1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdint.h>
6 #include <inttypes.h>
7 #include <getopt.h>
8 
9 #include <rte_eal.h>
10 #include <rte_ethdev.h>
11 #include <rte_cycles.h>
12 #include <rte_lcore.h>
13 #include <rte_mbuf.h>
14 #include <rte_flow.h>
15 #include <rte_flow_classify.h>
16 #include <rte_table_acl.h>
17 
18 #define RX_RING_SIZE 1024
19 #define TX_RING_SIZE 1024
20 
21 #define NUM_MBUFS 8191
22 #define MBUF_CACHE_SIZE 250
23 #define BURST_SIZE 32
24 
25 #define MAX_NUM_CLASSIFY 30
26 #define FLOW_CLASSIFY_MAX_RULE_NUM 91
27 #define FLOW_CLASSIFY_MAX_PRIORITY 8
28 #define FLOW_CLASSIFIER_NAME_SIZE 64
29 
30 #define COMMENT_LEAD_CHAR	('#')
31 #define OPTION_RULE_IPV4	"rule_ipv4"
32 #define RTE_LOGTYPE_FLOW_CLASSIFY	RTE_LOGTYPE_USER3
33 #define flow_classify_log(format, ...) \
34 		RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)
35 
36 #define uint32_t_to_char(ip, a, b, c, d) do {\
37 		*a = (unsigned char)(ip >> 24 & 0xff);\
38 		*b = (unsigned char)(ip >> 16 & 0xff);\
39 		*c = (unsigned char)(ip >> 8 & 0xff);\
40 		*d = (unsigned char)(ip & 0xff);\
41 	} while (0)
42 
43 enum {
44 	CB_FLD_SRC_ADDR,
45 	CB_FLD_DST_ADDR,
46 	CB_FLD_SRC_PORT,
47 	CB_FLD_SRC_PORT_DLM,
48 	CB_FLD_SRC_PORT_MASK,
49 	CB_FLD_DST_PORT,
50 	CB_FLD_DST_PORT_DLM,
51 	CB_FLD_DST_PORT_MASK,
52 	CB_FLD_PROTO,
53 	CB_FLD_PRIORITY,
54 	CB_FLD_NUM,
55 };
56 
57 static struct{
58 	const char *rule_ipv4_name;
59 } parm_config;
60 const char cb_port_delim[] = ":";
61 
62 static const struct rte_eth_conf port_conf_default = {
63 	.rxmode = {
64 		.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
65 	},
66 };
67 
68 struct flow_classifier {
69 	struct rte_flow_classifier *cls;
70 };
71 
72 struct flow_classifier_acl {
73 	struct flow_classifier cls;
74 } __rte_cache_aligned;
75 
76 /* ACL field definitions for IPv4 5 tuple rule */
77 
78 enum {
79 	PROTO_FIELD_IPV4,
80 	SRC_FIELD_IPV4,
81 	DST_FIELD_IPV4,
82 	SRCP_FIELD_IPV4,
83 	DSTP_FIELD_IPV4,
84 	NUM_FIELDS_IPV4
85 };
86 
87 enum {
88 	PROTO_INPUT_IPV4,
89 	SRC_INPUT_IPV4,
90 	DST_INPUT_IPV4,
91 	SRCP_DESTP_INPUT_IPV4
92 };
93 
94 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
95 	/* first input field - always one byte long. */
96 	{
97 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
98 		.size = sizeof(uint8_t),
99 		.field_index = PROTO_FIELD_IPV4,
100 		.input_index = PROTO_INPUT_IPV4,
101 		.offset = sizeof(struct rte_ether_hdr) +
102 			offsetof(struct rte_ipv4_hdr, next_proto_id),
103 	},
104 	/* next input field (IPv4 source address) - 4 consecutive bytes. */
105 	{
106 		/* rte_flow uses a bit mask for IPv4 addresses */
107 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
108 		.size = sizeof(uint32_t),
109 		.field_index = SRC_FIELD_IPV4,
110 		.input_index = SRC_INPUT_IPV4,
111 		.offset = sizeof(struct rte_ether_hdr) +
112 			offsetof(struct rte_ipv4_hdr, src_addr),
113 	},
114 	/* next input field (IPv4 destination address) - 4 consecutive bytes. */
115 	{
116 		/* rte_flow uses a bit mask for IPv4 addresses */
117 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
118 		.size = sizeof(uint32_t),
119 		.field_index = DST_FIELD_IPV4,
120 		.input_index = DST_INPUT_IPV4,
121 		.offset = sizeof(struct rte_ether_hdr) +
122 			offsetof(struct rte_ipv4_hdr, dst_addr),
123 	},
124 	/*
125 	 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
126 	 * They share the same input index.
127 	 */
128 	{
129 		/* rte_flow uses a bit mask for protocol ports */
130 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
131 		.size = sizeof(uint16_t),
132 		.field_index = SRCP_FIELD_IPV4,
133 		.input_index = SRCP_DESTP_INPUT_IPV4,
134 		.offset = sizeof(struct rte_ether_hdr) +
135 			sizeof(struct rte_ipv4_hdr) +
136 			offsetof(struct rte_tcp_hdr, src_port),
137 	},
138 	{
139 		/* rte_flow uses a bit mask for protocol ports */
140 		.type = RTE_ACL_FIELD_TYPE_BITMASK,
141 		.size = sizeof(uint16_t),
142 		.field_index = DSTP_FIELD_IPV4,
143 		.input_index = SRCP_DESTP_INPUT_IPV4,
144 		.offset = sizeof(struct rte_ether_hdr) +
145 			sizeof(struct rte_ipv4_hdr) +
146 			offsetof(struct rte_tcp_hdr, dst_port),
147 	},
148 };
149 
150 /* flow classify data */
151 static int num_classify_rules;
152 static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
153 static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
154 static struct rte_flow_classify_stats classify_stats = {
155 		.stats = (void **)&ntuple_stats
156 };
157 
158 /* parameters for rte_flow_classify_validate and
159  * rte_flow_classify_table_entry_add functions
160  */
161 
162 static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
163 	0, 0, 0 };
164 static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
165 	0, 0, 0 };
166 
167 /* sample actions:
168  * "actions count / end"
169  */
170 struct rte_flow_query_count count = {
171 	.reset = 1,
172 	.hits_set = 1,
173 	.bytes_set = 1,
174 	.hits = 0,
175 	.bytes = 0,
176 };
177 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
178 	&count};
179 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
180 static struct rte_flow_action actions[2];
181 
182 /* sample attributes */
183 static struct rte_flow_attr attr;
184 
185 /* flow_classify.c: * Based on DPDK skeleton forwarding example. */
186 
187 /*
188  * Initializes a given port using global settings and with the RX buffers
189  * coming from the mbuf_pool passed as a parameter.
190  */
191 static inline int
192 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
193 {
194 	struct rte_eth_conf port_conf = port_conf_default;
195 	struct rte_ether_addr addr;
196 	const uint16_t rx_rings = 1, tx_rings = 1;
197 	int retval;
198 	uint16_t q;
199 	struct rte_eth_dev_info dev_info;
200 	struct rte_eth_txconf txconf;
201 
202 	if (!rte_eth_dev_is_valid_port(port))
203 		return -1;
204 
205 	retval = rte_eth_dev_info_get(port, &dev_info);
206 	if (retval != 0) {
207 		printf("Error during getting device (port %u) info: %s\n",
208 				port, strerror(-retval));
209 		return retval;
210 	}
211 
212 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
213 		port_conf.txmode.offloads |=
214 			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
215 
216 	/* Configure the Ethernet device. */
217 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
218 	if (retval != 0)
219 		return retval;
220 
221 	/* Allocate and set up 1 RX queue per Ethernet port. */
222 	for (q = 0; q < rx_rings; q++) {
223 		retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
224 				rte_eth_dev_socket_id(port), NULL, mbuf_pool);
225 		if (retval < 0)
226 			return retval;
227 	}
228 
229 	txconf = dev_info.default_txconf;
230 	txconf.offloads = port_conf.txmode.offloads;
231 	/* Allocate and set up 1 TX queue per Ethernet port. */
232 	for (q = 0; q < tx_rings; q++) {
233 		retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
234 				rte_eth_dev_socket_id(port), &txconf);
235 		if (retval < 0)
236 			return retval;
237 	}
238 
239 	/* Start the Ethernet port. */
240 	retval = rte_eth_dev_start(port);
241 	if (retval < 0)
242 		return retval;
243 
244 	/* Display the port MAC address. */
245 	rte_eth_macaddr_get(port, &addr);
246 	printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
247 			   " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
248 			port,
249 			addr.addr_bytes[0], addr.addr_bytes[1],
250 			addr.addr_bytes[2], addr.addr_bytes[3],
251 			addr.addr_bytes[4], addr.addr_bytes[5]);
252 
253 	/* Enable RX in promiscuous mode for the Ethernet device. */
254 	rte_eth_promiscuous_enable(port);
255 
256 	return 0;
257 }
258 
259 /*
260  * The lcore main. This is the main thread that does the work, reading from
261  * an input port classifying the packets and writing to an output port.
262  */
263 static __attribute__((noreturn)) void
264 lcore_main(struct flow_classifier *cls_app)
265 {
266 	uint16_t port;
267 	int ret;
268 	int i = 0;
269 
270 	ret = rte_flow_classify_table_entry_delete(cls_app->cls,
271 			rules[7]);
272 	if (ret)
273 		printf("table_entry_delete failed [7] %d\n\n", ret);
274 	else
275 		printf("table_entry_delete succeeded [7]\n\n");
276 
277 	/*
278 	 * Check that the port is on the same NUMA node as the polling thread
279 	 * for best performance.
280 	 */
281 	RTE_ETH_FOREACH_DEV(port)
282 		if (rte_eth_dev_socket_id(port) > 0 &&
283 			rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
284 			printf("\n\n");
285 			printf("WARNING: port %u is on remote NUMA node\n",
286 			       port);
287 			printf("to polling thread.\n");
288 			printf("Performance will not be optimal.\n");
289 		}
290 	printf("\nCore %u forwarding packets. ", rte_lcore_id());
291 	printf("[Ctrl+C to quit]\n");
292 
293 	/* Run until the application is quit or killed. */
294 	for (;;) {
295 		/*
296 		 * Receive packets on a port, classify them and forward them
297 		 * on the paired port.
298 		 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
299 		 */
300 		RTE_ETH_FOREACH_DEV(port) {
301 			/* Get burst of RX packets, from first port of pair. */
302 			struct rte_mbuf *bufs[BURST_SIZE];
303 			const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
304 					bufs, BURST_SIZE);
305 
306 			if (unlikely(nb_rx == 0))
307 				continue;
308 
309 			for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
310 				if (rules[i]) {
311 					ret = rte_flow_classifier_query(
312 						cls_app->cls,
313 						bufs, nb_rx, rules[i],
314 						&classify_stats);
315 					if (ret)
316 						printf(
317 							"rule [%d] query failed ret [%d]\n\n",
318 							i, ret);
319 					else {
320 						printf(
321 						"rule[%d] count=%"PRIu64"\n",
322 						i, ntuple_stats.counter1);
323 
324 						printf("proto = %d\n",
325 						ntuple_stats.ipv4_5tuple.proto);
326 					}
327 				}
328 			}
329 
330 			/* Send burst of TX packets, to second port of pair. */
331 			const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
332 					bufs, nb_rx);
333 
334 			/* Free any unsent packets. */
335 			if (unlikely(nb_tx < nb_rx)) {
336 				uint16_t buf;
337 
338 				for (buf = nb_tx; buf < nb_rx; buf++)
339 					rte_pktmbuf_free(bufs[buf]);
340 			}
341 		}
342 	}
343 }
344 
345 /*
346  * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
347  * Expected format:
348  * <src_ipv4_addr>'/'<masklen> <space> \
349  * <dst_ipv4_addr>'/'<masklen> <space> \
350  * <src_port> <space> ":" <src_port_mask> <space> \
351  * <dst_port> <space> ":" <dst_port_mask> <space> \
352  * <proto>'/'<proto_mask> <space> \
353  * <priority>
354  */
355 
356 static int
357 get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
358 		char dlm)
359 {
360 	unsigned long val;
361 	char *end;
362 
363 	errno = 0;
364 	val = strtoul(*in, &end, base);
365 	if (errno != 0 || end[0] != dlm || val > lim)
366 		return -EINVAL;
367 	*fd = (uint32_t)val;
368 	*in = end + 1;
369 	return 0;
370 }
371 
372 static int
373 parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
374 {
375 	uint32_t a, b, c, d, m;
376 
377 	if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
378 		return -EINVAL;
379 	if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
380 		return -EINVAL;
381 	if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
382 		return -EINVAL;
383 	if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
384 		return -EINVAL;
385 	if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
386 		return -EINVAL;
387 
388 	addr[0] = RTE_IPV4(a, b, c, d);
389 	mask_len[0] = m;
390 	return 0;
391 }
392 
393 static int
394 parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
395 {
396 	int i, ret;
397 	char *s, *sp, *in[CB_FLD_NUM];
398 	static const char *dlm = " \t\n";
399 	int dim = CB_FLD_NUM;
400 	uint32_t temp;
401 
402 	s = str;
403 	for (i = 0; i != dim; i++, s = NULL) {
404 		in[i] = strtok_r(s, dlm, &sp);
405 		if (in[i] == NULL)
406 			return -EINVAL;
407 	}
408 
409 	ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
410 			&ntuple_filter->src_ip,
411 			&ntuple_filter->src_ip_mask);
412 	if (ret != 0) {
413 		flow_classify_log("failed to read source address/mask: %s\n",
414 			in[CB_FLD_SRC_ADDR]);
415 		return ret;
416 	}
417 
418 	ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
419 			&ntuple_filter->dst_ip,
420 			&ntuple_filter->dst_ip_mask);
421 	if (ret != 0) {
422 		flow_classify_log("failed to read source address/mask: %s\n",
423 			in[CB_FLD_DST_ADDR]);
424 		return ret;
425 	}
426 
427 	if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
428 		return -EINVAL;
429 	ntuple_filter->src_port = (uint16_t)temp;
430 
431 	if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
432 			sizeof(cb_port_delim)) != 0)
433 		return -EINVAL;
434 
435 	if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
436 		return -EINVAL;
437 	ntuple_filter->src_port_mask = (uint16_t)temp;
438 
439 	if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
440 		return -EINVAL;
441 	ntuple_filter->dst_port = (uint16_t)temp;
442 
443 	if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
444 			sizeof(cb_port_delim)) != 0)
445 		return -EINVAL;
446 
447 	if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
448 		return -EINVAL;
449 	ntuple_filter->dst_port_mask = (uint16_t)temp;
450 
451 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
452 		return -EINVAL;
453 	ntuple_filter->proto = (uint8_t)temp;
454 
455 	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
456 		return -EINVAL;
457 	ntuple_filter->proto_mask = (uint8_t)temp;
458 
459 	if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
460 		return -EINVAL;
461 	ntuple_filter->priority = (uint16_t)temp;
462 	if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
463 		ret = -EINVAL;
464 
465 	return ret;
466 }
467 
468 /* Bypass comment and empty lines */
469 static inline int
470 is_bypass_line(char *buff)
471 {
472 	int i = 0;
473 
474 	/* comment line */
475 	if (buff[0] == COMMENT_LEAD_CHAR)
476 		return 1;
477 	/* empty line */
478 	while (buff[i] != '\0') {
479 		if (!isspace(buff[i]))
480 			return 0;
481 		i++;
482 	}
483 	return 1;
484 }
485 
486 static uint32_t
487 convert_depth_to_bitmask(uint32_t depth_val)
488 {
489 	uint32_t bitmask = 0;
490 	int i, j;
491 
492 	for (i = depth_val, j = 0; i > 0; i--, j++)
493 		bitmask |= (1 << (31 - j));
494 	return bitmask;
495 }
496 
497 static int
498 add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
499 		struct flow_classifier *cls_app)
500 {
501 	int ret = -1;
502 	int key_found;
503 	struct rte_flow_error error;
504 	struct rte_flow_item_ipv4 ipv4_spec;
505 	struct rte_flow_item_ipv4 ipv4_mask;
506 	struct rte_flow_item ipv4_udp_item;
507 	struct rte_flow_item ipv4_tcp_item;
508 	struct rte_flow_item ipv4_sctp_item;
509 	struct rte_flow_item_udp udp_spec;
510 	struct rte_flow_item_udp udp_mask;
511 	struct rte_flow_item udp_item;
512 	struct rte_flow_item_tcp tcp_spec;
513 	struct rte_flow_item_tcp tcp_mask;
514 	struct rte_flow_item tcp_item;
515 	struct rte_flow_item_sctp sctp_spec;
516 	struct rte_flow_item_sctp sctp_mask;
517 	struct rte_flow_item sctp_item;
518 	struct rte_flow_item pattern_ipv4_5tuple[4];
519 	struct rte_flow_classify_rule *rule;
520 	uint8_t ipv4_proto;
521 
522 	if (num_classify_rules >= MAX_NUM_CLASSIFY) {
523 		printf(
524 			"\nINFO:  classify rule capacity %d reached\n",
525 			num_classify_rules);
526 		return ret;
527 	}
528 
529 	/* set up parameters for validate and add */
530 	memset(&ipv4_spec, 0, sizeof(ipv4_spec));
531 	ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
532 	ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
533 	ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
534 	ipv4_proto = ipv4_spec.hdr.next_proto_id;
535 
536 	memset(&ipv4_mask, 0, sizeof(ipv4_mask));
537 	ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
538 	ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
539 	ipv4_mask.hdr.src_addr =
540 		convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
541 	ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
542 	ipv4_mask.hdr.dst_addr =
543 		convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);
544 
545 	switch (ipv4_proto) {
546 	case IPPROTO_UDP:
547 		ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
548 		ipv4_udp_item.spec = &ipv4_spec;
549 		ipv4_udp_item.mask = &ipv4_mask;
550 		ipv4_udp_item.last = NULL;
551 
552 		udp_spec.hdr.src_port = ntuple_filter->src_port;
553 		udp_spec.hdr.dst_port = ntuple_filter->dst_port;
554 		udp_spec.hdr.dgram_len = 0;
555 		udp_spec.hdr.dgram_cksum = 0;
556 
557 		udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
558 		udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
559 		udp_mask.hdr.dgram_len = 0;
560 		udp_mask.hdr.dgram_cksum = 0;
561 
562 		udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
563 		udp_item.spec = &udp_spec;
564 		udp_item.mask = &udp_mask;
565 		udp_item.last = NULL;
566 
567 		attr.priority = ntuple_filter->priority;
568 		pattern_ipv4_5tuple[1] = ipv4_udp_item;
569 		pattern_ipv4_5tuple[2] = udp_item;
570 		break;
571 	case IPPROTO_TCP:
572 		ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
573 		ipv4_tcp_item.spec = &ipv4_spec;
574 		ipv4_tcp_item.mask = &ipv4_mask;
575 		ipv4_tcp_item.last = NULL;
576 
577 		memset(&tcp_spec, 0, sizeof(tcp_spec));
578 		tcp_spec.hdr.src_port = ntuple_filter->src_port;
579 		tcp_spec.hdr.dst_port = ntuple_filter->dst_port;
580 
581 		memset(&tcp_mask, 0, sizeof(tcp_mask));
582 		tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
583 		tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
584 
585 		tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
586 		tcp_item.spec = &tcp_spec;
587 		tcp_item.mask = &tcp_mask;
588 		tcp_item.last = NULL;
589 
590 		attr.priority = ntuple_filter->priority;
591 		pattern_ipv4_5tuple[1] = ipv4_tcp_item;
592 		pattern_ipv4_5tuple[2] = tcp_item;
593 		break;
594 	case IPPROTO_SCTP:
595 		ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
596 		ipv4_sctp_item.spec = &ipv4_spec;
597 		ipv4_sctp_item.mask = &ipv4_mask;
598 		ipv4_sctp_item.last = NULL;
599 
600 		sctp_spec.hdr.src_port = ntuple_filter->src_port;
601 		sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
602 		sctp_spec.hdr.cksum = 0;
603 		sctp_spec.hdr.tag = 0;
604 
605 		sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
606 		sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
607 		sctp_mask.hdr.cksum = 0;
608 		sctp_mask.hdr.tag = 0;
609 
610 		sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
611 		sctp_item.spec = &sctp_spec;
612 		sctp_item.mask = &sctp_mask;
613 		sctp_item.last = NULL;
614 
615 		attr.priority = ntuple_filter->priority;
616 		pattern_ipv4_5tuple[1] = ipv4_sctp_item;
617 		pattern_ipv4_5tuple[2] = sctp_item;
618 		break;
619 	default:
620 		return ret;
621 	}
622 
623 	attr.ingress = 1;
624 	pattern_ipv4_5tuple[0] = eth_item;
625 	pattern_ipv4_5tuple[3] = end_item;
626 	actions[0] = count_action;
627 	actions[1] = end_action;
628 
629 	/* Validate and add rule */
630 	ret = rte_flow_classify_validate(cls_app->cls, &attr,
631 			pattern_ipv4_5tuple, actions, &error);
632 	if (ret) {
633 		printf("table entry validate failed ipv4_proto = %u\n",
634 			ipv4_proto);
635 		return ret;
636 	}
637 
638 	rule = rte_flow_classify_table_entry_add(
639 			cls_app->cls, &attr, pattern_ipv4_5tuple,
640 			actions, &key_found, &error);
641 	if (rule == NULL) {
642 		printf("table entry add failed ipv4_proto = %u\n",
643 			ipv4_proto);
644 		ret = -1;
645 		return ret;
646 	}
647 
648 	rules[num_classify_rules] = rule;
649 	num_classify_rules++;
650 	return 0;
651 }
652 
653 static int
654 add_rules(const char *rule_path, struct flow_classifier *cls_app)
655 {
656 	FILE *fh;
657 	char buff[LINE_MAX];
658 	unsigned int i = 0;
659 	unsigned int total_num = 0;
660 	struct rte_eth_ntuple_filter ntuple_filter;
661 	int ret;
662 
663 	fh = fopen(rule_path, "rb");
664 	if (fh == NULL)
665 		rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
666 			rule_path);
667 
668 	ret = fseek(fh, 0, SEEK_SET);
669 	if (ret)
670 		rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
671 			ret);
672 
673 	i = 0;
674 	while (fgets(buff, LINE_MAX, fh) != NULL) {
675 		i++;
676 
677 		if (is_bypass_line(buff))
678 			continue;
679 
680 		if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
681 			printf("\nINFO: classify rule capacity %d reached\n",
682 				total_num);
683 			break;
684 		}
685 
686 		if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
687 			rte_exit(EXIT_FAILURE,
688 				"%s Line %u: parse rules error\n",
689 				rule_path, i);
690 
691 		if (add_classify_rule(&ntuple_filter, cls_app) != 0)
692 			rte_exit(EXIT_FAILURE, "add rule error\n");
693 
694 		total_num++;
695 	}
696 
697 	fclose(fh);
698 	return 0;
699 }
700 
701 /* display usage */
702 static void
703 print_usage(const char *prgname)
704 {
705 	printf("%s usage:\n", prgname);
706 	printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
707 	printf("specify the ipv4 rules file.\n");
708 	printf("Each rule occupies one line in the file.\n");
709 }
710 
711 /* Parse the argument given in the command line of the application */
712 static int
713 parse_args(int argc, char **argv)
714 {
715 	int opt, ret;
716 	char **argvopt;
717 	int option_index;
718 	char *prgname = argv[0];
719 	static struct option lgopts[] = {
720 		{OPTION_RULE_IPV4, 1, 0, 0},
721 		{NULL, 0, 0, 0}
722 	};
723 
724 	argvopt = argv;
725 
726 	while ((opt = getopt_long(argc, argvopt, "",
727 				lgopts, &option_index)) != EOF) {
728 
729 		switch (opt) {
730 		/* long options */
731 		case 0:
732 			if (!strncmp(lgopts[option_index].name,
733 					OPTION_RULE_IPV4,
734 					sizeof(OPTION_RULE_IPV4)))
735 				parm_config.rule_ipv4_name = optarg;
736 			break;
737 		default:
738 			print_usage(prgname);
739 			return -1;
740 		}
741 	}
742 
743 	if (optind >= 0)
744 		argv[optind-1] = prgname;
745 
746 	ret = optind-1;
747 	optind = 1; /* reset getopt lib */
748 	return ret;
749 }
750 
751 /*
752  * The main function, which does initialization and calls the lcore_main
753  * function.
754  */
755 int
756 main(int argc, char *argv[])
757 {
758 	struct rte_mempool *mbuf_pool;
759 	uint16_t nb_ports;
760 	uint16_t portid;
761 	int ret;
762 	int socket_id;
763 	struct rte_table_acl_params table_acl_params;
764 	struct rte_flow_classify_table_params cls_table_params;
765 	struct flow_classifier *cls_app;
766 	struct rte_flow_classifier_params cls_params;
767 	uint32_t size;
768 
769 	/* Initialize the Environment Abstraction Layer (EAL). */
770 	ret = rte_eal_init(argc, argv);
771 	if (ret < 0)
772 		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
773 
774 	argc -= ret;
775 	argv += ret;
776 
777 	/* parse application arguments (after the EAL ones) */
778 	ret = parse_args(argc, argv);
779 	if (ret < 0)
780 		rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");
781 
782 	/* Check that there is an even number of ports to send/receive on. */
783 	nb_ports = rte_eth_dev_count_avail();
784 	if (nb_ports < 2 || (nb_ports & 1))
785 		rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");
786 
787 	/* Creates a new mempool in memory to hold the mbufs. */
788 	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
789 		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
790 
791 	if (mbuf_pool == NULL)
792 		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
793 
794 	/* Initialize all ports. */
795 	RTE_ETH_FOREACH_DEV(portid)
796 		if (port_init(portid, mbuf_pool) != 0)
797 			rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
798 					portid);
799 
800 	if (rte_lcore_count() > 1)
801 		printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
802 
803 	socket_id = rte_eth_dev_socket_id(0);
804 
805 	/* Memory allocation */
806 	size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
807 	cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
808 	if (cls_app == NULL)
809 		rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");
810 
811 	cls_params.name = "flow_classifier";
812 	cls_params.socket_id = socket_id;
813 
814 	cls_app->cls = rte_flow_classifier_create(&cls_params);
815 	if (cls_app->cls == NULL) {
816 		rte_free(cls_app);
817 		rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
818 	}
819 
820 	/* initialise ACL table params */
821 	table_acl_params.name = "table_acl_ipv4_5tuple";
822 	table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
823 	table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
824 	memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));
825 
826 	/* initialise table create params */
827 	cls_table_params.ops = &rte_table_acl_ops;
828 	cls_table_params.arg_create = &table_acl_params;
829 	cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;
830 
831 	ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
832 	if (ret) {
833 		rte_flow_classifier_free(cls_app->cls);
834 		rte_free(cls_app);
835 		rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
836 	}
837 
838 	/* read file of IPv4 5 tuple rules and initialize parameters
839 	 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
840 	 * API's.
841 	 */
842 	if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
843 		rte_flow_classifier_free(cls_app->cls);
844 		rte_free(cls_app);
845 		rte_exit(EXIT_FAILURE, "Failed to add rules\n");
846 	}
847 
848 	/* Call lcore_main on the master core only. */
849 	lcore_main(cls_app);
850 
851 	return 0;
852 }
853