1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
3 */
4
5 #include <stdint.h>
6 #include <inttypes.h>
7 #include <getopt.h>
8
9 #include <rte_eal.h>
10 #include <rte_ethdev.h>
11 #include <rte_cycles.h>
12 #include <rte_lcore.h>
13 #include <rte_mbuf.h>
14 #include <rte_flow.h>
15 #include <rte_flow_classify.h>
16 #include <rte_table_acl.h>
17
18 #define RX_RING_SIZE 1024
19 #define TX_RING_SIZE 1024
20
21 #define NUM_MBUFS 8191
22 #define MBUF_CACHE_SIZE 250
23 #define BURST_SIZE 32
24
25 #define MAX_NUM_CLASSIFY 30
26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
27 #define FLOW_CLASSIFY_MAX_PRIORITY 8
28 #define FLOW_CLASSIFIER_NAME_SIZE 64
29
30 #define COMMENT_LEAD_CHAR ('#')
31 #define OPTION_RULE_IPV4 "rule_ipv4"
32 #define RTE_LOGTYPE_FLOW_CLASSIFY RTE_LOGTYPE_USER3
33 #define flow_classify_log(format, ...) \
34 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
35
36 #define uint32_t_to_char(ip, a, b, c, d) do {\
37 *a = (unsigned char)(ip >> 24 & 0xff);\
38 *b = (unsigned char)(ip >> 16 & 0xff);\
39 *c = (unsigned char)(ip >> 8 & 0xff);\
40 *d = (unsigned char)(ip & 0xff);\
41 } while (0)
42
43 enum {
44 CB_FLD_SRC_ADDR,
45 CB_FLD_DST_ADDR,
46 CB_FLD_SRC_PORT,
47 CB_FLD_SRC_PORT_DLM,
48 CB_FLD_SRC_PORT_MASK,
49 CB_FLD_DST_PORT,
50 CB_FLD_DST_PORT_DLM,
51 CB_FLD_DST_PORT_MASK,
52 CB_FLD_PROTO,
53 CB_FLD_PRIORITY,
54 CB_FLD_NUM,
55 };
56
57 static struct{
58 const char *rule_ipv4_name;
59 } parm_config;
60 const char cb_port_delim[] = ":";
61
62 /* Creation of flow classifier object. 8< */
63 struct flow_classifier {
64 struct rte_flow_classifier *cls;
65 };
66
67 struct flow_classifier_acl {
68 struct flow_classifier cls;
69 } __rte_cache_aligned;
70 /* >8 End of creation of flow classifier object. */
71
72 /* Creation of ACL table during initialization of application. 8< */
73
74 /* ACL field definitions for IPv4 5 tuple rule */
75 enum {
76 PROTO_FIELD_IPV4,
77 SRC_FIELD_IPV4,
78 DST_FIELD_IPV4,
79 SRCP_FIELD_IPV4,
80 DSTP_FIELD_IPV4,
81 NUM_FIELDS_IPV4
82 };
83
84 enum {
85 PROTO_INPUT_IPV4,
86 SRC_INPUT_IPV4,
87 DST_INPUT_IPV4,
88 SRCP_DESTP_INPUT_IPV4
89 };
90
91 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
92 /* first input field - always one byte long. */
93 {
94 .type = RTE_ACL_FIELD_TYPE_BITMASK,
95 .size = sizeof(uint8_t),
96 .field_index = PROTO_FIELD_IPV4,
97 .input_index = PROTO_INPUT_IPV4,
98 .offset = sizeof(struct rte_ether_hdr) +
99 offsetof(struct rte_ipv4_hdr, next_proto_id),
100 },
101 /* next input field (IPv4 source address) - 4 consecutive bytes. */
102 {
103 /* rte_flow uses a bit mask for IPv4 addresses */
104 .type = RTE_ACL_FIELD_TYPE_BITMASK,
105 .size = sizeof(uint32_t),
106 .field_index = SRC_FIELD_IPV4,
107 .input_index = SRC_INPUT_IPV4,
108 .offset = sizeof(struct rte_ether_hdr) +
109 offsetof(struct rte_ipv4_hdr, src_addr),
110 },
111 /* next input field (IPv4 destination address) - 4 consecutive bytes. */
112 {
113 /* rte_flow uses a bit mask for IPv4 addresses */
114 .type = RTE_ACL_FIELD_TYPE_BITMASK,
115 .size = sizeof(uint32_t),
116 .field_index = DST_FIELD_IPV4,
117 .input_index = DST_INPUT_IPV4,
118 .offset = sizeof(struct rte_ether_hdr) +
119 offsetof(struct rte_ipv4_hdr, dst_addr),
120 },
121 /*
122 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
123 * They share the same input index.
124 */
125 {
126 /* rte_flow uses a bit mask for protocol ports */
127 .type = RTE_ACL_FIELD_TYPE_BITMASK,
128 .size = sizeof(uint16_t),
129 .field_index = SRCP_FIELD_IPV4,
130 .input_index = SRCP_DESTP_INPUT_IPV4,
131 .offset = sizeof(struct rte_ether_hdr) +
132 sizeof(struct rte_ipv4_hdr) +
133 offsetof(struct rte_tcp_hdr, src_port),
134 },
135 {
136 /* rte_flow uses a bit mask for protocol ports */
137 .type = RTE_ACL_FIELD_TYPE_BITMASK,
138 .size = sizeof(uint16_t),
139 .field_index = DSTP_FIELD_IPV4,
140 .input_index = SRCP_DESTP_INPUT_IPV4,
141 .offset = sizeof(struct rte_ether_hdr) +
142 sizeof(struct rte_ipv4_hdr) +
143 offsetof(struct rte_tcp_hdr, dst_port),
144 },
145 };
146 /* >8 End of creation of ACL table. */
147
148 /* Flow classify data. 8< */
149 static int num_classify_rules;
150 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
151 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
152 static struct rte_flow_classify_stats classify_stats = {
153 .stats = (void **)&ntuple_stats
154 };
155 /* >8 End of flow classify data. */
156
157 /* parameters for rte_flow_classify_validate and
158 * rte_flow_classify_table_entry_add functions
159 */
160
161 static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
162 0, 0, 0 };
163 static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END,
164 0, 0, 0 };
165
166 /* sample actions:
167 * "actions count / end"
168 */
169 struct rte_flow_query_count count = {
170 .reset = 1,
171 .hits_set = 1,
172 .bytes_set = 1,
173 .hits = 0,
174 .bytes = 0,
175 };
176 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
177 &count};
178 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
179 static struct rte_flow_action actions[2];
180
181 /* sample attributes */
182 static struct rte_flow_attr attr;
183
184 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
185
186 /*
187 * Initializes a given port using global settings and with the RX buffers
188 * coming from the mbuf_pool passed as a parameter.
189 */
190
191 /* Initializing port using global settings. 8< */
192 static inline int
port_init(uint8_t port,struct rte_mempool * mbuf_pool)193 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
194 {
195 struct rte_eth_conf port_conf;
196 struct rte_ether_addr addr;
197 const uint16_t rx_rings = 1, tx_rings = 1;
198 int retval;
199 uint16_t q;
200 struct rte_eth_dev_info dev_info;
201 struct rte_eth_txconf txconf;
202
203 if (!rte_eth_dev_is_valid_port(port))
204 return -1;
205
206 memset(&port_conf, 0, sizeof(struct rte_eth_conf));
207
208 retval = rte_eth_dev_info_get(port, &dev_info);
209 if (retval != 0) {
210 printf("Error during getting device (port %u) info: %s\n",
211 port, strerror(-retval));
212 return retval;
213 }
214
215 if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
216 port_conf.txmode.offloads |=
217 RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
218
219 /* Configure the Ethernet device. */
220 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
221 if (retval != 0)
222 return retval;
223
224 /* Allocate and set up 1 RX queue per Ethernet port. */
225 for (q = 0; q < rx_rings; q++) {
226 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
227 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
228 if (retval < 0)
229 return retval;
230 }
231
232 txconf = dev_info.default_txconf;
233 txconf.offloads = port_conf.txmode.offloads;
234 /* Allocate and set up 1 TX queue per Ethernet port. */
235 for (q = 0; q < tx_rings; q++) {
236 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
237 rte_eth_dev_socket_id(port), &txconf);
238 if (retval < 0)
239 return retval;
240 }
241
242 /* Start the Ethernet port. 8< */
243 retval = rte_eth_dev_start(port);
244 /* >8 End of starting the Ethernet port. */
245 if (retval < 0)
246 return retval;
247
248 /* Display the port MAC address. */
249 retval = rte_eth_macaddr_get(port, &addr);
250 if (retval != 0)
251 return retval;
252
253 printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
254 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
255 port, RTE_ETHER_ADDR_BYTES(&addr));
256
257 /* Enable RX in promiscuous mode for the Ethernet device. */
258 retval = rte_eth_promiscuous_enable(port);
259 if (retval != 0)
260 return retval;
261
262 return 0;
263 }
264 /* >8 End of initializing a given port. */
265
266 /*
267 * The lcore main. This is the main thread that does the work, reading from
268 * an input port classifying the packets and writing to an output port.
269 */
270
271 /* Classifying the packets. 8< */
272 static __rte_noreturn void
lcore_main(struct flow_classifier * cls_app)273 lcore_main(struct flow_classifier *cls_app)
274 {
275 uint16_t port;
276 int ret;
277 int i = 0;
278
279 ret = rte_flow_classify_table_entry_delete(cls_app->cls,
280 rules[7]);
281 if (ret)
282 printf("table_entry_delete failed [7] %d\n\n", ret);
283 else
284 printf("table_entry_delete succeeded [7]\n\n");
285
286 /*
287 * Check that the port is on the same NUMA node as the polling thread
288 * for best performance.
289 */
290 RTE_ETH_FOREACH_DEV(port)
291 if (rte_eth_dev_socket_id(port) >= 0 &&
292 rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
293 printf("\n\n");
294 printf("WARNING: port %u is on remote NUMA node\n",
295 port);
296 printf("to polling thread.\n");
297 printf("Performance will not be optimal.\n");
298 }
299 printf("\nCore %u forwarding packets. ", rte_lcore_id());
300 printf("[Ctrl+C to quit]\n");
301
302 /* Run until the application is quit or killed. 8< */
303 for (;;) {
304 /*
305 * Receive packets on a port, classify them and forward them
306 * on the paired port.
307 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
308 */
309 RTE_ETH_FOREACH_DEV(port) {
310 /* Get burst of RX packets, from first port of pair. */
311 struct rte_mbuf *bufs[BURST_SIZE];
312 const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
313 bufs, BURST_SIZE);
314
315 if (unlikely(nb_rx == 0))
316 continue;
317
318 for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
319 if (rules[i]) {
320 ret = rte_flow_classifier_query(
321 cls_app->cls,
322 bufs, nb_rx, rules[i],
323 &classify_stats);
324 if (ret)
325 printf(
326 "rule [%d] query failed ret [%d]\n\n",
327 i, ret);
328 else {
329 printf(
330 "rule[%d] count=%"PRIu64"\n",
331 i, ntuple_stats.counter1);
332
333 printf("proto = %d\n",
334 ntuple_stats.ipv4_5tuple.proto);
335 }
336 }
337 }
338
339 /* Send burst of TX packets, to second port of pair. */
340 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
341 bufs, nb_rx);
342
343 /* Free any unsent packets. */
344 if (unlikely(nb_tx < nb_rx)) {
345 uint16_t buf;
346
347 for (buf = nb_tx; buf < nb_rx; buf++)
348 rte_pktmbuf_free(bufs[buf]);
349 }
350 }
351 }
352 /* >8 End of main loop. */
353 }
354 /* >8 End of lcore main. */
355
356 /*
357 * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
358 * Expected format:
359 * <src_ipv4_addr>'/'<masklen> <space> \
360 * <dst_ipv4_addr>'/'<masklen> <space> \
361 * <src_port> <space> ":" <src_port_mask> <space> \
362 * <dst_port> <space> ":" <dst_port_mask> <space> \
363 * <proto>'/'<proto_mask> <space> \
364 * <priority>
365 */
366
367 static int
get_cb_field(char ** in,uint32_t * fd,int base,unsigned long lim,char dlm)368 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
369 char dlm)
370 {
371 unsigned long val;
372 char *end;
373
374 errno = 0;
375 val = strtoul(*in, &end, base);
376 if (errno != 0 || end[0] != dlm || val > lim)
377 return -EINVAL;
378 *fd = (uint32_t)val;
379 *in = end + 1;
380 return 0;
381 }
382
383 static int
parse_ipv4_net(char * in,uint32_t * addr,uint32_t * mask_len)384 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
385 {
386 uint32_t a, b, c, d, m;
387
388 if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
389 return -EINVAL;
390 if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
391 return -EINVAL;
392 if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
393 return -EINVAL;
394 if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
395 return -EINVAL;
396 if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
397 return -EINVAL;
398
399 addr[0] = RTE_IPV4(a, b, c, d);
400 mask_len[0] = m;
401 return 0;
402 }
403
404 static int
parse_ipv4_5tuple_rule(char * str,struct rte_eth_ntuple_filter * ntuple_filter)405 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
406 {
407 int i, ret;
408 char *s, *sp, *in[CB_FLD_NUM];
409 static const char *dlm = " \t\n";
410 int dim = CB_FLD_NUM;
411 uint32_t temp;
412
413 s = str;
414 for (i = 0; i != dim; i++, s = NULL) {
415 in[i] = strtok_r(s, dlm, &sp);
416 if (in[i] == NULL)
417 return -EINVAL;
418 }
419
420 ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
421 &ntuple_filter->src_ip,
422 &ntuple_filter->src_ip_mask);
423 if (ret != 0) {
424 flow_classify_log("failed to read source address/mask: %s\n",
425 in[CB_FLD_SRC_ADDR]);
426 return ret;
427 }
428
429 ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
430 &ntuple_filter->dst_ip,
431 &ntuple_filter->dst_ip_mask);
432 if (ret != 0) {
433 flow_classify_log("failed to read destination address/mask: %s\n",
434 in[CB_FLD_DST_ADDR]);
435 return ret;
436 }
437
438 if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
439 return -EINVAL;
440 ntuple_filter->src_port = (uint16_t)temp;
441
442 if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
443 sizeof(cb_port_delim)) != 0)
444 return -EINVAL;
445
446 if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
447 return -EINVAL;
448 ntuple_filter->src_port_mask = (uint16_t)temp;
449
450 if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
451 return -EINVAL;
452 ntuple_filter->dst_port = (uint16_t)temp;
453
454 if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
455 sizeof(cb_port_delim)) != 0)
456 return -EINVAL;
457
458 if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
459 return -EINVAL;
460 ntuple_filter->dst_port_mask = (uint16_t)temp;
461
462 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
463 return -EINVAL;
464 ntuple_filter->proto = (uint8_t)temp;
465
466 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
467 return -EINVAL;
468 ntuple_filter->proto_mask = (uint8_t)temp;
469
470 if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
471 return -EINVAL;
472 ntuple_filter->priority = (uint16_t)temp;
473 if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
474 ret = -EINVAL;
475
476 return ret;
477 }
478
479 /* Bypass comment and empty lines */
480 static inline int
is_bypass_line(char * buff)481 is_bypass_line(char *buff)
482 {
483 int i = 0;
484
485 /* comment line */
486 if (buff[0] == COMMENT_LEAD_CHAR)
487 return 1;
488 /* empty line */
489 while (buff[i] != '\0') {
490 if (!isspace(buff[i]))
491 return 0;
492 i++;
493 }
494 return 1;
495 }
496
497 static uint32_t
convert_depth_to_bitmask(uint32_t depth_val)498 convert_depth_to_bitmask(uint32_t depth_val)
499 {
500 uint32_t bitmask = 0;
501 int i, j;
502
503 for (i = depth_val, j = 0; i > 0; i--, j++)
504 bitmask |= (1 << (31 - j));
505 return bitmask;
506 }
507
508 static int
add_classify_rule(struct rte_eth_ntuple_filter * ntuple_filter,struct flow_classifier * cls_app)509 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
510 struct flow_classifier *cls_app)
511 {
512 int ret = -1;
513 int key_found;
514 struct rte_flow_error error;
515 struct rte_flow_item_ipv4 ipv4_spec;
516 struct rte_flow_item_ipv4 ipv4_mask;
517 struct rte_flow_item ipv4_udp_item;
518 struct rte_flow_item ipv4_tcp_item;
519 struct rte_flow_item ipv4_sctp_item;
520 struct rte_flow_item_udp udp_spec;
521 struct rte_flow_item_udp udp_mask;
522 struct rte_flow_item udp_item;
523 struct rte_flow_item_tcp tcp_spec;
524 struct rte_flow_item_tcp tcp_mask;
525 struct rte_flow_item tcp_item;
526 struct rte_flow_item_sctp sctp_spec;
527 struct rte_flow_item_sctp sctp_mask;
528 struct rte_flow_item sctp_item;
529 struct rte_flow_item pattern_ipv4_5tuple[4];
530 struct rte_flow_classify_rule *rule;
531 uint8_t ipv4_proto;
532
533 if (num_classify_rules >= MAX_NUM_CLASSIFY) {
534 printf(
535 "\nINFO: classify rule capacity %d reached\n",
536 num_classify_rules);
537 return ret;
538 }
539
540 /* set up parameters for validate and add */
541 memset(&ipv4_spec, 0, sizeof(ipv4_spec));
542 ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
543 ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
544 ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
545 ipv4_proto = ipv4_spec.hdr.next_proto_id;
546
547 memset(&ipv4_mask, 0, sizeof(ipv4_mask));
548 ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
549 ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
550 ipv4_mask.hdr.src_addr =
551 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
552 ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
553 ipv4_mask.hdr.dst_addr =
554 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
555
556 switch (ipv4_proto) {
557 case IPPROTO_UDP:
558 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
559 ipv4_udp_item.spec = &ipv4_spec;
560 ipv4_udp_item.mask = &ipv4_mask;
561 ipv4_udp_item.last = NULL;
562
563 udp_spec.hdr.src_port = ntuple_filter->src_port;
564 udp_spec.hdr.dst_port = ntuple_filter->dst_port;
565 udp_spec.hdr.dgram_len = 0;
566 udp_spec.hdr.dgram_cksum = 0;
567
568 udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
569 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
570 udp_mask.hdr.dgram_len = 0;
571 udp_mask.hdr.dgram_cksum = 0;
572
573 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
574 udp_item.spec = &udp_spec;
575 udp_item.mask = &udp_mask;
576 udp_item.last = NULL;
577
578 attr.priority = ntuple_filter->priority;
579 pattern_ipv4_5tuple[1] = ipv4_udp_item;
580 pattern_ipv4_5tuple[2] = udp_item;
581 break;
582 case IPPROTO_TCP:
583 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
584 ipv4_tcp_item.spec = &ipv4_spec;
585 ipv4_tcp_item.mask = &ipv4_mask;
586 ipv4_tcp_item.last = NULL;
587
588 memset(&tcp_spec, 0, sizeof(tcp_spec));
589 tcp_spec.hdr.src_port = ntuple_filter->src_port;
590 tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
591
592 memset(&tcp_mask, 0, sizeof(tcp_mask));
593 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
594 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
595
596 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
597 tcp_item.spec = &tcp_spec;
598 tcp_item.mask = &tcp_mask;
599 tcp_item.last = NULL;
600
601 attr.priority = ntuple_filter->priority;
602 pattern_ipv4_5tuple[1] = ipv4_tcp_item;
603 pattern_ipv4_5tuple[2] = tcp_item;
604 break;
605 case IPPROTO_SCTP:
606 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
607 ipv4_sctp_item.spec = &ipv4_spec;
608 ipv4_sctp_item.mask = &ipv4_mask;
609 ipv4_sctp_item.last = NULL;
610
611 sctp_spec.hdr.src_port = ntuple_filter->src_port;
612 sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
613 sctp_spec.hdr.cksum = 0;
614 sctp_spec.hdr.tag = 0;
615
616 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
617 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
618 sctp_mask.hdr.cksum = 0;
619 sctp_mask.hdr.tag = 0;
620
621 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
622 sctp_item.spec = &sctp_spec;
623 sctp_item.mask = &sctp_mask;
624 sctp_item.last = NULL;
625
626 attr.priority = ntuple_filter->priority;
627 pattern_ipv4_5tuple[1] = ipv4_sctp_item;
628 pattern_ipv4_5tuple[2] = sctp_item;
629 break;
630 default:
631 return ret;
632 }
633
634 attr.ingress = 1;
635 pattern_ipv4_5tuple[0] = eth_item;
636 pattern_ipv4_5tuple[3] = end_item;
637 actions[0] = count_action;
638 actions[1] = end_action;
639
640 /* Validate and add rule */
641 ret = rte_flow_classify_validate(cls_app->cls, &attr,
642 pattern_ipv4_5tuple, actions, &error);
643 if (ret) {
644 printf("table entry validate failed ipv4_proto = %u\n",
645 ipv4_proto);
646 return ret;
647 }
648
649 rule = rte_flow_classify_table_entry_add(
650 cls_app->cls, &attr, pattern_ipv4_5tuple,
651 actions, &key_found, &error);
652 if (rule == NULL) {
653 printf("table entry add failed ipv4_proto = %u\n",
654 ipv4_proto);
655 ret = -1;
656 return ret;
657 }
658
659 rules[num_classify_rules] = rule;
660 num_classify_rules++;
661 return 0;
662 }
663
664 /* Reads file and calls the add_classify_rule function. 8< */
665 static int
add_rules(const char * rule_path,struct flow_classifier * cls_app)666 add_rules(const char *rule_path, struct flow_classifier *cls_app)
667 {
668 FILE *fh;
669 char buff[LINE_MAX];
670 unsigned int i = 0;
671 unsigned int total_num = 0;
672 struct rte_eth_ntuple_filter ntuple_filter;
673 int ret;
674
675 fh = fopen(rule_path, "rb");
676 if (fh == NULL)
677 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
678 rule_path);
679
680 ret = fseek(fh, 0, SEEK_SET);
681 if (ret)
682 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
683 ret);
684
685 i = 0;
686 while (fgets(buff, LINE_MAX, fh) != NULL) {
687 i++;
688
689 if (is_bypass_line(buff))
690 continue;
691
692 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
693 printf("\nINFO: classify rule capacity %d reached\n",
694 total_num);
695 break;
696 }
697
698 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
699 rte_exit(EXIT_FAILURE,
700 "%s Line %u: parse rules error\n",
701 rule_path, i);
702
703 if (add_classify_rule(&ntuple_filter, cls_app) != 0)
704 rte_exit(EXIT_FAILURE, "add rule error\n");
705
706 total_num++;
707 }
708
709 fclose(fh);
710 return 0;
711 }
712 /* >8 End of add_rules. */
713
714 /* display usage */
715 static void
print_usage(const char * prgname)716 print_usage(const char *prgname)
717 {
718 printf("%s usage:\n", prgname);
719 printf("[EAL options] -- --"OPTION_RULE_IPV4"=FILE: ");
720 printf("specify the ipv4 rules file.\n");
721 printf("Each rule occupies one line in the file.\n");
722 }
723
724 /* Parse the argument given in the command line of the application */
725 static int
parse_args(int argc,char ** argv)726 parse_args(int argc, char **argv)
727 {
728 int opt, ret;
729 char **argvopt;
730 int option_index;
731 char *prgname = argv[0];
732 static struct option lgopts[] = {
733 {OPTION_RULE_IPV4, 1, 0, 0},
734 {NULL, 0, 0, 0}
735 };
736
737 argvopt = argv;
738
739 while ((opt = getopt_long(argc, argvopt, "",
740 lgopts, &option_index)) != EOF) {
741
742 switch (opt) {
743 /* long options */
744 case 0:
745 if (!strncmp(lgopts[option_index].name,
746 OPTION_RULE_IPV4,
747 sizeof(OPTION_RULE_IPV4)))
748 parm_config.rule_ipv4_name = optarg;
749 break;
750 default:
751 print_usage(prgname);
752 return -1;
753 }
754 }
755
756 if (optind >= 0)
757 argv[optind-1] = prgname;
758
759 ret = optind-1;
760 optind = 1; /* reset getopt lib */
761 return ret;
762 }
763
764 /*
765 * The main function, which does initialization and calls the lcore_main
766 * function.
767 */
768 int
main(int argc,char * argv[])769 main(int argc, char *argv[])
770 {
771 struct rte_mempool *mbuf_pool;
772 uint16_t nb_ports;
773 uint16_t portid;
774 int ret;
775 int socket_id;
776 struct rte_table_acl_params table_acl_params;
777 struct rte_flow_classify_table_params cls_table_params;
778 struct flow_classifier *cls_app;
779 struct rte_flow_classifier_params cls_params;
780 uint32_t size;
781
782 /* Initialize the Environment Abstraction Layer (EAL). 8< */
783 ret = rte_eal_init(argc, argv);
784 if (ret < 0)
785 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
786 /* >8 End of initialization of EAL. */
787
788 argc -= ret;
789 argv += ret;
790
791 /* Parse application arguments (after the EAL ones). 8< */
792 ret = parse_args(argc, argv);
793 if (ret < 0)
794 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
795 /* >8 End of parse application arguments. */
796
797 /* Check that there is an even number of ports to send/receive on. */
798 nb_ports = rte_eth_dev_count_avail();
799 if (nb_ports < 2 || (nb_ports & 1))
800 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
801
802 /* Creates a new mempool in memory to hold the mbufs. 8< */
803 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
804 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
805 /* >8 End of creation of new mempool in memory. */
806
807 if (mbuf_pool == NULL)
808 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
809
810 /* Initialize all ports. 8< */
811 RTE_ETH_FOREACH_DEV(portid)
812 if (port_init(portid, mbuf_pool) != 0)
813 rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
814 portid);
815 /* >8 End of initialization of all ports. */
816
817 if (rte_lcore_count() > 1)
818 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
819
820 socket_id = rte_eth_dev_socket_id(0);
821
822 /* Memory allocation. 8< */
823 size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
824 cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
825 if (cls_app == NULL)
826 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
827
828 cls_params.name = "flow_classifier";
829 cls_params.socket_id = socket_id;
830
831 cls_app->cls = rte_flow_classifier_create(&cls_params);
832 if (cls_app->cls == NULL) {
833 rte_free(cls_app);
834 rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
835 }
836
837 /* initialise ACL table params */
838 table_acl_params.name = "table_acl_ipv4_5tuple";
839 table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
840 table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
841 memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
842
843 /* initialise table create params */
844 cls_table_params.ops = &rte_table_acl_ops;
845 cls_table_params.arg_create = &table_acl_params;
846 cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;
847
848 ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
849 if (ret) {
850 rte_flow_classifier_free(cls_app->cls);
851 rte_free(cls_app);
852 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
853 }
854 /* >8 End of initialization of table create params. */
855
856 /* read file of IPv4 5 tuple rules and initialize parameters
857 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
858 * API's.
859 */
860
861 /* Read file of IPv4 tuple rules. 8< */
862 if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
863 rte_flow_classifier_free(cls_app->cls);
864 rte_free(cls_app);
865 rte_exit(EXIT_FAILURE, "Failed to add rules\n");
866 }
867 /* >8 End of reading file of IPv4 5 tuple rules. */
868
869 /* Call lcore_main on the main core only. */
870 lcore_main(cls_app);
871
872 /* clean up the EAL */
873 rte_eal_cleanup();
874
875 return 0;
876 }
877