1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <stdint.h> 6 #include <inttypes.h> 7 #include <getopt.h> 8 9 #include <rte_eal.h> 10 #include <rte_ethdev.h> 11 #include <rte_cycles.h> 12 #include <rte_lcore.h> 13 #include <rte_mbuf.h> 14 #include <rte_flow.h> 15 #include <rte_flow_classify.h> 16 #include <rte_table_acl.h> 17 18 #define RX_RING_SIZE 1024 19 #define TX_RING_SIZE 1024 20 21 #define NUM_MBUFS 8191 22 #define MBUF_CACHE_SIZE 250 23 #define BURST_SIZE 32 24 25 #define MAX_NUM_CLASSIFY 30 26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91 27 #define FLOW_CLASSIFY_MAX_PRIORITY 8 28 #define FLOW_CLASSIFIER_NAME_SIZE 64 29 30 #define COMMENT_LEAD_CHAR ('#') 31 #define OPTION_RULE_IPV4 "rule_ipv4" 32 #define RTE_LOGTYPE_FLOW_CLASSIFY RTE_LOGTYPE_USER3 33 #define flow_classify_log(format, ...) \ 34 RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__) 35 36 #define uint32_t_to_char(ip, a, b, c, d) do {\ 37 *a = (unsigned char)(ip >> 24 & 0xff);\ 38 *b = (unsigned char)(ip >> 16 & 0xff);\ 39 *c = (unsigned char)(ip >> 8 & 0xff);\ 40 *d = (unsigned char)(ip & 0xff);\ 41 } while (0) 42 43 enum { 44 CB_FLD_SRC_ADDR, 45 CB_FLD_DST_ADDR, 46 CB_FLD_SRC_PORT, 47 CB_FLD_SRC_PORT_DLM, 48 CB_FLD_SRC_PORT_MASK, 49 CB_FLD_DST_PORT, 50 CB_FLD_DST_PORT_DLM, 51 CB_FLD_DST_PORT_MASK, 52 CB_FLD_PROTO, 53 CB_FLD_PRIORITY, 54 CB_FLD_NUM, 55 }; 56 57 static struct{ 58 const char *rule_ipv4_name; 59 } parm_config; 60 const char cb_port_delim[] = ":"; 61 62 /* Creation of flow classifier object. 8< */ 63 struct flow_classifier { 64 struct rte_flow_classifier *cls; 65 }; 66 67 struct flow_classifier_acl { 68 struct flow_classifier cls; 69 } __rte_cache_aligned; 70 /* >8 End of creation of flow classifier object. */ 71 72 /* Creation of ACL table during initialization of application. 8< */ 73 74 /* ACL field definitions for IPv4 5 tuple rule */ 75 enum { 76 PROTO_FIELD_IPV4, 77 SRC_FIELD_IPV4, 78 DST_FIELD_IPV4, 79 SRCP_FIELD_IPV4, 80 DSTP_FIELD_IPV4, 81 NUM_FIELDS_IPV4 82 }; 83 84 enum { 85 PROTO_INPUT_IPV4, 86 SRC_INPUT_IPV4, 87 DST_INPUT_IPV4, 88 SRCP_DESTP_INPUT_IPV4 89 }; 90 91 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { 92 /* first input field - always one byte long. */ 93 { 94 .type = RTE_ACL_FIELD_TYPE_BITMASK, 95 .size = sizeof(uint8_t), 96 .field_index = PROTO_FIELD_IPV4, 97 .input_index = PROTO_INPUT_IPV4, 98 .offset = sizeof(struct rte_ether_hdr) + 99 offsetof(struct rte_ipv4_hdr, next_proto_id), 100 }, 101 /* next input field (IPv4 source address) - 4 consecutive bytes. */ 102 { 103 /* rte_flow uses a bit mask for IPv4 addresses */ 104 .type = RTE_ACL_FIELD_TYPE_BITMASK, 105 .size = sizeof(uint32_t), 106 .field_index = SRC_FIELD_IPV4, 107 .input_index = SRC_INPUT_IPV4, 108 .offset = sizeof(struct rte_ether_hdr) + 109 offsetof(struct rte_ipv4_hdr, src_addr), 110 }, 111 /* next input field (IPv4 destination address) - 4 consecutive bytes. */ 112 { 113 /* rte_flow uses a bit mask for IPv4 addresses */ 114 .type = RTE_ACL_FIELD_TYPE_BITMASK, 115 .size = sizeof(uint32_t), 116 .field_index = DST_FIELD_IPV4, 117 .input_index = DST_INPUT_IPV4, 118 .offset = sizeof(struct rte_ether_hdr) + 119 offsetof(struct rte_ipv4_hdr, dst_addr), 120 }, 121 /* 122 * Next 2 fields (src & dst ports) form 4 consecutive bytes. 123 * They share the same input index. 124 */ 125 { 126 /* rte_flow uses a bit mask for protocol ports */ 127 .type = RTE_ACL_FIELD_TYPE_BITMASK, 128 .size = sizeof(uint16_t), 129 .field_index = SRCP_FIELD_IPV4, 130 .input_index = SRCP_DESTP_INPUT_IPV4, 131 .offset = sizeof(struct rte_ether_hdr) + 132 sizeof(struct rte_ipv4_hdr) + 133 offsetof(struct rte_tcp_hdr, src_port), 134 }, 135 { 136 /* rte_flow uses a bit mask for protocol ports */ 137 .type = RTE_ACL_FIELD_TYPE_BITMASK, 138 .size = sizeof(uint16_t), 139 .field_index = DSTP_FIELD_IPV4, 140 .input_index = SRCP_DESTP_INPUT_IPV4, 141 .offset = sizeof(struct rte_ether_hdr) + 142 sizeof(struct rte_ipv4_hdr) + 143 offsetof(struct rte_tcp_hdr, dst_port), 144 }, 145 }; 146 /* >8 End of creation of ACL table. */ 147 148 /* Flow classify data. 8< */ 149 static int num_classify_rules; 150 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY]; 151 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats; 152 static struct rte_flow_classify_stats classify_stats = { 153 .stats = (void **)&ntuple_stats 154 }; 155 /* >8 End of flow classify data. */ 156 157 /* parameters for rte_flow_classify_validate and 158 * rte_flow_classify_table_entry_add functions 159 */ 160 161 static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH, 162 0, 0, 0 }; 163 static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END, 164 0, 0, 0 }; 165 166 /* sample actions: 167 * "actions count / end" 168 */ 169 struct rte_flow_query_count count = { 170 .reset = 1, 171 .hits_set = 1, 172 .bytes_set = 1, 173 .hits = 0, 174 .bytes = 0, 175 }; 176 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, 177 &count}; 178 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; 179 static struct rte_flow_action actions[2]; 180 181 /* sample attributes */ 182 static struct rte_flow_attr attr; 183 184 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */ 185 186 /* 187 * Initializes a given port using global settings and with the RX buffers 188 * coming from the mbuf_pool passed as a parameter. 189 */ 190 191 /* Initializing port using global settings. 8< */ 192 static inline int 193 port_init(uint8_t port, struct rte_mempool *mbuf_pool) 194 { 195 struct rte_eth_conf port_conf; 196 struct rte_ether_addr addr; 197 const uint16_t rx_rings = 1, tx_rings = 1; 198 int retval; 199 uint16_t q; 200 struct rte_eth_dev_info dev_info; 201 struct rte_eth_txconf txconf; 202 203 if (!rte_eth_dev_is_valid_port(port)) 204 return -1; 205 206 memset(&port_conf, 0, sizeof(struct rte_eth_conf)); 207 208 retval = rte_eth_dev_info_get(port, &dev_info); 209 if (retval != 0) { 210 printf("Error during getting device (port %u) info: %s\n", 211 port, strerror(-retval)); 212 return retval; 213 } 214 215 if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) 216 port_conf.txmode.offloads |= 217 RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE; 218 219 /* Configure the Ethernet device. */ 220 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf); 221 if (retval != 0) 222 return retval; 223 224 /* Allocate and set up 1 RX queue per Ethernet port. */ 225 for (q = 0; q < rx_rings; q++) { 226 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE, 227 rte_eth_dev_socket_id(port), NULL, mbuf_pool); 228 if (retval < 0) 229 return retval; 230 } 231 232 txconf = dev_info.default_txconf; 233 txconf.offloads = port_conf.txmode.offloads; 234 /* Allocate and set up 1 TX queue per Ethernet port. */ 235 for (q = 0; q < tx_rings; q++) { 236 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE, 237 rte_eth_dev_socket_id(port), &txconf); 238 if (retval < 0) 239 return retval; 240 } 241 242 /* Start the Ethernet port. 8< */ 243 retval = rte_eth_dev_start(port); 244 /* >8 End of starting the Ethernet port. */ 245 if (retval < 0) 246 return retval; 247 248 /* Display the port MAC address. */ 249 retval = rte_eth_macaddr_get(port, &addr); 250 if (retval != 0) 251 return retval; 252 253 printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8 254 " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n", 255 port, RTE_ETHER_ADDR_BYTES(&addr)); 256 257 /* Enable RX in promiscuous mode for the Ethernet device. */ 258 retval = rte_eth_promiscuous_enable(port); 259 if (retval != 0) 260 return retval; 261 262 return 0; 263 } 264 /* >8 End of initializing a given port. */ 265 266 /* 267 * The lcore main. This is the main thread that does the work, reading from 268 * an input port classifying the packets and writing to an output port. 269 */ 270 271 /* Classifying the packets. 8< */ 272 static __rte_noreturn void 273 lcore_main(struct flow_classifier *cls_app) 274 { 275 uint16_t port; 276 int ret; 277 int i = 0; 278 279 ret = rte_flow_classify_table_entry_delete(cls_app->cls, 280 rules[7]); 281 if (ret) 282 printf("table_entry_delete failed [7] %d\n\n", ret); 283 else 284 printf("table_entry_delete succeeded [7]\n\n"); 285 286 /* 287 * Check that the port is on the same NUMA node as the polling thread 288 * for best performance. 289 */ 290 RTE_ETH_FOREACH_DEV(port) 291 if (rte_eth_dev_socket_id(port) >= 0 && 292 rte_eth_dev_socket_id(port) != (int)rte_socket_id()) { 293 printf("\n\n"); 294 printf("WARNING: port %u is on remote NUMA node\n", 295 port); 296 printf("to polling thread.\n"); 297 printf("Performance will not be optimal.\n"); 298 } 299 printf("\nCore %u forwarding packets. ", rte_lcore_id()); 300 printf("[Ctrl+C to quit]\n"); 301 302 /* Run until the application is quit or killed. 8< */ 303 for (;;) { 304 /* 305 * Receive packets on a port, classify them and forward them 306 * on the paired port. 307 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc. 308 */ 309 RTE_ETH_FOREACH_DEV(port) { 310 /* Get burst of RX packets, from first port of pair. */ 311 struct rte_mbuf *bufs[BURST_SIZE]; 312 const uint16_t nb_rx = rte_eth_rx_burst(port, 0, 313 bufs, BURST_SIZE); 314 315 if (unlikely(nb_rx == 0)) 316 continue; 317 318 for (i = 0; i < MAX_NUM_CLASSIFY; i++) { 319 if (rules[i]) { 320 ret = rte_flow_classifier_query( 321 cls_app->cls, 322 bufs, nb_rx, rules[i], 323 &classify_stats); 324 if (ret) 325 printf( 326 "rule [%d] query failed ret [%d]\n\n", 327 i, ret); 328 else { 329 printf( 330 "rule[%d] count=%"PRIu64"\n", 331 i, ntuple_stats.counter1); 332 333 printf("proto = %d\n", 334 ntuple_stats.ipv4_5tuple.proto); 335 } 336 } 337 } 338 339 /* Send burst of TX packets, to second port of pair. */ 340 const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0, 341 bufs, nb_rx); 342 343 /* Free any unsent packets. */ 344 if (unlikely(nb_tx < nb_rx)) { 345 uint16_t buf; 346 347 for (buf = nb_tx; buf < nb_rx; buf++) 348 rte_pktmbuf_free(bufs[buf]); 349 } 350 } 351 } 352 /* >8 End of main loop. */ 353 } 354 /* >8 End of lcore main. */ 355 356 /* 357 * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt. 358 * Expected format: 359 * <src_ipv4_addr>'/'<masklen> <space> \ 360 * <dst_ipv4_addr>'/'<masklen> <space> \ 361 * <src_port> <space> ":" <src_port_mask> <space> \ 362 * <dst_port> <space> ":" <dst_port_mask> <space> \ 363 * <proto>'/'<proto_mask> <space> \ 364 * <priority> 365 */ 366 367 static int 368 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim, 369 char dlm) 370 { 371 unsigned long val; 372 char *end; 373 374 errno = 0; 375 val = strtoul(*in, &end, base); 376 if (errno != 0 || end[0] != dlm || val > lim) 377 return -EINVAL; 378 *fd = (uint32_t)val; 379 *in = end + 1; 380 return 0; 381 } 382 383 static int 384 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len) 385 { 386 uint32_t a, b, c, d, m; 387 388 if (get_cb_field(&in, &a, 0, UINT8_MAX, '.')) 389 return -EINVAL; 390 if (get_cb_field(&in, &b, 0, UINT8_MAX, '.')) 391 return -EINVAL; 392 if (get_cb_field(&in, &c, 0, UINT8_MAX, '.')) 393 return -EINVAL; 394 if (get_cb_field(&in, &d, 0, UINT8_MAX, '/')) 395 return -EINVAL; 396 if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0)) 397 return -EINVAL; 398 399 addr[0] = RTE_IPV4(a, b, c, d); 400 mask_len[0] = m; 401 return 0; 402 } 403 404 static int 405 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter) 406 { 407 int i, ret; 408 char *s, *sp, *in[CB_FLD_NUM]; 409 static const char *dlm = " \t\n"; 410 int dim = CB_FLD_NUM; 411 uint32_t temp; 412 413 s = str; 414 for (i = 0; i != dim; i++, s = NULL) { 415 in[i] = strtok_r(s, dlm, &sp); 416 if (in[i] == NULL) 417 return -EINVAL; 418 } 419 420 ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR], 421 &ntuple_filter->src_ip, 422 &ntuple_filter->src_ip_mask); 423 if (ret != 0) { 424 flow_classify_log("failed to read source address/mask: %s\n", 425 in[CB_FLD_SRC_ADDR]); 426 return ret; 427 } 428 429 ret = parse_ipv4_net(in[CB_FLD_DST_ADDR], 430 &ntuple_filter->dst_ip, 431 &ntuple_filter->dst_ip_mask); 432 if (ret != 0) { 433 flow_classify_log("failed to read destination address/mask: %s\n", 434 in[CB_FLD_DST_ADDR]); 435 return ret; 436 } 437 438 if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0)) 439 return -EINVAL; 440 ntuple_filter->src_port = (uint16_t)temp; 441 442 if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim, 443 sizeof(cb_port_delim)) != 0) 444 return -EINVAL; 445 446 if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 447 return -EINVAL; 448 ntuple_filter->src_port_mask = (uint16_t)temp; 449 450 if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0)) 451 return -EINVAL; 452 ntuple_filter->dst_port = (uint16_t)temp; 453 454 if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim, 455 sizeof(cb_port_delim)) != 0) 456 return -EINVAL; 457 458 if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0)) 459 return -EINVAL; 460 ntuple_filter->dst_port_mask = (uint16_t)temp; 461 462 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/')) 463 return -EINVAL; 464 ntuple_filter->proto = (uint8_t)temp; 465 466 if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0)) 467 return -EINVAL; 468 ntuple_filter->proto_mask = (uint8_t)temp; 469 470 if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0)) 471 return -EINVAL; 472 ntuple_filter->priority = (uint16_t)temp; 473 if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY) 474 ret = -EINVAL; 475 476 return ret; 477 } 478 479 /* Bypass comment and empty lines */ 480 static inline int 481 is_bypass_line(char *buff) 482 { 483 int i = 0; 484 485 /* comment line */ 486 if (buff[0] == COMMENT_LEAD_CHAR) 487 return 1; 488 /* empty line */ 489 while (buff[i] != '\0') { 490 if (!isspace(buff[i])) 491 return 0; 492 i++; 493 } 494 return 1; 495 } 496 497 static uint32_t 498 convert_depth_to_bitmask(uint32_t depth_val) 499 { 500 uint32_t bitmask = 0; 501 int i, j; 502 503 for (i = depth_val, j = 0; i > 0; i--, j++) 504 bitmask |= (1 << (31 - j)); 505 return bitmask; 506 } 507 508 static int 509 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter, 510 struct flow_classifier *cls_app) 511 { 512 int ret = -1; 513 int key_found; 514 struct rte_flow_error error; 515 struct rte_flow_item_ipv4 ipv4_spec; 516 struct rte_flow_item_ipv4 ipv4_mask; 517 struct rte_flow_item ipv4_udp_item; 518 struct rte_flow_item ipv4_tcp_item; 519 struct rte_flow_item ipv4_sctp_item; 520 struct rte_flow_item_udp udp_spec; 521 struct rte_flow_item_udp udp_mask; 522 struct rte_flow_item udp_item; 523 struct rte_flow_item_tcp tcp_spec; 524 struct rte_flow_item_tcp tcp_mask; 525 struct rte_flow_item tcp_item; 526 struct rte_flow_item_sctp sctp_spec; 527 struct rte_flow_item_sctp sctp_mask; 528 struct rte_flow_item sctp_item; 529 struct rte_flow_item pattern_ipv4_5tuple[4]; 530 struct rte_flow_classify_rule *rule; 531 uint8_t ipv4_proto; 532 533 if (num_classify_rules >= MAX_NUM_CLASSIFY) { 534 printf( 535 "\nINFO: classify rule capacity %d reached\n", 536 num_classify_rules); 537 return ret; 538 } 539 540 /* set up parameters for validate and add */ 541 memset(&ipv4_spec, 0, sizeof(ipv4_spec)); 542 ipv4_spec.hdr.next_proto_id = ntuple_filter->proto; 543 ipv4_spec.hdr.src_addr = ntuple_filter->src_ip; 544 ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip; 545 ipv4_proto = ipv4_spec.hdr.next_proto_id; 546 547 memset(&ipv4_mask, 0, sizeof(ipv4_mask)); 548 ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask; 549 ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask; 550 ipv4_mask.hdr.src_addr = 551 convert_depth_to_bitmask(ipv4_mask.hdr.src_addr); 552 ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask; 553 ipv4_mask.hdr.dst_addr = 554 convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr); 555 556 switch (ipv4_proto) { 557 case IPPROTO_UDP: 558 ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 559 ipv4_udp_item.spec = &ipv4_spec; 560 ipv4_udp_item.mask = &ipv4_mask; 561 ipv4_udp_item.last = NULL; 562 563 udp_spec.hdr.src_port = ntuple_filter->src_port; 564 udp_spec.hdr.dst_port = ntuple_filter->dst_port; 565 udp_spec.hdr.dgram_len = 0; 566 udp_spec.hdr.dgram_cksum = 0; 567 568 udp_mask.hdr.src_port = ntuple_filter->src_port_mask; 569 udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 570 udp_mask.hdr.dgram_len = 0; 571 udp_mask.hdr.dgram_cksum = 0; 572 573 udp_item.type = RTE_FLOW_ITEM_TYPE_UDP; 574 udp_item.spec = &udp_spec; 575 udp_item.mask = &udp_mask; 576 udp_item.last = NULL; 577 578 attr.priority = ntuple_filter->priority; 579 pattern_ipv4_5tuple[1] = ipv4_udp_item; 580 pattern_ipv4_5tuple[2] = udp_item; 581 break; 582 case IPPROTO_TCP: 583 ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 584 ipv4_tcp_item.spec = &ipv4_spec; 585 ipv4_tcp_item.mask = &ipv4_mask; 586 ipv4_tcp_item.last = NULL; 587 588 memset(&tcp_spec, 0, sizeof(tcp_spec)); 589 tcp_spec.hdr.src_port = ntuple_filter->src_port; 590 tcp_spec.hdr.dst_port = ntuple_filter->dst_port; 591 592 memset(&tcp_mask, 0, sizeof(tcp_mask)); 593 tcp_mask.hdr.src_port = ntuple_filter->src_port_mask; 594 tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 595 596 tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP; 597 tcp_item.spec = &tcp_spec; 598 tcp_item.mask = &tcp_mask; 599 tcp_item.last = NULL; 600 601 attr.priority = ntuple_filter->priority; 602 pattern_ipv4_5tuple[1] = ipv4_tcp_item; 603 pattern_ipv4_5tuple[2] = tcp_item; 604 break; 605 case IPPROTO_SCTP: 606 ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4; 607 ipv4_sctp_item.spec = &ipv4_spec; 608 ipv4_sctp_item.mask = &ipv4_mask; 609 ipv4_sctp_item.last = NULL; 610 611 sctp_spec.hdr.src_port = ntuple_filter->src_port; 612 sctp_spec.hdr.dst_port = ntuple_filter->dst_port; 613 sctp_spec.hdr.cksum = 0; 614 sctp_spec.hdr.tag = 0; 615 616 sctp_mask.hdr.src_port = ntuple_filter->src_port_mask; 617 sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask; 618 sctp_mask.hdr.cksum = 0; 619 sctp_mask.hdr.tag = 0; 620 621 sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP; 622 sctp_item.spec = &sctp_spec; 623 sctp_item.mask = &sctp_mask; 624 sctp_item.last = NULL; 625 626 attr.priority = ntuple_filter->priority; 627 pattern_ipv4_5tuple[1] = ipv4_sctp_item; 628 pattern_ipv4_5tuple[2] = sctp_item; 629 break; 630 default: 631 return ret; 632 } 633 634 attr.ingress = 1; 635 pattern_ipv4_5tuple[0] = eth_item; 636 pattern_ipv4_5tuple[3] = end_item; 637 actions[0] = count_action; 638 actions[1] = end_action; 639 640 /* Validate and add rule */ 641 ret = rte_flow_classify_validate(cls_app->cls, &attr, 642 pattern_ipv4_5tuple, actions, &error); 643 if (ret) { 644 printf("table entry validate failed ipv4_proto = %u\n", 645 ipv4_proto); 646 return ret; 647 } 648 649 rule = rte_flow_classify_table_entry_add( 650 cls_app->cls, &attr, pattern_ipv4_5tuple, 651 actions, &key_found, &error); 652 if (rule == NULL) { 653 printf("table entry add failed ipv4_proto = %u\n", 654 ipv4_proto); 655 ret = -1; 656 return ret; 657 } 658 659 rules[num_classify_rules] = rule; 660 num_classify_rules++; 661 return 0; 662 } 663 664 /* Reads file and calls the add_classify_rule function. 8< */ 665 static int 666 add_rules(const char *rule_path, struct flow_classifier *cls_app) 667 { 668 FILE *fh; 669 char buff[LINE_MAX]; 670 unsigned int i = 0; 671 unsigned int total_num = 0; 672 struct rte_eth_ntuple_filter ntuple_filter; 673 int ret; 674 675 fh = fopen(rule_path, "rb"); 676 if (fh == NULL) 677 rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__, 678 rule_path); 679 680 ret = fseek(fh, 0, SEEK_SET); 681 if (ret) 682 rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__, 683 ret); 684 685 i = 0; 686 while (fgets(buff, LINE_MAX, fh) != NULL) { 687 i++; 688 689 if (is_bypass_line(buff)) 690 continue; 691 692 if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) { 693 printf("\nINFO: classify rule capacity %d reached\n", 694 total_num); 695 break; 696 } 697 698 if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0) 699 rte_exit(EXIT_FAILURE, 700 "%s Line %u: parse rules error\n", 701 rule_path, i); 702 703 if (add_classify_rule(&ntuple_filter, cls_app) != 0) 704 rte_exit(EXIT_FAILURE, "add rule error\n"); 705 706 total_num++; 707 } 708 709 fclose(fh); 710 return 0; 711 } 712 /* >8 End of add_rules. */ 713 714 /* display usage */ 715 static void 716 print_usage(const char *prgname) 717 { 718 printf("%s usage:\n", prgname); 719 printf("[EAL options] -- --"OPTION_RULE_IPV4"=FILE: "); 720 printf("specify the ipv4 rules file.\n"); 721 printf("Each rule occupies one line in the file.\n"); 722 } 723 724 /* Parse the argument given in the command line of the application */ 725 static int 726 parse_args(int argc, char **argv) 727 { 728 int opt, ret; 729 char **argvopt; 730 int option_index; 731 char *prgname = argv[0]; 732 static struct option lgopts[] = { 733 {OPTION_RULE_IPV4, 1, 0, 0}, 734 {NULL, 0, 0, 0} 735 }; 736 737 argvopt = argv; 738 739 while ((opt = getopt_long(argc, argvopt, "", 740 lgopts, &option_index)) != EOF) { 741 742 switch (opt) { 743 /* long options */ 744 case 0: 745 if (!strncmp(lgopts[option_index].name, 746 OPTION_RULE_IPV4, 747 sizeof(OPTION_RULE_IPV4))) 748 parm_config.rule_ipv4_name = optarg; 749 break; 750 default: 751 print_usage(prgname); 752 return -1; 753 } 754 } 755 756 if (optind >= 0) 757 argv[optind-1] = prgname; 758 759 ret = optind-1; 760 optind = 1; /* reset getopt lib */ 761 return ret; 762 } 763 764 /* 765 * The main function, which does initialization and calls the lcore_main 766 * function. 767 */ 768 int 769 main(int argc, char *argv[]) 770 { 771 struct rte_mempool *mbuf_pool; 772 uint16_t nb_ports; 773 uint16_t portid; 774 int ret; 775 int socket_id; 776 struct rte_table_acl_params table_acl_params; 777 struct rte_flow_classify_table_params cls_table_params; 778 struct flow_classifier *cls_app; 779 struct rte_flow_classifier_params cls_params; 780 uint32_t size; 781 782 /* Initialize the Environment Abstraction Layer (EAL). 8< */ 783 ret = rte_eal_init(argc, argv); 784 if (ret < 0) 785 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n"); 786 /* >8 End of initialization of EAL. */ 787 788 argc -= ret; 789 argv += ret; 790 791 /* Parse application arguments (after the EAL ones). 8< */ 792 ret = parse_args(argc, argv); 793 if (ret < 0) 794 rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n"); 795 /* >8 End of parse application arguments. */ 796 797 /* Check that there is an even number of ports to send/receive on. */ 798 nb_ports = rte_eth_dev_count_avail(); 799 if (nb_ports < 2 || (nb_ports & 1)) 800 rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n"); 801 802 /* Creates a new mempool in memory to hold the mbufs. 8< */ 803 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports, 804 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); 805 /* >8 End of creation of new mempool in memory. */ 806 807 if (mbuf_pool == NULL) 808 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n"); 809 810 /* Initialize all ports. 8< */ 811 RTE_ETH_FOREACH_DEV(portid) 812 if (port_init(portid, mbuf_pool) != 0) 813 rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n", 814 portid); 815 /* >8 End of initialization of all ports. */ 816 817 if (rte_lcore_count() > 1) 818 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n"); 819 820 socket_id = rte_eth_dev_socket_id(0); 821 822 /* Memory allocation. 8< */ 823 size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl)); 824 cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); 825 if (cls_app == NULL) 826 rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n"); 827 828 cls_params.name = "flow_classifier"; 829 cls_params.socket_id = socket_id; 830 831 cls_app->cls = rte_flow_classifier_create(&cls_params); 832 if (cls_app->cls == NULL) { 833 rte_free(cls_app); 834 rte_exit(EXIT_FAILURE, "Cannot create classifier\n"); 835 } 836 837 /* initialise ACL table params */ 838 table_acl_params.name = "table_acl_ipv4_5tuple"; 839 table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; 840 table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); 841 memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); 842 843 /* initialise table create params */ 844 cls_table_params.ops = &rte_table_acl_ops; 845 cls_table_params.arg_create = &table_acl_params; 846 cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; 847 848 ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params); 849 if (ret) { 850 rte_flow_classifier_free(cls_app->cls); 851 rte_free(cls_app); 852 rte_exit(EXIT_FAILURE, "Failed to create classifier table\n"); 853 } 854 /* >8 End of initialization of table create params. */ 855 856 /* read file of IPv4 5 tuple rules and initialize parameters 857 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add 858 * API's. 859 */ 860 861 /* Read file of IPv4 tuple rules. 8< */ 862 if (add_rules(parm_config.rule_ipv4_name, cls_app)) { 863 rte_flow_classifier_free(cls_app->cls); 864 rte_free(cls_app); 865 rte_exit(EXIT_FAILURE, "Failed to add rules\n"); 866 } 867 /* >8 End of reading file of IPv4 5 tuple rules. */ 868 869 /* Call lcore_main on the main core only. */ 870 lcore_main(cls_app); 871 872 /* clean up the EAL */ 873 rte_eal_cleanup(); 874 875 return 0; 876 } 877