1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 #include <inttypes.h>
7 #include <getopt.h>
8 
9 #include <rte_eal.h>
10 #include <rte_ethdev.h>
11 #include <rte_cycles.h>
12 #include <rte_lcore.h>
13 #include <rte_mbuf.h>
14 #include <rte_flow.h>
15 #include <rte_flow_classify.h>
16 #include <rte_table_acl.h>
17 
18 #define RX_RING_SIZE 1024
19 #define TX_RING_SIZE 1024
20 
21 #define NUM_MBUFS 8191
22 #define MBUF_CACHE_SIZE 250
23 #define BURST_SIZE 32
24 
25 #define MAX_NUM_CLASSIFY 30
26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
27 #define FLOW_CLASSIFY_MAX_PRIORITY 8
28 #define FLOW_CLASSIFIER_NAME_SIZE 64
29 
30 #define COMMENT_LEAD_CHAR	('#')
31 #define OPTION_RULE_IPV4	"rule_ipv4"
32 #define RTE_LOGTYPE_FLOW_CLASSIFY	RTE_LOGTYPE_USER3
33 #define flow_classify_log(format, ...) \
34 		RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
35 
36 #define uint32_t_to_char(ip, a, b, c, d) do {\
37 		*a = (unsigned char)(ip >> 24 & 0xff);\
38 		*b = (unsigned char)(ip >> 16 & 0xff);\
39 		*c = (unsigned char)(ip >> 8 & 0xff);\
40 		*d = (unsigned char)(ip & 0xff);\
41 	} while (0)
42 
43 enum {
44 	CB_FLD_SRC_ADDR,
45 	CB_FLD_DST_ADDR,
46 	CB_FLD_SRC_PORT,
47 	CB_FLD_SRC_PORT_DLM,
48 	CB_FLD_SRC_PORT_MASK,
49 	CB_FLD_DST_PORT,
50 	CB_FLD_DST_PORT_DLM,
51 	CB_FLD_DST_PORT_MASK,
52 	CB_FLD_PROTO,
53 	CB_FLD_PRIORITY,
54 	CB_FLD_NUM,
55 };
56 
57 static struct{
58 	const char *rule_ipv4_name;
59 } parm_config;
60 const char cb_port_delim[] = ":";
61 
62 /* Ethernet ports configured with default settings using struct. 8< */
63 static const struct rte_eth_conf port_conf_default = {
64 	.rxmode = {
65 		.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
66 	},
67 };
68 /* >8 End of configuration of Ethernet ports. */
69 
70 /* Creation of flow classifier object. 8< */
71 struct flow_classifier {
72 	struct rte_flow_classifier *cls;
73 };
74 
75 struct flow_classifier_acl {
76 	struct flow_classifier cls;
77 } __rte_cache_aligned;
78 /* >8 End of creation of flow classifier object. */
79 
80 /*  Creation of ACL table during initialization of application. 8< */
81 
82 /* ACL field definitions for IPv4 5 tuple rule */
83 enum {
84 	PROTO_FIELD_IPV4,
85 	SRC_FIELD_IPV4,
86 	DST_FIELD_IPV4,
87 	SRCP_FIELD_IPV4,
88 	DSTP_FIELD_IPV4,
89 	NUM_FIELDS_IPV4
90 };
91 
92 enum {
93 	PROTO_INPUT_IPV4,
94 	SRC_INPUT_IPV4,
95 	DST_INPUT_IPV4,
96 	SRCP_DESTP_INPUT_IPV4
97 };
98 
99 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
100 	/* first input field - always one byte long. */
101 	{
102 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
103 		.size = sizeof(uint8_t),
104 		.field_index = PROTO_FIELD_IPV4,
105 		.input_index = PROTO_INPUT_IPV4,
106 		.offset = sizeof(struct rte_ether_hdr) +
107 			offsetof(struct rte_ipv4_hdr, next_proto_id),
108 	},
109 	/* next input field (IPv4 source address) - 4 consecutive bytes. */
110 	{
111 		/* rte_flow uses a bit mask for IPv4 addresses */
112 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
113 		.size = sizeof(uint32_t),
114 		.field_index = SRC_FIELD_IPV4,
115 		.input_index = SRC_INPUT_IPV4,
116 		.offset = sizeof(struct rte_ether_hdr) +
117 			offsetof(struct rte_ipv4_hdr, src_addr),
118 	},
119 	/* next input field (IPv4 destination address) - 4 consecutive bytes. */
120 	{
121 		/* rte_flow uses a bit mask for IPv4 addresses */
122 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
123 		.size = sizeof(uint32_t),
124 		.field_index = DST_FIELD_IPV4,
125 		.input_index = DST_INPUT_IPV4,
126 		.offset = sizeof(struct rte_ether_hdr) +
127 			offsetof(struct rte_ipv4_hdr, dst_addr),
128 	},
129 	/*
130 	 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
131 	 * They share the same input index.
132 	 */
133 	{
134 		/* rte_flow uses a bit mask for protocol ports */
135 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
136 		.size = sizeof(uint16_t),
137 		.field_index = SRCP_FIELD_IPV4,
138 		.input_index = SRCP_DESTP_INPUT_IPV4,
139 		.offset = sizeof(struct rte_ether_hdr) +
140 			sizeof(struct rte_ipv4_hdr) +
141 			offsetof(struct rte_tcp_hdr, src_port),
142 	},
143 	{
144 		/* rte_flow uses a bit mask for protocol ports */
145 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
146 		.size = sizeof(uint16_t),
147 		.field_index = DSTP_FIELD_IPV4,
148 		.input_index = SRCP_DESTP_INPUT_IPV4,
149 		.offset = sizeof(struct rte_ether_hdr) +
150 			sizeof(struct rte_ipv4_hdr) +
151 			offsetof(struct rte_tcp_hdr, dst_port),
152 	},
153 };
154 /* >8 End of creation of ACL table. */
155 
156 /* Flow classify data. 8< */
157 static int num_classify_rules;
158 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
159 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
160 static struct rte_flow_classify_stats classify_stats = {
161 		.stats = (void **)&ntuple_stats
162 };
163 /* >8 End of flow classify data. */
164 
165 /* parameters for rte_flow_classify_validate and
166  * rte_flow_classify_table_entry_add functions
167  */
168 
169 static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
170 	0, 0, 0 };
171 static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
172 	0, 0, 0 };
173 
174 /* sample actions:
175  * "actions count / end"
176  */
177 struct rte_flow_query_count count = {
178 	.reset = 1,
179 	.hits_set = 1,
180 	.bytes_set = 1,
181 	.hits = 0,
182 	.bytes = 0,
183 };
184 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
185 	&count};
186 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
187 static struct rte_flow_action actions[2];
188 
189 /* sample attributes */
190 static struct rte_flow_attr attr;
191 
192 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
193 
194 /*
195  * Initializes a given port using global settings and with the RX buffers
196  * coming from the mbuf_pool passed as a parameter.
197  */
198 
199 /* Initializing port using global settings. 8< */
200 static inline int
201 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
202 {
203 	struct rte_eth_conf port_conf = port_conf_default;
204 	struct rte_ether_addr addr;
205 	const uint16_t rx_rings = 1, tx_rings = 1;
206 	int retval;
207 	uint16_t q;
208 	struct rte_eth_dev_info dev_info;
209 	struct rte_eth_txconf txconf;
210 
211 	if (!rte_eth_dev_is_valid_port(port))
212 		return -1;
213 
214 	retval = rte_eth_dev_info_get(port, &dev_info);
215 	if (retval != 0) {
216 		printf("Error during getting device (port %u) info: %s\n",
217 				port, strerror(-retval));
218 		return retval;
219 	}
220 
221 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
222 		port_conf.txmode.offloads |=
223 			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
224 
225 	/* Configure the Ethernet device. */
226 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
227 	if (retval != 0)
228 		return retval;
229 
230 	/* Allocate and set up 1 RX queue per Ethernet port. */
231 	for (q = 0; q < rx_rings; q++) {
232 		retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
233 				rte_eth_dev_socket_id(port), NULL, mbuf_pool);
234 		if (retval < 0)
235 			return retval;
236 	}
237 
238 	txconf = dev_info.default_txconf;
239 	txconf.offloads = port_conf.txmode.offloads;
240 	/* Allocate and set up 1 TX queue per Ethernet port. */
241 	for (q = 0; q < tx_rings; q++) {
242 		retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
243 				rte_eth_dev_socket_id(port), &txconf);
244 		if (retval < 0)
245 			return retval;
246 	}
247 
248 	/* Start the Ethernet port. 8< */
249 	retval = rte_eth_dev_start(port);
250 	/* >8 End of starting the Ethernet port. */
251 	if (retval < 0)
252 		return retval;
253 
254 	/* Display the port MAC address. */
255 	retval = rte_eth_macaddr_get(port, &addr);
256 	if (retval != 0)
257 		return retval;
258 
259 	printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
260 			   " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
261 			port, RTE_ETHER_ADDR_BYTES(&addr));
262 
263 	/* Enable RX in promiscuous mode for the Ethernet device. */
264 	retval = rte_eth_promiscuous_enable(port);
265 	if (retval != 0)
266 		return retval;
267 
268 	return 0;
269 }
270 /* >8 End of initializing a given port. */
271 
272 /*
273  * The lcore main. This is the main thread that does the work, reading from
274  * an input port classifying the packets and writing to an output port.
275  */
276 
277 /* Classifying the packets. 8< */
278 static __rte_noreturn void
279 lcore_main(struct flow_classifier *cls_app)
280 {
281 	uint16_t port;
282 	int ret;
283 	int i = 0;
284 
285 	ret = rte_flow_classify_table_entry_delete(cls_app->cls,
286 			rules[7]);
287 	if (ret)
288 		printf("table_entry_delete failed [7] %d\n\n", ret);
289 	else
290 		printf("table_entry_delete succeeded [7]\n\n");
291 
292 	/*
293 	 * Check that the port is on the same NUMA node as the polling thread
294 	 * for best performance.
295 	 */
296 	RTE_ETH_FOREACH_DEV(port)
297 		if (rte_eth_dev_socket_id(port) >= 0 &&
298 			rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
299 			printf("\n\n");
300 			printf("WARNING: port %u is on remote NUMA node\n",
301 			       port);
302 			printf("to polling thread.\n");
303 			printf("Performance will not be optimal.\n");
304 		}
305 	printf("\nCore %u forwarding packets. ", rte_lcore_id());
306 	printf("[Ctrl+C to quit]\n");
307 
308 	/* Run until the application is quit or killed. 8< */
309 	for (;;) {
310 		/*
311 		 * Receive packets on a port, classify them and forward them
312 		 * on the paired port.
313 		 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
314 		 */
315 		RTE_ETH_FOREACH_DEV(port) {
316 			/* Get burst of RX packets, from first port of pair. */
317 			struct rte_mbuf *bufs[BURST_SIZE];
318 			const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
319 					bufs, BURST_SIZE);
320 
321 			if (unlikely(nb_rx == 0))
322 				continue;
323 
324 			for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
325 				if (rules[i]) {
326 					ret = rte_flow_classifier_query(
327 						cls_app->cls,
328 						bufs, nb_rx, rules[i],
329 						&classify_stats);
330 					if (ret)
331 						printf(
332 							"rule [%d] query failed ret [%d]\n\n",
333 							i, ret);
334 					else {
335 						printf(
336 						"rule[%d] count=%"PRIu64"\n",
337 						i, ntuple_stats.counter1);
338 
339 						printf("proto = %d\n",
340 						ntuple_stats.ipv4_5tuple.proto);
341 					}
342 				}
343 			}
344 
345 			/* Send burst of TX packets, to second port of pair. */
346 			const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
347 					bufs, nb_rx);
348 
349 			/* Free any unsent packets. */
350 			if (unlikely(nb_tx < nb_rx)) {
351 				uint16_t buf;
352 
353 				for (buf = nb_tx; buf < nb_rx; buf++)
354 					rte_pktmbuf_free(bufs[buf]);
355 			}
356 		}
357 	}
358 	/* >8 End of main loop. */
359 }
360 /* >8 End of lcore main. */
361 
362 /*
363  * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
364  * Expected format:
365  * <src_ipv4_addr>'/'<masklen> <space> \
366  * <dst_ipv4_addr>'/'<masklen> <space> \
367  * <src_port> <space> ":" <src_port_mask> <space> \
368  * <dst_port> <space> ":" <dst_port_mask> <space> \
369  * <proto>'/'<proto_mask> <space> \
370  * <priority>
371  */
372 
373 static int
374 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
375 		char dlm)
376 {
377 	unsigned long val;
378 	char *end;
379 
380 	errno = 0;
381 	val = strtoul(*in, &end, base);
382 	if (errno != 0 || end[0] != dlm || val > lim)
383 		return -EINVAL;
384 	*fd = (uint32_t)val;
385 	*in = end + 1;
386 	return 0;
387 }
388 
389 static int
390 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
391 {
392 	uint32_t a, b, c, d, m;
393 
394 	if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
395 		return -EINVAL;
396 	if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
397 		return -EINVAL;
398 	if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
399 		return -EINVAL;
400 	if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
401 		return -EINVAL;
402 	if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
403 		return -EINVAL;
404 
405 	addr[0] = RTE_IPV4(a, b, c, d);
406 	mask_len[0] = m;
407 	return 0;
408 }
409 
410 static int
411 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
412 {
413 	int i, ret;
414 	char *s, *sp, *in[CB_FLD_NUM];
415 	static const char *dlm = " \t\n";
416 	int dim = CB_FLD_NUM;
417 	uint32_t temp;
418 
419 	s = str;
420 	for (i = 0; i != dim; i++, s = NULL) {
421 		in[i] = strtok_r(s, dlm, &sp);
422 		if (in[i] == NULL)
423 			return -EINVAL;
424 	}
425 
426 	ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
427 			&ntuple_filter->src_ip,
428 			&ntuple_filter->src_ip_mask);
429 	if (ret != 0) {
430 		flow_classify_log("failed to read source address/mask: %s\n",
431 			in[CB_FLD_SRC_ADDR]);
432 		return ret;
433 	}
434 
435 	ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
436 			&ntuple_filter->dst_ip,
437 			&ntuple_filter->dst_ip_mask);
438 	if (ret != 0) {
439 		flow_classify_log("failed to read source address/mask: %s\n",
440 			in[CB_FLD_DST_ADDR]);
441 		return ret;
442 	}
443 
444 	if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
445 		return -EINVAL;
446 	ntuple_filter->src_port = (uint16_t)temp;
447 
448 	if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
449 			sizeof(cb_port_delim)) != 0)
450 		return -EINVAL;
451 
452 	if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
453 		return -EINVAL;
454 	ntuple_filter->src_port_mask = (uint16_t)temp;
455 
456 	if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
457 		return -EINVAL;
458 	ntuple_filter->dst_port = (uint16_t)temp;
459 
460 	if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
461 			sizeof(cb_port_delim)) != 0)
462 		return -EINVAL;
463 
464 	if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
465 		return -EINVAL;
466 	ntuple_filter->dst_port_mask = (uint16_t)temp;
467 
468 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
469 		return -EINVAL;
470 	ntuple_filter->proto = (uint8_t)temp;
471 
472 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
473 		return -EINVAL;
474 	ntuple_filter->proto_mask = (uint8_t)temp;
475 
476 	if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
477 		return -EINVAL;
478 	ntuple_filter->priority = (uint16_t)temp;
479 	if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
480 		ret = -EINVAL;
481 
482 	return ret;
483 }
484 
485 /* Bypass comment and empty lines */
486 static inline int
487 is_bypass_line(char *buff)
488 {
489 	int i = 0;
490 
491 	/* comment line */
492 	if (buff[0] == COMMENT_LEAD_CHAR)
493 		return 1;
494 	/* empty line */
495 	while (buff[i] != '\0') {
496 		if (!isspace(buff[i]))
497 			return 0;
498 		i++;
499 	}
500 	return 1;
501 }
502 
503 static uint32_t
504 convert_depth_to_bitmask(uint32_t depth_val)
505 {
506 	uint32_t bitmask = 0;
507 	int i, j;
508 
509 	for (i = depth_val, j = 0; i > 0; i--, j++)
510 		bitmask |= (1 << (31 - j));
511 	return bitmask;
512 }
513 
514 static int
515 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
516 		struct flow_classifier *cls_app)
517 {
518 	int ret = -1;
519 	int key_found;
520 	struct rte_flow_error error;
521 	struct rte_flow_item_ipv4 ipv4_spec;
522 	struct rte_flow_item_ipv4 ipv4_mask;
523 	struct rte_flow_item ipv4_udp_item;
524 	struct rte_flow_item ipv4_tcp_item;
525 	struct rte_flow_item ipv4_sctp_item;
526 	struct rte_flow_item_udp udp_spec;
527 	struct rte_flow_item_udp udp_mask;
528 	struct rte_flow_item udp_item;
529 	struct rte_flow_item_tcp tcp_spec;
530 	struct rte_flow_item_tcp tcp_mask;
531 	struct rte_flow_item tcp_item;
532 	struct rte_flow_item_sctp sctp_spec;
533 	struct rte_flow_item_sctp sctp_mask;
534 	struct rte_flow_item sctp_item;
535 	struct rte_flow_item pattern_ipv4_5tuple[4];
536 	struct rte_flow_classify_rule *rule;
537 	uint8_t ipv4_proto;
538 
539 	if (num_classify_rules >= MAX_NUM_CLASSIFY) {
540 		printf(
541 			"\nINFO:  classify rule capacity %d reached\n",
542 			num_classify_rules);
543 		return ret;
544 	}
545 
546 	/* set up parameters for validate and add */
547 	memset(&ipv4_spec, 0, sizeof(ipv4_spec));
548 	ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
549 	ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
550 	ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
551 	ipv4_proto = ipv4_spec.hdr.next_proto_id;
552 
553 	memset(&ipv4_mask, 0, sizeof(ipv4_mask));
554 	ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
555 	ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
556 	ipv4_mask.hdr.src_addr =
557 		convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
558 	ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
559 	ipv4_mask.hdr.dst_addr =
560 		convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
561 
562 	switch (ipv4_proto) {
563 	case IPPROTO_UDP:
564 		ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
565 		ipv4_udp_item.spec = &ipv4_spec;
566 		ipv4_udp_item.mask = &ipv4_mask;
567 		ipv4_udp_item.last = NULL;
568 
569 		udp_spec.hdr.src_port = ntuple_filter->src_port;
570 		udp_spec.hdr.dst_port = ntuple_filter->dst_port;
571 		udp_spec.hdr.dgram_len = 0;
572 		udp_spec.hdr.dgram_cksum = 0;
573 
574 		udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
575 		udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
576 		udp_mask.hdr.dgram_len = 0;
577 		udp_mask.hdr.dgram_cksum = 0;
578 
579 		udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
580 		udp_item.spec = &udp_spec;
581 		udp_item.mask = &udp_mask;
582 		udp_item.last = NULL;
583 
584 		attr.priority = ntuple_filter->priority;
585 		pattern_ipv4_5tuple[1] = ipv4_udp_item;
586 		pattern_ipv4_5tuple[2] = udp_item;
587 		break;
588 	case IPPROTO_TCP:
589 		ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
590 		ipv4_tcp_item.spec = &ipv4_spec;
591 		ipv4_tcp_item.mask = &ipv4_mask;
592 		ipv4_tcp_item.last = NULL;
593 
594 		memset(&tcp_spec, 0, sizeof(tcp_spec));
595 		tcp_spec.hdr.src_port = ntuple_filter->src_port;
596 		tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
597 
598 		memset(&tcp_mask, 0, sizeof(tcp_mask));
599 		tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
600 		tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
601 
602 		tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
603 		tcp_item.spec = &tcp_spec;
604 		tcp_item.mask = &tcp_mask;
605 		tcp_item.last = NULL;
606 
607 		attr.priority = ntuple_filter->priority;
608 		pattern_ipv4_5tuple[1] = ipv4_tcp_item;
609 		pattern_ipv4_5tuple[2] = tcp_item;
610 		break;
611 	case IPPROTO_SCTP:
612 		ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
613 		ipv4_sctp_item.spec = &ipv4_spec;
614 		ipv4_sctp_item.mask = &ipv4_mask;
615 		ipv4_sctp_item.last = NULL;
616 
617 		sctp_spec.hdr.src_port = ntuple_filter->src_port;
618 		sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
619 		sctp_spec.hdr.cksum = 0;
620 		sctp_spec.hdr.tag = 0;
621 
622 		sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
623 		sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
624 		sctp_mask.hdr.cksum = 0;
625 		sctp_mask.hdr.tag = 0;
626 
627 		sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
628 		sctp_item.spec = &sctp_spec;
629 		sctp_item.mask = &sctp_mask;
630 		sctp_item.last = NULL;
631 
632 		attr.priority = ntuple_filter->priority;
633 		pattern_ipv4_5tuple[1] = ipv4_sctp_item;
634 		pattern_ipv4_5tuple[2] = sctp_item;
635 		break;
636 	default:
637 		return ret;
638 	}
639 
640 	attr.ingress = 1;
641 	pattern_ipv4_5tuple[0] = eth_item;
642 	pattern_ipv4_5tuple[3] = end_item;
643 	actions[0] = count_action;
644 	actions[1] = end_action;
645 
646 	/* Validate and add rule */
647 	ret = rte_flow_classify_validate(cls_app->cls, &attr,
648 			pattern_ipv4_5tuple, actions, &error);
649 	if (ret) {
650 		printf("table entry validate failed ipv4_proto = %u\n",
651 			ipv4_proto);
652 		return ret;
653 	}
654 
655 	rule = rte_flow_classify_table_entry_add(
656 			cls_app->cls, &attr, pattern_ipv4_5tuple,
657 			actions, &key_found, &error);
658 	if (rule == NULL) {
659 		printf("table entry add failed ipv4_proto = %u\n",
660 			ipv4_proto);
661 		ret = -1;
662 		return ret;
663 	}
664 
665 	rules[num_classify_rules] = rule;
666 	num_classify_rules++;
667 	return 0;
668 }
669 
670 /* Reads file and calls the add_classify_rule function. 8< */
671 static int
672 add_rules(const char *rule_path, struct flow_classifier *cls_app)
673 {
674 	FILE *fh;
675 	char buff[LINE_MAX];
676 	unsigned int i = 0;
677 	unsigned int total_num = 0;
678 	struct rte_eth_ntuple_filter ntuple_filter;
679 	int ret;
680 
681 	fh = fopen(rule_path, "rb");
682 	if (fh == NULL)
683 		rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
684 			rule_path);
685 
686 	ret = fseek(fh, 0, SEEK_SET);
687 	if (ret)
688 		rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
689 			ret);
690 
691 	i = 0;
692 	while (fgets(buff, LINE_MAX, fh) != NULL) {
693 		i++;
694 
695 		if (is_bypass_line(buff))
696 			continue;
697 
698 		if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
699 			printf("\nINFO: classify rule capacity %d reached\n",
700 				total_num);
701 			break;
702 		}
703 
704 		if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
705 			rte_exit(EXIT_FAILURE,
706 				"%s Line %u: parse rules error\n",
707 				rule_path, i);
708 
709 		if (add_classify_rule(&ntuple_filter, cls_app) != 0)
710 			rte_exit(EXIT_FAILURE, "add rule error\n");
711 
712 		total_num++;
713 	}
714 
715 	fclose(fh);
716 	return 0;
717 }
718 /* >8 End of add_rules. */
719 
720 /* display usage */
721 static void
722 print_usage(const char *prgname)
723 {
724 	printf("%s usage:\n", prgname);
725 	printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
726 	printf("specify the ipv4 rules file.\n");
727 	printf("Each rule occupies one line in the file.\n");
728 }
729 
730 /* Parse the argument given in the command line of the application */
731 static int
732 parse_args(int argc, char **argv)
733 {
734 	int opt, ret;
735 	char **argvopt;
736 	int option_index;
737 	char *prgname = argv[0];
738 	static struct option lgopts[] = {
739 		{OPTION_RULE_IPV4, 1, 0, 0},
740 		{NULL, 0, 0, 0}
741 	};
742 
743 	argvopt = argv;
744 
745 	while ((opt = getopt_long(argc, argvopt, "",
746 				lgopts, &option_index)) != EOF) {
747 
748 		switch (opt) {
749 		/* long options */
750 		case 0:
751 			if (!strncmp(lgopts[option_index].name,
752 					OPTION_RULE_IPV4,
753 					sizeof(OPTION_RULE_IPV4)))
754 				parm_config.rule_ipv4_name = optarg;
755 			break;
756 		default:
757 			print_usage(prgname);
758 			return -1;
759 		}
760 	}
761 
762 	if (optind >= 0)
763 		argv[optind-1] = prgname;
764 
765 	ret = optind-1;
766 	optind = 1; /* reset getopt lib */
767 	return ret;
768 }
769 
770 /*
771  * The main function, which does initialization and calls the lcore_main
772  * function.
773  */
774 int
775 main(int argc, char *argv[])
776 {
777 	struct rte_mempool *mbuf_pool;
778 	uint16_t nb_ports;
779 	uint16_t portid;
780 	int ret;
781 	int socket_id;
782 	struct rte_table_acl_params table_acl_params;
783 	struct rte_flow_classify_table_params cls_table_params;
784 	struct flow_classifier *cls_app;
785 	struct rte_flow_classifier_params cls_params;
786 	uint32_t size;
787 
788 	/* Initialize the Environment Abstraction Layer (EAL). 8< */
789 	ret = rte_eal_init(argc, argv);
790 	if (ret < 0)
791 		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
792 	/* >8 End of initialization of EAL. */
793 
794 	argc -= ret;
795 	argv += ret;
796 
797 	/* Parse application arguments (after the EAL ones). 8< */
798 	ret = parse_args(argc, argv);
799 	if (ret < 0)
800 		rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
801 	/* >8 End of parse application arguments. */
802 
803 	/* Check that there is an even number of ports to send/receive on. */
804 	nb_ports = rte_eth_dev_count_avail();
805 	if (nb_ports < 2 || (nb_ports & 1))
806 		rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
807 
808 	/* Creates a new mempool in memory to hold the mbufs. 8< */
809 	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
810 		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
811 	/* >8 End of creation of new mempool in memory. */
812 
813 	if (mbuf_pool == NULL)
814 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
815 
816 	/* Initialize all ports. 8< */
817 	RTE_ETH_FOREACH_DEV(portid)
818 		if (port_init(portid, mbuf_pool) != 0)
819 			rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
820 					portid);
821 	/* >8 End of initialization of all ports. */
822 
823 	if (rte_lcore_count() > 1)
824 		printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
825 
826 	socket_id = rte_eth_dev_socket_id(0);
827 
828 	/* Memory allocation. 8< */
829 	size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
830 	cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
831 	if (cls_app == NULL)
832 		rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
833 
834 	cls_params.name = "flow_classifier";
835 	cls_params.socket_id = socket_id;
836 
837 	cls_app->cls = rte_flow_classifier_create(&cls_params);
838 	if (cls_app->cls == NULL) {
839 		rte_free(cls_app);
840 		rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
841 	}
842 
843 	/* initialise ACL table params */
844 	table_acl_params.name = "table_acl_ipv4_5tuple";
845 	table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
846 	table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
847 	memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
848 
849 	/* initialise table create params */
850 	cls_table_params.ops = &rte_table_acl_ops;
851 	cls_table_params.arg_create = &table_acl_params;
852 	cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;
853 
854 	ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
855 	if (ret) {
856 		rte_flow_classifier_free(cls_app->cls);
857 		rte_free(cls_app);
858 		rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
859 	}
860 	/* >8 End of initialization of table create params. */
861 
862 	/* read file of IPv4 5 tuple rules and initialize parameters
863 	 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
864 	 * API's.
865 	 */
866 
867 	/* Read file of IPv4 tuple rules. 8< */
868 	if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
869 		rte_flow_classifier_free(cls_app->cls);
870 		rte_free(cls_app);
871 		rte_exit(EXIT_FAILURE, "Failed to add rules\n");
872 	}
873 	/* >8 End of reading file of IPv4 5 tuple rules. */
874 
875 	/* Call lcore_main on the main core only. */
876 	lcore_main(cls_app);
877 
878 	/* clean up the EAL */
879 	rte_eal_cleanup();
880 
881 	return 0;
882 }
883