1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <stdint.h> 6 #include <inttypes.h> 7 #include <getopt.h> 8 9 #include <rte_eal.h> 10 #include <rte_ethdev.h> 11 #include <rte_cycles.h> 12 #include <rte_lcore.h> 13 #include <rte_mbuf.h> 14 #include <rte_flow.h> 15 #include <rte_flow_classify.h> 16 #include <rte_table_acl.h> 17 18 #define RX_RING_SIZE 1024 19 #define TX_RING_SIZE 1024 20 21 #define NUM_MBUFS 8191 22 #define MBUF_CACHE_SIZE 250 23 #define BURST_SIZE 32 24 25 #define MAX_NUM_CLASSIFY 30 26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91 27 #define FLOW_CLASSIFY_MAX_PRIORITY 8 28 #define FLOW_CLASSIFIER_NAME_SIZE 64 29 30 #define COMMENT_LEAD_CHAR ('#') 31 #define OPTION_RULE_IPV4 "rule_ipv4" 32 #define RTE_LOGTYPE_FLOW_CLASSIFY RTE_LOGTYPE_USER3 33 #define flow_classify_log(format, ...) \ 34 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__) 35 36 #define uint32_t_to_char(ip, a, b, c, d) do {\ 37 *a = (unsigned char)(ip >> 24 & 0xff);\ 38 *b = (unsigned char)(ip >> 16 & 0xff);\ 39 *c = (unsigned char)(ip >> 8 & 0xff);\ 40 *d = (unsigned char)(ip & 0xff);\ 41 } while (0) 42 43 enum { 44 CB_FLD_SRC_ADDR, 45 CB_FLD_DST_ADDR, 46 CB_FLD_SRC_PORT, 47 CB_FLD_SRC_PORT_DLM, 48 CB_FLD_SRC_PORT_MASK, 49 CB_FLD_DST_PORT, 50 CB_FLD_DST_PORT_DLM, 51 CB_FLD_DST_PORT_MASK, 52 CB_FLD_PROTO, 53 CB_FLD_PRIORITY, 54 CB_FLD_NUM, 55 }; 56 57 static struct{ 58 const char *rule_ipv4_name; 59 } parm_config; 60 const char cb_port_delim[] = ":"; 61 62 static const struct rte_eth_conf port_conf_default = { 63 .rxmode = { 64 .max_rx_pkt_len = RTE_ETHER_MAX_LEN, 65 }, 66 }; 67 68 struct flow_classifier { 69 struct rte_flow_classifier *cls; 70 }; 71 72 struct flow_classifier_acl { 73 struct flow_classifier cls; 74 } __rte_cache_aligned; 75 76 /* ACL field definitions for IPv4 5 tuple rule */ 77 78 enum { 79 PROTO_FIELD_IPV4, 80 SRC_FIELD_IPV4, 81 DST_FIELD_IPV4, 82 SRCP_FIELD_IPV4, 83 DSTP_FIELD_IPV4, 84 NUM_FIELDS_IPV4 85 }; 86 87 enum { 88 PROTO_INPUT_IPV4, 89 SRC_INPUT_IPV4, 90 DST_INPUT_IPV4, 91 SRCP_DESTP_INPUT_IPV4 92 }; 93 94 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { 95 /* first input field - always one byte long. */ 96 { 97 .type = RTE_ACL_FIELD_TYPE_BITMASK, 98 .size = sizeof(uint8_t), 99 .field_index = PROTO_FIELD_IPV4, 100 .input_index = PROTO_INPUT_IPV4, 101 .offset = sizeof(struct rte_ether_hdr) + 102 offsetof(struct rte_ipv4_hdr, next_proto_id), 103 }, 104 /* next input field (IPv4 source address) - 4 consecutive bytes. */ 105 { 106 /* rte_flow uses a bit mask for IPv4 addresses */ 107 .type = RTE_ACL_FIELD_TYPE_BITMASK, 108 .size = sizeof(uint32_t), 109 .field_index = SRC_FIELD_IPV4, 110 .input_index = SRC_INPUT_IPV4, 111 .offset = sizeof(struct rte_ether_hdr) + 112 offsetof(struct rte_ipv4_hdr, src_addr), 113 }, 114 /* next input field (IPv4 destination address) - 4 consecutive bytes. */ 115 { 116 /* rte_flow uses a bit mask for IPv4 addresses */ 117 .type = RTE_ACL_FIELD_TYPE_BITMASK, 118 .size = sizeof(uint32_t), 119 .field_index = DST_FIELD_IPV4, 120 .input_index = DST_INPUT_IPV4, 121 .offset = sizeof(struct rte_ether_hdr) + 122 offsetof(struct rte_ipv4_hdr, dst_addr), 123 }, 124 /* 125 * Next 2 fields (src & dst ports) form 4 consecutive bytes. 126 * They share the same input index. 127 */ 128 { 129 /* rte_flow uses a bit mask for protocol ports */ 130 .type = RTE_ACL_FIELD_TYPE_BITMASK, 131 .size = sizeof(uint16_t), 132 .field_index = SRCP_FIELD_IPV4, 133 .input_index = SRCP_DESTP_INPUT_IPV4, 134 .offset = sizeof(struct rte_ether_hdr) + 135 sizeof(struct rte_ipv4_hdr) + 136 offsetof(struct rte_tcp_hdr, src_port), 137 }, 138 { 139 /* rte_flow uses a bit mask for protocol ports */ 140 .type = RTE_ACL_FIELD_TYPE_BITMASK, 141 .size = sizeof(uint16_t), 142 .field_index = DSTP_FIELD_IPV4, 143 .input_index = SRCP_DESTP_INPUT_IPV4, 144 .offset = sizeof(struct rte_ether_hdr) + 145 sizeof(struct rte_ipv4_hdr) + 146 offsetof(struct rte_tcp_hdr, dst_port), 147 }, 148 }; 149 150 /* flow classify data */ 151 static int num_classify_rules; 152 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY]; 153 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats; 154 static struct rte_flow_classify_stats classify_stats = { 155 .stats = (void **)&ntuple_stats 156 }; 157 158 /* parameters for rte_flow_classify_validate and 159 * rte_flow_classify_table_entry_add functions 160 */ 161 162 static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH, 163 0, 0, 0 }; 164 static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END, 165 0, 0, 0 }; 166 167 /* sample actions: 168 * "actions count / end" 169 */ 170 struct rte_flow_query_count count = { 171 .reset = 1, 172 .hits_set = 1, 173 .bytes_set = 1, 174 .hits = 0, 175 .bytes = 0, 176 }; 177 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, 178 &count}; 179 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; 180 static struct rte_flow_action actions[2]; 181 182 /* sample attributes */ 183 static struct rte_flow_attr attr; 184 185 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */ 186 187 /* 188 * Initializes a given port using global settings and with the RX buffers 189 * coming from the mbuf_pool passed as a parameter. 190 */ 191 static inline int 192 port_init(uint8_t port, struct rte_mempool *mbuf_pool) 193 { 194 struct rte_eth_conf port_conf = port_conf_default; 195 struct rte_ether_addr addr; 196 const uint16_t rx_rings = 1, tx_rings = 1; 197 int retval; 198 uint16_t q; 199 struct rte_eth_dev_info dev_info; 200 struct rte_eth_txconf txconf; 201 202 if (!rte_eth_dev_is_valid_port(port)) 203 return -1; 204 205 retval = rte_eth_dev_info_get(port, &dev_info); 206 if (retval != 0) { 207 printf("Error during getting device (port %u) info: %s\n", 208 port, strerror(-retval)); 209 return retval; 210 } 211 212 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 213 port_conf.txmode.offloads |= 214 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 215 216 /* Configure the Ethernet device. */ 217 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); 218 if (retval != 0) 219 return retval; 220 221 /* Allocate and set up 1 RX queue per Ethernet port. */ 222 for (q = 0; q < rx_rings; q++) { 223 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE, 224 rte_eth_dev_socket_id(port), NULL, mbuf_pool); 225 if (retval < 0) 226 return retval; 227 } 228 229 txconf = dev_info.default_txconf; 230 txconf.offloads = port_conf.txmode.offloads; 231 /* Allocate and set up 1 TX queue per Ethernet port. */ 232 for (q = 0; q < tx_rings; q++) { 233 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE, 234 rte_eth_dev_socket_id(port), &txconf); 235 if (retval < 0) 236 return retval; 237 } 238 239 /* Start the Ethernet port. */ 240 retval = rte_eth_dev_start(port); 241 if (retval < 0) 242 return retval; 243 244 /* Display the port MAC address. */ 245 rte_eth_macaddr_get(port, &addr); 246 printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8 247 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n", 248 port, 249 addr.addr_bytes[0], addr.addr_bytes[1], 250 addr.addr_bytes[2], addr.addr_bytes[3], 251 addr.addr_bytes[4], addr.addr_bytes[5]); 252 253 /* Enable RX in promiscuous mode for the Ethernet device. */ 254 retval = rte_eth_promiscuous_enable(port); 255 if (retval != 0) 256 return retval; 257 258 return 0; 259 } 260 261 /* 262 * The lcore main. This is the main thread that does the work, reading from 263 * an input port classifying the packets and writing to an output port. 264 */ 265 static __attribute__((noreturn)) void 266 lcore_main(struct flow_classifier *cls_app) 267 { 268 uint16_t port; 269 int ret; 270 int i = 0; 271 272 ret = rte_flow_classify_table_entry_delete(cls_app->cls, 273 rules[7]); 274 if (ret) 275 printf("table_entry_delete failed [7] %d\n\n", ret); 276 else 277 printf("table_entry_delete succeeded [7]\n\n"); 278 279 /* 280 * Check that the port is on the same NUMA node as the polling thread 281 * for best performance. 282 */ 283 RTE_ETH_FOREACH_DEV(port) 284 if (rte_eth_dev_socket_id(port) > 0 && 285 rte_eth_dev_socket_id(port) != (int)rte_socket_id()) { 286 printf("\n\n"); 287 printf("WARNING: port %u is on remote NUMA node\n", 288 port); 289 printf("to polling thread.\n"); 290 printf("Performance will not be optimal.\n"); 291 } 292 printf("\nCore %u forwarding packets. ", rte_lcore_id()); 293 printf("[Ctrl+C to quit]\n"); 294 295 /* Run until the application is quit or killed. */ 296 for (;;) { 297 /* 298 * Receive packets on a port, classify them and forward them 299 * on the paired port. 300 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc. 301 */ 302 RTE_ETH_FOREACH_DEV(port) { 303 /* Get burst of RX packets, from first port of pair. */ 304 struct rte_mbuf *bufs[BURST_SIZE]; 305 const uint16_t nb_rx = rte_eth_rx_burst(port, 0, 306 bufs, BURST_SIZE); 307 308 if (unlikely(nb_rx == 0)) 309 continue; 310 311 for (i = 0; i < MAX_NUM_CLASSIFY; i++) { 312 if (rules[i]) { 313 ret = rte_flow_classifier_query( 314 cls_app->cls, 315 bufs, nb_rx, rules[i], 316 &classify_stats); 317 if (ret) 318 printf( 319 "rule [%d] query failed ret [%d]\n\n", 320 i, ret); 321 else { 322 printf( 323 "rule[%d] count=%"PRIu64"\n", 324 i, ntuple_stats.counter1); 325 326 printf("proto = %d\n", 327 ntuple_stats.ipv4_5tuple.proto); 328 } 329 } 330 } 331 332 /* Send burst of TX packets, to second port of pair. */ 333 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0, 334 bufs, nb_rx); 335 336 /* Free any unsent packets. */ 337 if (unlikely(nb_tx < nb_rx)) { 338 uint16_t buf; 339 340 for (buf = nb_tx; buf < nb_rx; buf++) 341 rte_pktmbuf_free(bufs[buf]); 342 } 343 } 344 } 345 } 346 347 /* 348 * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt. 349 * Expected format: 350 * <src_ipv4_addr>'/'<masklen> <space> \ 351 * <dst_ipv4_addr>'/'<masklen> <space> \ 352 * <src_port> <space> ":" <src_port_mask> <space> \ 353 * <dst_port> <space> ":" <dst_port_mask> <space> \ 354 * <proto>'/'<proto_mask> <space> \ 355 * <priority> 356 */ 357 358 static int 359 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim, 360 char dlm) 361 { 362 unsigned long val; 363 char *end; 364 365 errno = 0; 366 val = strtoul(*in, &end, base); 367 if (errno != 0 || end[0] != dlm || val > lim) 368 return -EINVAL; 369 *fd = (uint32_t)val; 370 *in = end + 1; 371 return 0; 372 } 373 374 static int 375 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len) 376 { 377 uint32_t a, b, c, d, m; 378 379 if (get_cb_field(&in, &a, 0, UINT8_MAX, '.')) 380 return -EINVAL; 381 if (get_cb_field(&in, &b, 0, UINT8_MAX, '.')) 382 return -EINVAL; 383 if (get_cb_field(&in, &c, 0, UINT8_MAX, '.')) 384 return -EINVAL; 385 if (get_cb_field(&in, &d, 0, UINT8_MAX, '/')) 386 return -EINVAL; 387 if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0)) 388 return -EINVAL; 389 390 addr[0] = RTE_IPV4(a, b, c, d); 391 mask_len[0] = m; 392 return 0; 393 } 394 395 static int 396 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter) 397 { 398 int i, ret; 399 char *s, *sp, *in[CB_FLD_NUM]; 400 static const char *dlm = " \t\n"; 401 int dim = CB_FLD_NUM; 402 uint32_t temp; 403 404 s = str; 405 for (i = 0; i != dim; i++, s = NULL) { 406 in[i] = strtok_r(s, dlm, &sp); 407 if (in[i] == NULL) 408 return -EINVAL; 409 } 410 411 ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR], 412 &ntuple_filter->src_ip, 413 &ntuple_filter->src_ip_mask); 414 if (ret != 0) { 415 flow_classify_log("failed to read source address/mask: %s\n", 416 in[CB_FLD_SRC_ADDR]); 417 return ret; 418 } 419 420 ret = parse_ipv4_net(in[CB_FLD_DST_ADDR], 421 &ntuple_filter->dst_ip, 422 &ntuple_filter->dst_ip_mask); 423 if (ret != 0) { 424 flow_classify_log("failed to read source address/mask: %s\n", 425 in[CB_FLD_DST_ADDR]); 426 return ret; 427 } 428 429 if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0)) 430 return -EINVAL; 431 ntuple_filter->src_port = (uint16_t)temp; 432 433 if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim, 434 sizeof(cb_port_delim)) != 0) 435 return -EINVAL; 436 437 if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 438 return -EINVAL; 439 ntuple_filter->src_port_mask = (uint16_t)temp; 440 441 if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0)) 442 return -EINVAL; 443 ntuple_filter->dst_port = (uint16_t)temp; 444 445 if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim, 446 sizeof(cb_port_delim)) != 0) 447 return -EINVAL; 448 449 if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 450 return -EINVAL; 451 ntuple_filter->dst_port_mask = (uint16_t)temp; 452 453 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/')) 454 return -EINVAL; 455 ntuple_filter->proto = (uint8_t)temp; 456 457 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0)) 458 return -EINVAL; 459 ntuple_filter->proto_mask = (uint8_t)temp; 460 461 if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0)) 462 return -EINVAL; 463 ntuple_filter->priority = (uint16_t)temp; 464 if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY) 465 ret = -EINVAL; 466 467 return ret; 468 } 469 470 /* Bypass comment and empty lines */ 471 static inline int 472 is_bypass_line(char *buff) 473 { 474 int i = 0; 475 476 /* comment line */ 477 if (buff[0] == COMMENT_LEAD_CHAR) 478 return 1; 479 /* empty line */ 480 while (buff[i] != '\0') { 481 if (!isspace(buff[i])) 482 return 0; 483 i++; 484 } 485 return 1; 486 } 487 488 static uint32_t 489 convert_depth_to_bitmask(uint32_t depth_val) 490 { 491 uint32_t bitmask = 0; 492 int i, j; 493 494 for (i = depth_val, j = 0; i > 0; i--, j++) 495 bitmask |= (1 << (31 - j)); 496 return bitmask; 497 } 498 499 static int 500 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter, 501 struct flow_classifier *cls_app) 502 { 503 int ret = -1; 504 int key_found; 505 struct rte_flow_error error; 506 struct rte_flow_item_ipv4 ipv4_spec; 507 struct rte_flow_item_ipv4 ipv4_mask; 508 struct rte_flow_item ipv4_udp_item; 509 struct rte_flow_item ipv4_tcp_item; 510 struct rte_flow_item ipv4_sctp_item; 511 struct rte_flow_item_udp udp_spec; 512 struct rte_flow_item_udp udp_mask; 513 struct rte_flow_item udp_item; 514 struct rte_flow_item_tcp tcp_spec; 515 struct rte_flow_item_tcp tcp_mask; 516 struct rte_flow_item tcp_item; 517 struct rte_flow_item_sctp sctp_spec; 518 struct rte_flow_item_sctp sctp_mask; 519 struct rte_flow_item sctp_item; 520 struct rte_flow_item pattern_ipv4_5tuple[4]; 521 struct rte_flow_classify_rule *rule; 522 uint8_t ipv4_proto; 523 524 if (num_classify_rules >= MAX_NUM_CLASSIFY) { 525 printf( 526 "\nINFO: classify rule capacity %d reached\n", 527 num_classify_rules); 528 return ret; 529 } 530 531 /* set up parameters for validate and add */ 532 memset(&ipv4_spec, 0, sizeof(ipv4_spec)); 533 ipv4_spec.hdr.next_proto_id = ntuple_filter->proto; 534 ipv4_spec.hdr.src_addr = ntuple_filter->src_ip; 535 ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip; 536 ipv4_proto = ipv4_spec.hdr.next_proto_id; 537 538 memset(&ipv4_mask, 0, sizeof(ipv4_mask)); 539 ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask; 540 ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask; 541 ipv4_mask.hdr.src_addr = 542 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr); 543 ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask; 544 ipv4_mask.hdr.dst_addr = 545 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr); 546 547 switch (ipv4_proto) { 548 case IPPROTO_UDP: 549 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 550 ipv4_udp_item.spec = &ipv4_spec; 551 ipv4_udp_item.mask = &ipv4_mask; 552 ipv4_udp_item.last = NULL; 553 554 udp_spec.hdr.src_port = ntuple_filter->src_port; 555 udp_spec.hdr.dst_port = ntuple_filter->dst_port; 556 udp_spec.hdr.dgram_len = 0; 557 udp_spec.hdr.dgram_cksum = 0; 558 559 udp_mask.hdr.src_port = ntuple_filter->src_port_mask; 560 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 561 udp_mask.hdr.dgram_len = 0; 562 udp_mask.hdr.dgram_cksum = 0; 563 564 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP; 565 udp_item.spec = &udp_spec; 566 udp_item.mask = &udp_mask; 567 udp_item.last = NULL; 568 569 attr.priority = ntuple_filter->priority; 570 pattern_ipv4_5tuple[1] = ipv4_udp_item; 571 pattern_ipv4_5tuple[2] = udp_item; 572 break; 573 case IPPROTO_TCP: 574 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 575 ipv4_tcp_item.spec = &ipv4_spec; 576 ipv4_tcp_item.mask = &ipv4_mask; 577 ipv4_tcp_item.last = NULL; 578 579 memset(&tcp_spec, 0, sizeof(tcp_spec)); 580 tcp_spec.hdr.src_port = ntuple_filter->src_port; 581 tcp_spec.hdr.dst_port = ntuple_filter->dst_port; 582 583 memset(&tcp_mask, 0, sizeof(tcp_mask)); 584 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask; 585 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 586 587 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP; 588 tcp_item.spec = &tcp_spec; 589 tcp_item.mask = &tcp_mask; 590 tcp_item.last = NULL; 591 592 attr.priority = ntuple_filter->priority; 593 pattern_ipv4_5tuple[1] = ipv4_tcp_item; 594 pattern_ipv4_5tuple[2] = tcp_item; 595 break; 596 case IPPROTO_SCTP: 597 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 598 ipv4_sctp_item.spec = &ipv4_spec; 599 ipv4_sctp_item.mask = &ipv4_mask; 600 ipv4_sctp_item.last = NULL; 601 602 sctp_spec.hdr.src_port = ntuple_filter->src_port; 603 sctp_spec.hdr.dst_port = ntuple_filter->dst_port; 604 sctp_spec.hdr.cksum = 0; 605 sctp_spec.hdr.tag = 0; 606 607 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask; 608 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 609 sctp_mask.hdr.cksum = 0; 610 sctp_mask.hdr.tag = 0; 611 612 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP; 613 sctp_item.spec = &sctp_spec; 614 sctp_item.mask = &sctp_mask; 615 sctp_item.last = NULL; 616 617 attr.priority = ntuple_filter->priority; 618 pattern_ipv4_5tuple[1] = ipv4_sctp_item; 619 pattern_ipv4_5tuple[2] = sctp_item; 620 break; 621 default: 622 return ret; 623 } 624 625 attr.ingress = 1; 626 pattern_ipv4_5tuple[0] = eth_item; 627 pattern_ipv4_5tuple[3] = end_item; 628 actions[0] = count_action; 629 actions[1] = end_action; 630 631 /* Validate and add rule */ 632 ret = rte_flow_classify_validate(cls_app->cls, &attr, 633 pattern_ipv4_5tuple, actions, &error); 634 if (ret) { 635 printf("table entry validate failed ipv4_proto = %u\n", 636 ipv4_proto); 637 return ret; 638 } 639 640 rule = rte_flow_classify_table_entry_add( 641 cls_app->cls, &attr, pattern_ipv4_5tuple, 642 actions, &key_found, &error); 643 if (rule == NULL) { 644 printf("table entry add failed ipv4_proto = %u\n", 645 ipv4_proto); 646 ret = -1; 647 return ret; 648 } 649 650 rules[num_classify_rules] = rule; 651 num_classify_rules++; 652 return 0; 653 } 654 655 static int 656 add_rules(const char *rule_path, struct flow_classifier *cls_app) 657 { 658 FILE *fh; 659 char buff[LINE_MAX]; 660 unsigned int i = 0; 661 unsigned int total_num = 0; 662 struct rte_eth_ntuple_filter ntuple_filter; 663 int ret; 664 665 fh = fopen(rule_path, "rb"); 666 if (fh == NULL) 667 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__, 668 rule_path); 669 670 ret = fseek(fh, 0, SEEK_SET); 671 if (ret) 672 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__, 673 ret); 674 675 i = 0; 676 while (fgets(buff, LINE_MAX, fh) != NULL) { 677 i++; 678 679 if (is_bypass_line(buff)) 680 continue; 681 682 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) { 683 printf("\nINFO: classify rule capacity %d reached\n", 684 total_num); 685 break; 686 } 687 688 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0) 689 rte_exit(EXIT_FAILURE, 690 "%s Line %u: parse rules error\n", 691 rule_path, i); 692 693 if (add_classify_rule(&ntuple_filter, cls_app) != 0) 694 rte_exit(EXIT_FAILURE, "add rule error\n"); 695 696 total_num++; 697 } 698 699 fclose(fh); 700 return 0; 701 } 702 703 /* display usage */ 704 static void 705 print_usage(const char *prgname) 706 { 707 printf("%s usage:\n", prgname); 708 printf("[EAL options] -- --"OPTION_RULE_IPV4"=FILE: "); 709 printf("specify the ipv4 rules file.\n"); 710 printf("Each rule occupies one line in the file.\n"); 711 } 712 713 /* Parse the argument given in the command line of the application */ 714 static int 715 parse_args(int argc, char **argv) 716 { 717 int opt, ret; 718 char **argvopt; 719 int option_index; 720 char *prgname = argv[0]; 721 static struct option lgopts[] = { 722 {OPTION_RULE_IPV4, 1, 0, 0}, 723 {NULL, 0, 0, 0} 724 }; 725 726 argvopt = argv; 727 728 while ((opt = getopt_long(argc, argvopt, "", 729 lgopts, &option_index)) != EOF) { 730 731 switch (opt) { 732 /* long options */ 733 case 0: 734 if (!strncmp(lgopts[option_index].name, 735 OPTION_RULE_IPV4, 736 sizeof(OPTION_RULE_IPV4))) 737 parm_config.rule_ipv4_name = optarg; 738 break; 739 default: 740 print_usage(prgname); 741 return -1; 742 } 743 } 744 745 if (optind >= 0) 746 argv[optind-1] = prgname; 747 748 ret = optind-1; 749 optind = 1; /* reset getopt lib */ 750 return ret; 751 } 752 753 /* 754 * The main function, which does initialization and calls the lcore_main 755 * function. 756 */ 757 int 758 main(int argc, char *argv[]) 759 { 760 struct rte_mempool *mbuf_pool; 761 uint16_t nb_ports; 762 uint16_t portid; 763 int ret; 764 int socket_id; 765 struct rte_table_acl_params table_acl_params; 766 struct rte_flow_classify_table_params cls_table_params; 767 struct flow_classifier *cls_app; 768 struct rte_flow_classifier_params cls_params; 769 uint32_t size; 770 771 /* Initialize the Environment Abstraction Layer (EAL). */ 772 ret = rte_eal_init(argc, argv); 773 if (ret < 0) 774 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); 775 776 argc -= ret; 777 argv += ret; 778 779 /* parse application arguments (after the EAL ones) */ 780 ret = parse_args(argc, argv); 781 if (ret < 0) 782 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n"); 783 784 /* Check that there is an even number of ports to send/receive on. */ 785 nb_ports = rte_eth_dev_count_avail(); 786 if (nb_ports < 2 || (nb_ports & 1)) 787 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n"); 788 789 /* Creates a new mempool in memory to hold the mbufs. */ 790 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, 791 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 792 793 if (mbuf_pool == NULL) 794 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 795 796 /* Initialize all ports. */ 797 RTE_ETH_FOREACH_DEV(portid) 798 if (port_init(portid, mbuf_pool) != 0) 799 rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n", 800 portid); 801 802 if (rte_lcore_count() > 1) 803 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); 804 805 socket_id = rte_eth_dev_socket_id(0); 806 807 /* Memory allocation */ 808 size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl)); 809 cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); 810 if (cls_app == NULL) 811 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n"); 812 813 cls_params.name = "flow_classifier"; 814 cls_params.socket_id = socket_id; 815 816 cls_app->cls = rte_flow_classifier_create(&cls_params); 817 if (cls_app->cls == NULL) { 818 rte_free(cls_app); 819 rte_exit(EXIT_FAILURE, "Cannot create classifier\n"); 820 } 821 822 /* initialise ACL table params */ 823 table_acl_params.name = "table_acl_ipv4_5tuple"; 824 table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; 825 table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); 826 memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); 827 828 /* initialise table create params */ 829 cls_table_params.ops = &rte_table_acl_ops; 830 cls_table_params.arg_create = &table_acl_params; 831 cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; 832 833 ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params); 834 if (ret) { 835 rte_flow_classifier_free(cls_app->cls); 836 rte_free(cls_app); 837 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n"); 838 } 839 840 /* read file of IPv4 5 tuple rules and initialize parameters 841 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add 842 * API's. 843 */ 844 if (add_rules(parm_config.rule_ipv4_name, cls_app)) { 845 rte_flow_classifier_free(cls_app->cls); 846 rte_free(cls_app); 847 rte_exit(EXIT_FAILURE, "Failed to add rules\n"); 848 } 849 850 /* Call lcore_main on the master core only. */ 851 lcore_main(cls_app); 852 853 return 0; 854 } 855