused register. That would require either reording the
3019   // arguments to the function (so that any subsequent inreg values came first),
3020   // or only doing this optimization when there were no following arguments that
3021   // might be inreg.
3022   //
3023   // We currently expect it to be rare (particularly in well written code) for
3024   // arguments to be passed on the stack when there are still free integer
3025   // registers available (this would typically imply large structs being passed
3026   // by value), so this seems like a fair tradeoff for now.
3027   //
3028   // We can revisit this if the backend grows support for 'onstack' parameter
3029   // attributes. See PR12193.
3030   if (freeIntRegs == 0) {
3031     uint64_t Size = getContext().getTypeSize(Ty);
3032 
3033     // If this type fits in an eightbyte, coerce it into the matching integral
3034     // type, which will end up on the stack (with alignment 8).
3035     if (Align == 8 && Size <= 64)
3036       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3037                                                           Size));
3038   }
3039 
3040   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3041 }
3042 
3043 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3044 /// register. Pick an LLVM IR type that will be passed as a vector register.
3045 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3046   // Wrapper structs/arrays that only contain vectors are passed just like
3047   // vectors; strip them off if present.
3048   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3049     Ty = QualType(InnerTy, 0);
3050 
3051   llvm::Type *IRType = CGT.ConvertType(Ty);
3052   if (isa<llvm::VectorType>(IRType)) {
3053     // Don't pass vXi128 vectors in their native type, the backend can't
3054     // legalize them.
3055     if (passInt128VectorsInMem() &&
3056         IRType->getVectorElementType()->isIntegerTy(128)) {
3057       // Use a vXi64 vector.
3058       uint64_t Size = getContext().getTypeSize(Ty);
3059       return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3060                                    Size / 64);
3061     }
3062 
3063     return IRType;
3064   }
3065 
3066   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3067     return IRType;
3068 
3069   // We couldn't find the preferred IR vector type for 'Ty'.
3070   uint64_t Size = getContext().getTypeSize(Ty);
3071   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3072 
3073 
3074   // Return a LLVM IR vector type based on the size of 'Ty'.
3075   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3076                                Size / 64);
3077 }
3078 
3079 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3080 /// is known to either be off the end of the specified type or being in
3081 /// alignment padding.  The user type specified is known to be at most 128 bits
3082 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3083 /// classification that put one of the two halves in the INTEGER class.
3084 ///
3085 /// It is conservatively correct to return false.
3086 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3087                                   unsigned EndBit, ASTContext &Context) {
3088   // If the bytes being queried are off the end of the type, there is no user
3089   // data hiding here.  This handles analysis of builtins, vectors and other
3090   // types that don't contain interesting padding.
3091   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3092   if (TySize <= StartBit)
3093     return true;
3094 
3095   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3096     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3097     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3098 
3099     // Check each element to see if the element overlaps with the queried range.
3100     for (unsigned i = 0; i != NumElts; ++i) {
3101       // If the element is after the span we care about, then we're done..
3102       unsigned EltOffset = i*EltSize;
3103       if (EltOffset >= EndBit) break;
3104 
3105       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3106       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3107                                  EndBit-EltOffset, Context))
3108         return false;
3109     }
3110     // If it overlaps no elements, then it is safe to process as padding.
3111     return true;
3112   }
3113 
3114   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3115     const RecordDecl *RD = RT->getDecl();
3116     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3117 
3118     // If this is a C++ record, check the bases first.
3119     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3120       for (const auto &I : CXXRD->bases()) {
3121         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3122                "Unexpected base class!");
3123         const auto *Base =
3124             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3125 
3126         // If the base is after the span we care about, ignore it.
3127         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3128         if (BaseOffset >= EndBit) continue;
3129 
3130         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3131         if (!BitsContainNoUserData(I.getType(), BaseStart,
3132                                    EndBit-BaseOffset, Context))
3133           return false;
3134       }
3135     }
3136 
3137     // Verify that no field has data that overlaps the region of interest.  Yes
3138     // this could be sped up a lot by being smarter about queried fields,
3139     // however we're only looking at structs up to 16 bytes, so we don't care
3140     // much.
3141     unsigned idx = 0;
3142     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3143          i != e; ++i, ++idx) {
3144       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3145 
3146       // If we found a field after the region we care about, then we're done.
3147       if (FieldOffset >= EndBit) break;
3148 
3149       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3150       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3151                                  Context))
3152         return false;
3153     }
3154 
3155     // If nothing in this record overlapped the area of interest, then we're
3156     // clean.
3157     return true;
3158   }
3159 
3160   return false;
3161 }
3162 
3163 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3164 /// float member at the specified offset.  For example, {int,{float}} has a
3165 /// float at offset 4.  It is conservatively correct for this routine to return
3166 /// false.
3167 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3168                                   const llvm::DataLayout &TD) {
3169   // Base case if we find a float.
3170   if (IROffset == 0 && IRType->isFloatTy())
3171     return true;
3172 
3173   // If this is a struct, recurse into the field at the specified offset.
3174   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3175     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3176     unsigned Elt = SL->getElementContainingOffset(IROffset);
3177     IROffset -= SL->getElementOffset(Elt);
3178     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3179   }
3180 
3181   // If this is an array, recurse into the field at the specified offset.
3182   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3183     llvm::Type *EltTy = ATy->getElementType();
3184     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3185     IROffset -= IROffset/EltSize*EltSize;
3186     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3187   }
3188 
3189   return false;
3190 }
3191 
3192 
3193 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3194 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3195 llvm::Type *X86_64ABIInfo::
3196 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3197                    QualType SourceTy, unsigned SourceOffset) const {
3198   // The only three choices we have are either double, <2 x float>, or float. We
3199   // pass as float if the last 4 bytes is just padding.  This happens for
3200   // structs that contain 3 floats.
3201   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3202                             SourceOffset*8+64, getContext()))
3203     return llvm::Type::getFloatTy(getVMContext());
3204 
3205   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3206   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3207   // case.
3208   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3209       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3210     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
3211 
3212   return llvm::Type::getDoubleTy(getVMContext());
3213 }
3214 
3215 
3216 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3217 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3218 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3219 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3220 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3221 /// etc).
3222 ///
3223 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3224 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3225 /// the 8-byte value references.  PrefType may be null.
3226 ///
3227 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3228 /// an offset into this that we're processing (which is always either 0 or 8).
3229 ///
3230 llvm::Type *X86_64ABIInfo::
3231 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3232                        QualType SourceTy, unsigned SourceOffset) const {
3233   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3234   // returning an 8-byte unit starting with it.  See if we can safely use it.
3235   if (IROffset == 0) {
3236     // Pointers and int64's always fill the 8-byte unit.
3237     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3238         IRType->isIntegerTy(64))
3239       return IRType;
3240 
3241     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3242     // goodness in the source type is just tail padding.  This is allowed to
3243     // kick in for struct {double,int} on the int, but not on
3244     // struct{double,int,int} because we wouldn't return the second int.  We
3245     // have to do this analysis on the source type because we can't depend on
3246     // unions being lowered a specific way etc.
3247     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3248         IRType->isIntegerTy(32) ||
3249         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3250       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3251           cast<llvm::IntegerType>(IRType)->getBitWidth();
3252 
3253       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3254                                 SourceOffset*8+64, getContext()))
3255         return IRType;
3256     }
3257   }
3258 
3259   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3260     // If this is a struct, recurse into the field at the specified offset.
3261     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3262     if (IROffset < SL->getSizeInBytes()) {
3263       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3264       IROffset -= SL->getElementOffset(FieldIdx);
3265 
3266       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3267                                     SourceTy, SourceOffset);
3268     }
3269   }
3270 
3271   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3272     llvm::Type *EltTy = ATy->getElementType();
3273     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3274     unsigned EltOffset = IROffset/EltSize*EltSize;
3275     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3276                                   SourceOffset);
3277   }
3278 
3279   // Okay, we don't have any better idea of what to pass, so we pass this in an
3280   // integer register that isn't too big to fit the rest of the struct.
3281   unsigned TySizeInBytes =
3282     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3283 
3284   assert(TySizeInBytes != SourceOffset && "Empty field?");
3285 
3286   // It is always safe to classify this as an integer type up to i64 that
3287   // isn't larger than the structure.
3288   return llvm::IntegerType::get(getVMContext(),
3289                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3290 }
3291 
3292 
3293 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3294 /// be used as elements of a two register pair to pass or return, return a
3295 /// first class aggregate to represent them.  For example, if the low part of
3296 /// a by-value argument should be passed as i32* and the high part as float,
3297 /// return {i32*, float}.
3298 static llvm::Type *
3299 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3300                            const llvm::DataLayout &TD) {
3301   // In order to correctly satisfy the ABI, we need to the high part to start
3302   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3303   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3304   // the second element at offset 8.  Check for this:
3305   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3306   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3307   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3308   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3309 
3310   // To handle this, we have to increase the size of the low part so that the
3311   // second element will start at an 8 byte offset.  We can't increase the size
3312   // of the second element because it might make us access off the end of the
3313   // struct.
3314   if (HiStart != 8) {
3315     // There are usually two sorts of types the ABI generation code can produce
3316     // for the low part of a pair that aren't 8 bytes in size: float or
3317     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3318     // NaCl).
3319     // Promote these to a larger type.
3320     if (Lo->isFloatTy())
3321       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3322     else {
3323       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3324              && "Invalid/unknown lo type");
3325       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3326     }
3327   }
3328 
3329   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3330 
3331   // Verify that the second element is at an 8-byte offset.
3332   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3333          "Invalid x86-64 argument pair!");
3334   return Result;
3335 }
3336 
3337 ABIArgInfo X86_64ABIInfo::
3338 classifyReturnType(QualType RetTy) const {
3339   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3340   // classification algorithm.
3341   X86_64ABIInfo::Class Lo, Hi;
3342   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3343 
3344   // Check some invariants.
3345   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3346   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3347 
3348   llvm::Type *ResType = nullptr;
3349   switch (Lo) {
3350   case NoClass:
3351     if (Hi == NoClass)
3352       return ABIArgInfo::getIgnore();
3353     // If the low part is just padding, it takes no register, leave ResType
3354     // null.
3355     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3356            "Unknown missing lo part");
3357     break;
3358 
3359   case SSEUp:
3360   case X87Up:
3361     llvm_unreachable("Invalid classification for lo word.");
3362 
3363     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3364     // hidden argument.
3365   case Memory:
3366     return getIndirectReturnResult(RetTy);
3367 
3368     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3369     // available register of the sequence %rax, %rdx is used.
3370   case Integer:
3371     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3372 
3373     // If we have a sign or zero extended integer, make sure to return Extend
3374     // so that the parameter gets the right LLVM IR attributes.
3375     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3376       // Treat an enum type as its underlying type.
3377       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3378         RetTy = EnumTy->getDecl()->getIntegerType();
3379 
3380       if (RetTy->isIntegralOrEnumerationType() &&
3381           RetTy->isPromotableIntegerType())
3382         return ABIArgInfo::getExtend(RetTy);
3383     }
3384     break;
3385 
3386     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3387     // available SSE register of the sequence %xmm0, %xmm1 is used.
3388   case SSE:
3389     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3390     break;
3391 
3392     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3393     // returned on the X87 stack in %st0 as 80-bit x87 number.
3394   case X87:
3395     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3396     break;
3397 
3398     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3399     // part of the value is returned in %st0 and the imaginary part in
3400     // %st1.
3401   case ComplexX87:
3402     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3403     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3404                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3405     break;
3406   }
3407 
3408   llvm::Type *HighPart = nullptr;
3409   switch (Hi) {
3410     // Memory was handled previously and X87 should
3411     // never occur as a hi class.
3412   case Memory:
3413   case X87:
3414     llvm_unreachable("Invalid classification for hi word.");
3415 
3416   case ComplexX87: // Previously handled.
3417   case NoClass:
3418     break;
3419 
3420   case Integer:
3421     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3422     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3423       return ABIArgInfo::getDirect(HighPart, 8);
3424     break;
3425   case SSE:
3426     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3427     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3428       return ABIArgInfo::getDirect(HighPart, 8);
3429     break;
3430 
3431     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3432     // is passed in the next available eightbyte chunk if the last used
3433     // vector register.
3434     //
3435     // SSEUP should always be preceded by SSE, just widen.
3436   case SSEUp:
3437     assert(Lo == SSE && "Unexpected SSEUp classification.");
3438     ResType = GetByteVectorType(RetTy);
3439     break;
3440 
3441     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3442     // returned together with the previous X87 value in %st0.
3443   case X87Up:
3444     // If X87Up is preceded by X87, we don't need to do
3445     // anything. However, in some cases with unions it may not be
3446     // preceded by X87. In such situations we follow gcc and pass the
3447     // extra bits in an SSE reg.
3448     if (Lo != X87) {
3449       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3450       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3451         return ABIArgInfo::getDirect(HighPart, 8);
3452     }
3453     break;
3454   }
3455 
3456   // If a high part was specified, merge it together with the low part.  It is
3457   // known to pass in the high eightbyte of the result.  We do this by forming a
3458   // first class struct aggregate with the high and low part: {low, high}
3459   if (HighPart)
3460     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3461 
3462   return ABIArgInfo::getDirect(ResType);
3463 }
3464 
3465 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3466   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3467   bool isNamedArg)
3468   const
3469 {
3470   Ty = useFirstFieldIfTransparentUnion(Ty);
3471 
3472   X86_64ABIInfo::Class Lo, Hi;
3473   classify(Ty, 0, Lo, Hi, isNamedArg);
3474 
3475   // Check some invariants.
3476   // FIXME: Enforce these by construction.
3477   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3478   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3479 
3480   neededInt = 0;
3481   neededSSE = 0;
3482   llvm::Type *ResType = nullptr;
3483   switch (Lo) {
3484   case NoClass:
3485     if (Hi == NoClass)
3486       return ABIArgInfo::getIgnore();
3487     // If the low part is just padding, it takes no register, leave ResType
3488     // null.
3489     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3490            "Unknown missing lo part");
3491     break;
3492 
3493     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3494     // on the stack.
3495   case Memory:
3496 
3497     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3498     // COMPLEX_X87, it is passed in memory.
3499   case X87:
3500   case ComplexX87:
3501     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3502       ++neededInt;
3503     return getIndirectResult(Ty, freeIntRegs);
3504 
3505   case SSEUp:
3506   case X87Up:
3507     llvm_unreachable("Invalid classification for lo word.");
3508 
3509     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3510     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3511     // and %r9 is used.
3512   case Integer:
3513     ++neededInt;
3514 
3515     // Pick an 8-byte type based on the preferred type.
3516     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3517 
3518     // If we have a sign or zero extended integer, make sure to return Extend
3519     // so that the parameter gets the right LLVM IR attributes.
3520     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3521       // Treat an enum type as its underlying type.
3522       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3523         Ty = EnumTy->getDecl()->getIntegerType();
3524 
3525       if (Ty->isIntegralOrEnumerationType() &&
3526           Ty->isPromotableIntegerType())
3527         return ABIArgInfo::getExtend(Ty);
3528     }
3529 
3530     break;
3531 
3532     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3533     // available SSE register is used, the registers are taken in the
3534     // order from %xmm0 to %xmm7.
3535   case SSE: {
3536     llvm::Type *IRType = CGT.ConvertType(Ty);
3537     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3538     ++neededSSE;
3539     break;
3540   }
3541   }
3542 
3543   llvm::Type *HighPart = nullptr;
3544   switch (Hi) {
3545     // Memory was handled previously, ComplexX87 and X87 should
3546     // never occur as hi classes, and X87Up must be preceded by X87,
3547     // which is passed in memory.
3548   case Memory:
3549   case X87:
3550   case ComplexX87:
3551     llvm_unreachable("Invalid classification for hi word.");
3552 
3553   case NoClass: break;
3554 
3555   case Integer:
3556     ++neededInt;
3557     // Pick an 8-byte type based on the preferred type.
3558     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3559 
3560     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3561       return ABIArgInfo::getDirect(HighPart, 8);
3562     break;
3563 
3564     // X87Up generally doesn't occur here (long double is passed in
3565     // memory), except in situations involving unions.
3566   case X87Up:
3567   case SSE:
3568     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3569 
3570     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3571       return ABIArgInfo::getDirect(HighPart, 8);
3572 
3573     ++neededSSE;
3574     break;
3575 
3576     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3577     // eightbyte is passed in the upper half of the last used SSE
3578     // register.  This only happens when 128-bit vectors are passed.
3579   case SSEUp:
3580     assert(Lo == SSE && "Unexpected SSEUp classification");
3581     ResType = GetByteVectorType(Ty);
3582     break;
3583   }
3584 
3585   // If a high part was specified, merge it together with the low part.  It is
3586   // known to pass in the high eightbyte of the result.  We do this by forming a
3587   // first class struct aggregate with the high and low part: {low, high}
3588   if (HighPart)
3589     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3590 
3591   return ABIArgInfo::getDirect(ResType);
3592 }
3593 
3594 ABIArgInfo
3595 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3596                                              unsigned &NeededSSE) const {
3597   auto RT = Ty->getAs<RecordType>();
3598   assert(RT && "classifyRegCallStructType only valid with struct types");
3599 
3600   if (RT->getDecl()->hasFlexibleArrayMember())
3601     return getIndirectReturnResult(Ty);
3602 
3603   // Sum up bases
3604   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3605     if (CXXRD->isDynamicClass()) {
3606       NeededInt = NeededSSE = 0;
3607       return getIndirectReturnResult(Ty);
3608     }
3609 
3610     for (const auto &I : CXXRD->bases())
3611       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3612               .isIndirect()) {
3613         NeededInt = NeededSSE = 0;
3614         return getIndirectReturnResult(Ty);
3615       }
3616   }
3617 
3618   // Sum up members
3619   for (const auto *FD : RT->getDecl()->fields()) {
3620     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3621       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3622               .isIndirect()) {
3623         NeededInt = NeededSSE = 0;
3624         return getIndirectReturnResult(Ty);
3625       }
3626     } else {
3627       unsigned LocalNeededInt, LocalNeededSSE;
3628       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3629                                LocalNeededSSE, true)
3630               .isIndirect()) {
3631         NeededInt = NeededSSE = 0;
3632         return getIndirectReturnResult(Ty);
3633       }
3634       NeededInt += LocalNeededInt;
3635       NeededSSE += LocalNeededSSE;
3636     }
3637   }
3638 
3639   return ABIArgInfo::getDirect();
3640 }
3641 
3642 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3643                                                     unsigned &NeededInt,
3644                                                     unsigned &NeededSSE) const {
3645 
3646   NeededInt = 0;
3647   NeededSSE = 0;
3648 
3649   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3650 }
3651 
3652 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3653 
3654   const unsigned CallingConv = FI.getCallingConvention();
3655   // It is possible to force Win64 calling convention on any x86_64 target by
3656   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3657   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3658   if (CallingConv == llvm::CallingConv::Win64) {
3659     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3660     Win64ABIInfo.computeInfo(FI);
3661     return;
3662   }
3663 
3664   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3665 
3666   // Keep track of the number of assigned registers.
3667   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3668   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3669   unsigned NeededInt, NeededSSE;
3670 
3671   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3672     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3673         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3674       FI.getReturnInfo() =
3675           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3676       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3677         FreeIntRegs -= NeededInt;
3678         FreeSSERegs -= NeededSSE;
3679       } else {
3680         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3681       }
3682     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
3683       // Complex Long Double Type is passed in Memory when Regcall
3684       // calling convention is used.
3685       const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
3686       if (getContext().getCanonicalType(CT->getElementType()) ==
3687           getContext().LongDoubleTy)
3688         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3689     } else
3690       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3691   }
3692 
3693   // If the return value is indirect, then the hidden argument is consuming one
3694   // integer register.
3695   if (FI.getReturnInfo().isIndirect())
3696     --FreeIntRegs;
3697 
3698   // The chain argument effectively gives us another free register.
3699   if (FI.isChainCall())
3700     ++FreeIntRegs;
3701 
3702   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3703   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3704   // get assigned (in left-to-right order) for passing as follows...
3705   unsigned ArgNo = 0;
3706   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3707        it != ie; ++it, ++ArgNo) {
3708     bool IsNamedArg = ArgNo < NumRequiredArgs;
3709 
3710     if (IsRegCall && it->type->isStructureOrClassType())
3711       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3712     else
3713       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3714                                       NeededSSE, IsNamedArg);
3715 
3716     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3717     // eightbyte of an argument, the whole argument is passed on the
3718     // stack. If registers have already been assigned for some
3719     // eightbytes of such an argument, the assignments get reverted.
3720     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3721       FreeIntRegs -= NeededInt;
3722       FreeSSERegs -= NeededSSE;
3723     } else {
3724       it->info = getIndirectResult(it->type, FreeIntRegs);
3725     }
3726   }
3727 }
3728 
3729 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3730                                          Address VAListAddr, QualType Ty) {
3731   Address overflow_arg_area_p =
3732       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3733   llvm::Value *overflow_arg_area =
3734     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3735 
3736   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3737   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3738   // It isn't stated explicitly in the standard, but in practice we use
3739   // alignment greater than 16 where necessary.
3740   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3741   if (Align > CharUnits::fromQuantity(8)) {
3742     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3743                                                       Align);
3744   }
3745 
3746   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3747   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3748   llvm::Value *Res =
3749     CGF.Builder.CreateBitCast(overflow_arg_area,
3750                               llvm::PointerType::getUnqual(LTy));
3751 
3752   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3753   // l->overflow_arg_area + sizeof(type).
3754   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3755   // an 8 byte boundary.
3756 
3757   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3758   llvm::Value *Offset =
3759       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3760   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3761                                             "overflow_arg_area.next");
3762   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3763 
3764   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3765   return Address(Res, Align);
3766 }
3767 
3768 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3769                                  QualType Ty) const {
3770   // Assume that va_list type is correct; should be pointer to LLVM type:
3771   // struct {
3772   //   i32 gp_offset;
3773   //   i32 fp_offset;
3774   //   i8* overflow_arg_area;
3775   //   i8* reg_save_area;
3776   // };
3777   unsigned neededInt, neededSSE;
3778 
3779   Ty = getContext().getCanonicalType(Ty);
3780   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3781                                        /*isNamedArg*/false);
3782 
3783   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3784   // in the registers. If not go to step 7.
3785   if (!neededInt && !neededSSE)
3786     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3787 
3788   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3789   // general purpose registers needed to pass type and num_fp to hold
3790   // the number of floating point registers needed.
3791 
3792   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3793   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3794   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3795   //
3796   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3797   // register save space).
3798 
3799   llvm::Value *InRegs = nullptr;
3800   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3801   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3802   if (neededInt) {
3803     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3804     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3805     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3806     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3807   }
3808 
3809   if (neededSSE) {
3810     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3811     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3812     llvm::Value *FitsInFP =
3813       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3814     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3815     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3816   }
3817 
3818   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3819   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3820   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3821   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3822 
3823   // Emit code to load the value if it was passed in registers.
3824 
3825   CGF.EmitBlock(InRegBlock);
3826 
3827   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3828   // an offset of l->gp_offset and/or l->fp_offset. This may require
3829   // copying to a temporary location in case the parameter is passed
3830   // in different register classes or requires an alignment greater
3831   // than 8 for general purpose registers and 16 for XMM registers.
3832   //
3833   // FIXME: This really results in shameful code when we end up needing to
3834   // collect arguments from different places; often what should result in a
3835   // simple assembling of a structure from scattered addresses has many more
3836   // loads than necessary. Can we clean this up?
3837   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3838   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3839       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3840 
3841   Address RegAddr = Address::invalid();
3842   if (neededInt && neededSSE) {
3843     // FIXME: Cleanup.
3844     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3845     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3846     Address Tmp = CGF.CreateMemTemp(Ty);
3847     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3848     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3849     llvm::Type *TyLo = ST->getElementType(0);
3850     llvm::Type *TyHi = ST->getElementType(1);
3851     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3852            "Unexpected ABI info for mixed regs");
3853     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3854     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3855     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3856     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3857     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3858     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3859 
3860     // Copy the first element.
3861     // FIXME: Our choice of alignment here and below is probably pessimistic.
3862     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3863         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3864         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
3865     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3866 
3867     // Copy the second element.
3868     V = CGF.Builder.CreateAlignedLoad(
3869         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3870         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
3871     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3872 
3873     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3874   } else if (neededInt) {
3875     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3876                       CharUnits::fromQuantity(8));
3877     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3878 
3879     // Copy to a temporary if necessary to ensure the appropriate alignment.
3880     std::pair<CharUnits, CharUnits> SizeAlign =
3881         getContext().getTypeInfoInChars(Ty);
3882     uint64_t TySize = SizeAlign.first.getQuantity();
3883     CharUnits TyAlign = SizeAlign.second;
3884 
3885     // Copy into a temporary if the type is more aligned than the
3886     // register save area.
3887     if (TyAlign.getQuantity() > 8) {
3888       Address Tmp = CGF.CreateMemTemp(Ty);
3889       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3890       RegAddr = Tmp;
3891     }
3892 
3893   } else if (neededSSE == 1) {
3894     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3895                       CharUnits::fromQuantity(16));
3896     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3897   } else {
3898     assert(neededSSE == 2 && "Invalid number of needed registers!");
3899     // SSE registers are spaced 16 bytes apart in the register save
3900     // area, we need to collect the two eightbytes together.
3901     // The ABI isn't explicit about this, but it seems reasonable
3902     // to assume that the slots are 16-byte aligned, since the stack is
3903     // naturally 16-byte aligned and the prologue is expected to store
3904     // all the SSE registers to the RSA.
3905     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3906                                 CharUnits::fromQuantity(16));
3907     Address RegAddrHi =
3908       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3909                                              CharUnits::fromQuantity(16));
3910     llvm::Type *ST = AI.canHaveCoerceToType()
3911                          ? AI.getCoerceToType()
3912                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3913     llvm::Value *V;
3914     Address Tmp = CGF.CreateMemTemp(Ty);
3915     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3916     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3917         RegAddrLo, ST->getStructElementType(0)));
3918     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3919     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
3920         RegAddrHi, ST->getStructElementType(1)));
3921     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3922 
3923     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3924   }
3925 
3926   // AMD64-ABI 3.5.7p5: Step 5. Set:
3927   // l->gp_offset = l->gp_offset + num_gp * 8
3928   // l->fp_offset = l->fp_offset + num_fp * 16.
3929   if (neededInt) {
3930     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3931     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3932                             gp_offset_p);
3933   }
3934   if (neededSSE) {
3935     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3936     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3937                             fp_offset_p);
3938   }
3939   CGF.EmitBranch(ContBlock);
3940 
3941   // Emit code to load the value if it was passed in memory.
3942 
3943   CGF.EmitBlock(InMemBlock);
3944   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3945 
3946   // Return the appropriate result.
3947 
3948   CGF.EmitBlock(ContBlock);
3949   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3950                                  "vaarg.addr");
3951   return ResAddr;
3952 }
3953 
3954 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3955                                    QualType Ty) const {
3956   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3957                           CGF.getContext().getTypeInfoInChars(Ty),
3958                           CharUnits::fromQuantity(8),
3959                           /*allowHigherAlign*/ false);
3960 }
3961 
3962 ABIArgInfo
3963 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
3964                                     const ABIArgInfo &current) const {
3965   // Assumes vectorCall calling convention.
3966   const Type *Base = nullptr;
3967   uint64_t NumElts = 0;
3968 
3969   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3970       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3971     FreeSSERegs -= NumElts;
3972     return getDirectX86Hva();
3973   }
3974   return current;
3975 }
3976 
3977 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3978                                       bool IsReturnType, bool IsVectorCall,
3979                                       bool IsRegCall) const {
3980 
3981   if (Ty->isVoidType())
3982     return ABIArgInfo::getIgnore();
3983 
3984   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3985     Ty = EnumTy->getDecl()->getIntegerType();
3986 
3987   TypeInfo Info = getContext().getTypeInfo(Ty);
3988   uint64_t Width = Info.Width;
3989   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3990 
3991   const RecordType *RT = Ty->getAs<RecordType>();
3992   if (RT) {
3993     if (!IsReturnType) {
3994       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3995         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3996     }
3997 
3998     if (RT->getDecl()->hasFlexibleArrayMember())
3999       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4000 
4001   }
4002 
4003   const Type *Base = nullptr;
4004   uint64_t NumElts = 0;
4005   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4006   // other targets.
4007   if ((IsVectorCall || IsRegCall) &&
4008       isHomogeneousAggregate(Ty, Base, NumElts)) {
4009     if (IsRegCall) {
4010       if (FreeSSERegs >= NumElts) {
4011         FreeSSERegs -= NumElts;
4012         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4013           return ABIArgInfo::getDirect();
4014         return ABIArgInfo::getExpand();
4015       }
4016       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4017     } else if (IsVectorCall) {
4018       if (FreeSSERegs >= NumElts &&
4019           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4020         FreeSSERegs -= NumElts;
4021         return ABIArgInfo::getDirect();
4022       } else if (IsReturnType) {
4023         return ABIArgInfo::getExpand();
4024       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4025         // HVAs are delayed and reclassified in the 2nd step.
4026         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4027       }
4028     }
4029   }
4030 
4031   if (Ty->isMemberPointerType()) {
4032     // If the member pointer is represented by an LLVM int or ptr, pass it
4033     // directly.
4034     llvm::Type *LLTy = CGT.ConvertType(Ty);
4035     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4036       return ABIArgInfo::getDirect();
4037   }
4038 
4039   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4040     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4041     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4042     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4043       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4044 
4045     // Otherwise, coerce it to a small integer.
4046     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4047   }
4048 
4049   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4050     switch (BT->getKind()) {
4051     case BuiltinType::Bool:
4052       // Bool type is always extended to the ABI, other builtin types are not
4053       // extended.
4054       return ABIArgInfo::getExtend(Ty);
4055 
4056     case BuiltinType::LongDouble:
4057       // Mingw64 GCC uses the old 80 bit extended precision floating point
4058       // unit. It passes them indirectly through memory.
4059       if (IsMingw64) {
4060         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4061         if (LDF == &llvm::APFloat::x87DoubleExtended())
4062           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4063       }
4064       break;
4065 
4066     case BuiltinType::Int128:
4067     case BuiltinType::UInt128:
4068       // If it's a parameter type, the normal ABI rule is that arguments larger
4069       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4070       // even though it isn't particularly efficient.
4071       if (!IsReturnType)
4072         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4073 
4074       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4075       // Clang matches them for compatibility.
4076       return ABIArgInfo::getDirect(
4077           llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));
4078 
4079     default:
4080       break;
4081     }
4082   }
4083 
4084   return ABIArgInfo::getDirect();
4085 }
4086 
4087 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4088                                              unsigned FreeSSERegs,
4089                                              bool IsVectorCall,
4090                                              bool IsRegCall) const {
4091   unsigned Count = 0;
4092   for (auto &I : FI.arguments()) {
4093     // Vectorcall in x64 only permits the first 6 arguments to be passed
4094     // as XMM/YMM registers.
4095     if (Count < VectorcallMaxParamNumAsReg)
4096       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4097     else {
4098       // Since these cannot be passed in registers, pretend no registers
4099       // are left.
4100       unsigned ZeroSSERegsAvail = 0;
4101       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4102                         IsVectorCall, IsRegCall);
4103     }
4104     ++Count;
4105   }
4106 
4107   for (auto &I : FI.arguments()) {
4108     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4109   }
4110 }
4111 
4112 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4113   const unsigned CC = FI.getCallingConvention();
4114   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4115   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4116 
4117   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4118   // classification rules.
4119   if (CC == llvm::CallingConv::X86_64_SysV) {
4120     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4121     SysVABIInfo.computeInfo(FI);
4122     return;
4123   }
4124 
4125   unsigned FreeSSERegs = 0;
4126   if (IsVectorCall) {
4127     // We can use up to 4 SSE return registers with vectorcall.
4128     FreeSSERegs = 4;
4129   } else if (IsRegCall) {
4130     // RegCall gives us 16 SSE registers.
4131     FreeSSERegs = 16;
4132   }
4133 
4134   if (!getCXXABI().classifyReturnType(FI))
4135     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4136                                   IsVectorCall, IsRegCall);
4137 
4138   if (IsVectorCall) {
4139     // We can use up to 6 SSE register parameters with vectorcall.
4140     FreeSSERegs = 6;
4141   } else if (IsRegCall) {
4142     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4143     FreeSSERegs = 16;
4144   }
4145 
4146   if (IsVectorCall) {
4147     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4148   } else {
4149     for (auto &I : FI.arguments())
4150       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4151   }
4152 
4153 }
4154 
4155 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4156                                     QualType Ty) const {
4157 
4158   bool IsIndirect = false;
4159 
4160   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4161   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4162   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4163     uint64_t Width = getContext().getTypeSize(Ty);
4164     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4165   }
4166 
4167   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4168                           CGF.getContext().getTypeInfoInChars(Ty),
4169                           CharUnits::fromQuantity(8),
4170                           /*allowHigherAlign*/ false);
4171 }
4172 
4173 // PowerPC-32
4174 namespace {
4175 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4176 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4177   bool IsSoftFloatABI;
4178 
4179   CharUnits getParamTypeAlignment(QualType Ty) const;
4180 
4181 public:
4182   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
4183       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
4184 
4185   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4186                     QualType Ty) const override;
4187 };
4188 
4189 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4190 public:
4191   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
4192       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
4193 
4194   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4195     // This is recovered from gcc output.
4196     return 1; // r1 is the dedicated stack pointer
4197   }
4198 
4199   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4200                                llvm::Value *Address) const override;
4201 };
4202 }
4203 
4204 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4205   // Complex types are passed just like their elements
4206   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4207     Ty = CTy->getElementType();
4208 
4209   if (Ty->isVectorType())
4210     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4211                                                                        : 4);
4212 
4213   // For single-element float/vector structs, we consider the whole type
4214   // to have the same alignment requirements as its single element.
4215   const Type *AlignTy = nullptr;
4216   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4217     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4218     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4219         (BT && BT->isFloatingPoint()))
4220       AlignTy = EltType;
4221   }
4222 
4223   if (AlignTy)
4224     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4225   return CharUnits::fromQuantity(4);
4226 }
4227 
4228 // TODO: this implementation is now likely redundant with
4229 // DefaultABIInfo::EmitVAArg.
4230 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4231                                       QualType Ty) const {
4232   if (getTarget().getTriple().isOSDarwin()) {
4233     auto TI = getContext().getTypeInfoInChars(Ty);
4234     TI.second = getParamTypeAlignment(Ty);
4235 
4236     CharUnits SlotSize = CharUnits::fromQuantity(4);
4237     return emitVoidPtrVAArg(CGF, VAList, Ty,
4238                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4239                             /*AllowHigherAlign=*/true);
4240   }
4241 
4242   const unsigned OverflowLimit = 8;
4243   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4244     // TODO: Implement this. For now ignore.
4245     (void)CTy;
4246     return Address::invalid(); // FIXME?
4247   }
4248 
4249   // struct __va_list_tag {
4250   //   unsigned char gpr;
4251   //   unsigned char fpr;
4252   //   unsigned short reserved;
4253   //   void *overflow_arg_area;
4254   //   void *reg_save_area;
4255   // };
4256 
4257   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4258   bool isInt =
4259       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4260   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4261 
4262   // All aggregates are passed indirectly?  That doesn't seem consistent
4263   // with the argument-lowering code.
4264   bool isIndirect = Ty->isAggregateType();
4265 
4266   CGBuilderTy &Builder = CGF.Builder;
4267 
4268   // The calling convention either uses 1-2 GPRs or 1 FPR.
4269   Address NumRegsAddr = Address::invalid();
4270   if (isInt || IsSoftFloatABI) {
4271     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4272   } else {
4273     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4274   }
4275 
4276   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4277 
4278   // "Align" the register count when TY is i64.
4279   if (isI64 || (isF64 && IsSoftFloatABI)) {
4280     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4281     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4282   }
4283 
4284   llvm::Value *CC =
4285       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4286 
4287   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4288   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4289   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4290 
4291   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4292 
4293   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4294   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4295 
4296   // Case 1: consume registers.
4297   Address RegAddr = Address::invalid();
4298   {
4299     CGF.EmitBlock(UsingRegs);
4300 
4301     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4302     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4303                       CharUnits::fromQuantity(8));
4304     assert(RegAddr.getElementType() == CGF.Int8Ty);
4305 
4306     // Floating-point registers start after the general-purpose registers.
4307     if (!(isInt || IsSoftFloatABI)) {
4308       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4309                                                    CharUnits::fromQuantity(32));
4310     }
4311 
4312     // Get the address of the saved value by scaling the number of
4313     // registers we've used by the number of
4314     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4315     llvm::Value *RegOffset =
4316       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4317     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4318                                             RegAddr.getPointer(), RegOffset),
4319                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4320     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4321 
4322     // Increase the used-register count.
4323     NumRegs =
4324       Builder.CreateAdd(NumRegs,
4325                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4326     Builder.CreateStore(NumRegs, NumRegsAddr);
4327 
4328     CGF.EmitBranch(Cont);
4329   }
4330 
4331   // Case 2: consume space in the overflow area.
4332   Address MemAddr = Address::invalid();
4333   {
4334     CGF.EmitBlock(UsingOverflow);
4335 
4336     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4337 
4338     // Everything in the overflow area is rounded up to a size of at least 4.
4339     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4340 
4341     CharUnits Size;
4342     if (!isIndirect) {
4343       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4344       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4345     } else {
4346       Size = CGF.getPointerSize();
4347     }
4348 
4349     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4350     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4351                          OverflowAreaAlign);
4352     // Round up address of argument to alignment
4353     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4354     if (Align > OverflowAreaAlign) {
4355       llvm::Value *Ptr = OverflowArea.getPointer();
4356       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4357                                                            Align);
4358     }
4359 
4360     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4361 
4362     // Increase the overflow area.
4363     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4364     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4365     CGF.EmitBranch(Cont);
4366   }
4367 
4368   CGF.EmitBlock(Cont);
4369 
4370   // Merge the cases with a phi.
4371   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4372                                 "vaarg.addr");
4373 
4374   // Load the pointer if the argument was passed indirectly.
4375   if (isIndirect) {
4376     Result = Address(Builder.CreateLoad(Result, "aggr"),
4377                      getContext().getTypeAlignInChars(Ty));
4378   }
4379 
4380   return Result;
4381 }
4382 
4383 bool
4384 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4385                                                 llvm::Value *Address) const {
4386   // This is calculated from the LLVM and GCC tables and verified
4387   // against gcc output.  AFAIK all ABIs use the same encoding.
4388 
4389   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4390 
4391   llvm::IntegerType *i8 = CGF.Int8Ty;
4392   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4393   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4394   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4395 
4396   // 0-31: r0-31, the 4-byte general-purpose registers
4397   AssignToArrayRange(Builder, Address, Four8, 0, 31);
4398 
4399   // 32-63: fp0-31, the 8-byte floating-point registers
4400   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4401 
4402   // 64-76 are various 4-byte special-purpose registers:
4403   // 64: mq
4404   // 65: lr
4405   // 66: ctr
4406   // 67: ap
4407   // 68-75 cr0-7
4408   // 76: xer
4409   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4410 
4411   // 77-108: v0-31, the 16-byte vector registers
4412   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4413 
4414   // 109: vrsave
4415   // 110: vscr
4416   // 111: spe_acc
4417   // 112: spefscr
4418   // 113: sfp
4419   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4420 
4421   return false;
4422 }
4423 
4424 // PowerPC-64
4425 
4426 namespace {
4427 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4428 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4429 public:
4430   enum ABIKind {
4431     ELFv1 = 0,
4432     ELFv2
4433   };
4434 
4435 private:
4436   static const unsigned GPRBits = 64;
4437   ABIKind Kind;
4438   bool HasQPX;
4439   bool IsSoftFloatABI;
4440 
4441   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4442   // will be passed in a QPX register.
4443   bool IsQPXVectorTy(const Type *Ty) const {
4444     if (!HasQPX)
4445       return false;
4446 
4447     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4448       unsigned NumElements = VT->getNumElements();
4449       if (NumElements == 1)
4450         return false;
4451 
4452       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4453         if (getContext().getTypeSize(Ty) <= 256)
4454           return true;
4455       } else if (VT->getElementType()->
4456                    isSpecificBuiltinType(BuiltinType::Float)) {
4457         if (getContext().getTypeSize(Ty) <= 128)
4458           return true;
4459       }
4460     }
4461 
4462     return false;
4463   }
4464 
4465   bool IsQPXVectorTy(QualType Ty) const {
4466     return IsQPXVectorTy(Ty.getTypePtr());
4467   }
4468 
4469 public:
4470   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4471                      bool SoftFloatABI)
4472       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4473         IsSoftFloatABI(SoftFloatABI) {}
4474 
4475   bool isPromotableTypeForABI(QualType Ty) const;
4476   CharUnits getParamTypeAlignment(QualType Ty) const;
4477 
4478   ABIArgInfo classifyReturnType(QualType RetTy) const;
4479   ABIArgInfo classifyArgumentType(QualType Ty) const;
4480 
4481   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4482   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4483                                          uint64_t Members) const override;
4484 
4485   // TODO: We can add more logic to computeInfo to improve performance.
4486   // Example: For aggregate arguments that fit in a register, we could
4487   // use getDirectInReg (as is done below for structs containing a single
4488   // floating-point value) to avoid pushing them to memory on function
4489   // entry.  This would require changing the logic in PPCISelLowering
4490   // when lowering the parameters in the caller and args in the callee.
4491   void computeInfo(CGFunctionInfo &FI) const override {
4492     if (!getCXXABI().classifyReturnType(FI))
4493       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4494     for (auto &I : FI.arguments()) {
4495       // We rely on the default argument classification for the most part.
4496       // One exception:  An aggregate containing a single floating-point
4497       // or vector item must be passed in a register if one is available.
4498       const Type *T = isSingleElementStruct(I.type, getContext());
4499       if (T) {
4500         const BuiltinType *BT = T->getAs<BuiltinType>();
4501         if (IsQPXVectorTy(T) ||
4502             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4503             (BT && BT->isFloatingPoint())) {
4504           QualType QT(T, 0);
4505           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4506           continue;
4507         }
4508       }
4509       I.info = classifyArgumentType(I.type);
4510     }
4511   }
4512 
4513   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4514                     QualType Ty) const override;
4515 
4516   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4517                                     bool asReturnValue) const override {
4518     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4519   }
4520 
4521   bool isSwiftErrorInRegister() const override {
4522     return false;
4523   }
4524 };
4525 
4526 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4527 
4528 public:
4529   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4530                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4531                                bool SoftFloatABI)
4532       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
4533                                                  SoftFloatABI)) {}
4534 
4535   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4536     // This is recovered from gcc output.
4537     return 1; // r1 is the dedicated stack pointer
4538   }
4539 
4540   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4541                                llvm::Value *Address) const override;
4542 };
4543 
4544 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4545 public:
4546   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4547 
4548   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4549     // This is recovered from gcc output.
4550     return 1; // r1 is the dedicated stack pointer
4551   }
4552 
4553   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4554                                llvm::Value *Address) const override;
4555 };
4556 
4557 }
4558 
4559 // Return true if the ABI requires Ty to be passed sign- or zero-
4560 // extended to 64 bits.
4561 bool
4562 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4563   // Treat an enum type as its underlying type.
4564   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4565     Ty = EnumTy->getDecl()->getIntegerType();
4566 
4567   // Promotable integer types are required to be promoted by the ABI.
4568   if (Ty->isPromotableIntegerType())
4569     return true;
4570 
4571   // In addition to the usual promotable integer types, we also need to
4572   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4573   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4574     switch (BT->getKind()) {
4575     case BuiltinType::Int:
4576     case BuiltinType::UInt:
4577       return true;
4578     default:
4579       break;
4580     }
4581 
4582   return false;
4583 }
4584 
4585 /// isAlignedParamType - Determine whether a type requires 16-byte or
4586 /// higher alignment in the parameter area.  Always returns at least 8.
4587 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4588   // Complex types are passed just like their elements.
4589   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4590     Ty = CTy->getElementType();
4591 
4592   // Only vector types of size 16 bytes need alignment (larger types are
4593   // passed via reference, smaller types are not aligned).
4594   if (IsQPXVectorTy(Ty)) {
4595     if (getContext().getTypeSize(Ty) > 128)
4596       return CharUnits::fromQuantity(32);
4597 
4598     return CharUnits::fromQuantity(16);
4599   } else if (Ty->isVectorType()) {
4600     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
4601   }
4602 
4603   // For single-element float/vector structs, we consider the whole type
4604   // to have the same alignment requirements as its single element.
4605   const Type *AlignAsType = nullptr;
4606   const Type *EltType = isSingleElementStruct(Ty, getContext());
4607   if (EltType) {
4608     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4609     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
4610          getContext().getTypeSize(EltType) == 128) ||
4611         (BT && BT->isFloatingPoint()))
4612       AlignAsType = EltType;
4613   }
4614 
4615   // Likewise for ELFv2 homogeneous aggregates.
4616   const Type *Base = nullptr;
4617   uint64_t Members = 0;
4618   if (!AlignAsType && Kind == ELFv2 &&
4619       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
4620     AlignAsType = Base;
4621 
4622   // With special case aggregates, only vector base types need alignment.
4623   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
4624     if (getContext().getTypeSize(AlignAsType) > 128)
4625       return CharUnits::fromQuantity(32);
4626 
4627     return CharUnits::fromQuantity(16);
4628   } else if (AlignAsType) {
4629     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
4630   }
4631 
4632   // Otherwise, we only need alignment for any aggregate type that
4633   // has an alignment requirement of >= 16 bytes.
4634   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
4635     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
4636       return CharUnits::fromQuantity(32);
4637     return CharUnits::fromQuantity(16);
4638   }
4639 
4640   return CharUnits::fromQuantity(8);
4641 }
4642 
4643 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
4644 /// aggregate.  Base is set to the base element type, and Members is set
4645 /// to the number of base elements.
4646 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
4647                                      uint64_t &Members) const {
4648   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
4649     uint64_t NElements = AT->getSize().getZExtValue();
4650     if (NElements == 0)
4651       return false;
4652     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
4653       return false;
4654     Members *= NElements;
4655   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
4656     const RecordDecl *RD = RT->getDecl();
4657     if (RD->hasFlexibleArrayMember())
4658       return false;
4659 
4660     Members = 0;
4661 
4662     // If this is a C++ record, check the bases first.
4663     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4664       for (const auto &I : CXXRD->bases()) {
4665         // Ignore empty records.
4666         if (isEmptyRecord(getContext(), I.getType(), true))
4667           continue;
4668 
4669         uint64_t FldMembers;
4670         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
4671           return false;
4672 
4673         Members += FldMembers;
4674       }
4675     }
4676 
4677     for (const auto *FD : RD->fields()) {
4678       // Ignore (non-zero arrays of) empty records.
4679       QualType FT = FD->getType();
4680       while (const ConstantArrayType *AT =
4681              getContext().getAsConstantArrayType(FT)) {
4682         if (AT->getSize().getZExtValue() == 0)
4683           return false;
4684         FT = AT->getElementType();
4685       }
4686       if (isEmptyRecord(getContext(), FT, true))
4687         continue;
4688 
4689       // For compatibility with GCC, ignore empty bitfields in C++ mode.
4690       if (getContext().getLangOpts().CPlusPlus &&
4691           FD->isZeroLengthBitField(getContext()))
4692         continue;
4693 
4694       uint64_t FldMembers;
4695       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
4696         return false;
4697 
4698       Members = (RD->isUnion() ?
4699                  std::max(Members, FldMembers) : Members + FldMembers);
4700     }
4701 
4702     if (!Base)
4703       return false;
4704 
4705     // Ensure there is no padding.
4706     if (getContext().getTypeSize(Base) * Members !=
4707         getContext().getTypeSize(Ty))
4708       return false;
4709   } else {
4710     Members = 1;
4711     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
4712       Members = 2;
4713       Ty = CT->getElementType();
4714     }
4715 
4716     // Most ABIs only support float, double, and some vector type widths.
4717     if (!isHomogeneousAggregateBaseType(Ty))
4718       return false;
4719 
4720     // The base type must be the same for all members.  Types that
4721     // agree in both total size and mode (float vs. vector) are
4722     // treated as being equivalent here.
4723     const Type *TyPtr = Ty.getTypePtr();
4724     if (!Base) {
4725       Base = TyPtr;
4726       // If it's a non-power-of-2 vector, its size is already a power-of-2,
4727       // so make sure to widen it explicitly.
4728       if (const VectorType *VT = Base->getAs<VectorType>()) {
4729         QualType EltTy = VT->getElementType();
4730         unsigned NumElements =
4731             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
4732         Base = getContext()
4733                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
4734                    .getTypePtr();
4735       }
4736     }
4737 
4738     if (Base->isVectorType() != TyPtr->isVectorType() ||
4739         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
4740       return false;
4741   }
4742   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
4743 }
4744 
4745 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4746   // Homogeneous aggregates for ELFv2 must have base types of float,
4747   // double, long double, or 128-bit vectors.
4748   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4749     if (BT->getKind() == BuiltinType::Float ||
4750         BT->getKind() == BuiltinType::Double ||
4751         BT->getKind() == BuiltinType::LongDouble ||
4752         (getContext().getTargetInfo().hasFloat128Type() &&
4753           (BT->getKind() == BuiltinType::Float128))) {
4754       if (IsSoftFloatABI)
4755         return false;
4756       return true;
4757     }
4758   }
4759   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4760     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
4761       return true;
4762   }
4763   return false;
4764 }
4765 
4766 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
4767     const Type *Base, uint64_t Members) const {
4768   // Vector and fp128 types require one register, other floating point types
4769   // require one or two registers depending on their size.
4770   uint32_t NumRegs =
4771       ((getContext().getTargetInfo().hasFloat128Type() &&
4772           Base->isFloat128Type()) ||
4773         Base->isVectorType()) ? 1
4774                               : (getContext().getTypeSize(Base) + 63) / 64;
4775 
4776   // Homogeneous Aggregates may occupy at most 8 registers.
4777   return Members * NumRegs <= 8;
4778 }
4779 
4780 ABIArgInfo
4781 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
4782   Ty = useFirstFieldIfTransparentUnion(Ty);
4783 
4784   if (Ty->isAnyComplexType())
4785     return ABIArgInfo::getDirect();
4786 
4787   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
4788   // or via reference (larger than 16 bytes).
4789   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
4790     uint64_t Size = getContext().getTypeSize(Ty);
4791     if (Size > 128)
4792       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4793     else if (Size < 128) {
4794       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4795       return ABIArgInfo::getDirect(CoerceTy);
4796     }
4797   }
4798 
4799   if (isAggregateTypeForABI(Ty)) {
4800     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4801       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4802 
4803     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
4804     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
4805 
4806     // ELFv2 homogeneous aggregates are passed as array types.
4807     const Type *Base = nullptr;
4808     uint64_t Members = 0;
4809     if (Kind == ELFv2 &&
4810         isHomogeneousAggregate(Ty, Base, Members)) {
4811       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4812       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4813       return ABIArgInfo::getDirect(CoerceTy);
4814     }
4815 
4816     // If an aggregate may end up fully in registers, we do not
4817     // use the ByVal method, but pass the aggregate as array.
4818     // This is usually beneficial since we avoid forcing the
4819     // back-end to store the argument to memory.
4820     uint64_t Bits = getContext().getTypeSize(Ty);
4821     if (Bits > 0 && Bits <= 8 * GPRBits) {
4822       llvm::Type *CoerceTy;
4823 
4824       // Types up to 8 bytes are passed as integer type (which will be
4825       // properly aligned in the argument save area doubleword).
4826       if (Bits <= GPRBits)
4827         CoerceTy =
4828             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4829       // Larger types are passed as arrays, with the base type selected
4830       // according to the required alignment in the save area.
4831       else {
4832         uint64_t RegBits = ABIAlign * 8;
4833         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
4834         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4835         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4836       }
4837 
4838       return ABIArgInfo::getDirect(CoerceTy);
4839     }
4840 
4841     // All other aggregates are passed ByVal.
4842     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4843                                    /*ByVal=*/true,
4844                                    /*Realign=*/TyAlign > ABIAlign);
4845   }
4846 
4847   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4848                                      : ABIArgInfo::getDirect());
4849 }
4850 
4851 ABIArgInfo
4852 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4853   if (RetTy->isVoidType())
4854     return ABIArgInfo::getIgnore();
4855 
4856   if (RetTy->isAnyComplexType())
4857     return ABIArgInfo::getDirect();
4858 
4859   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4860   // or via reference (larger than 16 bytes).
4861   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4862     uint64_t Size = getContext().getTypeSize(RetTy);
4863     if (Size > 128)
4864       return getNaturalAlignIndirect(RetTy);
4865     else if (Size < 128) {
4866       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4867       return ABIArgInfo::getDirect(CoerceTy);
4868     }
4869   }
4870 
4871   if (isAggregateTypeForABI(RetTy)) {
4872     // ELFv2 homogeneous aggregates are returned as array types.
4873     const Type *Base = nullptr;
4874     uint64_t Members = 0;
4875     if (Kind == ELFv2 &&
4876         isHomogeneousAggregate(RetTy, Base, Members)) {
4877       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4878       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4879       return ABIArgInfo::getDirect(CoerceTy);
4880     }
4881 
4882     // ELFv2 small aggregates are returned in up to two registers.
4883     uint64_t Bits = getContext().getTypeSize(RetTy);
4884     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4885       if (Bits == 0)
4886         return ABIArgInfo::getIgnore();
4887 
4888       llvm::Type *CoerceTy;
4889       if (Bits > GPRBits) {
4890         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4891         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
4892       } else
4893         CoerceTy =
4894             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
4895       return ABIArgInfo::getDirect(CoerceTy);
4896     }
4897 
4898     // All other aggregates are returned indirectly.
4899     return getNaturalAlignIndirect(RetTy);
4900   }
4901 
4902   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4903                                         : ABIArgInfo::getDirect());
4904 }
4905 
4906 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
4907 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4908                                       QualType Ty) const {
4909   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4910   TypeInfo.second = getParamTypeAlignment(Ty);
4911 
4912   CharUnits SlotSize = CharUnits::fromQuantity(8);
4913 
4914   // If we have a complex type and the base type is smaller than 8 bytes,
4915   // the ABI calls for the real and imaginary parts to be right-adjusted
4916   // in separate doublewords.  However, Clang expects us to produce a
4917   // pointer to a structure with the two parts packed tightly.  So generate
4918   // loads of the real and imaginary parts relative to the va_list pointer,
4919   // and store them to a temporary structure.
4920   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4921     CharUnits EltSize = TypeInfo.first / 2;
4922     if (EltSize < SlotSize) {
4923       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4924                                             SlotSize * 2, SlotSize,
4925                                             SlotSize, /*AllowHigher*/ true);
4926 
4927       Address RealAddr = Addr;
4928       Address ImagAddr = RealAddr;
4929       if (CGF.CGM.getDataLayout().isBigEndian()) {
4930         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4931                                                           SlotSize - EltSize);
4932         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4933                                                       2 * SlotSize - EltSize);
4934       } else {
4935         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4936       }
4937 
4938       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4939       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4940       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4941       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4942       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4943 
4944       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4945       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4946                              /*init*/ true);
4947       return Temp;
4948     }
4949   }
4950 
4951   // Otherwise, just use the general rule.
4952   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4953                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4954 }
4955 
4956 static bool
4957 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4958                               llvm::Value *Address) {
4959   // This is calculated from the LLVM and GCC tables and verified
4960   // against gcc output.  AFAIK all ABIs use the same encoding.
4961 
4962   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4963 
4964   llvm::IntegerType *i8 = CGF.Int8Ty;
4965   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4966   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4967   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4968 
4969   // 0-31: r0-31, the 8-byte general-purpose registers
4970   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4971 
4972   // 32-63: fp0-31, the 8-byte floating-point registers
4973   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4974 
4975   // 64-67 are various 8-byte special-purpose registers:
4976   // 64: mq
4977   // 65: lr
4978   // 66: ctr
4979   // 67: ap
4980   AssignToArrayRange(Builder, Address, Eight8, 64, 67);
4981 
4982   // 68-76 are various 4-byte special-purpose registers:
4983   // 68-75 cr0-7
4984   // 76: xer
4985   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4986 
4987   // 77-108: v0-31, the 16-byte vector registers
4988   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4989 
4990   // 109: vrsave
4991   // 110: vscr
4992   // 111: spe_acc
4993   // 112: spefscr
4994   // 113: sfp
4995   // 114: tfhar
4996   // 115: tfiar
4997   // 116: texasr
4998   AssignToArrayRange(Builder, Address, Eight8, 109, 116);
4999 
5000   return false;
5001 }
5002 
5003 bool
5004 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5005   CodeGen::CodeGenFunction &CGF,
5006   llvm::Value *Address) const {
5007 
5008   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
5009 }
5010 
5011 bool
5012 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5013                                                 llvm::Value *Address) const {
5014 
5015   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
5016 }
5017 
5018 //===----------------------------------------------------------------------===//
5019 // AArch64 ABI Implementation
5020 //===----------------------------------------------------------------------===//
5021 
5022 namespace {
5023 
5024 class AArch64ABIInfo : public SwiftABIInfo {
5025 public:
5026   enum ABIKind {
5027     AAPCS = 0,
5028     DarwinPCS,
5029     Win64
5030   };
5031 
5032 private:
5033   ABIKind Kind;
5034 
5035 public:
5036   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5037     : SwiftABIInfo(CGT), Kind(Kind) {}
5038 
5039 private:
5040   ABIKind getABIKind() const { return Kind; }
5041   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5042 
5043   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5044   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5045   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5046   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5047                                          uint64_t Members) const override;
5048 
5049   bool isIllegalVectorType(QualType Ty) const;
5050 
5051   void computeInfo(CGFunctionInfo &FI) const override {
5052     if (!::classifyReturnType(getCXXABI(), FI, *this))
5053       FI.getReturnInfo() =
5054           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5055 
5056     for (auto &it : FI.arguments())
5057       it.info = classifyArgumentType(it.type);
5058   }
5059 
5060   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5061                           CodeGenFunction &CGF) const;
5062 
5063   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5064                          CodeGenFunction &CGF) const;
5065 
5066   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5067                     QualType Ty) const override {
5068     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5069                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5070                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5071   }
5072 
5073   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5074                       QualType Ty) const override;
5075 
5076   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5077                                     bool asReturnValue) const override {
5078     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5079   }
5080   bool isSwiftErrorInRegister() const override {
5081     return true;
5082   }
5083 
5084   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5085                                  unsigned elts) const override;
5086 };
5087 
5088 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5089 public:
5090   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5091       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
5092 
5093   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5094     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5095   }
5096 
5097   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5098     return 31;
5099   }
5100 
5101   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5102 
5103   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5104                            CodeGen::CodeGenModule &CGM) const override {
5105     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5106     if (!FD)
5107       return;
5108 
5109     CodeGenOptions::SignReturnAddressScope Scope = CGM.getCodeGenOpts().getSignReturnAddress();
5110     CodeGenOptions::SignReturnAddressKeyValue Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
5111     bool BranchTargetEnforcement = CGM.getCodeGenOpts().BranchTargetEnforcement;
5112     if (const auto *TA = FD->getAttr<TargetAttr>()) {
5113       ParsedTargetAttr Attr = TA->parse();
5114       if (!Attr.BranchProtection.empty()) {
5115         TargetInfo::BranchProtectionInfo BPI;
5116         StringRef Error;
5117         (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5118                                                        BPI, Error);
5119         assert(Error.empty());
5120         Scope = BPI.SignReturnAddr;
5121         Key = BPI.SignKey;
5122         BranchTargetEnforcement = BPI.BranchTargetEnforcement;
5123       }
5124     }
5125 
5126     auto *Fn = cast<llvm::Function>(GV);
5127     if (Scope != CodeGenOptions::SignReturnAddressScope::None) {
5128       Fn->addFnAttr("sign-return-address",
5129                     Scope == CodeGenOptions::SignReturnAddressScope::All
5130                         ? "all"
5131                         : "non-leaf");
5132 
5133       Fn->addFnAttr("sign-return-address-key",
5134                     Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
5135                         ? "a_key"
5136                         : "b_key");
5137     }
5138 
5139     if (BranchTargetEnforcement)
5140       Fn->addFnAttr("branch-target-enforcement");
5141   }
5142 };
5143 
5144 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5145 public:
5146   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5147       : AArch64TargetCodeGenInfo(CGT, K) {}
5148 
5149   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5150                            CodeGen::CodeGenModule &CGM) const override;
5151 
5152   void getDependentLibraryOption(llvm::StringRef Lib,
5153                                  llvm::SmallString<24> &Opt) const override {
5154     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5155   }
5156 
5157   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5158                                llvm::SmallString<32> &Opt) const override {
5159     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5160   }
5161 };
5162 
5163 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5164     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5165   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5166   if (GV->isDeclaration())
5167     return;
5168   addStackProbeTargetAttributes(D, GV, CGM);
5169 }
5170 }
5171 
5172 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5173   Ty = useFirstFieldIfTransparentUnion(Ty);
5174 
5175   // Handle illegal vector types here.
5176   if (isIllegalVectorType(Ty)) {
5177     uint64_t Size = getContext().getTypeSize(Ty);
5178     // Android promotes <2 x i8> to i16, not i32
5179     if (isAndroid() && (Size <= 16)) {
5180       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5181       return ABIArgInfo::getDirect(ResType);
5182     }
5183     if (Size <= 32) {
5184       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5185       return ABIArgInfo::getDirect(ResType);
5186     }
5187     if (Size == 64) {
5188       llvm::Type *ResType =
5189           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5190       return ABIArgInfo::getDirect(ResType);
5191     }
5192     if (Size == 128) {
5193       llvm::Type *ResType =
5194           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5195       return ABIArgInfo::getDirect(ResType);
5196     }
5197     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5198   }
5199 
5200   if (!isAggregateTypeForABI(Ty)) {
5201     // Treat an enum type as its underlying type.
5202     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5203       Ty = EnumTy->getDecl()->getIntegerType();
5204 
5205     return (Ty->isPromotableIntegerType() && isDarwinPCS()
5206                 ? ABIArgInfo::getExtend(Ty)
5207                 : ABIArgInfo::getDirect());
5208   }
5209 
5210   // Structures with either a non-trivial destructor or a non-trivial
5211   // copy constructor are always indirect.
5212   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5213     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5214                                      CGCXXABI::RAA_DirectInMemory);
5215   }
5216 
5217   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5218   // elsewhere for GNU compatibility.
5219   uint64_t Size = getContext().getTypeSize(Ty);
5220   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5221   if (IsEmpty || Size == 0) {
5222     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5223       return ABIArgInfo::getIgnore();
5224 
5225     // GNU C mode. The only argument that gets ignored is an empty one with size
5226     // 0.
5227     if (IsEmpty && Size == 0)
5228       return ABIArgInfo::getIgnore();
5229     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5230   }
5231 
5232   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5233   const Type *Base = nullptr;
5234   uint64_t Members = 0;
5235   if (isHomogeneousAggregate(Ty, Base, Members)) {
5236     return ABIArgInfo::getDirect(
5237         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5238   }
5239 
5240   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5241   if (Size <= 128) {
5242     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5243     // same size and alignment.
5244     if (getTarget().isRenderScriptTarget()) {
5245       return coerceToIntArray(Ty, getContext(), getVMContext());
5246     }
5247     unsigned Alignment;
5248     if (Kind == AArch64ABIInfo::AAPCS) {
5249       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5250       Alignment = Alignment < 128 ? 64 : 128;
5251     } else {
5252       Alignment = std::max(getContext().getTypeAlign(Ty),
5253                            (unsigned)getTarget().getPointerWidth(0));
5254     }
5255     Size = llvm::alignTo(Size, Alignment);
5256 
5257     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5258     // For aggregates with 16-byte alignment, we use i128.
5259     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5260     return ABIArgInfo::getDirect(
5261         Size == Alignment ? BaseTy
5262                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5263   }
5264 
5265   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5266 }
5267 
5268 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5269                                               bool IsVariadic) const {
5270   if (RetTy->isVoidType())
5271     return ABIArgInfo::getIgnore();
5272 
5273   // Large vector types should be returned via memory.
5274   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5275     return getNaturalAlignIndirect(RetTy);
5276 
5277   if (!isAggregateTypeForABI(RetTy)) {
5278     // Treat an enum type as its underlying type.
5279     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5280       RetTy = EnumTy->getDecl()->getIntegerType();
5281 
5282     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
5283                 ? ABIArgInfo::getExtend(RetTy)
5284                 : ABIArgInfo::getDirect());
5285   }
5286 
5287   uint64_t Size = getContext().getTypeSize(RetTy);
5288   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5289     return ABIArgInfo::getIgnore();
5290 
5291   const Type *Base = nullptr;
5292   uint64_t Members = 0;
5293   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5294       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5295         IsVariadic))
5296     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5297     return ABIArgInfo::getDirect();
5298 
5299   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5300   if (Size <= 128) {
5301     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5302     // same size and alignment.
5303     if (getTarget().isRenderScriptTarget()) {
5304       return coerceToIntArray(RetTy, getContext(), getVMContext());
5305     }
5306     unsigned Alignment = getContext().getTypeAlign(RetTy);
5307     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5308 
5309     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5310     // For aggregates with 16-byte alignment, we use i128.
5311     if (Alignment < 128 && Size == 128) {
5312       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5313       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5314     }
5315     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5316   }
5317 
5318   return getNaturalAlignIndirect(RetTy);
5319 }
5320 
5321 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5322 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5323   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5324     // Check whether VT is legal.
5325     unsigned NumElements = VT->getNumElements();
5326     uint64_t Size = getContext().getTypeSize(VT);
5327     // NumElements should be power of 2.
5328     if (!llvm::isPowerOf2_32(NumElements))
5329       return true;
5330 
5331     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5332     // vectors for some reason.
5333     llvm::Triple Triple = getTarget().getTriple();
5334     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5335         Triple.isOSBinFormatMachO())
5336       return Size <= 32;
5337 
5338     return Size != 64 && (Size != 128 || NumElements == 1);
5339   }
5340   return false;
5341 }
5342 
5343 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5344                                                llvm::Type *eltTy,
5345                                                unsigned elts) const {
5346   if (!llvm::isPowerOf2_32(elts))
5347     return false;
5348   if (totalSize.getQuantity() != 8 &&
5349       (totalSize.getQuantity() != 16 || elts == 1))
5350     return false;
5351   return true;
5352 }
5353 
5354 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5355   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5356   // point type or a short-vector type. This is the same as the 32-bit ABI,
5357   // but with the difference that any floating-point type is allowed,
5358   // including __fp16.
5359   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5360     if (BT->isFloatingPoint())
5361       return true;
5362   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5363     unsigned VecSize = getContext().getTypeSize(VT);
5364     if (VecSize == 64 || VecSize == 128)
5365       return true;
5366   }
5367   return false;
5368 }
5369 
5370 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5371                                                        uint64_t Members) const {
5372   return Members <= 4;
5373 }
5374 
5375 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5376                                             QualType Ty,
5377                                             CodeGenFunction &CGF) const {
5378   ABIArgInfo AI = classifyArgumentType(Ty);
5379   bool IsIndirect = AI.isIndirect();
5380 
5381   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5382   if (IsIndirect)
5383     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5384   else if (AI.getCoerceToType())
5385     BaseTy = AI.getCoerceToType();
5386 
5387   unsigned NumRegs = 1;
5388   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5389     BaseTy = ArrTy->getElementType();
5390     NumRegs = ArrTy->getNumElements();
5391   }
5392   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5393 
5394   // The AArch64 va_list type and handling is specified in the Procedure Call
5395   // Standard, section B.4:
5396   //
5397   // struct {
5398   //   void *__stack;
5399   //   void *__gr_top;
5400   //   void *__vr_top;
5401   //   int __gr_offs;
5402   //   int __vr_offs;
5403   // };
5404 
5405   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5406   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5407   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5408   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5409 
5410   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5411   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5412 
5413   Address reg_offs_p = Address::invalid();
5414   llvm::Value *reg_offs = nullptr;
5415   int reg_top_index;
5416   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5417   if (!IsFPR) {
5418     // 3 is the field number of __gr_offs
5419     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5420     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5421     reg_top_index = 1; // field number for __gr_top
5422     RegSize = llvm::alignTo(RegSize, 8);
5423   } else {
5424     // 4 is the field number of __vr_offs.
5425     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5426     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5427     reg_top_index = 2; // field number for __vr_top
5428     RegSize = 16 * NumRegs;
5429   }
5430 
5431   //=======================================
5432   // Find out where argument was passed
5433   //=======================================
5434 
5435   // If reg_offs >= 0 we're already using the stack for this type of
5436   // argument. We don't want to keep updating reg_offs (in case it overflows,
5437   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5438   // whatever they get).
5439   llvm::Value *UsingStack = nullptr;
5440   UsingStack = CGF.Builder.CreateICmpSGE(
5441       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5442 
5443   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5444 
5445   // Otherwise, at least some kind of argument could go in these registers, the
5446   // question is whether this particular type is too big.
5447   CGF.EmitBlock(MaybeRegBlock);
5448 
5449   // Integer arguments may need to correct register alignment (for example a
5450   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5451   // align __gr_offs to calculate the potential address.
5452   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5453     int Align = TyAlign.getQuantity();
5454 
5455     reg_offs = CGF.Builder.CreateAdd(
5456         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5457         "align_regoffs");
5458     reg_offs = CGF.Builder.CreateAnd(
5459         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5460         "aligned_regoffs");
5461   }
5462 
5463   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5464   // The fact that this is done unconditionally reflects the fact that
5465   // allocating an argument to the stack also uses up all the remaining
5466   // registers of the appropriate kind.
5467   llvm::Value *NewOffset = nullptr;
5468   NewOffset = CGF.Builder.CreateAdd(
5469       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5470   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5471 
5472   // Now we're in a position to decide whether this argument really was in
5473   // registers or not.
5474   llvm::Value *InRegs = nullptr;
5475   InRegs = CGF.Builder.CreateICmpSLE(
5476       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5477 
5478   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5479 
5480   //=======================================
5481   // Argument was in registers
5482   //=======================================
5483 
5484   // Now we emit the code for if the argument was originally passed in
5485   // registers. First start the appropriate block:
5486   CGF.EmitBlock(InRegBlock);
5487 
5488   llvm::Value *reg_top = nullptr;
5489   Address reg_top_p =
5490       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5491   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5492   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5493                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5494   Address RegAddr = Address::invalid();
5495   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5496 
5497   if (IsIndirect) {
5498     // If it's been passed indirectly (actually a struct), whatever we find from
5499     // stored registers or on the stack will actually be a struct **.
5500     MemTy = llvm::PointerType::getUnqual(MemTy);
5501   }
5502 
5503   const Type *Base = nullptr;
5504   uint64_t NumMembers = 0;
5505   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5506   if (IsHFA && NumMembers > 1) {
5507     // Homogeneous aggregates passed in registers will have their elements split
5508     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5509     // qN+1, ...). We reload and store into a temporary local variable
5510     // contiguously.
5511     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5512     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5513     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5514     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5515     Address Tmp = CGF.CreateTempAlloca(HFATy,
5516                                        std::max(TyAlign, BaseTyInfo.second));
5517 
5518     // On big-endian platforms, the value will be right-aligned in its slot.
5519     int Offset = 0;
5520     if (CGF.CGM.getDataLayout().isBigEndian() &&
5521         BaseTyInfo.first.getQuantity() < 16)
5522       Offset = 16 - BaseTyInfo.first.getQuantity();
5523 
5524     for (unsigned i = 0; i < NumMembers; ++i) {
5525       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5526       Address LoadAddr =
5527         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5528       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5529 
5530       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5531 
5532       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5533       CGF.Builder.CreateStore(Elem, StoreAddr);
5534     }
5535 
5536     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5537   } else {
5538     // Otherwise the object is contiguous in memory.
5539 
5540     // It might be right-aligned in its slot.
5541     CharUnits SlotSize = BaseAddr.getAlignment();
5542     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5543         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5544         TySize < SlotSize) {
5545       CharUnits Offset = SlotSize - TySize;
5546       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5547     }
5548 
5549     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5550   }
5551 
5552   CGF.EmitBranch(ContBlock);
5553 
5554   //=======================================
5555   // Argument was on the stack
5556   //=======================================
5557   CGF.EmitBlock(OnStackBlock);
5558 
5559   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5560   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5561 
5562   // Again, stack arguments may need realignment. In this case both integer and
5563   // floating-point ones might be affected.
5564   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5565     int Align = TyAlign.getQuantity();
5566 
5567     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5568 
5569     OnStackPtr = CGF.Builder.CreateAdd(
5570         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5571         "align_stack");
5572     OnStackPtr = CGF.Builder.CreateAnd(
5573         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5574         "align_stack");
5575 
5576     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
5577   }
5578   Address OnStackAddr(OnStackPtr,
5579                       std::max(CharUnits::fromQuantity(8), TyAlign));
5580 
5581   // All stack slots are multiples of 8 bytes.
5582   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
5583   CharUnits StackSize;
5584   if (IsIndirect)
5585     StackSize = StackSlotSize;
5586   else
5587     StackSize = TySize.alignTo(StackSlotSize);
5588 
5589   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
5590   llvm::Value *NewStack =
5591       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
5592 
5593   // Write the new value of __stack for the next call to va_arg
5594   CGF.Builder.CreateStore(NewStack, stack_p);
5595 
5596   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
5597       TySize < StackSlotSize) {
5598     CharUnits Offset = StackSlotSize - TySize;
5599     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
5600   }
5601 
5602   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
5603 
5604   CGF.EmitBranch(ContBlock);
5605 
5606   //=======================================
5607   // Tidy up
5608   //=======================================
5609   CGF.EmitBlock(ContBlock);
5610 
5611   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5612                                  OnStackAddr, OnStackBlock, "vaargs.addr");
5613 
5614   if (IsIndirect)
5615     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
5616                    TyAlign);
5617 
5618   return ResAddr;
5619 }
5620 
5621 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5622                                         CodeGenFunction &CGF) const {
5623   // The backend's lowering doesn't support va_arg for aggregates or
5624   // illegal vector types.  Lower VAArg here for these cases and use
5625   // the LLVM va_arg instruction for everything else.
5626   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
5627     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
5628 
5629   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
5630   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
5631 
5632   // Empty records are ignored for parameter passing purposes.
5633   if (isEmptyRecord(getContext(), Ty, true)) {
5634     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
5635     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5636     return Addr;
5637   }
5638 
5639   // The size of the actual thing passed, which might end up just
5640   // being a pointer for indirect types.
5641   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5642 
5643   // Arguments bigger than 16 bytes which aren't homogeneous
5644   // aggregates should be passed indirectly.
5645   bool IsIndirect = false;
5646   if (TyInfo.first.getQuantity() > 16) {
5647     const Type *Base = nullptr;
5648     uint64_t Members = 0;
5649     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
5650   }
5651 
5652   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
5653                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
5654 }
5655 
5656 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5657                                     QualType Ty) const {
5658   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
5659                           CGF.getContext().getTypeInfoInChars(Ty),
5660                           CharUnits::fromQuantity(8),
5661                           /*allowHigherAlign*/ false);
5662 }
5663 
5664 //===----------------------------------------------------------------------===//
5665 // ARM ABI Implementation
5666 //===----------------------------------------------------------------------===//
5667 
5668 namespace {
5669 
5670 class ARMABIInfo : public SwiftABIInfo {
5671 public:
5672   enum ABIKind {
5673     APCS = 0,
5674     AAPCS = 1,
5675     AAPCS_VFP = 2,
5676     AAPCS16_VFP = 3,
5677   };
5678 
5679 private:
5680   ABIKind Kind;
5681 
5682 public:
5683   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
5684       : SwiftABIInfo(CGT), Kind(_Kind) {
5685     setCCs();
5686   }
5687 
5688   bool isEABI() const {
5689     switch (getTarget().getTriple().getEnvironment()) {
5690     case llvm::Triple::Android:
5691     case llvm::Triple::EABI:
5692     case llvm::Triple::EABIHF:
5693     case llvm::Triple::GNUEABI:
5694     case llvm::Triple::GNUEABIHF:
5695     case llvm::Triple::MuslEABI:
5696     case llvm::Triple::MuslEABIHF:
5697       return true;
5698     default:
5699       return false;
5700     }
5701   }
5702 
5703   bool isEABIHF() const {
5704     switch (getTarget().getTriple().getEnvironment()) {
5705     case llvm::Triple::EABIHF:
5706     case llvm::Triple::GNUEABIHF:
5707     case llvm::Triple::MuslEABIHF:
5708       return true;
5709     default:
5710       return false;
5711     }
5712   }
5713 
5714   ABIKind getABIKind() const { return Kind; }
5715 
5716 private:
5717   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
5718                                 unsigned functionCallConv) const;
5719   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
5720                                   unsigned functionCallConv) const;
5721   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
5722                                           uint64_t Members) const;
5723   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5724   bool isIllegalVectorType(QualType Ty) const;
5725   bool containsAnyFP16Vectors(QualType Ty) const;
5726 
5727   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5728   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5729                                          uint64_t Members) const override;
5730 
5731   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
5732 
5733   void computeInfo(CGFunctionInfo &FI) const override;
5734 
5735   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5736                     QualType Ty) const override;
5737 
5738   llvm::CallingConv::ID getLLVMDefaultCC() const;
5739   llvm::CallingConv::ID getABIDefaultCC() const;
5740   void setCCs();
5741 
5742   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5743                                     bool asReturnValue) const override {
5744     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5745   }
5746   bool isSwiftErrorInRegister() const override {
5747     return true;
5748   }
5749   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5750                                  unsigned elts) const override;
5751 };
5752 
5753 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
5754 public:
5755   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5756     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
5757 
5758   const ARMABIInfo &getABIInfo() const {
5759     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
5760   }
5761 
5762   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5763     return 13;
5764   }
5765 
5766   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5767     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
5768   }
5769 
5770   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5771                                llvm::Value *Address) const override {
5772     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5773 
5774     // 0-15 are the 16 integer registers.
5775     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
5776     return false;
5777   }
5778 
5779   unsigned getSizeOfUnwindException() const override {
5780     if (getABIInfo().isEABI()) return 88;
5781     return TargetCodeGenInfo::getSizeOfUnwindException();
5782   }
5783 
5784   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5785                            CodeGen::CodeGenModule &CGM) const override {
5786     if (GV->isDeclaration())
5787       return;
5788     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5789     if (!FD)
5790       return;
5791 
5792     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
5793     if (!Attr)
5794       return;
5795 
5796     const char *Kind;
5797     switch (Attr->getInterrupt()) {
5798     case ARMInterruptAttr::Generic: Kind = ""; break;
5799     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
5800     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
5801     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
5802     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
5803     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
5804     }
5805 
5806     llvm::Function *Fn = cast<llvm::Function>(GV);
5807 
5808     Fn->addFnAttr("interrupt", Kind);
5809 
5810     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
5811     if (ABI == ARMABIInfo::APCS)
5812       return;
5813 
5814     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
5815     // however this is not necessarily true on taking any interrupt. Instruct
5816     // the backend to perform a realignment as part of the function prologue.
5817     llvm::AttrBuilder B;
5818     B.addStackAlignmentAttr(8);
5819     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
5820   }
5821 };
5822 
5823 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
5824 public:
5825   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
5826       : ARMTargetCodeGenInfo(CGT, K) {}
5827 
5828   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5829                            CodeGen::CodeGenModule &CGM) const override;
5830 
5831   void getDependentLibraryOption(llvm::StringRef Lib,
5832                                  llvm::SmallString<24> &Opt) const override {
5833     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5834   }
5835 
5836   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5837                                llvm::SmallString<32> &Opt) const override {
5838     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5839   }
5840 };
5841 
5842 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
5843     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5844   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5845   if (GV->isDeclaration())
5846     return;
5847   addStackProbeTargetAttributes(D, GV, CGM);
5848 }
5849 }
5850 
5851 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5852   if (!::classifyReturnType(getCXXABI(), FI, *this))
5853     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
5854                                             FI.getCallingConvention());
5855 
5856   for (auto &I : FI.arguments())
5857     I.info = classifyArgumentType(I.type, FI.isVariadic(),
5858                                   FI.getCallingConvention());
5859 
5860 
5861   // Always honor user-specified calling convention.
5862   if (FI.getCallingConvention() != llvm::CallingConv::C)
5863     return;
5864 
5865   llvm::CallingConv::ID cc = getRuntimeCC();
5866   if (cc != llvm::CallingConv::C)
5867     FI.setEffectiveCallingConvention(cc);
5868 }
5869 
5870 /// Return the default calling convention that LLVM will use.
5871 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
5872   // The default calling convention that LLVM will infer.
5873   if (isEABIHF() || getTarget().getTriple().isWatchABI())
5874     return llvm::CallingConv::ARM_AAPCS_VFP;
5875   else if (isEABI())
5876     return llvm::CallingConv::ARM_AAPCS;
5877   else
5878     return llvm::CallingConv::ARM_APCS;
5879 }
5880 
5881 /// Return the calling convention that our ABI would like us to use
5882 /// as the C calling convention.
5883 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
5884   switch (getABIKind()) {
5885   case APCS: return llvm::CallingConv::ARM_APCS;
5886   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
5887   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5888   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
5889   }
5890   llvm_unreachable("bad ABI kind");
5891 }
5892 
5893 void ARMABIInfo::setCCs() {
5894   assert(getRuntimeCC() == llvm::CallingConv::C);
5895 
5896   // Don't muddy up the IR with a ton of explicit annotations if
5897   // they'd just match what LLVM will infer from the triple.
5898   llvm::CallingConv::ID abiCC = getABIDefaultCC();
5899   if (abiCC != getLLVMDefaultCC())
5900     RuntimeCC = abiCC;
5901 }
5902 
5903 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
5904   uint64_t Size = getContext().getTypeSize(Ty);
5905   if (Size <= 32) {
5906     llvm::Type *ResType =
5907         llvm::Type::getInt32Ty(getVMContext());
5908     return ABIArgInfo::getDirect(ResType);
5909   }
5910   if (Size == 64 || Size == 128) {
5911     llvm::Type *ResType = llvm::VectorType::get(
5912         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5913     return ABIArgInfo::getDirect(ResType);
5914   }
5915   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5916 }
5917 
5918 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
5919                                                     const Type *Base,
5920                                                     uint64_t Members) const {
5921   assert(Base && "Base class should be set for homogeneous aggregate");
5922   // Base can be a floating-point or a vector.
5923   if (const VectorType *VT = Base->getAs<VectorType>()) {
5924     // FP16 vectors should be converted to integer vectors
5925     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
5926       uint64_t Size = getContext().getTypeSize(VT);
5927       llvm::Type *NewVecTy = llvm::VectorType::get(
5928           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
5929       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
5930       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5931     }
5932   }
5933   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5934 }
5935 
5936 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
5937                                             unsigned functionCallConv) const {
5938   // 6.1.2.1 The following argument types are VFP CPRCs:
5939   //   A single-precision floating-point type (including promoted
5940   //   half-precision types); A double-precision floating-point type;
5941   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
5942   //   with a Base Type of a single- or double-precision floating-point type,
5943   //   64-bit containerized vectors or 128-bit containerized vectors with one
5944   //   to four Elements.
5945   // Variadic functions should always marshal to the base standard.
5946   bool IsAAPCS_VFP =
5947       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
5948 
5949   Ty = useFirstFieldIfTransparentUnion(Ty);
5950 
5951   // Handle illegal vector types here.
5952   if (isIllegalVectorType(Ty))
5953     return coerceIllegalVector(Ty);
5954 
5955   // _Float16 and __fp16 get passed as if it were an int or float, but with
5956   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
5957   // half type natively, and does not need to interwork with AAPCS code.
5958   if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
5959       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
5960     llvm::Type *ResType = IsAAPCS_VFP ?
5961       llvm::Type::getFloatTy(getVMContext()) :
5962       llvm::Type::getInt32Ty(getVMContext());
5963     return ABIArgInfo::getDirect(ResType);
5964   }
5965 
5966   if (!isAggregateTypeForABI(Ty)) {
5967     // Treat an enum type as its underlying type.
5968     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5969       Ty = EnumTy->getDecl()->getIntegerType();
5970     }
5971 
5972     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
5973                                           : ABIArgInfo::getDirect());
5974   }
5975 
5976   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5977     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5978   }
5979 
5980   // Ignore empty records.
5981   if (isEmptyRecord(getContext(), Ty, true))
5982     return ABIArgInfo::getIgnore();
5983 
5984   if (IsAAPCS_VFP) {
5985     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5986     // into VFP registers.
5987     const Type *Base = nullptr;
5988     uint64_t Members = 0;
5989     if (isHomogeneousAggregate(Ty, Base, Members))
5990       return classifyHomogeneousAggregate(Ty, Base, Members);
5991   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5992     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5993     // this convention even for a variadic function: the backend will use GPRs
5994     // if needed.
5995     const Type *Base = nullptr;
5996     uint64_t Members = 0;
5997     if (isHomogeneousAggregate(Ty, Base, Members)) {
5998       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5999       llvm::Type *Ty =
6000         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6001       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6002     }
6003   }
6004 
6005   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6006       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6007     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6008     // bigger than 128-bits, they get placed in space allocated by the caller,
6009     // and a pointer is passed.
6010     return ABIArgInfo::getIndirect(
6011         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6012   }
6013 
6014   // Support byval for ARM.
6015   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6016   // most 8-byte. We realign the indirect argument if type alignment is bigger
6017   // than ABI alignment.
6018   uint64_t ABIAlign = 4;
6019   uint64_t TyAlign;
6020   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6021       getABIKind() == ARMABIInfo::AAPCS) {
6022     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6023     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6024   } else {
6025     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6026   }
6027   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6028     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6029     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6030                                    /*ByVal=*/true,
6031                                    /*Realign=*/TyAlign > ABIAlign);
6032   }
6033 
6034   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6035   // same size and alignment.
6036   if (getTarget().isRenderScriptTarget()) {
6037     return coerceToIntArray(Ty, getContext(), getVMContext());
6038   }
6039 
6040   // Otherwise, pass by coercing to a structure of the appropriate size.
6041   llvm::Type* ElemTy;
6042   unsigned SizeRegs;
6043   // FIXME: Try to match the types of the arguments more accurately where
6044   // we can.
6045   if (TyAlign <= 4) {
6046     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6047     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6048   } else {
6049     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6050     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6051   }
6052 
6053   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6054 }
6055 
6056 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6057                               llvm::LLVMContext &VMContext) {
6058   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6059   // is called integer-like if its size is less than or equal to one word, and
6060   // the offset of each of its addressable sub-fields is zero.
6061 
6062   uint64_t Size = Context.getTypeSize(Ty);
6063 
6064   // Check that the type fits in a word.
6065   if (Size > 32)
6066     return false;
6067 
6068   // FIXME: Handle vector types!
6069   if (Ty->isVectorType())
6070     return false;
6071 
6072   // Float types are never treated as "integer like".
6073   if (Ty->isRealFloatingType())
6074     return false;
6075 
6076   // If this is a builtin or pointer type then it is ok.
6077   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6078     return true;
6079 
6080   // Small complex integer types are "integer like".
6081   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6082     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6083 
6084   // Single element and zero sized arrays should be allowed, by the definition
6085   // above, but they are not.
6086 
6087   // Otherwise, it must be a record type.
6088   const RecordType *RT = Ty->getAs<RecordType>();
6089   if (!RT) return false;
6090 
6091   // Ignore records with flexible arrays.
6092   const RecordDecl *RD = RT->getDecl();
6093   if (RD->hasFlexibleArrayMember())
6094     return false;
6095 
6096   // Check that all sub-fields are at offset 0, and are themselves "integer
6097   // like".
6098   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6099 
6100   bool HadField = false;
6101   unsigned idx = 0;
6102   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6103        i != e; ++i, ++idx) {
6104     const FieldDecl *FD = *i;
6105 
6106     // Bit-fields are not addressable, we only need to verify they are "integer
6107     // like". We still have to disallow a subsequent non-bitfield, for example:
6108     //   struct { int : 0; int x }
6109     // is non-integer like according to gcc.
6110     if (FD->isBitField()) {
6111       if (!RD->isUnion())
6112         HadField = true;
6113 
6114       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6115         return false;
6116 
6117       continue;
6118     }
6119 
6120     // Check if this field is at offset 0.
6121     if (Layout.getFieldOffset(idx) != 0)
6122       return false;
6123 
6124     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6125       return false;
6126 
6127     // Only allow at most one field in a structure. This doesn't match the
6128     // wording above, but follows gcc in situations with a field following an
6129     // empty structure.
6130     if (!RD->isUnion()) {
6131       if (HadField)
6132         return false;
6133 
6134       HadField = true;
6135     }
6136   }
6137 
6138   return true;
6139 }
6140 
6141 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6142                                           unsigned functionCallConv) const {
6143 
6144   // Variadic functions should always marshal to the base standard.
6145   bool IsAAPCS_VFP =
6146       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6147 
6148   if (RetTy->isVoidType())
6149     return ABIArgInfo::getIgnore();
6150 
6151   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6152     // Large vector types should be returned via memory.
6153     if (getContext().getTypeSize(RetTy) > 128)
6154       return getNaturalAlignIndirect(RetTy);
6155     // FP16 vectors should be converted to integer vectors
6156     if (!getTarget().hasLegalHalfType() &&
6157         (VT->getElementType()->isFloat16Type() ||
6158          VT->getElementType()->isHalfType()))
6159       return coerceIllegalVector(RetTy);
6160   }
6161 
6162   // _Float16 and __fp16 get returned as if it were an int or float, but with
6163   // the top 16 bits unspecified. This is not done for OpenCL as it handles the
6164   // half type natively, and does not need to interwork with AAPCS code.
6165   if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
6166       !getContext().getLangOpts().NativeHalfArgsAndReturns) {
6167     llvm::Type *ResType = IsAAPCS_VFP ?
6168       llvm::Type::getFloatTy(getVMContext()) :
6169       llvm::Type::getInt32Ty(getVMContext());
6170     return ABIArgInfo::getDirect(ResType);
6171   }
6172 
6173   if (!isAggregateTypeForABI(RetTy)) {
6174     // Treat an enum type as its underlying type.
6175     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6176       RetTy = EnumTy->getDecl()->getIntegerType();
6177 
6178     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6179                                             : ABIArgInfo::getDirect();
6180   }
6181 
6182   // Are we following APCS?
6183   if (getABIKind() == APCS) {
6184     if (isEmptyRecord(getContext(), RetTy, false))
6185       return ABIArgInfo::getIgnore();
6186 
6187     // Complex types are all returned as packed integers.
6188     //
6189     // FIXME: Consider using 2 x vector types if the back end handles them
6190     // correctly.
6191     if (RetTy->isAnyComplexType())
6192       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6193           getVMContext(), getContext().getTypeSize(RetTy)));
6194 
6195     // Integer like structures are returned in r0.
6196     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6197       // Return in the smallest viable integer type.
6198       uint64_t Size = getContext().getTypeSize(RetTy);
6199       if (Size <= 8)
6200         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6201       if (Size <= 16)
6202         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6203       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6204     }
6205 
6206     // Otherwise return in memory.
6207     return getNaturalAlignIndirect(RetTy);
6208   }
6209 
6210   // Otherwise this is an AAPCS variant.
6211 
6212   if (isEmptyRecord(getContext(), RetTy, true))
6213     return ABIArgInfo::getIgnore();
6214 
6215   // Check for homogeneous aggregates with AAPCS-VFP.
6216   if (IsAAPCS_VFP) {
6217     const Type *Base = nullptr;
6218     uint64_t Members = 0;
6219     if (isHomogeneousAggregate(RetTy, Base, Members))
6220       return classifyHomogeneousAggregate(RetTy, Base, Members);
6221   }
6222 
6223   // Aggregates <= 4 bytes are returned in r0; other aggregates
6224   // are returned indirectly.
6225   uint64_t Size = getContext().getTypeSize(RetTy);
6226   if (Size <= 32) {
6227     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6228     // same size and alignment.
6229     if (getTarget().isRenderScriptTarget()) {
6230       return coerceToIntArray(RetTy, getContext(), getVMContext());
6231     }
6232     if (getDataLayout().isBigEndian())
6233       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6234       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6235 
6236     // Return in the smallest viable integer type.
6237     if (Size <= 8)
6238       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6239     if (Size <= 16)
6240       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6241     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6242   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6243     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6244     llvm::Type *CoerceTy =
6245         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6246     return ABIArgInfo::getDirect(CoerceTy);
6247   }
6248 
6249   return getNaturalAlignIndirect(RetTy);
6250 }
6251 
6252 /// isIllegalVector - check whether Ty is an illegal vector type.
6253 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6254   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6255     // On targets that don't support FP16, FP16 is expanded into float, and we
6256     // don't want the ABI to depend on whether or not FP16 is supported in
6257     // hardware. Thus return false to coerce FP16 vectors into integer vectors.
6258     if (!getTarget().hasLegalHalfType() &&
6259         (VT->getElementType()->isFloat16Type() ||
6260          VT->getElementType()->isHalfType()))
6261       return true;
6262     if (isAndroid()) {
6263       // Android shipped using Clang 3.1, which supported a slightly different
6264       // vector ABI. The primary differences were that 3-element vector types
6265       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6266       // accepts that legacy behavior for Android only.
6267       // Check whether VT is legal.
6268       unsigned NumElements = VT->getNumElements();
6269       // NumElements should be power of 2 or equal to 3.
6270       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6271         return true;
6272     } else {
6273       // Check whether VT is legal.
6274       unsigned NumElements = VT->getNumElements();
6275       uint64_t Size = getContext().getTypeSize(VT);
6276       // NumElements should be power of 2.
6277       if (!llvm::isPowerOf2_32(NumElements))
6278         return true;
6279       // Size should be greater than 32 bits.
6280       return Size <= 32;
6281     }
6282   }
6283   return false;
6284 }
6285 
6286 /// Return true if a type contains any 16-bit floating point vectors
6287 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6288   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6289     uint64_t NElements = AT->getSize().getZExtValue();
6290     if (NElements == 0)
6291       return false;
6292     return containsAnyFP16Vectors(AT->getElementType());
6293   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6294     const RecordDecl *RD = RT->getDecl();
6295 
6296     // If this is a C++ record, check the bases first.
6297     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6298       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6299             return containsAnyFP16Vectors(B.getType());
6300           }))
6301         return true;
6302 
6303     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6304           return FD && containsAnyFP16Vectors(FD->getType());
6305         }))
6306       return true;
6307 
6308     return false;
6309   } else {
6310     if (const VectorType *VT = Ty->getAs<VectorType>())
6311       return (VT->getElementType()->isFloat16Type() ||
6312               VT->getElementType()->isHalfType());
6313     return false;
6314   }
6315 }
6316 
6317 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6318                                            llvm::Type *eltTy,
6319                                            unsigned numElts) const {
6320   if (!llvm::isPowerOf2_32(numElts))
6321     return false;
6322   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6323   if (size > 64)
6324     return false;
6325   if (vectorSize.getQuantity() != 8 &&
6326       (vectorSize.getQuantity() != 16 || numElts == 1))
6327     return false;
6328   return true;
6329 }
6330 
6331 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6332   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6333   // double, or 64-bit or 128-bit vectors.
6334   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6335     if (BT->getKind() == BuiltinType::Float ||
6336         BT->getKind() == BuiltinType::Double ||
6337         BT->getKind() == BuiltinType::LongDouble)
6338       return true;
6339   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6340     unsigned VecSize = getContext().getTypeSize(VT);
6341     if (VecSize == 64 || VecSize == 128)
6342       return true;
6343   }
6344   return false;
6345 }
6346 
6347 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6348                                                    uint64_t Members) const {
6349   return Members <= 4;
6350 }
6351 
6352 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6353                                         bool acceptHalf) const {
6354   // Give precedence to user-specified calling conventions.
6355   if (callConvention != llvm::CallingConv::C)
6356     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6357   else
6358     return (getABIKind() == AAPCS_VFP) ||
6359            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6360 }
6361 
6362 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6363                               QualType Ty) const {
6364   CharUnits SlotSize = CharUnits::fromQuantity(4);
6365 
6366   // Empty records are ignored for parameter passing purposes.
6367   if (isEmptyRecord(getContext(), Ty, true)) {
6368     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6369     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6370     return Addr;
6371   }
6372 
6373   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6374   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6375 
6376   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6377   bool IsIndirect = false;
6378   const Type *Base = nullptr;
6379   uint64_t Members = 0;
6380   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6381     IsIndirect = true;
6382 
6383   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6384   // allocated by the caller.
6385   } else if (TySize > CharUnits::fromQuantity(16) &&
6386              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6387              !isHomogeneousAggregate(Ty, Base, Members)) {
6388     IsIndirect = true;
6389 
6390   // Otherwise, bound the type's ABI alignment.
6391   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6392   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6393   // Our callers should be prepared to handle an under-aligned address.
6394   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6395              getABIKind() == ARMABIInfo::AAPCS) {
6396     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6397     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6398   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6399     // ARMv7k allows type alignment up to 16 bytes.
6400     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6401     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6402   } else {
6403     TyAlignForABI = CharUnits::fromQuantity(4);
6404   }
6405 
6406   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6407   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6408                           SlotSize, /*AllowHigherAlign*/ true);
6409 }
6410 
6411 //===----------------------------------------------------------------------===//
6412 // NVPTX ABI Implementation
6413 //===----------------------------------------------------------------------===//
6414 
6415 namespace {
6416 
6417 class NVPTXABIInfo : public ABIInfo {
6418 public:
6419   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6420 
6421   ABIArgInfo classifyReturnType(QualType RetTy) const;
6422   ABIArgInfo classifyArgumentType(QualType Ty) const;
6423 
6424   void computeInfo(CGFunctionInfo &FI) const override;
6425   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6426                     QualType Ty) const override;
6427 };
6428 
6429 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6430 public:
6431   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6432     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
6433 
6434   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6435                            CodeGen::CodeGenModule &M) const override;
6436   bool shouldEmitStaticExternCAliases() const override;
6437 
6438 private:
6439   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
6440   // resulting MDNode to the nvvm.annotations MDNode.
6441   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
6442 };
6443 
6444 /// Checks if the type is unsupported directly by the current target.
6445 static bool isUnsupportedType(ASTContext &Context, QualType T) {
6446   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6447     return true;
6448   if (!Context.getTargetInfo().hasFloat128Type() &&
6449       (T->isFloat128Type() ||
6450        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6451     return true;
6452   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6453       Context.getTypeSize(T) > 64)
6454     return true;
6455   if (const auto *AT = T->getAsArrayTypeUnsafe())
6456     return isUnsupportedType(Context, AT->getElementType());
6457   const auto *RT = T->getAs<RecordType>();
6458   if (!RT)
6459     return false;
6460   const RecordDecl *RD = RT->getDecl();
6461 
6462   // If this is a C++ record, check the bases first.
6463   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6464     for (const CXXBaseSpecifier &I : CXXRD->bases())
6465       if (isUnsupportedType(Context, I.getType()))
6466         return true;
6467 
6468   for (const FieldDecl *I : RD->fields())
6469     if (isUnsupportedType(Context, I->getType()))
6470       return true;
6471   return false;
6472 }
6473 
6474 /// Coerce the given type into an array with maximum allowed size of elements.
6475 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
6476                                             llvm::LLVMContext &LLVMContext,
6477                                             unsigned MaxSize) {
6478   // Alignment and Size are measured in bits.
6479   const uint64_t Size = Context.getTypeSize(Ty);
6480   const uint64_t Alignment = Context.getTypeAlign(Ty);
6481   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6482   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
6483   const uint64_t NumElements = (Size + Div - 1) / Div;
6484   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6485 }
6486 
6487 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6488   if (RetTy->isVoidType())
6489     return ABIArgInfo::getIgnore();
6490 
6491   if (getContext().getLangOpts().OpenMP &&
6492       getContext().getLangOpts().OpenMPIsDevice &&
6493       isUnsupportedType(getContext(), RetTy))
6494     return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);
6495 
6496   // note: this is different from default ABI
6497   if (!RetTy->isScalarType())
6498     return ABIArgInfo::getDirect();
6499 
6500   // Treat an enum type as its underlying type.
6501   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6502     RetTy = EnumTy->getDecl()->getIntegerType();
6503 
6504   return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
6505                                            : ABIArgInfo::getDirect());
6506 }
6507 
6508 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6509   // Treat an enum type as its underlying type.
6510   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6511     Ty = EnumTy->getDecl()->getIntegerType();
6512 
6513   // Return aggregates type as indirect by value
6514   if (isAggregateTypeForABI(Ty))
6515     return getNaturalAlignIndirect(Ty, /* byval */ true);
6516 
6517   return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
6518                                         : ABIArgInfo::getDirect());
6519 }
6520 
6521 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
6522   if (!getCXXABI().classifyReturnType(FI))
6523     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6524   for (auto &I : FI.arguments())
6525     I.info = classifyArgumentType(I.type);
6526 
6527   // Always honor user-specified calling convention.
6528   if (FI.getCallingConvention() != llvm::CallingConv::C)
6529     return;
6530 
6531   FI.setEffectiveCallingConvention(getRuntimeCC());
6532 }
6533 
6534 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6535                                 QualType Ty) const {
6536   llvm_unreachable("NVPTX does not support varargs");
6537 }
6538 
6539 void NVPTXTargetCodeGenInfo::setTargetAttributes(
6540     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6541   if (GV->isDeclaration())
6542     return;
6543   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6544   if (!FD) return;
6545 
6546   llvm::Function *F = cast<llvm::Function>(GV);
6547 
6548   // Perform special handling in OpenCL mode
6549   if (M.getLangOpts().OpenCL) {
6550     // Use OpenCL function attributes to check for kernel functions
6551     // By default, all functions are device functions
6552     if (FD->hasAttr<OpenCLKernelAttr>()) {
6553       // OpenCL __kernel functions get kernel metadata
6554       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6555       addNVVMMetadata(F, "kernel", 1);
6556       // And kernel functions are not subject to inlining
6557       F->addFnAttr(llvm::Attribute::NoInline);
6558     }
6559   }
6560 
6561   // Perform special handling in CUDA mode.
6562   if (M.getLangOpts().CUDA) {
6563     // CUDA __global__ functions get a kernel metadata entry.  Since
6564     // __global__ functions cannot be called from the device, we do not
6565     // need to set the noinline attribute.
6566     if (FD->hasAttr<CUDAGlobalAttr>()) {
6567       // Create !{<func-ref>, metadata !"kernel", i32 1} node
6568       addNVVMMetadata(F, "kernel", 1);
6569     }
6570     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
6571       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
6572       llvm::APSInt MaxThreads(32);
6573       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
6574       if (MaxThreads > 0)
6575         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
6576 
6577       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
6578       // not specified in __launch_bounds__ or if the user specified a 0 value,
6579       // we don't have to add a PTX directive.
6580       if (Attr->getMinBlocks()) {
6581         llvm::APSInt MinBlocks(32);
6582         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
6583         if (MinBlocks > 0)
6584           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
6585           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
6586       }
6587     }
6588   }
6589 }
6590 
6591 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
6592                                              int Operand) {
6593   llvm::Module *M = F->getParent();
6594   llvm::LLVMContext &Ctx = M->getContext();
6595 
6596   // Get "nvvm.annotations" metadata node
6597   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
6598 
6599   llvm::Metadata *MDVals[] = {
6600       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
6601       llvm::ConstantAsMetadata::get(
6602           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
6603   // Append metadata to nvvm.annotations
6604   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6605 }
6606 
6607 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
6608   return false;
6609 }
6610 }
6611 
6612 //===----------------------------------------------------------------------===//
6613 // SystemZ ABI Implementation
6614 //===----------------------------------------------------------------------===//
6615 
6616 namespace {
6617 
6618 class SystemZABIInfo : public SwiftABIInfo {
6619   bool HasVector;
6620   bool IsSoftFloatABI;
6621 
6622 public:
6623   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
6624     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
6625 
6626   bool isPromotableIntegerType(QualType Ty) const;
6627   bool isCompoundType(QualType Ty) const;
6628   bool isVectorArgumentType(QualType Ty) const;
6629   bool isFPArgumentType(QualType Ty) const;
6630   QualType GetSingleElementType(QualType Ty) const;
6631 
6632   ABIArgInfo classifyReturnType(QualType RetTy) const;
6633   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
6634 
6635   void computeInfo(CGFunctionInfo &FI) const override {
6636     if (!getCXXABI().classifyReturnType(FI))
6637       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6638     for (auto &I : FI.arguments())
6639       I.info = classifyArgumentType(I.type);
6640   }
6641 
6642   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6643                     QualType Ty) const override;
6644 
6645   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6646                                     bool asReturnValue) const override {
6647     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6648   }
6649   bool isSwiftErrorInRegister() const override {
6650     return false;
6651   }
6652 };
6653 
6654 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
6655 public:
6656   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
6657     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector, SoftFloatABI)) {}
6658 };
6659 
6660 }
6661 
6662 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
6663   // Treat an enum type as its underlying type.
6664   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6665     Ty = EnumTy->getDecl()->getIntegerType();
6666 
6667   // Promotable integer types are required to be promoted by the ABI.
6668   if (Ty->isPromotableIntegerType())
6669     return true;
6670 
6671   // 32-bit values must also be promoted.
6672   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6673     switch (BT->getKind()) {
6674     case BuiltinType::Int:
6675     case BuiltinType::UInt:
6676       return true;
6677     default:
6678       return false;
6679     }
6680   return false;
6681 }
6682 
6683 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
6684   return (Ty->isAnyComplexType() ||
6685           Ty->isVectorType() ||
6686           isAggregateTypeForABI(Ty));
6687 }
6688 
6689 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
6690   return (HasVector &&
6691           Ty->isVectorType() &&
6692           getContext().getTypeSize(Ty) <= 128);
6693 }
6694 
6695 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
6696   if (IsSoftFloatABI)
6697     return false;
6698 
6699   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
6700     switch (BT->getKind()) {
6701     case BuiltinType::Float:
6702     case BuiltinType::Double:
6703       return true;
6704     default:
6705       return false;
6706     }
6707 
6708   return false;
6709 }
6710 
6711 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
6712   if (const RecordType *RT = Ty->getAsStructureType()) {
6713     const RecordDecl *RD = RT->getDecl();
6714     QualType Found;
6715 
6716     // If this is a C++ record, check the bases first.
6717     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6718       for (const auto &I : CXXRD->bases()) {
6719         QualType Base = I.getType();
6720 
6721         // Empty bases don't affect things either way.
6722         if (isEmptyRecord(getContext(), Base, true))
6723           continue;
6724 
6725         if (!Found.isNull())
6726           return Ty;
6727         Found = GetSingleElementType(Base);
6728       }
6729 
6730     // Check the fields.
6731     for (const auto *FD : RD->fields()) {
6732       // For compatibility with GCC, ignore empty bitfields in C++ mode.
6733       // Unlike isSingleElementStruct(), empty structure and array fields
6734       // do count.  So do anonymous bitfields that aren't zero-sized.
6735       if (getContext().getLangOpts().CPlusPlus &&
6736           FD->isZeroLengthBitField(getContext()))
6737         continue;
6738 
6739       // Unlike isSingleElementStruct(), arrays do not count.
6740       // Nested structures still do though.
6741       if (!Found.isNull())
6742         return Ty;
6743       Found = GetSingleElementType(FD->getType());
6744     }
6745 
6746     // Unlike isSingleElementStruct(), trailing padding is allowed.
6747     // An 8-byte aligned struct s { float f; } is passed as a double.
6748     if (!Found.isNull())
6749       return Found;
6750   }
6751 
6752   return Ty;
6753 }
6754 
6755 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6756                                   QualType Ty) const {
6757   // Assume that va_list type is correct; should be pointer to LLVM type:
6758   // struct {
6759   //   i64 __gpr;
6760   //   i64 __fpr;
6761   //   i8 *__overflow_arg_area;
6762   //   i8 *__reg_save_area;
6763   // };
6764 
6765   // Every non-vector argument occupies 8 bytes and is passed by preference
6766   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
6767   // always passed on the stack.
6768   Ty = getContext().getCanonicalType(Ty);
6769   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6770   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
6771   llvm::Type *DirectTy = ArgTy;
6772   ABIArgInfo AI = classifyArgumentType(Ty);
6773   bool IsIndirect = AI.isIndirect();
6774   bool InFPRs = false;
6775   bool IsVector = false;
6776   CharUnits UnpaddedSize;
6777   CharUnits DirectAlign;
6778   if (IsIndirect) {
6779     DirectTy = llvm::PointerType::getUnqual(DirectTy);
6780     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
6781   } else {
6782     if (AI.getCoerceToType())
6783       ArgTy = AI.getCoerceToType();
6784     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
6785     IsVector = ArgTy->isVectorTy();
6786     UnpaddedSize = TyInfo.first;
6787     DirectAlign = TyInfo.second;
6788   }
6789   CharUnits PaddedSize = CharUnits::fromQuantity(8);
6790   if (IsVector && UnpaddedSize > PaddedSize)
6791     PaddedSize = CharUnits::fromQuantity(16);
6792   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
6793 
6794   CharUnits Padding = (PaddedSize - UnpaddedSize);
6795 
6796   llvm::Type *IndexTy = CGF.Int64Ty;
6797   llvm::Value *PaddedSizeV =
6798     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
6799 
6800   if (IsVector) {
6801     // Work out the address of a vector argument on the stack.
6802     // Vector arguments are always passed in the high bits of a
6803     // single (8 byte) or double (16 byte) stack slot.
6804     Address OverflowArgAreaPtr =
6805         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6806     Address OverflowArgArea =
6807       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6808               TyInfo.second);
6809     Address MemAddr =
6810       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
6811 
6812     // Update overflow_arg_area_ptr pointer
6813     llvm::Value *NewOverflowArgArea =
6814       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6815                             "overflow_arg_area");
6816     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6817 
6818     return MemAddr;
6819   }
6820 
6821   assert(PaddedSize.getQuantity() == 8);
6822 
6823   unsigned MaxRegs, RegCountField, RegSaveIndex;
6824   CharUnits RegPadding;
6825   if (InFPRs) {
6826     MaxRegs = 4; // Maximum of 4 FPR arguments
6827     RegCountField = 1; // __fpr
6828     RegSaveIndex = 16; // save offset for f0
6829     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
6830   } else {
6831     MaxRegs = 5; // Maximum of 5 GPR arguments
6832     RegCountField = 0; // __gpr
6833     RegSaveIndex = 2; // save offset for r2
6834     RegPadding = Padding; // values are passed in the low bits of a GPR
6835   }
6836 
6837   Address RegCountPtr =
6838       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
6839   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
6840   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
6841   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
6842                                                  "fits_in_regs");
6843 
6844   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
6845   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
6846   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
6847   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
6848 
6849   // Emit code to load the value if it was passed in registers.
6850   CGF.EmitBlock(InRegBlock);
6851 
6852   // Work out the address of an argument register.
6853   llvm::Value *ScaledRegCount =
6854     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
6855   llvm::Value *RegBase =
6856     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
6857                                       + RegPadding.getQuantity());
6858   llvm::Value *RegOffset =
6859     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
6860   Address RegSaveAreaPtr =
6861       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
6862   llvm::Value *RegSaveArea =
6863     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
6864   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
6865                                            "raw_reg_addr"),
6866                      PaddedSize);
6867   Address RegAddr =
6868     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
6869 
6870   // Update the register count
6871   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
6872   llvm::Value *NewRegCount =
6873     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
6874   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
6875   CGF.EmitBranch(ContBlock);
6876 
6877   // Emit code to load the value if it was passed in memory.
6878   CGF.EmitBlock(InMemBlock);
6879 
6880   // Work out the address of a stack argument.
6881   Address OverflowArgAreaPtr =
6882       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
6883   Address OverflowArgArea =
6884     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
6885             PaddedSize);
6886   Address RawMemAddr =
6887     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
6888   Address MemAddr =
6889     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
6890 
6891   // Update overflow_arg_area_ptr pointer
6892   llvm::Value *NewOverflowArgArea =
6893     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
6894                           "overflow_arg_area");
6895   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
6896   CGF.EmitBranch(ContBlock);
6897 
6898   // Return the appropriate result.
6899   CGF.EmitBlock(ContBlock);
6900   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6901                                  MemAddr, InMemBlock, "va_arg.addr");
6902 
6903   if (IsIndirect)
6904     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
6905                       TyInfo.second);
6906 
6907   return ResAddr;
6908 }
6909 
6910 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
6911   if (RetTy->isVoidType())
6912     return ABIArgInfo::getIgnore();
6913   if (isVectorArgumentType(RetTy))
6914     return ABIArgInfo::getDirect();
6915   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
6916     return getNaturalAlignIndirect(RetTy);
6917   return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
6918                                          : ABIArgInfo::getDirect());
6919 }
6920 
6921 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
6922   // Handle the generic C++ ABI.
6923   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6924     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6925 
6926   // Integers and enums are extended to full register width.
6927   if (isPromotableIntegerType(Ty))
6928     return ABIArgInfo::getExtend(Ty);
6929 
6930   // Handle vector types and vector-like structure types.  Note that
6931   // as opposed to float-like structure types, we do not allow any
6932   // padding for vector-like structures, so verify the sizes match.
6933   uint64_t Size = getContext().getTypeSize(Ty);
6934   QualType SingleElementTy = GetSingleElementType(Ty);
6935   if (isVectorArgumentType(SingleElementTy) &&
6936       getContext().getTypeSize(SingleElementTy) == Size)
6937     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
6938 
6939   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
6940   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
6941     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6942 
6943   // Handle small structures.
6944   if (const RecordType *RT = Ty->getAs<RecordType>()) {
6945     // Structures with flexible arrays have variable length, so really
6946     // fail the size test above.
6947     const RecordDecl *RD = RT->getDecl();
6948     if (RD->hasFlexibleArrayMember())
6949       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6950 
6951     // The structure is passed as an unextended integer, a float, or a double.
6952     llvm::Type *PassTy;
6953     if (isFPArgumentType(SingleElementTy)) {
6954       assert(Size == 32 || Size == 64);
6955       if (Size == 32)
6956         PassTy = llvm::Type::getFloatTy(getVMContext());
6957       else
6958         PassTy = llvm::Type::getDoubleTy(getVMContext());
6959     } else
6960       PassTy = llvm::IntegerType::get(getVMContext(), Size);
6961     return ABIArgInfo::getDirect(PassTy);
6962   }
6963 
6964   // Non-structure compounds are passed indirectly.
6965   if (isCompoundType(Ty))
6966     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6967 
6968   return ABIArgInfo::getDirect(nullptr);
6969 }
6970 
6971 //===----------------------------------------------------------------------===//
6972 // MSP430 ABI Implementation
6973 //===----------------------------------------------------------------------===//
6974 
6975 namespace {
6976 
6977 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
6978 public:
6979   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
6980     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6981   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6982                            CodeGen::CodeGenModule &M) const override;
6983 };
6984 
6985 }
6986 
6987 void MSP430TargetCodeGenInfo::setTargetAttributes(
6988     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6989   if (GV->isDeclaration())
6990     return;
6991   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
6992     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
6993     if (!InterruptAttr)
6994       return;
6995 
6996     // Handle 'interrupt' attribute:
6997     llvm::Function *F = cast<llvm::Function>(GV);
6998 
6999     // Step 1: Set ISR calling convention.
7000     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7001 
7002     // Step 2: Add attributes goodness.
7003     F->addFnAttr(llvm::Attribute::NoInline);
7004     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7005   }
7006 }
7007 
7008 //===----------------------------------------------------------------------===//
7009 // MIPS ABI Implementation.  This works for both little-endian and
7010 // big-endian variants.
7011 //===----------------------------------------------------------------------===//
7012 
7013 namespace {
7014 class MipsABIInfo : public ABIInfo {
7015   bool IsO32;
7016   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7017   void CoerceToIntArgs(uint64_t TySize,
7018                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7019   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7020   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7021   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7022 public:
7023   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7024     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7025     StackAlignInBytes(IsO32 ? 8 : 16) {}
7026 
7027   ABIArgInfo classifyReturnType(QualType RetTy) const;
7028   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7029   void computeInfo(CGFunctionInfo &FI) const override;
7030   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7031                     QualType Ty) const override;
7032   ABIArgInfo extendType(QualType Ty) const;
7033 };
7034 
7035 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7036   unsigned SizeOfUnwindException;
7037 public:
7038   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7039     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
7040       SizeOfUnwindException(IsO32 ? 24 : 32) {}
7041 
7042   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7043     return 29;
7044   }
7045 
7046   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7047                            CodeGen::CodeGenModule &CGM) const override {
7048     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7049     if (!FD) return;
7050     llvm::Function *Fn = cast<llvm::Function>(GV);
7051 
7052     if (FD->hasAttr<MipsLongCallAttr>())
7053       Fn->addFnAttr("long-call");
7054     else if (FD->hasAttr<MipsShortCallAttr>())
7055       Fn->addFnAttr("short-call");
7056 
7057     // Other attributes do not have a meaning for declarations.
7058     if (GV->isDeclaration())
7059       return;
7060 
7061     if (FD->hasAttr<Mips16Attr>()) {
7062       Fn->addFnAttr("mips16");
7063     }
7064     else if (FD->hasAttr<NoMips16Attr>()) {
7065       Fn->addFnAttr("nomips16");
7066     }
7067 
7068     if (FD->hasAttr<MicroMipsAttr>())
7069       Fn->addFnAttr("micromips");
7070     else if (FD->hasAttr<NoMicroMipsAttr>())
7071       Fn->addFnAttr("nomicromips");
7072 
7073     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7074     if (!Attr)
7075       return;
7076 
7077     const char *Kind;
7078     switch (Attr->getInterrupt()) {
7079     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7080     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7081     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7082     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7083     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7084     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7085     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7086     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7087     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7088     }
7089 
7090     Fn->addFnAttr("interrupt", Kind);
7091 
7092   }
7093 
7094   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7095                                llvm::Value *Address) const override;
7096 
7097   unsigned getSizeOfUnwindException() const override {
7098     return SizeOfUnwindException;
7099   }
7100 };
7101 }
7102 
7103 void MipsABIInfo::CoerceToIntArgs(
7104     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7105   llvm::IntegerType *IntTy =
7106     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7107 
7108   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7109   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7110     ArgList.push_back(IntTy);
7111 
7112   // If necessary, add one more integer type to ArgList.
7113   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7114 
7115   if (R)
7116     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7117 }
7118 
7119 // In N32/64, an aligned double precision floating point field is passed in
7120 // a register.
7121 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7122   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7123 
7124   if (IsO32) {
7125     CoerceToIntArgs(TySize, ArgList);
7126     return llvm::StructType::get(getVMContext(), ArgList);
7127   }
7128 
7129   if (Ty->isComplexType())
7130     return CGT.ConvertType(Ty);
7131 
7132   const RecordType *RT = Ty->getAs<RecordType>();
7133 
7134   // Unions/vectors are passed in integer registers.
7135   if (!RT || !RT->isStructureOrClassType()) {
7136     CoerceToIntArgs(TySize, ArgList);
7137     return llvm::StructType::get(getVMContext(), ArgList);
7138   }
7139 
7140   const RecordDecl *RD = RT->getDecl();
7141   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7142   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7143 
7144   uint64_t LastOffset = 0;
7145   unsigned idx = 0;
7146   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7147 
7148   // Iterate over fields in the struct/class and check if there are any aligned
7149   // double fields.
7150   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7151        i != e; ++i, ++idx) {
7152     const QualType Ty = i->getType();
7153     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7154 
7155     if (!BT || BT->getKind() != BuiltinType::Double)
7156       continue;
7157 
7158     uint64_t Offset = Layout.getFieldOffset(idx);
7159     if (Offset % 64) // Ignore doubles that are not aligned.
7160       continue;
7161 
7162     // Add ((Offset - LastOffset) / 64) args of type i64.
7163     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7164       ArgList.push_back(I64);
7165 
7166     // Add double type.
7167     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7168     LastOffset = Offset + 64;
7169   }
7170 
7171   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7172   ArgList.append(IntArgList.begin(), IntArgList.end());
7173 
7174   return llvm::StructType::get(getVMContext(), ArgList);
7175 }
7176 
7177 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7178                                         uint64_t Offset) const {
7179   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7180     return nullptr;
7181 
7182   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7183 }
7184 
7185 ABIArgInfo
7186 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7187   Ty = useFirstFieldIfTransparentUnion(Ty);
7188 
7189   uint64_t OrigOffset = Offset;
7190   uint64_t TySize = getContext().getTypeSize(Ty);
7191   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7192 
7193   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7194                    (uint64_t)StackAlignInBytes);
7195   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7196   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7197 
7198   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7199     // Ignore empty aggregates.
7200     if (TySize == 0)
7201       return ABIArgInfo::getIgnore();
7202 
7203     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7204       Offset = OrigOffset + MinABIStackAlignInBytes;
7205       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7206     }
7207 
7208     // If we have reached here, aggregates are passed directly by coercing to
7209     // another structure type. Padding is inserted if the offset of the
7210     // aggregate is unaligned.
7211     ABIArgInfo ArgInfo =
7212         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7213                               getPaddingType(OrigOffset, CurrOffset));
7214     ArgInfo.setInReg(true);
7215     return ArgInfo;
7216   }
7217 
7218   // Treat an enum type as its underlying type.
7219   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7220     Ty = EnumTy->getDecl()->getIntegerType();
7221 
7222   // All integral types are promoted to the GPR width.
7223   if (Ty->isIntegralOrEnumerationType())
7224     return extendType(Ty);
7225 
7226   return ABIArgInfo::getDirect(
7227       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7228 }
7229 
7230 llvm::Type*
7231 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7232   const RecordType *RT = RetTy->getAs<RecordType>();
7233   SmallVector<llvm::Type*, 8> RTList;
7234 
7235   if (RT && RT->isStructureOrClassType()) {
7236     const RecordDecl *RD = RT->getDecl();
7237     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7238     unsigned FieldCnt = Layout.getFieldCount();
7239 
7240     // N32/64 returns struct/classes in floating point registers if the
7241     // following conditions are met:
7242     // 1. The size of the struct/class is no larger than 128-bit.
7243     // 2. The struct/class has one or two fields all of which are floating
7244     //    point types.
7245     // 3. The offset of the first field is zero (this follows what gcc does).
7246     //
7247     // Any other composite results are returned in integer registers.
7248     //
7249     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7250       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7251       for (; b != e; ++b) {
7252         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7253 
7254         if (!BT || !BT->isFloatingPoint())
7255           break;
7256 
7257         RTList.push_back(CGT.ConvertType(b->getType()));
7258       }
7259 
7260       if (b == e)
7261         return llvm::StructType::get(getVMContext(), RTList,
7262                                      RD->hasAttr<PackedAttr>());
7263 
7264       RTList.clear();
7265     }
7266   }
7267 
7268   CoerceToIntArgs(Size, RTList);
7269   return llvm::StructType::get(getVMContext(), RTList);
7270 }
7271 
7272 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7273   uint64_t Size = getContext().getTypeSize(RetTy);
7274 
7275   if (RetTy->isVoidType())
7276     return ABIArgInfo::getIgnore();
7277 
7278   // O32 doesn't treat zero-sized structs differently from other structs.
7279   // However, N32/N64 ignores zero sized return values.
7280   if (!IsO32 && Size == 0)
7281     return ABIArgInfo::getIgnore();
7282 
7283   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7284     if (Size <= 128) {
7285       if (RetTy->isAnyComplexType())
7286         return ABIArgInfo::getDirect();
7287 
7288       // O32 returns integer vectors in registers and N32/N64 returns all small
7289       // aggregates in registers.
7290       if (!IsO32 ||
7291           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7292         ABIArgInfo ArgInfo =
7293             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7294         ArgInfo.setInReg(true);
7295         return ArgInfo;
7296       }
7297     }
7298 
7299     return getNaturalAlignIndirect(RetTy);
7300   }
7301 
7302   // Treat an enum type as its underlying type.
7303   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7304     RetTy = EnumTy->getDecl()->getIntegerType();
7305 
7306   if (RetTy->isPromotableIntegerType())
7307     return ABIArgInfo::getExtend(RetTy);
7308 
7309   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7310       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7311     return ABIArgInfo::getSignExtend(RetTy);
7312 
7313   return ABIArgInfo::getDirect();
7314 }
7315 
7316 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7317   ABIArgInfo &RetInfo = FI.getReturnInfo();
7318   if (!getCXXABI().classifyReturnType(FI))
7319     RetInfo = classifyReturnType(FI.getReturnType());
7320 
7321   // Check if a pointer to an aggregate is passed as a hidden argument.
7322   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7323 
7324   for (auto &I : FI.arguments())
7325     I.info = classifyArgumentType(I.type, Offset);
7326 }
7327 
7328 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7329                                QualType OrigTy) const {
7330   QualType Ty = OrigTy;
7331 
7332   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7333   // Pointers are also promoted in the same way but this only matters for N32.
7334   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7335   unsigned PtrWidth = getTarget().getPointerWidth(0);
7336   bool DidPromote = false;
7337   if ((Ty->isIntegerType() &&
7338           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7339       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7340     DidPromote = true;
7341     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7342                                             Ty->isSignedIntegerType());
7343   }
7344 
7345   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7346 
7347   // The alignment of things in the argument area is never larger than
7348   // StackAlignInBytes.
7349   TyInfo.second =
7350     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7351 
7352   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7353   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7354 
7355   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7356                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7357 
7358 
7359   // If there was a promotion, "unpromote" into a temporary.
7360   // TODO: can we just use a pointer into a subset of the original slot?
7361   if (DidPromote) {
7362     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7363     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7364 
7365     // Truncate down to the right width.
7366     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7367                                                  : CGF.IntPtrTy);
7368     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7369     if (OrigTy->isPointerType())
7370       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7371 
7372     CGF.Builder.CreateStore(V, Temp);
7373     Addr = Temp;
7374   }
7375 
7376   return Addr;
7377 }
7378 
7379 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7380   int TySize = getContext().getTypeSize(Ty);
7381 
7382   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7383   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7384     return ABIArgInfo::getSignExtend(Ty);
7385 
7386   return ABIArgInfo::getExtend(Ty);
7387 }
7388 
7389 bool
7390 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7391                                                llvm::Value *Address) const {
7392   // This information comes from gcc's implementation, which seems to
7393   // as canonical as it gets.
7394 
7395   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7396   // are aliased to pairs of single-precision FP registers.
7397   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7398 
7399   // 0-31 are the general purpose registers, $0 - $31.
7400   // 32-63 are the floating-point registers, $f0 - $f31.
7401   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7402   // 66 is the (notional, I think) register for signal-handler return.
7403   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7404 
7405   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7406   // They are one bit wide and ignored here.
7407 
7408   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7409   // (coprocessor 1 is the FP unit)
7410   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7411   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7412   // 176-181 are the DSP accumulator registers.
7413   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7414   return false;
7415 }
7416 
7417 //===----------------------------------------------------------------------===//
7418 // AVR ABI Implementation.
7419 //===----------------------------------------------------------------------===//
7420 
7421 namespace {
7422 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7423 public:
7424   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7425     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }
7426 
7427   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7428                            CodeGen::CodeGenModule &CGM) const override {
7429     if (GV->isDeclaration())
7430       return;
7431     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
7432     if (!FD) return;
7433     auto *Fn = cast<llvm::Function>(GV);
7434 
7435     if (FD->getAttr<AVRInterruptAttr>())
7436       Fn->addFnAttr("interrupt");
7437 
7438     if (FD->getAttr<AVRSignalAttr>())
7439       Fn->addFnAttr("signal");
7440   }
7441 };
7442 }
7443 
7444 //===----------------------------------------------------------------------===//
7445 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
7446 // Currently subclassed only to implement custom OpenCL C function attribute
7447 // handling.
7448 //===----------------------------------------------------------------------===//
7449 
7450 namespace {
7451 
7452 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
7453 public:
7454   TCETargetCodeGenInfo(CodeGenTypes &CGT)
7455     : DefaultTargetCodeGenInfo(CGT) {}
7456 
7457   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7458                            CodeGen::CodeGenModule &M) const override;
7459 };
7460 
7461 void TCETargetCodeGenInfo::setTargetAttributes(
7462     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7463   if (GV->isDeclaration())
7464     return;
7465   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7466   if (!FD) return;
7467 
7468   llvm::Function *F = cast<llvm::Function>(GV);
7469 
7470   if (M.getLangOpts().OpenCL) {
7471     if (FD->hasAttr<OpenCLKernelAttr>()) {
7472       // OpenCL C Kernel functions are not subject to inlining
7473       F->addFnAttr(llvm::Attribute::NoInline);
7474       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
7475       if (Attr) {
7476         // Convert the reqd_work_group_size() attributes to metadata.
7477         llvm::LLVMContext &Context = F->getContext();
7478         llvm::NamedMDNode *OpenCLMetadata =
7479             M.getModule().getOrInsertNamedMetadata(
7480                 "opencl.kernel_wg_size_info");
7481 
7482         SmallVector<llvm::Metadata *, 5> Operands;
7483         Operands.push_back(llvm::ConstantAsMetadata::get(F));
7484 
7485         Operands.push_back(
7486             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7487                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
7488         Operands.push_back(
7489             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7490                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
7491         Operands.push_back(
7492             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
7493                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
7494 
7495         // Add a boolean constant operand for "required" (true) or "hint"
7496         // (false) for implementing the work_group_size_hint attr later.
7497         // Currently always true as the hint is not yet implemented.
7498         Operands.push_back(
7499             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
7500         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
7501       }
7502     }
7503   }
7504 }
7505 
7506 }
7507 
7508 //===----------------------------------------------------------------------===//
7509 // Hexagon ABI Implementation
7510 //===----------------------------------------------------------------------===//
7511 
7512 namespace {
7513 
7514 class HexagonABIInfo : public DefaultABIInfo {
7515 public:
7516   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7517 
7518 private:
7519   ABIArgInfo classifyReturnType(QualType RetTy) const;
7520   ABIArgInfo classifyArgumentType(QualType RetTy) const;
7521   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
7522 
7523   void computeInfo(CGFunctionInfo &FI) const override;
7524 
7525   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7526                     QualType Ty) const override;
7527   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
7528                               QualType Ty) const;
7529   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
7530                               QualType Ty) const;
7531   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
7532                                    QualType Ty) const;
7533 };
7534 
7535 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
7536 public:
7537   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
7538     : TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
7539 
7540   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
7541     return 29;
7542   }
7543 
7544   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7545                            CodeGen::CodeGenModule &GCM) const override {
7546     if (GV->isDeclaration())
7547       return;
7548     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7549     if (!FD)
7550       return;
7551   }
7552 };
7553 
7554 } // namespace
7555 
7556 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
7557   unsigned RegsLeft = 6;
7558   if (!getCXXABI().classifyReturnType(FI))
7559     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7560   for (auto &I : FI.arguments())
7561     I.info = classifyArgumentType(I.type, &RegsLeft);
7562 }
7563 
7564 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
7565   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
7566                        " through registers");
7567 
7568   if (*RegsLeft == 0)
7569     return false;
7570 
7571   if (Size <= 32) {
7572     (*RegsLeft)--;
7573     return true;
7574   }
7575 
7576   if (2 <= (*RegsLeft & (~1U))) {
7577     *RegsLeft = (*RegsLeft & (~1U)) - 2;
7578     return true;
7579   }
7580 
7581   // Next available register was r5 but candidate was greater than 32-bits so it
7582   // has to go on the stack. However we still consume r5
7583   if (*RegsLeft == 1)
7584     *RegsLeft = 0;
7585 
7586   return false;
7587 }
7588 
7589 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
7590                                                 unsigned *RegsLeft) const {
7591   if (!isAggregateTypeForABI(Ty)) {
7592     // Treat an enum type as its underlying type.
7593     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7594       Ty = EnumTy->getDecl()->getIntegerType();
7595 
7596     uint64_t Size = getContext().getTypeSize(Ty);
7597     if (Size <= 64)
7598       HexagonAdjustRegsLeft(Size, RegsLeft);
7599 
7600     return Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
7601                                          : ABIArgInfo::getDirect();
7602   }
7603 
7604   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7605     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7606 
7607   // Ignore empty records.
7608   if (isEmptyRecord(getContext(), Ty, true))
7609     return ABIArgInfo::getIgnore();
7610 
7611   uint64_t Size = getContext().getTypeSize(Ty);
7612   unsigned Align = getContext().getTypeAlign(Ty);
7613 
7614   if (Size > 64)
7615     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
7616 
7617   if (HexagonAdjustRegsLeft(Size, RegsLeft))
7618     Align = Size <= 32 ? 32 : 64;
7619   if (Size <= Align) {
7620     // Pass in the smallest viable integer type.
7621     if (!llvm::isPowerOf2_64(Size))
7622       Size = llvm::NextPowerOf2(Size);
7623     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
7624   }
7625   return DefaultABIInfo::classifyArgumentType(Ty);
7626 }
7627 
7628 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
7629   if (RetTy->isVoidType())
7630     return ABIArgInfo::getIgnore();
7631 
7632   const TargetInfo &T = CGT.getTarget();
7633   uint64_t Size = getContext().getTypeSize(RetTy);
7634 
7635   if (RetTy->getAs<VectorType>()) {
7636     // HVX vectors are returned in vector registers or register pairs.
7637     if (T.hasFeature("hvx")) {
7638       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
7639       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
7640       if (Size == VecSize || Size == 2*VecSize)
7641         return ABIArgInfo::getDirectInReg();
7642     }
7643     // Large vector types should be returned via memory.
7644     if (Size > 64)
7645       return getNaturalAlignIndirect(RetTy);
7646   }
7647 
7648   if (!isAggregateTypeForABI(RetTy)) {
7649     // Treat an enum type as its underlying type.
7650     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7651       RetTy = EnumTy->getDecl()->getIntegerType();
7652 
7653     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
7654                                             : ABIArgInfo::getDirect();
7655   }
7656 
7657   if (isEmptyRecord(getContext(), RetTy, true))
7658     return ABIArgInfo::getIgnore();
7659 
7660   // Aggregates <= 8 bytes are returned in registers, other aggregates
7661   // are returned indirectly.
7662   if (Size <= 64) {
7663     // Return in the smallest viable integer type.
7664     if (!llvm::isPowerOf2_64(Size))
7665       Size = llvm::NextPowerOf2(Size);
7666     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
7667   }
7668   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
7669 }
7670 
7671 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
7672                                             Address VAListAddr,
7673                                             QualType Ty) const {
7674   // Load the overflow area pointer.
7675   Address __overflow_area_pointer_p =
7676       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
7677   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
7678       __overflow_area_pointer_p, "__overflow_area_pointer");
7679 
7680   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
7681   if (Align > 4) {
7682     // Alignment should be a power of 2.
7683     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
7684 
7685     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
7686     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
7687 
7688     // Add offset to the current pointer to access the argument.
7689     __overflow_area_pointer =
7690         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
7691     llvm::Value *AsInt =
7692         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
7693 
7694     // Create a mask which should be "AND"ed
7695     // with (overflow_arg_area + align - 1)
7696     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
7697     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
7698         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
7699         "__overflow_area_pointer.align");
7700   }
7701 
7702   // Get the type of the argument from memory and bitcast
7703   // overflow area pointer to the argument type.
7704   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
7705   Address AddrTyped = CGF.Builder.CreateBitCast(
7706       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
7707       llvm::PointerType::getUnqual(PTy));
7708 
7709   // Round up to the minimum stack alignment for varargs which is 4 bytes.
7710   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
7711 
7712   __overflow_area_pointer = CGF.Builder.CreateGEP(
7713       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
7714       "__overflow_area_pointer.next");
7715   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
7716 
7717   return AddrTyped;
7718 }
7719 
7720 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
7721                                             Address VAListAddr,
7722                                             QualType Ty) const {
7723   // FIXME: Need to handle alignment
7724   llvm::Type *BP = CGF.Int8PtrTy;
7725   llvm::Type *BPP = CGF.Int8PtrPtrTy;
7726   CGBuilderTy &Builder = CGF.Builder;
7727   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
7728   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
7729   // Handle address alignment for type alignment > 32 bits
7730   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
7731   if (TyAlign > 4) {
7732     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
7733     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
7734     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
7735     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
7736     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
7737   }
7738   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
7739   Address AddrTyped = Builder.CreateBitCast(
7740       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
7741 
7742   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
7743   llvm::Value *NextAddr = Builder.CreateGEP(
7744       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
7745   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
7746 
7747   return AddrTyped;
7748 }
7749 
7750 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
7751                                                  Address VAListAddr,
7752                                                  QualType Ty) const {
7753   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
7754 
7755   if (ArgSize > 8)
7756     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
7757 
7758   // Here we have check if the argument is in register area or
7759   // in overflow area.
7760   // If the saved register area pointer + argsize rounded up to alignment >
7761   // saved register area end pointer, argument is in overflow area.
7762   unsigned RegsLeft = 6;
7763   Ty = CGF.getContext().getCanonicalType(Ty);
7764   (void)classifyArgumentType(Ty, &RegsLeft);
7765 
7766   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
7767   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7768   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
7769   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7770 
7771   // Get rounded size of the argument.GCC does not allow vararg of
7772   // size < 4 bytes. We follow the same logic here.
7773   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
7774   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
7775 
7776   // Argument may be in saved register area
7777   CGF.EmitBlock(MaybeRegBlock);
7778 
7779   // Load the current saved register area pointer.
7780   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
7781       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
7782   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
7783       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
7784 
7785   // Load the saved register area end pointer.
7786   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
7787       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
7788   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
7789       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
7790 
7791   // If the size of argument is > 4 bytes, check if the stack
7792   // location is aligned to 8 bytes
7793   if (ArgAlign > 4) {
7794 
7795     llvm::Value *__current_saved_reg_area_pointer_int =
7796         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
7797                                    CGF.Int32Ty);
7798 
7799     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
7800         __current_saved_reg_area_pointer_int,
7801         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
7802         "align_current_saved_reg_area_pointer");
7803 
7804     __current_saved_reg_area_pointer_int =
7805         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
7806                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
7807                               "align_current_saved_reg_area_pointer");
7808 
7809     __current_saved_reg_area_pointer =
7810         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
7811                                    __current_saved_reg_area_pointer->getType(),
7812                                    "align_current_saved_reg_area_pointer");
7813   }
7814 
7815   llvm::Value *__new_saved_reg_area_pointer =
7816       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
7817                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
7818                             "__new_saved_reg_area_pointer");
7819 
7820   llvm::Value *UsingStack = 0;
7821   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
7822                                          __saved_reg_area_end_pointer);
7823 
7824   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
7825 
7826   // Argument in saved register area
7827   // Implement the block where argument is in register saved area
7828   CGF.EmitBlock(InRegBlock);
7829 
7830   llvm::Type *PTy = CGF.ConvertType(Ty);
7831   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
7832       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
7833 
7834   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
7835                           __current_saved_reg_area_pointer_p);
7836 
7837   CGF.EmitBranch(ContBlock);
7838 
7839   // Argument in overflow area
7840   // Implement the block where the argument is in overflow area.
7841   CGF.EmitBlock(OnStackBlock);
7842 
7843   // Load the overflow area pointer
7844   Address __overflow_area_pointer_p =
7845       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
7846   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
7847       __overflow_area_pointer_p, "__overflow_area_pointer");
7848 
7849   // Align the overflow area pointer according to the alignment of the argument
7850   if (ArgAlign > 4) {
7851     llvm::Value *__overflow_area_pointer_int =
7852         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
7853 
7854     __overflow_area_pointer_int =
7855         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
7856                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
7857                               "align_overflow_area_pointer");
7858 
7859     __overflow_area_pointer_int =
7860         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
7861                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
7862                               "align_overflow_area_pointer");
7863 
7864     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
7865         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
7866         "align_overflow_area_pointer");
7867   }
7868 
7869   // Get the pointer for next argument in overflow area and store it
7870   // to overflow area pointer.
7871   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
7872       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
7873       "__overflow_area_pointer.next");
7874 
7875   CGF.Builder.CreateStore(__new_overflow_area_pointer,
7876                           __overflow_area_pointer_p);
7877 
7878   CGF.Builder.CreateStore(__new_overflow_area_pointer,
7879                           __current_saved_reg_area_pointer_p);
7880 
7881   // Bitcast the overflow area pointer to the type of argument.
7882   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
7883   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
7884       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
7885 
7886   CGF.EmitBranch(ContBlock);
7887 
7888   // Get the correct pointer to load the variable argument
7889   // Implement the ContBlock
7890   CGF.EmitBlock(ContBlock);
7891 
7892   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
7893   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
7894   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
7895   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
7896 
7897   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
7898 }
7899 
7900 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7901                                   QualType Ty) const {
7902 
7903   if (getTarget().getTriple().isMusl())
7904     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
7905 
7906   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
7907 }
7908 
7909 //===----------------------------------------------------------------------===//
7910 // Lanai ABI Implementation
7911 //===----------------------------------------------------------------------===//
7912 
7913 namespace {
7914 class LanaiABIInfo : public DefaultABIInfo {
7915 public:
7916   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7917 
7918   bool shouldUseInReg(QualType Ty, CCState &State) const;
7919 
7920   void computeInfo(CGFunctionInfo &FI) const override {
7921     CCState State(FI);
7922     // Lanai uses 4 registers to pass arguments unless the function has the
7923     // regparm attribute set.
7924     if (FI.getHasRegParm()) {
7925       State.FreeRegs = FI.getRegParm();
7926     } else {
7927       State.FreeRegs = 4;
7928     }
7929 
7930     if (!getCXXABI().classifyReturnType(FI))
7931       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7932     for (auto &I : FI.arguments())
7933       I.info = classifyArgumentType(I.type, State);
7934   }
7935 
7936   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
7937   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
7938 };
7939 } // end anonymous namespace
7940 
7941 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
7942   unsigned Size = getContext().getTypeSize(Ty);
7943   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
7944 
7945   if (SizeInRegs == 0)
7946     return false;
7947 
7948   if (SizeInRegs > State.FreeRegs) {
7949     State.FreeRegs = 0;
7950     return false;
7951   }
7952 
7953   State.FreeRegs -= SizeInRegs;
7954 
7955   return true;
7956 }
7957 
7958 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
7959                                            CCState &State) const {
7960   if (!ByVal) {
7961     if (State.FreeRegs) {
7962       --State.FreeRegs; // Non-byval indirects just use one pointer.
7963       return getNaturalAlignIndirectInReg(Ty);
7964     }
7965     return getNaturalAlignIndirect(Ty, false);
7966   }
7967 
7968   // Compute the byval alignment.
7969   const unsigned MinABIStackAlignInBytes = 4;
7970   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
7971   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
7972                                  /*Realign=*/TypeAlign >
7973                                      MinABIStackAlignInBytes);
7974 }
7975 
7976 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
7977                                               CCState &State) const {
7978   // Check with the C++ ABI first.
7979   const RecordType *RT = Ty->getAs<RecordType>();
7980   if (RT) {
7981     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7982     if (RAA == CGCXXABI::RAA_Indirect) {
7983       return getIndirectResult(Ty, /*ByVal=*/false, State);
7984     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
7985       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
7986     }
7987   }
7988 
7989   if (isAggregateTypeForABI(Ty)) {
7990     // Structures with flexible arrays are always indirect.
7991     if (RT && RT->getDecl()->hasFlexibleArrayMember())
7992       return getIndirectResult(Ty, /*ByVal=*/true, State);
7993 
7994     // Ignore empty structs/unions.
7995     if (isEmptyRecord(getContext(), Ty, true))
7996       return ABIArgInfo::getIgnore();
7997 
7998     llvm::LLVMContext &LLVMContext = getVMContext();
7999     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8000     if (SizeInRegs <= State.FreeRegs) {
8001       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8002       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8003       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8004       State.FreeRegs -= SizeInRegs;
8005       return ABIArgInfo::getDirectInReg(Result);
8006     } else {
8007       State.FreeRegs = 0;
8008     }
8009     return getIndirectResult(Ty, true, State);
8010   }
8011 
8012   // Treat an enum type as its underlying type.
8013   if (const auto *EnumTy = Ty->getAs<EnumType>())
8014     Ty = EnumTy->getDecl()->getIntegerType();
8015 
8016   bool InReg = shouldUseInReg(Ty, State);
8017   if (Ty->isPromotableIntegerType()) {
8018     if (InReg)
8019       return ABIArgInfo::getDirectInReg();
8020     return ABIArgInfo::getExtend(Ty);
8021   }
8022   if (InReg)
8023     return ABIArgInfo::getDirectInReg();
8024   return ABIArgInfo::getDirect();
8025 }
8026 
8027 namespace {
8028 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8029 public:
8030   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8031       : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
8032 };
8033 }
8034 
8035 //===----------------------------------------------------------------------===//
8036 // AMDGPU ABI Implementation
8037 //===----------------------------------------------------------------------===//
8038 
8039 namespace {
8040 
8041 class AMDGPUABIInfo final : public DefaultABIInfo {
8042 private:
8043   static const unsigned MaxNumRegsForArgsRet = 16;
8044 
8045   unsigned numRegsForType(QualType Ty) const;
8046 
8047   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8048   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8049                                          uint64_t Members) const override;
8050 
8051   // Coerce HIP pointer arguments from generic pointers to global ones.
8052   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8053                                        unsigned ToAS) const {
8054     // Structure types.
8055     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
8056       SmallVector<llvm::Type *, 8> EltTys;
8057       bool Changed = false;
8058       for (auto T : STy->elements()) {
8059         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8060         EltTys.push_back(NT);
8061         Changed |= (NT != T);
8062       }
8063       // Skip if there is no change in element types.
8064       if (!Changed)
8065         return STy;
8066       if (STy->hasName())
8067         return llvm::StructType::create(
8068             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
8069       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
8070     }
8071     // Arrary types.
8072     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
8073       auto T = ATy->getElementType();
8074       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8075       // Skip if there is no change in that element type.
8076       if (NT == T)
8077         return ATy;
8078       return llvm::ArrayType::get(NT, ATy->getNumElements());
8079     }
8080     // Single value types.
8081     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8082       return llvm::PointerType::get(
8083           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8084     return Ty;
8085   }
8086 
8087 public:
8088   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8089     DefaultABIInfo(CGT) {}
8090 
8091   ABIArgInfo classifyReturnType(QualType RetTy) const;
8092   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8093   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8094 
8095   void computeInfo(CGFunctionInfo &FI) const override;
8096   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8097                     QualType Ty) const override;
8098 };
8099 
8100 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8101   return true;
8102 }
8103 
8104 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8105   const Type *Base, uint64_t Members) const {
8106   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8107 
8108   // Homogeneous Aggregates may occupy at most 16 registers.
8109   return Members * NumRegs <= MaxNumRegsForArgsRet;
8110 }
8111 
8112 /// Estimate number of registers the type will use when passed in registers.
8113 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8114   unsigned NumRegs = 0;
8115 
8116   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8117     // Compute from the number of elements. The reported size is based on the
8118     // in-memory size, which includes the padding 4th element for 3-vectors.
8119     QualType EltTy = VT->getElementType();
8120     unsigned EltSize = getContext().getTypeSize(EltTy);
8121 
8122     // 16-bit element vectors should be passed as packed.
8123     if (EltSize == 16)
8124       return (VT->getNumElements() + 1) / 2;
8125 
8126     unsigned EltNumRegs = (EltSize + 31) / 32;
8127     return EltNumRegs * VT->getNumElements();
8128   }
8129 
8130   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8131     const RecordDecl *RD = RT->getDecl();
8132     assert(!RD->hasFlexibleArrayMember());
8133 
8134     for (const FieldDecl *Field : RD->fields()) {
8135       QualType FieldTy = Field->getType();
8136       NumRegs += numRegsForType(FieldTy);
8137     }
8138 
8139     return NumRegs;
8140   }
8141 
8142   return (getContext().getTypeSize(Ty) + 31) / 32;
8143 }
8144 
8145 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8146   llvm::CallingConv::ID CC = FI.getCallingConvention();
8147 
8148   if (!getCXXABI().classifyReturnType(FI))
8149     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8150 
8151   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8152   for (auto &Arg : FI.arguments()) {
8153     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8154       Arg.info = classifyKernelArgumentType(Arg.type);
8155     } else {
8156       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8157     }
8158   }
8159 }
8160 
8161 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8162                                  QualType Ty) const {
8163   llvm_unreachable("AMDGPU does not support varargs");
8164 }
8165 
8166 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8167   if (isAggregateTypeForABI(RetTy)) {
8168     // Records with non-trivial destructors/copy-constructors should not be
8169     // returned by value.
8170     if (!getRecordArgABI(RetTy, getCXXABI())) {
8171       // Ignore empty structs/unions.
8172       if (isEmptyRecord(getContext(), RetTy, true))
8173         return ABIArgInfo::getIgnore();
8174 
8175       // Lower single-element structs to just return a regular value.
8176       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8177         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8178 
8179       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8180         const RecordDecl *RD = RT->getDecl();
8181         if (RD->hasFlexibleArrayMember())
8182           return DefaultABIInfo::classifyReturnType(RetTy);
8183       }
8184 
8185       // Pack aggregates <= 4 bytes into single VGPR or pair.
8186       uint64_t Size = getContext().getTypeSize(RetTy);
8187       if (Size <= 16)
8188         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8189 
8190       if (Size <= 32)
8191         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8192 
8193       if (Size <= 64) {
8194         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8195         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8196       }
8197 
8198       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8199         return ABIArgInfo::getDirect();
8200     }
8201   }
8202 
8203   // Otherwise just do the default thing.
8204   return DefaultABIInfo::classifyReturnType(RetTy);
8205 }
8206 
8207 /// For kernels all parameters are really passed in a special buffer. It doesn't
8208 /// make sense to pass anything byval, so everything must be direct.
8209 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8210   Ty = useFirstFieldIfTransparentUnion(Ty);
8211 
8212   // TODO: Can we omit empty structs?
8213 
8214   llvm::Type *LTy = nullptr;
8215   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8216     LTy = CGT.ConvertType(QualType(SeltTy, 0));
8217 
8218   if (getContext().getLangOpts().HIP) {
8219     if (!LTy)
8220       LTy = CGT.ConvertType(Ty);
8221     LTy = coerceKernelArgumentType(
8222         LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8223         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8224   }
8225 
8226   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8227   // individual elements, which confuses the Clover OpenCL backend; therefore we
8228   // have to set it to false here. Other args of getDirect() are just defaults.
8229   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8230 }
8231 
8232 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8233                                                unsigned &NumRegsLeft) const {
8234   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8235 
8236   Ty = useFirstFieldIfTransparentUnion(Ty);
8237 
8238   if (isAggregateTypeForABI(Ty)) {
8239     // Records with non-trivial destructors/copy-constructors should not be
8240     // passed by value.
8241     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8242       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8243 
8244     // Ignore empty structs/unions.
8245     if (isEmptyRecord(getContext(), Ty, true))
8246       return ABIArgInfo::getIgnore();
8247 
8248     // Lower single-element structs to just pass a regular value. TODO: We
8249     // could do reasonable-size multiple-element structs too, using getExpand(),
8250     // though watch out for things like bitfields.
8251     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8252       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8253 
8254     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8255       const RecordDecl *RD = RT->getDecl();
8256       if (RD->hasFlexibleArrayMember())
8257         return DefaultABIInfo::classifyArgumentType(Ty);
8258     }
8259 
8260     // Pack aggregates <= 8 bytes into single VGPR or pair.
8261     uint64_t Size = getContext().getTypeSize(Ty);
8262     if (Size <= 64) {
8263       unsigned NumRegs = (Size + 31) / 32;
8264       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8265 
8266       if (Size <= 16)
8267         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8268 
8269       if (Size <= 32)
8270         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8271 
8272       // XXX: Should this be i64 instead, and should the limit increase?
8273       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8274       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8275     }
8276 
8277     if (NumRegsLeft > 0) {
8278       unsigned NumRegs = numRegsForType(Ty);
8279       if (NumRegsLeft >= NumRegs) {
8280         NumRegsLeft -= NumRegs;
8281         return ABIArgInfo::getDirect();
8282       }
8283     }
8284   }
8285 
8286   // Otherwise just do the default thing.
8287   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8288   if (!ArgInfo.isIndirect()) {
8289     unsigned NumRegs = numRegsForType(Ty);
8290     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8291   }
8292 
8293   return ArgInfo;
8294 }
8295 
8296 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8297 public:
8298   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8299     : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
8300   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8301                            CodeGen::CodeGenModule &M) const override;
8302   unsigned getOpenCLKernelCallingConv() const override;
8303 
8304   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8305       llvm::PointerType *T, QualType QT) const override;
8306 
8307   LangAS getASTAllocaAddressSpace() const override {
8308     return getLangASFromTargetAS(
8309         getABIInfo().getDataLayout().getAllocaAddrSpace());
8310   }
8311   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8312                                   const VarDecl *D) const override;
8313   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8314                                          SyncScope Scope,
8315                                          llvm::AtomicOrdering Ordering,
8316                                          llvm::LLVMContext &Ctx) const override;
8317   llvm::Function *
8318   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8319                             llvm::Function *BlockInvokeFunc,
8320                             llvm::Value *BlockLiteral) const override;
8321   bool shouldEmitStaticExternCAliases() const override;
8322   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8323 };
8324 }
8325 
8326 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8327                                               llvm::GlobalValue *GV) {
8328   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8329     return false;
8330 
8331   return D->hasAttr<OpenCLKernelAttr>() ||
8332          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8333          (isa<VarDecl>(D) &&
8334           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8335            D->hasAttr<HIPPinnedShadowAttr>()));
8336 }
8337 
8338 static bool requiresAMDGPUDefaultVisibility(const Decl *D,
8339                                             llvm::GlobalValue *GV) {
8340   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8341     return false;
8342 
8343   return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>();
8344 }
8345 
8346 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8347     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8348   if (requiresAMDGPUDefaultVisibility(D, GV)) {
8349     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
8350     GV->setDSOLocal(false);
8351   } else if (requiresAMDGPUProtectedVisibility(D, GV)) {
8352     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
8353     GV->setDSOLocal(true);
8354   }
8355 
8356   if (GV->isDeclaration())
8357     return;
8358   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8359   if (!FD)
8360     return;
8361 
8362   llvm::Function *F = cast<llvm::Function>(GV);
8363 
8364   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
8365     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
8366 
8367 
8368   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
8369                               FD->hasAttr<OpenCLKernelAttr>();
8370   const bool IsHIPKernel = M.getLangOpts().HIP &&
8371                            FD->hasAttr<CUDAGlobalAttr>();
8372   if ((IsOpenCLKernel || IsHIPKernel) &&
8373       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
8374     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
8375 
8376   if (IsHIPKernel)
8377     F->addFnAttr("uniform-work-group-size", "true");
8378 
8379 
8380   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
8381   if (ReqdWGS || FlatWGS) {
8382     unsigned Min = 0;
8383     unsigned Max = 0;
8384     if (FlatWGS) {
8385       Min = FlatWGS->getMin()
8386                 ->EvaluateKnownConstInt(M.getContext())
8387                 .getExtValue();
8388       Max = FlatWGS->getMax()
8389                 ->EvaluateKnownConstInt(M.getContext())
8390                 .getExtValue();
8391     }
8392     if (ReqdWGS && Min == 0 && Max == 0)
8393       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
8394 
8395     if (Min != 0) {
8396       assert(Min <= Max && "Min must be less than or equal Max");
8397 
8398       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
8399       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8400     } else
8401       assert(Max == 0 && "Max must be zero");
8402   } else if (IsOpenCLKernel || IsHIPKernel) {
8403     // By default, restrict the maximum size to a value specified by
8404     // --gpu-max-threads-per-block=n or its default value.
8405     std::string AttrVal =
8406         std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
8407     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8408   }
8409 
8410   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
8411     unsigned Min =
8412         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
8413     unsigned Max = Attr->getMax() ? Attr->getMax()
8414                                         ->EvaluateKnownConstInt(M.getContext())
8415                                         .getExtValue()
8416                                   : 0;
8417 
8418     if (Min != 0) {
8419       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
8420 
8421       std::string AttrVal = llvm::utostr(Min);
8422       if (Max != 0)
8423         AttrVal = AttrVal + "," + llvm::utostr(Max);
8424       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
8425     } else
8426       assert(Max == 0 && "Max must be zero");
8427   }
8428 
8429   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
8430     unsigned NumSGPR = Attr->getNumSGPR();
8431 
8432     if (NumSGPR != 0)
8433       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
8434   }
8435 
8436   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
8437     uint32_t NumVGPR = Attr->getNumVGPR();
8438 
8439     if (NumVGPR != 0)
8440       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
8441   }
8442 }
8443 
8444 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
8445   return llvm::CallingConv::AMDGPU_KERNEL;
8446 }
8447 
8448 // Currently LLVM assumes null pointers always have value 0,
8449 // which results in incorrectly transformed IR. Therefore, instead of
8450 // emitting null pointers in private and local address spaces, a null
8451 // pointer in generic address space is emitted which is casted to a
8452 // pointer in local or private address space.
8453 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
8454     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
8455     QualType QT) const {
8456   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
8457     return llvm::ConstantPointerNull::get(PT);
8458 
8459   auto &Ctx = CGM.getContext();
8460   auto NPT = llvm::PointerType::get(PT->getElementType(),
8461       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
8462   return llvm::ConstantExpr::getAddrSpaceCast(
8463       llvm::ConstantPointerNull::get(NPT), PT);
8464 }
8465 
8466 LangAS
8467 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
8468                                                   const VarDecl *D) const {
8469   assert(!CGM.getLangOpts().OpenCL &&
8470          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
8471          "Address space agnostic languages only");
8472   LangAS DefaultGlobalAS = getLangASFromTargetAS(
8473       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
8474   if (!D)
8475     return DefaultGlobalAS;
8476 
8477   LangAS AddrSpace = D->getType().getAddressSpace();
8478   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
8479   if (AddrSpace != LangAS::Default)
8480     return AddrSpace;
8481 
8482   if (CGM.isTypeConstant(D->getType(), false)) {
8483     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
8484       return ConstAS.getValue();
8485   }
8486   return DefaultGlobalAS;
8487 }
8488 
8489 llvm::SyncScope::ID
8490 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
8491                                             SyncScope Scope,
8492                                             llvm::AtomicOrdering Ordering,
8493                                             llvm::LLVMContext &Ctx) const {
8494   std::string Name;
8495   switch (Scope) {
8496   case SyncScope::OpenCLWorkGroup:
8497     Name = "workgroup";
8498     break;
8499   case SyncScope::OpenCLDevice:
8500     Name = "agent";
8501     break;
8502   case SyncScope::OpenCLAllSVMDevices:
8503     Name = "";
8504     break;
8505   case SyncScope::OpenCLSubGroup:
8506     Name = "wavefront";
8507   }
8508 
8509   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
8510     if (!Name.empty())
8511       Name = Twine(Twine(Name) + Twine("-")).str();
8512 
8513     Name = Twine(Twine(Name) + Twine("one-as")).str();
8514   }
8515 
8516   return Ctx.getOrInsertSyncScopeID(Name);
8517 }
8518 
8519 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
8520   return false;
8521 }
8522 
8523 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
8524     const FunctionType *&FT) const {
8525   FT = getABIInfo().getContext().adjustFunctionType(
8526       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
8527 }
8528 
8529 //===----------------------------------------------------------------------===//
8530 // SPARC v8 ABI Implementation.
8531 // Based on the SPARC Compliance Definition version 2.4.1.
8532 //
8533 // Ensures that complex values are passed in registers.
8534 //
8535 namespace {
8536 class SparcV8ABIInfo : public DefaultABIInfo {
8537 public:
8538   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8539 
8540 private:
8541   ABIArgInfo classifyReturnType(QualType RetTy) const;
8542   void computeInfo(CGFunctionInfo &FI) const override;
8543 };
8544 } // end anonymous namespace
8545 
8546 
8547 ABIArgInfo
8548 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
8549   if (Ty->isAnyComplexType()) {
8550     return ABIArgInfo::getDirect();
8551   }
8552   else {
8553     return DefaultABIInfo::classifyReturnType(Ty);
8554   }
8555 }
8556 
8557 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8558 
8559   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8560   for (auto &Arg : FI.arguments())
8561     Arg.info = classifyArgumentType(Arg.type);
8562 }
8563 
8564 namespace {
8565 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
8566 public:
8567   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
8568     : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
8569 };
8570 } // end anonymous namespace
8571 
8572 //===----------------------------------------------------------------------===//
8573 // SPARC v9 ABI Implementation.
8574 // Based on the SPARC Compliance Definition version 2.4.1.
8575 //
8576 // Function arguments a mapped to a nominal "parameter array" and promoted to
8577 // registers depending on their type. Each argument occupies 8 or 16 bytes in
8578 // the array, structs larger than 16 bytes are passed indirectly.
8579 //
8580 // One case requires special care:
8581 //
8582 //   struct mixed {
8583 //     int i;
8584 //     float f;
8585 //   };
8586 //
8587 // When a struct mixed is passed by value, it only occupies 8 bytes in the
8588 // parameter array, but the int is passed in an integer register, and the float
8589 // is passed in a floating point register. This is represented as two arguments
8590 // with the LLVM IR inreg attribute:
8591 //
8592 //   declare void f(i32 inreg %i, float inreg %f)
8593 //
8594 // The code generator will only allocate 4 bytes from the parameter array for
8595 // the inreg arguments. All other arguments are allocated a multiple of 8
8596 // bytes.
8597 //
8598 namespace {
8599 class SparcV9ABIInfo : public ABIInfo {
8600 public:
8601   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
8602 
8603 private:
8604   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
8605   void computeInfo(CGFunctionInfo &FI) const override;
8606   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8607                     QualType Ty) const override;
8608 
8609   // Coercion type builder for structs passed in registers. The coercion type
8610   // serves two purposes:
8611   //
8612   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
8613   //    in registers.
8614   // 2. Expose aligned floating point elements as first-level elements, so the
8615   //    code generator knows to pass them in floating point registers.
8616   //
8617   // We also compute the InReg flag which indicates that the struct contains
8618   // aligned 32-bit floats.
8619   //
8620   struct CoerceBuilder {
8621     llvm::LLVMContext &Context;
8622     const llvm::DataLayout &DL;
8623     SmallVector<llvm::Type*, 8> Elems;
8624     uint64_t Size;
8625     bool InReg;
8626 
8627     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
8628       : Context(c), DL(dl), Size(0), InReg(false) {}
8629 
8630     // Pad Elems with integers until Size is ToSize.
8631     void pad(uint64_t ToSize) {
8632       assert(ToSize >= Size && "Cannot remove elements");
8633       if (ToSize == Size)
8634         return;
8635 
8636       // Finish the current 64-bit word.
8637       uint64_t Aligned = llvm::alignTo(Size, 64);
8638       if (Aligned > Size && Aligned <= ToSize) {
8639         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
8640         Size = Aligned;
8641       }
8642 
8643       // Add whole 64-bit words.
8644       while (Size + 64 <= ToSize) {
8645         Elems.push_back(llvm::Type::getInt64Ty(Context));
8646         Size += 64;
8647       }
8648 
8649       // Final in-word padding.
8650       if (Size < ToSize) {
8651         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
8652         Size = ToSize;
8653       }
8654     }
8655 
8656     // Add a floating point element at Offset.
8657     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
8658       // Unaligned floats are treated as integers.
8659       if (Offset % Bits)
8660         return;
8661       // The InReg flag is only required if there are any floats < 64 bits.
8662       if (Bits < 64)
8663         InReg = true;
8664       pad(Offset);
8665       Elems.push_back(Ty);
8666       Size = Offset + Bits;
8667     }
8668 
8669     // Add a struct type to the coercion type, starting at Offset (in bits).
8670     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
8671       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
8672       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
8673         llvm::Type *ElemTy = StrTy->getElementType(i);
8674         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
8675         switch (ElemTy->getTypeID()) {
8676         case llvm::Type::StructTyID:
8677           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
8678           break;
8679         case llvm::Type::FloatTyID:
8680           addFloat(ElemOffset, ElemTy, 32);
8681           break;
8682         case llvm::Type::DoubleTyID:
8683           addFloat(ElemOffset, ElemTy, 64);
8684           break;
8685         case llvm::Type::FP128TyID:
8686           addFloat(ElemOffset, ElemTy, 128);
8687           break;
8688         case llvm::Type::PointerTyID:
8689           if (ElemOffset % 64 == 0) {
8690             pad(ElemOffset);
8691             Elems.push_back(ElemTy);
8692             Size += 64;
8693           }
8694           break;
8695         default:
8696           break;
8697         }
8698       }
8699     }
8700 
8701     // Check if Ty is a usable substitute for the coercion type.
8702     bool isUsableType(llvm::StructType *Ty) const {
8703       return llvm::makeArrayRef(Elems) == Ty->elements();
8704     }
8705 
8706     // Get the coercion type as a literal struct type.
8707     llvm::Type *getType() const {
8708       if (Elems.size() == 1)
8709         return Elems.front();
8710       else
8711         return llvm::StructType::get(Context, Elems);
8712     }
8713   };
8714 };
8715 } // end anonymous namespace
8716 
8717 ABIArgInfo
8718 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
8719   if (Ty->isVoidType())
8720     return ABIArgInfo::getIgnore();
8721 
8722   uint64_t Size = getContext().getTypeSize(Ty);
8723 
8724   // Anything too big to fit in registers is passed with an explicit indirect
8725   // pointer / sret pointer.
8726   if (Size > SizeLimit)
8727     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
8728 
8729   // Treat an enum type as its underlying type.
8730   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8731     Ty = EnumTy->getDecl()->getIntegerType();
8732 
8733   // Integer types smaller than a register are extended.
8734   if (Size < 64 && Ty->isIntegerType())
8735     return ABIArgInfo::getExtend(Ty);
8736 
8737   // Other non-aggregates go in registers.
8738   if (!isAggregateTypeForABI(Ty))
8739     return ABIArgInfo::getDirect();
8740 
8741   // If a C++ object has either a non-trivial copy constructor or a non-trivial
8742   // destructor, it is passed with an explicit indirect pointer / sret pointer.
8743   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8744     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8745 
8746   // This is a small aggregate type that should be passed in registers.
8747   // Build a coercion type from the LLVM struct type.
8748   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
8749   if (!StrTy)
8750     return ABIArgInfo::getDirect();
8751 
8752   CoerceBuilder CB(getVMContext(), getDataLayout());
8753   CB.addStruct(0, StrTy);
8754   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
8755 
8756   // Try to use the original type for coercion.
8757   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
8758 
8759   if (CB.InReg)
8760     return ABIArgInfo::getDirectInReg(CoerceTy);
8761   else
8762     return ABIArgInfo::getDirect(CoerceTy);
8763 }
8764 
8765 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8766                                   QualType Ty) const {
8767   ABIArgInfo AI = classifyType(Ty, 16 * 8);
8768   llvm::Type *ArgTy = CGT.ConvertType(Ty);
8769   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
8770     AI.setCoerceToType(ArgTy);
8771 
8772   CharUnits SlotSize = CharUnits::fromQuantity(8);
8773 
8774   CGBuilderTy &Builder = CGF.Builder;
8775   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
8776   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
8777 
8778   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
8779 
8780   Address ArgAddr = Address::invalid();
8781   CharUnits Stride;
8782   switch (AI.getKind()) {
8783   case ABIArgInfo::Expand:
8784   case ABIArgInfo::CoerceAndExpand:
8785   case ABIArgInfo::InAlloca:
8786     llvm_unreachable("Unsupported ABI kind for va_arg");
8787 
8788   case ABIArgInfo::Extend: {
8789     Stride = SlotSize;
8790     CharUnits Offset = SlotSize - TypeInfo.first;
8791     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
8792     break;
8793   }
8794 
8795   case ABIArgInfo::Direct: {
8796     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
8797     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
8798     ArgAddr = Addr;
8799     break;
8800   }
8801 
8802   case ABIArgInfo::Indirect:
8803     Stride = SlotSize;
8804     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
8805     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
8806                       TypeInfo.second);
8807     break;
8808 
8809   case ABIArgInfo::Ignore:
8810     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
8811   }
8812 
8813   // Update VAList.
8814   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
8815   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
8816 
8817   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
8818 }
8819 
8820 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
8821   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
8822   for (auto &I : FI.arguments())
8823     I.info = classifyType(I.type, 16 * 8);
8824 }
8825 
8826 namespace {
8827 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
8828 public:
8829   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
8830     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
8831 
8832   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8833     return 14;
8834   }
8835 
8836   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8837                                llvm::Value *Address) const override;
8838 };
8839 } // end anonymous namespace
8840 
8841 bool
8842 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8843                                                 llvm::Value *Address) const {
8844   // This is calculated from the LLVM and GCC tables and verified
8845   // against gcc output.  AFAIK all ABIs use the same encoding.
8846 
8847   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8848 
8849   llvm::IntegerType *i8 = CGF.Int8Ty;
8850   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
8851   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
8852 
8853   // 0-31: the 8-byte general-purpose registers
8854   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
8855 
8856   // 32-63: f0-31, the 4-byte floating-point registers
8857   AssignToArrayRange(Builder, Address, Four8, 32, 63);
8858 
8859   //   Y   = 64
8860   //   PSR = 65
8861   //   WIM = 66
8862   //   TBR = 67
8863   //   PC  = 68
8864   //   NPC = 69
8865   //   FSR = 70
8866   //   CSR = 71
8867   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
8868 
8869   // 72-87: d0-15, the 8-byte floating-point registers
8870   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
8871 
8872   return false;
8873 }
8874 
8875 // ARC ABI implementation.
8876 namespace {
8877 
8878 class ARCABIInfo : public DefaultABIInfo {
8879 public:
8880   using DefaultABIInfo::DefaultABIInfo;
8881 
8882 private:
8883   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8884                     QualType Ty) const override;
8885 
8886   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
8887     if (!State.FreeRegs)
8888       return;
8889     if (Info.isIndirect() && Info.getInReg())
8890       State.FreeRegs--;
8891     else if (Info.isDirect() && Info.getInReg()) {
8892       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
8893       if (sz < State.FreeRegs)
8894         State.FreeRegs -= sz;
8895       else
8896         State.FreeRegs = 0;
8897     }
8898   }
8899 
8900   void computeInfo(CGFunctionInfo &FI) const override {
8901     CCState State(FI);
8902     // ARC uses 8 registers to pass arguments.
8903     State.FreeRegs = 8;
8904 
8905     if (!getCXXABI().classifyReturnType(FI))
8906       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8907     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
8908     for (auto &I : FI.arguments()) {
8909       I.info = classifyArgumentType(I.type, State.FreeRegs);
8910       updateState(I.info, I.type, State);
8911     }
8912   }
8913 
8914   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
8915   ABIArgInfo getIndirectByValue(QualType Ty) const;
8916   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
8917   ABIArgInfo classifyReturnType(QualType RetTy) const;
8918 };
8919 
8920 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
8921 public:
8922   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
8923       : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
8924 };
8925 
8926 
8927 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
8928   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
8929                        getNaturalAlignIndirect(Ty, false);
8930 }
8931 
8932 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
8933   // Compute the byval alignment.
8934   const unsigned MinABIStackAlignInBytes = 4;
8935   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8936   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8937                                  TypeAlign > MinABIStackAlignInBytes);
8938 }
8939 
8940 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8941                               QualType Ty) const {
8942   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
8943                           getContext().getTypeInfoInChars(Ty),
8944                           CharUnits::fromQuantity(4), true);
8945 }
8946 
8947 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
8948                                             uint8_t FreeRegs) const {
8949   // Handle the generic C++ ABI.
8950   const RecordType *RT = Ty->getAs<RecordType>();
8951   if (RT) {
8952     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8953     if (RAA == CGCXXABI::RAA_Indirect)
8954       return getIndirectByRef(Ty, FreeRegs > 0);
8955 
8956     if (RAA == CGCXXABI::RAA_DirectInMemory)
8957       return getIndirectByValue(Ty);
8958   }
8959 
8960   // Treat an enum type as its underlying type.
8961   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8962     Ty = EnumTy->getDecl()->getIntegerType();
8963 
8964   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
8965 
8966   if (isAggregateTypeForABI(Ty)) {
8967     // Structures with flexible arrays are always indirect.
8968     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8969       return getIndirectByValue(Ty);
8970 
8971     // Ignore empty structs/unions.
8972     if (isEmptyRecord(getContext(), Ty, true))
8973       return ABIArgInfo::getIgnore();
8974 
8975     llvm::LLVMContext &LLVMContext = getVMContext();
8976 
8977     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8978     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8979     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8980 
8981     return FreeRegs >= SizeInRegs ?
8982         ABIArgInfo::getDirectInReg(Result) :
8983         ABIArgInfo::getDirect(Result, 0, nullptr, false);
8984   }
8985 
8986   return Ty->isPromotableIntegerType() ?
8987       (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
8988                                 ABIArgInfo::getExtend(Ty)) :
8989       (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
8990                                 ABIArgInfo::getDirect());
8991 }
8992 
8993 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
8994   if (RetTy->isAnyComplexType())
8995     return ABIArgInfo::getDirectInReg();
8996 
8997   // Arguments of size > 4 registers are indirect.
8998   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
8999   if (RetSize > 4)
9000     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9001 
9002   return DefaultABIInfo::classifyReturnType(RetTy);
9003 }
9004 
9005 } // End anonymous namespace.
9006 
9007 //===----------------------------------------------------------------------===//
9008 // XCore ABI Implementation
9009 //===----------------------------------------------------------------------===//
9010 
9011 namespace {
9012 
9013 /// A SmallStringEnc instance is used to build up the TypeString by passing
9014 /// it by reference between functions that append to it.
9015 typedef llvm::SmallString<128> SmallStringEnc;
9016 
9017 /// TypeStringCache caches the meta encodings of Types.
9018 ///
9019 /// The reason for caching TypeStrings is two fold:
9020 ///   1. To cache a type's encoding for later uses;
9021 ///   2. As a means to break recursive member type inclusion.
9022 ///
9023 /// A cache Entry can have a Status of:
9024 ///   NonRecursive:   The type encoding is not recursive;
9025 ///   Recursive:      The type encoding is recursive;
9026 ///   Incomplete:     An incomplete TypeString;
9027 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9028 ///                   Recursive type encoding.
9029 ///
9030 /// A NonRecursive entry will have all of its sub-members expanded as fully
9031 /// as possible. Whilst it may contain types which are recursive, the type
9032 /// itself is not recursive and thus its encoding may be safely used whenever
9033 /// the type is encountered.
9034 ///
9035 /// A Recursive entry will have all of its sub-members expanded as fully as
9036 /// possible. The type itself is recursive and it may contain other types which
9037 /// are recursive. The Recursive encoding must not be used during the expansion
9038 /// of a recursive type's recursive branch. For simplicity the code uses
9039 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9040 ///
9041 /// An Incomplete entry is always a RecordType and only encodes its
9042 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9043 /// are placed into the cache during type expansion as a means to identify and
9044 /// handle recursive inclusion of types as sub-members. If there is recursion
9045 /// the entry becomes IncompleteUsed.
9046 ///
9047 /// During the expansion of a RecordType's members:
9048 ///
9049 ///   If the cache contains a NonRecursive encoding for the member type, the
9050 ///   cached encoding is used;
9051 ///
9052 ///   If the cache contains a Recursive encoding for the member type, the
9053 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9054 ///
9055 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9056 ///   cache to break potential recursive inclusion of itself as a sub-member;
9057 ///
9058 ///   Once a member RecordType has been expanded, its temporary incomplete
9059 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9060 ///   it is swapped back in;
9061 ///
9062 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9063 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9064 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9065 ///
9066 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9067 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9068 ///   Else the member is part of a recursive type and thus the recursion has
9069 ///   been exited too soon for the encoding to be correct for the member.
9070 ///
9071 class TypeStringCache {
9072   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9073   struct Entry {
9074     std::string Str;     // The encoded TypeString for the type.
9075     enum Status State;   // Information about the encoding in 'Str'.
9076     std::string Swapped; // A temporary place holder for a Recursive encoding
9077                          // during the expansion of RecordType's members.
9078   };
9079   std::map<const IdentifierInfo *, struct Entry> Map;
9080   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9081   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9082 public:
9083   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9084   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9085   bool removeIncomplete(const IdentifierInfo *ID);
9086   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9087                      bool IsRecursive);
9088   StringRef lookupStr(const IdentifierInfo *ID);
9089 };
9090 
9091 /// TypeString encodings for enum & union fields must be order.
9092 /// FieldEncoding is a helper for this ordering process.
9093 class FieldEncoding {
9094   bool HasName;
9095   std::string Enc;
9096 public:
9097   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9098   StringRef str() { return Enc; }
9099   bool operator<(const FieldEncoding &rhs) const {
9100     if (HasName != rhs.HasName) return HasName;
9101     return Enc < rhs.Enc;
9102   }
9103 };
9104 
9105 class XCoreABIInfo : public DefaultABIInfo {
9106 public:
9107   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9108   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9109                     QualType Ty) const override;
9110 };
9111 
9112 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9113   mutable TypeStringCache TSC;
9114 public:
9115   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9116     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
9117   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9118                     CodeGen::CodeGenModule &M) const override;
9119 };
9120 
9121 } // End anonymous namespace.
9122 
9123 // TODO: this implementation is likely now redundant with the default
9124 // EmitVAArg.
9125 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9126                                 QualType Ty) const {
9127   CGBuilderTy &Builder = CGF.Builder;
9128 
9129   // Get the VAList.
9130   CharUnits SlotSize = CharUnits::fromQuantity(4);
9131   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9132 
9133   // Handle the argument.
9134   ABIArgInfo AI = classifyArgumentType(Ty);
9135   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9136   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9137   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9138     AI.setCoerceToType(ArgTy);
9139   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9140 
9141   Address Val = Address::invalid();
9142   CharUnits ArgSize = CharUnits::Zero();
9143   switch (AI.getKind()) {
9144   case ABIArgInfo::Expand:
9145   case ABIArgInfo::CoerceAndExpand:
9146   case ABIArgInfo::InAlloca:
9147     llvm_unreachable("Unsupported ABI kind for va_arg");
9148   case ABIArgInfo::Ignore:
9149     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9150     ArgSize = CharUnits::Zero();
9151     break;
9152   case ABIArgInfo::Extend:
9153   case ABIArgInfo::Direct:
9154     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9155     ArgSize = CharUnits::fromQuantity(
9156                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9157     ArgSize = ArgSize.alignTo(SlotSize);
9158     break;
9159   case ABIArgInfo::Indirect:
9160     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9161     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9162     ArgSize = SlotSize;
9163     break;
9164   }
9165 
9166   // Increment the VAList.
9167   if (!ArgSize.isZero()) {
9168     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9169     Builder.CreateStore(APN.getPointer(), VAListAddr);
9170   }
9171 
9172   return Val;
9173 }
9174 
9175 /// During the expansion of a RecordType, an incomplete TypeString is placed
9176 /// into the cache as a means to identify and break recursion.
9177 /// If there is a Recursive encoding in the cache, it is swapped out and will
9178 /// be reinserted by removeIncomplete().
9179 /// All other types of encoding should have been used rather than arriving here.
9180 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9181                                     std::string StubEnc) {
9182   if (!ID)
9183     return;
9184   Entry &E = Map[ID];
9185   assert( (E.Str.empty() || E.State == Recursive) &&
9186          "Incorrectly use of addIncomplete");
9187   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9188   E.Swapped.swap(E.Str); // swap out the Recursive
9189   E.Str.swap(StubEnc);
9190   E.State = Incomplete;
9191   ++IncompleteCount;
9192 }
9193 
9194 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9195 /// must be removed from the cache.
9196 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9197 /// Returns true if the RecordType was defined recursively.
9198 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9199   if (!ID)
9200     return false;
9201   auto I = Map.find(ID);
9202   assert(I != Map.end() && "Entry not present");
9203   Entry &E = I->second;
9204   assert( (E.State == Incomplete ||
9205            E.State == IncompleteUsed) &&
9206          "Entry must be an incomplete type");
9207   bool IsRecursive = false;
9208   if (E.State == IncompleteUsed) {
9209     // We made use of our Incomplete encoding, thus we are recursive.
9210     IsRecursive = true;
9211     --IncompleteUsedCount;
9212   }
9213   if (E.Swapped.empty())
9214     Map.erase(I);
9215   else {
9216     // Swap the Recursive back.
9217     E.Swapped.swap(E.Str);
9218     E.Swapped.clear();
9219     E.State = Recursive;
9220   }
9221   --IncompleteCount;
9222   return IsRecursive;
9223 }
9224 
9225 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9226 /// Recursive (viz: all sub-members were expanded as fully as possible).
9227 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9228                                     bool IsRecursive) {
9229   if (!ID || IncompleteUsedCount)
9230     return; // No key or it is is an incomplete sub-type so don't add.
9231   Entry &E = Map[ID];
9232   if (IsRecursive && !E.Str.empty()) {
9233     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9234            "This is not the same Recursive entry");
9235     // The parent container was not recursive after all, so we could have used
9236     // this Recursive sub-member entry after all, but we assumed the worse when
9237     // we started viz: IncompleteCount!=0.
9238     return;
9239   }
9240   assert(E.Str.empty() && "Entry already present");
9241   E.Str = Str.str();
9242   E.State = IsRecursive? Recursive : NonRecursive;
9243 }
9244 
9245 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9246 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9247 /// encoding is Recursive, return an empty StringRef.
9248 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9249   if (!ID)
9250     return StringRef();   // We have no key.
9251   auto I = Map.find(ID);
9252   if (I == Map.end())
9253     return StringRef();   // We have no encoding.
9254   Entry &E = I->second;
9255   if (E.State == Recursive && IncompleteCount)
9256     return StringRef();   // We don't use Recursive encodings for member types.
9257 
9258   if (E.State == Incomplete) {
9259     // The incomplete type is being used to break out of recursion.
9260     E.State = IncompleteUsed;
9261     ++IncompleteUsedCount;
9262   }
9263   return E.Str;
9264 }
9265 
9266 /// The XCore ABI includes a type information section that communicates symbol
9267 /// type information to the linker. The linker uses this information to verify
9268 /// safety/correctness of things such as array bound and pointers et al.
9269 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9270 /// This type information (TypeString) is emitted into meta data for all global
9271 /// symbols: definitions, declarations, functions & variables.
9272 ///
9273 /// The TypeString carries type, qualifier, name, size & value details.
9274 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9275 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9276 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9277 ///
9278 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9279                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
9280 
9281 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9282 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9283                                           CodeGen::CodeGenModule &CGM) const {
9284   SmallStringEnc Enc;
9285   if (getTypeString(Enc, D, CGM, TSC)) {
9286     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9287     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9288                                 llvm::MDString::get(Ctx, Enc.str())};
9289     llvm::NamedMDNode *MD =
9290       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9291     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9292   }
9293 }
9294 
9295 //===----------------------------------------------------------------------===//
9296 // SPIR ABI Implementation
9297 //===----------------------------------------------------------------------===//
9298 
9299 namespace {
9300 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9301 public:
9302   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9303     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
9304   unsigned getOpenCLKernelCallingConv() const override;
9305 };
9306 
9307 } // End anonymous namespace.
9308 
9309 namespace clang {
9310 namespace CodeGen {
9311 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
9312   DefaultABIInfo SPIRABI(CGM.getTypes());
9313   SPIRABI.computeInfo(FI);
9314 }
9315 }
9316 }
9317 
9318 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9319   return llvm::CallingConv::SPIR_KERNEL;
9320 }
9321 
9322 static bool appendType(SmallStringEnc &Enc, QualType QType,
9323                        const CodeGen::CodeGenModule &CGM,
9324                        TypeStringCache &TSC);
9325 
9326 /// Helper function for appendRecordType().
9327 /// Builds a SmallVector containing the encoded field types in declaration
9328 /// order.
9329 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
9330                              const RecordDecl *RD,
9331                              const CodeGen::CodeGenModule &CGM,
9332                              TypeStringCache &TSC) {
9333   for (const auto *Field : RD->fields()) {
9334     SmallStringEnc Enc;
9335     Enc += "m(";
9336     Enc += Field->getName();
9337     Enc += "){";
9338     if (Field->isBitField()) {
9339       Enc += "b(";
9340       llvm::raw_svector_ostream OS(Enc);
9341       OS << Field->getBitWidthValue(CGM.getContext());
9342       Enc += ':';
9343     }
9344     if (!appendType(Enc, Field->getType(), CGM, TSC))
9345       return false;
9346     if (Field->isBitField())
9347       Enc += ')';
9348     Enc += '}';
9349     FE.emplace_back(!Field->getName().empty(), Enc);
9350   }
9351   return true;
9352 }
9353 
9354 /// Appends structure and union types to Enc and adds encoding to cache.
9355 /// Recursively calls appendType (via extractFieldType) for each field.
9356 /// Union types have their fields ordered according to the ABI.
9357 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
9358                              const CodeGen::CodeGenModule &CGM,
9359                              TypeStringCache &TSC, const IdentifierInfo *ID) {
9360   // Append the cached TypeString if we have one.
9361   StringRef TypeString = TSC.lookupStr(ID);
9362   if (!TypeString.empty()) {
9363     Enc += TypeString;
9364     return true;
9365   }
9366 
9367   // Start to emit an incomplete TypeString.
9368   size_t Start = Enc.size();
9369   Enc += (RT->isUnionType()? 'u' : 's');
9370   Enc += '(';
9371   if (ID)
9372     Enc += ID->getName();
9373   Enc += "){";
9374 
9375   // We collect all encoded fields and order as necessary.
9376   bool IsRecursive = false;
9377   const RecordDecl *RD = RT->getDecl()->getDefinition();
9378   if (RD && !RD->field_empty()) {
9379     // An incomplete TypeString stub is placed in the cache for this RecordType
9380     // so that recursive calls to this RecordType will use it whilst building a
9381     // complete TypeString for this RecordType.
9382     SmallVector<FieldEncoding, 16> FE;
9383     std::string StubEnc(Enc.substr(Start).str());
9384     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
9385     TSC.addIncomplete(ID, std::move(StubEnc));
9386     if (!extractFieldType(FE, RD, CGM, TSC)) {
9387       (void) TSC.removeIncomplete(ID);
9388       return false;
9389     }
9390     IsRecursive = TSC.removeIncomplete(ID);
9391     // The ABI requires unions to be sorted but not structures.
9392     // See FieldEncoding::operator< for sort algorithm.
9393     if (RT->isUnionType())
9394       llvm::sort(FE);
9395     // We can now complete the TypeString.
9396     unsigned E = FE.size();
9397     for (unsigned I = 0; I != E; ++I) {
9398       if (I)
9399         Enc += ',';
9400       Enc += FE[I].str();
9401     }
9402   }
9403   Enc += '}';
9404   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
9405   return true;
9406 }
9407 
9408 /// Appends enum types to Enc and adds the encoding to the cache.
9409 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
9410                            TypeStringCache &TSC,
9411                            const IdentifierInfo *ID) {
9412   // Append the cached TypeString if we have one.
9413   StringRef TypeString = TSC.lookupStr(ID);
9414   if (!TypeString.empty()) {
9415     Enc += TypeString;
9416     return true;
9417   }
9418 
9419   size_t Start = Enc.size();
9420   Enc += "e(";
9421   if (ID)
9422     Enc += ID->getName();
9423   Enc += "){";
9424 
9425   // We collect all encoded enumerations and order them alphanumerically.
9426   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
9427     SmallVector<FieldEncoding, 16> FE;
9428     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
9429          ++I) {
9430       SmallStringEnc EnumEnc;
9431       EnumEnc += "m(";
9432       EnumEnc += I->getName();
9433       EnumEnc += "){";
9434       I->getInitVal().toString(EnumEnc);
9435       EnumEnc += '}';
9436       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
9437     }
9438     llvm::sort(FE);
9439     unsigned E = FE.size();
9440     for (unsigned I = 0; I != E; ++I) {
9441       if (I)
9442         Enc += ',';
9443       Enc += FE[I].str();
9444     }
9445   }
9446   Enc += '}';
9447   TSC.addIfComplete(ID, Enc.substr(Start), false);
9448   return true;
9449 }
9450 
9451 /// Appends type's qualifier to Enc.
9452 /// This is done prior to appending the type's encoding.
9453 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
9454   // Qualifiers are emitted in alphabetical order.
9455   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
9456   int Lookup = 0;
9457   if (QT.isConstQualified())
9458     Lookup += 1<<0;
9459   if (QT.isRestrictQualified())
9460     Lookup += 1<<1;
9461   if (QT.isVolatileQualified())
9462     Lookup += 1<<2;
9463   Enc += Table[Lookup];
9464 }
9465 
9466 /// Appends built-in types to Enc.
9467 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
9468   const char *EncType;
9469   switch (BT->getKind()) {
9470     case BuiltinType::Void:
9471       EncType = "0";
9472       break;
9473     case BuiltinType::Bool:
9474       EncType = "b";
9475       break;
9476     case BuiltinType::Char_U:
9477       EncType = "uc";
9478       break;
9479     case BuiltinType::UChar:
9480       EncType = "uc";
9481       break;
9482     case BuiltinType::SChar:
9483       EncType = "sc";
9484       break;
9485     case BuiltinType::UShort:
9486       EncType = "us";
9487       break;
9488     case BuiltinType::Short:
9489       EncType = "ss";
9490       break;
9491     case BuiltinType::UInt:
9492       EncType = "ui";
9493       break;
9494     case BuiltinType::Int:
9495       EncType = "si";
9496       break;
9497     case BuiltinType::ULong:
9498       EncType = "ul";
9499       break;
9500     case BuiltinType::Long:
9501       EncType = "sl";
9502       break;
9503     case BuiltinType::ULongLong:
9504       EncType = "ull";
9505       break;
9506     case BuiltinType::LongLong:
9507       EncType = "sll";
9508       break;
9509     case BuiltinType::Float:
9510       EncType = "ft";
9511       break;
9512     case BuiltinType::Double:
9513       EncType = "d";
9514       break;
9515     case BuiltinType::LongDouble:
9516       EncType = "ld";
9517       break;
9518     default:
9519       return false;
9520   }
9521   Enc += EncType;
9522   return true;
9523 }
9524 
9525 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
9526 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
9527                               const CodeGen::CodeGenModule &CGM,
9528                               TypeStringCache &TSC) {
9529   Enc += "p(";
9530   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
9531     return false;
9532   Enc += ')';
9533   return true;
9534 }
9535 
9536 /// Appends array encoding to Enc before calling appendType for the element.
9537 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
9538                             const ArrayType *AT,
9539                             const CodeGen::CodeGenModule &CGM,
9540                             TypeStringCache &TSC, StringRef NoSizeEnc) {
9541   if (AT->getSizeModifier() != ArrayType::Normal)
9542     return false;
9543   Enc += "a(";
9544   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
9545     CAT->getSize().toStringUnsigned(Enc);
9546   else
9547     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
9548   Enc += ':';
9549   // The Qualifiers should be attached to the type rather than the array.
9550   appendQualifier(Enc, QT);
9551   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
9552     return false;
9553   Enc += ')';
9554   return true;
9555 }
9556 
9557 /// Appends a function encoding to Enc, calling appendType for the return type
9558 /// and the arguments.
9559 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
9560                              const CodeGen::CodeGenModule &CGM,
9561                              TypeStringCache &TSC) {
9562   Enc += "f{";
9563   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
9564     return false;
9565   Enc += "}(";
9566   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
9567     // N.B. we are only interested in the adjusted param types.
9568     auto I = FPT->param_type_begin();
9569     auto E = FPT->param_type_end();
9570     if (I != E) {
9571       do {
9572         if (!appendType(Enc, *I, CGM, TSC))
9573           return false;
9574         ++I;
9575         if (I != E)
9576           Enc += ',';
9577       } while (I != E);
9578       if (FPT->isVariadic())
9579         Enc += ",va";
9580     } else {
9581       if (FPT->isVariadic())
9582         Enc += "va";
9583       else
9584         Enc += '0';
9585     }
9586   }
9587   Enc += ')';
9588   return true;
9589 }
9590 
9591 /// Handles the type's qualifier before dispatching a call to handle specific
9592 /// type encodings.
9593 static bool appendType(SmallStringEnc &Enc, QualType QType,
9594                        const CodeGen::CodeGenModule &CGM,
9595                        TypeStringCache &TSC) {
9596 
9597   QualType QT = QType.getCanonicalType();
9598 
9599   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
9600     // The Qualifiers should be attached to the type rather than the array.
9601     // Thus we don't call appendQualifier() here.
9602     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
9603 
9604   appendQualifier(Enc, QT);
9605 
9606   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
9607     return appendBuiltinType(Enc, BT);
9608 
9609   if (const PointerType *PT = QT->getAs<PointerType>())
9610     return appendPointerType(Enc, PT, CGM, TSC);
9611 
9612   if (const EnumType *ET = QT->getAs<EnumType>())
9613     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
9614 
9615   if (const RecordType *RT = QT->getAsStructureType())
9616     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9617 
9618   if (const RecordType *RT = QT->getAsUnionType())
9619     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
9620 
9621   if (const FunctionType *FT = QT->getAs<FunctionType>())
9622     return appendFunctionType(Enc, FT, CGM, TSC);
9623 
9624   return false;
9625 }
9626 
9627 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9628                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
9629   if (!D)
9630     return false;
9631 
9632   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
9633     if (FD->getLanguageLinkage() != CLanguageLinkage)
9634       return false;
9635     return appendType(Enc, FD->getType(), CGM, TSC);
9636   }
9637 
9638   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
9639     if (VD->getLanguageLinkage() != CLanguageLinkage)
9640       return false;
9641     QualType QT = VD->getType().getCanonicalType();
9642     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
9643       // Global ArrayTypes are given a size of '*' if the size is unknown.
9644       // The Qualifiers should be attached to the type rather than the array.
9645       // Thus we don't call appendQualifier() here.
9646       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
9647     }
9648     return appendType(Enc, QT, CGM, TSC);
9649   }
9650   return false;
9651 }
9652 
9653 //===----------------------------------------------------------------------===//
9654 // RISCV ABI Implementation
9655 //===----------------------------------------------------------------------===//
9656 
9657 namespace {
9658 class RISCVABIInfo : public DefaultABIInfo {
9659 private:
9660   // Size of the integer ('x') registers in bits.
9661   unsigned XLen;
9662   // Size of the floating point ('f') registers in bits. Note that the target
9663   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
9664   // with soft float ABI has FLen==0).
9665   unsigned FLen;
9666   static const int NumArgGPRs = 8;
9667   static const int NumArgFPRs = 8;
9668   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9669                                       llvm::Type *&Field1Ty,
9670                                       CharUnits &Field1Off,
9671                                       llvm::Type *&Field2Ty,
9672                                       CharUnits &Field2Off) const;
9673 
9674 public:
9675   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
9676       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
9677 
9678   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
9679   // non-virtual, but computeInfo is virtual, so we overload it.
9680   void computeInfo(CGFunctionInfo &FI) const override;
9681 
9682   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
9683                                   int &ArgFPRsLeft) const;
9684   ABIArgInfo classifyReturnType(QualType RetTy) const;
9685 
9686   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9687                     QualType Ty) const override;
9688 
9689   ABIArgInfo extendType(QualType Ty) const;
9690 
9691   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9692                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
9693                                 CharUnits &Field2Off, int &NeededArgGPRs,
9694                                 int &NeededArgFPRs) const;
9695   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
9696                                                CharUnits Field1Off,
9697                                                llvm::Type *Field2Ty,
9698                                                CharUnits Field2Off) const;
9699 };
9700 } // end anonymous namespace
9701 
9702 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
9703   QualType RetTy = FI.getReturnType();
9704   if (!getCXXABI().classifyReturnType(FI))
9705     FI.getReturnInfo() = classifyReturnType(RetTy);
9706 
9707   // IsRetIndirect is true if classifyArgumentType indicated the value should
9708   // be passed indirect, or if the type size is a scalar greater than 2*XLen
9709   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
9710   // in LLVM IR, relying on the backend lowering code to rewrite the argument
9711   // list and pass indirectly on RV32.
9712   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
9713   if (!IsRetIndirect && RetTy->isScalarType() &&
9714       getContext().getTypeSize(RetTy) > (2 * XLen)) {
9715     if (RetTy->isComplexType() && FLen) {
9716       QualType EltTy = RetTy->getAs<ComplexType>()->getElementType();
9717       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
9718     } else {
9719       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
9720       IsRetIndirect = true;
9721     }
9722   }
9723 
9724   // We must track the number of GPRs used in order to conform to the RISC-V
9725   // ABI, as integer scalars passed in registers should have signext/zeroext
9726   // when promoted, but are anyext if passed on the stack. As GPR usage is
9727   // different for variadic arguments, we must also track whether we are
9728   // examining a vararg or not.
9729   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
9730   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
9731   int NumFixedArgs = FI.getNumRequiredArgs();
9732 
9733   int ArgNum = 0;
9734   for (auto &ArgInfo : FI.arguments()) {
9735     bool IsFixed = ArgNum < NumFixedArgs;
9736     ArgInfo.info =
9737         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
9738     ArgNum++;
9739   }
9740 }
9741 
9742 // Returns true if the struct is a potential candidate for the floating point
9743 // calling convention. If this function returns true, the caller is
9744 // responsible for checking that if there is only a single field then that
9745 // field is a float.
9746 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
9747                                                   llvm::Type *&Field1Ty,
9748                                                   CharUnits &Field1Off,
9749                                                   llvm::Type *&Field2Ty,
9750                                                   CharUnits &Field2Off) const {
9751   bool IsInt = Ty->isIntegralOrEnumerationType();
9752   bool IsFloat = Ty->isRealFloatingType();
9753 
9754   if (IsInt || IsFloat) {
9755     uint64_t Size = getContext().getTypeSize(Ty);
9756     if (IsInt && Size > XLen)
9757       return false;
9758     // Can't be eligible if larger than the FP registers. Half precision isn't
9759     // currently supported on RISC-V and the ABI hasn't been confirmed, so
9760     // default to the integer ABI in that case.
9761     if (IsFloat && (Size > FLen || Size < 32))
9762       return false;
9763     // Can't be eligible if an integer type was already found (int+int pairs
9764     // are not eligible).
9765     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
9766       return false;
9767     if (!Field1Ty) {
9768       Field1Ty = CGT.ConvertType(Ty);
9769       Field1Off = CurOff;
9770       return true;
9771     }
9772     if (!Field2Ty) {
9773       Field2Ty = CGT.ConvertType(Ty);
9774       Field2Off = CurOff;
9775       return true;
9776     }
9777     return false;
9778   }
9779 
9780   if (auto CTy = Ty->getAs<ComplexType>()) {
9781     if (Field1Ty)
9782       return false;
9783     QualType EltTy = CTy->getElementType();
9784     if (getContext().getTypeSize(EltTy) > FLen)
9785       return false;
9786     Field1Ty = CGT.ConvertType(EltTy);
9787     Field1Off = CurOff;
9788     assert(CurOff.isZero() && "Unexpected offset for first field");
9789     Field2Ty = Field1Ty;
9790     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
9791     return true;
9792   }
9793 
9794   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
9795     uint64_t ArraySize = ATy->getSize().getZExtValue();
9796     QualType EltTy = ATy->getElementType();
9797     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
9798     for (uint64_t i = 0; i < ArraySize; ++i) {
9799       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
9800                                                 Field1Off, Field2Ty, Field2Off);
9801       if (!Ret)
9802         return false;
9803       CurOff += EltSize;
9804     }
9805     return true;
9806   }
9807 
9808   if (const auto *RTy = Ty->getAs<RecordType>()) {
9809     // Structures with either a non-trivial destructor or a non-trivial
9810     // copy constructor are not eligible for the FP calling convention.
9811     if (getRecordArgABI(Ty, CGT.getCXXABI()))
9812       return false;
9813     if (isEmptyRecord(getContext(), Ty, true))
9814       return true;
9815     const RecordDecl *RD = RTy->getDecl();
9816     // Unions aren't eligible unless they're empty (which is caught above).
9817     if (RD->isUnion())
9818       return false;
9819     int ZeroWidthBitFieldCount = 0;
9820     for (const FieldDecl *FD : RD->fields()) {
9821       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
9822       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
9823       QualType QTy = FD->getType();
9824       if (FD->isBitField()) {
9825         unsigned BitWidth = FD->getBitWidthValue(getContext());
9826         // Allow a bitfield with a type greater than XLen as long as the
9827         // bitwidth is XLen or less.
9828         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
9829           QTy = getContext().getIntTypeForBitwidth(XLen, false);
9830         if (BitWidth == 0) {
9831           ZeroWidthBitFieldCount++;
9832           continue;
9833         }
9834       }
9835 
9836       bool Ret = detectFPCCEligibleStructHelper(
9837           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
9838           Field1Ty, Field1Off, Field2Ty, Field2Off);
9839       if (!Ret)
9840         return false;
9841 
9842       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
9843       // or int+fp structs, but are ignored for a struct with an fp field and
9844       // any number of zero-width bitfields.
9845       if (Field2Ty && ZeroWidthBitFieldCount > 0)
9846         return false;
9847     }
9848     return Field1Ty != nullptr;
9849   }
9850 
9851   return false;
9852 }
9853 
9854 // Determine if a struct is eligible for passing according to the floating
9855 // point calling convention (i.e., when flattened it contains a single fp
9856 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
9857 // NeededArgGPRs are incremented appropriately.
9858 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
9859                                             CharUnits &Field1Off,
9860                                             llvm::Type *&Field2Ty,
9861                                             CharUnits &Field2Off,
9862                                             int &NeededArgGPRs,
9863                                             int &NeededArgFPRs) const {
9864   Field1Ty = nullptr;
9865   Field2Ty = nullptr;
9866   NeededArgGPRs = 0;
9867   NeededArgFPRs = 0;
9868   bool IsCandidate = detectFPCCEligibleStructHelper(
9869       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
9870   // Not really a candidate if we have a single int but no float.
9871   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
9872     return false;
9873   if (!IsCandidate)
9874     return false;
9875   if (Field1Ty && Field1Ty->isFloatingPointTy())
9876     NeededArgFPRs++;
9877   else if (Field1Ty)
9878     NeededArgGPRs++;
9879   if (Field2Ty && Field2Ty->isFloatingPointTy())
9880     NeededArgFPRs++;
9881   else if (Field2Ty)
9882     NeededArgGPRs++;
9883   return IsCandidate;
9884 }
9885 
9886 // Call getCoerceAndExpand for the two-element flattened struct described by
9887 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
9888 // appropriate coerceToType and unpaddedCoerceToType.
9889 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
9890     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
9891     CharUnits Field2Off) const {
9892   SmallVector<llvm::Type *, 3> CoerceElts;
9893   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
9894   if (!Field1Off.isZero())
9895     CoerceElts.push_back(llvm::ArrayType::get(
9896         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
9897 
9898   CoerceElts.push_back(Field1Ty);
9899   UnpaddedCoerceElts.push_back(Field1Ty);
9900 
9901   if (!Field2Ty) {
9902     return ABIArgInfo::getCoerceAndExpand(
9903         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
9904         UnpaddedCoerceElts[0]);
9905   }
9906 
9907   CharUnits Field2Align =
9908       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
9909   CharUnits Field1Size =
9910       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
9911   CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
9912 
9913   CharUnits Padding = CharUnits::Zero();
9914   if (Field2Off > Field2OffNoPadNoPack)
9915     Padding = Field2Off - Field2OffNoPadNoPack;
9916   else if (Field2Off != Field2Align && Field2Off > Field1Size)
9917     Padding = Field2Off - Field1Size;
9918 
9919   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
9920 
9921   if (!Padding.isZero())
9922     CoerceElts.push_back(llvm::ArrayType::get(
9923         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
9924 
9925   CoerceElts.push_back(Field2Ty);
9926   UnpaddedCoerceElts.push_back(Field2Ty);
9927 
9928   auto CoerceToType =
9929       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
9930   auto UnpaddedCoerceToType =
9931       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
9932 
9933   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
9934 }
9935 
9936 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
9937                                               int &ArgGPRsLeft,
9938                                               int &ArgFPRsLeft) const {
9939   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
9940   Ty = useFirstFieldIfTransparentUnion(Ty);
9941 
9942   // Structures with either a non-trivial destructor or a non-trivial
9943   // copy constructor are always passed indirectly.
9944   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
9945     if (ArgGPRsLeft)
9946       ArgGPRsLeft -= 1;
9947     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
9948                                            CGCXXABI::RAA_DirectInMemory);
9949   }
9950 
9951   // Ignore empty structs/unions.
9952   if (isEmptyRecord(getContext(), Ty, true))
9953     return ABIArgInfo::getIgnore();
9954 
9955   uint64_t Size = getContext().getTypeSize(Ty);
9956 
9957   // Pass floating point values via FPRs if possible.
9958   if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
9959     ArgFPRsLeft--;
9960     return ABIArgInfo::getDirect();
9961   }
9962 
9963   // Complex types for the hard float ABI must be passed direct rather than
9964   // using CoerceAndExpand.
9965   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
9966     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
9967     if (getContext().getTypeSize(EltTy) <= FLen) {
9968       ArgFPRsLeft -= 2;
9969       return ABIArgInfo::getDirect();
9970     }
9971   }
9972 
9973   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
9974     llvm::Type *Field1Ty = nullptr;
9975     llvm::Type *Field2Ty = nullptr;
9976     CharUnits Field1Off = CharUnits::Zero();
9977     CharUnits Field2Off = CharUnits::Zero();
9978     int NeededArgGPRs;
9979     int NeededArgFPRs;
9980     bool IsCandidate =
9981         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
9982                                  NeededArgGPRs, NeededArgFPRs);
9983     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
9984         NeededArgFPRs <= ArgFPRsLeft) {
9985       ArgGPRsLeft -= NeededArgGPRs;
9986       ArgFPRsLeft -= NeededArgFPRs;
9987       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
9988                                                Field2Off);
9989     }
9990   }
9991 
9992   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
9993   bool MustUseStack = false;
9994   // Determine the number of GPRs needed to pass the current argument
9995   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
9996   // register pairs, so may consume 3 registers.
9997   int NeededArgGPRs = 1;
9998   if (!IsFixed && NeededAlign == 2 * XLen)
9999     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10000   else if (Size > XLen && Size <= 2 * XLen)
10001     NeededArgGPRs = 2;
10002 
10003   if (NeededArgGPRs > ArgGPRsLeft) {
10004     MustUseStack = true;
10005     NeededArgGPRs = ArgGPRsLeft;
10006   }
10007 
10008   ArgGPRsLeft -= NeededArgGPRs;
10009 
10010   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10011     // Treat an enum type as its underlying type.
10012     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10013       Ty = EnumTy->getDecl()->getIntegerType();
10014 
10015     // All integral types are promoted to XLen width, unless passed on the
10016     // stack.
10017     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10018       return extendType(Ty);
10019     }
10020 
10021     return ABIArgInfo::getDirect();
10022   }
10023 
10024   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10025   // so coerce to integers.
10026   if (Size <= 2 * XLen) {
10027     unsigned Alignment = getContext().getTypeAlign(Ty);
10028 
10029     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10030     // required, and a 2-element XLen array if only XLen alignment is required.
10031     if (Size <= XLen) {
10032       return ABIArgInfo::getDirect(
10033           llvm::IntegerType::get(getVMContext(), XLen));
10034     } else if (Alignment == 2 * XLen) {
10035       return ABIArgInfo::getDirect(
10036           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10037     } else {
10038       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10039           llvm::IntegerType::get(getVMContext(), XLen), 2));
10040     }
10041   }
10042   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10043 }
10044 
10045 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10046   if (RetTy->isVoidType())
10047     return ABIArgInfo::getIgnore();
10048 
10049   int ArgGPRsLeft = 2;
10050   int ArgFPRsLeft = FLen ? 2 : 0;
10051 
10052   // The rules for return and argument types are the same, so defer to
10053   // classifyArgumentType.
10054   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10055                               ArgFPRsLeft);
10056 }
10057 
10058 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10059                                 QualType Ty) const {
10060   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10061 
10062   // Empty records are ignored for parameter passing purposes.
10063   if (isEmptyRecord(getContext(), Ty, true)) {
10064     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10065     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10066     return Addr;
10067   }
10068 
10069   std::pair<CharUnits, CharUnits> SizeAndAlign =
10070       getContext().getTypeInfoInChars(Ty);
10071 
10072   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10073   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
10074 
10075   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
10076                           SlotSize, /*AllowHigherAlign=*/true);
10077 }
10078 
10079 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10080   int TySize = getContext().getTypeSize(Ty);
10081   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10082   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10083     return ABIArgInfo::getSignExtend(Ty);
10084   return ABIArgInfo::getExtend(Ty);
10085 }
10086 
10087 namespace {
10088 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10089 public:
10090   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10091                          unsigned FLen)
10092       : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}
10093 
10094   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10095                            CodeGen::CodeGenModule &CGM) const override {
10096     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10097     if (!FD) return;
10098 
10099     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10100     if (!Attr)
10101       return;
10102 
10103     const char *Kind;
10104     switch (Attr->getInterrupt()) {
10105     case RISCVInterruptAttr::user: Kind = "user"; break;
10106     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10107     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10108     }
10109 
10110     auto *Fn = cast<llvm::Function>(GV);
10111 
10112     Fn->addFnAttr("interrupt", Kind);
10113   }
10114 };
10115 } // namespace
10116 
10117 //===----------------------------------------------------------------------===//
10118 // Driver code
10119 //===----------------------------------------------------------------------===//
10120 
10121 bool CodeGenModule::supportsCOMDAT() const {
10122   return getTriple().supportsCOMDAT();
10123 }
10124 
10125 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10126   if (TheTargetCodeGenInfo)
10127     return *TheTargetCodeGenInfo;
10128 
10129   // Helper to set the unique_ptr while still keeping the return value.
10130   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10131     this->TheTargetCodeGenInfo.reset(P);
10132     return *P;
10133   };
10134 
10135   const llvm::Triple &Triple = getTarget().getTriple();
10136   switch (Triple.getArch()) {
10137   default:
10138     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10139 
10140   case llvm::Triple::le32:
10141     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10142   case llvm::Triple::mips:
10143   case llvm::Triple::mipsel:
10144     if (Triple.getOS() == llvm::Triple::NaCl)
10145       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10146     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10147 
10148   case llvm::Triple::mips64:
10149   case llvm::Triple::mips64el:
10150     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10151 
10152   case llvm::Triple::avr:
10153     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10154 
10155   case llvm::Triple::aarch64:
10156   case llvm::Triple::aarch64_32:
10157   case llvm::Triple::aarch64_be: {
10158     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10159     if (getTarget().getABI() == "darwinpcs")
10160       Kind = AArch64ABIInfo::DarwinPCS;
10161     else if (Triple.isOSWindows())
10162       return SetCGInfo(
10163           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10164 
10165     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10166   }
10167 
10168   case llvm::Triple::wasm32:
10169   case llvm::Triple::wasm64: {
10170     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10171     if (getTarget().getABI() == "experimental-mv")
10172       Kind = WebAssemblyABIInfo::ExperimentalMV;
10173     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10174   }
10175 
10176   case llvm::Triple::arm:
10177   case llvm::Triple::armeb:
10178   case llvm::Triple::thumb:
10179   case llvm::Triple::thumbeb: {
10180     if (Triple.getOS() == llvm::Triple::Win32) {
10181       return SetCGInfo(
10182           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10183     }
10184 
10185     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10186     StringRef ABIStr = getTarget().getABI();
10187     if (ABIStr == "apcs-gnu")
10188       Kind = ARMABIInfo::APCS;
10189     else if (ABIStr == "aapcs16")
10190       Kind = ARMABIInfo::AAPCS16_VFP;
10191     else if (CodeGenOpts.FloatABI == "hard" ||
10192              (CodeGenOpts.FloatABI != "soft" &&
10193               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10194                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10195                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10196       Kind = ARMABIInfo::AAPCS_VFP;
10197 
10198     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10199   }
10200 
10201   case llvm::Triple::ppc:
10202     return SetCGInfo(
10203         new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" ||
10204                                    getTarget().hasFeature("spe")));
10205   case llvm::Triple::ppc64:
10206     if (Triple.isOSBinFormatELF()) {
10207       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10208       if (getTarget().getABI() == "elfv2")
10209         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10210       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10211       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10212 
10213       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10214                                                         IsSoftFloat));
10215     } else
10216       return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10217   case llvm::Triple::ppc64le: {
10218     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10219     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10220     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
10221       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10222     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10223     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10224 
10225     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10226                                                       IsSoftFloat));
10227   }
10228 
10229   case llvm::Triple::nvptx:
10230   case llvm::Triple::nvptx64:
10231     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10232 
10233   case llvm::Triple::msp430:
10234     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10235 
10236   case llvm::Triple::riscv32:
10237   case llvm::Triple::riscv64: {
10238     StringRef ABIStr = getTarget().getABI();
10239     unsigned XLen = getTarget().getPointerWidth(0);
10240     unsigned ABIFLen = 0;
10241     if (ABIStr.endswith("f"))
10242       ABIFLen = 32;
10243     else if (ABIStr.endswith("d"))
10244       ABIFLen = 64;
10245     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
10246   }
10247 
10248   case llvm::Triple::systemz: {
10249     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
10250     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
10251     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
10252   }
10253 
10254   case llvm::Triple::tce:
10255   case llvm::Triple::tcele:
10256     return SetCGInfo(new TCETargetCodeGenInfo(Types));
10257 
10258   case llvm::Triple::x86: {
10259     bool IsDarwinVectorABI = Triple.isOSDarwin();
10260     bool RetSmallStructInRegABI =
10261         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10262     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
10263 
10264     if (Triple.getOS() == llvm::Triple::Win32) {
10265       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
10266           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10267           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
10268     } else {
10269       return SetCGInfo(new X86_32TargetCodeGenInfo(
10270           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10271           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
10272           CodeGenOpts.FloatABI == "soft"));
10273     }
10274   }
10275 
10276   case llvm::Triple::x86_64: {
10277     StringRef ABI = getTarget().getABI();
10278     X86AVXABILevel AVXLevel =
10279         (ABI == "avx512"
10280              ? X86AVXABILevel::AVX512
10281              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
10282 
10283     switch (Triple.getOS()) {
10284     case llvm::Triple::Win32:
10285       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
10286     default:
10287       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
10288     }
10289   }
10290   case llvm::Triple::hexagon:
10291     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
10292   case llvm::Triple::lanai:
10293     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
10294   case llvm::Triple::r600:
10295     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10296   case llvm::Triple::amdgcn:
10297     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10298   case llvm::Triple::sparc:
10299     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
10300   case llvm::Triple::sparcv9:
10301     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
10302   case llvm::Triple::xcore:
10303     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
10304   case llvm::Triple::arc:
10305     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
10306   case llvm::Triple::spir:
10307   case llvm::Triple::spir64:
10308     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
10309   }
10310 }
10311 
10312 /// Create an OpenCL kernel for an enqueued block.
10313 ///
10314 /// The kernel has the same function type as the block invoke function. Its
10315 /// name is the name of the block invoke function postfixed with "_kernel".
10316 /// It simply calls the block invoke function then returns.
10317 llvm::Function *
10318 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
10319                                              llvm::Function *Invoke,
10320                                              llvm::Value *BlockLiteral) const {
10321   auto *InvokeFT = Invoke->getFunctionType();
10322   llvm::SmallVector<llvm::Type *, 2> ArgTys;
10323   for (auto &P : InvokeFT->params())
10324     ArgTys.push_back(P);
10325   auto &C = CGF.getLLVMContext();
10326   std::string Name = Invoke->getName().str() + "_kernel";
10327   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
10328   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
10329                                    &CGF.CGM.getModule());
10330   auto IP = CGF.Builder.saveIP();
10331   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
10332   auto &Builder = CGF.Builder;
10333   Builder.SetInsertPoint(BB);
10334   llvm::SmallVector<llvm::Value *, 2> Args;
10335   for (auto &A : F->args())
10336     Args.push_back(&A);
10337   Builder.CreateCall(Invoke, Args);
10338   Builder.CreateRetVoid();
10339   Builder.restoreIP(IP);
10340   return F;
10341 }
10342 
10343 /// Create an OpenCL kernel for an enqueued block.
10344 ///
10345 /// The type of the first argument (the block literal) is the struct type
10346 /// of the block literal instead of a pointer type. The first argument
10347 /// (block literal) is passed directly by value to the kernel. The kernel
10348 /// allocates the same type of struct on stack and stores the block literal
10349 /// to it and passes its pointer to the block invoke function. The kernel
10350 /// has "enqueued-block" function attribute and kernel argument metadata.
10351 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
10352     CodeGenFunction &CGF, llvm::Function *Invoke,
10353     llvm::Value *BlockLiteral) const {
10354   auto &Builder = CGF.Builder;
10355   auto &C = CGF.getLLVMContext();
10356 
10357   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
10358   auto *InvokeFT = Invoke->getFunctionType();
10359   llvm::SmallVector<llvm::Type *, 2> ArgTys;
10360   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
10361   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
10362   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
10363   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
10364   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
10365   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
10366 
10367   ArgTys.push_back(BlockTy);
10368   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10369   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
10370   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
10371   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10372   AccessQuals.push_back(llvm::MDString::get(C, "none"));
10373   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
10374   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
10375     ArgTys.push_back(InvokeFT->getParamType(I));
10376     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
10377     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
10378     AccessQuals.push_back(llvm::MDString::get(C, "none"));
10379     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
10380     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
10381     ArgNames.push_back(
10382         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
10383   }
10384   std::string Name = Invoke->getName().str() + "_kernel";
10385   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
10386   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
10387                                    &CGF.CGM.getModule());
10388   F->addFnAttr("enqueued-block");
10389   auto IP = CGF.Builder.saveIP();
10390   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
10391   Builder.SetInsertPoint(BB);
10392   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
10393   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
10394   BlockPtr->setAlignment(BlockAlign);
10395   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
10396   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
10397   llvm::SmallVector<llvm::Value *, 2> Args;
10398   Args.push_back(Cast);
10399   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
10400     Args.push_back(I);
10401   Builder.CreateCall(Invoke, Args);
10402   Builder.CreateRetVoid();
10403   Builder.restoreIP(IP);
10404 
10405   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
10406   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
10407   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
10408   F->setMetadata("kernel_arg_base_type",
10409                  llvm::MDNode::get(C, ArgBaseTypeNames));
10410   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
10411   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
10412     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
10413 
10414   return F;
10415 }
10416