1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <stdint.h> 6 #include <inttypes.h> 7 #include <getopt.h> 8 9 #include <rte_eal.h> 10 #include <rte_ethdev.h> 11 #include <rte_cycles.h> 12 #include <rte_lcore.h> 13 #include <rte_mbuf.h> 14 #include <rte_flow.h> 15 #include <rte_flow_classify.h> 16 #include <rte_table_acl.h> 17 18 #define RX_RING_SIZE 1024 19 #define TX_RING_SIZE 1024 20 21 #define NUM_MBUFS 8191 22 #define MBUF_CACHE_SIZE 250 23 #define BURST_SIZE 32 24 25 #define MAX_NUM_CLASSIFY 30 26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91 27 #define FLOW_CLASSIFY_MAX_PRIORITY 8 28 #define FLOW_CLASSIFIER_NAME_SIZE 64 29 30 #define COMMENT_LEAD_CHAR ('#') 31 #define OPTION_RULE_IPV4 "rule_ipv4" 32 #define RTE_LOGTYPE_FLOW_CLASSIFY RTE_LOGTYPE_USER3 33 #define flow_classify_log(format, ...) \ 34 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__) 35 36 #define uint32_t_to_char(ip, a, b, c, d) do {\ 37 *a = (unsigned char)(ip >> 24 & 0xff);\ 38 *b = (unsigned char)(ip >> 16 & 0xff);\ 39 *c = (unsigned char)(ip >> 8 & 0xff);\ 40 *d = (unsigned char)(ip & 0xff);\ 41 } while (0) 42 43 enum { 44 CB_FLD_SRC_ADDR, 45 CB_FLD_DST_ADDR, 46 CB_FLD_SRC_PORT, 47 CB_FLD_SRC_PORT_DLM, 48 CB_FLD_SRC_PORT_MASK, 49 CB_FLD_DST_PORT, 50 CB_FLD_DST_PORT_DLM, 51 CB_FLD_DST_PORT_MASK, 52 CB_FLD_PROTO, 53 CB_FLD_PRIORITY, 54 CB_FLD_NUM, 55 }; 56 57 static struct{ 58 const char *rule_ipv4_name; 59 } parm_config; 60 const char cb_port_delim[] = ":"; 61 62 static const struct rte_eth_conf port_conf_default = { 63 .rxmode = { 64 .max_rx_pkt_len = ETHER_MAX_LEN, 65 .ignore_offload_bitfield = 1, 66 }, 67 }; 68 69 struct flow_classifier { 70 struct rte_flow_classifier *cls; 71 }; 72 73 struct flow_classifier_acl { 74 struct flow_classifier cls; 75 } __rte_cache_aligned; 76 77 /* ACL field definitions for IPv4 5 tuple rule */ 78 79 enum { 80 PROTO_FIELD_IPV4, 81 SRC_FIELD_IPV4, 82 DST_FIELD_IPV4, 83 SRCP_FIELD_IPV4, 84 DSTP_FIELD_IPV4, 85 NUM_FIELDS_IPV4 86 }; 87 88 enum { 89 PROTO_INPUT_IPV4, 90 SRC_INPUT_IPV4, 91 DST_INPUT_IPV4, 92 SRCP_DESTP_INPUT_IPV4 93 }; 94 95 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { 96 /* first input field - always one byte long. */ 97 { 98 .type = RTE_ACL_FIELD_TYPE_BITMASK, 99 .size = sizeof(uint8_t), 100 .field_index = PROTO_FIELD_IPV4, 101 .input_index = PROTO_INPUT_IPV4, 102 .offset = sizeof(struct ether_hdr) + 103 offsetof(struct ipv4_hdr, next_proto_id), 104 }, 105 /* next input field (IPv4 source address) - 4 consecutive bytes. */ 106 { 107 /* rte_flow uses a bit mask for IPv4 addresses */ 108 .type = RTE_ACL_FIELD_TYPE_BITMASK, 109 .size = sizeof(uint32_t), 110 .field_index = SRC_FIELD_IPV4, 111 .input_index = SRC_INPUT_IPV4, 112 .offset = sizeof(struct ether_hdr) + 113 offsetof(struct ipv4_hdr, src_addr), 114 }, 115 /* next input field (IPv4 destination address) - 4 consecutive bytes. */ 116 { 117 /* rte_flow uses a bit mask for IPv4 addresses */ 118 .type = RTE_ACL_FIELD_TYPE_BITMASK, 119 .size = sizeof(uint32_t), 120 .field_index = DST_FIELD_IPV4, 121 .input_index = DST_INPUT_IPV4, 122 .offset = sizeof(struct ether_hdr) + 123 offsetof(struct ipv4_hdr, dst_addr), 124 }, 125 /* 126 * Next 2 fields (src & dst ports) form 4 consecutive bytes. 127 * They share the same input index. 128 */ 129 { 130 /* rte_flow uses a bit mask for protocol ports */ 131 .type = RTE_ACL_FIELD_TYPE_BITMASK, 132 .size = sizeof(uint16_t), 133 .field_index = SRCP_FIELD_IPV4, 134 .input_index = SRCP_DESTP_INPUT_IPV4, 135 .offset = sizeof(struct ether_hdr) + 136 sizeof(struct ipv4_hdr) + 137 offsetof(struct tcp_hdr, src_port), 138 }, 139 { 140 /* rte_flow uses a bit mask for protocol ports */ 141 .type = RTE_ACL_FIELD_TYPE_BITMASK, 142 .size = sizeof(uint16_t), 143 .field_index = DSTP_FIELD_IPV4, 144 .input_index = SRCP_DESTP_INPUT_IPV4, 145 .offset = sizeof(struct ether_hdr) + 146 sizeof(struct ipv4_hdr) + 147 offsetof(struct tcp_hdr, dst_port), 148 }, 149 }; 150 151 /* flow classify data */ 152 static int num_classify_rules; 153 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY]; 154 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats; 155 static struct rte_flow_classify_stats classify_stats = { 156 .stats = (void **)&ntuple_stats 157 }; 158 159 /* parameters for rte_flow_classify_validate and 160 * rte_flow_classify_table_entry_add functions 161 */ 162 163 static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH, 164 0, 0, 0 }; 165 static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END, 166 0, 0, 0 }; 167 168 /* sample actions: 169 * "actions count / end" 170 */ 171 struct rte_flow_query_count count = { 172 .reset = 1, 173 .hits_set = 1, 174 .bytes_set = 1, 175 .hits = 0, 176 .bytes = 0, 177 }; 178 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, 179 &count}; 180 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; 181 static struct rte_flow_action actions[2]; 182 183 /* sample attributes */ 184 static struct rte_flow_attr attr; 185 186 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */ 187 188 /* 189 * Initializes a given port using global settings and with the RX buffers 190 * coming from the mbuf_pool passed as a parameter. 191 */ 192 static inline int 193 port_init(uint8_t port, struct rte_mempool *mbuf_pool) 194 { 195 struct rte_eth_conf port_conf = port_conf_default; 196 struct ether_addr addr; 197 const uint16_t rx_rings = 1, tx_rings = 1; 198 int retval; 199 uint16_t q; 200 struct rte_eth_dev_info dev_info; 201 struct rte_eth_txconf txconf; 202 203 if (port >= rte_eth_dev_count()) 204 return -1; 205 206 rte_eth_dev_info_get(port, &dev_info); 207 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 208 port_conf.txmode.offloads |= 209 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 210 211 /* Configure the Ethernet device. */ 212 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); 213 if (retval != 0) 214 return retval; 215 216 /* Allocate and set up 1 RX queue per Ethernet port. */ 217 for (q = 0; q < rx_rings; q++) { 218 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE, 219 rte_eth_dev_socket_id(port), NULL, mbuf_pool); 220 if (retval < 0) 221 return retval; 222 } 223 224 txconf = dev_info.default_txconf; 225 txconf.txq_flags = ETH_TXQ_FLAGS_IGNORE; 226 txconf.offloads = port_conf.txmode.offloads; 227 /* Allocate and set up 1 TX queue per Ethernet port. */ 228 for (q = 0; q < tx_rings; q++) { 229 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE, 230 rte_eth_dev_socket_id(port), &txconf); 231 if (retval < 0) 232 return retval; 233 } 234 235 /* Start the Ethernet port. */ 236 retval = rte_eth_dev_start(port); 237 if (retval < 0) 238 return retval; 239 240 /* Display the port MAC address. */ 241 rte_eth_macaddr_get(port, &addr); 242 printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8 243 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n", 244 port, 245 addr.addr_bytes[0], addr.addr_bytes[1], 246 addr.addr_bytes[2], addr.addr_bytes[3], 247 addr.addr_bytes[4], addr.addr_bytes[5]); 248 249 /* Enable RX in promiscuous mode for the Ethernet device. */ 250 rte_eth_promiscuous_enable(port); 251 252 return 0; 253 } 254 255 /* 256 * The lcore main. This is the main thread that does the work, reading from 257 * an input port classifying the packets and writing to an output port. 258 */ 259 static __attribute__((noreturn)) void 260 lcore_main(struct flow_classifier *cls_app) 261 { 262 const uint8_t nb_ports = rte_eth_dev_count(); 263 uint8_t port; 264 int ret; 265 int i = 0; 266 267 ret = rte_flow_classify_table_entry_delete(cls_app->cls, 268 rules[7]); 269 if (ret) 270 printf("table_entry_delete failed [7] %d\n\n", ret); 271 else 272 printf("table_entry_delete succeeded [7]\n\n"); 273 274 /* 275 * Check that the port is on the same NUMA node as the polling thread 276 * for best performance. 277 */ 278 for (port = 0; port < nb_ports; port++) 279 if (rte_eth_dev_socket_id(port) > 0 && 280 rte_eth_dev_socket_id(port) != (int)rte_socket_id()) { 281 printf("\n\n"); 282 printf("WARNING: port %u is on remote NUMA node\n", 283 port); 284 printf("to polling thread.\n"); 285 printf("Performance will not be optimal.\n"); 286 } 287 printf("\nCore %u forwarding packets. ", rte_lcore_id()); 288 printf("[Ctrl+C to quit]\n"); 289 290 /* Run until the application is quit or killed. */ 291 for (;;) { 292 /* 293 * Receive packets on a port, classify them and forward them 294 * on the paired port. 295 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc. 296 */ 297 for (port = 0; port < nb_ports; port++) { 298 /* Get burst of RX packets, from first port of pair. */ 299 struct rte_mbuf *bufs[BURST_SIZE]; 300 const uint16_t nb_rx = rte_eth_rx_burst(port, 0, 301 bufs, BURST_SIZE); 302 303 if (unlikely(nb_rx == 0)) 304 continue; 305 306 for (i = 0; i < MAX_NUM_CLASSIFY; i++) { 307 if (rules[i]) { 308 ret = rte_flow_classifier_query( 309 cls_app->cls, 310 bufs, nb_rx, rules[i], 311 &classify_stats); 312 if (ret) 313 printf( 314 "rule [%d] query failed ret [%d]\n\n", 315 i, ret); 316 else { 317 printf( 318 "rule[%d] count=%"PRIu64"\n", 319 i, ntuple_stats.counter1); 320 321 printf("proto = %d\n", 322 ntuple_stats.ipv4_5tuple.proto); 323 } 324 } 325 } 326 327 /* Send burst of TX packets, to second port of pair. */ 328 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0, 329 bufs, nb_rx); 330 331 /* Free any unsent packets. */ 332 if (unlikely(nb_tx < nb_rx)) { 333 uint16_t buf; 334 335 for (buf = nb_tx; buf < nb_rx; buf++) 336 rte_pktmbuf_free(bufs[buf]); 337 } 338 } 339 } 340 } 341 342 /* 343 * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt. 344 * Expected format: 345 * <src_ipv4_addr>'/'<masklen> <space> \ 346 * <dst_ipv4_addr>'/'<masklen> <space> \ 347 * <src_port> <space> ":" <src_port_mask> <space> \ 348 * <dst_port> <space> ":" <dst_port_mask> <space> \ 349 * <proto>'/'<proto_mask> <space> \ 350 * <priority> 351 */ 352 353 static int 354 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim, 355 char dlm) 356 { 357 unsigned long val; 358 char *end; 359 360 errno = 0; 361 val = strtoul(*in, &end, base); 362 if (errno != 0 || end[0] != dlm || val > lim) 363 return -EINVAL; 364 *fd = (uint32_t)val; 365 *in = end + 1; 366 return 0; 367 } 368 369 static int 370 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len) 371 { 372 uint32_t a, b, c, d, m; 373 374 if (get_cb_field(&in, &a, 0, UINT8_MAX, '.')) 375 return -EINVAL; 376 if (get_cb_field(&in, &b, 0, UINT8_MAX, '.')) 377 return -EINVAL; 378 if (get_cb_field(&in, &c, 0, UINT8_MAX, '.')) 379 return -EINVAL; 380 if (get_cb_field(&in, &d, 0, UINT8_MAX, '/')) 381 return -EINVAL; 382 if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0)) 383 return -EINVAL; 384 385 addr[0] = IPv4(a, b, c, d); 386 mask_len[0] = m; 387 return 0; 388 } 389 390 static int 391 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter) 392 { 393 int i, ret; 394 char *s, *sp, *in[CB_FLD_NUM]; 395 static const char *dlm = " \t\n"; 396 int dim = CB_FLD_NUM; 397 uint32_t temp; 398 399 s = str; 400 for (i = 0; i != dim; i++, s = NULL) { 401 in[i] = strtok_r(s, dlm, &sp); 402 if (in[i] == NULL) 403 return -EINVAL; 404 } 405 406 ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR], 407 &ntuple_filter->src_ip, 408 &ntuple_filter->src_ip_mask); 409 if (ret != 0) { 410 flow_classify_log("failed to read source address/mask: %s\n", 411 in[CB_FLD_SRC_ADDR]); 412 return ret; 413 } 414 415 ret = parse_ipv4_net(in[CB_FLD_DST_ADDR], 416 &ntuple_filter->dst_ip, 417 &ntuple_filter->dst_ip_mask); 418 if (ret != 0) { 419 flow_classify_log("failed to read source address/mask: %s\n", 420 in[CB_FLD_DST_ADDR]); 421 return ret; 422 } 423 424 if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0)) 425 return -EINVAL; 426 ntuple_filter->src_port = (uint16_t)temp; 427 428 if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim, 429 sizeof(cb_port_delim)) != 0) 430 return -EINVAL; 431 432 if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 433 return -EINVAL; 434 ntuple_filter->src_port_mask = (uint16_t)temp; 435 436 if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0)) 437 return -EINVAL; 438 ntuple_filter->dst_port = (uint16_t)temp; 439 440 if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim, 441 sizeof(cb_port_delim)) != 0) 442 return -EINVAL; 443 444 if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 445 return -EINVAL; 446 ntuple_filter->dst_port_mask = (uint16_t)temp; 447 448 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/')) 449 return -EINVAL; 450 ntuple_filter->proto = (uint8_t)temp; 451 452 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0)) 453 return -EINVAL; 454 ntuple_filter->proto_mask = (uint8_t)temp; 455 456 if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0)) 457 return -EINVAL; 458 ntuple_filter->priority = (uint16_t)temp; 459 if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY) 460 ret = -EINVAL; 461 462 return ret; 463 } 464 465 /* Bypass comment and empty lines */ 466 static inline int 467 is_bypass_line(char *buff) 468 { 469 int i = 0; 470 471 /* comment line */ 472 if (buff[0] == COMMENT_LEAD_CHAR) 473 return 1; 474 /* empty line */ 475 while (buff[i] != '\0') { 476 if (!isspace(buff[i])) 477 return 0; 478 i++; 479 } 480 return 1; 481 } 482 483 static uint32_t 484 convert_depth_to_bitmask(uint32_t depth_val) 485 { 486 uint32_t bitmask = 0; 487 int i, j; 488 489 for (i = depth_val, j = 0; i > 0; i--, j++) 490 bitmask |= (1 << (31 - j)); 491 return bitmask; 492 } 493 494 static int 495 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter, 496 struct flow_classifier *cls_app) 497 { 498 int ret = -1; 499 int key_found; 500 struct rte_flow_error error; 501 struct rte_flow_item_ipv4 ipv4_spec; 502 struct rte_flow_item_ipv4 ipv4_mask; 503 struct rte_flow_item ipv4_udp_item; 504 struct rte_flow_item ipv4_tcp_item; 505 struct rte_flow_item ipv4_sctp_item; 506 struct rte_flow_item_udp udp_spec; 507 struct rte_flow_item_udp udp_mask; 508 struct rte_flow_item udp_item; 509 struct rte_flow_item_tcp tcp_spec; 510 struct rte_flow_item_tcp tcp_mask; 511 struct rte_flow_item tcp_item; 512 struct rte_flow_item_sctp sctp_spec; 513 struct rte_flow_item_sctp sctp_mask; 514 struct rte_flow_item sctp_item; 515 struct rte_flow_item pattern_ipv4_5tuple[4]; 516 struct rte_flow_classify_rule *rule; 517 uint8_t ipv4_proto; 518 519 if (num_classify_rules >= MAX_NUM_CLASSIFY) { 520 printf( 521 "\nINFO: classify rule capacity %d reached\n", 522 num_classify_rules); 523 return ret; 524 } 525 526 /* set up parameters for validate and add */ 527 memset(&ipv4_spec, 0, sizeof(ipv4_spec)); 528 ipv4_spec.hdr.next_proto_id = ntuple_filter->proto; 529 ipv4_spec.hdr.src_addr = ntuple_filter->src_ip; 530 ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip; 531 ipv4_proto = ipv4_spec.hdr.next_proto_id; 532 533 memset(&ipv4_mask, 0, sizeof(ipv4_mask)); 534 ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask; 535 ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask; 536 ipv4_mask.hdr.src_addr = 537 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr); 538 ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask; 539 ipv4_mask.hdr.dst_addr = 540 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr); 541 542 switch (ipv4_proto) { 543 case IPPROTO_UDP: 544 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 545 ipv4_udp_item.spec = &ipv4_spec; 546 ipv4_udp_item.mask = &ipv4_mask; 547 ipv4_udp_item.last = NULL; 548 549 udp_spec.hdr.src_port = ntuple_filter->src_port; 550 udp_spec.hdr.dst_port = ntuple_filter->dst_port; 551 udp_spec.hdr.dgram_len = 0; 552 udp_spec.hdr.dgram_cksum = 0; 553 554 udp_mask.hdr.src_port = ntuple_filter->src_port_mask; 555 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 556 udp_mask.hdr.dgram_len = 0; 557 udp_mask.hdr.dgram_cksum = 0; 558 559 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP; 560 udp_item.spec = &udp_spec; 561 udp_item.mask = &udp_mask; 562 udp_item.last = NULL; 563 564 attr.priority = ntuple_filter->priority; 565 pattern_ipv4_5tuple[1] = ipv4_udp_item; 566 pattern_ipv4_5tuple[2] = udp_item; 567 break; 568 case IPPROTO_TCP: 569 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 570 ipv4_tcp_item.spec = &ipv4_spec; 571 ipv4_tcp_item.mask = &ipv4_mask; 572 ipv4_tcp_item.last = NULL; 573 574 memset(&tcp_spec, 0, sizeof(tcp_spec)); 575 tcp_spec.hdr.src_port = ntuple_filter->src_port; 576 tcp_spec.hdr.dst_port = ntuple_filter->dst_port; 577 578 memset(&tcp_mask, 0, sizeof(tcp_mask)); 579 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask; 580 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 581 582 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP; 583 tcp_item.spec = &tcp_spec; 584 tcp_item.mask = &tcp_mask; 585 tcp_item.last = NULL; 586 587 attr.priority = ntuple_filter->priority; 588 pattern_ipv4_5tuple[1] = ipv4_tcp_item; 589 pattern_ipv4_5tuple[2] = tcp_item; 590 break; 591 case IPPROTO_SCTP: 592 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 593 ipv4_sctp_item.spec = &ipv4_spec; 594 ipv4_sctp_item.mask = &ipv4_mask; 595 ipv4_sctp_item.last = NULL; 596 597 sctp_spec.hdr.src_port = ntuple_filter->src_port; 598 sctp_spec.hdr.dst_port = ntuple_filter->dst_port; 599 sctp_spec.hdr.cksum = 0; 600 sctp_spec.hdr.tag = 0; 601 602 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask; 603 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 604 sctp_mask.hdr.cksum = 0; 605 sctp_mask.hdr.tag = 0; 606 607 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP; 608 sctp_item.spec = &sctp_spec; 609 sctp_item.mask = &sctp_mask; 610 sctp_item.last = NULL; 611 612 attr.priority = ntuple_filter->priority; 613 pattern_ipv4_5tuple[1] = ipv4_sctp_item; 614 pattern_ipv4_5tuple[2] = sctp_item; 615 break; 616 default: 617 return ret; 618 } 619 620 attr.ingress = 1; 621 pattern_ipv4_5tuple[0] = eth_item; 622 pattern_ipv4_5tuple[3] = end_item; 623 actions[0] = count_action; 624 actions[1] = end_action; 625 626 /* Validate and add rule */ 627 ret = rte_flow_classify_validate(cls_app->cls, &attr, 628 pattern_ipv4_5tuple, actions, &error); 629 if (ret) { 630 printf("table entry validate failed ipv4_proto = %u\n", 631 ipv4_proto); 632 return ret; 633 } 634 635 rule = rte_flow_classify_table_entry_add( 636 cls_app->cls, &attr, pattern_ipv4_5tuple, 637 actions, &key_found, &error); 638 if (rule == NULL) { 639 printf("table entry add failed ipv4_proto = %u\n", 640 ipv4_proto); 641 ret = -1; 642 return ret; 643 } 644 645 rules[num_classify_rules] = rule; 646 num_classify_rules++; 647 return 0; 648 } 649 650 static int 651 add_rules(const char *rule_path, struct flow_classifier *cls_app) 652 { 653 FILE *fh; 654 char buff[LINE_MAX]; 655 unsigned int i = 0; 656 unsigned int total_num = 0; 657 struct rte_eth_ntuple_filter ntuple_filter; 658 int ret; 659 660 fh = fopen(rule_path, "rb"); 661 if (fh == NULL) 662 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__, 663 rule_path); 664 665 ret = fseek(fh, 0, SEEK_SET); 666 if (ret) 667 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__, 668 ret); 669 670 i = 0; 671 while (fgets(buff, LINE_MAX, fh) != NULL) { 672 i++; 673 674 if (is_bypass_line(buff)) 675 continue; 676 677 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) { 678 printf("\nINFO: classify rule capacity %d reached\n", 679 total_num); 680 break; 681 } 682 683 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0) 684 rte_exit(EXIT_FAILURE, 685 "%s Line %u: parse rules error\n", 686 rule_path, i); 687 688 if (add_classify_rule(&ntuple_filter, cls_app) != 0) 689 rte_exit(EXIT_FAILURE, "add rule error\n"); 690 691 total_num++; 692 } 693 694 fclose(fh); 695 return 0; 696 } 697 698 /* display usage */ 699 static void 700 print_usage(const char *prgname) 701 { 702 printf("%s usage:\n", prgname); 703 printf("[EAL options] -- --"OPTION_RULE_IPV4"=FILE: "); 704 printf("specify the ipv4 rules file.\n"); 705 printf("Each rule occupies one line in the file.\n"); 706 } 707 708 /* Parse the argument given in the command line of the application */ 709 static int 710 parse_args(int argc, char **argv) 711 { 712 int opt, ret; 713 char **argvopt; 714 int option_index; 715 char *prgname = argv[0]; 716 static struct option lgopts[] = { 717 {OPTION_RULE_IPV4, 1, 0, 0}, 718 {NULL, 0, 0, 0} 719 }; 720 721 argvopt = argv; 722 723 while ((opt = getopt_long(argc, argvopt, "", 724 lgopts, &option_index)) != EOF) { 725 726 switch (opt) { 727 /* long options */ 728 case 0: 729 if (!strncmp(lgopts[option_index].name, 730 OPTION_RULE_IPV4, 731 sizeof(OPTION_RULE_IPV4))) 732 parm_config.rule_ipv4_name = optarg; 733 break; 734 default: 735 print_usage(prgname); 736 return -1; 737 } 738 } 739 740 if (optind >= 0) 741 argv[optind-1] = prgname; 742 743 ret = optind-1; 744 optind = 1; /* reset getopt lib */ 745 return ret; 746 } 747 748 /* 749 * The main function, which does initialization and calls the lcore_main 750 * function. 751 */ 752 int 753 main(int argc, char *argv[]) 754 { 755 struct rte_mempool *mbuf_pool; 756 uint8_t nb_ports; 757 uint8_t portid; 758 int ret; 759 int socket_id; 760 struct rte_table_acl_params table_acl_params; 761 struct rte_flow_classify_table_params cls_table_params; 762 struct flow_classifier *cls_app; 763 struct rte_flow_classifier_params cls_params; 764 uint32_t size; 765 766 /* Initialize the Environment Abstraction Layer (EAL). */ 767 ret = rte_eal_init(argc, argv); 768 if (ret < 0) 769 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); 770 771 argc -= ret; 772 argv += ret; 773 774 /* parse application arguments (after the EAL ones) */ 775 ret = parse_args(argc, argv); 776 if (ret < 0) 777 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n"); 778 779 /* Check that there is an even number of ports to send/receive on. */ 780 nb_ports = rte_eth_dev_count(); 781 if (nb_ports < 2 || (nb_ports & 1)) 782 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n"); 783 784 /* Creates a new mempool in memory to hold the mbufs. */ 785 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, 786 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 787 788 if (mbuf_pool == NULL) 789 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 790 791 /* Initialize all ports. */ 792 for (portid = 0; portid < nb_ports; portid++) 793 if (port_init(portid, mbuf_pool) != 0) 794 rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n", 795 portid); 796 797 if (rte_lcore_count() > 1) 798 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); 799 800 socket_id = rte_eth_dev_socket_id(0); 801 802 /* Memory allocation */ 803 size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl)); 804 cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); 805 if (cls_app == NULL) 806 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n"); 807 808 cls_params.name = "flow_classifier"; 809 cls_params.socket_id = socket_id; 810 811 cls_app->cls = rte_flow_classifier_create(&cls_params); 812 if (cls_app->cls == NULL) { 813 rte_free(cls_app); 814 rte_exit(EXIT_FAILURE, "Cannot create classifier\n"); 815 } 816 817 /* initialise ACL table params */ 818 table_acl_params.name = "table_acl_ipv4_5tuple"; 819 table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; 820 table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); 821 memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); 822 823 /* initialise table create params */ 824 cls_table_params.ops = &rte_table_acl_ops; 825 cls_table_params.arg_create = &table_acl_params; 826 cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; 827 828 ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params); 829 if (ret) { 830 rte_flow_classifier_free(cls_app->cls); 831 rte_free(cls_app); 832 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n"); 833 } 834 835 /* read file of IPv4 5 tuple rules and initialize parameters 836 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add 837 * API's. 838 */ 839 if (add_rules(parm_config.rule_ipv4_name, cls_app)) { 840 rte_flow_classifier_free(cls_app->cls); 841 rte_free(cls_app); 842 rte_exit(EXIT_FAILURE, "Failed to add rules\n"); 843 } 844 845 /* Call lcore_main on the master core only. */ 846 lcore_main(cls_app); 847 848 return 0; 849 } 850