1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <stdint.h> 6 #include <inttypes.h> 7 #include <getopt.h> 8 9 #include <rte_eal.h> 10 #include <rte_ethdev.h> 11 #include <rte_cycles.h> 12 #include <rte_lcore.h> 13 #include <rte_mbuf.h> 14 #include <rte_flow.h> 15 #include <rte_flow_classify.h> 16 #include <rte_table_acl.h> 17 18 #define RX_RING_SIZE 1024 19 #define TX_RING_SIZE 1024 20 21 #define NUM_MBUFS 8191 22 #define MBUF_CACHE_SIZE 250 23 #define BURST_SIZE 32 24 25 #define MAX_NUM_CLASSIFY 30 26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91 27 #define FLOW_CLASSIFY_MAX_PRIORITY 8 28 #define FLOW_CLASSIFIER_NAME_SIZE 64 29 30 #define COMMENT_LEAD_CHAR ('#') 31 #define OPTION_RULE_IPV4 "rule_ipv4" 32 #define RTE_LOGTYPE_FLOW_CLASSIFY RTE_LOGTYPE_USER3 33 #define flow_classify_log(format, ...) \ 34 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__) 35 36 #define uint32_t_to_char(ip, a, b, c, d) do {\ 37 *a = (unsigned char)(ip >> 24 & 0xff);\ 38 *b = (unsigned char)(ip >> 16 & 0xff);\ 39 *c = (unsigned char)(ip >> 8 & 0xff);\ 40 *d = (unsigned char)(ip & 0xff);\ 41 } while (0) 42 43 enum { 44 CB_FLD_SRC_ADDR, 45 CB_FLD_DST_ADDR, 46 CB_FLD_SRC_PORT, 47 CB_FLD_SRC_PORT_DLM, 48 CB_FLD_SRC_PORT_MASK, 49 CB_FLD_DST_PORT, 50 CB_FLD_DST_PORT_DLM, 51 CB_FLD_DST_PORT_MASK, 52 CB_FLD_PROTO, 53 CB_FLD_PRIORITY, 54 CB_FLD_NUM, 55 }; 56 57 static struct{ 58 const char *rule_ipv4_name; 59 } parm_config; 60 const char cb_port_delim[] = ":"; 61 62 /* Ethernet ports configured with default settings using struct. 8< */ 63 static const struct rte_eth_conf port_conf_default = { 64 .rxmode = { 65 .max_rx_pkt_len = RTE_ETHER_MAX_LEN, 66 }, 67 }; 68 /* >8 End of configuration of Ethernet ports. */ 69 70 /* Creation of flow classifier object. 8< */ 71 struct flow_classifier { 72 struct rte_flow_classifier *cls; 73 }; 74 75 struct flow_classifier_acl { 76 struct flow_classifier cls; 77 } __rte_cache_aligned; 78 /* >8 End of creation of flow classifier object. */ 79 80 /* Creation of ACL table during initialization of application. 8< */ 81 82 /* ACL field definitions for IPv4 5 tuple rule */ 83 enum { 84 PROTO_FIELD_IPV4, 85 SRC_FIELD_IPV4, 86 DST_FIELD_IPV4, 87 SRCP_FIELD_IPV4, 88 DSTP_FIELD_IPV4, 89 NUM_FIELDS_IPV4 90 }; 91 92 enum { 93 PROTO_INPUT_IPV4, 94 SRC_INPUT_IPV4, 95 DST_INPUT_IPV4, 96 SRCP_DESTP_INPUT_IPV4 97 }; 98 99 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { 100 /* first input field - always one byte long. */ 101 { 102 .type = RTE_ACL_FIELD_TYPE_BITMASK, 103 .size = sizeof(uint8_t), 104 .field_index = PROTO_FIELD_IPV4, 105 .input_index = PROTO_INPUT_IPV4, 106 .offset = sizeof(struct rte_ether_hdr) + 107 offsetof(struct rte_ipv4_hdr, next_proto_id), 108 }, 109 /* next input field (IPv4 source address) - 4 consecutive bytes. */ 110 { 111 /* rte_flow uses a bit mask for IPv4 addresses */ 112 .type = RTE_ACL_FIELD_TYPE_BITMASK, 113 .size = sizeof(uint32_t), 114 .field_index = SRC_FIELD_IPV4, 115 .input_index = SRC_INPUT_IPV4, 116 .offset = sizeof(struct rte_ether_hdr) + 117 offsetof(struct rte_ipv4_hdr, src_addr), 118 }, 119 /* next input field (IPv4 destination address) - 4 consecutive bytes. */ 120 { 121 /* rte_flow uses a bit mask for IPv4 addresses */ 122 .type = RTE_ACL_FIELD_TYPE_BITMASK, 123 .size = sizeof(uint32_t), 124 .field_index = DST_FIELD_IPV4, 125 .input_index = DST_INPUT_IPV4, 126 .offset = sizeof(struct rte_ether_hdr) + 127 offsetof(struct rte_ipv4_hdr, dst_addr), 128 }, 129 /* 130 * Next 2 fields (src & dst ports) form 4 consecutive bytes. 131 * They share the same input index. 132 */ 133 { 134 /* rte_flow uses a bit mask for protocol ports */ 135 .type = RTE_ACL_FIELD_TYPE_BITMASK, 136 .size = sizeof(uint16_t), 137 .field_index = SRCP_FIELD_IPV4, 138 .input_index = SRCP_DESTP_INPUT_IPV4, 139 .offset = sizeof(struct rte_ether_hdr) + 140 sizeof(struct rte_ipv4_hdr) + 141 offsetof(struct rte_tcp_hdr, src_port), 142 }, 143 { 144 /* rte_flow uses a bit mask for protocol ports */ 145 .type = RTE_ACL_FIELD_TYPE_BITMASK, 146 .size = sizeof(uint16_t), 147 .field_index = DSTP_FIELD_IPV4, 148 .input_index = SRCP_DESTP_INPUT_IPV4, 149 .offset = sizeof(struct rte_ether_hdr) + 150 sizeof(struct rte_ipv4_hdr) + 151 offsetof(struct rte_tcp_hdr, dst_port), 152 }, 153 }; 154 /* >8 End of creation of ACL table. */ 155 156 /* Flow classify data. 8< */ 157 static int num_classify_rules; 158 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY]; 159 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats; 160 static struct rte_flow_classify_stats classify_stats = { 161 .stats = (void **)&ntuple_stats 162 }; 163 /* >8 End of flow classify data. */ 164 165 /* parameters for rte_flow_classify_validate and 166 * rte_flow_classify_table_entry_add functions 167 */ 168 169 static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH, 170 0, 0, 0 }; 171 static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END, 172 0, 0, 0 }; 173 174 /* sample actions: 175 * "actions count / end" 176 */ 177 struct rte_flow_query_count count = { 178 .reset = 1, 179 .hits_set = 1, 180 .bytes_set = 1, 181 .hits = 0, 182 .bytes = 0, 183 }; 184 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, 185 &count}; 186 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; 187 static struct rte_flow_action actions[2]; 188 189 /* sample attributes */ 190 static struct rte_flow_attr attr; 191 192 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */ 193 194 /* 195 * Initializes a given port using global settings and with the RX buffers 196 * coming from the mbuf_pool passed as a parameter. 197 */ 198 199 /* Initializing port using global settings. 8< */ 200 static inline int 201 port_init(uint8_t port, struct rte_mempool *mbuf_pool) 202 { 203 struct rte_eth_conf port_conf = port_conf_default; 204 struct rte_ether_addr addr; 205 const uint16_t rx_rings = 1, tx_rings = 1; 206 int retval; 207 uint16_t q; 208 struct rte_eth_dev_info dev_info; 209 struct rte_eth_txconf txconf; 210 211 if (!rte_eth_dev_is_valid_port(port)) 212 return -1; 213 214 retval = rte_eth_dev_info_get(port, &dev_info); 215 if (retval != 0) { 216 printf("Error during getting device (port %u) info: %s\n", 217 port, strerror(-retval)); 218 return retval; 219 } 220 221 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 222 port_conf.txmode.offloads |= 223 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 224 225 /* Configure the Ethernet device. */ 226 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); 227 if (retval != 0) 228 return retval; 229 230 /* Allocate and set up 1 RX queue per Ethernet port. */ 231 for (q = 0; q < rx_rings; q++) { 232 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE, 233 rte_eth_dev_socket_id(port), NULL, mbuf_pool); 234 if (retval < 0) 235 return retval; 236 } 237 238 txconf = dev_info.default_txconf; 239 txconf.offloads = port_conf.txmode.offloads; 240 /* Allocate and set up 1 TX queue per Ethernet port. */ 241 for (q = 0; q < tx_rings; q++) { 242 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE, 243 rte_eth_dev_socket_id(port), &txconf); 244 if (retval < 0) 245 return retval; 246 } 247 248 /* Start the Ethernet port. 8< */ 249 retval = rte_eth_dev_start(port); 250 /* >8 End of starting the Ethernet port. */ 251 if (retval < 0) 252 return retval; 253 254 /* Display the port MAC address. */ 255 retval = rte_eth_macaddr_get(port, &addr); 256 if (retval != 0) 257 return retval; 258 259 printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8 260 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n", 261 port, 262 addr.addr_bytes[0], addr.addr_bytes[1], 263 addr.addr_bytes[2], addr.addr_bytes[3], 264 addr.addr_bytes[4], addr.addr_bytes[5]); 265 266 /* Enable RX in promiscuous mode for the Ethernet device. */ 267 retval = rte_eth_promiscuous_enable(port); 268 if (retval != 0) 269 return retval; 270 271 return 0; 272 } 273 /* >8 End of initializing a given port. */ 274 275 /* 276 * The lcore main. This is the main thread that does the work, reading from 277 * an input port classifying the packets and writing to an output port. 278 */ 279 280 /* Classifying the packets. 8< */ 281 static __rte_noreturn void 282 lcore_main(struct flow_classifier *cls_app) 283 { 284 uint16_t port; 285 int ret; 286 int i = 0; 287 288 ret = rte_flow_classify_table_entry_delete(cls_app->cls, 289 rules[7]); 290 if (ret) 291 printf("table_entry_delete failed [7] %d\n\n", ret); 292 else 293 printf("table_entry_delete succeeded [7]\n\n"); 294 295 /* 296 * Check that the port is on the same NUMA node as the polling thread 297 * for best performance. 298 */ 299 RTE_ETH_FOREACH_DEV(port) 300 if (rte_eth_dev_socket_id(port) >= 0 && 301 rte_eth_dev_socket_id(port) != (int)rte_socket_id()) { 302 printf("\n\n"); 303 printf("WARNING: port %u is on remote NUMA node\n", 304 port); 305 printf("to polling thread.\n"); 306 printf("Performance will not be optimal.\n"); 307 } 308 printf("\nCore %u forwarding packets. ", rte_lcore_id()); 309 printf("[Ctrl+C to quit]\n"); 310 311 /* Run until the application is quit or killed. 8< */ 312 for (;;) { 313 /* 314 * Receive packets on a port, classify them and forward them 315 * on the paired port. 316 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc. 317 */ 318 RTE_ETH_FOREACH_DEV(port) { 319 /* Get burst of RX packets, from first port of pair. */ 320 struct rte_mbuf *bufs[BURST_SIZE]; 321 const uint16_t nb_rx = rte_eth_rx_burst(port, 0, 322 bufs, BURST_SIZE); 323 324 if (unlikely(nb_rx == 0)) 325 continue; 326 327 for (i = 0; i < MAX_NUM_CLASSIFY; i++) { 328 if (rules[i]) { 329 ret = rte_flow_classifier_query( 330 cls_app->cls, 331 bufs, nb_rx, rules[i], 332 &classify_stats); 333 if (ret) 334 printf( 335 "rule [%d] query failed ret [%d]\n\n", 336 i, ret); 337 else { 338 printf( 339 "rule[%d] count=%"PRIu64"\n", 340 i, ntuple_stats.counter1); 341 342 printf("proto = %d\n", 343 ntuple_stats.ipv4_5tuple.proto); 344 } 345 } 346 } 347 348 /* Send burst of TX packets, to second port of pair. */ 349 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0, 350 bufs, nb_rx); 351 352 /* Free any unsent packets. */ 353 if (unlikely(nb_tx < nb_rx)) { 354 uint16_t buf; 355 356 for (buf = nb_tx; buf < nb_rx; buf++) 357 rte_pktmbuf_free(bufs[buf]); 358 } 359 } 360 } 361 /* >8 End of main loop. */ 362 } 363 /* >8 End of lcore main. */ 364 365 /* 366 * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt. 367 * Expected format: 368 * <src_ipv4_addr>'/'<masklen> <space> \ 369 * <dst_ipv4_addr>'/'<masklen> <space> \ 370 * <src_port> <space> ":" <src_port_mask> <space> \ 371 * <dst_port> <space> ":" <dst_port_mask> <space> \ 372 * <proto>'/'<proto_mask> <space> \ 373 * <priority> 374 */ 375 376 static int 377 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim, 378 char dlm) 379 { 380 unsigned long val; 381 char *end; 382 383 errno = 0; 384 val = strtoul(*in, &end, base); 385 if (errno != 0 || end[0] != dlm || val > lim) 386 return -EINVAL; 387 *fd = (uint32_t)val; 388 *in = end + 1; 389 return 0; 390 } 391 392 static int 393 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len) 394 { 395 uint32_t a, b, c, d, m; 396 397 if (get_cb_field(&in, &a, 0, UINT8_MAX, '.')) 398 return -EINVAL; 399 if (get_cb_field(&in, &b, 0, UINT8_MAX, '.')) 400 return -EINVAL; 401 if (get_cb_field(&in, &c, 0, UINT8_MAX, '.')) 402 return -EINVAL; 403 if (get_cb_field(&in, &d, 0, UINT8_MAX, '/')) 404 return -EINVAL; 405 if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0)) 406 return -EINVAL; 407 408 addr[0] = RTE_IPV4(a, b, c, d); 409 mask_len[0] = m; 410 return 0; 411 } 412 413 static int 414 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter) 415 { 416 int i, ret; 417 char *s, *sp, *in[CB_FLD_NUM]; 418 static const char *dlm = " \t\n"; 419 int dim = CB_FLD_NUM; 420 uint32_t temp; 421 422 s = str; 423 for (i = 0; i != dim; i++, s = NULL) { 424 in[i] = strtok_r(s, dlm, &sp); 425 if (in[i] == NULL) 426 return -EINVAL; 427 } 428 429 ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR], 430 &ntuple_filter->src_ip, 431 &ntuple_filter->src_ip_mask); 432 if (ret != 0) { 433 flow_classify_log("failed to read source address/mask: %s\n", 434 in[CB_FLD_SRC_ADDR]); 435 return ret; 436 } 437 438 ret = parse_ipv4_net(in[CB_FLD_DST_ADDR], 439 &ntuple_filter->dst_ip, 440 &ntuple_filter->dst_ip_mask); 441 if (ret != 0) { 442 flow_classify_log("failed to read source address/mask: %s\n", 443 in[CB_FLD_DST_ADDR]); 444 return ret; 445 } 446 447 if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0)) 448 return -EINVAL; 449 ntuple_filter->src_port = (uint16_t)temp; 450 451 if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim, 452 sizeof(cb_port_delim)) != 0) 453 return -EINVAL; 454 455 if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 456 return -EINVAL; 457 ntuple_filter->src_port_mask = (uint16_t)temp; 458 459 if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0)) 460 return -EINVAL; 461 ntuple_filter->dst_port = (uint16_t)temp; 462 463 if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim, 464 sizeof(cb_port_delim)) != 0) 465 return -EINVAL; 466 467 if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 468 return -EINVAL; 469 ntuple_filter->dst_port_mask = (uint16_t)temp; 470 471 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/')) 472 return -EINVAL; 473 ntuple_filter->proto = (uint8_t)temp; 474 475 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0)) 476 return -EINVAL; 477 ntuple_filter->proto_mask = (uint8_t)temp; 478 479 if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0)) 480 return -EINVAL; 481 ntuple_filter->priority = (uint16_t)temp; 482 if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY) 483 ret = -EINVAL; 484 485 return ret; 486 } 487 488 /* Bypass comment and empty lines */ 489 static inline int 490 is_bypass_line(char *buff) 491 { 492 int i = 0; 493 494 /* comment line */ 495 if (buff[0] == COMMENT_LEAD_CHAR) 496 return 1; 497 /* empty line */ 498 while (buff[i] != '\0') { 499 if (!isspace(buff[i])) 500 return 0; 501 i++; 502 } 503 return 1; 504 } 505 506 static uint32_t 507 convert_depth_to_bitmask(uint32_t depth_val) 508 { 509 uint32_t bitmask = 0; 510 int i, j; 511 512 for (i = depth_val, j = 0; i > 0; i--, j++) 513 bitmask |= (1 << (31 - j)); 514 return bitmask; 515 } 516 517 static int 518 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter, 519 struct flow_classifier *cls_app) 520 { 521 int ret = -1; 522 int key_found; 523 struct rte_flow_error error; 524 struct rte_flow_item_ipv4 ipv4_spec; 525 struct rte_flow_item_ipv4 ipv4_mask; 526 struct rte_flow_item ipv4_udp_item; 527 struct rte_flow_item ipv4_tcp_item; 528 struct rte_flow_item ipv4_sctp_item; 529 struct rte_flow_item_udp udp_spec; 530 struct rte_flow_item_udp udp_mask; 531 struct rte_flow_item udp_item; 532 struct rte_flow_item_tcp tcp_spec; 533 struct rte_flow_item_tcp tcp_mask; 534 struct rte_flow_item tcp_item; 535 struct rte_flow_item_sctp sctp_spec; 536 struct rte_flow_item_sctp sctp_mask; 537 struct rte_flow_item sctp_item; 538 struct rte_flow_item pattern_ipv4_5tuple[4]; 539 struct rte_flow_classify_rule *rule; 540 uint8_t ipv4_proto; 541 542 if (num_classify_rules >= MAX_NUM_CLASSIFY) { 543 printf( 544 "\nINFO: classify rule capacity %d reached\n", 545 num_classify_rules); 546 return ret; 547 } 548 549 /* set up parameters for validate and add */ 550 memset(&ipv4_spec, 0, sizeof(ipv4_spec)); 551 ipv4_spec.hdr.next_proto_id = ntuple_filter->proto; 552 ipv4_spec.hdr.src_addr = ntuple_filter->src_ip; 553 ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip; 554 ipv4_proto = ipv4_spec.hdr.next_proto_id; 555 556 memset(&ipv4_mask, 0, sizeof(ipv4_mask)); 557 ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask; 558 ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask; 559 ipv4_mask.hdr.src_addr = 560 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr); 561 ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask; 562 ipv4_mask.hdr.dst_addr = 563 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr); 564 565 switch (ipv4_proto) { 566 case IPPROTO_UDP: 567 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 568 ipv4_udp_item.spec = &ipv4_spec; 569 ipv4_udp_item.mask = &ipv4_mask; 570 ipv4_udp_item.last = NULL; 571 572 udp_spec.hdr.src_port = ntuple_filter->src_port; 573 udp_spec.hdr.dst_port = ntuple_filter->dst_port; 574 udp_spec.hdr.dgram_len = 0; 575 udp_spec.hdr.dgram_cksum = 0; 576 577 udp_mask.hdr.src_port = ntuple_filter->src_port_mask; 578 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 579 udp_mask.hdr.dgram_len = 0; 580 udp_mask.hdr.dgram_cksum = 0; 581 582 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP; 583 udp_item.spec = &udp_spec; 584 udp_item.mask = &udp_mask; 585 udp_item.last = NULL; 586 587 attr.priority = ntuple_filter->priority; 588 pattern_ipv4_5tuple[1] = ipv4_udp_item; 589 pattern_ipv4_5tuple[2] = udp_item; 590 break; 591 case IPPROTO_TCP: 592 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 593 ipv4_tcp_item.spec = &ipv4_spec; 594 ipv4_tcp_item.mask = &ipv4_mask; 595 ipv4_tcp_item.last = NULL; 596 597 memset(&tcp_spec, 0, sizeof(tcp_spec)); 598 tcp_spec.hdr.src_port = ntuple_filter->src_port; 599 tcp_spec.hdr.dst_port = ntuple_filter->dst_port; 600 601 memset(&tcp_mask, 0, sizeof(tcp_mask)); 602 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask; 603 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 604 605 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP; 606 tcp_item.spec = &tcp_spec; 607 tcp_item.mask = &tcp_mask; 608 tcp_item.last = NULL; 609 610 attr.priority = ntuple_filter->priority; 611 pattern_ipv4_5tuple[1] = ipv4_tcp_item; 612 pattern_ipv4_5tuple[2] = tcp_item; 613 break; 614 case IPPROTO_SCTP: 615 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 616 ipv4_sctp_item.spec = &ipv4_spec; 617 ipv4_sctp_item.mask = &ipv4_mask; 618 ipv4_sctp_item.last = NULL; 619 620 sctp_spec.hdr.src_port = ntuple_filter->src_port; 621 sctp_spec.hdr.dst_port = ntuple_filter->dst_port; 622 sctp_spec.hdr.cksum = 0; 623 sctp_spec.hdr.tag = 0; 624 625 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask; 626 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 627 sctp_mask.hdr.cksum = 0; 628 sctp_mask.hdr.tag = 0; 629 630 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP; 631 sctp_item.spec = &sctp_spec; 632 sctp_item.mask = &sctp_mask; 633 sctp_item.last = NULL; 634 635 attr.priority = ntuple_filter->priority; 636 pattern_ipv4_5tuple[1] = ipv4_sctp_item; 637 pattern_ipv4_5tuple[2] = sctp_item; 638 break; 639 default: 640 return ret; 641 } 642 643 attr.ingress = 1; 644 pattern_ipv4_5tuple[0] = eth_item; 645 pattern_ipv4_5tuple[3] = end_item; 646 actions[0] = count_action; 647 actions[1] = end_action; 648 649 /* Validate and add rule */ 650 ret = rte_flow_classify_validate(cls_app->cls, &attr, 651 pattern_ipv4_5tuple, actions, &error); 652 if (ret) { 653 printf("table entry validate failed ipv4_proto = %u\n", 654 ipv4_proto); 655 return ret; 656 } 657 658 rule = rte_flow_classify_table_entry_add( 659 cls_app->cls, &attr, pattern_ipv4_5tuple, 660 actions, &key_found, &error); 661 if (rule == NULL) { 662 printf("table entry add failed ipv4_proto = %u\n", 663 ipv4_proto); 664 ret = -1; 665 return ret; 666 } 667 668 rules[num_classify_rules] = rule; 669 num_classify_rules++; 670 return 0; 671 } 672 673 /* Reads file and calls the add_classify_rule function. 8< */ 674 static int 675 add_rules(const char *rule_path, struct flow_classifier *cls_app) 676 { 677 FILE *fh; 678 char buff[LINE_MAX]; 679 unsigned int i = 0; 680 unsigned int total_num = 0; 681 struct rte_eth_ntuple_filter ntuple_filter; 682 int ret; 683 684 fh = fopen(rule_path, "rb"); 685 if (fh == NULL) 686 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__, 687 rule_path); 688 689 ret = fseek(fh, 0, SEEK_SET); 690 if (ret) 691 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__, 692 ret); 693 694 i = 0; 695 while (fgets(buff, LINE_MAX, fh) != NULL) { 696 i++; 697 698 if (is_bypass_line(buff)) 699 continue; 700 701 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) { 702 printf("\nINFO: classify rule capacity %d reached\n", 703 total_num); 704 break; 705 } 706 707 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0) 708 rte_exit(EXIT_FAILURE, 709 "%s Line %u: parse rules error\n", 710 rule_path, i); 711 712 if (add_classify_rule(&ntuple_filter, cls_app) != 0) 713 rte_exit(EXIT_FAILURE, "add rule error\n"); 714 715 total_num++; 716 } 717 718 fclose(fh); 719 return 0; 720 } 721 /* >8 End of add_rules. */ 722 723 /* display usage */ 724 static void 725 print_usage(const char *prgname) 726 { 727 printf("%s usage:\n", prgname); 728 printf("[EAL options] -- --"OPTION_RULE_IPV4"=FILE: "); 729 printf("specify the ipv4 rules file.\n"); 730 printf("Each rule occupies one line in the file.\n"); 731 } 732 733 /* Parse the argument given in the command line of the application */ 734 static int 735 parse_args(int argc, char **argv) 736 { 737 int opt, ret; 738 char **argvopt; 739 int option_index; 740 char *prgname = argv[0]; 741 static struct option lgopts[] = { 742 {OPTION_RULE_IPV4, 1, 0, 0}, 743 {NULL, 0, 0, 0} 744 }; 745 746 argvopt = argv; 747 748 while ((opt = getopt_long(argc, argvopt, "", 749 lgopts, &option_index)) != EOF) { 750 751 switch (opt) { 752 /* long options */ 753 case 0: 754 if (!strncmp(lgopts[option_index].name, 755 OPTION_RULE_IPV4, 756 sizeof(OPTION_RULE_IPV4))) 757 parm_config.rule_ipv4_name = optarg; 758 break; 759 default: 760 print_usage(prgname); 761 return -1; 762 } 763 } 764 765 if (optind >= 0) 766 argv[optind-1] = prgname; 767 768 ret = optind-1; 769 optind = 1; /* reset getopt lib */ 770 return ret; 771 } 772 773 /* 774 * The main function, which does initialization and calls the lcore_main 775 * function. 776 */ 777 int 778 main(int argc, char *argv[]) 779 { 780 struct rte_mempool *mbuf_pool; 781 uint16_t nb_ports; 782 uint16_t portid; 783 int ret; 784 int socket_id; 785 struct rte_table_acl_params table_acl_params; 786 struct rte_flow_classify_table_params cls_table_params; 787 struct flow_classifier *cls_app; 788 struct rte_flow_classifier_params cls_params; 789 uint32_t size; 790 791 /* Initialize the Environment Abstraction Layer (EAL). 8< */ 792 ret = rte_eal_init(argc, argv); 793 if (ret < 0) 794 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); 795 /* >8 End of initialization of EAL. */ 796 797 argc -= ret; 798 argv += ret; 799 800 /* Parse application arguments (after the EAL ones). 8< */ 801 ret = parse_args(argc, argv); 802 if (ret < 0) 803 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n"); 804 /* >8 End of parse application arguments. */ 805 806 /* Check that there is an even number of ports to send/receive on. */ 807 nb_ports = rte_eth_dev_count_avail(); 808 if (nb_ports < 2 || (nb_ports & 1)) 809 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n"); 810 811 /* Creates a new mempool in memory to hold the mbufs. 8< */ 812 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, 813 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 814 /* >8 End of creation of new mempool in memory. */ 815 816 if (mbuf_pool == NULL) 817 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 818 819 /* Initialize all ports. 8< */ 820 RTE_ETH_FOREACH_DEV(portid) 821 if (port_init(portid, mbuf_pool) != 0) 822 rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n", 823 portid); 824 /* >8 End of initialization of all ports. */ 825 826 if (rte_lcore_count() > 1) 827 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); 828 829 socket_id = rte_eth_dev_socket_id(0); 830 831 /* Memory allocation. 8< */ 832 size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl)); 833 cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); 834 if (cls_app == NULL) 835 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n"); 836 837 cls_params.name = "flow_classifier"; 838 cls_params.socket_id = socket_id; 839 840 cls_app->cls = rte_flow_classifier_create(&cls_params); 841 if (cls_app->cls == NULL) { 842 rte_free(cls_app); 843 rte_exit(EXIT_FAILURE, "Cannot create classifier\n"); 844 } 845 846 /* initialise ACL table params */ 847 table_acl_params.name = "table_acl_ipv4_5tuple"; 848 table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; 849 table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); 850 memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); 851 852 /* initialise table create params */ 853 cls_table_params.ops = &rte_table_acl_ops; 854 cls_table_params.arg_create = &table_acl_params; 855 cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; 856 857 ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params); 858 if (ret) { 859 rte_flow_classifier_free(cls_app->cls); 860 rte_free(cls_app); 861 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n"); 862 } 863 /* >8 End of initialization of table create params. */ 864 865 /* read file of IPv4 5 tuple rules and initialize parameters 866 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add 867 * API's. 868 */ 869 870 /* Read file of IPv4 tuple rules. 8< */ 871 if (add_rules(parm_config.rule_ipv4_name, cls_app)) { 872 rte_flow_classifier_free(cls_app->cls); 873 rte_free(cls_app); 874 rte_exit(EXIT_FAILURE, "Failed to add rules\n"); 875 } 876 /* >8 End of reading file of IPv4 5 tuple rules. */ 877 878 /* Call lcore_main on the main core only. */ 879 lcore_main(cls_app); 880 881 /* clean up the EAL */ 882 rte_eal_cleanup(); 883 884 return 0; 885 } 886