1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 #include <inttypes.h>
7 #include <getopt.h>
8 
9 #include <rte_eal.h>
10 #include <rte_ethdev.h>
11 #include <rte_cycles.h>
12 #include <rte_lcore.h>
13 #include <rte_mbuf.h>
14 #include <rte_flow.h>
15 #include <rte_flow_classify.h>
16 #include <rte_table_acl.h>
17 
18 #define RX_RING_SIZE 128
19 #define TX_RING_SIZE 512
20 
21 #define NUM_MBUFS 8191
22 #define MBUF_CACHE_SIZE 250
23 #define BURST_SIZE 32
24 
25 #define MAX_NUM_CLASSIFY 30
26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
27 #define FLOW_CLASSIFY_MAX_PRIORITY 8
28 #define FLOW_CLASSIFIER_NAME_SIZE 64
29 
30 #define COMMENT_LEAD_CHAR	('#')
31 #define OPTION_RULE_IPV4	"rule_ipv4"
32 #define RTE_LOGTYPE_FLOW_CLASSIFY	RTE_LOGTYPE_USER3
33 #define flow_classify_log(format, ...) \
34 		RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
35 
36 #define uint32_t_to_char(ip, a, b, c, d) do {\
37 		*a = (unsigned char)(ip >> 24 & 0xff);\
38 		*b = (unsigned char)(ip >> 16 & 0xff);\
39 		*c = (unsigned char)(ip >> 8 & 0xff);\
40 		*d = (unsigned char)(ip & 0xff);\
41 	} while (0)
42 
43 enum {
44 	CB_FLD_SRC_ADDR,
45 	CB_FLD_DST_ADDR,
46 	CB_FLD_SRC_PORT,
47 	CB_FLD_SRC_PORT_DLM,
48 	CB_FLD_SRC_PORT_MASK,
49 	CB_FLD_DST_PORT,
50 	CB_FLD_DST_PORT_DLM,
51 	CB_FLD_DST_PORT_MASK,
52 	CB_FLD_PROTO,
53 	CB_FLD_PRIORITY,
54 	CB_FLD_NUM,
55 };
56 
57 static struct{
58 	const char *rule_ipv4_name;
59 } parm_config;
60 const char cb_port_delim[] = ":";
61 
62 static const struct rte_eth_conf port_conf_default = {
63 	.rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN }
64 };
65 
66 struct flow_classifier {
67 	struct rte_flow_classifier *cls;
68 };
69 
70 struct flow_classifier_acl {
71 	struct flow_classifier cls;
72 } __rte_cache_aligned;
73 
74 /* ACL field definitions for IPv4 5 tuple rule */
75 
76 enum {
77 	PROTO_FIELD_IPV4,
78 	SRC_FIELD_IPV4,
79 	DST_FIELD_IPV4,
80 	SRCP_FIELD_IPV4,
81 	DSTP_FIELD_IPV4,
82 	NUM_FIELDS_IPV4
83 };
84 
85 enum {
86 	PROTO_INPUT_IPV4,
87 	SRC_INPUT_IPV4,
88 	DST_INPUT_IPV4,
89 	SRCP_DESTP_INPUT_IPV4
90 };
91 
92 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
93 	/* first input field - always one byte long. */
94 	{
95 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
96 		.size = sizeof(uint8_t),
97 		.field_index = PROTO_FIELD_IPV4,
98 		.input_index = PROTO_INPUT_IPV4,
99 		.offset = sizeof(struct ether_hdr) +
100 			offsetof(struct ipv4_hdr, next_proto_id),
101 	},
102 	/* next input field (IPv4 source address) - 4 consecutive bytes. */
103 	{
104 		/* rte_flow uses a bit mask for IPv4 addresses */
105 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
106 		.size = sizeof(uint32_t),
107 		.field_index = SRC_FIELD_IPV4,
108 		.input_index = SRC_INPUT_IPV4,
109 		.offset = sizeof(struct ether_hdr) +
110 			offsetof(struct ipv4_hdr, src_addr),
111 	},
112 	/* next input field (IPv4 destination address) - 4 consecutive bytes. */
113 	{
114 		/* rte_flow uses a bit mask for IPv4 addresses */
115 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
116 		.size = sizeof(uint32_t),
117 		.field_index = DST_FIELD_IPV4,
118 		.input_index = DST_INPUT_IPV4,
119 		.offset = sizeof(struct ether_hdr) +
120 			offsetof(struct ipv4_hdr, dst_addr),
121 	},
122 	/*
123 	 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
124 	 * They share the same input index.
125 	 */
126 	{
127 		/* rte_flow uses a bit mask for protocol ports */
128 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
129 		.size = sizeof(uint16_t),
130 		.field_index = SRCP_FIELD_IPV4,
131 		.input_index = SRCP_DESTP_INPUT_IPV4,
132 		.offset = sizeof(struct ether_hdr) +
133 			sizeof(struct ipv4_hdr) +
134 			offsetof(struct tcp_hdr, src_port),
135 	},
136 	{
137 		/* rte_flow uses a bit mask for protocol ports */
138 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
139 		.size = sizeof(uint16_t),
140 		.field_index = DSTP_FIELD_IPV4,
141 		.input_index = SRCP_DESTP_INPUT_IPV4,
142 		.offset = sizeof(struct ether_hdr) +
143 			sizeof(struct ipv4_hdr) +
144 			offsetof(struct tcp_hdr, dst_port),
145 	},
146 };
147 
148 /* flow classify data */
149 static int num_classify_rules;
150 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
151 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
152 static struct rte_flow_classify_stats classify_stats = {
153 		.stats = (void **)&ntuple_stats
154 };
155 
156 /* parameters for rte_flow_classify_validate and
157  * rte_flow_classify_table_entry_add functions
158  */
159 
160 static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
161 	0, 0, 0 };
162 static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
163 	0, 0, 0 };
164 
165 /* sample actions:
166  * "actions count / end"
167  */
168 struct rte_flow_query_count count = {
169 	.reset = 1,
170 	.hits_set = 1,
171 	.bytes_set = 1,
172 	.hits = 0,
173 	.bytes = 0,
174 };
175 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
176 	&count};
177 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
178 static struct rte_flow_action actions[2];
179 
180 /* sample attributes */
181 static struct rte_flow_attr attr;
182 
183 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
184 
185 /*
186  * Initializes a given port using global settings and with the RX buffers
187  * coming from the mbuf_pool passed as a parameter.
188  */
189 static inline int
190 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
191 {
192 	struct rte_eth_conf port_conf = port_conf_default;
193 	struct ether_addr addr;
194 	const uint16_t rx_rings = 1, tx_rings = 1;
195 	int retval;
196 	uint16_t q;
197 
198 	if (port >= rte_eth_dev_count())
199 		return -1;
200 
201 	/* Configure the Ethernet device. */
202 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
203 	if (retval != 0)
204 		return retval;
205 
206 	/* Allocate and set up 1 RX queue per Ethernet port. */
207 	for (q = 0; q < rx_rings; q++) {
208 		retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
209 				rte_eth_dev_socket_id(port), NULL, mbuf_pool);
210 		if (retval < 0)
211 			return retval;
212 	}
213 
214 	/* Allocate and set up 1 TX queue per Ethernet port. */
215 	for (q = 0; q < tx_rings; q++) {
216 		retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
217 				rte_eth_dev_socket_id(port), NULL);
218 		if (retval < 0)
219 			return retval;
220 	}
221 
222 	/* Start the Ethernet port. */
223 	retval = rte_eth_dev_start(port);
224 	if (retval < 0)
225 		return retval;
226 
227 	/* Display the port MAC address. */
228 	rte_eth_macaddr_get(port, &addr);
229 	printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
230 			   " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
231 			port,
232 			addr.addr_bytes[0], addr.addr_bytes[1],
233 			addr.addr_bytes[2], addr.addr_bytes[3],
234 			addr.addr_bytes[4], addr.addr_bytes[5]);
235 
236 	/* Enable RX in promiscuous mode for the Ethernet device. */
237 	rte_eth_promiscuous_enable(port);
238 
239 	return 0;
240 }
241 
242 /*
243  * The lcore main. This is the main thread that does the work, reading from
244  * an input port classifying the packets and writing to an output port.
245  */
246 static __attribute__((noreturn)) void
247 lcore_main(struct flow_classifier *cls_app)
248 {
249 	const uint8_t nb_ports = rte_eth_dev_count();
250 	uint8_t port;
251 	int ret;
252 	int i = 0;
253 
254 	ret = rte_flow_classify_table_entry_delete(cls_app->cls,
255 			rules[7]);
256 	if (ret)
257 		printf("table_entry_delete failed [7] %d\n\n", ret);
258 	else
259 		printf("table_entry_delete succeeded [7]\n\n");
260 
261 	/*
262 	 * Check that the port is on the same NUMA node as the polling thread
263 	 * for best performance.
264 	 */
265 	for (port = 0; port < nb_ports; port++)
266 		if (rte_eth_dev_socket_id(port) > 0 &&
267 			rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
268 			printf("\n\n");
269 			printf("WARNING: port %u is on remote NUMA node\n",
270 			       port);
271 			printf("to polling thread.\n");
272 			printf("Performance will not be optimal.\n");
273 		}
274 	printf("\nCore %u forwarding packets. ", rte_lcore_id());
275 	printf("[Ctrl+C to quit]\n");
276 
277 	/* Run until the application is quit or killed. */
278 	for (;;) {
279 		/*
280 		 * Receive packets on a port, classify them and forward them
281 		 * on the paired port.
282 		 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
283 		 */
284 		for (port = 0; port < nb_ports; port++) {
285 			/* Get burst of RX packets, from first port of pair. */
286 			struct rte_mbuf *bufs[BURST_SIZE];
287 			const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
288 					bufs, BURST_SIZE);
289 
290 			if (unlikely(nb_rx == 0))
291 				continue;
292 
293 			for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
294 				if (rules[i]) {
295 					ret = rte_flow_classifier_query(
296 						cls_app->cls,
297 						bufs, nb_rx, rules[i],
298 						&classify_stats);
299 					if (ret)
300 						printf(
301 							"rule [%d] query failed ret [%d]\n\n",
302 							i, ret);
303 					else {
304 						printf(
305 						"rule[%d] count=%"PRIu64"\n",
306 						i, ntuple_stats.counter1);
307 
308 						printf("proto = %d\n",
309 						ntuple_stats.ipv4_5tuple.proto);
310 					}
311 				}
312 			}
313 
314 			/* Send burst of TX packets, to second port of pair. */
315 			const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
316 					bufs, nb_rx);
317 
318 			/* Free any unsent packets. */
319 			if (unlikely(nb_tx < nb_rx)) {
320 				uint16_t buf;
321 
322 				for (buf = nb_tx; buf < nb_rx; buf++)
323 					rte_pktmbuf_free(bufs[buf]);
324 			}
325 		}
326 	}
327 }
328 
329 /*
330  * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
331  * Expected format:
332  * <src_ipv4_addr>'/'<masklen> <space> \
333  * <dst_ipv4_addr>'/'<masklen> <space> \
334  * <src_port> <space> ":" <src_port_mask> <space> \
335  * <dst_port> <space> ":" <dst_port_mask> <space> \
336  * <proto>'/'<proto_mask> <space> \
337  * <priority>
338  */
339 
340 static int
341 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
342 		char dlm)
343 {
344 	unsigned long val;
345 	char *end;
346 
347 	errno = 0;
348 	val = strtoul(*in, &end, base);
349 	if (errno != 0 || end[0] != dlm || val > lim)
350 		return -EINVAL;
351 	*fd = (uint32_t)val;
352 	*in = end + 1;
353 	return 0;
354 }
355 
356 static int
357 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
358 {
359 	uint32_t a, b, c, d, m;
360 
361 	if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
362 		return -EINVAL;
363 	if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
364 		return -EINVAL;
365 	if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
366 		return -EINVAL;
367 	if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
368 		return -EINVAL;
369 	if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
370 		return -EINVAL;
371 
372 	addr[0] = IPv4(a, b, c, d);
373 	mask_len[0] = m;
374 	return 0;
375 }
376 
377 static int
378 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
379 {
380 	int i, ret;
381 	char *s, *sp, *in[CB_FLD_NUM];
382 	static const char *dlm = " \t\n";
383 	int dim = CB_FLD_NUM;
384 	uint32_t temp;
385 
386 	s = str;
387 	for (i = 0; i != dim; i++, s = NULL) {
388 		in[i] = strtok_r(s, dlm, &sp);
389 		if (in[i] == NULL)
390 			return -EINVAL;
391 	}
392 
393 	ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
394 			&ntuple_filter->src_ip,
395 			&ntuple_filter->src_ip_mask);
396 	if (ret != 0) {
397 		flow_classify_log("failed to read source address/mask: %s\n",
398 			in[CB_FLD_SRC_ADDR]);
399 		return ret;
400 	}
401 
402 	ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
403 			&ntuple_filter->dst_ip,
404 			&ntuple_filter->dst_ip_mask);
405 	if (ret != 0) {
406 		flow_classify_log("failed to read source address/mask: %s\n",
407 			in[CB_FLD_DST_ADDR]);
408 		return ret;
409 	}
410 
411 	if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
412 		return -EINVAL;
413 	ntuple_filter->src_port = (uint16_t)temp;
414 
415 	if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
416 			sizeof(cb_port_delim)) != 0)
417 		return -EINVAL;
418 
419 	if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
420 		return -EINVAL;
421 	ntuple_filter->src_port_mask = (uint16_t)temp;
422 
423 	if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
424 		return -EINVAL;
425 	ntuple_filter->dst_port = (uint16_t)temp;
426 
427 	if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
428 			sizeof(cb_port_delim)) != 0)
429 		return -EINVAL;
430 
431 	if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
432 		return -EINVAL;
433 	ntuple_filter->dst_port_mask = (uint16_t)temp;
434 
435 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
436 		return -EINVAL;
437 	ntuple_filter->proto = (uint8_t)temp;
438 
439 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
440 		return -EINVAL;
441 	ntuple_filter->proto_mask = (uint8_t)temp;
442 
443 	if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
444 		return -EINVAL;
445 	ntuple_filter->priority = (uint16_t)temp;
446 	if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
447 		ret = -EINVAL;
448 
449 	return ret;
450 }
451 
452 /* Bypass comment and empty lines */
453 static inline int
454 is_bypass_line(char *buff)
455 {
456 	int i = 0;
457 
458 	/* comment line */
459 	if (buff[0] == COMMENT_LEAD_CHAR)
460 		return 1;
461 	/* empty line */
462 	while (buff[i] != '\0') {
463 		if (!isspace(buff[i]))
464 			return 0;
465 		i++;
466 	}
467 	return 1;
468 }
469 
470 static uint32_t
471 convert_depth_to_bitmask(uint32_t depth_val)
472 {
473 	uint32_t bitmask = 0;
474 	int i, j;
475 
476 	for (i = depth_val, j = 0; i > 0; i--, j++)
477 		bitmask |= (1 << (31 - j));
478 	return bitmask;
479 }
480 
481 static int
482 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
483 		struct flow_classifier *cls_app)
484 {
485 	int ret = -1;
486 	int key_found;
487 	struct rte_flow_error error;
488 	struct rte_flow_item_ipv4 ipv4_spec;
489 	struct rte_flow_item_ipv4 ipv4_mask;
490 	struct rte_flow_item ipv4_udp_item;
491 	struct rte_flow_item ipv4_tcp_item;
492 	struct rte_flow_item ipv4_sctp_item;
493 	struct rte_flow_item_udp udp_spec;
494 	struct rte_flow_item_udp udp_mask;
495 	struct rte_flow_item udp_item;
496 	struct rte_flow_item_tcp tcp_spec;
497 	struct rte_flow_item_tcp tcp_mask;
498 	struct rte_flow_item tcp_item;
499 	struct rte_flow_item_sctp sctp_spec;
500 	struct rte_flow_item_sctp sctp_mask;
501 	struct rte_flow_item sctp_item;
502 	struct rte_flow_item pattern_ipv4_5tuple[4];
503 	struct rte_flow_classify_rule *rule;
504 	uint8_t ipv4_proto;
505 
506 	if (num_classify_rules >= MAX_NUM_CLASSIFY) {
507 		printf(
508 			"\nINFO:  classify rule capacity %d reached\n",
509 			num_classify_rules);
510 		return ret;
511 	}
512 
513 	/* set up parameters for validate and add */
514 	memset(&ipv4_spec, 0, sizeof(ipv4_spec));
515 	ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
516 	ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
517 	ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
518 	ipv4_proto = ipv4_spec.hdr.next_proto_id;
519 
520 	memset(&ipv4_mask, 0, sizeof(ipv4_mask));
521 	ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
522 	ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
523 	ipv4_mask.hdr.src_addr =
524 		convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
525 	ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
526 	ipv4_mask.hdr.dst_addr =
527 		convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
528 
529 	switch (ipv4_proto) {
530 	case IPPROTO_UDP:
531 		ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
532 		ipv4_udp_item.spec = &ipv4_spec;
533 		ipv4_udp_item.mask = &ipv4_mask;
534 		ipv4_udp_item.last = NULL;
535 
536 		udp_spec.hdr.src_port = ntuple_filter->src_port;
537 		udp_spec.hdr.dst_port = ntuple_filter->dst_port;
538 		udp_spec.hdr.dgram_len = 0;
539 		udp_spec.hdr.dgram_cksum = 0;
540 
541 		udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
542 		udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
543 		udp_mask.hdr.dgram_len = 0;
544 		udp_mask.hdr.dgram_cksum = 0;
545 
546 		udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
547 		udp_item.spec = &udp_spec;
548 		udp_item.mask = &udp_mask;
549 		udp_item.last = NULL;
550 
551 		attr.priority = ntuple_filter->priority;
552 		pattern_ipv4_5tuple[1] = ipv4_udp_item;
553 		pattern_ipv4_5tuple[2] = udp_item;
554 		break;
555 	case IPPROTO_TCP:
556 		ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
557 		ipv4_tcp_item.spec = &ipv4_spec;
558 		ipv4_tcp_item.mask = &ipv4_mask;
559 		ipv4_tcp_item.last = NULL;
560 
561 		memset(&tcp_spec, 0, sizeof(tcp_spec));
562 		tcp_spec.hdr.src_port = ntuple_filter->src_port;
563 		tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
564 
565 		memset(&tcp_mask, 0, sizeof(tcp_mask));
566 		tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
567 		tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
568 
569 		tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
570 		tcp_item.spec = &tcp_spec;
571 		tcp_item.mask = &tcp_mask;
572 		tcp_item.last = NULL;
573 
574 		attr.priority = ntuple_filter->priority;
575 		pattern_ipv4_5tuple[1] = ipv4_tcp_item;
576 		pattern_ipv4_5tuple[2] = tcp_item;
577 		break;
578 	case IPPROTO_SCTP:
579 		ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
580 		ipv4_sctp_item.spec = &ipv4_spec;
581 		ipv4_sctp_item.mask = &ipv4_mask;
582 		ipv4_sctp_item.last = NULL;
583 
584 		sctp_spec.hdr.src_port = ntuple_filter->src_port;
585 		sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
586 		sctp_spec.hdr.cksum = 0;
587 		sctp_spec.hdr.tag = 0;
588 
589 		sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
590 		sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
591 		sctp_mask.hdr.cksum = 0;
592 		sctp_mask.hdr.tag = 0;
593 
594 		sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
595 		sctp_item.spec = &sctp_spec;
596 		sctp_item.mask = &sctp_mask;
597 		sctp_item.last = NULL;
598 
599 		attr.priority = ntuple_filter->priority;
600 		pattern_ipv4_5tuple[1] = ipv4_sctp_item;
601 		pattern_ipv4_5tuple[2] = sctp_item;
602 		break;
603 	default:
604 		return ret;
605 	}
606 
607 	attr.ingress = 1;
608 	pattern_ipv4_5tuple[0] = eth_item;
609 	pattern_ipv4_5tuple[3] = end_item;
610 	actions[0] = count_action;
611 	actions[1] = end_action;
612 
613 	/* Validate and add rule */
614 	ret = rte_flow_classify_validate(cls_app->cls, &attr,
615 			pattern_ipv4_5tuple, actions, &error);
616 	if (ret) {
617 		printf("table entry validate failed ipv4_proto = %u\n",
618 			ipv4_proto);
619 		return ret;
620 	}
621 
622 	rule = rte_flow_classify_table_entry_add(
623 			cls_app->cls, &attr, pattern_ipv4_5tuple,
624 			actions, &key_found, &error);
625 	if (rule == NULL) {
626 		printf("table entry add failed ipv4_proto = %u\n",
627 			ipv4_proto);
628 		ret = -1;
629 		return ret;
630 	}
631 
632 	rules[num_classify_rules] = rule;
633 	num_classify_rules++;
634 	return 0;
635 }
636 
637 static int
638 add_rules(const char *rule_path, struct flow_classifier *cls_app)
639 {
640 	FILE *fh;
641 	char buff[LINE_MAX];
642 	unsigned int i = 0;
643 	unsigned int total_num = 0;
644 	struct rte_eth_ntuple_filter ntuple_filter;
645 	int ret;
646 
647 	fh = fopen(rule_path, "rb");
648 	if (fh == NULL)
649 		rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
650 			rule_path);
651 
652 	ret = fseek(fh, 0, SEEK_SET);
653 	if (ret)
654 		rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
655 			ret);
656 
657 	i = 0;
658 	while (fgets(buff, LINE_MAX, fh) != NULL) {
659 		i++;
660 
661 		if (is_bypass_line(buff))
662 			continue;
663 
664 		if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
665 			printf("\nINFO: classify rule capacity %d reached\n",
666 				total_num);
667 			break;
668 		}
669 
670 		if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
671 			rte_exit(EXIT_FAILURE,
672 				"%s Line %u: parse rules error\n",
673 				rule_path, i);
674 
675 		if (add_classify_rule(&ntuple_filter, cls_app) != 0)
676 			rte_exit(EXIT_FAILURE, "add rule error\n");
677 
678 		total_num++;
679 	}
680 
681 	fclose(fh);
682 	return 0;
683 }
684 
685 /* display usage */
686 static void
687 print_usage(const char *prgname)
688 {
689 	printf("%s usage:\n", prgname);
690 	printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
691 	printf("specify the ipv4 rules file.\n");
692 	printf("Each rule occupies one line in the file.\n");
693 }
694 
695 /* Parse the argument given in the command line of the application */
696 static int
697 parse_args(int argc, char **argv)
698 {
699 	int opt, ret;
700 	char **argvopt;
701 	int option_index;
702 	char *prgname = argv[0];
703 	static struct option lgopts[] = {
704 		{OPTION_RULE_IPV4, 1, 0, 0},
705 		{NULL, 0, 0, 0}
706 	};
707 
708 	argvopt = argv;
709 
710 	while ((opt = getopt_long(argc, argvopt, "",
711 				lgopts, &option_index)) != EOF) {
712 
713 		switch (opt) {
714 		/* long options */
715 		case 0:
716 			if (!strncmp(lgopts[option_index].name,
717 					OPTION_RULE_IPV4,
718 					sizeof(OPTION_RULE_IPV4)))
719 				parm_config.rule_ipv4_name = optarg;
720 			break;
721 		default:
722 			print_usage(prgname);
723 			return -1;
724 		}
725 	}
726 
727 	if (optind >= 0)
728 		argv[optind-1] = prgname;
729 
730 	ret = optind-1;
731 	optind = 1; /* reset getopt lib */
732 	return ret;
733 }
734 
735 /*
736  * The main function, which does initialization and calls the lcore_main
737  * function.
738  */
739 int
740 main(int argc, char *argv[])
741 {
742 	struct rte_mempool *mbuf_pool;
743 	uint8_t nb_ports;
744 	uint8_t portid;
745 	int ret;
746 	int socket_id;
747 	struct rte_table_acl_params table_acl_params;
748 	struct rte_flow_classify_table_params cls_table_params;
749 	struct flow_classifier *cls_app;
750 	struct rte_flow_classifier_params cls_params;
751 	uint32_t size;
752 
753 	/* Initialize the Environment Abstraction Layer (EAL). */
754 	ret = rte_eal_init(argc, argv);
755 	if (ret < 0)
756 		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
757 
758 	argc -= ret;
759 	argv += ret;
760 
761 	/* parse application arguments (after the EAL ones) */
762 	ret = parse_args(argc, argv);
763 	if (ret < 0)
764 		rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
765 
766 	/* Check that there is an even number of ports to send/receive on. */
767 	nb_ports = rte_eth_dev_count();
768 	if (nb_ports < 2 || (nb_ports & 1))
769 		rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
770 
771 	/* Creates a new mempool in memory to hold the mbufs. */
772 	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
773 		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
774 
775 	if (mbuf_pool == NULL)
776 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
777 
778 	/* Initialize all ports. */
779 	for (portid = 0; portid < nb_ports; portid++)
780 		if (port_init(portid, mbuf_pool) != 0)
781 			rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
782 					portid);
783 
784 	if (rte_lcore_count() > 1)
785 		printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
786 
787 	socket_id = rte_eth_dev_socket_id(0);
788 
789 	/* Memory allocation */
790 	size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
791 	cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
792 	if (cls_app == NULL)
793 		rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
794 
795 	cls_params.name = "flow_classifier";
796 	cls_params.socket_id = socket_id;
797 
798 	cls_app->cls = rte_flow_classifier_create(&cls_params);
799 	if (cls_app->cls == NULL) {
800 		rte_free(cls_app);
801 		rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
802 	}
803 
804 	/* initialise ACL table params */
805 	table_acl_params.name = "table_acl_ipv4_5tuple";
806 	table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
807 	table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
808 	memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
809 
810 	/* initialise table create params */
811 	cls_table_params.ops = &rte_table_acl_ops;
812 	cls_table_params.arg_create = &table_acl_params;
813 	cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;
814 
815 	ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
816 	if (ret) {
817 		rte_flow_classifier_free(cls_app->cls);
818 		rte_free(cls_app);
819 		rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
820 	}
821 
822 	/* read file of IPv4 5 tuple rules and initialize parameters
823 	 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
824 	 * API's.
825 	 */
826 	if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
827 		rte_flow_classifier_free(cls_app->cls);
828 		rte_free(cls_app);
829 		rte_exit(EXIT_FAILURE, "Failed to add rules\n");
830 	}
831 
832 	/* Call lcore_main on the master core only. */
833 	lcore_main(cls_app);
834 
835 	return 0;
836 }
837