| /oneTBB/include/oneapi/tbb/ |
| H A D | concurrent_priority_queue.h | 101 data(other.data) in concurrent_priority_queue() 108 data(other.data, alloc) in concurrent_priority_queue() 115 data(std::move(other.data)) in concurrent_priority_queue() 122 data(std::move(other.data), alloc) in concurrent_priority_queue() 129 data = other.data; 139 data = std::move(other.data); 216 swap(data, other.data); in swap() 373 data[cur_pos] = std::move(data[target]); in reheap() 378 data[cur_pos] = std::move(data.back()); in reheap() 380 if (mark > data.size()) mark = data.size(); in reheap() [all …]
|
| H A D | info.h | 87 r1::fill_numa_indices(node_indices.data()); in numa_nodes() 97 r1::fill_core_type_indices(core_type_indexes.data()); in core_types()
|
| /oneTBB/test/conformance/ |
| H A D | conformance_blocked_rangeNd.cpp | 71 static void init_data(data_type<EntityType, DimSize>& data) { in init_data() 72 …std::for_each(data.begin(), data.end(), range_utils<range_t, N - 1>::template init_data<EntityType… in init_data() 77 auto begin = data.begin() + range.dim(N - 1).begin(); in increment_data() 87 auto begin = data.begin() + range.dim(N - 1).begin(); in check_data() 140 static void init_data(data_type<EntityType, DimSize>& data) { data = 0; } in init_data() 143 static void increment_data(const range_t&, data_type<EntityType, DimSize>& data) { ++data; } in increment_data() 147 REQUIRE(data == 1); in check_data() 199 utils_t::init_data(data); in ParallelTest() 203 oneapi::tbb::parallel_for(r, [&data](const range_t& range) { in ParallelTest() 204 utils_t::increment_data(range, data); in ParallelTest() [all …]
|
| H A D | conformance_parallel_for_each.cpp | 128 oneapi::tbb::parallel_for_each(iterator_type(items_to_proceed.data()), in test_pfor_each_invoke_basic() 129 iterator_type(items_to_proceed.data() + items_count), in test_pfor_each_invoke_basic() 139 oneapi::tbb::parallel_for_each(iterator_type(items_to_proceed.data()), in test_pfor_each_invoke_basic() 140 iterator_type(items_to_proceed.data() + items_count), in test_pfor_each_invoke_basic()
|
| H A D | conformance_flowgraph.h | 46 int data; member 48 message(int _data) : data(_data) {}; in message() 54 message(const message& msg) : data(msg.data) {}; in message() 58 this->data = msg.data; 63 return data == expected_data; 67 return data == msg.data; 71 return static_cast<std::size_t>(data); in size_t() 75 return data; 128 T data; member
|
| H A D | conformance_concurrent_hash_map.cpp | 68 int data; member in MyData 77 data = i; in MyData() 87 data = other.data; in MyData() 118 return data == other.data; in operator ==() 129 data = other.data; in MyData2() 135 data = other.data; in MyData2() 141 data = other.data; in operator =() 147 data = other.data; in operator =() 153 return data == other.data; in operator ==() 410 data.set_value(0); a->second = data; in TestIteratorsAndRanges() [all …]
|
| /oneTBB/examples/parallel_for/game_of_life/ |
| H A D | Game_of_life.cpp | 46 m_matrix->data = new char[width * height]; in Board() 47 memset(m_matrix->data, 0, width * height); in Board() 51 delete[] m_matrix->data; in ~Board() 60 m_matrix->data[i + j * m_width] = x > 75 ? 1 : 0; // 25% occupied in seed() 66 memcpy(m_matrix->data, src->m_matrix->data, m_height * m_width); in seed()
|
| /oneTBB/doc/main/tbb_userguide/ |
| H A D | avoiding_data_races.rst | 12 automatically protect you from data races. You must explicitly prevent 13 data races by using these mechanisms. 16 For example, the follow code has a data race because there is nothing to 40 global_sum += i; // data race on global_sum 54 is a bit smaller than the expected solution due to the data race. The 55 data race could be avoided in this simple example by changing the
|
| H A D | appendix_A.rst | 21 data in cache memory, which is very fast, but also relatively small 27 references a piece of data for the first time, this data will be pulled 30 cache, and only take a few cycles. Such data is called "hot in cache". 33 to evict data that was hot in cache for A, unless both threads need the 34 data. When thread A gets its next time slice, it will need to reload 35 evicted data, at the cost of hundreds of cycles for each cache miss. Or
|
| H A D | Graph_Main_Categories.rst | 10 - **Data flow graphs.** In this type of graph, data is passed along the 12 data messages. 13 - **Dependence graphs.** In this type of graph, the data operated on by
|
| H A D | Bandwidth_and_Cache_Affinity_os.rst | 18 the data uniformly among threads. Using ``affinity_partitioner`` can 22 - The computation does a few operations per data access. 25 - The data acted upon by the loop fits in cache. 28 - The loop, or a similar loop, is re-executed over the same data. 67 If the data does not fit across the system’s caches, there may be little 80 data set. The computation for the example is ``A[i]+=B[i]`` for ``i`` in 84 dominates, resulting in little speedup. For large N, the data set is too
|
| /oneTBB/examples/parallel_for/tachyon/src/ |
| H A D | imap.cpp | 99 ptr = image->data + ((image->xres * y1) + x1) * 3; in ImageMap() 100 ptr2 = image->data + ((image->xres * y1) + x2) * 3; in ImageMap() 106 ptr = image->data + ((image->xres * y2) + x1) * 3; in ImageMap() 107 ptr2 = image->data + ((image->xres * y2) + x2) * 3; in ImageMap() 146 newimage->data = nullptr; in AllocateImage() 161 rt_freemem(image->data); in DeallocateImage()
|
| H A D | ppm.cpp | 84 char data[200]; in readppm() local 94 fscanf(ifp, "%s", data); in readppm() 96 if (strcmp(data, "P6")) { in readppm()
|
| H A D | types.hpp | 123 unsigned char *data; /* pointer to raw byte image data */ member 133 unsigned char *data; /* pointer to raw byte volume data */ member
|
| H A D | vol.cpp | 94 vol->data = nullptr; in newscalarvol() 276 ptr = vol->data + ((vol->xres * vol->yres * z) + (vol->xres * y) + x); in scalar_volume_texture() 329 vol->data = (unsigned char *)rt_getmem(vol->xres * vol->yres * vol->zres); in LoadVol() 331 status = fread(vol->data, 1, (vol->xres * vol->yres * vol->zres), dfile); in LoadVol()
|
| /oneTBB/src/tbb/tools_api/ |
| H A D | ittnotify_static.h | 220 …ey, __itt_metadata_type type, size_t count, void *data), (ITT_FORMAT domain, id, key, type, count,… 222 …t_id id, __itt_string_handle *key, const char* data, size_t length), (ITT_FORMAT domain, id, ke… 223 …_id id, __itt_string_handle *key, const wchar_t* data, size_t length), (ITT_FORMAT domain, id, key… 225 …t_id id, __itt_string_handle *key, const char* data, size_t length), (ITT_FORMAT domain, id, ke… 340 …, __itt_metadata_type type, size_t count, void *data), (ITT_FORMAT domain, scope, key, type, count… 342 … scope, __itt_string_handle *key, const char *data, size_t length), (ITT_FORMAT domain, scope, … 343 …cope, __itt_string_handle *key, const wchar_t *data, size_t length), (ITT_FORMAT domain, scope, ke… 345 … scope, __itt_string_handle *key, const char *data, size_t length), (ITT_FORMAT domain, scope, … 359 …, int, av_saveA, (void *data, int rank, const int *dimensions, int type, const char *filePath, int… 360 …int, av_saveW, (void *data, int rank, const int *dimensions, int type, const wchar_t *filePath, in… [all …]
|
| /oneTBB/src/tbb/ |
| H A D | co_context.h | 173 thread_data_t& data = *static_cast<thread_data_t*>(d); in coroutine_thread_func() local 174 coroutine_type& c = data.first; in coroutine_thread_func() 175 void* arg = data.second; in coroutine_thread_func() 182 data.second = nullptr; in coroutine_thread_func() 207 thread_data_t data{ c, arg }; in create_coroutine() 210 …DLE)_beginthreadex(nullptr, unsigned(stack_size), coroutine_thread_func, &data, STACK_SIZE_PARAM_I… in create_coroutine() 220 …check(pthread_create(&c.my_thread, &s, coroutine_thread_func, &data), "pthread_create has failed"); in create_coroutine()
|
| /oneTBB/test/tbb/ |
| H A D | test_fuzzing.cpp | 22 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { in LLVMFuzzerTestOneInput() argument 23 FuzzedDataProvider provider(data, size); in LLVMFuzzerTestOneInput()
|
| H A D | test_collaborative_call_once.cpp | 297 int data{0}; variable 302 if (data < 100) { in __anon8532fc100a02() 303 data++; in __anon8532fc100a02() 322 REQUIRE(data == 100);
|
| /oneTBB/src/tbbmalloc/ |
| H A D | large_objects.cpp | 199 CacheBinOperationData data; member 213 return *reinterpret_cast<OpTypeData*>(&op.data); in opCast() 465 OpGet data = {&lmb, size, static_cast<uintptr_t>(0)}; in get() local 466 CacheBinOperation op(data); in get() 476 OpPutList data = {head}; in putList() local 490 OpCleanToThreshold data = {&toRelease, currTime}; in cleanToThreshold() local 491 CacheBinOperation op(data); in cleanToThreshold() 511 OpCleanAll data = {&toRelease}; in releaseAllToBackend() local 512 CacheBinOperation op(data); in releaseAllToBackend() 531 OpUpdateUsedSize data = {size}; in updateUsedSize() local [all …]
|
| /oneTBB/doc/main/tbb_userguide/design_patterns/ |
| H A D | Odd-Even_Communication.rst | 13 Operations on data cannot be done entirely independently, but data
|
| /oneTBB/cmake/android/ |
| H A D | environment.cmake | 15 set(ANDROID_DEVICE_TESTING_DIRECTORY "/data/local/tmp/tbb_testing") 33 message(FATAL_ERROR "Error while data transferring: ${data_path} error_code: ${CMD_RESULT}")
|
| /oneTBB/doc/main/intro/ |
| H A D | Benefits.rst | 48 - **oneTBB emphasizes scalable, data parallel programming**. Breaking a 52 contrast, oneTBB emphasizes *data-parallel* programming, enabling 55 by dividing the collection into smaller pieces. With data-parallel 85 not particular types, and thus adapt to different data representations.
|
| /oneTBB/doc/GSG/ |
| H A D | intro.rst | 22 * Emphasize data-parallel programming. 27 oneTBB is used in different areas, such as scientific simulations, gaming, data analysis, etc.
|
| /oneTBB/doc/main/tbb_userguide/Migration_Guide/ |
| H A D | Task_API.rst | 221 std::shared_ptr<Data> data = std::make_shared<Data>(/*params*/); 223 tg.run(SharedStateFunctor{data, tg}); 253 std::shared_ptr<Data> data = std::make_shared<Data>(/*params*/); 255 tg.run(SharedStateFunctor{data, tg}); 274 ContinuationTask(std::vector<int>& data, int& result) 275 : m_data(data), m_result(result) 288 ChildTask(std::vector<int>& data, int& result, 291 … : m_data(data), m_result(result), m_tasks_left(tasks_left), m_tasks_done(tasks_done), m_tg(tg)
|