1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <stdint.h> 6 #include <inttypes.h> 7 #include <getopt.h> 8 9 #include <rte_eal.h> 10 #include <rte_ethdev.h> 11 #include <rte_cycles.h> 12 #include <rte_lcore.h> 13 #include <rte_mbuf.h> 14 #include <rte_flow.h> 15 #include <rte_flow_classify.h> 16 #include <rte_table_acl.h> 17 18 #define RX_RING_SIZE 128 19 #define TX_RING_SIZE 512 20 21 #define NUM_MBUFS 8191 22 #define MBUF_CACHE_SIZE 250 23 #define BURST_SIZE 32 24 25 #define MAX_NUM_CLASSIFY 30 26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91 27 #define FLOW_CLASSIFY_MAX_PRIORITY 8 28 #define FLOW_CLASSIFIER_NAME_SIZE 64 29 30 #define COMMENT_LEAD_CHAR ('#') 31 #define OPTION_RULE_IPV4 "rule_ipv4" 32 #define RTE_LOGTYPE_FLOW_CLASSIFY RTE_LOGTYPE_USER3 33 #define flow_classify_log(format, ...) \ 34 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__) 35 36 #define uint32_t_to_char(ip, a, b, c, d) do {\ 37 *a = (unsigned char)(ip >> 24 & 0xff);\ 38 *b = (unsigned char)(ip >> 16 & 0xff);\ 39 *c = (unsigned char)(ip >> 8 & 0xff);\ 40 *d = (unsigned char)(ip & 0xff);\ 41 } while (0) 42 43 enum { 44 CB_FLD_SRC_ADDR, 45 CB_FLD_DST_ADDR, 46 CB_FLD_SRC_PORT, 47 CB_FLD_SRC_PORT_DLM, 48 CB_FLD_SRC_PORT_MASK, 49 CB_FLD_DST_PORT, 50 CB_FLD_DST_PORT_DLM, 51 CB_FLD_DST_PORT_MASK, 52 CB_FLD_PROTO, 53 CB_FLD_PRIORITY, 54 CB_FLD_NUM, 55 }; 56 57 static struct{ 58 const char *rule_ipv4_name; 59 } parm_config; 60 const char cb_port_delim[] = ":"; 61 62 static const struct rte_eth_conf port_conf_default = { 63 .rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN } 64 }; 65 66 struct flow_classifier { 67 struct rte_flow_classifier *cls; 68 }; 69 70 struct flow_classifier_acl { 71 struct flow_classifier cls; 72 } __rte_cache_aligned; 73 74 /* ACL field definitions for IPv4 5 tuple rule */ 75 76 enum { 77 PROTO_FIELD_IPV4, 78 SRC_FIELD_IPV4, 79 DST_FIELD_IPV4, 80 SRCP_FIELD_IPV4, 81 DSTP_FIELD_IPV4, 82 NUM_FIELDS_IPV4 83 }; 84 85 enum { 86 PROTO_INPUT_IPV4, 87 SRC_INPUT_IPV4, 88 DST_INPUT_IPV4, 89 SRCP_DESTP_INPUT_IPV4 90 }; 91 92 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { 93 /* first input field - always one byte long. */ 94 { 95 .type = RTE_ACL_FIELD_TYPE_BITMASK, 96 .size = sizeof(uint8_t), 97 .field_index = PROTO_FIELD_IPV4, 98 .input_index = PROTO_INPUT_IPV4, 99 .offset = sizeof(struct ether_hdr) + 100 offsetof(struct ipv4_hdr, next_proto_id), 101 }, 102 /* next input field (IPv4 source address) - 4 consecutive bytes. */ 103 { 104 /* rte_flow uses a bit mask for IPv4 addresses */ 105 .type = RTE_ACL_FIELD_TYPE_BITMASK, 106 .size = sizeof(uint32_t), 107 .field_index = SRC_FIELD_IPV4, 108 .input_index = SRC_INPUT_IPV4, 109 .offset = sizeof(struct ether_hdr) + 110 offsetof(struct ipv4_hdr, src_addr), 111 }, 112 /* next input field (IPv4 destination address) - 4 consecutive bytes. */ 113 { 114 /* rte_flow uses a bit mask for IPv4 addresses */ 115 .type = RTE_ACL_FIELD_TYPE_BITMASK, 116 .size = sizeof(uint32_t), 117 .field_index = DST_FIELD_IPV4, 118 .input_index = DST_INPUT_IPV4, 119 .offset = sizeof(struct ether_hdr) + 120 offsetof(struct ipv4_hdr, dst_addr), 121 }, 122 /* 123 * Next 2 fields (src & dst ports) form 4 consecutive bytes. 124 * They share the same input index. 125 */ 126 { 127 /* rte_flow uses a bit mask for protocol ports */ 128 .type = RTE_ACL_FIELD_TYPE_BITMASK, 129 .size = sizeof(uint16_t), 130 .field_index = SRCP_FIELD_IPV4, 131 .input_index = SRCP_DESTP_INPUT_IPV4, 132 .offset = sizeof(struct ether_hdr) + 133 sizeof(struct ipv4_hdr) + 134 offsetof(struct tcp_hdr, src_port), 135 }, 136 { 137 /* rte_flow uses a bit mask for protocol ports */ 138 .type = RTE_ACL_FIELD_TYPE_BITMASK, 139 .size = sizeof(uint16_t), 140 .field_index = DSTP_FIELD_IPV4, 141 .input_index = SRCP_DESTP_INPUT_IPV4, 142 .offset = sizeof(struct ether_hdr) + 143 sizeof(struct ipv4_hdr) + 144 offsetof(struct tcp_hdr, dst_port), 145 }, 146 }; 147 148 /* flow classify data */ 149 static int num_classify_rules; 150 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY]; 151 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats; 152 static struct rte_flow_classify_stats classify_stats = { 153 .stats = (void **)&ntuple_stats 154 }; 155 156 /* parameters for rte_flow_classify_validate and 157 * rte_flow_classify_table_entry_add functions 158 */ 159 160 static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH, 161 0, 0, 0 }; 162 static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END, 163 0, 0, 0 }; 164 165 /* sample actions: 166 * "actions count / end" 167 */ 168 struct rte_flow_query_count count = { 169 .reset = 1, 170 .hits_set = 1, 171 .bytes_set = 1, 172 .hits = 0, 173 .bytes = 0, 174 }; 175 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, 176 &count}; 177 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; 178 static struct rte_flow_action actions[2]; 179 180 /* sample attributes */ 181 static struct rte_flow_attr attr; 182 183 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */ 184 185 /* 186 * Initializes a given port using global settings and with the RX buffers 187 * coming from the mbuf_pool passed as a parameter. 188 */ 189 static inline int 190 port_init(uint8_t port, struct rte_mempool *mbuf_pool) 191 { 192 struct rte_eth_conf port_conf = port_conf_default; 193 struct ether_addr addr; 194 const uint16_t rx_rings = 1, tx_rings = 1; 195 int retval; 196 uint16_t q; 197 198 if (port >= rte_eth_dev_count()) 199 return -1; 200 201 /* Configure the Ethernet device. */ 202 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); 203 if (retval != 0) 204 return retval; 205 206 /* Allocate and set up 1 RX queue per Ethernet port. */ 207 for (q = 0; q < rx_rings; q++) { 208 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE, 209 rte_eth_dev_socket_id(port), NULL, mbuf_pool); 210 if (retval < 0) 211 return retval; 212 } 213 214 /* Allocate and set up 1 TX queue per Ethernet port. */ 215 for (q = 0; q < tx_rings; q++) { 216 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE, 217 rte_eth_dev_socket_id(port), NULL); 218 if (retval < 0) 219 return retval; 220 } 221 222 /* Start the Ethernet port. */ 223 retval = rte_eth_dev_start(port); 224 if (retval < 0) 225 return retval; 226 227 /* Display the port MAC address. */ 228 rte_eth_macaddr_get(port, &addr); 229 printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8 230 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n", 231 port, 232 addr.addr_bytes[0], addr.addr_bytes[1], 233 addr.addr_bytes[2], addr.addr_bytes[3], 234 addr.addr_bytes[4], addr.addr_bytes[5]); 235 236 /* Enable RX in promiscuous mode for the Ethernet device. */ 237 rte_eth_promiscuous_enable(port); 238 239 return 0; 240 } 241 242 /* 243 * The lcore main. This is the main thread that does the work, reading from 244 * an input port classifying the packets and writing to an output port. 245 */ 246 static __attribute__((noreturn)) void 247 lcore_main(struct flow_classifier *cls_app) 248 { 249 const uint8_t nb_ports = rte_eth_dev_count(); 250 uint8_t port; 251 int ret; 252 int i = 0; 253 254 ret = rte_flow_classify_table_entry_delete(cls_app->cls, 255 rules[7]); 256 if (ret) 257 printf("table_entry_delete failed [7] %d\n\n", ret); 258 else 259 printf("table_entry_delete succeeded [7]\n\n"); 260 261 /* 262 * Check that the port is on the same NUMA node as the polling thread 263 * for best performance. 264 */ 265 for (port = 0; port < nb_ports; port++) 266 if (rte_eth_dev_socket_id(port) > 0 && 267 rte_eth_dev_socket_id(port) != (int)rte_socket_id()) { 268 printf("\n\n"); 269 printf("WARNING: port %u is on remote NUMA node\n", 270 port); 271 printf("to polling thread.\n"); 272 printf("Performance will not be optimal.\n"); 273 } 274 printf("\nCore %u forwarding packets. ", rte_lcore_id()); 275 printf("[Ctrl+C to quit]\n"); 276 277 /* Run until the application is quit or killed. */ 278 for (;;) { 279 /* 280 * Receive packets on a port, classify them and forward them 281 * on the paired port. 282 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc. 283 */ 284 for (port = 0; port < nb_ports; port++) { 285 /* Get burst of RX packets, from first port of pair. */ 286 struct rte_mbuf *bufs[BURST_SIZE]; 287 const uint16_t nb_rx = rte_eth_rx_burst(port, 0, 288 bufs, BURST_SIZE); 289 290 if (unlikely(nb_rx == 0)) 291 continue; 292 293 for (i = 0; i < MAX_NUM_CLASSIFY; i++) { 294 if (rules[i]) { 295 ret = rte_flow_classifier_query( 296 cls_app->cls, 297 bufs, nb_rx, rules[i], 298 &classify_stats); 299 if (ret) 300 printf( 301 "rule [%d] query failed ret [%d]\n\n", 302 i, ret); 303 else { 304 printf( 305 "rule[%d] count=%"PRIu64"\n", 306 i, ntuple_stats.counter1); 307 308 printf("proto = %d\n", 309 ntuple_stats.ipv4_5tuple.proto); 310 } 311 } 312 } 313 314 /* Send burst of TX packets, to second port of pair. */ 315 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0, 316 bufs, nb_rx); 317 318 /* Free any unsent packets. */ 319 if (unlikely(nb_tx < nb_rx)) { 320 uint16_t buf; 321 322 for (buf = nb_tx; buf < nb_rx; buf++) 323 rte_pktmbuf_free(bufs[buf]); 324 } 325 } 326 } 327 } 328 329 /* 330 * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt. 331 * Expected format: 332 * <src_ipv4_addr>'/'<masklen> <space> \ 333 * <dst_ipv4_addr>'/'<masklen> <space> \ 334 * <src_port> <space> ":" <src_port_mask> <space> \ 335 * <dst_port> <space> ":" <dst_port_mask> <space> \ 336 * <proto>'/'<proto_mask> <space> \ 337 * <priority> 338 */ 339 340 static int 341 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim, 342 char dlm) 343 { 344 unsigned long val; 345 char *end; 346 347 errno = 0; 348 val = strtoul(*in, &end, base); 349 if (errno != 0 || end[0] != dlm || val > lim) 350 return -EINVAL; 351 *fd = (uint32_t)val; 352 *in = end + 1; 353 return 0; 354 } 355 356 static int 357 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len) 358 { 359 uint32_t a, b, c, d, m; 360 361 if (get_cb_field(&in, &a, 0, UINT8_MAX, '.')) 362 return -EINVAL; 363 if (get_cb_field(&in, &b, 0, UINT8_MAX, '.')) 364 return -EINVAL; 365 if (get_cb_field(&in, &c, 0, UINT8_MAX, '.')) 366 return -EINVAL; 367 if (get_cb_field(&in, &d, 0, UINT8_MAX, '/')) 368 return -EINVAL; 369 if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0)) 370 return -EINVAL; 371 372 addr[0] = IPv4(a, b, c, d); 373 mask_len[0] = m; 374 return 0; 375 } 376 377 static int 378 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter) 379 { 380 int i, ret; 381 char *s, *sp, *in[CB_FLD_NUM]; 382 static const char *dlm = " \t\n"; 383 int dim = CB_FLD_NUM; 384 uint32_t temp; 385 386 s = str; 387 for (i = 0; i != dim; i++, s = NULL) { 388 in[i] = strtok_r(s, dlm, &sp); 389 if (in[i] == NULL) 390 return -EINVAL; 391 } 392 393 ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR], 394 &ntuple_filter->src_ip, 395 &ntuple_filter->src_ip_mask); 396 if (ret != 0) { 397 flow_classify_log("failed to read source address/mask: %s\n", 398 in[CB_FLD_SRC_ADDR]); 399 return ret; 400 } 401 402 ret = parse_ipv4_net(in[CB_FLD_DST_ADDR], 403 &ntuple_filter->dst_ip, 404 &ntuple_filter->dst_ip_mask); 405 if (ret != 0) { 406 flow_classify_log("failed to read source address/mask: %s\n", 407 in[CB_FLD_DST_ADDR]); 408 return ret; 409 } 410 411 if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0)) 412 return -EINVAL; 413 ntuple_filter->src_port = (uint16_t)temp; 414 415 if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim, 416 sizeof(cb_port_delim)) != 0) 417 return -EINVAL; 418 419 if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 420 return -EINVAL; 421 ntuple_filter->src_port_mask = (uint16_t)temp; 422 423 if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0)) 424 return -EINVAL; 425 ntuple_filter->dst_port = (uint16_t)temp; 426 427 if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim, 428 sizeof(cb_port_delim)) != 0) 429 return -EINVAL; 430 431 if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 432 return -EINVAL; 433 ntuple_filter->dst_port_mask = (uint16_t)temp; 434 435 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/')) 436 return -EINVAL; 437 ntuple_filter->proto = (uint8_t)temp; 438 439 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0)) 440 return -EINVAL; 441 ntuple_filter->proto_mask = (uint8_t)temp; 442 443 if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0)) 444 return -EINVAL; 445 ntuple_filter->priority = (uint16_t)temp; 446 if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY) 447 ret = -EINVAL; 448 449 return ret; 450 } 451 452 /* Bypass comment and empty lines */ 453 static inline int 454 is_bypass_line(char *buff) 455 { 456 int i = 0; 457 458 /* comment line */ 459 if (buff[0] == COMMENT_LEAD_CHAR) 460 return 1; 461 /* empty line */ 462 while (buff[i] != '\0') { 463 if (!isspace(buff[i])) 464 return 0; 465 i++; 466 } 467 return 1; 468 } 469 470 static uint32_t 471 convert_depth_to_bitmask(uint32_t depth_val) 472 { 473 uint32_t bitmask = 0; 474 int i, j; 475 476 for (i = depth_val, j = 0; i > 0; i--, j++) 477 bitmask |= (1 << (31 - j)); 478 return bitmask; 479 } 480 481 static int 482 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter, 483 struct flow_classifier *cls_app) 484 { 485 int ret = -1; 486 int key_found; 487 struct rte_flow_error error; 488 struct rte_flow_item_ipv4 ipv4_spec; 489 struct rte_flow_item_ipv4 ipv4_mask; 490 struct rte_flow_item ipv4_udp_item; 491 struct rte_flow_item ipv4_tcp_item; 492 struct rte_flow_item ipv4_sctp_item; 493 struct rte_flow_item_udp udp_spec; 494 struct rte_flow_item_udp udp_mask; 495 struct rte_flow_item udp_item; 496 struct rte_flow_item_tcp tcp_spec; 497 struct rte_flow_item_tcp tcp_mask; 498 struct rte_flow_item tcp_item; 499 struct rte_flow_item_sctp sctp_spec; 500 struct rte_flow_item_sctp sctp_mask; 501 struct rte_flow_item sctp_item; 502 struct rte_flow_item pattern_ipv4_5tuple[4]; 503 struct rte_flow_classify_rule *rule; 504 uint8_t ipv4_proto; 505 506 if (num_classify_rules >= MAX_NUM_CLASSIFY) { 507 printf( 508 "\nINFO: classify rule capacity %d reached\n", 509 num_classify_rules); 510 return ret; 511 } 512 513 /* set up parameters for validate and add */ 514 memset(&ipv4_spec, 0, sizeof(ipv4_spec)); 515 ipv4_spec.hdr.next_proto_id = ntuple_filter->proto; 516 ipv4_spec.hdr.src_addr = ntuple_filter->src_ip; 517 ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip; 518 ipv4_proto = ipv4_spec.hdr.next_proto_id; 519 520 memset(&ipv4_mask, 0, sizeof(ipv4_mask)); 521 ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask; 522 ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask; 523 ipv4_mask.hdr.src_addr = 524 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr); 525 ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask; 526 ipv4_mask.hdr.dst_addr = 527 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr); 528 529 switch (ipv4_proto) { 530 case IPPROTO_UDP: 531 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 532 ipv4_udp_item.spec = &ipv4_spec; 533 ipv4_udp_item.mask = &ipv4_mask; 534 ipv4_udp_item.last = NULL; 535 536 udp_spec.hdr.src_port = ntuple_filter->src_port; 537 udp_spec.hdr.dst_port = ntuple_filter->dst_port; 538 udp_spec.hdr.dgram_len = 0; 539 udp_spec.hdr.dgram_cksum = 0; 540 541 udp_mask.hdr.src_port = ntuple_filter->src_port_mask; 542 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 543 udp_mask.hdr.dgram_len = 0; 544 udp_mask.hdr.dgram_cksum = 0; 545 546 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP; 547 udp_item.spec = &udp_spec; 548 udp_item.mask = &udp_mask; 549 udp_item.last = NULL; 550 551 attr.priority = ntuple_filter->priority; 552 pattern_ipv4_5tuple[1] = ipv4_udp_item; 553 pattern_ipv4_5tuple[2] = udp_item; 554 break; 555 case IPPROTO_TCP: 556 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 557 ipv4_tcp_item.spec = &ipv4_spec; 558 ipv4_tcp_item.mask = &ipv4_mask; 559 ipv4_tcp_item.last = NULL; 560 561 memset(&tcp_spec, 0, sizeof(tcp_spec)); 562 tcp_spec.hdr.src_port = ntuple_filter->src_port; 563 tcp_spec.hdr.dst_port = ntuple_filter->dst_port; 564 565 memset(&tcp_mask, 0, sizeof(tcp_mask)); 566 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask; 567 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 568 569 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP; 570 tcp_item.spec = &tcp_spec; 571 tcp_item.mask = &tcp_mask; 572 tcp_item.last = NULL; 573 574 attr.priority = ntuple_filter->priority; 575 pattern_ipv4_5tuple[1] = ipv4_tcp_item; 576 pattern_ipv4_5tuple[2] = tcp_item; 577 break; 578 case IPPROTO_SCTP: 579 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 580 ipv4_sctp_item.spec = &ipv4_spec; 581 ipv4_sctp_item.mask = &ipv4_mask; 582 ipv4_sctp_item.last = NULL; 583 584 sctp_spec.hdr.src_port = ntuple_filter->src_port; 585 sctp_spec.hdr.dst_port = ntuple_filter->dst_port; 586 sctp_spec.hdr.cksum = 0; 587 sctp_spec.hdr.tag = 0; 588 589 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask; 590 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 591 sctp_mask.hdr.cksum = 0; 592 sctp_mask.hdr.tag = 0; 593 594 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP; 595 sctp_item.spec = &sctp_spec; 596 sctp_item.mask = &sctp_mask; 597 sctp_item.last = NULL; 598 599 attr.priority = ntuple_filter->priority; 600 pattern_ipv4_5tuple[1] = ipv4_sctp_item; 601 pattern_ipv4_5tuple[2] = sctp_item; 602 break; 603 default: 604 return ret; 605 } 606 607 attr.ingress = 1; 608 pattern_ipv4_5tuple[0] = eth_item; 609 pattern_ipv4_5tuple[3] = end_item; 610 actions[0] = count_action; 611 actions[1] = end_action; 612 613 /* Validate and add rule */ 614 ret = rte_flow_classify_validate(cls_app->cls, &attr, 615 pattern_ipv4_5tuple, actions, &error); 616 if (ret) { 617 printf("table entry validate failed ipv4_proto = %u\n", 618 ipv4_proto); 619 return ret; 620 } 621 622 rule = rte_flow_classify_table_entry_add( 623 cls_app->cls, &attr, pattern_ipv4_5tuple, 624 actions, &key_found, &error); 625 if (rule == NULL) { 626 printf("table entry add failed ipv4_proto = %u\n", 627 ipv4_proto); 628 ret = -1; 629 return ret; 630 } 631 632 rules[num_classify_rules] = rule; 633 num_classify_rules++; 634 return 0; 635 } 636 637 static int 638 add_rules(const char *rule_path, struct flow_classifier *cls_app) 639 { 640 FILE *fh; 641 char buff[LINE_MAX]; 642 unsigned int i = 0; 643 unsigned int total_num = 0; 644 struct rte_eth_ntuple_filter ntuple_filter; 645 int ret; 646 647 fh = fopen(rule_path, "rb"); 648 if (fh == NULL) 649 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__, 650 rule_path); 651 652 ret = fseek(fh, 0, SEEK_SET); 653 if (ret) 654 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__, 655 ret); 656 657 i = 0; 658 while (fgets(buff, LINE_MAX, fh) != NULL) { 659 i++; 660 661 if (is_bypass_line(buff)) 662 continue; 663 664 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) { 665 printf("\nINFO: classify rule capacity %d reached\n", 666 total_num); 667 break; 668 } 669 670 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0) 671 rte_exit(EXIT_FAILURE, 672 "%s Line %u: parse rules error\n", 673 rule_path, i); 674 675 if (add_classify_rule(&ntuple_filter, cls_app) != 0) 676 rte_exit(EXIT_FAILURE, "add rule error\n"); 677 678 total_num++; 679 } 680 681 fclose(fh); 682 return 0; 683 } 684 685 /* display usage */ 686 static void 687 print_usage(const char *prgname) 688 { 689 printf("%s usage:\n", prgname); 690 printf("[EAL options] -- --"OPTION_RULE_IPV4"=FILE: "); 691 printf("specify the ipv4 rules file.\n"); 692 printf("Each rule occupies one line in the file.\n"); 693 } 694 695 /* Parse the argument given in the command line of the application */ 696 static int 697 parse_args(int argc, char **argv) 698 { 699 int opt, ret; 700 char **argvopt; 701 int option_index; 702 char *prgname = argv[0]; 703 static struct option lgopts[] = { 704 {OPTION_RULE_IPV4, 1, 0, 0}, 705 {NULL, 0, 0, 0} 706 }; 707 708 argvopt = argv; 709 710 while ((opt = getopt_long(argc, argvopt, "", 711 lgopts, &option_index)) != EOF) { 712 713 switch (opt) { 714 /* long options */ 715 case 0: 716 if (!strncmp(lgopts[option_index].name, 717 OPTION_RULE_IPV4, 718 sizeof(OPTION_RULE_IPV4))) 719 parm_config.rule_ipv4_name = optarg; 720 break; 721 default: 722 print_usage(prgname); 723 return -1; 724 } 725 } 726 727 if (optind >= 0) 728 argv[optind-1] = prgname; 729 730 ret = optind-1; 731 optind = 1; /* reset getopt lib */ 732 return ret; 733 } 734 735 /* 736 * The main function, which does initialization and calls the lcore_main 737 * function. 738 */ 739 int 740 main(int argc, char *argv[]) 741 { 742 struct rte_mempool *mbuf_pool; 743 uint8_t nb_ports; 744 uint8_t portid; 745 int ret; 746 int socket_id; 747 struct rte_table_acl_params table_acl_params; 748 struct rte_flow_classify_table_params cls_table_params; 749 struct flow_classifier *cls_app; 750 struct rte_flow_classifier_params cls_params; 751 uint32_t size; 752 753 /* Initialize the Environment Abstraction Layer (EAL). */ 754 ret = rte_eal_init(argc, argv); 755 if (ret < 0) 756 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); 757 758 argc -= ret; 759 argv += ret; 760 761 /* parse application arguments (after the EAL ones) */ 762 ret = parse_args(argc, argv); 763 if (ret < 0) 764 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n"); 765 766 /* Check that there is an even number of ports to send/receive on. */ 767 nb_ports = rte_eth_dev_count(); 768 if (nb_ports < 2 || (nb_ports & 1)) 769 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n"); 770 771 /* Creates a new mempool in memory to hold the mbufs. */ 772 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, 773 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 774 775 if (mbuf_pool == NULL) 776 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 777 778 /* Initialize all ports. */ 779 for (portid = 0; portid < nb_ports; portid++) 780 if (port_init(portid, mbuf_pool) != 0) 781 rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n", 782 portid); 783 784 if (rte_lcore_count() > 1) 785 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); 786 787 socket_id = rte_eth_dev_socket_id(0); 788 789 /* Memory allocation */ 790 size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl)); 791 cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); 792 if (cls_app == NULL) 793 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n"); 794 795 cls_params.name = "flow_classifier"; 796 cls_params.socket_id = socket_id; 797 798 cls_app->cls = rte_flow_classifier_create(&cls_params); 799 if (cls_app->cls == NULL) { 800 rte_free(cls_app); 801 rte_exit(EXIT_FAILURE, "Cannot create classifier\n"); 802 } 803 804 /* initialise ACL table params */ 805 table_acl_params.name = "table_acl_ipv4_5tuple"; 806 table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; 807 table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); 808 memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); 809 810 /* initialise table create params */ 811 cls_table_params.ops = &rte_table_acl_ops; 812 cls_table_params.arg_create = &table_acl_params; 813 cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; 814 815 ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params); 816 if (ret) { 817 rte_flow_classifier_free(cls_app->cls); 818 rte_free(cls_app); 819 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n"); 820 } 821 822 /* read file of IPv4 5 tuple rules and initialize parameters 823 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add 824 * API's. 825 */ 826 if (add_rules(parm_config.rule_ipv4_name, cls_app)) { 827 rte_flow_classifier_free(cls_app->cls); 828 rte_free(cls_app); 829 rte_exit(EXIT_FAILURE, "Failed to add rules\n"); 830 } 831 832 /* Call lcore_main on the master core only. */ 833 lcore_main(cls_app); 834 835 return 0; 836 } 837