1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 #include <inttypes.h>
7 #include <getopt.h>
8 
9 #include <rte_eal.h>
10 #include <rte_ethdev.h>
11 #include <rte_cycles.h>
12 #include <rte_lcore.h>
13 #include <rte_mbuf.h>
14 #include <rte_flow.h>
15 #include <rte_flow_classify.h>
16 #include <rte_table_acl.h>
17 
18 #define RX_RING_SIZE 1024
19 #define TX_RING_SIZE 1024
20 
21 #define NUM_MBUFS 8191
22 #define MBUF_CACHE_SIZE 250
23 #define BURST_SIZE 32
24 
25 #define MAX_NUM_CLASSIFY 30
26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
27 #define FLOW_CLASSIFY_MAX_PRIORITY 8
28 #define FLOW_CLASSIFIER_NAME_SIZE 64
29 
30 #define COMMENT_LEAD_CHAR	('#')
31 #define OPTION_RULE_IPV4	"rule_ipv4"
32 #define RTE_LOGTYPE_FLOW_CLASSIFY	RTE_LOGTYPE_USER3
33 #define flow_classify_log(format, ...) \
34 		RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
35 
36 #define uint32_t_to_char(ip, a, b, c, d) do {\
37 		*a = (unsigned char)(ip >> 24 & 0xff);\
38 		*b = (unsigned char)(ip >> 16 & 0xff);\
39 		*c = (unsigned char)(ip >> 8 & 0xff);\
40 		*d = (unsigned char)(ip & 0xff);\
41 	} while (0)
42 
43 enum {
44 	CB_FLD_SRC_ADDR,
45 	CB_FLD_DST_ADDR,
46 	CB_FLD_SRC_PORT,
47 	CB_FLD_SRC_PORT_DLM,
48 	CB_FLD_SRC_PORT_MASK,
49 	CB_FLD_DST_PORT,
50 	CB_FLD_DST_PORT_DLM,
51 	CB_FLD_DST_PORT_MASK,
52 	CB_FLD_PROTO,
53 	CB_FLD_PRIORITY,
54 	CB_FLD_NUM,
55 };
56 
57 static struct{
58 	const char *rule_ipv4_name;
59 } parm_config;
60 const char cb_port_delim[] = ":";
61 
62 static const struct rte_eth_conf port_conf_default = {
63 	.rxmode = {
64 		.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
65 	},
66 };
67 
68 struct flow_classifier {
69 	struct rte_flow_classifier *cls;
70 };
71 
72 struct flow_classifier_acl {
73 	struct flow_classifier cls;
74 } __rte_cache_aligned;
75 
76 /* ACL field definitions for IPv4 5 tuple rule */
77 
78 enum {
79 	PROTO_FIELD_IPV4,
80 	SRC_FIELD_IPV4,
81 	DST_FIELD_IPV4,
82 	SRCP_FIELD_IPV4,
83 	DSTP_FIELD_IPV4,
84 	NUM_FIELDS_IPV4
85 };
86 
87 enum {
88 	PROTO_INPUT_IPV4,
89 	SRC_INPUT_IPV4,
90 	DST_INPUT_IPV4,
91 	SRCP_DESTP_INPUT_IPV4
92 };
93 
94 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
95 	/* first input field - always one byte long. */
96 	{
97 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
98 		.size = sizeof(uint8_t),
99 		.field_index = PROTO_FIELD_IPV4,
100 		.input_index = PROTO_INPUT_IPV4,
101 		.offset = sizeof(struct rte_ether_hdr) +
102 			offsetof(struct rte_ipv4_hdr, next_proto_id),
103 	},
104 	/* next input field (IPv4 source address) - 4 consecutive bytes. */
105 	{
106 		/* rte_flow uses a bit mask for IPv4 addresses */
107 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
108 		.size = sizeof(uint32_t),
109 		.field_index = SRC_FIELD_IPV4,
110 		.input_index = SRC_INPUT_IPV4,
111 		.offset = sizeof(struct rte_ether_hdr) +
112 			offsetof(struct rte_ipv4_hdr, src_addr),
113 	},
114 	/* next input field (IPv4 destination address) - 4 consecutive bytes. */
115 	{
116 		/* rte_flow uses a bit mask for IPv4 addresses */
117 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
118 		.size = sizeof(uint32_t),
119 		.field_index = DST_FIELD_IPV4,
120 		.input_index = DST_INPUT_IPV4,
121 		.offset = sizeof(struct rte_ether_hdr) +
122 			offsetof(struct rte_ipv4_hdr, dst_addr),
123 	},
124 	/*
125 	 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
126 	 * They share the same input index.
127 	 */
128 	{
129 		/* rte_flow uses a bit mask for protocol ports */
130 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
131 		.size = sizeof(uint16_t),
132 		.field_index = SRCP_FIELD_IPV4,
133 		.input_index = SRCP_DESTP_INPUT_IPV4,
134 		.offset = sizeof(struct rte_ether_hdr) +
135 			sizeof(struct rte_ipv4_hdr) +
136 			offsetof(struct rte_tcp_hdr, src_port),
137 	},
138 	{
139 		/* rte_flow uses a bit mask for protocol ports */
140 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
141 		.size = sizeof(uint16_t),
142 		.field_index = DSTP_FIELD_IPV4,
143 		.input_index = SRCP_DESTP_INPUT_IPV4,
144 		.offset = sizeof(struct rte_ether_hdr) +
145 			sizeof(struct rte_ipv4_hdr) +
146 			offsetof(struct rte_tcp_hdr, dst_port),
147 	},
148 };
149 
150 /* flow classify data */
151 static int num_classify_rules;
152 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
153 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
154 static struct rte_flow_classify_stats classify_stats = {
155 		.stats = (void **)&ntuple_stats
156 };
157 
158 /* parameters for rte_flow_classify_validate and
159  * rte_flow_classify_table_entry_add functions
160  */
161 
162 static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
163 	0, 0, 0 };
164 static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
165 	0, 0, 0 };
166 
167 /* sample actions:
168  * "actions count / end"
169  */
170 struct rte_flow_query_count count = {
171 	.reset = 1,
172 	.hits_set = 1,
173 	.bytes_set = 1,
174 	.hits = 0,
175 	.bytes = 0,
176 };
177 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
178 	&count};
179 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
180 static struct rte_flow_action actions[2];
181 
182 /* sample attributes */
183 static struct rte_flow_attr attr;
184 
185 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
186 
187 /*
188  * Initializes a given port using global settings and with the RX buffers
189  * coming from the mbuf_pool passed as a parameter.
190  */
191 static inline int
192 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
193 {
194 	struct rte_eth_conf port_conf = port_conf_default;
195 	struct rte_ether_addr addr;
196 	const uint16_t rx_rings = 1, tx_rings = 1;
197 	int retval;
198 	uint16_t q;
199 	struct rte_eth_dev_info dev_info;
200 	struct rte_eth_txconf txconf;
201 
202 	if (!rte_eth_dev_is_valid_port(port))
203 		return -1;
204 
205 	retval = rte_eth_dev_info_get(port, &dev_info);
206 	if (retval != 0) {
207 		printf("Error during getting device (port %u) info: %s\n",
208 				port, strerror(-retval));
209 		return retval;
210 	}
211 
212 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
213 		port_conf.txmode.offloads |=
214 			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
215 
216 	/* Configure the Ethernet device. */
217 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
218 	if (retval != 0)
219 		return retval;
220 
221 	/* Allocate and set up 1 RX queue per Ethernet port. */
222 	for (q = 0; q < rx_rings; q++) {
223 		retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
224 				rte_eth_dev_socket_id(port), NULL, mbuf_pool);
225 		if (retval < 0)
226 			return retval;
227 	}
228 
229 	txconf = dev_info.default_txconf;
230 	txconf.offloads = port_conf.txmode.offloads;
231 	/* Allocate and set up 1 TX queue per Ethernet port. */
232 	for (q = 0; q < tx_rings; q++) {
233 		retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
234 				rte_eth_dev_socket_id(port), &txconf);
235 		if (retval < 0)
236 			return retval;
237 	}
238 
239 	/* Start the Ethernet port. */
240 	retval = rte_eth_dev_start(port);
241 	if (retval < 0)
242 		return retval;
243 
244 	/* Display the port MAC address. */
245 	retval = rte_eth_macaddr_get(port, &addr);
246 	if (retval != 0)
247 		return retval;
248 
249 	printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
250 			   " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
251 			port,
252 			addr.addr_bytes[0], addr.addr_bytes[1],
253 			addr.addr_bytes[2], addr.addr_bytes[3],
254 			addr.addr_bytes[4], addr.addr_bytes[5]);
255 
256 	/* Enable RX in promiscuous mode for the Ethernet device. */
257 	retval = rte_eth_promiscuous_enable(port);
258 	if (retval != 0)
259 		return retval;
260 
261 	return 0;
262 }
263 
264 /*
265  * The lcore main. This is the main thread that does the work, reading from
266  * an input port classifying the packets and writing to an output port.
267  */
268 static __rte_noreturn void
269 lcore_main(struct flow_classifier *cls_app)
270 {
271 	uint16_t port;
272 	int ret;
273 	int i = 0;
274 
275 	ret = rte_flow_classify_table_entry_delete(cls_app->cls,
276 			rules[7]);
277 	if (ret)
278 		printf("table_entry_delete failed [7] %d\n\n", ret);
279 	else
280 		printf("table_entry_delete succeeded [7]\n\n");
281 
282 	/*
283 	 * Check that the port is on the same NUMA node as the polling thread
284 	 * for best performance.
285 	 */
286 	RTE_ETH_FOREACH_DEV(port)
287 		if (rte_eth_dev_socket_id(port) > 0 &&
288 			rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
289 			printf("\n\n");
290 			printf("WARNING: port %u is on remote NUMA node\n",
291 			       port);
292 			printf("to polling thread.\n");
293 			printf("Performance will not be optimal.\n");
294 		}
295 	printf("\nCore %u forwarding packets. ", rte_lcore_id());
296 	printf("[Ctrl+C to quit]\n");
297 
298 	/* Run until the application is quit or killed. */
299 	for (;;) {
300 		/*
301 		 * Receive packets on a port, classify them and forward them
302 		 * on the paired port.
303 		 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
304 		 */
305 		RTE_ETH_FOREACH_DEV(port) {
306 			/* Get burst of RX packets, from first port of pair. */
307 			struct rte_mbuf *bufs[BURST_SIZE];
308 			const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
309 					bufs, BURST_SIZE);
310 
311 			if (unlikely(nb_rx == 0))
312 				continue;
313 
314 			for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
315 				if (rules[i]) {
316 					ret = rte_flow_classifier_query(
317 						cls_app->cls,
318 						bufs, nb_rx, rules[i],
319 						&classify_stats);
320 					if (ret)
321 						printf(
322 							"rule [%d] query failed ret [%d]\n\n",
323 							i, ret);
324 					else {
325 						printf(
326 						"rule[%d] count=%"PRIu64"\n",
327 						i, ntuple_stats.counter1);
328 
329 						printf("proto = %d\n",
330 						ntuple_stats.ipv4_5tuple.proto);
331 					}
332 				}
333 			}
334 
335 			/* Send burst of TX packets, to second port of pair. */
336 			const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
337 					bufs, nb_rx);
338 
339 			/* Free any unsent packets. */
340 			if (unlikely(nb_tx < nb_rx)) {
341 				uint16_t buf;
342 
343 				for (buf = nb_tx; buf < nb_rx; buf++)
344 					rte_pktmbuf_free(bufs[buf]);
345 			}
346 		}
347 	}
348 }
349 
350 /*
351  * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
352  * Expected format:
353  * <src_ipv4_addr>'/'<masklen> <space> \
354  * <dst_ipv4_addr>'/'<masklen> <space> \
355  * <src_port> <space> ":" <src_port_mask> <space> \
356  * <dst_port> <space> ":" <dst_port_mask> <space> \
357  * <proto>'/'<proto_mask> <space> \
358  * <priority>
359  */
360 
361 static int
362 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
363 		char dlm)
364 {
365 	unsigned long val;
366 	char *end;
367 
368 	errno = 0;
369 	val = strtoul(*in, &end, base);
370 	if (errno != 0 || end[0] != dlm || val > lim)
371 		return -EINVAL;
372 	*fd = (uint32_t)val;
373 	*in = end + 1;
374 	return 0;
375 }
376 
377 static int
378 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
379 {
380 	uint32_t a, b, c, d, m;
381 
382 	if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
383 		return -EINVAL;
384 	if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
385 		return -EINVAL;
386 	if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
387 		return -EINVAL;
388 	if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
389 		return -EINVAL;
390 	if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
391 		return -EINVAL;
392 
393 	addr[0] = RTE_IPV4(a, b, c, d);
394 	mask_len[0] = m;
395 	return 0;
396 }
397 
398 static int
399 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
400 {
401 	int i, ret;
402 	char *s, *sp, *in[CB_FLD_NUM];
403 	static const char *dlm = " \t\n";
404 	int dim = CB_FLD_NUM;
405 	uint32_t temp;
406 
407 	s = str;
408 	for (i = 0; i != dim; i++, s = NULL) {
409 		in[i] = strtok_r(s, dlm, &sp);
410 		if (in[i] == NULL)
411 			return -EINVAL;
412 	}
413 
414 	ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
415 			&ntuple_filter->src_ip,
416 			&ntuple_filter->src_ip_mask);
417 	if (ret != 0) {
418 		flow_classify_log("failed to read source address/mask: %s\n",
419 			in[CB_FLD_SRC_ADDR]);
420 		return ret;
421 	}
422 
423 	ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
424 			&ntuple_filter->dst_ip,
425 			&ntuple_filter->dst_ip_mask);
426 	if (ret != 0) {
427 		flow_classify_log("failed to read source address/mask: %s\n",
428 			in[CB_FLD_DST_ADDR]);
429 		return ret;
430 	}
431 
432 	if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
433 		return -EINVAL;
434 	ntuple_filter->src_port = (uint16_t)temp;
435 
436 	if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
437 			sizeof(cb_port_delim)) != 0)
438 		return -EINVAL;
439 
440 	if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
441 		return -EINVAL;
442 	ntuple_filter->src_port_mask = (uint16_t)temp;
443 
444 	if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
445 		return -EINVAL;
446 	ntuple_filter->dst_port = (uint16_t)temp;
447 
448 	if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
449 			sizeof(cb_port_delim)) != 0)
450 		return -EINVAL;
451 
452 	if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
453 		return -EINVAL;
454 	ntuple_filter->dst_port_mask = (uint16_t)temp;
455 
456 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
457 		return -EINVAL;
458 	ntuple_filter->proto = (uint8_t)temp;
459 
460 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
461 		return -EINVAL;
462 	ntuple_filter->proto_mask = (uint8_t)temp;
463 
464 	if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
465 		return -EINVAL;
466 	ntuple_filter->priority = (uint16_t)temp;
467 	if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
468 		ret = -EINVAL;
469 
470 	return ret;
471 }
472 
473 /* Bypass comment and empty lines */
474 static inline int
475 is_bypass_line(char *buff)
476 {
477 	int i = 0;
478 
479 	/* comment line */
480 	if (buff[0] == COMMENT_LEAD_CHAR)
481 		return 1;
482 	/* empty line */
483 	while (buff[i] != '\0') {
484 		if (!isspace(buff[i]))
485 			return 0;
486 		i++;
487 	}
488 	return 1;
489 }
490 
491 static uint32_t
492 convert_depth_to_bitmask(uint32_t depth_val)
493 {
494 	uint32_t bitmask = 0;
495 	int i, j;
496 
497 	for (i = depth_val, j = 0; i > 0; i--, j++)
498 		bitmask |= (1 << (31 - j));
499 	return bitmask;
500 }
501 
502 static int
503 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
504 		struct flow_classifier *cls_app)
505 {
506 	int ret = -1;
507 	int key_found;
508 	struct rte_flow_error error;
509 	struct rte_flow_item_ipv4 ipv4_spec;
510 	struct rte_flow_item_ipv4 ipv4_mask;
511 	struct rte_flow_item ipv4_udp_item;
512 	struct rte_flow_item ipv4_tcp_item;
513 	struct rte_flow_item ipv4_sctp_item;
514 	struct rte_flow_item_udp udp_spec;
515 	struct rte_flow_item_udp udp_mask;
516 	struct rte_flow_item udp_item;
517 	struct rte_flow_item_tcp tcp_spec;
518 	struct rte_flow_item_tcp tcp_mask;
519 	struct rte_flow_item tcp_item;
520 	struct rte_flow_item_sctp sctp_spec;
521 	struct rte_flow_item_sctp sctp_mask;
522 	struct rte_flow_item sctp_item;
523 	struct rte_flow_item pattern_ipv4_5tuple[4];
524 	struct rte_flow_classify_rule *rule;
525 	uint8_t ipv4_proto;
526 
527 	if (num_classify_rules >= MAX_NUM_CLASSIFY) {
528 		printf(
529 			"\nINFO:  classify rule capacity %d reached\n",
530 			num_classify_rules);
531 		return ret;
532 	}
533 
534 	/* set up parameters for validate and add */
535 	memset(&ipv4_spec, 0, sizeof(ipv4_spec));
536 	ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
537 	ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
538 	ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
539 	ipv4_proto = ipv4_spec.hdr.next_proto_id;
540 
541 	memset(&ipv4_mask, 0, sizeof(ipv4_mask));
542 	ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
543 	ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
544 	ipv4_mask.hdr.src_addr =
545 		convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
546 	ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
547 	ipv4_mask.hdr.dst_addr =
548 		convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
549 
550 	switch (ipv4_proto) {
551 	case IPPROTO_UDP:
552 		ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
553 		ipv4_udp_item.spec = &ipv4_spec;
554 		ipv4_udp_item.mask = &ipv4_mask;
555 		ipv4_udp_item.last = NULL;
556 
557 		udp_spec.hdr.src_port = ntuple_filter->src_port;
558 		udp_spec.hdr.dst_port = ntuple_filter->dst_port;
559 		udp_spec.hdr.dgram_len = 0;
560 		udp_spec.hdr.dgram_cksum = 0;
561 
562 		udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
563 		udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
564 		udp_mask.hdr.dgram_len = 0;
565 		udp_mask.hdr.dgram_cksum = 0;
566 
567 		udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
568 		udp_item.spec = &udp_spec;
569 		udp_item.mask = &udp_mask;
570 		udp_item.last = NULL;
571 
572 		attr.priority = ntuple_filter->priority;
573 		pattern_ipv4_5tuple[1] = ipv4_udp_item;
574 		pattern_ipv4_5tuple[2] = udp_item;
575 		break;
576 	case IPPROTO_TCP:
577 		ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
578 		ipv4_tcp_item.spec = &ipv4_spec;
579 		ipv4_tcp_item.mask = &ipv4_mask;
580 		ipv4_tcp_item.last = NULL;
581 
582 		memset(&tcp_spec, 0, sizeof(tcp_spec));
583 		tcp_spec.hdr.src_port = ntuple_filter->src_port;
584 		tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
585 
586 		memset(&tcp_mask, 0, sizeof(tcp_mask));
587 		tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
588 		tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
589 
590 		tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
591 		tcp_item.spec = &tcp_spec;
592 		tcp_item.mask = &tcp_mask;
593 		tcp_item.last = NULL;
594 
595 		attr.priority = ntuple_filter->priority;
596 		pattern_ipv4_5tuple[1] = ipv4_tcp_item;
597 		pattern_ipv4_5tuple[2] = tcp_item;
598 		break;
599 	case IPPROTO_SCTP:
600 		ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
601 		ipv4_sctp_item.spec = &ipv4_spec;
602 		ipv4_sctp_item.mask = &ipv4_mask;
603 		ipv4_sctp_item.last = NULL;
604 
605 		sctp_spec.hdr.src_port = ntuple_filter->src_port;
606 		sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
607 		sctp_spec.hdr.cksum = 0;
608 		sctp_spec.hdr.tag = 0;
609 
610 		sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
611 		sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
612 		sctp_mask.hdr.cksum = 0;
613 		sctp_mask.hdr.tag = 0;
614 
615 		sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
616 		sctp_item.spec = &sctp_spec;
617 		sctp_item.mask = &sctp_mask;
618 		sctp_item.last = NULL;
619 
620 		attr.priority = ntuple_filter->priority;
621 		pattern_ipv4_5tuple[1] = ipv4_sctp_item;
622 		pattern_ipv4_5tuple[2] = sctp_item;
623 		break;
624 	default:
625 		return ret;
626 	}
627 
628 	attr.ingress = 1;
629 	pattern_ipv4_5tuple[0] = eth_item;
630 	pattern_ipv4_5tuple[3] = end_item;
631 	actions[0] = count_action;
632 	actions[1] = end_action;
633 
634 	/* Validate and add rule */
635 	ret = rte_flow_classify_validate(cls_app->cls, &attr,
636 			pattern_ipv4_5tuple, actions, &error);
637 	if (ret) {
638 		printf("table entry validate failed ipv4_proto = %u\n",
639 			ipv4_proto);
640 		return ret;
641 	}
642 
643 	rule = rte_flow_classify_table_entry_add(
644 			cls_app->cls, &attr, pattern_ipv4_5tuple,
645 			actions, &key_found, &error);
646 	if (rule == NULL) {
647 		printf("table entry add failed ipv4_proto = %u\n",
648 			ipv4_proto);
649 		ret = -1;
650 		return ret;
651 	}
652 
653 	rules[num_classify_rules] = rule;
654 	num_classify_rules++;
655 	return 0;
656 }
657 
658 static int
659 add_rules(const char *rule_path, struct flow_classifier *cls_app)
660 {
661 	FILE *fh;
662 	char buff[LINE_MAX];
663 	unsigned int i = 0;
664 	unsigned int total_num = 0;
665 	struct rte_eth_ntuple_filter ntuple_filter;
666 	int ret;
667 
668 	fh = fopen(rule_path, "rb");
669 	if (fh == NULL)
670 		rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
671 			rule_path);
672 
673 	ret = fseek(fh, 0, SEEK_SET);
674 	if (ret)
675 		rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
676 			ret);
677 
678 	i = 0;
679 	while (fgets(buff, LINE_MAX, fh) != NULL) {
680 		i++;
681 
682 		if (is_bypass_line(buff))
683 			continue;
684 
685 		if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
686 			printf("\nINFO: classify rule capacity %d reached\n",
687 				total_num);
688 			break;
689 		}
690 
691 		if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
692 			rte_exit(EXIT_FAILURE,
693 				"%s Line %u: parse rules error\n",
694 				rule_path, i);
695 
696 		if (add_classify_rule(&ntuple_filter, cls_app) != 0)
697 			rte_exit(EXIT_FAILURE, "add rule error\n");
698 
699 		total_num++;
700 	}
701 
702 	fclose(fh);
703 	return 0;
704 }
705 
706 /* display usage */
707 static void
708 print_usage(const char *prgname)
709 {
710 	printf("%s usage:\n", prgname);
711 	printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
712 	printf("specify the ipv4 rules file.\n");
713 	printf("Each rule occupies one line in the file.\n");
714 }
715 
716 /* Parse the argument given in the command line of the application */
717 static int
718 parse_args(int argc, char **argv)
719 {
720 	int opt, ret;
721 	char **argvopt;
722 	int option_index;
723 	char *prgname = argv[0];
724 	static struct option lgopts[] = {
725 		{OPTION_RULE_IPV4, 1, 0, 0},
726 		{NULL, 0, 0, 0}
727 	};
728 
729 	argvopt = argv;
730 
731 	while ((opt = getopt_long(argc, argvopt, "",
732 				lgopts, &option_index)) != EOF) {
733 
734 		switch (opt) {
735 		/* long options */
736 		case 0:
737 			if (!strncmp(lgopts[option_index].name,
738 					OPTION_RULE_IPV4,
739 					sizeof(OPTION_RULE_IPV4)))
740 				parm_config.rule_ipv4_name = optarg;
741 			break;
742 		default:
743 			print_usage(prgname);
744 			return -1;
745 		}
746 	}
747 
748 	if (optind >= 0)
749 		argv[optind-1] = prgname;
750 
751 	ret = optind-1;
752 	optind = 1; /* reset getopt lib */
753 	return ret;
754 }
755 
756 /*
757  * The main function, which does initialization and calls the lcore_main
758  * function.
759  */
760 int
761 main(int argc, char *argv[])
762 {
763 	struct rte_mempool *mbuf_pool;
764 	uint16_t nb_ports;
765 	uint16_t portid;
766 	int ret;
767 	int socket_id;
768 	struct rte_table_acl_params table_acl_params;
769 	struct rte_flow_classify_table_params cls_table_params;
770 	struct flow_classifier *cls_app;
771 	struct rte_flow_classifier_params cls_params;
772 	uint32_t size;
773 
774 	/* Initialize the Environment Abstraction Layer (EAL). */
775 	ret = rte_eal_init(argc, argv);
776 	if (ret < 0)
777 		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
778 
779 	argc -= ret;
780 	argv += ret;
781 
782 	/* parse application arguments (after the EAL ones) */
783 	ret = parse_args(argc, argv);
784 	if (ret < 0)
785 		rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
786 
787 	/* Check that there is an even number of ports to send/receive on. */
788 	nb_ports = rte_eth_dev_count_avail();
789 	if (nb_ports < 2 || (nb_ports & 1))
790 		rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
791 
792 	/* Creates a new mempool in memory to hold the mbufs. */
793 	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
794 		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
795 
796 	if (mbuf_pool == NULL)
797 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
798 
799 	/* Initialize all ports. */
800 	RTE_ETH_FOREACH_DEV(portid)
801 		if (port_init(portid, mbuf_pool) != 0)
802 			rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
803 					portid);
804 
805 	if (rte_lcore_count() > 1)
806 		printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
807 
808 	socket_id = rte_eth_dev_socket_id(0);
809 
810 	/* Memory allocation */
811 	size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
812 	cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
813 	if (cls_app == NULL)
814 		rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
815 
816 	cls_params.name = "flow_classifier";
817 	cls_params.socket_id = socket_id;
818 
819 	cls_app->cls = rte_flow_classifier_create(&cls_params);
820 	if (cls_app->cls == NULL) {
821 		rte_free(cls_app);
822 		rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
823 	}
824 
825 	/* initialise ACL table params */
826 	table_acl_params.name = "table_acl_ipv4_5tuple";
827 	table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
828 	table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
829 	memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
830 
831 	/* initialise table create params */
832 	cls_table_params.ops = &rte_table_acl_ops;
833 	cls_table_params.arg_create = &table_acl_params;
834 	cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;
835 
836 	ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
837 	if (ret) {
838 		rte_flow_classifier_free(cls_app->cls);
839 		rte_free(cls_app);
840 		rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
841 	}
842 
843 	/* read file of IPv4 5 tuple rules and initialize parameters
844 	 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
845 	 * API's.
846 	 */
847 	if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
848 		rte_flow_classifier_free(cls_app->cls);
849 		rte_free(cls_app);
850 		rte_exit(EXIT_FAILURE, "Failed to add rules\n");
851 	}
852 
853 	/* Call lcore_main on the master core only. */
854 	lcore_main(cls_app);
855 
856 	return 0;
857 }
858