1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <stdint.h> 6 #include <inttypes.h> 7 #include <getopt.h> 8 9 #include <rte_eal.h> 10 #include <rte_ethdev.h> 11 #include <rte_cycles.h> 12 #include <rte_lcore.h> 13 #include <rte_mbuf.h> 14 #include <rte_flow.h> 15 #include <rte_flow_classify.h> 16 #include <rte_table_acl.h> 17 18 #define RX_RING_SIZE 1024 19 #define TX_RING_SIZE 1024 20 21 #define NUM_MBUFS 8191 22 #define MBUF_CACHE_SIZE 250 23 #define BURST_SIZE 32 24 25 #define MAX_NUM_CLASSIFY 30 26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91 27 #define FLOW_CLASSIFY_MAX_PRIORITY 8 28 #define FLOW_CLASSIFIER_NAME_SIZE 64 29 30 #define COMMENT_LEAD_CHAR ('#') 31 #define OPTION_RULE_IPV4 "rule_ipv4" 32 #define RTE_LOGTYPE_FLOW_CLASSIFY RTE_LOGTYPE_USER3 33 #define flow_classify_log(format, ...) \ 34 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__) 35 36 #define uint32_t_to_char(ip, a, b, c, d) do {\ 37 *a = (unsigned char)(ip >> 24 & 0xff);\ 38 *b = (unsigned char)(ip >> 16 & 0xff);\ 39 *c = (unsigned char)(ip >> 8 & 0xff);\ 40 *d = (unsigned char)(ip & 0xff);\ 41 } while (0) 42 43 enum { 44 CB_FLD_SRC_ADDR, 45 CB_FLD_DST_ADDR, 46 CB_FLD_SRC_PORT, 47 CB_FLD_SRC_PORT_DLM, 48 CB_FLD_SRC_PORT_MASK, 49 CB_FLD_DST_PORT, 50 CB_FLD_DST_PORT_DLM, 51 CB_FLD_DST_PORT_MASK, 52 CB_FLD_PROTO, 53 CB_FLD_PRIORITY, 54 CB_FLD_NUM, 55 }; 56 57 static struct{ 58 const char *rule_ipv4_name; 59 } parm_config; 60 const char cb_port_delim[] = ":"; 61 62 /* Ethernet ports configured with default settings using struct. 8< */ 63 static const struct rte_eth_conf port_conf_default = { 64 .rxmode = { 65 .max_rx_pkt_len = RTE_ETHER_MAX_LEN, 66 }, 67 }; 68 /* >8 End of configuration of Ethernet ports. */ 69 70 /* Creation of flow classifier object. 8< */ 71 struct flow_classifier { 72 struct rte_flow_classifier *cls; 73 }; 74 75 struct flow_classifier_acl { 76 struct flow_classifier cls; 77 } __rte_cache_aligned; 78 /* >8 End of creation of flow classifier object. */ 79 80 /* Creation of ACL table during initialization of application. 8< */ 81 82 /* ACL field definitions for IPv4 5 tuple rule */ 83 enum { 84 PROTO_FIELD_IPV4, 85 SRC_FIELD_IPV4, 86 DST_FIELD_IPV4, 87 SRCP_FIELD_IPV4, 88 DSTP_FIELD_IPV4, 89 NUM_FIELDS_IPV4 90 }; 91 92 enum { 93 PROTO_INPUT_IPV4, 94 SRC_INPUT_IPV4, 95 DST_INPUT_IPV4, 96 SRCP_DESTP_INPUT_IPV4 97 }; 98 99 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { 100 /* first input field - always one byte long. */ 101 { 102 .type = RTE_ACL_FIELD_TYPE_BITMASK, 103 .size = sizeof(uint8_t), 104 .field_index = PROTO_FIELD_IPV4, 105 .input_index = PROTO_INPUT_IPV4, 106 .offset = sizeof(struct rte_ether_hdr) + 107 offsetof(struct rte_ipv4_hdr, next_proto_id), 108 }, 109 /* next input field (IPv4 source address) - 4 consecutive bytes. */ 110 { 111 /* rte_flow uses a bit mask for IPv4 addresses */ 112 .type = RTE_ACL_FIELD_TYPE_BITMASK, 113 .size = sizeof(uint32_t), 114 .field_index = SRC_FIELD_IPV4, 115 .input_index = SRC_INPUT_IPV4, 116 .offset = sizeof(struct rte_ether_hdr) + 117 offsetof(struct rte_ipv4_hdr, src_addr), 118 }, 119 /* next input field (IPv4 destination address) - 4 consecutive bytes. */ 120 { 121 /* rte_flow uses a bit mask for IPv4 addresses */ 122 .type = RTE_ACL_FIELD_TYPE_BITMASK, 123 .size = sizeof(uint32_t), 124 .field_index = DST_FIELD_IPV4, 125 .input_index = DST_INPUT_IPV4, 126 .offset = sizeof(struct rte_ether_hdr) + 127 offsetof(struct rte_ipv4_hdr, dst_addr), 128 }, 129 /* 130 * Next 2 fields (src & dst ports) form 4 consecutive bytes. 131 * They share the same input index. 132 */ 133 { 134 /* rte_flow uses a bit mask for protocol ports */ 135 .type = RTE_ACL_FIELD_TYPE_BITMASK, 136 .size = sizeof(uint16_t), 137 .field_index = SRCP_FIELD_IPV4, 138 .input_index = SRCP_DESTP_INPUT_IPV4, 139 .offset = sizeof(struct rte_ether_hdr) + 140 sizeof(struct rte_ipv4_hdr) + 141 offsetof(struct rte_tcp_hdr, src_port), 142 }, 143 { 144 /* rte_flow uses a bit mask for protocol ports */ 145 .type = RTE_ACL_FIELD_TYPE_BITMASK, 146 .size = sizeof(uint16_t), 147 .field_index = DSTP_FIELD_IPV4, 148 .input_index = SRCP_DESTP_INPUT_IPV4, 149 .offset = sizeof(struct rte_ether_hdr) + 150 sizeof(struct rte_ipv4_hdr) + 151 offsetof(struct rte_tcp_hdr, dst_port), 152 }, 153 }; 154 /* >8 End of creation of ACL table. */ 155 156 /* Flow classify data. 8< */ 157 static int num_classify_rules; 158 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY]; 159 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats; 160 static struct rte_flow_classify_stats classify_stats = { 161 .stats = (void **)&ntuple_stats 162 }; 163 /* >8 End of flow classify data. */ 164 165 /* parameters for rte_flow_classify_validate and 166 * rte_flow_classify_table_entry_add functions 167 */ 168 169 static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH, 170 0, 0, 0 }; 171 static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END, 172 0, 0, 0 }; 173 174 /* sample actions: 175 * "actions count / end" 176 */ 177 struct rte_flow_query_count count = { 178 .reset = 1, 179 .hits_set = 1, 180 .bytes_set = 1, 181 .hits = 0, 182 .bytes = 0, 183 }; 184 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, 185 &count}; 186 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; 187 static struct rte_flow_action actions[2]; 188 189 /* sample attributes */ 190 static struct rte_flow_attr attr; 191 192 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */ 193 194 /* 195 * Initializes a given port using global settings and with the RX buffers 196 * coming from the mbuf_pool passed as a parameter. 197 */ 198 199 /* Initializing port using global settings. 8< */ 200 static inline int 201 port_init(uint8_t port, struct rte_mempool *mbuf_pool) 202 { 203 struct rte_eth_conf port_conf = port_conf_default; 204 struct rte_ether_addr addr; 205 const uint16_t rx_rings = 1, tx_rings = 1; 206 int retval; 207 uint16_t q; 208 struct rte_eth_dev_info dev_info; 209 struct rte_eth_txconf txconf; 210 211 if (!rte_eth_dev_is_valid_port(port)) 212 return -1; 213 214 retval = rte_eth_dev_info_get(port, &dev_info); 215 if (retval != 0) { 216 printf("Error during getting device (port %u) info: %s\n", 217 port, strerror(-retval)); 218 return retval; 219 } 220 221 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 222 port_conf.txmode.offloads |= 223 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 224 225 /* Configure the Ethernet device. */ 226 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); 227 if (retval != 0) 228 return retval; 229 230 /* Allocate and set up 1 RX queue per Ethernet port. */ 231 for (q = 0; q < rx_rings; q++) { 232 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE, 233 rte_eth_dev_socket_id(port), NULL, mbuf_pool); 234 if (retval < 0) 235 return retval; 236 } 237 238 txconf = dev_info.default_txconf; 239 txconf.offloads = port_conf.txmode.offloads; 240 /* Allocate and set up 1 TX queue per Ethernet port. */ 241 for (q = 0; q < tx_rings; q++) { 242 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE, 243 rte_eth_dev_socket_id(port), &txconf); 244 if (retval < 0) 245 return retval; 246 } 247 248 /* Start the Ethernet port. 8< */ 249 retval = rte_eth_dev_start(port); 250 /* >8 End of starting the Ethernet port. */ 251 if (retval < 0) 252 return retval; 253 254 /* Display the port MAC address. */ 255 retval = rte_eth_macaddr_get(port, &addr); 256 if (retval != 0) 257 return retval; 258 259 printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8 260 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n", 261 port, RTE_ETHER_ADDR_BYTES(&addr)); 262 263 /* Enable RX in promiscuous mode for the Ethernet device. */ 264 retval = rte_eth_promiscuous_enable(port); 265 if (retval != 0) 266 return retval; 267 268 return 0; 269 } 270 /* >8 End of initializing a given port. */ 271 272 /* 273 * The lcore main. This is the main thread that does the work, reading from 274 * an input port classifying the packets and writing to an output port. 275 */ 276 277 /* Classifying the packets. 8< */ 278 static __rte_noreturn void 279 lcore_main(struct flow_classifier *cls_app) 280 { 281 uint16_t port; 282 int ret; 283 int i = 0; 284 285 ret = rte_flow_classify_table_entry_delete(cls_app->cls, 286 rules[7]); 287 if (ret) 288 printf("table_entry_delete failed [7] %d\n\n", ret); 289 else 290 printf("table_entry_delete succeeded [7]\n\n"); 291 292 /* 293 * Check that the port is on the same NUMA node as the polling thread 294 * for best performance. 295 */ 296 RTE_ETH_FOREACH_DEV(port) 297 if (rte_eth_dev_socket_id(port) >= 0 && 298 rte_eth_dev_socket_id(port) != (int)rte_socket_id()) { 299 printf("\n\n"); 300 printf("WARNING: port %u is on remote NUMA node\n", 301 port); 302 printf("to polling thread.\n"); 303 printf("Performance will not be optimal.\n"); 304 } 305 printf("\nCore %u forwarding packets. ", rte_lcore_id()); 306 printf("[Ctrl+C to quit]\n"); 307 308 /* Run until the application is quit or killed. 8< */ 309 for (;;) { 310 /* 311 * Receive packets on a port, classify them and forward them 312 * on the paired port. 313 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc. 314 */ 315 RTE_ETH_FOREACH_DEV(port) { 316 /* Get burst of RX packets, from first port of pair. */ 317 struct rte_mbuf *bufs[BURST_SIZE]; 318 const uint16_t nb_rx = rte_eth_rx_burst(port, 0, 319 bufs, BURST_SIZE); 320 321 if (unlikely(nb_rx == 0)) 322 continue; 323 324 for (i = 0; i < MAX_NUM_CLASSIFY; i++) { 325 if (rules[i]) { 326 ret = rte_flow_classifier_query( 327 cls_app->cls, 328 bufs, nb_rx, rules[i], 329 &classify_stats); 330 if (ret) 331 printf( 332 "rule [%d] query failed ret [%d]\n\n", 333 i, ret); 334 else { 335 printf( 336 "rule[%d] count=%"PRIu64"\n", 337 i, ntuple_stats.counter1); 338 339 printf("proto = %d\n", 340 ntuple_stats.ipv4_5tuple.proto); 341 } 342 } 343 } 344 345 /* Send burst of TX packets, to second port of pair. */ 346 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0, 347 bufs, nb_rx); 348 349 /* Free any unsent packets. */ 350 if (unlikely(nb_tx < nb_rx)) { 351 uint16_t buf; 352 353 for (buf = nb_tx; buf < nb_rx; buf++) 354 rte_pktmbuf_free(bufs[buf]); 355 } 356 } 357 } 358 /* >8 End of main loop. */ 359 } 360 /* >8 End of lcore main. */ 361 362 /* 363 * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt. 364 * Expected format: 365 * <src_ipv4_addr>'/'<masklen> <space> \ 366 * <dst_ipv4_addr>'/'<masklen> <space> \ 367 * <src_port> <space> ":" <src_port_mask> <space> \ 368 * <dst_port> <space> ":" <dst_port_mask> <space> \ 369 * <proto>'/'<proto_mask> <space> \ 370 * <priority> 371 */ 372 373 static int 374 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim, 375 char dlm) 376 { 377 unsigned long val; 378 char *end; 379 380 errno = 0; 381 val = strtoul(*in, &end, base); 382 if (errno != 0 || end[0] != dlm || val > lim) 383 return -EINVAL; 384 *fd = (uint32_t)val; 385 *in = end + 1; 386 return 0; 387 } 388 389 static int 390 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len) 391 { 392 uint32_t a, b, c, d, m; 393 394 if (get_cb_field(&in, &a, 0, UINT8_MAX, '.')) 395 return -EINVAL; 396 if (get_cb_field(&in, &b, 0, UINT8_MAX, '.')) 397 return -EINVAL; 398 if (get_cb_field(&in, &c, 0, UINT8_MAX, '.')) 399 return -EINVAL; 400 if (get_cb_field(&in, &d, 0, UINT8_MAX, '/')) 401 return -EINVAL; 402 if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0)) 403 return -EINVAL; 404 405 addr[0] = RTE_IPV4(a, b, c, d); 406 mask_len[0] = m; 407 return 0; 408 } 409 410 static int 411 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter) 412 { 413 int i, ret; 414 char *s, *sp, *in[CB_FLD_NUM]; 415 static const char *dlm = " \t\n"; 416 int dim = CB_FLD_NUM; 417 uint32_t temp; 418 419 s = str; 420 for (i = 0; i != dim; i++, s = NULL) { 421 in[i] = strtok_r(s, dlm, &sp); 422 if (in[i] == NULL) 423 return -EINVAL; 424 } 425 426 ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR], 427 &ntuple_filter->src_ip, 428 &ntuple_filter->src_ip_mask); 429 if (ret != 0) { 430 flow_classify_log("failed to read source address/mask: %s\n", 431 in[CB_FLD_SRC_ADDR]); 432 return ret; 433 } 434 435 ret = parse_ipv4_net(in[CB_FLD_DST_ADDR], 436 &ntuple_filter->dst_ip, 437 &ntuple_filter->dst_ip_mask); 438 if (ret != 0) { 439 flow_classify_log("failed to read source address/mask: %s\n", 440 in[CB_FLD_DST_ADDR]); 441 return ret; 442 } 443 444 if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0)) 445 return -EINVAL; 446 ntuple_filter->src_port = (uint16_t)temp; 447 448 if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim, 449 sizeof(cb_port_delim)) != 0) 450 return -EINVAL; 451 452 if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 453 return -EINVAL; 454 ntuple_filter->src_port_mask = (uint16_t)temp; 455 456 if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0)) 457 return -EINVAL; 458 ntuple_filter->dst_port = (uint16_t)temp; 459 460 if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim, 461 sizeof(cb_port_delim)) != 0) 462 return -EINVAL; 463 464 if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 465 return -EINVAL; 466 ntuple_filter->dst_port_mask = (uint16_t)temp; 467 468 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/')) 469 return -EINVAL; 470 ntuple_filter->proto = (uint8_t)temp; 471 472 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0)) 473 return -EINVAL; 474 ntuple_filter->proto_mask = (uint8_t)temp; 475 476 if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0)) 477 return -EINVAL; 478 ntuple_filter->priority = (uint16_t)temp; 479 if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY) 480 ret = -EINVAL; 481 482 return ret; 483 } 484 485 /* Bypass comment and empty lines */ 486 static inline int 487 is_bypass_line(char *buff) 488 { 489 int i = 0; 490 491 /* comment line */ 492 if (buff[0] == COMMENT_LEAD_CHAR) 493 return 1; 494 /* empty line */ 495 while (buff[i] != '\0') { 496 if (!isspace(buff[i])) 497 return 0; 498 i++; 499 } 500 return 1; 501 } 502 503 static uint32_t 504 convert_depth_to_bitmask(uint32_t depth_val) 505 { 506 uint32_t bitmask = 0; 507 int i, j; 508 509 for (i = depth_val, j = 0; i > 0; i--, j++) 510 bitmask |= (1 << (31 - j)); 511 return bitmask; 512 } 513 514 static int 515 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter, 516 struct flow_classifier *cls_app) 517 { 518 int ret = -1; 519 int key_found; 520 struct rte_flow_error error; 521 struct rte_flow_item_ipv4 ipv4_spec; 522 struct rte_flow_item_ipv4 ipv4_mask; 523 struct rte_flow_item ipv4_udp_item; 524 struct rte_flow_item ipv4_tcp_item; 525 struct rte_flow_item ipv4_sctp_item; 526 struct rte_flow_item_udp udp_spec; 527 struct rte_flow_item_udp udp_mask; 528 struct rte_flow_item udp_item; 529 struct rte_flow_item_tcp tcp_spec; 530 struct rte_flow_item_tcp tcp_mask; 531 struct rte_flow_item tcp_item; 532 struct rte_flow_item_sctp sctp_spec; 533 struct rte_flow_item_sctp sctp_mask; 534 struct rte_flow_item sctp_item; 535 struct rte_flow_item pattern_ipv4_5tuple[4]; 536 struct rte_flow_classify_rule *rule; 537 uint8_t ipv4_proto; 538 539 if (num_classify_rules >= MAX_NUM_CLASSIFY) { 540 printf( 541 "\nINFO: classify rule capacity %d reached\n", 542 num_classify_rules); 543 return ret; 544 } 545 546 /* set up parameters for validate and add */ 547 memset(&ipv4_spec, 0, sizeof(ipv4_spec)); 548 ipv4_spec.hdr.next_proto_id = ntuple_filter->proto; 549 ipv4_spec.hdr.src_addr = ntuple_filter->src_ip; 550 ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip; 551 ipv4_proto = ipv4_spec.hdr.next_proto_id; 552 553 memset(&ipv4_mask, 0, sizeof(ipv4_mask)); 554 ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask; 555 ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask; 556 ipv4_mask.hdr.src_addr = 557 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr); 558 ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask; 559 ipv4_mask.hdr.dst_addr = 560 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr); 561 562 switch (ipv4_proto) { 563 case IPPROTO_UDP: 564 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 565 ipv4_udp_item.spec = &ipv4_spec; 566 ipv4_udp_item.mask = &ipv4_mask; 567 ipv4_udp_item.last = NULL; 568 569 udp_spec.hdr.src_port = ntuple_filter->src_port; 570 udp_spec.hdr.dst_port = ntuple_filter->dst_port; 571 udp_spec.hdr.dgram_len = 0; 572 udp_spec.hdr.dgram_cksum = 0; 573 574 udp_mask.hdr.src_port = ntuple_filter->src_port_mask; 575 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 576 udp_mask.hdr.dgram_len = 0; 577 udp_mask.hdr.dgram_cksum = 0; 578 579 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP; 580 udp_item.spec = &udp_spec; 581 udp_item.mask = &udp_mask; 582 udp_item.last = NULL; 583 584 attr.priority = ntuple_filter->priority; 585 pattern_ipv4_5tuple[1] = ipv4_udp_item; 586 pattern_ipv4_5tuple[2] = udp_item; 587 break; 588 case IPPROTO_TCP: 589 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 590 ipv4_tcp_item.spec = &ipv4_spec; 591 ipv4_tcp_item.mask = &ipv4_mask; 592 ipv4_tcp_item.last = NULL; 593 594 memset(&tcp_spec, 0, sizeof(tcp_spec)); 595 tcp_spec.hdr.src_port = ntuple_filter->src_port; 596 tcp_spec.hdr.dst_port = ntuple_filter->dst_port; 597 598 memset(&tcp_mask, 0, sizeof(tcp_mask)); 599 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask; 600 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 601 602 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP; 603 tcp_item.spec = &tcp_spec; 604 tcp_item.mask = &tcp_mask; 605 tcp_item.last = NULL; 606 607 attr.priority = ntuple_filter->priority; 608 pattern_ipv4_5tuple[1] = ipv4_tcp_item; 609 pattern_ipv4_5tuple[2] = tcp_item; 610 break; 611 case IPPROTO_SCTP: 612 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 613 ipv4_sctp_item.spec = &ipv4_spec; 614 ipv4_sctp_item.mask = &ipv4_mask; 615 ipv4_sctp_item.last = NULL; 616 617 sctp_spec.hdr.src_port = ntuple_filter->src_port; 618 sctp_spec.hdr.dst_port = ntuple_filter->dst_port; 619 sctp_spec.hdr.cksum = 0; 620 sctp_spec.hdr.tag = 0; 621 622 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask; 623 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 624 sctp_mask.hdr.cksum = 0; 625 sctp_mask.hdr.tag = 0; 626 627 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP; 628 sctp_item.spec = &sctp_spec; 629 sctp_item.mask = &sctp_mask; 630 sctp_item.last = NULL; 631 632 attr.priority = ntuple_filter->priority; 633 pattern_ipv4_5tuple[1] = ipv4_sctp_item; 634 pattern_ipv4_5tuple[2] = sctp_item; 635 break; 636 default: 637 return ret; 638 } 639 640 attr.ingress = 1; 641 pattern_ipv4_5tuple[0] = eth_item; 642 pattern_ipv4_5tuple[3] = end_item; 643 actions[0] = count_action; 644 actions[1] = end_action; 645 646 /* Validate and add rule */ 647 ret = rte_flow_classify_validate(cls_app->cls, &attr, 648 pattern_ipv4_5tuple, actions, &error); 649 if (ret) { 650 printf("table entry validate failed ipv4_proto = %u\n", 651 ipv4_proto); 652 return ret; 653 } 654 655 rule = rte_flow_classify_table_entry_add( 656 cls_app->cls, &attr, pattern_ipv4_5tuple, 657 actions, &key_found, &error); 658 if (rule == NULL) { 659 printf("table entry add failed ipv4_proto = %u\n", 660 ipv4_proto); 661 ret = -1; 662 return ret; 663 } 664 665 rules[num_classify_rules] = rule; 666 num_classify_rules++; 667 return 0; 668 } 669 670 /* Reads file and calls the add_classify_rule function. 8< */ 671 static int 672 add_rules(const char *rule_path, struct flow_classifier *cls_app) 673 { 674 FILE *fh; 675 char buff[LINE_MAX]; 676 unsigned int i = 0; 677 unsigned int total_num = 0; 678 struct rte_eth_ntuple_filter ntuple_filter; 679 int ret; 680 681 fh = fopen(rule_path, "rb"); 682 if (fh == NULL) 683 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__, 684 rule_path); 685 686 ret = fseek(fh, 0, SEEK_SET); 687 if (ret) 688 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__, 689 ret); 690 691 i = 0; 692 while (fgets(buff, LINE_MAX, fh) != NULL) { 693 i++; 694 695 if (is_bypass_line(buff)) 696 continue; 697 698 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) { 699 printf("\nINFO: classify rule capacity %d reached\n", 700 total_num); 701 break; 702 } 703 704 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0) 705 rte_exit(EXIT_FAILURE, 706 "%s Line %u: parse rules error\n", 707 rule_path, i); 708 709 if (add_classify_rule(&ntuple_filter, cls_app) != 0) 710 rte_exit(EXIT_FAILURE, "add rule error\n"); 711 712 total_num++; 713 } 714 715 fclose(fh); 716 return 0; 717 } 718 /* >8 End of add_rules. */ 719 720 /* display usage */ 721 static void 722 print_usage(const char *prgname) 723 { 724 printf("%s usage:\n", prgname); 725 printf("[EAL options] -- --"OPTION_RULE_IPV4"=FILE: "); 726 printf("specify the ipv4 rules file.\n"); 727 printf("Each rule occupies one line in the file.\n"); 728 } 729 730 /* Parse the argument given in the command line of the application */ 731 static int 732 parse_args(int argc, char **argv) 733 { 734 int opt, ret; 735 char **argvopt; 736 int option_index; 737 char *prgname = argv[0]; 738 static struct option lgopts[] = { 739 {OPTION_RULE_IPV4, 1, 0, 0}, 740 {NULL, 0, 0, 0} 741 }; 742 743 argvopt = argv; 744 745 while ((opt = getopt_long(argc, argvopt, "", 746 lgopts, &option_index)) != EOF) { 747 748 switch (opt) { 749 /* long options */ 750 case 0: 751 if (!strncmp(lgopts[option_index].name, 752 OPTION_RULE_IPV4, 753 sizeof(OPTION_RULE_IPV4))) 754 parm_config.rule_ipv4_name = optarg; 755 break; 756 default: 757 print_usage(prgname); 758 return -1; 759 } 760 } 761 762 if (optind >= 0) 763 argv[optind-1] = prgname; 764 765 ret = optind-1; 766 optind = 1; /* reset getopt lib */ 767 return ret; 768 } 769 770 /* 771 * The main function, which does initialization and calls the lcore_main 772 * function. 773 */ 774 int 775 main(int argc, char *argv[]) 776 { 777 struct rte_mempool *mbuf_pool; 778 uint16_t nb_ports; 779 uint16_t portid; 780 int ret; 781 int socket_id; 782 struct rte_table_acl_params table_acl_params; 783 struct rte_flow_classify_table_params cls_table_params; 784 struct flow_classifier *cls_app; 785 struct rte_flow_classifier_params cls_params; 786 uint32_t size; 787 788 /* Initialize the Environment Abstraction Layer (EAL). 8< */ 789 ret = rte_eal_init(argc, argv); 790 if (ret < 0) 791 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); 792 /* >8 End of initialization of EAL. */ 793 794 argc -= ret; 795 argv += ret; 796 797 /* Parse application arguments (after the EAL ones). 8< */ 798 ret = parse_args(argc, argv); 799 if (ret < 0) 800 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n"); 801 /* >8 End of parse application arguments. */ 802 803 /* Check that there is an even number of ports to send/receive on. */ 804 nb_ports = rte_eth_dev_count_avail(); 805 if (nb_ports < 2 || (nb_ports & 1)) 806 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n"); 807 808 /* Creates a new mempool in memory to hold the mbufs. 8< */ 809 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, 810 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 811 /* >8 End of creation of new mempool in memory. */ 812 813 if (mbuf_pool == NULL) 814 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 815 816 /* Initialize all ports. 8< */ 817 RTE_ETH_FOREACH_DEV(portid) 818 if (port_init(portid, mbuf_pool) != 0) 819 rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n", 820 portid); 821 /* >8 End of initialization of all ports. */ 822 823 if (rte_lcore_count() > 1) 824 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); 825 826 socket_id = rte_eth_dev_socket_id(0); 827 828 /* Memory allocation. 8< */ 829 size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl)); 830 cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); 831 if (cls_app == NULL) 832 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n"); 833 834 cls_params.name = "flow_classifier"; 835 cls_params.socket_id = socket_id; 836 837 cls_app->cls = rte_flow_classifier_create(&cls_params); 838 if (cls_app->cls == NULL) { 839 rte_free(cls_app); 840 rte_exit(EXIT_FAILURE, "Cannot create classifier\n"); 841 } 842 843 /* initialise ACL table params */ 844 table_acl_params.name = "table_acl_ipv4_5tuple"; 845 table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; 846 table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); 847 memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); 848 849 /* initialise table create params */ 850 cls_table_params.ops = &rte_table_acl_ops; 851 cls_table_params.arg_create = &table_acl_params; 852 cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; 853 854 ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params); 855 if (ret) { 856 rte_flow_classifier_free(cls_app->cls); 857 rte_free(cls_app); 858 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n"); 859 } 860 /* >8 End of initialization of table create params. */ 861 862 /* read file of IPv4 5 tuple rules and initialize parameters 863 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add 864 * API's. 865 */ 866 867 /* Read file of IPv4 tuple rules. 8< */ 868 if (add_rules(parm_config.rule_ipv4_name, cls_app)) { 869 rte_flow_classifier_free(cls_app->cls); 870 rte_free(cls_app); 871 rte_exit(EXIT_FAILURE, "Failed to add rules\n"); 872 } 873 /* >8 End of reading file of IPv4 5 tuple rules. */ 874 875 /* Call lcore_main on the main core only. */ 876 lcore_main(cls_app); 877 878 /* clean up the EAL */ 879 rte_eal_cleanup(); 880 881 return 0; 882 } 883