1 #ifndef VM_PARAMETER_VALIDATION_H
2 #define VM_PARAMETER_VALIDATION_H
3
4
5 /*
6 * Common Naming Conventions:
7 * call_* functions are harnesses used to call a single function under test.
8 * They take all arguments needed to call the function and avoid calling functions with PANICing values.
9 * test_* functions are used to call the call_ functions. They iterate through possibilities of interesting parameters
10 * and provide those as arguments to the call_ functions.
11 *
12 * test_* functions are named in the following way:
13 * Arguments under test are put at the end of the name. e.g. (test_mach_vm_prot) tests a vm_prot_t
14 * test_mach_... functions test a function with the first argument being a MAP_T.
15 * test_unix_... functions test a unix-y function. This means it doesn't take a MAP_T.
16 * In kernel context, it means it operates on current_map instead of an arbitrary vm_map_t
17 * test_..._with_allocated_... means an allocation has already been created, and some parameters referring to that allocation are passed in.
18 *
19 * Common Abbreviations:
20 * ssz: Start + Start + Size
21 * ssoo: Start + Size + Offset + Object
22 * sso: Start + Start + Offset
23 */
24
25 #include <sys/mman.h>
26 #if KERNEL
27
28 #include <mach/vm_map.h>
29 #include <mach/mach_vm.h>
30 #include <mach/vm_reclaim.h>
31 #include <mach/mach_types.h>
32 #include <mach/mach_host.h>
33 #include <mach/memory_object.h>
34 #include <mach/memory_entry.h>
35 #include <mach/mach_vm_server.h>
36
37 #include <device/device_port.h>
38 #include <sys/mman.h>
39 #include <sys/errno.h>
40 #include <vm/memory_object.h>
41 #include <vm/vm_fault.h>
42 #include <vm/vm_map_internal.h>
43 #include <vm/vm_kern_internal.h>
44 #include <vm/vm_pageout.h>
45 #include <vm/vm_protos.h>
46 #include <vm/vm_memtag.h>
47 #include <vm/vm_memory_entry.h>
48 #include <vm/vm_memory_entry_xnu.h>
49 #include <vm/vm_object_internal.h>
50 #include <vm/vm_iokit.h>
51 #include <kern/ledger.h>
52 extern ledger_template_t task_ledger_template;
53
54 #define FLAGS_AND_TAG(f, t) ({ \
55 vm_map_kernel_flags_t vmk_flags; \
56 vm_map_kernel_flags_set_vmflags(&vmk_flags, f, t); \
57 vmk_flags; \
58 })
59
60 #else // KERNEL
61
62 #include <TargetConditionals.h>
63
64 #endif // KERNEL
65
66
67 // ignore some warnings inside this file
68 #pragma clang diagnostic push
69 #pragma clang diagnostic ignored "-Wdeclaration-after-statement"
70 #pragma clang diagnostic ignored "-Wincompatible-function-pointer-types"
71 #pragma clang diagnostic ignored "-Wmissing-prototypes"
72 #pragma clang diagnostic ignored "-Wpedantic"
73 #pragma clang diagnostic ignored "-Wgcc-compat"
74
75 /*
76 * Invalid values for various types. These are used by the outparameter tests.
77 * UNLIKELY_ means the value is not 100% guaranteed to be invalid for that type,
78 * and is just a very unlikely value for it. Tests should not rely on them to compare against UNLIKELY_
79 * values without explicit reason it cannot be possible.
80 *
81 * INVALID_* means the value is 100% guaranteed to be invalid. They can be relied on to be compared against.
82 */
83
84 #define UNLIKELY_INITIAL_ADDRESS 0xabababab
85 /*
86 * It's important for us to never have a test with a size like
87 * UNLIKELY_INITIAL_SIZE, and for this to stay non page aligned.
88 * See comment in call_mach_memory_entry_map_size__start_size for more info
89 */
90 #define UNLIKELY_INITIAL_SIZE 0xabababab
91 #define UNLIKELY_INITIAL_PPNUM 0xabababab
92 #define UNLIKELY_INITIAL_MACH_PORT ((mach_port_t) 0xbabababa)
93 #define UNLIKELY_INITIAL_VID 0xbabababa
94 // This cannot possibly be a valid vnode pointer as they are pointers
95 #define INVALID_VNODE_PTR ((void *) -1)
96 // This cannot possibly be a valid vm_map_copy_t as they are pointers
97 #define INVALID_VM_MAP_COPY ((vm_map_copy_t) (void *) -1)
98 // This cannot be a purgable state (see vm_purgable.h) It's way above the last valid state
99 #define INVALID_PURGABLE_STATE 0xababab
100 static_assert(INVALID_PURGABLE_STATE > VM_PURGABLE_STATE_MAX, "This test requires a purgable state above the max");
101 // Disposition values are generated via the VM_PAGE_QUERY_ values being ored.
102 // This cannot be a valid one as it's above the greatest possible or
103 #define INVALID_DISPOSITION_VALUE 0xffffff0
104 #define INVALID_INHERIT 0xbaba
105 static_assert(INVALID_INHERIT > VM_INHERIT_LAST_VALID, "This test requires an inheritance above the max");
106
107 #define INVALID_INITIAL_VID 0xbabababa
108 // output buffer size for kext/xnu sysctl tests
109 // note: 1 GB is too big for watchOS
110 static const int64_t SYSCTL_OUTPUT_BUFFER_SIZE = 512 * 1024 * 1024; // 512 MB
111
112 // caller name (kernel/kext/userspace), used to label the output
113 #if KERNEL
114 # define CALLER_NAME "kernel"
115 #else
116 # define CALLER_NAME "userspace"
117 #endif
118
119 // os name, used to label the output
120 #if KERNEL
121 # if XNU_TARGET_OS_OSX
122 # define OS_NAME "macos"
123 # elif XNU_TARGET_OS_IOS
124 # define OS_NAME "ios"
125 # elif XNU_TARGET_OS_TV
126 # define OS_NAME "tvos"
127 # elif XNU_TARGET_OS_WATCH
128 # define OS_NAME "watchos"
129 # elif XNU_TARGET_OS_BRIDGE
130 # define OS_NAME "bridgeos"
131 # else
132 # define OS_NAME "unknown-os"
133 # endif
134 #else
135 # if TARGET_OS_OSX
136 # define OS_NAME "macos"
137 # elif TARGET_OS_MACCATALYST
138 # define OS_NAME "catalyst"
139 # elif TARGET_OS_IOS
140 # define OS_NAME "ios"
141 # elif TARGET_OS_TV
142 # define OS_NAME "tvos"
143 # elif TARGET_OS_WATCH
144 # define OS_NAME "watchos"
145 # elif TARGET_OS_BRIDGE
146 # define OS_NAME "bridgeos"
147 # else
148 # define OS_NAME "unknown-os"
149 # endif
150 #endif
151
152 // architecture name, used to label the output
153 #if KERNEL
154 # if __i386__
155 # define ARCH_NAME "i386"
156 # elif __x86_64__
157 # define ARCH_NAME "x86_64"
158 # elif __arm64__ && __LP64__
159 # define ARCH_NAME "arm64"
160 # elif __arm64__ && !__LP64__
161 # define ARCH_NAME "arm64_32"
162 # elif __arm__
163 # define ARCH_NAME "arm"
164 # else
165 # define ARCH_NAME "unknown-arch"
166 # endif
167 #else
168 # if TARGET_CPU_X86
169 # define ARCH_NAME "i386"
170 # elif TARGET_CPU_X86_64
171 # define ARCH_NAME "x86_64"
172 # elif TARGET_CPU_ARM64 && __LP64__
173 # define ARCH_NAME "arm64"
174 # elif TARGET_CPU_ARM64 && !__LP64__
175 # define ARCH_NAME "arm64_32"
176 # elif TARGET_CPU_ARM
177 # define ARCH_NAME "arm"
178 # else
179 # define ARCH_NAME "unknown-arch"
180 # endif
181 #endif
182
183 #if KERNEL
184 # define MAP_T vm_map_t
185 #else
186 # define MAP_T mach_port_t
187 #endif
188
189 // Mach has new-style functions with 64-bit address and size
190 // and old-style functions with pointer-size address and size.
191 // On U64 platforms both names send the same MIG message
192 // and run the same kernel code so we need not test both.
193 // On U32 platforms they are different inside the kernel.
194 // fixme for kext/kernel, verify that vm32 entrypoints are not used and not exported
195 #if KERNEL || __LP64__
196 # define TEST_OLD_STYLE_MACH 0
197 #else
198 # define TEST_OLD_STYLE_MACH 1
199 #endif
200
201 // always 64-bit: addr_t, mach_vm_address/size_t, memory_object_size/offset_t
202 // always 32-bit: mach_msg_type_number_t, natural_t
203 // pointer-size: void*, vm_address_t, vm_size_t
204 typedef uint64_t addr_t;
205
206 // We often use 4KB or 16KB instead of PAGE_SIZE
207 // (for example using 16KB instead of PAGE_SIZE to avoid Rosetta complications)
208 #define KB4 ((addr_t)4*1024)
209 #define KB16 ((addr_t)16*1024)
210
211 // Allocation size commonly used in tests.
212 // This size is big enough that our trials of small
213 // address offsets and sizes will still fit inside it.
214 #define TEST_ALLOC_SIZE (4 * KB16)
215
216 // Magic return codes used for in-band signalling.
217 // These must avoid kern_return_t and errno values.
218 #define BUSTED -99 // trial is broken
219 #define IGNORED -98 // trial not performed for acceptable reasons
220 #define ZEROSIZE -97 // trial succeeded because size==0 (FAKE tests only)
221 #define PANIC -96 // trial not performed because it would provoke a panic
222 #define GUARD -95 // trial not performed because it would provoke EXC_GUARD
223 #define ACCEPTABLE -94 // trial should be considered successful no matter what the golden result is
224 #define OUT_PARAM_BAD -93 // trial has incorrect setting of out parameter values
225
226 static inline bool
is_fake_error(int err)227 is_fake_error(int err)
228 {
229 return err == BUSTED || err == IGNORED || err == ZEROSIZE ||
230 err == PANIC || err == GUARD || err == OUT_PARAM_BAD;
231 }
232
233 // Return the count of a (non-decayed!) array.
234 #define countof(array) (sizeof(array) / sizeof((array)[0]))
235
236 #if !KERNEL
237 static inline uint64_t
VM_MAP_PAGE_SIZE(MAP_T map __unused)238 VM_MAP_PAGE_SIZE(MAP_T map __unused)
239 {
240 // fixme wrong for out-of-process maps
241 // on platforms that support processes with two different page sizes
242 return PAGE_SIZE;
243 }
244
245 static inline uint64_t
VM_MAP_PAGE_MASK(MAP_T map __unused)246 VM_MAP_PAGE_MASK(MAP_T map __unused)
247 {
248 // fixme wrong for out-of-process maps
249 // on platforms that support processes with two different page sizes
250 return PAGE_MASK;
251 }
252 #endif
253
254
255 #define IMPL(T) \
256 /* Round up to the given page mask. */ \
257 __attribute__((overloadable, used)) \
258 static inline T \
259 vm_sanitize_map_round_page_mask(T addr, uint64_t pagemask) { \
260 return (addr + (T)pagemask) & ~((T)pagemask); \
261 } \
262 \
263 /* Round up to the given page size. */ \
264 __attribute__((overloadable, used)) \
265 static inline T \
266 round_up_page(T addr, uint64_t pagesize) { \
267 return vm_sanitize_map_round_page_mask(addr, pagesize - 1); \
268 } \
269 \
270 /* Round up to the given map's page size. */ \
271 __attribute__((overloadable, used)) \
272 static inline T \
273 round_up_map(MAP_T map, T addr) { \
274 return vm_sanitize_map_round_page_mask(addr, VM_MAP_PAGE_MASK(map)); \
275 } \
276 \
277 /* Truncate to the given page mask. */ \
278 __attribute__((overloadable, used)) \
279 static inline T \
280 vm_sanitize_map_trunc_page_mask(T addr, uint64_t pagemask) \
281 { \
282 return addr & ~((T)pagemask); \
283 } \
284 \
285 /* Truncate to the given page size. */ \
286 __attribute__((overloadable, used)) \
287 static inline T \
288 trunc_down_page(T addr, uint64_t pagesize) \
289 { \
290 return vm_sanitize_map_trunc_page_mask(addr, pagesize - 1); \
291 } \
292 \
293 /* Truncate to the given map's page size. */ \
294 __attribute__((overloadable, used)) \
295 static inline T \
296 trunc_down_map(MAP_T map, T addr) \
297 { \
298 return vm_sanitize_map_trunc_page_mask(addr, VM_MAP_PAGE_MASK(map)); \
299 } \
300 \
301 __attribute__((overloadable, unavailable("use round_up_page instead"))) \
302 extern T \
303 round_up(T addr, uint64_t pagesize); \
304 __attribute__((overloadable, unavailable("use trunc_down_page instead"))) \
305 extern T \
306 trunc_down(T addr, uint64_t pagesize);
307
308 IMPL(uint64_t)
IMPL(uint32_t)309 IMPL(uint32_t)
310 #undef IMPL
311
312
313 // duplicate the logic of VM's vm_map_range_overflows()
314 // false == good start+size combo, true == bad combo
315 #define IMPL(T) \
316 __attribute__((overloadable, used)) \
317 static bool \
318 vm_sanitize_range_overflows_allow_zero(T start, T size, T pgmask) \
319 { \
320 if (size == 0) { \
321 return false; \
322 } \
323 \
324 T sum; \
325 if (__builtin_add_overflow(start, size, &sum)) { \
326 return true; \
327 } \
328 \
329 T aligned_start = vm_sanitize_map_trunc_page_mask(start, pgmask); \
330 T aligned_end = vm_sanitize_map_round_page_mask(start + size, pgmask); \
331 if (aligned_end <= aligned_start) { \
332 return true; \
333 } \
334 \
335 return false; \
336 } \
337 \
338 /* like vm_sanitize_range_overflows_allow_zero(), but without the */ \
339 /* unconditional approval of size==0 */ \
340 __attribute__((overloadable, used)) \
341 static bool \
342 vm_sanitize_range_overflows_strict_zero(T start, T size, T pgmask) \
343 { \
344 T sum; \
345 if (__builtin_add_overflow(start, size, &sum)) { \
346 return true; \
347 } \
348 \
349 T aligned_start = vm_sanitize_map_trunc_page_mask(start, pgmask); \
350 T aligned_end = vm_sanitize_map_round_page_mask(start + size, pgmask); \
351 if (aligned_end <= aligned_start) { \
352 return true; \
353 } \
354 \
355 return false; \
356 } \
357
358 IMPL(uint64_t)
359 IMPL(uint32_t)
360 #undef IMPL
361
362
363 // return true if the process is running under Rosetta translation
364 // https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment#Determine-Whether-Your-App-Is-Running-as-a-Translated-Binary
365 static bool
366 isRosetta()
367 {
368 #if KERNEL
369 return false;
370 #else
371 int out_value = 0;
372 size_t io_size = sizeof(out_value);
373 if (sysctlbyname("sysctl.proc_translated", &out_value, &io_size, NULL, 0) == 0) {
374 assert(io_size >= sizeof(out_value));
375 return out_value;
376 }
377 return false;
378 #endif
379 }
380
381 // Needed to distinguish between rosetta kernel runs and generating trials names from kern golden files.
382 #if KERNEL
383 #define kern_trialname_generation FALSE
384 #else
385 static bool kern_trialname_generation = FALSE;
386 #endif
387 static addr_t trial_page_size = 0;
388
389 static inline addr_t
adjust_page_size()390 adjust_page_size()
391 {
392 addr_t test_page_size = PAGE_SIZE;
393 #if !KERNEL && __x86_64__
394 // Handle kernel page size variation while recreating trials names for golden files in userspace.
395 if (kern_trialname_generation && isRosetta()) {
396 test_page_size = trial_page_size;
397 }
398 #endif // !KERNEL && __x86_64__
399 return test_page_size;
400 }
401
402 #if KERNEL
403 // Knobs controlled from userspace (and passed in MSB of the file_descriptor)
404 extern bool kernel_generate_golden;
405 #else
406 // Knobs controlled by environment variables
407 extern bool dump;
408 extern bool generate_golden;
409 extern bool dump_golden;
410 extern int out_param_bad_count;
411 extern bool should_test_results;
412 static void
read_env()413 read_env()
414 {
415 dump = (getenv("DUMP_RESULTS") != NULL);
416 dump_golden = (getenv("DUMP_GOLDEN_IMAGE") != NULL);
417 // Shouldn't do both
418 generate_golden = (getenv("GENERATE_GOLDEN_IMAGE") != NULL) && !dump_golden;
419 // Only test when no other golden image flag is set
420 should_test_results = (getenv("SKIP_TESTS") == NULL) && !dump_golden && !generate_golden;
421 }
422 #endif
423
424
425 /////////////////////////////////////////////////////
426 // String functions that work in both kernel and userspace.
427
428 // Test output function.
429 // This prints either to stdout (userspace tests) or to a userspace buffer (kernel sysctl tests)
430 // Golden tests generation in userspace also writes to a buffer (GOLDEN_OUTPUT_BUF)
431 #if KERNEL
432 extern void testprintf(const char *, ...) __printflike(1, 2);
433 #define goldenprintf testprintf
434 #else
435 #define testprintf printf
436 extern void goldenprintf(const char *, ...) __printflike(1, 2);
437 #endif
438
439 // kstrdup() is like strdup() but in the kernel it uses kalloc_data()
440 static inline char *
kstrdup(const char * str)441 kstrdup(const char *str)
442 {
443 #if KERNEL
444 size_t size = strlen(str) + 1;
445 char *copy = kalloc_data(size, Z_WAITOK | Z_ZERO);
446 memcpy(copy, str, size);
447 return copy;
448 #else
449 return strdup(str);
450 #endif
451 }
452
453 // kfree_str() is like free() but in the kernel it uses kfree_data_addr()
454 static inline void
kfree_str(char * str)455 kfree_str(char *str)
456 {
457 #if KERNEL
458 kfree_data_addr(str);
459 #else
460 free(str);
461 #endif
462 }
463
464 // kasprintf() is like asprintf() but in the kernel it uses kalloc_data()
465
466 #if !KERNEL
467 # define kasprintf asprintf
468 #else
469 extern int vsnprintf(char *, size_t, const char *, va_list) __printflike(3, 0);
470 static inline int
kasprintf(char ** __restrict out_str,const char * __restrict format,...)471 kasprintf(char ** __restrict out_str, const char * __restrict format, ...) __printflike(2, 3)
472 {
473 va_list args1, args2;
474
475 // compute length
476 char c;
477 va_start(args1, format);
478 va_copy(args2, args1);
479 int len1 = vsnprintf(&c, sizeof(c), format, args1);
480 va_end(args1);
481 if (len1 < 0) {
482 *out_str = NULL;
483 return len1;
484 }
485
486 // allocate and print
487 char *str = kalloc_data(len1 + 1, Z_NOFAIL);
488 int len2 = vsnprintf(str, len1 + 1, format, args2);
489 va_end(args2);
490 if (len2 < 0) {
491 kfree_data_addr(str);
492 *out_str = NULL;
493 return len1;
494 }
495 assert(len1 == len2);
496
497 *out_str = str;
498 return len1;
499 }
500 // KERNEL
501 #endif
502
503
504 /////////////////////////////////////////////////////
505 // Record trials and return values from tested functions (BSD int or Mach kern_return_t)
506
507 // Maintain list of known trials "smart" generator functions (trial formulae) as
508 // these are included in the golden result list (keeping the enum forces people to
509 // maintain the list up-to-date when adding new functions).
510 #define TRIALSFORMULA_ENUM(VARIANT) \
511 VARIANT(eUNKNOWN_TRIALS) \
512 VARIANT(eSMART_VM_MAP_KERNEL_FLAGS_TRIALS) \
513 VARIANT(eSMART_VM_INHERIT_TRIALS) \
514 VARIANT(eSMART_MMAP_KERNEL_FLAGS_TRIALS) \
515 VARIANT(eSMART_MMAP_FLAGS_TRIALS) \
516 VARIANT(eSMART_GENERIC_FLAG_TRIALS) \
517 VARIANT(eSMART_VM_TAG_TRIALS) \
518 VARIANT(eSMART_VM_PROT_TRIALS) \
519 VARIANT(eSMART_VM_PROT_PAIR_TRIALS) \
520 VARIANT(eSMART_LEDGER_TAG_TRIALS) \
521 VARIANT(eSMART_LEDGER_FLAG_TRIALS) \
522 VARIANT(eSMART_ADDR_TRIALS) \
523 VARIANT(eSMART_SIZE_TRIALS) \
524 VARIANT(eSMART_START_SIZE_TRIALS) \
525 VARIANT(eSMART_START_SIZE_OFFSET_OBJECT_TRIALS) \
526 VARIANT(eSMART_START_SIZE_OFFSET_TRIALS) \
527 VARIANT(eSMART_SIZE_SIZE_TRIALS) \
528 VARIANT(eSMART_SRC_DST_SIZE_TRIALS) \
529 VARIANT(eSMART_FILEOFF_DST_SIZE_TRIALS) \
530 VARIANT(eSMART_VM_BEHAVIOR_TRIALS) \
531 VARIANT(eSMART_VM_ADVISE_TRIALS) \
532 VARIANT(eSMART_VM_SYNC_TRIALS) \
533 VARIANT(eSMART_VM_MSYNC_TRIALS) \
534 VARIANT(eSMART_VM_MACHINE_ATTRIBUTE_TRIALS) \
535 VARIANT(eSMART_VM_PURGEABLE_AND_STATE_TRIALS) \
536 VARIANT(eSMART_START_SIZE_START_SIZE_TRIALS) \
537 VARIANT(eSMART_SHARED_REGION_MAP_AND_SLIDE_2_TRIALS) \
538 VARIANT(eSMART_RECLAMATION_BUFFER_INIT_TRIALS)
539
540 #define TRIALSFORMULA_ENUM_VARIANT(NAME) NAME,
541 typedef enum {
542 TRIALSFORMULA_ENUM(TRIALSFORMULA_ENUM_VARIANT)
543 } trialsformula_t;
544
545 #define TRIALSARGUMENTS_NONE 0
546 #define TRIALSARGUMENTS_SIZE 2
547
548 // formula enum id to string
549 #define TRIALSFORMULA_ENUM_STRING(NAME) case NAME: return #NAME;
550 const char *
trialsformula_name(trialsformula_t formula)551 trialsformula_name(trialsformula_t formula)
552 {
553 switch (formula) {
554 TRIALSFORMULA_ENUM(TRIALSFORMULA_ENUM_STRING)
555 default:
556 testprintf("Unknown formula_t %d\n", formula);
557 assert(false);
558 }
559 }
560
561 #define TRIALSFORMULA_ENUM_FROM_STRING(NAME) \
562 if (strncmp(string, #NAME, strlen(#NAME)) == 0) return NAME;
563
564 // formula name to enum id
565 trialsformula_t
trialsformula_from_string(const char * string)566 trialsformula_from_string(const char *string)
567 {
568 TRIALSFORMULA_ENUM(TRIALSFORMULA_ENUM_FROM_STRING)
569 // else
570 testprintf("Unknown formula %s\n", string);
571 assert(false);
572 }
573
574 // ret: return value of this trial
575 // name: name of this trial, including the input values passed in
576 typedef struct {
577 int ret;
578 char *name;
579 } result_t;
580
581 typedef struct {
582 const char *testname;
583 char *testconfig;
584 trialsformula_t trialsformula;
585 uint64_t trialsargs[TRIALSARGUMENTS_SIZE];
586 unsigned capacity;
587 unsigned count;
588 unsigned tested_count;
589 result_t list[];
590 } results_t;
591
592 extern results_t *golden_list[];
593 extern results_t *kern_list[];
594 static uint32_t num_tests = 0; // num of tests in golden list
595 static uint32_t num_kern_tests = 0; // num of tests in kernel results list
596
597 static __attribute__((overloadable))
598 results_t *
alloc_results(const char * testname,char * testconfig,trialsformula_t trialsformula,uint64_t trialsargs[static TRIALSARGUMENTS_SIZE],unsigned capacity)599 alloc_results(const char *testname, char *testconfig,
600 trialsformula_t trialsformula, uint64_t trialsargs[static TRIALSARGUMENTS_SIZE],
601 unsigned capacity)
602 {
603 results_t *results;
604 #if KERNEL
605 results = kalloc_type(results_t, result_t, capacity, Z_WAITOK | Z_ZERO);
606 #else
607 results = calloc(sizeof(results_t) + capacity * sizeof(result_t), 1);
608 #endif
609 assert(results != NULL);
610 results->testname = testname;
611 results->testconfig = testconfig;
612 results->trialsformula = trialsformula;
613 for (unsigned i = 0; i < TRIALSARGUMENTS_SIZE; i++) {
614 results->trialsargs[i] = trialsargs[i];
615 }
616 results->capacity = capacity;
617 results->count = 0;
618 results->tested_count = 0;
619 return results;
620 }
621
622 static char *
alloc_default_testconfig(void)623 alloc_default_testconfig(void)
624 {
625 char *result;
626 kasprintf(&result, "%s %s %s%s",
627 OS_NAME, ARCH_NAME,
628 kern_trialname_generation ? "kernel" : CALLER_NAME,
629 !kern_trialname_generation && isRosetta() ? " rosetta" : "");
630 return result;
631 }
632
633 static __attribute__((overloadable))
634 results_t *
alloc_results(const char * testname,trialsformula_t trialsformula,uint64_t * trialsargs,size_t trialsargs_count,unsigned capacity)635 alloc_results(const char *testname,
636 trialsformula_t trialsformula, uint64_t *trialsargs, size_t trialsargs_count,
637 unsigned capacity)
638 {
639 assert(trialsargs_count == TRIALSARGUMENTS_SIZE);
640 return alloc_results(testname, alloc_default_testconfig(), trialsformula, trialsargs, capacity);
641 }
642
643 static __attribute__((overloadable))
644 results_t *
alloc_results(const char * testname,trialsformula_t trialsformula,uint64_t trialsarg0,unsigned capacity)645 alloc_results(const char *testname, trialsformula_t trialsformula, uint64_t trialsarg0, unsigned capacity)
646 {
647 uint64_t trialsargs[TRIALSARGUMENTS_SIZE] = {trialsarg0, TRIALSARGUMENTS_NONE};
648 return alloc_results(testname, trialsformula, trialsargs, TRIALSARGUMENTS_SIZE, capacity);
649 }
650
651 static __attribute__((overloadable))
652 results_t *
alloc_results(const char * testname,trialsformula_t trialsformula,unsigned capacity)653 alloc_results(const char *testname, trialsformula_t trialsformula, unsigned capacity)
654 {
655 uint64_t trialsargs[TRIALSARGUMENTS_SIZE] = {TRIALSARGUMENTS_NONE, TRIALSARGUMENTS_NONE};
656 return alloc_results(testname, trialsformula, trialsargs, TRIALSARGUMENTS_SIZE, capacity);
657 }
658
659 static void __unused
dealloc_results(results_t * results)660 dealloc_results(results_t *results)
661 {
662 for (unsigned int i = 0; i < results->count; i++) {
663 kfree_str(results->list[i].name);
664 }
665 kfree_str(results->testconfig);
666 #if KERNEL
667 kfree_type(results_t, result_t, results->capacity, results);
668 #else
669 free(results);
670 #endif
671 }
672
673 static void __attribute__((overloadable, unused))
append_result(results_t * results,int ret,const char * name)674 append_result(results_t *results, int ret, const char *name)
675 {
676 // halt if the results list is already full
677 // fixme reallocate instead if we can't always choose the size in advance
678 assert(results->count < results->capacity);
679
680 // name may be freed before we make use of it
681 char * name_cpy = kstrdup(name);
682 assert(name_cpy);
683 results->list[results->count++] =
684 (result_t){.ret = ret, .name = name_cpy};
685 }
686
687
688 #define TESTNAME_DELIMITER "TESTNAME "
689 #define RESULTCOUNT_DELIMITER "RESULT COUNT "
690 #define TESTRESULT_DELIMITER " "
691 #define TESTCONFIG_DELIMITER " TESTCONFIG "
692 #define TRIALSFORMULA_DELIMITER "TRIALSFORMULA "
693 #define TRIALSARGUMENTS_DELIMITER "TRIALSARGUMENTS"
694 #define KERN_TESTRESULT_DELIMITER " RESULT "
695
696 // print results, unformatted
697 // This output is read by populate_kernel_results()
698 // and by tools/format_vm_parameter_validation.py
699 static results_t *
__dump_results(results_t * results)700 __dump_results(results_t *results)
701 {
702 testprintf(TESTNAME_DELIMITER "%s\n", results->testname);
703 testprintf(RESULTCOUNT_DELIMITER "%d\n", results->count);
704 testprintf(TESTCONFIG_DELIMITER "%s\n", results->testconfig);
705
706 for (unsigned i = 0; i < results->count; i++) {
707 testprintf(KERN_TESTRESULT_DELIMITER "%d, %s\n", results->list[i].ret, results->list[i].name);
708 }
709
710 results->tested_count += 1;
711 return results;
712 }
713
714 // This output is read by populate_golden_results()
715 static results_t *
dump_golden_results(results_t * results)716 dump_golden_results(results_t *results)
717 {
718 trial_page_size = PAGE_SIZE;
719 goldenprintf(TESTNAME_DELIMITER "%s\n", results->testname);
720 goldenprintf(TRIALSFORMULA_DELIMITER "%s %s %llu,%llu,%llu\n",
721 trialsformula_name(results->trialsformula), TRIALSARGUMENTS_DELIMITER,
722 results->trialsargs[0], results->trialsargs[1], trial_page_size);
723 goldenprintf(RESULTCOUNT_DELIMITER "%d\n", results->count);
724
725 for (unsigned i = 0; i < results->count; i++) {
726 goldenprintf(TESTRESULT_DELIMITER "%d: %d\n", i, results->list[i].ret);
727 #if !KERNEL
728 if (results->list[i].ret == OUT_PARAM_BAD) {
729 out_param_bad_count += 1;
730 T_FAIL("Out parameter violation in test %s - %s\n", results->testname, results->list[i].name);
731 }
732 #endif
733 }
734
735 return results;
736 }
737
738 #if !KERNEL
739 // Comparator function for sorting result_t list by name
740 static int
compare_names(const void * a,const void * b)741 compare_names(const void *a, const void *b)
742 {
743 assert(((const result_t *)a)->name);
744 assert(((const result_t *)b)->name);
745 return strcmp(((const result_t *)a)->name, ((const result_t *)b)->name);
746 }
747
748 static unsigned
binary_search(result_t * list,unsigned count,const result_t * trial)749 binary_search(result_t *list, unsigned count, const result_t *trial)
750 {
751 assert(count > 0);
752 const char *name = trial->name;
753 unsigned left = 0, right = count - 1;
754 while (left <= right) {
755 unsigned mid = left + (right - left) / 2;
756 int cmp = strcmp(list[mid].name, name);
757 if (cmp == 0) {
758 return mid;
759 } else if (cmp < 0) {
760 left = mid + 1;
761 } else {
762 right = mid - 1;
763 }
764 }
765 return UINT_MAX; // Not found
766 }
767
768 static inline bool
trial_name_equals(const result_t * a,const result_t * b)769 trial_name_equals(const result_t *a, const result_t *b)
770 {
771 // NB: strlen match need to handle cases where a shorter 'bname' would match a longer 'aname'.
772 if (strlen(a->name) == strlen(b->name) && compare_names(a, b) == 0) {
773 return true;
774 }
775 return false;
776 }
777
778 static const result_t *
get_golden_result(results_t * golden_results,const result_t * trial,unsigned trial_idx)779 get_golden_result(results_t *golden_results, const result_t *trial, unsigned trial_idx)
780 {
781 if (golden_results->trialsformula == eUNKNOWN_TRIALS) {
782 // golden results don't contain trials names
783 T_LOG("%s: update test's alloc_results to have a valid trialsformula_t\n", golden_results->testname);
784 return NULL;
785 }
786
787 if (trial_idx < golden_results->count &&
788 golden_results->list[trial_idx].name &&
789 trial_name_equals(&golden_results->list[trial_idx], trial)) {
790 // "fast search" path taken when golden file is in sync to test.
791 return &golden_results->list[trial_idx];
792 }
793
794 // "slow search" path taken when tests idxs are not aligned. Sort the array
795 // by name and do binary search.
796 qsort(golden_results->list, golden_results->count, sizeof(result_t), compare_names);
797 unsigned g_idx = binary_search(golden_results->list, golden_results->count, trial);
798 if (g_idx < golden_results->count) {
799 return &golden_results->list[g_idx];
800 }
801
802 return NULL;
803 }
804
805 static void
test_results(results_t * golden_results,results_t * results)806 test_results(results_t *golden_results, results_t *results)
807 {
808 bool passed = TRUE;
809 unsigned result_count = results->count;
810 unsigned acceptable_count = 0;
811 const unsigned acceptable_max = 16; // log up to this many ACCEPTABLE results
812 const result_t *golden_result = NULL;
813 if (golden_results->count != results->count) {
814 T_LOG("%s: number of iterations mismatch (%u vs %u)",
815 results->testname, golden_results->count, results->count);
816 }
817 for (unsigned i = 0; i < result_count; i++) {
818 golden_result = get_golden_result(golden_results, &results->list[i], i);
819 if (golden_result) {
820 if (results->list[i].ret == ACCEPTABLE) {
821 // trial has declared itself to be correct
822 // no matter what the golden result is
823 acceptable_count++;
824 if (acceptable_count <= acceptable_max) {
825 T_LOG("%s RESULT ACCEPTABLE (expected %d), %s\n",
826 results->testname,
827 golden_result->ret, results->list[i].name);
828 }
829 } else if (results->list[i].ret != golden_result->ret) {
830 T_FAIL("%s RESULT %d (expected %d), %s\n",
831 results->testname, results->list[i].ret,
832 golden_result->ret, results->list[i].name);
833 passed = FALSE;
834 }
835 } else {
836 // new trial not present in golden results
837 T_FAIL("%s NEW RESULT %d, %s - (regenerate golden files to fix this)\n",
838 results->testname, results->list[i].ret, results->list[i].name);
839 passed = FALSE;
840 }
841 }
842
843 if (acceptable_count > acceptable_max) {
844 T_LOG("%s %u more RESULT ACCEPTABLE trials not logged\n",
845 results->testname, acceptable_count - acceptable_max);
846 }
847 if (passed) {
848 T_PASS("%s passed\n", results->testname);
849 }
850 }
851 #endif
852
853 #if !KERNEL
854 static results_t *
855 test_name_to_golden_results(const char* testname);
856 #endif
857
858 static results_t *
process_results(results_t * results)859 process_results(results_t *results)
860 {
861 #if KERNEL
862 if (kernel_generate_golden) {
863 return dump_golden_results(results);
864 } else {
865 return __dump_results(results);
866 }
867 #else
868 results_t *golden_results = NULL;
869
870 if (dump && !generate_golden) {
871 __dump_results(results);
872 }
873
874 if (generate_golden) {
875 dump_golden_results(results);
876 }
877
878 if (should_test_results) {
879 golden_results = test_name_to_golden_results(results->testname);
880
881 if (golden_results) {
882 test_results(golden_results, results);
883 } else {
884 T_FAIL("New test %s found, update golden list to allow return code testing", results->testname);
885 // Dump results if not done previously
886 if (!dump) {
887 __dump_results(results);
888 }
889 }
890 }
891
892 return results;
893 #endif
894 }
895
896 static inline mach_vm_address_t
truncate_vm_map_addr_with_flags(MAP_T map,mach_vm_address_t addr,int flags)897 truncate_vm_map_addr_with_flags(MAP_T map, mach_vm_address_t addr, int flags)
898 {
899 mach_vm_address_t truncated_addr = addr;
900 if (flags & VM_FLAGS_RETURN_4K_DATA_ADDR) {
901 // VM_FLAGS_RETURN_4K_DATA_ADDR means return a 4k aligned address rather than the
902 // base of the page. Truncate to 4k.
903 truncated_addr = trunc_down_page(addr, KB4);
904 } else if (flags & VM_FLAGS_RETURN_DATA_ADDR) {
905 // On VM_FLAGS_RETURN_DATA_ADDR, we expect to get back the unaligned address.
906 // Don't truncate.
907 } else {
908 // Otherwise we truncate to the map page size
909 truncated_addr = trunc_down_map(map, addr);
910 }
911 return truncated_addr;
912 }
913
914
915 static inline mach_vm_address_t
get_expected_remap_misalignment(MAP_T map,mach_vm_address_t addr,int flags)916 get_expected_remap_misalignment(MAP_T map, mach_vm_address_t addr, int flags)
917 {
918 mach_vm_address_t misalignment;
919 if (flags & VM_FLAGS_RETURN_4K_DATA_ADDR) {
920 // VM_FLAGS_RETURN_4K_DATA_ADDR means return a 4k aligned address rather than the
921 // base of the page. The misalignment is relative to the first 4k page
922 misalignment = addr - trunc_down_page(addr, KB4);
923 } else if (flags & VM_FLAGS_RETURN_DATA_ADDR) {
924 // On VM_FLAGS_RETURN_DATA_ADDR, we expect to get back the unaligned address.
925 // The misalignment is therefore the low bits
926 misalignment = addr - trunc_down_map(map, addr);
927 } else {
928 // Otherwise we expect it to be aligned
929 misalignment = 0;
930 }
931 return misalignment;
932 }
933
934 // absolute and relative offsets are used to specify a trial's values
935
936 typedef struct {
937 bool is_absolute;
938 addr_t offset;
939 } absolute_or_relative_offset_t;
940
941 typedef struct {
942 unsigned count;
943 unsigned capacity;
944 absolute_or_relative_offset_t list[];
945 } offset_list_t;
946
947 static offset_list_t *
allocate_offsets(unsigned capacity)948 allocate_offsets(unsigned capacity)
949 {
950 offset_list_t *offsets;
951 #if KERNEL
952 offsets = kalloc_type(offset_list_t, absolute_or_relative_offset_t, capacity, Z_WAITOK | Z_ZERO);
953 #else
954 offsets = calloc(sizeof(offset_list_t) + capacity * sizeof(absolute_or_relative_offset_t), 1);
955 #endif
956 offsets->count = 0;
957 offsets->capacity = capacity;
958 return offsets;
959 }
960
961 static void
append_offset(offset_list_t * offsets,bool is_absolute,addr_t offset)962 append_offset(offset_list_t *offsets, bool is_absolute, addr_t offset)
963 {
964 assert(offsets->count < offsets->capacity);
965 offsets->list[offsets->count].is_absolute = is_absolute;
966 offsets->list[offsets->count].offset = offset;
967 offsets->count++;
968 }
969
970
971 /////////////////////////////////////////////////////
972 // Generation of trials and their parameter values
973 // A "trial" is a single execution of a function to be tested
974
975 #if KERNEL
976 #define ALLOC_TRIALS(NAME, new_capacity) \
977 (NAME ## _trials_t *)kalloc_type(NAME ## _trials_t, NAME ## _trial_t, \
978 new_capacity, Z_WAITOK | Z_ZERO)
979 #define FREE_TRIALS(NAME, trials) \
980 kfree_type(NAME ## _trials_t, NAME ## _trial_t, trials->capacity, trials)
981 #else
982 #define ALLOC_TRIALS(NAME, new_capacity) \
983 (NAME ## _trials_t *)calloc(sizeof(NAME ## _trials_t) + (new_capacity) * sizeof(NAME ## _trial_t), 1)
984 #define FREE_TRIALS(NAME, trials) \
985 free(trials)
986 #endif
987
988 #define TRIALS_IMPL(NAME) \
989 static NAME ## _trials_t * \
990 __attribute__((used)) \
991 allocate_ ## NAME ## _trials(unsigned capacity) \
992 { \
993 NAME ## _trials_t *trials = ALLOC_TRIALS(NAME, capacity); \
994 assert(trials); \
995 trials->count = 0; \
996 trials->capacity = capacity; \
997 return trials; \
998 } \
999 \
1000 static void __attribute__((overloadable, used)) \
1001 free_trials(NAME ## _trials_t *trials) \
1002 { \
1003 FREE_TRIALS(NAME, trials); \
1004 } \
1005 \
1006 static void __attribute__((overloadable, used)) \
1007 append_trial(NAME ## _trials_t *trials, NAME ## _trial_t new_trial) \
1008 { \
1009 assert(trials->count < trials->capacity); \
1010 trials->list[trials->count++] = new_trial; \
1011 } \
1012 \
1013 static void __attribute__((overloadable, used)) \
1014 append_trials(NAME ## _trials_t *trials, NAME ## _trial_t *new_trials, unsigned new_count) \
1015 { \
1016 for (unsigned i = 0; i < new_count; i++) { \
1017 append_trial(trials, new_trials[i]); \
1018 } \
1019 }
1020
1021 // allocate vm_inherit_t trials, and deallocate it at end of scope
1022 #define SMART_VM_INHERIT_TRIALS() \
1023 __attribute__((cleanup(cleanup_vm_inherit_trials))) \
1024 = allocate_vm_inherit_trials(countof(vm_inherit_trials_values)); \
1025 append_trials(trials, vm_inherit_trials_values, countof(vm_inherit_trials_values))
1026
1027 // generate vm_inherit_t trials
1028
1029 typedef struct {
1030 vm_inherit_t value;
1031 const char * name;
1032 } vm_inherit_trial_t;
1033
1034 typedef struct {
1035 unsigned count;
1036 unsigned capacity;
1037 vm_inherit_trial_t list[];
1038 } vm_inherit_trials_t;
1039
1040
1041 #define VM_INHERIT_TRIAL(new_value) \
1042 (vm_inherit_trial_t) {.value = (vm_inherit_t)(new_value), .name = "vm_inherit " #new_value}
1043
1044 static_assert(VM_INHERIT_LAST_VALID == VM_INHERIT_NONE,
1045 "Update this test with new vm_inherit_t values");
1046 static vm_inherit_trial_t vm_inherit_trials_values[] = {
1047 VM_INHERIT_TRIAL(VM_INHERIT_SHARE),
1048 VM_INHERIT_TRIAL(VM_INHERIT_COPY),
1049 VM_INHERIT_TRIAL(VM_INHERIT_NONE),
1050 // end valid ones
1051 // note: VM_INHERIT_DONATE_COPY is invalid and unimplemented
1052 // VM_INHERIT_LAST_VALID correctly excludes VM_INHERIT_DONATE_COPY
1053 VM_INHERIT_TRIAL(VM_INHERIT_LAST_VALID + 1),
1054 VM_INHERIT_TRIAL(VM_INHERIT_LAST_VALID + 2),
1055 VM_INHERIT_TRIAL(0xffffffff),
1056 };
1057
TRIALS_IMPL(vm_inherit)1058 TRIALS_IMPL(vm_inherit)
1059
1060 static void
1061 cleanup_vm_inherit_trials(vm_inherit_trials_t **trials)
1062 {
1063 free_trials(*trials);
1064 }
1065
1066 // allocate vm_behavior_t trials, and deallocate it at end of scope
1067 #define SMART_VM_BEHAVIOR_TRIALS() \
1068 __attribute__((cleanup(cleanup_vm_behavior_trials))) \
1069 = allocate_vm_behavior_trials(countof(vm_behavior_trials_values)); \
1070 append_trials(trials, vm_behavior_trials_values, countof(vm_behavior_trials_values))
1071
1072 // generate vm_behavior_t trials
1073
1074 typedef struct {
1075 vm_behavior_t value;
1076 const char * name;
1077 } vm_behavior_trial_t;
1078
1079 typedef struct {
1080 unsigned count;
1081 unsigned capacity;
1082 vm_behavior_trial_t list[];
1083 } vm_behavior_trials_t;
1084
1085
1086 #define VM_BEHAVIOR_TRIAL(new_value) \
1087 (vm_behavior_trial_t) {.value = (vm_behavior_t)(new_value), .name = "vm_behavior " #new_value}
1088
1089 static vm_behavior_trial_t vm_behavior_trials_values[] = {
1090 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_DEFAULT),
1091 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_RANDOM),
1092 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_SEQUENTIAL),
1093 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_RSEQNTL),
1094 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_WILLNEED),
1095 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_DONTNEED),
1096 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_FREE),
1097 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_ZERO_WIRED_PAGES),
1098 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_REUSABLE),
1099 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_REUSE),
1100 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_CAN_REUSE),
1101 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_PAGEOUT),
1102 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_ZERO),
1103 // end valid ones
1104 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_LAST_VALID + 1),
1105 VM_BEHAVIOR_TRIAL(VM_BEHAVIOR_LAST_VALID + 2),
1106 VM_BEHAVIOR_TRIAL(0x12345),
1107 VM_BEHAVIOR_TRIAL(0xffffffff),
1108 };
1109
TRIALS_IMPL(vm_behavior)1110 TRIALS_IMPL(vm_behavior)
1111
1112 static void
1113 cleanup_vm_behavior_trials(vm_behavior_trials_t **trials)
1114 {
1115 free_trials(*trials);
1116 }
1117
1118 // allocate vm_sync_t trials, and deallocate it at end of scope
1119 #define SMART_VM_SYNC_TRIALS() \
1120 __attribute__((cleanup(cleanup_vm_sync_trials))) \
1121 = allocate_vm_sync_trials(countof(vm_sync_trials_values)); \
1122 append_trials(trials, vm_sync_trials_values, countof(vm_sync_trials_values))
1123
1124 // generate vm_sync_t trials
1125
1126 typedef struct {
1127 vm_sync_t value;
1128 const char * name;
1129 } vm_sync_trial_t;
1130
1131 typedef struct {
1132 unsigned count;
1133 unsigned capacity;
1134 vm_sync_trial_t list[];
1135 } vm_sync_trials_t;
1136
1137
1138 #define VM_SYNC_TRIAL(new_value) \
1139 (vm_sync_trial_t) {.value = (vm_sync_t)(new_value), .name = "vm_sync_t " #new_value}
1140
1141 static vm_sync_trial_t vm_sync_trials_values[] = {
1142 VM_SYNC_TRIAL(0),
1143 // start valid values
1144 VM_SYNC_TRIAL(VM_SYNC_ASYNCHRONOUS),
1145 VM_SYNC_TRIAL(VM_SYNC_SYNCHRONOUS),
1146 VM_SYNC_TRIAL(VM_SYNC_INVALIDATE),
1147 VM_SYNC_TRIAL(VM_SYNC_KILLPAGES),
1148 VM_SYNC_TRIAL(VM_SYNC_DEACTIVATE),
1149 VM_SYNC_TRIAL(VM_SYNC_CONTIGUOUS),
1150 VM_SYNC_TRIAL(VM_SYNC_REUSABLEPAGES),
1151 // end valid values
1152 VM_SYNC_TRIAL(1u << 7),
1153 VM_SYNC_TRIAL(1u << 8),
1154 VM_SYNC_TRIAL(1u << 9),
1155 VM_SYNC_TRIAL(1u << 10),
1156 VM_SYNC_TRIAL(1u << 11),
1157 VM_SYNC_TRIAL(1u << 12),
1158 VM_SYNC_TRIAL(1u << 13),
1159 VM_SYNC_TRIAL(1u << 14),
1160 VM_SYNC_TRIAL(1u << 15),
1161 VM_SYNC_TRIAL(1u << 16),
1162 VM_SYNC_TRIAL(1u << 17),
1163 VM_SYNC_TRIAL(1u << 18),
1164 VM_SYNC_TRIAL(1u << 19),
1165 VM_SYNC_TRIAL(1u << 20),
1166 VM_SYNC_TRIAL(1u << 21),
1167 VM_SYNC_TRIAL(1u << 22),
1168 VM_SYNC_TRIAL(1u << 23),
1169 VM_SYNC_TRIAL(1u << 24),
1170 VM_SYNC_TRIAL(1u << 25),
1171 VM_SYNC_TRIAL(1u << 26),
1172 VM_SYNC_TRIAL(1u << 27),
1173 VM_SYNC_TRIAL(1u << 28),
1174 VM_SYNC_TRIAL(1u << 29),
1175 VM_SYNC_TRIAL(1u << 30),
1176 VM_SYNC_TRIAL(1u << 31),
1177 VM_SYNC_TRIAL(VM_SYNC_ASYNCHRONOUS | VM_SYNC_SYNCHRONOUS),
1178 VM_SYNC_TRIAL(VM_SYNC_ASYNCHRONOUS | (1u << 7)),
1179 VM_SYNC_TRIAL(0xffffffff),
1180 };
1181
TRIALS_IMPL(vm_sync)1182 TRIALS_IMPL(vm_sync)
1183
1184 static void
1185 cleanup_vm_sync_trials(vm_sync_trials_t **trials)
1186 {
1187 free_trials(*trials);
1188 }
1189
1190 // allocate vm_msync_t trials, and deallocate it at end of scope
1191 #define SMART_VM_MSYNC_TRIALS() \
1192 __attribute__((cleanup(cleanup_vm_msync_trials))) \
1193 = allocate_vm_msync_trials(countof(vm_msync_trials_values)); \
1194 append_trials(trials, vm_msync_trials_values, countof(vm_msync_trials_values))
1195
1196 // generate vm_msync_t trials
1197
1198 typedef struct {
1199 int value;
1200 const char * name;
1201 } vm_msync_trial_t;
1202
1203 typedef struct {
1204 unsigned count;
1205 unsigned capacity;
1206 vm_msync_trial_t list[];
1207 } vm_msync_trials_t;
1208
1209
1210 #define VM_MSYNC_TRIAL(new_value) \
1211 (vm_msync_trial_t) {.value = (int)(new_value), .name = "vm_msync_t " #new_value}
1212
1213 static vm_msync_trial_t vm_msync_trials_values[] = {
1214 VM_MSYNC_TRIAL(0),
1215 // start valid values
1216 VM_MSYNC_TRIAL(MS_ASYNC),
1217 VM_MSYNC_TRIAL(MS_INVALIDATE),
1218 VM_MSYNC_TRIAL(MS_KILLPAGES),
1219 VM_MSYNC_TRIAL(MS_DEACTIVATE),
1220 VM_MSYNC_TRIAL(MS_SYNC),
1221 VM_MSYNC_TRIAL(MS_ASYNC | MS_INVALIDATE),
1222 // end valid values
1223 VM_MSYNC_TRIAL(1u << 5),
1224 VM_MSYNC_TRIAL(1u << 6),
1225 VM_MSYNC_TRIAL(1u << 7),
1226 VM_MSYNC_TRIAL(1u << 8),
1227 VM_MSYNC_TRIAL(1u << 9),
1228 VM_MSYNC_TRIAL(1u << 10),
1229 VM_MSYNC_TRIAL(1u << 11),
1230 VM_MSYNC_TRIAL(1u << 12),
1231 VM_MSYNC_TRIAL(1u << 13),
1232 VM_MSYNC_TRIAL(1u << 14),
1233 VM_MSYNC_TRIAL(1u << 15),
1234 VM_MSYNC_TRIAL(1u << 16),
1235 VM_MSYNC_TRIAL(1u << 17),
1236 VM_MSYNC_TRIAL(1u << 18),
1237 VM_MSYNC_TRIAL(1u << 19),
1238 VM_MSYNC_TRIAL(1u << 20),
1239 VM_MSYNC_TRIAL(1u << 21),
1240 VM_MSYNC_TRIAL(1u << 22),
1241 VM_MSYNC_TRIAL(1u << 23),
1242 VM_MSYNC_TRIAL(1u << 24),
1243 VM_MSYNC_TRIAL(1u << 25),
1244 VM_MSYNC_TRIAL(1u << 26),
1245 VM_MSYNC_TRIAL(1u << 27),
1246 VM_MSYNC_TRIAL(1u << 28),
1247 VM_MSYNC_TRIAL(1u << 29),
1248 VM_MSYNC_TRIAL(1u << 30),
1249 VM_MSYNC_TRIAL(1u << 31),
1250 VM_MSYNC_TRIAL(MS_ASYNC | MS_SYNC),
1251 VM_MSYNC_TRIAL(0xffffffff),
1252 };
1253
TRIALS_IMPL(vm_msync)1254 TRIALS_IMPL(vm_msync)
1255
1256 static void __attribute__((used))
1257 cleanup_vm_msync_trials(vm_msync_trials_t **trials)
1258 {
1259 free_trials(*trials);
1260 }
1261
1262
1263 // allocate advise_t trials, and deallocate it at end of scope
1264 #define SMART_VM_ADVISE_TRIALS() \
1265 __attribute__((cleanup(cleanup_advise_trials))) \
1266 = allocate_vm_advise_trials(countof(vm_advise_trials_values)); \
1267 append_trials(trials, vm_advise_trials_values, countof(vm_advise_trials_values))
1268
1269 // generate advise_t trials
1270
1271 typedef struct {
1272 int value;
1273 const char * name;
1274 } vm_advise_trial_t;
1275
1276 typedef struct {
1277 unsigned count;
1278 unsigned capacity;
1279 vm_advise_trial_t list[];
1280 } vm_advise_trials_t;
1281
1282
1283 #define ADVISE_TRIAL(new_value) \
1284 (vm_advise_trial_t) {.value = (int)(new_value), .name = "advise " #new_value}
1285
1286 static vm_advise_trial_t vm_advise_trials_values[] = {
1287 ADVISE_TRIAL(MADV_NORMAL),
1288 ADVISE_TRIAL(MADV_RANDOM),
1289 ADVISE_TRIAL(MADV_SEQUENTIAL),
1290 ADVISE_TRIAL(MADV_WILLNEED),
1291 ADVISE_TRIAL(MADV_DONTNEED),
1292 ADVISE_TRIAL(MADV_FREE),
1293 ADVISE_TRIAL(MADV_ZERO_WIRED_PAGES),
1294 ADVISE_TRIAL(MADV_FREE_REUSABLE),
1295 ADVISE_TRIAL(MADV_FREE_REUSE),
1296 ADVISE_TRIAL(MADV_CAN_REUSE),
1297 ADVISE_TRIAL(MADV_PAGEOUT),
1298 ADVISE_TRIAL(MADV_ZERO),
1299 // end valid ones
1300 ADVISE_TRIAL(MADV_ZERO + 1),
1301 ADVISE_TRIAL(MADV_ZERO + 2),
1302 ADVISE_TRIAL(0xffffffff),
1303 };
1304
TRIALS_IMPL(vm_advise)1305 TRIALS_IMPL(vm_advise)
1306
1307 static void __attribute__((used))
1308 cleanup_advise_trials(vm_advise_trials_t **trials)
1309 {
1310 free_trials(*trials);
1311 }
1312
1313 // allocate machine_attribute_t trials, and deallocate it at end of scope
1314 #define SMART_VM_MACHINE_ATTRIBUTE_TRIALS() \
1315 __attribute__((cleanup(cleanup_vm_machine_attribute_trials))) \
1316 = allocate_vm_machine_attribute_trials(countof(vm_machine_attribute_trials_values)); \
1317 append_trials(trials, vm_machine_attribute_trials_values, countof(vm_machine_attribute_trials_values))
1318
1319 // generate advise_t trials
1320
1321 typedef struct {
1322 vm_machine_attribute_t value;
1323 const char * name;
1324 } vm_machine_attribute_trial_t;
1325
1326 typedef struct {
1327 unsigned count;
1328 unsigned capacity;
1329 vm_machine_attribute_trial_t list[];
1330 } vm_machine_attribute_trials_t;
1331
1332
1333 #define VM_MACHINE_ATTRIBUTE_TRIAL(new_value) \
1334 (vm_machine_attribute_trial_t) {.value = (vm_machine_attribute_t)(new_value), .name = "vm_machine_attribute_t " #new_value}
1335
1336 static vm_machine_attribute_trial_t vm_machine_attribute_trials_values[] = {
1337 VM_MACHINE_ATTRIBUTE_TRIAL(0),
1338 // start valid ones
1339 VM_MACHINE_ATTRIBUTE_TRIAL(MATTR_CACHE),
1340 VM_MACHINE_ATTRIBUTE_TRIAL(MATTR_MIGRATE),
1341 VM_MACHINE_ATTRIBUTE_TRIAL(MATTR_REPLICATE),
1342 // end valid ones
1343 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 3),
1344 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 4),
1345 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 5),
1346 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 6),
1347 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 7),
1348 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 8),
1349 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 9),
1350 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 10),
1351 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 11),
1352 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 12),
1353 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 13),
1354 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 14),
1355 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 15),
1356 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 16),
1357 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 17),
1358 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 18),
1359 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 19),
1360 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 20),
1361 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 21),
1362 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 22),
1363 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 23),
1364 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 24),
1365 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 25),
1366 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 26),
1367 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 27),
1368 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 28),
1369 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 29),
1370 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 30),
1371 VM_MACHINE_ATTRIBUTE_TRIAL(1u << 31),
1372 };
1373
TRIALS_IMPL(vm_machine_attribute)1374 TRIALS_IMPL(vm_machine_attribute)
1375
1376 static void
1377 cleanup_vm_machine_attribute_trials(vm_machine_attribute_trials_t **trials)
1378 {
1379 free_trials(*trials);
1380 }
1381
1382 // allocate vm_map_kernel_flags trials, and deallocate it at end of scope
1383 #define SMART_VM_MAP_KERNEL_FLAGS_TRIALS() \
1384 __attribute__((cleanup(cleanup_vm_map_kernel_flags_trials))) \
1385 = generate_vm_map_kernel_flags_trials()
1386
1387
1388 // generate vm_map_kernel_flags_t trials
1389
1390 typedef struct {
1391 int flags;
1392 char * name;
1393 } vm_map_kernel_flags_trial_t;
1394
1395 typedef struct {
1396 unsigned count;
1397 unsigned capacity;
1398 vm_map_kernel_flags_trial_t list[];
1399 } vm_map_kernel_flags_trials_t;
1400
1401 #define VM_MAP_KERNEL_FLAGS_TRIAL(new_flags) \
1402 (vm_map_kernel_flags_trial_t) {.flags = (int)(new_flags), .name ="vm_map_kernel_flags " #new_flags}
1403
TRIALS_IMPL(vm_map_kernel_flags)1404 TRIALS_IMPL(vm_map_kernel_flags)
1405
1406 static vm_map_kernel_flags_trials_t *
1407 generate_prefixed_vm_map_kernel_flags_trials(int prefix_flags, const char *prefix_name)
1408 {
1409 vm_map_kernel_flags_trials_t *trials;
1410 trials = allocate_vm_map_kernel_flags_trials(32);
1411
1412 char *str;
1413 #define APPEND(flag) \
1414 ({ \
1415 kasprintf(&str, "vm_map_kernel_flags %s%s%s", \
1416 prefix_name, prefix_flags == 0 ? "" : " | ", #flag); \
1417 append_trial(trials, (vm_map_kernel_flags_trial_t){ prefix_flags | (int)flag, str }); \
1418 })
1419
1420 // First trial is just the prefix flags set, if any.
1421 // (either ANYWHERE or FIXED | OVERWRITE)
1422 if (prefix_flags != 0) {
1423 kasprintf(&str, "vm_map_kernel_flags %s", prefix_name);
1424 append_trial(trials, (vm_map_kernel_flags_trial_t){ prefix_flags, str });
1425 }
1426
1427 // Try each other flag with the prefix flags.
1428 // Skip FIXED and ANYWHERE and OVERWRITE because they cause
1429 // memory management changes that the caller may not be prepared for.
1430 // skip 0x00000000 VM_FLAGS_FIXED
1431 // skip 0x00000001 VM_FLAGS_ANYWHERE
1432 APPEND(VM_FLAGS_PURGABLE);
1433 APPEND(VM_FLAGS_4GB_CHUNK);
1434 APPEND(VM_FLAGS_RANDOM_ADDR);
1435 APPEND(VM_FLAGS_NO_CACHE);
1436 APPEND(VM_FLAGS_RESILIENT_CODESIGN);
1437 APPEND(VM_FLAGS_RESILIENT_MEDIA);
1438 APPEND(VM_FLAGS_PERMANENT);
1439 // skip 0x00001000 VM_FLAGS_TPRO; it only works on some hardware.
1440 APPEND(0x00002000);
1441 // skip 0x00004000 VM_FLAGS_OVERWRITE
1442 APPEND(0x00008000);
1443 APPEND(VM_FLAGS_SUPERPAGE_MASK); // 0x10000, 0x20000, 0x40000
1444 APPEND(0x00080000);
1445 APPEND(VM_FLAGS_RETURN_DATA_ADDR);
1446 APPEND(VM_FLAGS_RETURN_4K_DATA_ADDR);
1447 APPEND(VM_FLAGS_ALIAS_MASK);
1448
1449 return trials;
1450 }
1451
1452 static vm_map_kernel_flags_trials_t *
generate_vm_map_kernel_flags_trials()1453 generate_vm_map_kernel_flags_trials()
1454 {
1455 vm_map_kernel_flags_trials_t *fixed =
1456 generate_prefixed_vm_map_kernel_flags_trials(
1457 VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE, "VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE");
1458 vm_map_kernel_flags_trials_t *anywhere =
1459 generate_prefixed_vm_map_kernel_flags_trials(
1460 VM_FLAGS_ANYWHERE, "VM_FLAGS_ANYWHERE");
1461 vm_map_kernel_flags_trials_t *trials =
1462 allocate_vm_map_kernel_flags_trials(fixed->count + anywhere->count);
1463 append_trials(trials, fixed->list, fixed->count);
1464 append_trials(trials, anywhere->list, anywhere->count);
1465
1466 // free not cleanup, trials has stolen their strings
1467 free_trials(fixed);
1468 free_trials(anywhere);
1469
1470 return trials;
1471 }
1472
1473 static void
cleanup_vm_map_kernel_flags_trials(vm_map_kernel_flags_trials_t ** trials)1474 cleanup_vm_map_kernel_flags_trials(vm_map_kernel_flags_trials_t **trials)
1475 {
1476 for (size_t i = 0; i < (*trials)->count; i++) {
1477 kfree_str((*trials)->list[i].name);
1478 }
1479 free_trials(*trials);
1480 }
1481
1482
1483 // generate mmap flags trials
1484
1485 typedef struct {
1486 int flags;
1487 const char *name;
1488 } mmap_flags_trial_t;
1489
1490 typedef struct {
1491 unsigned count;
1492 unsigned capacity;
1493 mmap_flags_trial_t list[];
1494 } mmap_flags_trials_t;
1495
1496 #define MMAP_FLAGS_TRIAL(new_flags) \
1497 (mmap_flags_trial_t){ .flags = (int)(new_flags), .name = "mmap flags "#new_flags }
1498
1499 static mmap_flags_trial_t mmap_flags_trials_values[] = {
1500 MMAP_FLAGS_TRIAL(MAP_FILE),
1501 MMAP_FLAGS_TRIAL(MAP_ANON),
1502 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_SHARED),
1503 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE),
1504 MMAP_FLAGS_TRIAL(MAP_ANON | MAP_SHARED),
1505 MMAP_FLAGS_TRIAL(MAP_ANON | MAP_PRIVATE),
1506 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_SHARED | MAP_PRIVATE),
1507 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_FIXED),
1508 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_RENAME),
1509 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_NORESERVE),
1510 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_RESERVED0080),
1511 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_NOEXTEND),
1512 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_HASSEMAPHORE),
1513 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_NOCACHE),
1514 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_JIT),
1515 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_RESILIENT_CODESIGN),
1516 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_RESILIENT_MEDIA),
1517 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_TRANSLATED_ALLOW_EXECUTE),
1518 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | MAP_UNIX03),
1519 // skip MAP_TPRO; it only works on some hardware
1520 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 3),
1521 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 4),
1522 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 5),
1523 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 6),
1524 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 7),
1525 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 8),
1526 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 9),
1527 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 10),
1528 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 11),
1529 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 12),
1530 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 13),
1531 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 14),
1532 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 15),
1533 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 16),
1534 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 17),
1535 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 18),
1536 // skip MAP_TPRO (1<<19); it only works on some hardware
1537 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 20),
1538 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 21),
1539 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 22),
1540 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 23),
1541 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 24),
1542 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 25),
1543 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 26),
1544 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 27),
1545 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 28),
1546 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 29),
1547 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 30),
1548 MMAP_FLAGS_TRIAL(MAP_FILE | MAP_PRIVATE | 1u << 31),
1549 };
1550
TRIALS_IMPL(mmap_flags)1551 TRIALS_IMPL(mmap_flags)
1552
1553 static void
1554 cleanup_mmap_flags_trials(mmap_flags_trials_t **trials)
1555 {
1556 free_trials(*trials);
1557 }
1558
1559 // allocate mmap_flag trials, and deallocate it at end of scope
1560 #define SMART_MMAP_FLAGS_TRIALS() \
1561 __attribute__((cleanup(cleanup_mmap_flags_trials))) \
1562 = allocate_mmap_flags_trials(countof(mmap_flags_trials_values)); \
1563 append_trials(trials, mmap_flags_trials_values, countof(mmap_flags_trials_values))
1564
1565 // generate generic flag trials
1566
1567 typedef struct {
1568 int flag;
1569 const char *name;
1570 } generic_flag_trial_t;
1571
1572 typedef struct {
1573 unsigned count;
1574 unsigned capacity;
1575 generic_flag_trial_t list[];
1576 } generic_flag_trials_t;
1577
1578 #define GENERIC_FLAG_TRIAL(new_flag) \
1579 (generic_flag_trial_t){ .flag = (int)(new_flag), .name = "generic flag "#new_flag }
1580
1581 static generic_flag_trial_t generic_flag_trials_values[] = {
1582 GENERIC_FLAG_TRIAL(0),
1583 GENERIC_FLAG_TRIAL(1),
1584 GENERIC_FLAG_TRIAL(2),
1585 GENERIC_FLAG_TRIAL(3),
1586 GENERIC_FLAG_TRIAL(4),
1587 GENERIC_FLAG_TRIAL(5),
1588 GENERIC_FLAG_TRIAL(6),
1589 GENERIC_FLAG_TRIAL(7),
1590 GENERIC_FLAG_TRIAL(1u << 3),
1591 GENERIC_FLAG_TRIAL(1u << 4),
1592 GENERIC_FLAG_TRIAL(1u << 5),
1593 GENERIC_FLAG_TRIAL(1u << 6),
1594 GENERIC_FLAG_TRIAL(1u << 7),
1595 GENERIC_FLAG_TRIAL(1u << 8),
1596 GENERIC_FLAG_TRIAL(1u << 9),
1597 GENERIC_FLAG_TRIAL(1u << 10),
1598 GENERIC_FLAG_TRIAL(1u << 11),
1599 GENERIC_FLAG_TRIAL(1u << 12),
1600 GENERIC_FLAG_TRIAL(1u << 13),
1601 GENERIC_FLAG_TRIAL(1u << 14),
1602 GENERIC_FLAG_TRIAL(1u << 15),
1603 GENERIC_FLAG_TRIAL(1u << 16),
1604 GENERIC_FLAG_TRIAL(1u << 17),
1605 GENERIC_FLAG_TRIAL(1u << 18),
1606 GENERIC_FLAG_TRIAL(1u << 19),
1607 GENERIC_FLAG_TRIAL(1u << 20),
1608 GENERIC_FLAG_TRIAL(1u << 21),
1609 GENERIC_FLAG_TRIAL(1u << 22),
1610 GENERIC_FLAG_TRIAL(1u << 23),
1611 GENERIC_FLAG_TRIAL(1u << 24),
1612 GENERIC_FLAG_TRIAL(1u << 25),
1613 GENERIC_FLAG_TRIAL(1u << 26),
1614 GENERIC_FLAG_TRIAL(1u << 27),
1615 GENERIC_FLAG_TRIAL(1u << 28),
1616 GENERIC_FLAG_TRIAL(1u << 29),
1617 GENERIC_FLAG_TRIAL(1u << 30),
1618 GENERIC_FLAG_TRIAL(1u << 31),
1619 };
1620
TRIALS_IMPL(generic_flag)1621 TRIALS_IMPL(generic_flag)
1622
1623 static void
1624 cleanup_generic_flag_trials(generic_flag_trials_t **trials)
1625 {
1626 free_trials(*trials);
1627 }
1628
1629 // allocate mmap_flag trials, and deallocate it at end of scope
1630 #define SMART_GENERIC_FLAG_TRIALS() \
1631 __attribute__((cleanup(cleanup_generic_flag_trials))) \
1632 = allocate_generic_flag_trials(countof(generic_flag_trials_values)); \
1633 append_trials(trials, generic_flag_trials_values, countof(generic_flag_trials_values))
1634
1635
1636 // generate vm_prot_t trials
1637
1638 #ifndef KERNEL
1639 typedef int vm_tag_t;
1640 #endif /* KERNEL */
1641
1642 typedef struct {
1643 vm_tag_t tag;
1644 const char *name;
1645 } vm_tag_trial_t;
1646
1647 typedef struct {
1648 unsigned count;
1649 unsigned capacity;
1650 vm_tag_trial_t list[];
1651 } vm_tag_trials_t;
1652
1653 #if KERNEL
1654 #define KERNEL_VM_TAG_TRIAL(new_tag) \
1655 (vm_tag_trial_t){ .tag = (vm_tag_t)(new_tag), .name = "vm_tag "#new_tag }
1656
1657 #define VM_TAG_TRIAL KERNEL_VM_TAG_TRIAL
1658 #else
1659 #define USER_VM_TAG_TRIAL(new_tag) \
1660 (vm_tag_trial_t){ .tag = (vm_tag_t)0, .name = "vm_tag "#new_tag }
1661
1662 #define VM_TAG_TRIAL USER_VM_TAG_TRIAL
1663 #endif
1664
1665 static vm_tag_trial_t vm_tag_trials_values[] = {
1666 VM_TAG_TRIAL(VM_KERN_MEMORY_NONE),
1667 VM_TAG_TRIAL(VM_KERN_MEMORY_OSFMK),
1668 VM_TAG_TRIAL(VM_KERN_MEMORY_BSD),
1669 VM_TAG_TRIAL(VM_KERN_MEMORY_IOKIT),
1670 VM_TAG_TRIAL(VM_KERN_MEMORY_LIBKERN),
1671 VM_TAG_TRIAL(VM_KERN_MEMORY_OSKEXT),
1672 VM_TAG_TRIAL(VM_KERN_MEMORY_KEXT),
1673 VM_TAG_TRIAL(VM_KERN_MEMORY_IPC),
1674 VM_TAG_TRIAL(VM_KERN_MEMORY_STACK),
1675 VM_TAG_TRIAL(VM_KERN_MEMORY_CPU),
1676 VM_TAG_TRIAL(VM_KERN_MEMORY_PMAP),
1677 VM_TAG_TRIAL(VM_KERN_MEMORY_PTE),
1678 VM_TAG_TRIAL(VM_KERN_MEMORY_ZONE),
1679 VM_TAG_TRIAL(VM_KERN_MEMORY_KALLOC),
1680 VM_TAG_TRIAL(VM_KERN_MEMORY_COMPRESSOR),
1681 VM_TAG_TRIAL(VM_KERN_MEMORY_COMPRESSED_DATA),
1682 VM_TAG_TRIAL(VM_KERN_MEMORY_PHANTOM_CACHE),
1683 VM_TAG_TRIAL(VM_KERN_MEMORY_WAITQ),
1684 VM_TAG_TRIAL(VM_KERN_MEMORY_DIAG),
1685 VM_TAG_TRIAL(VM_KERN_MEMORY_LOG),
1686 VM_TAG_TRIAL(VM_KERN_MEMORY_FILE),
1687 VM_TAG_TRIAL(VM_KERN_MEMORY_MBUF),
1688 VM_TAG_TRIAL(VM_KERN_MEMORY_UBC),
1689 VM_TAG_TRIAL(VM_KERN_MEMORY_SECURITY),
1690 VM_TAG_TRIAL(VM_KERN_MEMORY_MLOCK),
1691 VM_TAG_TRIAL(VM_KERN_MEMORY_REASON),
1692 VM_TAG_TRIAL(VM_KERN_MEMORY_SKYWALK),
1693 VM_TAG_TRIAL(VM_KERN_MEMORY_LTABLE),
1694 VM_TAG_TRIAL(VM_KERN_MEMORY_HV),
1695 VM_TAG_TRIAL(VM_KERN_MEMORY_KALLOC_DATA),
1696 VM_TAG_TRIAL(VM_KERN_MEMORY_RETIRED),
1697 VM_TAG_TRIAL(VM_KERN_MEMORY_KALLOC_TYPE),
1698 VM_TAG_TRIAL(VM_KERN_MEMORY_TRIAGE),
1699 VM_TAG_TRIAL(VM_KERN_MEMORY_RECOUNT),
1700 };
1701
TRIALS_IMPL(vm_tag)1702 TRIALS_IMPL(vm_tag)
1703
1704 static void
1705 cleanup_vm_tag_trials(vm_tag_trials_t **trials)
1706 {
1707 free_trials(*trials);
1708 }
1709
1710 #define SMART_VM_TAG_TRIALS() \
1711 __attribute__((cleanup(cleanup_vm_tag_trials))) \
1712 = allocate_vm_tag_trials(countof(vm_tag_trials_values)); \
1713 append_trials(trials, vm_tag_trials_values, countof(vm_tag_trials_values))
1714
1715 //END vm_tag_t
1716
1717 // generate vm_prot_t trials
1718
1719 typedef struct {
1720 vm_prot_t prot;
1721 const char *name;
1722 } vm_prot_trial_t;
1723
1724 typedef struct {
1725 unsigned count;
1726 unsigned capacity;
1727 vm_prot_trial_t list[];
1728 } vm_prot_trials_t;
1729
1730 #define VM_PROT_TRIAL(new_prot) \
1731 (vm_prot_trial_t){ .prot = (vm_prot_t)(new_prot), .name = "vm_prot "#new_prot }
1732
1733 static vm_prot_trial_t vm_prot_trials_values[] = {
1734 // none
1735 VM_PROT_TRIAL(VM_PROT_NONE),
1736 // ordinary r-- / rw- / r-x
1737 VM_PROT_TRIAL(VM_PROT_READ),
1738 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_WRITE),
1739 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_EXECUTE),
1740 // rwx (w+x often disallowed)
1741 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE),
1742 // VM_PROT_READ | VM_PROT_x for each other VM_PROT_x bit
1743 // plus write and execute for some interesting cases
1744 VM_PROT_TRIAL(VM_PROT_READ | 1u << 3),
1745 VM_PROT_TRIAL(VM_PROT_READ | 1u << 4),
1746 VM_PROT_TRIAL(VM_PROT_READ | 1u << 5),
1747 VM_PROT_TRIAL(VM_PROT_READ | 1u << 6),
1748 VM_PROT_TRIAL(VM_PROT_READ | 1u << 7),
1749 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_WRITE | 1u << 7),
1750 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_EXECUTE | 1u << 7),
1751 VM_PROT_TRIAL(VM_PROT_READ | 1u << 8),
1752 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_WRITE | 1u << 8),
1753 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_EXECUTE | 1u << 8),
1754 VM_PROT_TRIAL(VM_PROT_READ | 1u << 9),
1755 VM_PROT_TRIAL(VM_PROT_READ | 1u << 10),
1756 VM_PROT_TRIAL(VM_PROT_READ | 1u << 11),
1757 VM_PROT_TRIAL(VM_PROT_READ | 1u << 12),
1758 VM_PROT_TRIAL(VM_PROT_READ | 1u << 13),
1759 VM_PROT_TRIAL(VM_PROT_READ | 1u << 14),
1760 VM_PROT_TRIAL(VM_PROT_READ | 1u << 15),
1761 VM_PROT_TRIAL(VM_PROT_READ | 1u << 16),
1762 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_WRITE | 1u << 16),
1763 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_EXECUTE | 1u << 16),
1764 VM_PROT_TRIAL(VM_PROT_READ | 1u << 17),
1765 VM_PROT_TRIAL(VM_PROT_READ | 1u << 18),
1766 VM_PROT_TRIAL(VM_PROT_READ | 1u << 19),
1767 VM_PROT_TRIAL(VM_PROT_READ | 1u << 20),
1768 VM_PROT_TRIAL(VM_PROT_READ | 1u << 21),
1769 VM_PROT_TRIAL(VM_PROT_READ | 1u << 22),
1770 VM_PROT_TRIAL(VM_PROT_READ | 1u << 23),
1771 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_WRITE | 1u << 23),
1772 VM_PROT_TRIAL(VM_PROT_READ | 1u << 24),
1773 VM_PROT_TRIAL(VM_PROT_READ | 1u << 25),
1774 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_WRITE | 1u << 25),
1775 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_EXECUTE | 1u << 25),
1776 VM_PROT_TRIAL(VM_PROT_READ | 1u << 26),
1777 VM_PROT_TRIAL(VM_PROT_READ | 1u << 27),
1778 VM_PROT_TRIAL(VM_PROT_READ | 1u << 28),
1779 VM_PROT_TRIAL(VM_PROT_READ | 1u << 29),
1780 VM_PROT_TRIAL(VM_PROT_READ | 1u << 30),
1781 VM_PROT_TRIAL(VM_PROT_READ | 1u << 31),
1782 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_WRITE | 1u << 31),
1783 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_EXECUTE | 1u << 31),
1784
1785 // error case coverage in specific subfunctions
1786 VM_PROT_TRIAL(VM_PROT_READ | MAP_MEM_ONLY | MAP_MEM_USE_DATA_ADDR),
1787 VM_PROT_TRIAL(VM_PROT_READ | MAP_MEM_ONLY | MAP_MEM_4K_DATA_ADDR),
1788 VM_PROT_TRIAL(VM_PROT_READ | MAP_MEM_NAMED_CREATE | MAP_MEM_USE_DATA_ADDR),
1789 VM_PROT_TRIAL(VM_PROT_READ | MAP_MEM_NAMED_CREATE | MAP_MEM_4K_DATA_ADDR),
1790 VM_PROT_TRIAL(VM_PROT_READ | MAP_MEM_NAMED_CREATE | MAP_MEM_PURGABLE),
1791 VM_PROT_TRIAL(VM_PROT_NONE | MAP_MEM_VM_SHARE | VM_PROT_IS_MASK),
1792
1793 // interesting non-error cases for additional test coverage
1794 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_WRITE | MAP_MEM_NAMED_CREATE | MAP_MEM_PURGABLE),
1795 VM_PROT_TRIAL(VM_PROT_READ | VM_PROT_WRITE | MAP_MEM_NAMED_CREATE |
1796 MAP_MEM_PURGABLE | MAP_MEM_PURGABLE_KERNEL_ONLY),
1797 };
1798
TRIALS_IMPL(vm_prot)1799 TRIALS_IMPL(vm_prot)
1800
1801 static void
1802 cleanup_vm_prot_trials(vm_prot_trials_t **trials)
1803 {
1804 free_trials(*trials);
1805 }
1806
1807 // allocate vm_prot trials, and deallocate it at end of scope
1808 #define SMART_VM_PROT_TRIALS() \
1809 __attribute__((cleanup(cleanup_vm_prot_trials))) \
1810 = allocate_vm_prot_trials(countof(vm_prot_trials_values)); \
1811 append_trials(trials, vm_prot_trials_values, countof(vm_prot_trials_values))
1812
1813 // Trials for pairs of vm_prot_t
1814
1815 typedef struct {
1816 vm_prot_t cur;
1817 vm_prot_t max;
1818 char * name;
1819 } vm_prot_pair_trial_t;
1820
1821 typedef struct {
1822 unsigned count;
1823 unsigned capacity;
1824 vm_prot_pair_trial_t list[];
1825 } vm_prot_pair_trials_t;
1826
TRIALS_IMPL(vm_prot_pair)1827 TRIALS_IMPL(vm_prot_pair)
1828
1829 #define VM_PROT_PAIR_TRIAL(new_cur, new_max, new_name) \
1830 (vm_prot_pair_trial_t){ .cur = (vm_prot_t)(new_cur), \
1831 .max = (vm_prot_t)(new_max), \
1832 .name = new_name,}
1833
1834 vm_prot_pair_trials_t *
1835 generate_vm_prot_pair_trials()
1836 {
1837 const unsigned D = countof(vm_prot_trials_values);
1838 unsigned num_trials = D * D;
1839
1840 vm_prot_pair_trials_t * trials = allocate_vm_prot_pair_trials(num_trials);
1841 for (size_t i = 0; i < D; i++) {
1842 for (size_t j = 0; j < D; j++) {
1843 vm_prot_t cur = vm_prot_trials_values[i].prot;
1844 vm_prot_t max = vm_prot_trials_values[j].prot;
1845 char *str;
1846 kasprintf(&str, "cur: 0x%x, max: 0x%x", cur, max);
1847 append_trial(trials, VM_PROT_PAIR_TRIAL(cur, max, str));
1848 }
1849 }
1850 return trials;
1851 }
1852
1853 #define SMART_VM_PROT_PAIR_TRIALS() \
1854 __attribute__((cleanup(cleanup_vm_prot_pair_trials))) \
1855 = generate_vm_prot_pair_trials();
1856
1857 static void
cleanup_vm_prot_pair_trials(vm_prot_pair_trials_t ** trials)1858 cleanup_vm_prot_pair_trials(vm_prot_pair_trials_t **trials)
1859 {
1860 for (size_t i = 0; i < (*trials)->count; i++) {
1861 kfree_str((*trials)->list[i].name);
1862 }
1863 free_trials(*trials);
1864 }
1865
1866
1867 // vm_purgeable_t trial contents.
1868 typedef struct {
1869 vm_purgable_t value;
1870 char * name;
1871 } vm_purgeable_trial_t;
1872
1873 #define VM_PURGEABLE_TRIAL(new_value) \
1874 (vm_purgeable_trial_t) {.value = (vm_purgable_t)(new_value), .name = "vm_purgeable_t " #new_value}
1875
1876 static vm_purgeable_trial_t vm_purgeable_trials_values[] = {
1877 VM_PURGEABLE_TRIAL(VM_PURGABLE_SET_STATE),
1878 VM_PURGEABLE_TRIAL(VM_PURGABLE_GET_STATE),
1879 VM_PURGEABLE_TRIAL(VM_PURGABLE_PURGE_ALL),
1880 VM_PURGEABLE_TRIAL(VM_PURGABLE_SET_STATE_FROM_KERNEL),
1881 // end valid values
1882 VM_PURGEABLE_TRIAL(VM_PURGABLE_SET_STATE_FROM_KERNEL + 1),
1883 VM_PURGEABLE_TRIAL(VM_PURGABLE_SET_STATE_FROM_KERNEL + 2),
1884 VM_PURGEABLE_TRIAL(0x12345),
1885 VM_PURGEABLE_TRIAL(0xffffffff),
1886 };
1887
1888 typedef struct {
1889 int value;
1890 char * name;
1891 } vm_purgeable_state_trial_t;
1892
1893 #define VM_PURGEABLE_STATE_TRIAL(new_value) \
1894 (vm_purgeable_state_trial_t) {.value = (int)(new_value), .name = "state " #new_value}
1895
1896 static vm_purgeable_state_trial_t vm_purgeable_state_trials_values[] = {
1897 VM_PURGEABLE_STATE_TRIAL(VM_PURGABLE_NO_AGING),
1898 VM_PURGEABLE_STATE_TRIAL(VM_PURGABLE_DEBUG_EMPTY),
1899 VM_PURGEABLE_STATE_TRIAL(VM_VOLATILE_GROUP_0),
1900 VM_PURGEABLE_STATE_TRIAL(VM_VOLATILE_GROUP_7),
1901 VM_PURGEABLE_STATE_TRIAL(VM_PURGABLE_BEHAVIOR_FIFO),
1902 VM_PURGEABLE_STATE_TRIAL(VM_PURGABLE_ORDERING_NORMAL),
1903 VM_PURGEABLE_STATE_TRIAL(VM_PURGABLE_EMPTY),
1904 VM_PURGEABLE_STATE_TRIAL(VM_PURGABLE_DENY),
1905 VM_PURGEABLE_STATE_TRIAL(VM_PURGABLE_NONVOLATILE),
1906 VM_PURGEABLE_STATE_TRIAL(VM_PURGABLE_VOLATILE),
1907 VM_PURGEABLE_STATE_TRIAL(0x12345),
1908 VM_PURGEABLE_STATE_TRIAL(0xffffffff),
1909 };
1910
1911 // Trials for vm_purgeable_t and state
1912 typedef struct {
1913 vm_purgable_t control;
1914 int state;
1915 char * name;
1916 } vm_purgeable_and_state_trial_t;
1917
1918 typedef struct {
1919 unsigned count;
1920 unsigned capacity;
1921 vm_purgeable_and_state_trial_t list[];
1922 } vm_purgeable_and_state_trials_t;
1923
TRIALS_IMPL(vm_purgeable_and_state)1924 TRIALS_IMPL(vm_purgeable_and_state)
1925
1926 #define VM_PURGEABLE_AND_STATE_TRIAL(new_control, new_state, new_name) \
1927 (vm_purgeable_and_state_trial_t){ .control = (vm_purgable_t)(new_control), \
1928 .state = (int)(new_state), \
1929 .name = new_name,}
1930
1931 vm_purgeable_and_state_trials_t *
1932 generate_vm_purgeable_t_and_state_trials()
1933 {
1934 const unsigned purgeable_trial_count = countof(vm_purgeable_trials_values);
1935 const unsigned state_trial_count = countof(vm_purgeable_state_trials_values);
1936 unsigned num_trials = purgeable_trial_count * state_trial_count;
1937
1938 vm_purgeable_and_state_trials_t * trials = allocate_vm_purgeable_and_state_trials(num_trials);
1939 for (size_t i = 0; i < purgeable_trial_count; i++) {
1940 for (size_t j = 0; j < state_trial_count; j++) {
1941 vm_purgeable_trial_t control_trial = vm_purgeable_trials_values[i];
1942 vm_purgeable_state_trial_t state_trial = vm_purgeable_state_trials_values[j];
1943 char *str;
1944 kasprintf(&str, "%s, %s", control_trial.name, state_trial.name);
1945 append_trial(trials, VM_PURGEABLE_AND_STATE_TRIAL(control_trial.value, state_trial.value, str));
1946 }
1947 }
1948 return trials;
1949 }
1950
1951 #define SMART_VM_PURGEABLE_AND_STATE_TRIALS() \
1952 __attribute__((cleanup(cleanup_vm_purgeable_t_and_state_trials))) \
1953 = generate_vm_purgeable_t_and_state_trials();
1954
1955 static void
cleanup_vm_purgeable_t_and_state_trials(vm_purgeable_and_state_trials_t ** trials)1956 cleanup_vm_purgeable_t_and_state_trials(vm_purgeable_and_state_trials_t **trials)
1957 {
1958 for (size_t i = 0; i < (*trials)->count; i++) {
1959 kfree_str((*trials)->list[i].name);
1960 }
1961 free_trials(*trials);
1962 }
1963
1964 // generate ledger tag trials
1965
1966 typedef struct {
1967 int tag;
1968 const char *name;
1969 } ledger_tag_trial_t;
1970
1971 typedef struct {
1972 unsigned count;
1973 unsigned capacity;
1974 ledger_tag_trial_t list[];
1975 } ledger_tag_trials_t;
1976
1977 #define LEDGER_TAG_TRIAL(new_tag) \
1978 (ledger_tag_trial_t){ .tag = (int)(new_tag), .name = "ledger tag "#new_tag }
1979
1980 static ledger_tag_trial_t ledger_tag_trials_values[] = {
1981 LEDGER_TAG_TRIAL(VM_LEDGER_TAG_NONE),
1982 LEDGER_TAG_TRIAL(VM_LEDGER_TAG_DEFAULT),
1983 LEDGER_TAG_TRIAL(VM_LEDGER_TAG_NETWORK),
1984 LEDGER_TAG_TRIAL(VM_LEDGER_TAG_MEDIA),
1985 LEDGER_TAG_TRIAL(VM_LEDGER_TAG_GRAPHICS),
1986 LEDGER_TAG_TRIAL(VM_LEDGER_TAG_NEURAL),
1987 LEDGER_TAG_TRIAL(VM_LEDGER_TAG_MAX),
1988 LEDGER_TAG_TRIAL(1u << 16),
1989 LEDGER_TAG_TRIAL(1u << 17),
1990 LEDGER_TAG_TRIAL(1u << 18),
1991 LEDGER_TAG_TRIAL(1u << 19),
1992 LEDGER_TAG_TRIAL(1u << 20),
1993 LEDGER_TAG_TRIAL(1u << 21),
1994 LEDGER_TAG_TRIAL(1u << 22),
1995 LEDGER_TAG_TRIAL(1u << 23),
1996 LEDGER_TAG_TRIAL(1u << 24),
1997 LEDGER_TAG_TRIAL(1u << 25),
1998 LEDGER_TAG_TRIAL(1u << 26),
1999 LEDGER_TAG_TRIAL(1u << 27),
2000 LEDGER_TAG_TRIAL(1u << 28),
2001 LEDGER_TAG_TRIAL(1u << 29),
2002 LEDGER_TAG_TRIAL(1u << 30),
2003 LEDGER_TAG_TRIAL(1u << 31),
2004 LEDGER_TAG_TRIAL(VM_LEDGER_TAG_UNCHANGED),
2005 };
2006
TRIALS_IMPL(ledger_tag)2007 TRIALS_IMPL(ledger_tag)
2008
2009 static void
2010 cleanup_ledger_tag_trials(ledger_tag_trials_t **trials)
2011 {
2012 free_trials(*trials);
2013 }
2014
2015 // allocate ledger tag trials, and deallocate it at end of scope
2016 #define SMART_LEDGER_TAG_TRIALS() \
2017 __attribute__((cleanup(cleanup_ledger_tag_trials))) \
2018 = allocate_ledger_tag_trials(countof(ledger_tag_trials_values)); \
2019 append_trials(trials, ledger_tag_trials_values, countof(ledger_tag_trials_values))
2020
2021
2022 // generate ledger flag trials
2023
2024 typedef struct {
2025 int flag;
2026 const char *name;
2027 } ledger_flag_trial_t;
2028
2029 typedef struct {
2030 unsigned count;
2031 unsigned capacity;
2032 ledger_flag_trial_t list[];
2033 } ledger_flag_trials_t;
2034
2035 #define LEDGER_FLAG_TRIAL(new_flag) \
2036 (ledger_flag_trial_t){ .flag = (int)(new_flag), .name = "ledger flag "#new_flag }
2037
2038 static ledger_flag_trial_t ledger_flag_trials_values[] = {
2039 LEDGER_FLAG_TRIAL(0),
2040 LEDGER_FLAG_TRIAL(VM_LEDGER_FLAG_NO_FOOTPRINT),
2041 LEDGER_FLAG_TRIAL(VM_LEDGER_FLAG_NO_FOOTPRINT_FOR_DEBUG),
2042 LEDGER_FLAG_TRIAL(VM_LEDGER_FLAGS_USER),
2043 LEDGER_FLAG_TRIAL(VM_LEDGER_FLAG_FROM_KERNEL),
2044 LEDGER_FLAG_TRIAL(VM_LEDGER_FLAGS_ALL),
2045 LEDGER_FLAG_TRIAL(1u << 3),
2046 LEDGER_FLAG_TRIAL(1u << 4),
2047 LEDGER_FLAG_TRIAL(1u << 5),
2048 LEDGER_FLAG_TRIAL(1u << 6),
2049 LEDGER_FLAG_TRIAL(1u << 7),
2050 LEDGER_FLAG_TRIAL(1u << 8),
2051 LEDGER_FLAG_TRIAL(1u << 9),
2052 LEDGER_FLAG_TRIAL(1u << 10),
2053 LEDGER_FLAG_TRIAL(1u << 11),
2054 LEDGER_FLAG_TRIAL(1u << 12),
2055 LEDGER_FLAG_TRIAL(1u << 13),
2056 LEDGER_FLAG_TRIAL(1u << 14),
2057 LEDGER_FLAG_TRIAL(1u << 15),
2058 LEDGER_FLAG_TRIAL(1u << 16),
2059 LEDGER_FLAG_TRIAL(1u << 17),
2060 LEDGER_FLAG_TRIAL(1u << 18),
2061 LEDGER_FLAG_TRIAL(1u << 19),
2062 LEDGER_FLAG_TRIAL(1u << 20),
2063 LEDGER_FLAG_TRIAL(1u << 21),
2064 LEDGER_FLAG_TRIAL(1u << 22),
2065 LEDGER_FLAG_TRIAL(1u << 23),
2066 LEDGER_FLAG_TRIAL(1u << 24),
2067 LEDGER_FLAG_TRIAL(1u << 25),
2068 LEDGER_FLAG_TRIAL(1u << 26),
2069 LEDGER_FLAG_TRIAL(1u << 27),
2070 LEDGER_FLAG_TRIAL(1u << 28),
2071 LEDGER_FLAG_TRIAL(1u << 29),
2072 LEDGER_FLAG_TRIAL(1u << 30),
2073 LEDGER_FLAG_TRIAL(1u << 31),
2074 };
2075
TRIALS_IMPL(ledger_flag)2076 TRIALS_IMPL(ledger_flag)
2077
2078 static void
2079 cleanup_ledger_flag_trials(ledger_flag_trials_t **trials)
2080 {
2081 free_trials(*trials);
2082 }
2083
2084 // allocate ledger flag trials, and deallocate it at end of scope
2085 #define SMART_LEDGER_FLAG_TRIALS() \
2086 __attribute__((cleanup(cleanup_ledger_flag_trials))) \
2087 = allocate_ledger_flag_trials(countof(ledger_flag_trials_values)); \
2088 append_trials(trials, ledger_flag_trials_values, countof(ledger_flag_trials_values))
2089
2090 // generate address-parameter trials
2091 // where the address has no associated size
2092 // and the callee's arithmetic includes `round_page(addr)`
2093
2094 typedef struct {
2095 addr_t addr;
2096 bool addr_is_absolute;
2097 char *name;
2098 } addr_trial_t;
2099
2100 typedef struct {
2101 unsigned count;
2102 unsigned capacity;
2103 addr_trial_t list[];
2104 } addr_trials_t;
2105
2106 #define ADDR_TRIAL(new_addr, new_absolute, new_name) \
2107 (addr_trial_t){ .addr = (addr_t)(new_addr), .addr_is_absolute = new_absolute, .name = new_name }
2108
2109 static addr_trial_t __attribute__((overloadable, used))
slide_trial(addr_trial_t trial,mach_vm_address_t slide)2110 slide_trial(addr_trial_t trial, mach_vm_address_t slide)
2111 {
2112 addr_trial_t result = trial;
2113 if (!trial.addr_is_absolute) {
2114 result.addr += slide;
2115 }
2116 return result;
2117 }
2118
2119 static const offset_list_t *
get_addr_trial_offsets(void)2120 get_addr_trial_offsets(void)
2121 {
2122 static offset_list_t *offsets;
2123 addr_t test_page_size = adjust_page_size();
2124 if (!offsets) {
2125 offsets = allocate_offsets(20);
2126 append_offset(offsets, true, 0);
2127 append_offset(offsets, true, 1);
2128 append_offset(offsets, true, 2);
2129 append_offset(offsets, true, test_page_size - 2);
2130 append_offset(offsets, true, test_page_size - 1);
2131 append_offset(offsets, true, test_page_size);
2132 append_offset(offsets, true, test_page_size + 1);
2133 append_offset(offsets, true, test_page_size + 2);
2134 append_offset(offsets, true, -(mach_vm_address_t)test_page_size - 2);
2135 append_offset(offsets, true, -(mach_vm_address_t)test_page_size - 1);
2136 append_offset(offsets, true, -(mach_vm_address_t)test_page_size);
2137 append_offset(offsets, true, -(mach_vm_address_t)test_page_size + 1);
2138 append_offset(offsets, true, -(mach_vm_address_t)test_page_size + 2);
2139 append_offset(offsets, true, -(mach_vm_address_t)2);
2140 append_offset(offsets, true, -(mach_vm_address_t)1);
2141
2142 append_offset(offsets, false, 0);
2143 append_offset(offsets, false, 1);
2144 append_offset(offsets, false, 2);
2145 append_offset(offsets, false, test_page_size - 2);
2146 append_offset(offsets, false, test_page_size - 1);
2147 }
2148 return offsets;
2149 }
2150
TRIALS_IMPL(addr)2151 TRIALS_IMPL(addr)
2152
2153 addr_trials_t *
2154 generate_addr_trials(addr_t base)
2155 {
2156 const offset_list_t *offsets = get_addr_trial_offsets();
2157 const unsigned ADDRS = offsets->count;
2158 addr_trials_t *trials = allocate_addr_trials(ADDRS);
2159
2160 for (unsigned a = 0; a < ADDRS; a++) {
2161 mach_vm_address_t addr_offset = offsets->list[a].offset;
2162 mach_vm_address_t addr = addr_offset;
2163 bool addr_is_absolute = offsets->list[a].is_absolute;
2164 if (!addr_is_absolute) {
2165 addr += base;
2166 }
2167
2168 char *str;
2169 kasprintf(&str, "addr: %s0x%llx",
2170 addr_is_absolute ? "" : "base+", addr_offset);
2171 append_trial(trials, ADDR_TRIAL(addr, addr_is_absolute, str));
2172 }
2173 return trials;
2174 }
2175
2176 static void
cleanup_addr_trials(addr_trials_t ** trials)2177 cleanup_addr_trials(addr_trials_t **trials)
2178 {
2179 for (size_t i = 0; i < (*trials)->count; i++) {
2180 kfree_str((*trials)->list[i].name);
2181 }
2182 free_trials(*trials);
2183 }
2184
2185 // allocate address trials around a base address
2186 // and deallocate it at end of scope
2187 #define SMART_ADDR_TRIALS(base) \
2188 __attribute__((cleanup(cleanup_addr_trials))) \
2189 = generate_addr_trials(base)
2190
2191
2192 /////////////////////////////////////////////////////
2193 // generate size-parameter trials
2194 // where the size is not associated with any base address
2195 // and the callee's arithmetic includes `round_page(size)`
2196
2197 typedef struct {
2198 addr_t size;
2199 char *name;
2200 } size_trial_t;
2201
2202 typedef struct {
2203 unsigned count;
2204 unsigned capacity;
2205 size_trial_t list[];
2206 } size_trials_t;
2207
2208 #define SIZE_TRIAL(new_size, new_name) \
2209 (size_trial_t){ .size = (addr_t)(new_size), .name = new_name }
2210
2211 static const offset_list_t *
get_size_trial_offsets(void)2212 get_size_trial_offsets(void)
2213 {
2214 static offset_list_t *offsets;
2215 addr_t test_page_size = adjust_page_size();
2216 if (!offsets) {
2217 offsets = allocate_offsets(15);
2218 append_offset(offsets, true, 0);
2219 append_offset(offsets, true, 1);
2220 append_offset(offsets, true, 2);
2221 append_offset(offsets, true, test_page_size - 2);
2222 append_offset(offsets, true, test_page_size - 1);
2223 append_offset(offsets, true, test_page_size);
2224 append_offset(offsets, true, test_page_size + 1);
2225 append_offset(offsets, true, test_page_size + 2);
2226 append_offset(offsets, true, -(mach_vm_address_t)test_page_size - 2);
2227 append_offset(offsets, true, -(mach_vm_address_t)test_page_size - 1);
2228 append_offset(offsets, true, -(mach_vm_address_t)test_page_size);
2229 append_offset(offsets, true, -(mach_vm_address_t)test_page_size + 1);
2230 append_offset(offsets, true, -(mach_vm_address_t)test_page_size + 2);
2231 append_offset(offsets, true, -(mach_vm_address_t)2);
2232 append_offset(offsets, true, -(mach_vm_address_t)1);
2233 }
2234 return offsets;
2235 }
2236
TRIALS_IMPL(size)2237 TRIALS_IMPL(size)
2238
2239 size_trials_t *
2240 generate_size_trials(void)
2241 {
2242 const offset_list_t *size_offsets = get_size_trial_offsets();
2243 const unsigned SIZES = size_offsets->count;
2244 size_trials_t *trials = allocate_size_trials(SIZES);
2245
2246 for (unsigned s = 0; s < SIZES; s++) {
2247 mach_vm_size_t size = size_offsets->list[s].offset;
2248
2249 char *str;
2250 kasprintf(&str, "size: 0x%llx", size);
2251 append_trial(trials, SIZE_TRIAL(size, str));
2252 }
2253 return trials;
2254 }
2255
2256 static void
cleanup_size_trials(size_trials_t ** trials)2257 cleanup_size_trials(size_trials_t **trials)
2258 {
2259 for (size_t i = 0; i < (*trials)->count; i++) {
2260 kfree_str((*trials)->list[i].name);
2261 }
2262 free_trials(*trials);
2263 }
2264
2265 // allocate size trials, and deallocate it at end of scope
2266 #define SMART_SIZE_TRIALS() \
2267 __attribute__((cleanup(cleanup_size_trials))) \
2268 = generate_size_trials()
2269
2270 /////////////////////////////////////////////////////
2271 // generate start/size trials
2272 // using absolute addresses or addresses around a given address
2273 // where `size` is the size of the thing at `start`
2274 // and the callee's arithmetic performs `start+size`
2275
2276 typedef struct {
2277 addr_t start;
2278 addr_t size;
2279 char *name;
2280 bool start_is_absolute; // start computation does not include any allocation's base address
2281 bool size_is_absolute; // size computation does not include start
2282 } start_size_trial_t;
2283
2284 typedef struct {
2285 unsigned count;
2286 unsigned capacity;
2287 start_size_trial_t list[];
2288 } start_size_trials_t;
2289
2290
2291 #define START_SIZE_TRIAL(new_start, start_absolute, new_size, size_absolute, new_name) \
2292 (start_size_trial_t){ .start = (addr_t)(new_start), .size = (addr_t)(new_size), \
2293 .name = new_name, \
2294 .start_is_absolute = start_absolute, .size_is_absolute = size_absolute }
2295
2296 static const offset_list_t *
get_start_size_trial_start_offsets(void)2297 get_start_size_trial_start_offsets(void)
2298 {
2299 return get_addr_trial_offsets();
2300 }
2301
2302 static const offset_list_t *
get_start_size_trial_size_offsets(void)2303 get_start_size_trial_size_offsets(void)
2304 {
2305 static offset_list_t *offsets;
2306 if (!offsets) {
2307 // use each size offset twice: once absolute and once relative
2308 const offset_list_t *old_offsets = get_size_trial_offsets();
2309 offsets = allocate_offsets(2 * old_offsets->count);
2310 for (unsigned i = 0; i < old_offsets->count; i++) {
2311 append_offset(offsets, true, old_offsets->list[i].offset);
2312 }
2313 for (unsigned i = 0; i < old_offsets->count; i++) {
2314 append_offset(offsets, false, old_offsets->list[i].offset);
2315 }
2316 }
2317 return offsets;
2318 }
2319
TRIALS_IMPL(start_size)2320 TRIALS_IMPL(start_size)
2321
2322 // Return a new start/size trial which is offset by `slide` bytes
2323 // Only "relative" start and size values get slid.
2324 // "absolute" values don't change.
2325 static start_size_trial_t __attribute__((overloadable, used))
2326 slide_trial(start_size_trial_t trial, mach_vm_address_t slide)
2327 {
2328 start_size_trial_t result = trial;
2329 if (!result.start_is_absolute) {
2330 result.start += slide;
2331 if (!result.size_is_absolute) {
2332 result.size -= slide;
2333 }
2334 }
2335 return result;
2336 }
2337
2338 start_size_trials_t *
generate_start_size_trials(addr_t base)2339 generate_start_size_trials(addr_t base)
2340 {
2341 const offset_list_t *start_offsets = get_start_size_trial_start_offsets();
2342 const offset_list_t *size_offsets = get_start_size_trial_size_offsets();
2343
2344 const unsigned ADDRS = start_offsets->count;
2345 const unsigned SIZES = size_offsets->count;
2346
2347 start_size_trials_t *trials = allocate_start_size_trials(ADDRS * SIZES);
2348
2349 for (unsigned a = 0; a < ADDRS; a++) {
2350 for (unsigned s = 0; s < SIZES; s++) {
2351 mach_vm_address_t start_offset = start_offsets->list[a].offset;
2352 mach_vm_address_t start = start_offset;
2353 bool start_is_absolute = start_offsets->list[a].is_absolute;
2354 if (!start_is_absolute) {
2355 start += base;
2356 }
2357
2358 mach_vm_size_t size_offset = size_offsets->list[s].offset;
2359 mach_vm_size_t size = size_offset;
2360 bool size_is_absolute = size_offsets->list[s].is_absolute;
2361 if (!size_is_absolute) {
2362 size = -start + size;
2363 }
2364
2365 char *str;
2366 kasprintf(&str, "start: %s0x%llx, size: %s0x%llx",
2367 start_is_absolute ? "" : "base+", start_offset,
2368 size_is_absolute ? "" :"-start+", size_offset);
2369 append_trial(trials, START_SIZE_TRIAL(start, start_is_absolute, size, size_is_absolute, str));
2370 }
2371 }
2372 return trials;
2373 }
2374
2375 static void
cleanup_start_size_trials(start_size_trials_t ** trials)2376 cleanup_start_size_trials(start_size_trials_t **trials)
2377 {
2378 for (size_t i = 0; i < (*trials)->count; i++) {
2379 kfree_str((*trials)->list[i].name);
2380 }
2381 free_trials(*trials);
2382 }
2383
2384 // allocate start/size trials around a base address
2385 // and deallocate it at end of scope
2386 #define SMART_START_SIZE_TRIALS(base) \
2387 __attribute__((cleanup(cleanup_start_size_trials))) \
2388 = generate_start_size_trials(base)
2389
2390 // Trials for start/size/offset/object tuples
2391
2392 typedef struct {
2393 mach_vm_address_t start;
2394 mach_vm_size_t size;
2395 vm_object_offset_t offset;
2396 mach_vm_size_t obj_size;
2397 bool start_is_absolute;
2398 bool size_is_absolute;
2399 char * name;
2400 } start_size_offset_object_trial_t;
2401
2402 typedef struct {
2403 unsigned count;
2404 unsigned capacity;
2405 start_size_offset_object_trial_t list[];
2406 } start_size_offset_object_trials_t;
2407
TRIALS_IMPL(start_size_offset_object)2408 TRIALS_IMPL(start_size_offset_object)
2409
2410 #define START_SIZE_OFFSET_OBJECT_TRIAL(new_start, new_size, new_offset, new_obj_size, new_start_is_absolute, new_size_is_absolute, new_name) \
2411 (start_size_offset_object_trial_t){ .start = (mach_vm_address_t)(new_start), \
2412 .size = (mach_vm_size_t)(new_size), \
2413 .offset = (vm_object_offset_t)(new_offset), \
2414 .obj_size = (mach_vm_size_t)(new_obj_size), \
2415 .start_is_absolute = (bool)(new_start_is_absolute), \
2416 .size_is_absolute = (bool)(new_size_is_absolute), \
2417 .name = new_name,}
2418
2419 bool
2420 obj_size_is_ok(mach_vm_size_t obj_size)
2421 {
2422 addr_t test_page_size = adjust_page_size();
2423 if (round_up_page(obj_size, test_page_size) == 0) {
2424 return false;
2425 }
2426 /* in rosetta, PAGE_SIZE is 4K but rounding to 16K also panics */ \
2427 if (!kern_trialname_generation && isRosetta() && round_up_page(obj_size, KB16) == 0) {
2428 return false;
2429 }
2430 return true;
2431 }
2432
2433 static start_size_offset_object_trial_t __attribute__((overloadable, used))
slide_trial(start_size_offset_object_trial_t trial,mach_vm_address_t slide)2434 slide_trial(start_size_offset_object_trial_t trial, mach_vm_address_t slide)
2435 {
2436 start_size_offset_object_trial_t result = trial;
2437
2438 if (!trial.start_is_absolute) {
2439 result.start += slide;
2440 if (!trial.size_is_absolute) {
2441 result.size -= slide;
2442 }
2443 }
2444 return result;
2445 }
2446
2447 static offset_list_t *
get_ssoo_absolute_offsets()2448 get_ssoo_absolute_offsets()
2449 {
2450 static offset_list_t *offsets;
2451 addr_t test_page_size = adjust_page_size();
2452 if (!offsets) {
2453 offsets = allocate_offsets(20);
2454 append_offset(offsets, true, 0);
2455 append_offset(offsets, true, 1);
2456 append_offset(offsets, true, 2);
2457 append_offset(offsets, true, test_page_size - 2);
2458 append_offset(offsets, true, test_page_size - 1);
2459 append_offset(offsets, true, test_page_size);
2460 append_offset(offsets, true, test_page_size + 1);
2461 append_offset(offsets, true, test_page_size + 2);
2462 append_offset(offsets, true, -(mach_vm_address_t)test_page_size - 2);
2463 append_offset(offsets, true, -(mach_vm_address_t)test_page_size - 1);
2464 append_offset(offsets, true, -(mach_vm_address_t)test_page_size);
2465 append_offset(offsets, true, -(mach_vm_address_t)test_page_size + 1);
2466 append_offset(offsets, true, -(mach_vm_address_t)test_page_size + 2);
2467 append_offset(offsets, true, -(mach_vm_address_t)2);
2468 append_offset(offsets, true, -(mach_vm_address_t)1);
2469 }
2470 return offsets;
2471 }
2472
2473 static offset_list_t *
get_ssoo_absolute_and_relative_offsets()2474 get_ssoo_absolute_and_relative_offsets()
2475 {
2476 static offset_list_t *offsets;
2477 addr_t test_page_size = adjust_page_size();
2478 if (!offsets) {
2479 const offset_list_t *old_offsets = get_ssoo_absolute_offsets();
2480 offsets = allocate_offsets(old_offsets->count + 5);
2481 // absolute offsets
2482 for (unsigned i = 0; i < old_offsets->count; i++) {
2483 append_offset(offsets, true, old_offsets->list[i].offset);
2484 }
2485 // relative offsets
2486 append_offset(offsets, false, 0);
2487 append_offset(offsets, false, 1);
2488 append_offset(offsets, false, 2);
2489 append_offset(offsets, false, test_page_size - 2);
2490 append_offset(offsets, false, test_page_size - 1);
2491 }
2492 return offsets;
2493 }
2494
2495 start_size_offset_object_trials_t *
generate_start_size_offset_object_trials()2496 generate_start_size_offset_object_trials()
2497 {
2498 const offset_list_t *start_offsets = get_ssoo_absolute_and_relative_offsets();
2499 const offset_list_t *size_offsets = get_ssoo_absolute_and_relative_offsets();
2500 const offset_list_t *offset_values = get_ssoo_absolute_offsets();
2501 const offset_list_t *object_sizes = get_ssoo_absolute_offsets();
2502
2503 unsigned num_trials = 0;
2504 for (size_t d = 0; d < object_sizes->count; d++) {
2505 mach_vm_size_t obj_size = object_sizes->list[d].offset;
2506 if (!obj_size_is_ok(obj_size)) { // make_a_mem_object would fail
2507 continue;
2508 }
2509 num_trials++;
2510 }
2511 num_trials *= start_offsets->count * size_offsets->count * offset_values->count;
2512
2513 start_size_offset_object_trials_t * trials = allocate_start_size_offset_object_trials(num_trials);
2514 for (size_t a = 0; a < start_offsets->count; a++) {
2515 for (size_t b = 0; b < size_offsets->count; b++) {
2516 for (size_t c = 0; c < offset_values->count; c++) {
2517 for (size_t d = 0; d < object_sizes->count; d++) {
2518 bool start_is_absolute = start_offsets->list[a].is_absolute;
2519 bool size_is_absolute = size_offsets->list[b].is_absolute;
2520 mach_vm_address_t start = start_offsets->list[a].offset;
2521 mach_vm_size_t size = size_offsets->list[b].offset;
2522 vm_object_offset_t offset = offset_values->list[c].offset;
2523 mach_vm_size_t obj_size = object_sizes->list[d].offset;
2524 if (!obj_size_is_ok(obj_size)) { // make_a_mem_object would fail
2525 continue;
2526 }
2527 char *str;
2528 kasprintf(&str, "start: %s0x%llx, size: %s0x%llx, offset: 0x%llx, obj_size: 0x%llx",
2529 start_is_absolute ? "" : "base+", start,
2530 size_is_absolute ? "" :"-start+", size,
2531 offset,
2532 obj_size);
2533 append_trial(trials, START_SIZE_OFFSET_OBJECT_TRIAL(start, size, offset, obj_size, start_is_absolute, size_is_absolute, str));
2534 }
2535 }
2536 }
2537 }
2538 return trials;
2539 }
2540
2541 #define SMART_START_SIZE_OFFSET_OBJECT_TRIALS() \
2542 __attribute__((cleanup(cleanup_start_size_offset_object_trials))) \
2543 = generate_start_size_offset_object_trials();
2544
2545 static void
cleanup_start_size_offset_object_trials(start_size_offset_object_trials_t ** trials)2546 cleanup_start_size_offset_object_trials(start_size_offset_object_trials_t **trials)
2547 {
2548 for (size_t i = 0; i < (*trials)->count; i++) {
2549 kfree_str((*trials)->list[i].name);
2550 }
2551 free_trials(*trials);
2552 }
2553
2554
2555 // Trials for start/size/start/size tuples
2556
2557 typedef struct {
2558 mach_vm_address_t start;
2559 mach_vm_size_t size;
2560 mach_vm_address_t second_start;
2561 mach_vm_size_t second_size;
2562 bool start_is_absolute;
2563 bool size_is_absolute;
2564 bool second_start_is_absolute;
2565 bool second_size_is_absolute;
2566 char * name;
2567 } start_size_start_size_trial_t;
2568
2569 typedef struct {
2570 unsigned count;
2571 unsigned capacity;
2572 start_size_start_size_trial_t list[];
2573 } start_size_start_size_trials_t;
2574
TRIALS_IMPL(start_size_start_size)2575 TRIALS_IMPL(start_size_start_size)
2576
2577 #define START_SIZE_START_SIZE_TRIAL(new_start, new_size, new_second_start, new_second_size, new_start_is_absolute, \
2578 new_size_is_absolute, new_second_start_is_absolute, new_second_size_is_absolute, new_name) \
2579 (start_size_start_size_trial_t){ .start = (mach_vm_address_t)(new_start), \
2580 .size = (mach_vm_size_t)(new_size), \
2581 .second_start = (mach_vm_address_t)(new_second_start), \
2582 .second_size = (mach_vm_size_t)(new_second_size), \
2583 .start_is_absolute = (bool)(new_start_is_absolute), \
2584 .size_is_absolute = (bool)(new_size_is_absolute), \
2585 .second_start_is_absolute = (bool)(new_second_start_is_absolute), \
2586 .second_size_is_absolute = (bool)(new_second_size_is_absolute),\
2587 .name = new_name,}
2588
2589 static start_size_start_size_trial_t __attribute__((overloadable, used))
2590 slide_trial(start_size_start_size_trial_t trial, mach_vm_address_t slide, mach_vm_address_t second_slide)
2591 {
2592 start_size_start_size_trial_t result = trial;
2593
2594 if (!trial.start_is_absolute) {
2595 result.start += slide;
2596 if (!trial.size_is_absolute) {
2597 result.size -= slide;
2598 }
2599 }
2600 if (!trial.second_start_is_absolute) {
2601 result.second_start += second_slide;
2602 if (!trial.second_size_is_absolute) {
2603 result.second_size -= second_slide;
2604 }
2605 }
2606 return result;
2607 }
2608
2609 start_size_start_size_trials_t *
generate_start_size_start_size_trials()2610 generate_start_size_start_size_trials()
2611 {
2612 /*
2613 * Reuse the starts/sizes from start/size/offset/object
2614 */
2615 const offset_list_t *start_offsets = get_ssoo_absolute_and_relative_offsets();
2616 const offset_list_t *size_offsets = get_ssoo_absolute_and_relative_offsets();
2617 const offset_list_t *second_start_offsets = get_ssoo_absolute_and_relative_offsets();
2618 const offset_list_t *second_size_offsets = get_ssoo_absolute_and_relative_offsets();
2619
2620 unsigned num_trials = start_offsets->count * size_offsets->count
2621 * second_start_offsets->count * second_start_offsets->count;
2622
2623 start_size_start_size_trials_t * trials = allocate_start_size_start_size_trials(num_trials);
2624 for (size_t a = 0; a < start_offsets->count; a++) {
2625 for (size_t b = 0; b < size_offsets->count; b++) {
2626 for (size_t c = 0; c < second_start_offsets->count; c++) {
2627 for (size_t d = 0; d < second_size_offsets->count; d++) {
2628 bool start_is_absolute = start_offsets->list[a].is_absolute;
2629 bool size_is_absolute = size_offsets->list[b].is_absolute;
2630 bool second_start_is_absolute = second_start_offsets->list[c].is_absolute;
2631 bool second_size_is_absolute = second_size_offsets->list[d].is_absolute;
2632 mach_vm_address_t start = start_offsets->list[a].offset;
2633 mach_vm_size_t size = size_offsets->list[b].offset;
2634 mach_vm_address_t second_start = second_start_offsets->list[c].offset;
2635 mach_vm_size_t second_size = second_size_offsets->list[d].offset;
2636
2637 char *str;
2638 kasprintf(&str, "start: %s0x%llx, size: %s0x%llx, second_start: %s0x%llx, second_size: %s0x%llx",
2639 start_is_absolute ? "" : "base+", start,
2640 size_is_absolute ? "" :"-start+", size,
2641 second_start_is_absolute ? "" : "base+", second_start,
2642 second_size_is_absolute ? "" : "-start+", second_size);
2643 append_trial(trials, START_SIZE_START_SIZE_TRIAL(start, size, second_start, second_size,
2644 start_is_absolute, size_is_absolute,
2645 second_start_is_absolute, second_size_is_absolute, str));
2646 }
2647 }
2648 }
2649 }
2650 return trials;
2651 }
2652
2653 #define SMART_START_SIZE_START_SIZE_TRIALS() \
2654 __attribute__((cleanup(cleanup_start_size_start_size_trials))) \
2655 = generate_start_size_start_size_trials();
2656
2657 static void __attribute__((used))
cleanup_start_size_start_size_trials(start_size_start_size_trials_t ** trials)2658 cleanup_start_size_start_size_trials(start_size_start_size_trials_t **trials)
2659 {
2660 for (size_t i = 0; i < (*trials)->count; i++) {
2661 kfree_str((*trials)->list[i].name);
2662 }
2663 free_trials(*trials);
2664 }
2665
2666
2667 // start/size/offset: test start+size and a second independent address
2668 // consider src/dst/size instead if the size may be added to both addresses
2669
2670 typedef struct {
2671 mach_vm_address_t start;
2672 mach_vm_size_t size;
2673 vm_object_offset_t offset;
2674 bool start_is_absolute;
2675 bool size_is_absolute;
2676 char * name;
2677 } start_size_offset_trial_t;
2678
2679 typedef struct {
2680 unsigned count;
2681 unsigned capacity;
2682 start_size_offset_trial_t list[];
2683 } start_size_offset_trials_t;
2684
TRIALS_IMPL(start_size_offset)2685 TRIALS_IMPL(start_size_offset)
2686
2687 #define START_SIZE_OFFSET_TRIAL(new_start, new_size, new_offset, new_start_is_absolute, new_size_is_absolute, new_name) \
2688 (start_size_offset_trial_t){ .start = (mach_vm_address_t)(new_start), \
2689 .size = (mach_vm_size_t)(new_size), \
2690 .offset = (vm_object_offset_t)(new_offset), \
2691 .start_is_absolute = (bool)(new_start_is_absolute), \
2692 .size_is_absolute = (bool)(new_size_is_absolute), \
2693 .name = new_name,}
2694
2695
2696 static start_size_offset_trial_t __attribute__((overloadable, used))
2697 slide_trial(start_size_offset_trial_t trial, mach_vm_address_t slide)
2698 {
2699 start_size_offset_trial_t result = trial;
2700
2701 if (!trial.start_is_absolute) {
2702 result.start += slide;
2703 if (!trial.size_is_absolute) {
2704 result.size -= slide;
2705 }
2706 }
2707 return result;
2708 }
2709
2710 start_size_offset_trials_t *
generate_start_size_offset_trials()2711 generate_start_size_offset_trials()
2712 {
2713 const offset_list_t *start_offsets = get_ssoo_absolute_and_relative_offsets();
2714 const offset_list_t *offset_values = get_ssoo_absolute_offsets();
2715 const offset_list_t *size_offsets = get_ssoo_absolute_and_relative_offsets();
2716
2717 // output is actually ordered start - offset - size
2718 // because it pretty-prints better than start - size - offset
2719 unsigned num_trials = start_offsets->count * offset_values->count * size_offsets->count;
2720 start_size_offset_trials_t * trials = allocate_start_size_offset_trials(num_trials);
2721 for (size_t a = 0; a < start_offsets->count; a++) {
2722 for (size_t b = 0; b < offset_values->count; b++) {
2723 for (size_t c = 0; c < size_offsets->count; c++) {
2724 bool start_is_absolute = start_offsets->list[a].is_absolute;
2725 bool size_is_absolute = size_offsets->list[c].is_absolute;
2726 mach_vm_address_t start = start_offsets->list[a].offset;
2727 vm_object_offset_t offset = offset_values->list[b].offset;
2728 mach_vm_size_t size = size_offsets->list[c].offset;
2729
2730 char *str;
2731 kasprintf(&str, "start: %s0x%llx, offset: 0x%llx, size: %s0x%llx",
2732 start_is_absolute ? "" : "base+", start,
2733 offset,
2734 size_is_absolute ? "" :"-start+", size);
2735 append_trial(trials, START_SIZE_OFFSET_TRIAL(start, size, offset, start_is_absolute, size_is_absolute, str));
2736 }
2737 }
2738 }
2739 return trials;
2740 }
2741
2742 #define SMART_START_SIZE_OFFSET_TRIALS() \
2743 __attribute__((cleanup(cleanup_start_size_offset_trials))) \
2744 = generate_start_size_offset_trials();
2745
2746 static void
cleanup_start_size_offset_trials(start_size_offset_trials_t ** trials)2747 cleanup_start_size_offset_trials(start_size_offset_trials_t **trials)
2748 {
2749 for (size_t i = 0; i < (*trials)->count; i++) {
2750 kfree_str((*trials)->list[i].name);
2751 }
2752 free_trials(*trials);
2753 }
2754
2755 // src/dst/size: test a source address, a dest address,
2756 // and a common size that may be added to both addresses
2757
2758 typedef struct {
2759 addr_t src;
2760 addr_t dst;
2761 addr_t size;
2762 char *name;
2763 bool src_is_absolute; // src computation does not include any allocation's base address
2764 bool dst_is_absolute; // dst computation does not include any allocation's base address
2765 bool size_is_src_relative; // size computation includes src
2766 bool size_is_dst_relative; // size computation includes dst
2767 } src_dst_size_trial_t;
2768
2769 typedef struct {
2770 unsigned count;
2771 unsigned capacity;
2772 src_dst_size_trial_t list[];
2773 } src_dst_size_trials_t;
2774
TRIALS_IMPL(src_dst_size)2775 TRIALS_IMPL(src_dst_size)
2776
2777 #define SRC_DST_SIZE_TRIAL(new_src, new_dst, new_size, new_name, src_absolute, dst_absolute, size_src_rel, size_dst_rel) \
2778 (src_dst_size_trial_t){ \
2779 .src = (addr_t)(new_src), \
2780 .dst = (addr_t)(new_dst), \
2781 .size = (addr_t)(new_size), \
2782 .name = new_name, \
2783 .src_is_absolute = src_absolute, \
2784 .dst_is_absolute = dst_absolute, \
2785 .size_is_src_relative = size_src_rel, \
2786 .size_is_dst_relative = size_dst_rel, \
2787 }
2788
2789 src_dst_size_trials_t * __attribute__((overloadable))
2790 generate_src_dst_size_trials(const char *srcname, const char *dstname)
2791 {
2792 const offset_list_t *addr_offsets = get_addr_trial_offsets();
2793 const offset_list_t *size_offsets = get_size_trial_offsets();
2794 unsigned src_count = addr_offsets->count;
2795 unsigned dst_count = src_count;
2796 unsigned size_count = 3 * size_offsets->count;
2797 unsigned num_trials = src_count * dst_count * size_count;
2798 src_dst_size_trials_t * trials = allocate_src_dst_size_trials(num_trials);
2799
2800 // each size is used three times:
2801 // once src-relative, once dst-relative, and once absolute
2802 unsigned size_part = size_count / 3;
2803
2804 for (size_t i = 0; i < src_count; i++) {
2805 bool rebase_src = !addr_offsets->list[i].is_absolute;
2806 addr_t src_offset = addr_offsets->list[i].offset;
2807
2808 for (size_t j = 0; j < dst_count; j++) {
2809 bool rebase_dst = !addr_offsets->list[j].is_absolute;
2810 addr_t dst_offset = addr_offsets->list[j].offset;
2811
2812 for (size_t k = 0; k < size_count; k++) {
2813 bool rebase_size_from_src = false;
2814 bool rebase_size_from_dst = false;
2815 addr_t size_offset;
2816 if (k < size_part) {
2817 size_offset = size_offsets->list[k].offset;
2818 } else if (k < 2 * size_part) {
2819 size_offset = size_offsets->list[k - size_part].offset;
2820 rebase_size_from_src = true;
2821 rebase_size_from_dst = false;
2822 } else {
2823 size_offset = size_offsets->list[k - 2 * size_part].offset;
2824 rebase_size_from_src = false;
2825 rebase_size_from_dst = true;
2826 }
2827
2828 addr_t size;
2829 char *desc;
2830 if (rebase_size_from_src) {
2831 size = -src_offset + size_offset;
2832 kasprintf(&desc, "%s: %s%lli, %s: %s%lli, size: -%s%+lli",
2833 srcname, rebase_src ? "base+" : "", (int64_t)src_offset,
2834 dstname, rebase_dst ? "base+" : "", (int64_t)dst_offset,
2835 srcname, (int64_t)size_offset);
2836 } else if (rebase_size_from_dst) {
2837 size = -dst_offset + size_offset;
2838 kasprintf(&desc, "%s: %s%lli, %s: %s%lli, size: -%s%+lli",
2839 srcname, rebase_src ? "base+" : "", (int64_t)src_offset,
2840 dstname, rebase_dst ? "base+" : "", (int64_t)dst_offset,
2841 dstname, (int64_t)size_offset);
2842 } else {
2843 size = size_offset;
2844 kasprintf(&desc, "%s: %s%lli, %s: %s%lli, size: %lli",
2845 srcname, rebase_src ? "base+" : "", (int64_t)src_offset,
2846 dstname, rebase_dst ? "base+" : "", (int64_t)dst_offset,
2847 (int64_t)size_offset);
2848 }
2849 assert(desc);
2850 append_trial(trials, SRC_DST_SIZE_TRIAL(src_offset, dst_offset, size, desc,
2851 !rebase_src, !rebase_dst, rebase_size_from_src, rebase_size_from_dst));
2852 }
2853 }
2854 }
2855 return trials;
2856 }
2857
2858 src_dst_size_trials_t * __attribute__((overloadable))
generate_src_dst_size_trials(void)2859 generate_src_dst_size_trials(void)
2860 {
2861 return generate_src_dst_size_trials("src", "dst");
2862 }
2863 #define SMART_SRC_DST_SIZE_TRIALS() \
2864 __attribute__((cleanup(cleanup_src_dst_size_trials))) \
2865 = generate_src_dst_size_trials();
2866
2867 #define SMART_FILEOFF_DST_SIZE_TRIALS() \
2868 __attribute__((cleanup(cleanup_src_dst_size_trials))) \
2869 = generate_src_dst_size_trials("fileoff", "dst");
2870
2871 static void
cleanup_src_dst_size_trials(src_dst_size_trials_t ** trials)2872 cleanup_src_dst_size_trials(src_dst_size_trials_t **trials)
2873 {
2874 for (size_t i = 0; i < (*trials)->count; i++) {
2875 kfree_str((*trials)->list[i].name);
2876 }
2877 free_trials(*trials);
2878 }
2879
2880 static src_dst_size_trial_t __attribute__((overloadable, used))
slide_trial_src(src_dst_size_trial_t trial,mach_vm_address_t slide)2881 slide_trial_src(src_dst_size_trial_t trial, mach_vm_address_t slide)
2882 {
2883 src_dst_size_trial_t result = trial;
2884
2885 if (!trial.src_is_absolute) {
2886 result.src += slide;
2887 if (trial.size_is_src_relative) {
2888 result.size -= slide;
2889 }
2890 }
2891 return result;
2892 }
2893
2894 static src_dst_size_trial_t __attribute__((overloadable, used))
slide_trial_dst(src_dst_size_trial_t trial,mach_vm_address_t slide)2895 slide_trial_dst(src_dst_size_trial_t trial, mach_vm_address_t slide)
2896 {
2897 src_dst_size_trial_t result = trial;
2898
2899 if (!trial.dst_is_absolute) {
2900 result.dst += slide;
2901 if (trial.size_is_dst_relative) {
2902 result.size -= slide;
2903 }
2904 }
2905 return result;
2906 }
2907
2908 #if !KERNEL
2909 // shared_file_np / shared_file_mapping_slide_np tests
2910
2911 // copied from bsd/vm/vm_unix.c
2912 #define _SR_FILE_MAPPINGS_MAX_FILES 256
2913 #define SFM_MAX (_SR_FILE_MAPPINGS_MAX_FILES * 8)
2914
2915 // From Rosetta dyld
2916 #define kNumSharedCacheMappings 4
2917 #define kMaxSubcaches 16
2918
2919 typedef struct {
2920 uint32_t files_count;
2921 struct shared_file_np *files;
2922 char *name;
2923 } shared_file_np_trial_t;
2924
2925 typedef struct {
2926 unsigned count;
2927 unsigned capacity;
2928 shared_file_np_trial_t list[];
2929 } shared_file_np_trials_t;
2930
TRIALS_IMPL(shared_file_np)2931 TRIALS_IMPL(shared_file_np)
2932
2933 #define SHARED_FILE_NP_TRIAL(new_files_count, new_files, new_name) \
2934 (shared_file_np_trial_t){ .files_count = (uint32_t)(new_files_count), \
2935 .files = (struct shared_file_np *)(new_files), \
2936 .name = "files_count="#new_files_count new_name }
2937
2938 struct shared_file_np *
2939 alloc_shared_file_np(uint32_t files_count)
2940 {
2941 struct shared_file_np *files;
2942 #if KERNEL
2943 files = kalloc_type(struct shared_file_np, files_count, Z_WAITOK | Z_ZERO);
2944 #else
2945 files = calloc(files_count, sizeof(struct shared_file_np));
2946 #endif
2947 return files;
2948 }
2949
2950 void
free_shared_file_np(shared_file_np_trial_t * trial)2951 free_shared_file_np(shared_file_np_trial_t *trial)
2952 {
2953 #if KERNEL
2954 // some trials have files_count > 0 but null files.
2955 if (trial->files) {
2956 kfree_type(struct shared_file_np, trial->files_count, trial->files);
2957 }
2958 #else
2959 free(trial->files);
2960 #endif
2961 }
2962
2963 static int get_fd();
2964
2965 shared_file_np_trials_t *
get_shared_file_np_trials(uint64_t dyld_fd)2966 get_shared_file_np_trials(uint64_t dyld_fd)
2967 {
2968 struct shared_file_np * files = NULL;
2969 shared_file_np_trials_t *trials = allocate_shared_file_np_trials(11);
2970 append_trial(trials, SHARED_FILE_NP_TRIAL(0, NULL, " (NULL files)"));
2971 append_trial(trials, SHARED_FILE_NP_TRIAL(1, NULL, " (NULL files)"));
2972 append_trial(trials, SHARED_FILE_NP_TRIAL(_SR_FILE_MAPPINGS_MAX_FILES - 1, NULL, " (NULL files)"));
2973 append_trial(trials, SHARED_FILE_NP_TRIAL(_SR_FILE_MAPPINGS_MAX_FILES, NULL, " (NULL files)"));
2974 append_trial(trials, SHARED_FILE_NP_TRIAL(_SR_FILE_MAPPINGS_MAX_FILES + 1, NULL, " (NULL files)"));
2975 files = alloc_shared_file_np(1);
2976 append_trial(trials, SHARED_FILE_NP_TRIAL(1, files, ""));
2977 files = alloc_shared_file_np(_SR_FILE_MAPPINGS_MAX_FILES - 1);
2978 append_trial(trials, SHARED_FILE_NP_TRIAL(_SR_FILE_MAPPINGS_MAX_FILES - 1, files, ""));
2979 files = alloc_shared_file_np(_SR_FILE_MAPPINGS_MAX_FILES);
2980 append_trial(trials, SHARED_FILE_NP_TRIAL(_SR_FILE_MAPPINGS_MAX_FILES, files, ""));
2981 files = alloc_shared_file_np(_SR_FILE_MAPPINGS_MAX_FILES + 1);
2982 append_trial(trials, SHARED_FILE_NP_TRIAL(_SR_FILE_MAPPINGS_MAX_FILES + 1, files, ""));
2983 files = alloc_shared_file_np(1);
2984 files->sf_fd = get_fd();
2985 files->sf_slide = 4096;
2986 files->sf_mappings_count = 1;
2987 append_trial(trials, SHARED_FILE_NP_TRIAL(1, files, " non-zero shared_file_np"));
2988 files = alloc_shared_file_np(2);
2989 files[0].sf_fd = (int)dyld_fd;
2990 files[0].sf_mappings_count = 1;
2991 files[1].sf_fd = files[0].sf_fd;
2992 files[1].sf_mappings_count = 4;
2993 append_trial(trials, SHARED_FILE_NP_TRIAL(2, files, " checks shared_file_np"));
2994 return trials;
2995 }
2996
2997 static void
cleanup_shared_file_np_trials(shared_file_np_trials_t ** trials)2998 cleanup_shared_file_np_trials(shared_file_np_trials_t **trials)
2999 {
3000 for (size_t i = 0; i < (*trials)->count; i++) {
3001 free_shared_file_np(&(*trials)->list[i]);
3002 }
3003 free_trials(*trials);
3004 }
3005
3006 typedef struct {
3007 uint32_t mappings_count;
3008 struct shared_file_mapping_slide_np *mappings;
3009 char *name;
3010 } shared_file_mapping_slide_np_trial_t;
3011
3012 typedef struct {
3013 unsigned count;
3014 unsigned capacity;
3015 shared_file_mapping_slide_np_trial_t list[];
3016 } shared_file_mapping_slide_np_trials_t;
3017
TRIALS_IMPL(shared_file_mapping_slide_np)3018 TRIALS_IMPL(shared_file_mapping_slide_np)
3019
3020 #define SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(new_mappings_count, new_mappings, new_name) \
3021 (shared_file_mapping_slide_np_trial_t){ .mappings_count = (uint32_t)(new_mappings_count), \
3022 .mappings = (struct shared_file_mapping_slide_np *)(new_mappings), \
3023 .name = "mappings_count="#new_mappings_count new_name }
3024
3025 struct shared_file_mapping_slide_np *
3026 alloc_shared_file_mapping_slide_np(uint32_t mappings_count)
3027 {
3028 struct shared_file_mapping_slide_np *mappings;
3029 #if KERNEL
3030 mappings = kalloc_type(struct shared_file_mapping_slide_np, mappings_count, Z_WAITOK | Z_ZERO);
3031 #else
3032 mappings = calloc(mappings_count, sizeof(struct shared_file_mapping_slide_np));
3033 #endif
3034 return mappings;
3035 }
3036
3037 void
free_shared_file_mapping_slide_np(shared_file_mapping_slide_np_trial_t * trial)3038 free_shared_file_mapping_slide_np(shared_file_mapping_slide_np_trial_t *trial)
3039 {
3040 #if KERNEL
3041 // some trials have files_count > 0 but null files.
3042 if (trial->mappings) {
3043 kfree_type(struct shared_file_mapping_slide_np, trial->mappings_count, trial->mappings);
3044 }
3045 #else
3046 free(trial->mappings);
3047 #endif
3048 }
3049
3050 typedef enum { MP_NORMAL = 0, MP_ADDR_SIZE = 1, MP_OFFSET_SIZE, MP_PROTS } mapping_slide_np_test_style_t;
3051
3052 static inline struct shared_file_mapping_slide_np *
alloc_and_fill_shared_file_mappings(uint32_t num_mappings,mapping_slide_np_test_style_t style)3053 alloc_and_fill_shared_file_mappings(uint32_t num_mappings, mapping_slide_np_test_style_t style)
3054 {
3055 assert(num_mappings > 0);
3056 struct shared_file_mapping_slide_np *mappings = alloc_shared_file_mapping_slide_np(num_mappings);
3057
3058 // Checks happen in a for-loop so is desirable to differentiate the first mapping.
3059 switch (style) {
3060 case MP_NORMAL:
3061 mappings[0].sms_slide_size = KB4;
3062 mappings[0].sms_slide_start = KB4;
3063 mappings[0].sms_max_prot = VM_PROT_DEFAULT;
3064 mappings[0].sms_init_prot = VM_PROT_DEFAULT;
3065 break;
3066 case MP_ADDR_SIZE:
3067 mappings[0].sms_address = 1;
3068 mappings[0].sms_size = UINT64_MAX;
3069 mappings[0].sms_file_offset = 0;
3070 mappings[0].sms_slide_size = KB4;
3071 mappings[0].sms_slide_start = KB4;
3072 mappings[0].sms_max_prot = VM_PROT_DEFAULT;
3073 mappings[0].sms_init_prot = VM_PROT_DEFAULT;
3074 break;
3075 case MP_OFFSET_SIZE:
3076 mappings[0].sms_size = 0;
3077 mappings[0].sms_file_offset = UINT64_MAX;
3078 mappings[0].sms_slide_size = KB4;
3079 mappings[0].sms_slide_start = KB4;
3080 mappings[0].sms_max_prot = VM_PROT_DEFAULT;
3081 mappings[0].sms_init_prot = VM_PROT_DEFAULT;
3082 break;
3083 case MP_PROTS:
3084 mappings[0].sms_slide_size = KB4;
3085 mappings[0].sms_slide_start = KB4;
3086 mappings[0].sms_max_prot = VM_PROT_DEFAULT;
3087 mappings[0].sms_init_prot = INT_MAX;
3088 break;
3089 default:
3090 assert(0);
3091 break;
3092 }
3093
3094 for (size_t idx = 1; idx < num_mappings; idx++) {
3095 size_t i = idx % 4;
3096 switch (i) {
3097 case 0:
3098 mappings[idx].sms_slide_size = KB4;
3099 mappings[idx].sms_slide_start = KB4;
3100 mappings[idx].sms_max_prot = VM_PROT_DEFAULT;
3101 mappings[idx].sms_init_prot = VM_PROT_DEFAULT;
3102 break;
3103 case 1:
3104 mappings[idx].sms_slide_size = KB4;
3105 mappings[idx].sms_slide_start = UINT64_MAX;
3106 mappings[idx].sms_max_prot = VM_PROT_DEFAULT;
3107 mappings[idx].sms_init_prot = VM_PROT_DEFAULT;
3108 break;
3109 case 2:
3110 mappings[idx].sms_slide_size = 0;
3111 mappings[idx].sms_slide_start = UINT64_MAX;
3112 mappings[idx].sms_max_prot = VM_PROT_DEFAULT;
3113 mappings[idx].sms_init_prot = INT_MAX;
3114 break;
3115 case 3:
3116 mappings[idx].sms_slide_size = KB4;
3117 mappings[idx].sms_slide_start = 0;
3118 mappings[idx].sms_max_prot = INT_MAX;
3119 mappings[idx].sms_init_prot = VM_PROT_DEFAULT;
3120 break;
3121 default:
3122 assert(0);
3123 break;
3124 }
3125 }
3126 return mappings;
3127 }
3128
3129 shared_file_mapping_slide_np_trials_t*
get_shared_file_mapping_slide_np_trials(void)3130 get_shared_file_mapping_slide_np_trials(void)
3131 {
3132 struct shared_file_mapping_slide_np *mappings = NULL;
3133 shared_file_mapping_slide_np_trials_t *trials = allocate_shared_file_mapping_slide_np_trials(14);
3134 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(0, NULL, " (NULL mappings)"));
3135 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(1, NULL, " (NULL mappings)"));
3136 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(SFM_MAX - 1, NULL, " (NULL mappings)"));
3137 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(SFM_MAX, NULL, " (NULL mappings)"));
3138 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(SFM_MAX + 1, NULL, " (NULL mappings)"));
3139 mappings = alloc_and_fill_shared_file_mappings(1, MP_NORMAL);
3140 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(1, mappings, " (normal)"));
3141 mappings = alloc_and_fill_shared_file_mappings(1, MP_ADDR_SIZE);
3142 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(1, mappings, " (sms_address+sms_size check)"));
3143 mappings = alloc_and_fill_shared_file_mappings(1, MP_OFFSET_SIZE);
3144 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(1, mappings, " (sms_file_offset+sms_size check)"));
3145 mappings = alloc_and_fill_shared_file_mappings(1, MP_PROTS);
3146 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(1, mappings, " (sms_init_prot check)"));
3147 mappings = alloc_and_fill_shared_file_mappings(SFM_MAX - 1, MP_NORMAL);
3148 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(SFM_MAX - 1, mappings, ""));
3149 mappings = alloc_and_fill_shared_file_mappings(SFM_MAX, MP_NORMAL);
3150 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(SFM_MAX, mappings, ""));
3151 mappings = alloc_and_fill_shared_file_mappings(SFM_MAX + 1, MP_NORMAL);
3152 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(SFM_MAX + 1, mappings, ""));
3153 mappings = alloc_and_fill_shared_file_mappings(kNumSharedCacheMappings, MP_NORMAL);
3154 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(kNumSharedCacheMappings, mappings, ""));
3155 mappings = alloc_and_fill_shared_file_mappings(2 * kNumSharedCacheMappings, MP_NORMAL);
3156 append_trial(trials, SHARED_FILE_MAPPING_SLIDE_NP_TRIAL(2 * kNumSharedCacheMappings, mappings, ""));
3157
3158 return trials;
3159 }
3160
3161 static void
cleanup_shared_file_mapping_slide_np_trials(shared_file_mapping_slide_np_trials_t ** trials)3162 cleanup_shared_file_mapping_slide_np_trials(shared_file_mapping_slide_np_trials_t **trials)
3163 {
3164 for (size_t i = 0; i < (*trials)->count; i++) {
3165 free_shared_file_mapping_slide_np(&(*trials)->list[i]);
3166 }
3167 free_trials(*trials);
3168 }
3169
3170 typedef struct {
3171 uint32_t files_count;
3172 struct shared_file_np *files;
3173 uint32_t mappings_count;
3174 struct shared_file_mapping_slide_np *mappings;
3175 char *name;
3176 } shared_region_map_and_slide_2_trial_t;
3177
3178 typedef struct {
3179 unsigned count;
3180 unsigned capacity;
3181 shared_file_np_trials_t *shared_files_trials;
3182 shared_file_mapping_slide_np_trials_t *shared_mappings_trials;
3183 shared_region_map_and_slide_2_trial_t list[];
3184 } shared_region_map_and_slide_2_trials_t;
3185
TRIALS_IMPL(shared_region_map_and_slide_2)3186 TRIALS_IMPL(shared_region_map_and_slide_2)
3187
3188 #define SHARED_REGION_MAP_AND_SLIDE_2_TRIAL(new_files_count, new_files, new_mappings_count, new_mappings, new_name) \
3189 (shared_region_map_and_slide_2_trial_t){ .files_count = (uint32_t)(new_files_count), \
3190 .files = (struct shared_file_np *)(new_files), \
3191 .mappings_count = (uint32_t)(new_mappings_count), \
3192 .mappings = (struct shared_file_mapping_slide_np *)(new_mappings), \
3193 .name = new_name }
3194
3195 shared_region_map_and_slide_2_trials_t *
3196 generate_shared_region_map_and_slide_2_trials(uint64_t dyld_fd)
3197 {
3198 shared_file_np_trials_t *shared_files = get_shared_file_np_trials(dyld_fd);
3199 shared_file_mapping_slide_np_trials_t *shared_mappings = get_shared_file_mapping_slide_np_trials();
3200 unsigned num_trials = shared_files->count * shared_mappings->count;
3201 shared_region_map_and_slide_2_trials_t *trials = allocate_shared_region_map_and_slide_2_trials(num_trials);
3202 trials->shared_files_trials = shared_files;
3203 trials->shared_mappings_trials = shared_mappings;
3204 for (size_t i = 0; i < shared_files->count; i++) {
3205 for (size_t j = 0; j < shared_mappings->count; j++) {
3206 char *buf;
3207 shared_file_np_trial_t shared_file = shared_files->list[i];
3208 shared_file_mapping_slide_np_trial_t shared_mapping = shared_mappings->list[j];
3209 kasprintf(&buf, "%s, %s", shared_file.name, shared_mapping.name);
3210 append_trial(trials, SHARED_REGION_MAP_AND_SLIDE_2_TRIAL(shared_file.files_count, shared_file.files, shared_mapping.mappings_count, shared_mapping.mappings, buf));
3211 }
3212 }
3213 return trials;
3214 }
3215
3216 #define SMART_SHARED_REGION_MAP_AND_SLIDE_2_TRIALS(dyld_fd) \
3217 __attribute__((cleanup(cleanup_shared_region_map_and_slide_2_trials))) \
3218 = generate_shared_region_map_and_slide_2_trials(dyld_fd);
3219
3220 static void __attribute__((used))
cleanup_shared_region_map_and_slide_2_trials(shared_region_map_and_slide_2_trials_t ** trials)3221 cleanup_shared_region_map_and_slide_2_trials(shared_region_map_and_slide_2_trials_t **trials)
3222 {
3223 for (size_t i = 0; i < (*trials)->count; i++) {
3224 kfree_str((*trials)->list[i].name);
3225 }
3226 cleanup_shared_file_np_trials(&(*trials)->shared_files_trials);
3227 cleanup_shared_file_mapping_slide_np_trials(&(*trials)->shared_mappings_trials);
3228 free_trials(*trials);
3229 }
3230 #endif // !KERNEL
3231
3232 /////////////////////////////////////////////////////
3233 // utility code
3234
3235 // Return true if flags has VM_FLAGS_FIXED
3236 // This is non-trivial because VM_FLAGS_FIXED is zero;
3237 // the real value is the absence of VM_FLAGS_ANYWHERE.
3238 static inline bool
is_fixed(int flags)3239 is_fixed(int flags)
3240 {
3241 static_assert(VM_FLAGS_FIXED == 0, "this test requies VM_FLAGS_FIXED be zero");
3242 static_assert(VM_FLAGS_ANYWHERE != 0, "this test requires VM_FLAGS_ANYWHERE be nonzero");
3243 return !(flags & VM_FLAGS_ANYWHERE);
3244 }
3245
3246 // Return true if flags has VM_FLAGS_FIXED and VM_FLAGS_OVERWRITE set.
3247 static inline bool
is_fixed_overwrite(int flags)3248 is_fixed_overwrite(int flags)
3249 {
3250 return is_fixed(flags) && (flags & VM_FLAGS_OVERWRITE);
3251 }
3252
3253
3254 // Return true if flags has VM_FLAGS_ANYWHERE and VM_FLAGS_RANDOM_ADDR set.
3255 static inline bool
is_random_anywhere(int flags)3256 is_random_anywhere(int flags)
3257 {
3258 static_assert(VM_FLAGS_ANYWHERE != 0, "this test requires VM_FLAGS_ANYWHERE be nonzero");
3259 return (flags & VM_FLAGS_RANDOM_ADDR) && (flags & VM_FLAGS_ANYWHERE);
3260 }
3261
3262 // Deallocate [start, start+size).
3263 // Don't deallocate if the allocator failed (allocator_kr)
3264 // Don't deallocate if flags include FIXED | OVERWRITE (in which case
3265 // the memory is a pre-existing allocation and should be left alone)
3266 static void
deallocate_if_not_fixed_overwrite(kern_return_t allocator_kr,MAP_T map,mach_vm_address_t start,mach_vm_size_t size,int flags)3267 deallocate_if_not_fixed_overwrite(kern_return_t allocator_kr, MAP_T map,
3268 mach_vm_address_t start, mach_vm_size_t size, int flags)
3269 {
3270 if (is_fixed_overwrite(flags)) {
3271 // fixed-overwrite with pre-existing allocation, don't deallocate
3272 } else if (allocator_kr != 0) {
3273 // allocator failed, don't deallocate
3274 } else {
3275 (void)mach_vm_deallocate(map, start, size);
3276 }
3277 }
3278
3279 // PPL is inefficient at deallocations of very large address ranges.
3280 // Skip those trials to avoid test timeouts.
3281 // We assume that tests on other devices will cover any testing gaps.
3282 static inline bool
dealloc_would_time_out(mach_vm_address_t addr __unused,mach_vm_size_t size __unused,vm_map_t map __unused)3283 dealloc_would_time_out(
3284 mach_vm_address_t addr __unused,
3285 mach_vm_size_t size __unused,
3286 vm_map_t map __unused)
3287 {
3288 #if CONFIG_SPTM
3289 /* not PPL - okay */
3290 return false;
3291 #elif !(__ARM_42BIT_PA_SPACE__ || ARM_LARGE_MEMORY)
3292 /* PPL but small pmap address space - okay */
3293 return false;
3294 #else
3295 /*
3296 * PPL with large pmap address space - bad
3297 * Pre-empt trials of very large allocations.
3298 */
3299 return size > 0x8000000000;
3300 #endif
3301 }
3302
3303 #if !KERNEL
3304
3305 // SMART_MAP is mach_task_self() in userspace and a new empty map in kernel
3306 #define SMART_MAP = mach_task_self()
3307
3308 // CURRENT_MAP is mach_task_self() in userspace and current_map() in kernel
3309 #define CURRENT_MAP = mach_task_self()
3310
3311 #else
3312
3313 static inline vm_map_t
create_map(mach_vm_address_t map_start,mach_vm_address_t map_end)3314 create_map(mach_vm_address_t map_start, mach_vm_address_t map_end)
3315 {
3316 ledger_t ledger = ledger_instantiate(task_ledger_template, LEDGER_CREATE_ACTIVE_ENTRIES);
3317 pmap_t pmap = pmap_create_options(ledger, 0, PMAP_CREATE_64BIT);
3318 assert(pmap);
3319 ledger_dereference(ledger); // now retained by pmap
3320 vm_map_t map = vm_map_create_options(pmap, map_start, map_end, VM_MAP_CREATE_PAGEABLE);
3321 assert(map);
3322
3323 return map;
3324 }
3325
3326 static inline void
cleanup_map(vm_map_t * map)3327 cleanup_map(vm_map_t *map)
3328 {
3329 assert(*map);
3330 kern_return_t kr = vm_map_terminate(*map);
3331 assert(kr == 0);
3332 vm_map_deallocate(*map); // also destroys pmap
3333 }
3334
3335 // kernel: create a new vm_map and deallocate it at end of scope
3336 // fixme choose a user-like and a kernel-like address range
3337 #define SMART_MAP \
3338 __attribute__((cleanup(cleanup_map))) = create_map(0, 0xffffffffffffffff)
3339
3340 // This map has a map_offset that matches what a user would get. This allows
3341 // vm_map_user_ranges to work properly when tested from the kernel
3342 #define SMART_RANGE_MAP \
3343 __attribute__((cleanup(cleanup_map))) = create_map(0, vm_compute_max_offset(true))
3344
3345 #define CURRENT_MAP = current_map()
3346
3347 #endif
3348
3349 // Allocate with an address hint.
3350 // Important for kernel tests' empty vm_maps
3351 // to avoid allocating near address 0 and ~0.
3352 static kern_return_t
allocate_away_from_zero(MAP_T map,mach_vm_address_t * address,mach_vm_size_t size,mach_vm_size_t align_mask,int additional_map_flags)3353 allocate_away_from_zero(
3354 MAP_T map,
3355 mach_vm_address_t *address,
3356 mach_vm_size_t size,
3357 mach_vm_size_t align_mask,
3358 int additional_map_flags)
3359 {
3360 *address = 2ull * 1024 * 1024 * 1024; // 2 GB address hint
3361 return mach_vm_map(map, address, size, align_mask,
3362 VM_FLAGS_ANYWHERE | additional_map_flags, 0, 0, 0,
3363 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
3364 }
3365
3366 // allocate a purgeable VM region with size and permissions
3367 // and deallocate it at end of scope
3368 #define SMART_ALLOCATE_PURGEABLE_VM(map, size, perm) \
3369 __attribute__((cleanup(cleanup_allocation))) = create_allocation(map, size, 0, perm, false, VM_FLAGS_PURGABLE)
3370
3371 // allocate a VM region with size and permissions
3372 // and deallocate it at end of scope
3373 #define SMART_ALLOCATE_VM(map, size, perm) \
3374 __attribute__((cleanup(cleanup_allocation))) = create_allocation(map, size, 0, perm, false, 0)
3375
3376 // allocate a VM region with size and permissions and alignment
3377 // and deallocate it at end of scope
3378 #define SMART_ALLOCATE_ALIGNED_VM(map, size, align_mask, perm) \
3379 __attribute__((cleanup(cleanup_allocation))) = create_allocation(map, size, align_mask, perm, false, 0)
3380
3381 // allocate a VM region with size and permissions
3382 // and deallocate it at end of scope
3383 // If no such region could be allocated, return {.addr = 0}
3384 #define SMART_TRY_ALLOCATE_VM(map, size, perm) \
3385 __attribute__((cleanup(cleanup_allocation))) = create_allocation(map, size, 0, perm, true, 0)
3386
3387 // a VM allocation with unallocated pages around it
3388 typedef struct {
3389 MAP_T map;
3390 addr_t guard_size;
3391 addr_t guard_prefix; // guard_size bytes
3392 addr_t unallocated_prefix; // guard_size bytes
3393 addr_t addr;
3394 addr_t size;
3395 addr_t unallocated_suffix; // guard_size bytes
3396 addr_t guard_suffix; // guard_size bytes
3397 } allocation_t;
3398
3399 static allocation_t
create_allocation(MAP_T new_map,mach_vm_address_t new_size,mach_vm_size_t align_mask,vm_prot_t perm,bool allow_failure,int additional_map_flags)3400 create_allocation(MAP_T new_map, mach_vm_address_t new_size, mach_vm_size_t align_mask,
3401 vm_prot_t perm, bool allow_failure, int additional_map_flags)
3402 {
3403 // allocations in address order:
3404 // 16K guard_prefix (allocated, prot none)
3405 // 16K unallocated_prefix (unallocated)
3406 // N addr..addr+size
3407 // 16K unallocated_suffix (unallocated)
3408 // 16K guard_suffix (allocated, prot none)
3409
3410 // allocate new_size + 4 * 16K bytes
3411 // then carve it up into our regions
3412
3413 allocation_t result;
3414
3415 result.map = new_map;
3416
3417 // this implementation only works with some alignment values
3418 assert(align_mask == 0 || align_mask == KB4 - 1 || align_mask == KB16 - 1);
3419
3420 result.guard_size = KB16;
3421 result.size = round_up_page(new_size, KB16);
3422 if (result.size == 0 && allow_failure) {
3423 return (allocation_t){new_map, 0, 0, 0, 0, 0, 0, 0};
3424 }
3425 assert(result.size != 0);
3426
3427 mach_vm_address_t allocated_base;
3428 mach_vm_size_t allocated_size = result.size;
3429 if (__builtin_add_overflow(result.size, result.guard_size * 4, &allocated_size)) {
3430 if (allow_failure) {
3431 return (allocation_t){new_map, 0, 0, 0, 0, 0, 0, 0};
3432 } else {
3433 assert(false);
3434 }
3435 }
3436
3437 kern_return_t kr;
3438 kr = allocate_away_from_zero(result.map, &allocated_base, allocated_size,
3439 align_mask, additional_map_flags);
3440 if (kr != 0 && allow_failure) {
3441 return (allocation_t){new_map, 0, 0, 0, 0, 0, 0, 0};
3442 }
3443 assert(kr == 0);
3444
3445 result.guard_prefix = (addr_t)allocated_base;
3446 result.unallocated_prefix = result.guard_prefix + result.guard_size;
3447 result.addr = result.unallocated_prefix + result.guard_size;
3448 result.unallocated_suffix = result.addr + result.size;
3449 result.guard_suffix = result.unallocated_suffix + result.guard_size;
3450
3451 kr = mach_vm_protect(result.map, result.addr, result.size, false, perm);
3452 assert(kr == 0);
3453 kr = mach_vm_protect(result.map, result.guard_prefix, result.guard_size, true, VM_PROT_NONE);
3454 assert(kr == 0);
3455 kr = mach_vm_protect(result.map, result.guard_suffix, result.guard_size, true, VM_PROT_NONE);
3456 assert(kr == 0);
3457 kr = mach_vm_deallocate(result.map, result.unallocated_prefix, result.guard_size);
3458 assert(kr == 0);
3459 kr = mach_vm_deallocate(result.map, result.unallocated_suffix, result.guard_size);
3460 assert(kr == 0);
3461
3462 return result;
3463 }
3464
3465 // Mark this allocation as deallocated by something else.
3466 // This means cleanup_allocation() won't deallocate it twice.
3467 // cleanup_allocation() will still free the guard pages.
3468 static void
set_already_deallocated(allocation_t * allocation)3469 set_already_deallocated(allocation_t *allocation)
3470 {
3471 allocation->addr = 0;
3472 allocation->size = 0;
3473 }
3474
3475 static void
cleanup_allocation(allocation_t * allocation)3476 cleanup_allocation(allocation_t *allocation)
3477 {
3478 // fixme verify allocations and unallocated spaces still exist where we expect
3479 if (allocation->size) {
3480 (void)mach_vm_deallocate(allocation->map, allocation->addr, allocation->size);
3481 }
3482 if (allocation->guard_size) {
3483 (void)mach_vm_deallocate(allocation->map, allocation->guard_prefix, allocation->guard_size);
3484 (void)mach_vm_deallocate(allocation->map, allocation->guard_suffix, allocation->guard_size);
3485 }
3486 }
3487
3488
3489 // unallocate a VM region with size
3490 // and deallocate it at end of scope
3491 #define SMART_UNALLOCATE_VM(map, size) \
3492 __attribute__((cleanup(cleanup_unallocation))) = create_unallocation(map, size)
3493
3494 // unallocate a VM region with size
3495 // and deallocate it at end of scope
3496 // If no such region could be allocated, return {.addr = 0}
3497 #define SMART_TRY_UNALLOCATE_VM(map, size) \
3498 __attribute__((cleanup(cleanup_unallocation))) = create_unallocation(map, size, true)
3499
3500 // a VM space with allocated pages around it
3501 typedef struct {
3502 MAP_T map;
3503 addr_t guard_size;
3504 addr_t guard_prefix; // 16K
3505 addr_t addr;
3506 addr_t size;
3507 addr_t guard_suffix; // 16K
3508 } unallocation_t;
3509
3510 static unallocation_t __attribute__((overloadable))
create_unallocation(MAP_T new_map,mach_vm_address_t new_size,bool allow_failure)3511 create_unallocation(MAP_T new_map, mach_vm_address_t new_size, bool allow_failure)
3512 {
3513 // allocations in address order:
3514 // 16K guard_prefix (allocated, prot none)
3515 // N addr..addr+size (unallocated)
3516 // 16K guard_suffix (allocated, prot none)
3517
3518 // allocate new_size + 2 * 16K bytes
3519 // then carve it up into our regions
3520
3521 unallocation_t result;
3522
3523 result.map = new_map;
3524
3525 result.guard_size = KB16;
3526 result.size = round_up_page(new_size, KB16);
3527 if (result.size == 0 && allow_failure) {
3528 return (unallocation_t){new_map, 0, 0, 0, 0, 0};
3529 }
3530 assert(result.size != 0);
3531
3532 mach_vm_address_t allocated_base;
3533 mach_vm_size_t allocated_size = result.size;
3534 if (__builtin_add_overflow(result.size, result.guard_size * 2, &allocated_size)) {
3535 if (allow_failure) {
3536 return (unallocation_t){new_map, 0, 0, 0, 0, 0};
3537 } else {
3538 assert(false);
3539 }
3540 }
3541 kern_return_t kr;
3542 kr = allocate_away_from_zero(result.map, &allocated_base, allocated_size, 0, 0);
3543 if (kr != 0 && allow_failure) {
3544 return (unallocation_t){new_map, 0, 0, 0, 0, 0};
3545 }
3546 assert(kr == 0);
3547
3548 result.guard_prefix = (addr_t)allocated_base;
3549 result.addr = result.guard_prefix + result.guard_size;
3550 result.guard_suffix = result.addr + result.size;
3551
3552 kr = mach_vm_deallocate(result.map, result.addr, result.size);
3553 assert(kr == 0);
3554 kr = mach_vm_protect(result.map, result.guard_prefix, result.guard_size, true, VM_PROT_NONE);
3555 assert(kr == 0);
3556 kr = mach_vm_protect(result.map, result.guard_suffix, result.guard_size, true, VM_PROT_NONE);
3557 assert(kr == 0);
3558
3559 return result;
3560 }
3561
3562 static unallocation_t __attribute__((overloadable))
create_unallocation(MAP_T new_map,mach_vm_address_t new_size)3563 create_unallocation(MAP_T new_map, mach_vm_address_t new_size)
3564 {
3565 return create_unallocation(new_map, new_size, false /*allow_failure*/);
3566 }
3567
3568 static void
cleanup_unallocation(unallocation_t * unallocation)3569 cleanup_unallocation(unallocation_t *unallocation)
3570 {
3571 // fixme verify allocations and unallocated spaces still exist where we expect
3572 if (unallocation->guard_size) {
3573 (void)mach_vm_deallocate(unallocation->map, unallocation->guard_prefix, unallocation->guard_size);
3574 (void)mach_vm_deallocate(unallocation->map, unallocation->guard_suffix, unallocation->guard_size);
3575 }
3576 }
3577
3578
3579 // vm_deferred_reclamation_buffer_init_internal tests
3580 typedef struct {
3581 task_t task;
3582 mach_vm_address_t address;
3583 mach_vm_size_t size;
3584 char *name;
3585 } reclamation_buffer_init_trial_t;
3586
3587 typedef struct {
3588 unsigned count;
3589 unsigned capacity;
3590 reclamation_buffer_init_trial_t list[];
3591 } reclamation_buffer_init_trials_t;
3592
TRIALS_IMPL(reclamation_buffer_init)3593 TRIALS_IMPL(reclamation_buffer_init)
3594
3595 #define RECLAMATION_BUFFER_INIT_TRIAL(new_task, new_address, new_size, new_name) \
3596 (reclamation_buffer_init_trial_t){ .task = (task_t)(new_task), \
3597 .address = (mach_vm_address_t)(new_address), \
3598 .size = (mach_vm_size_t)(new_size), \
3599 .name = new_name }
3600
3601 /* fixme reclaim struct declarations unavailable outside __LP64__ */
3602 #if __LP64__
3603 #define VM_TEST_RECLAIM_BUFFER_SIZE sizeof(struct mach_vm_reclaim_buffer_v1_s) + 2 * sizeof(struct mach_vm_reclaim_entry_v1_s)
3604 #else
3605 #define VM_TEST_RECLAIM_BUFFER_SIZE 64
3606 #endif
3607 /* __LP64__ */
3608
3609 #define RECLAMATION_BUFFER_INIT_EXTRA_TRIALS 7
3610
3611 reclamation_buffer_init_trials_t *
3612 generate_reclamation_buffer_init_trials(void)
3613 {
3614 MAP_T map SMART_MAP;
3615 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT);
3616 addr_trials_t *addr_trials SMART_ADDR_TRIALS(0);
3617 reclamation_buffer_init_trials_t *trials = allocate_reclamation_buffer_init_trials(addr_trials->count + RECLAMATION_BUFFER_INIT_EXTRA_TRIALS);
3618 for (size_t i = 0; i < addr_trials->count; i++) {
3619 char *buf;
3620 mach_vm_size_t size = VM_TEST_RECLAIM_BUFFER_SIZE * i * PAGE_SIZE;
3621 kasprintf(&buf, "%s, size: 0x%llu", addr_trials->list[i].name, size);
3622 append_trial(trials, RECLAMATION_BUFFER_INIT_TRIAL(current_task(), addr_trials->list[i].addr, size, buf));
3623 }
3624
3625 append_trial(trials, RECLAMATION_BUFFER_INIT_TRIAL(current_task(), base.addr, 0, "size: 0"));
3626 append_trial(trials, RECLAMATION_BUFFER_INIT_TRIAL(current_task(), base.addr, UINT64_MAX - 1, "size: UINT64_MAX - 1"));
3627 append_trial(trials, RECLAMATION_BUFFER_INIT_TRIAL(current_task(), base.addr, UINT64_MAX, "size: UINT64_MAX"));
3628 append_trial(trials, RECLAMATION_BUFFER_INIT_TRIAL(current_task(), base.addr, UINT64_MAX - PAGE_SIZE + 1, "size: UINT64_MAX - PAGE_SIZE + 1"));
3629 append_trial(trials, RECLAMATION_BUFFER_INIT_TRIAL(NULL, NULL, 0, "null task, null address, size: 0"));
3630 append_trial(trials, RECLAMATION_BUFFER_INIT_TRIAL(current_task(), NULL, 0, "null address, size: 0"));
3631 append_trial(trials, RECLAMATION_BUFFER_INIT_TRIAL(current_task(), base.addr, VM_TEST_RECLAIM_BUFFER_SIZE, "valid arguments to test KERN_NOT_SUPPORTED"));
3632
3633 return trials;
3634 }
3635
3636 #define SMART_RECLAMATION_BUFFER_INIT_TRIALS() \
3637 __attribute__((cleanup(cleanup_reclamation_buffer_init_trials))) \
3638 = generate_reclamation_buffer_init_trials();
3639
3640 static void __attribute__((used))
cleanup_reclamation_buffer_init_trials(reclamation_buffer_init_trials_t ** trials)3641 cleanup_reclamation_buffer_init_trials(reclamation_buffer_init_trials_t **trials)
3642 {
3643 for (size_t i = 0; i < (*trials)->count - RECLAMATION_BUFFER_INIT_EXTRA_TRIALS; i++) {
3644 kfree_str((*trials)->list[i].name);
3645 }
3646 free_trials(*trials);
3647 }
3648
3649 static kern_return_t
call_mach_vm_deferred_reclamation_buffer_init(task_t task,mach_vm_address_t address,mach_vm_size_t size)3650 call_mach_vm_deferred_reclamation_buffer_init(task_t task, mach_vm_address_t address, mach_vm_size_t size)
3651 {
3652 kern_return_t kr = 0;
3653 mach_vm_address_t saved_address = address;
3654 if (task && size > 0 && address == 0) {
3655 // prevent assert3u(*address, !=, 0)
3656 return PANIC;
3657 }
3658
3659 kr = mach_vm_deferred_reclamation_buffer_init(task, &address, size);
3660
3661 //Out-param validation, failure shouldn't change inout address.
3662 if (kr != KERN_SUCCESS && saved_address != address) {
3663 kr = OUT_PARAM_BAD;
3664 }
3665 if (kr == KERN_SUCCESS && saved_address == address) {
3666 kr = OUT_PARAM_BAD;
3667 }
3668
3669 return kr;
3670 }
3671
3672
3673 // mach_vm_remap_external/vm_remap_external/vm32_remap/mach_vm_remap_new_external infra
3674 // mach_vm_remap/mach_vm_remap_new_kernel infra
3675
3676 /*
3677 * This comment describes the testing approach that was fleshed out through
3678 * writing the tests for the map family of functions, and more fully realized
3679 * for the remap family of functions.
3680 *
3681 * This method attempts to radically minimize code reuse, at the expense of
3682 * decreased navigability (cmd+click is unlikely to work for you for this code)
3683 * and increased upfront costs for understanding this code. Maintainability
3684 * should be better in most cases: if a fix needs to happen, it can be
3685 * implemented in the right place once and doesn’t need to be copy-and-pasted
3686 * in multiple duplicated functions. There may however be cases where the
3687 * change you want to make doesn’t fit the spirit of this approach (for
3688 * instance changing the behavior of the test for only one function in the
3689 * family).
3690 *
3691 * The framework is built around the idea that there are three types of
3692 * parameters:
3693 * 1. Parameters that will be fixed for all calls to the function (e.g. some
3694 * uncommon type specific to the function that doesn’t impact the input
3695 * validation flow)
3696 * 2. Parameters that cause input validation to change significantly (typically
3697 * flags, e.g. fixed vs anywhere). For those we basically want to treat
3698 * different values of the flags as calling into different functions (for
3699 * the purpose of input validation).
3700 * 3. Parameters that can be tested. For every test this is further broken down
3701 * into 2 subtypes:
3702 * A. Parameters being iterated over during the test (e.g. start+size)
3703 * B. Parameters that should stay fixed during this test (e.g. pick a
3704 * sane value of prot and pass that same value for all values of
3705 * start/size)
3706 *
3707 * Often, many functions have very similar signatures (they are in the same
3708 * function family). We want to avoid copy/pasting tests for each function in
3709 * the family.
3710 *
3711 * Here is the flow used for the remap family of functions:
3712 * 1. Typedef a function type with shared parameters (see remap_fn_t)
3713 * 2. Define function wrappers that fit the above typedef for each function
3714 * in the family (see e.g. mach_vm_remap_new_kernel_wrapped). These might
3715 * set values for “type 1” params.
3716 * 3. Define “helper” functions that take in parameters of types 2 and 3.A.,
3717 * and call the wrapper, filling in type 3.B. params. See, e.g.,
3718 * help_call_remap_fn__src_size. For remap, all helpers can easily be
3719 * implemented as a single call to a core helper function
3720 * help_call_remap_fn__src_size_etc.
3721 * 4. Define generic “caller” functions that take in a wrapper and parameters
3722 * of type 3.A. and call the helper. Macros are used to mass implement these
3723 * for all values of type 2 parameters and for all functions in the family.
3724 * See, e.g., `IMPL_FROM_HELPER(dst_size);`.
3725 * 5. Specialize the above "caller" functions for each wrapper in the family,
3726 * again using macros. See `#define IMPL(remap_fn)` and its uses below.
3727 * This results in a number of specialized caller functions that is the
3728 * product of the number of functions in the family by the number of
3729 * variants induced by type 2 parameters.
3730 * 6. Use macros to call test harnesses on caller functions en masse at test
3731 * time for all functions. See the call sites in `vm_parameter_validation.c`
3732 * e.g. `RUN_ALL(mach_vm_remap_new_user, , mach_vm_remap_new);`.
3733 */
3734
3735 typedef kern_return_t (*remap_fn_t)(vm_map_t target_task,
3736 mach_vm_address_t *target_address,
3737 mach_vm_size_t size,
3738 mach_vm_offset_t mask,
3739 int flags,
3740 vm_map_t src_task,
3741 mach_vm_address_t src_address,
3742 boolean_t copy,
3743 vm_prot_t *cur_protection,
3744 vm_prot_t *max_protection,
3745 vm_inherit_t inheritance);
3746
3747 // helpers that call a provided function with certain sets of params
3748
3749 static kern_return_t
help_call_remap_fn__src_size_etc(remap_fn_t fn,MAP_T map,int flags,bool copy,mach_vm_address_t src,mach_vm_size_t size,vm_prot_t cur,vm_prot_t max,vm_inherit_t inherit)3750 help_call_remap_fn__src_size_etc(remap_fn_t fn, MAP_T map, int flags, bool copy, mach_vm_address_t src, mach_vm_size_t size, vm_prot_t cur, vm_prot_t max, vm_inherit_t inherit)
3751 {
3752 kern_return_t kr;
3753 #if KERNEL
3754 if (is_random_anywhere(flags)) {
3755 // RANDOM_ADDR is likely to fall outside pmap's range
3756 return PANIC;
3757 }
3758 #endif
3759 if (is_fixed_overwrite(flags)) {
3760 // Try to allocate a dest for vm_remap to fixed-overwrite at.
3761 allocation_t dst_alloc SMART_TRY_ALLOCATE_VM(map, size, VM_PROT_DEFAULT);
3762 mach_vm_address_t out_addr = dst_alloc.addr;
3763 if (out_addr == 0) {
3764 // Failed to allocate. Clear VM_FLAGS_OVERWRITE
3765 // to prevent wild mappings.
3766 flags &= ~VM_FLAGS_OVERWRITE;
3767 }
3768 kr = fn(map, &out_addr, size, 0, flags,
3769 map, src, copy, &cur, &max, inherit);
3770 } else {
3771 // vm_remap will allocate anywhere. Deallocate if it succeeds.
3772 mach_vm_address_t out_addr = 0;
3773 kr = fn(map, &out_addr, size, 0, flags,
3774 map, src, copy, &cur, &max, inherit);
3775 if (kr == 0) {
3776 (void)mach_vm_deallocate(map, out_addr, size);
3777 }
3778 }
3779 return kr;
3780 }
3781
3782 static kern_return_t
help_call_remap_fn__src_size(remap_fn_t fn,MAP_T map,int unused_flags __unused,bool copy,mach_vm_address_t src,mach_vm_size_t size)3783 help_call_remap_fn__src_size(remap_fn_t fn, MAP_T map, int unused_flags __unused, bool copy, mach_vm_address_t src, mach_vm_size_t size)
3784 {
3785 assert(unused_flags == 0);
3786 return help_call_remap_fn__src_size_etc(fn, map, VM_FLAGS_ANYWHERE, copy, src, size, 0, 0, VM_INHERIT_NONE);
3787 }
3788
3789 static kern_return_t
help_call_remap_fn__dst_size(remap_fn_t fn,MAP_T map,int flags,bool copy,mach_vm_address_t dst,mach_vm_size_t size)3790 help_call_remap_fn__dst_size(remap_fn_t fn, MAP_T map, int flags, bool copy, mach_vm_address_t dst, mach_vm_size_t size)
3791 {
3792 allocation_t src SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT);
3793 mach_vm_address_t out_addr = dst;
3794 vm_prot_t cur = 0;
3795 vm_prot_t max = 0;
3796 kern_return_t kr = fn(map, &out_addr, size, 0, flags,
3797 map, src.addr, copy, &cur, &max, VM_INHERIT_NONE);
3798 deallocate_if_not_fixed_overwrite(kr, map, out_addr, size, flags);
3799 return kr;
3800 }
3801
3802 static kern_return_t
help_call_remap_fn__inherit(remap_fn_t fn,MAP_T map,int flags,bool copy,mach_vm_address_t src,mach_vm_size_t size,vm_inherit_t inherit)3803 help_call_remap_fn__inherit(remap_fn_t fn, MAP_T map, int flags, bool copy, mach_vm_address_t src, mach_vm_size_t size, vm_inherit_t inherit)
3804 {
3805 return help_call_remap_fn__src_size_etc(fn, map, flags, copy, src, size, 0, 0, inherit);
3806 }
3807
3808 static kern_return_t
help_call_remap_fn__flags(remap_fn_t fn,MAP_T map,int unused_flags __unused,bool copy,mach_vm_address_t src,mach_vm_size_t size,int trial_flags)3809 help_call_remap_fn__flags(remap_fn_t fn, MAP_T map, int unused_flags __unused, bool copy, mach_vm_address_t src, mach_vm_size_t size, int trial_flags)
3810 {
3811 assert(unused_flags == 0);
3812 return help_call_remap_fn__src_size_etc(fn, map, trial_flags, copy, src, size, 0, 0, VM_INHERIT_NONE);
3813 }
3814
3815 static kern_return_t
help_call_remap_fn__prot_pairs(remap_fn_t fn,MAP_T map,int flags,bool copy,mach_vm_address_t src,mach_vm_size_t size,vm_prot_t cur,vm_prot_t max)3816 help_call_remap_fn__prot_pairs(remap_fn_t fn, MAP_T map, int flags, bool copy, mach_vm_address_t src, mach_vm_size_t size, vm_prot_t cur, vm_prot_t max)
3817 {
3818 return help_call_remap_fn__src_size_etc(fn, map, flags, copy, src, size, cur, max, VM_INHERIT_NONE);
3819 }
3820
3821 static kern_return_t
help_call_remap_fn__src_dst_size(remap_fn_t fn,MAP_T map,int flags,bool copy,mach_vm_address_t src,mach_vm_size_t size,mach_vm_address_t dst)3822 help_call_remap_fn__src_dst_size(remap_fn_t fn, MAP_T map, int flags, bool copy, mach_vm_address_t src, mach_vm_size_t size, mach_vm_address_t dst)
3823 {
3824 mach_vm_address_t out_addr = dst;
3825 vm_prot_t cur = 0;
3826 vm_prot_t max = 0;
3827 kern_return_t kr = fn(map, &out_addr, size, 0, flags,
3828 map, src, copy, &cur, &max, VM_INHERIT_NONE);
3829 deallocate_if_not_fixed_overwrite(kr, map, out_addr, size, flags);
3830 return kr;
3831 }
3832
3833 #define GET_INSTANCE(_0, _1, _2, _3, _4, _5, _6, _7, _8, NAME, ...) NAME
3834
3835 #define DROP_TYPES_8(a, b, ...) , b DROP_TYPES_6(__VA_ARGS__)
3836 #define DROP_TYPES_6(a, b, ...) , b DROP_TYPES_4(__VA_ARGS__)
3837 #define DROP_TYPES_4(a, b, ...) , b DROP_TYPES_2(__VA_ARGS__)
3838 #define DROP_TYPES_2(a, b, ...) , b
3839 #define DROP_TYPES_0()
3840
3841 // Parses lists of "type1, arg1, type2, arg" into "arg1, arg2"
3842 #define DROP_TYPES(...) GET_INSTANCE(_0 __VA_OPT__(,) __VA_ARGS__, DROP_TYPES_8, DROP_TYPES_8, DROP_TYPES_6, DROP_TYPES_6, DROP_TYPES_4, DROP_TYPES_4, DROP_TYPES_2, DROP_TYPES_2, DROP_TYPES_0, DROP_TYPES_0)(__VA_ARGS__)
3843
3844 #define DROP_COMMAS_8(a, b, ...) , a b DROP_COMMAS_6(__VA_ARGS__)
3845 #define DROP_COMMAS_6(a, b, ...) , a b DROP_COMMAS_4(__VA_ARGS__)
3846 #define DROP_COMMAS_4(a, b, ...) , a b DROP_COMMAS_2(__VA_ARGS__)
3847 #define DROP_COMMAS_2(a, b) , a b
3848 #define DROP_COMMAS_0()
3849
3850 // Parses lists of "type1, arg1, type2, arg" into "type1 arg1, type2 arg2"
3851 #define DROP_COMMAS(...) GET_INSTANCE(_0 __VA_OPT__(,) __VA_ARGS__, DROP_COMMAS_8, DROP_COMMAS_8, DROP_COMMAS_6, DROP_COMMAS_6, DROP_COMMAS_4, DROP_COMMAS_4, DROP_COMMAS_2, DROP_COMMAS_2, DROP_COMMAS_0)(__VA_ARGS__)
3852
3853 // specialize helpers into implementations of call functions that are still agnostic to the remap function
3854
3855 #define IMPL_ONE_FROM_HELPER(type, variant, flags, copy, ...) \
3856 static kern_return_t \
3857 call_remap_fn ## __ ## variant ## __ ## type(remap_fn_t fn, MAP_T map, mach_vm_address_t src, mach_vm_size_t size DROP_COMMAS(__VA_ARGS__)) { \
3858 return help_call_remap_fn__ ## type(fn, map, flags, copy, src, size DROP_TYPES(__VA_ARGS__)); \
3859 }
3860
3861 #define IMPL_FROM_HELPER(type, ...) \
3862 IMPL_ONE_FROM_HELPER(type, fixed, VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE, false, ##__VA_ARGS__) \
3863 IMPL_ONE_FROM_HELPER(type, fixed_copy, VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE, true, ##__VA_ARGS__) \
3864 IMPL_ONE_FROM_HELPER(type, anywhere, VM_FLAGS_ANYWHERE, false, ##__VA_ARGS__) \
3865
3866 IMPL_FROM_HELPER(dst_size);
3867 IMPL_FROM_HELPER(inherit, vm_inherit_t, inherit);
3868 IMPL_FROM_HELPER(prot_pairs, vm_prot_t, cur, vm_prot_t, max);
3869 IMPL_FROM_HELPER(src_dst_size, mach_vm_address_t, dst);
3870
3871 IMPL_ONE_FROM_HELPER(flags, nocopy, 0 /*ignored*/, false, int, flag)
3872 IMPL_ONE_FROM_HELPER(flags, copy, 0 /*ignored*/, true, int, flag)
3873
3874 IMPL_ONE_FROM_HELPER(src_size, nocopy, 0 /*ignored*/, false)
3875 IMPL_ONE_FROM_HELPER(src_size, copy, 0 /*ignored*/, true)
3876
3877 #undef IMPL_FROM_HELPER
3878 #undef IMPL_ONE_FROM_HELPER
3879
3880 // define call functions that are specific to the remap function, and rely on implementations above under the hood
3881
3882 #define IMPL_REMAP_FN_HELPER(remap_fn, instance, type, ...) \
3883 static kern_return_t \
3884 call_ ## remap_fn ## __ ## instance ## __ ## type(MAP_T map DROP_COMMAS(__VA_ARGS__)) \
3885 { \
3886 return call_remap_fn__ ## instance ## __ ## type(remap_fn, map DROP_TYPES(__VA_ARGS__)); \
3887 }
3888
3889 #define IMPL_REMAP_FN_SRC_SIZE(remap_fn, instance) IMPL_REMAP_FN_HELPER(remap_fn, instance, src_size, mach_vm_address_t, src, mach_vm_size_t, size)
3890 #define IMPL_REMAP_FN_DST_SIZE(remap_fn, instance) IMPL_REMAP_FN_HELPER(remap_fn, instance, dst_size, mach_vm_address_t, src, mach_vm_size_t, size)
3891 #define IMPL_REMAP_FN_SRC_DST_SIZE(remap_fn, instance) IMPL_REMAP_FN_HELPER(remap_fn, instance, src_dst_size, mach_vm_address_t, src, mach_vm_size_t, size, mach_vm_address_t, dst)
3892 #define IMPL_REMAP_FN_SRC_SIZE_INHERIT(remap_fn, instance) IMPL_REMAP_FN_HELPER(remap_fn, instance, inherit, mach_vm_address_t, src, mach_vm_size_t, size, vm_inherit_t, inherit)
3893 #define IMPL_REMAP_FN_SRC_SIZE_FLAGS(remap_fn, instance) IMPL_REMAP_FN_HELPER(remap_fn, instance, flags, mach_vm_address_t, src, mach_vm_size_t, size, int, flags)
3894 #define IMPL_REMAP_FN_PROT_PAIRS(remap_fn, instance) IMPL_REMAP_FN_HELPER(remap_fn, instance, prot_pairs, mach_vm_address_t, src, mach_vm_size_t, size, vm_prot_t, cur, vm_prot_t, max)
3895
3896 #define IMPL(remap_fn) \
3897 IMPL_REMAP_FN_SRC_SIZE(remap_fn, nocopy); \
3898 IMPL_REMAP_FN_SRC_SIZE(remap_fn, copy); \
3899 \
3900 IMPL_REMAP_FN_DST_SIZE(remap_fn, fixed); \
3901 IMPL_REMAP_FN_DST_SIZE(remap_fn, fixed_copy); \
3902 IMPL_REMAP_FN_DST_SIZE(remap_fn, anywhere); \
3903 \
3904 IMPL_REMAP_FN_SRC_SIZE_INHERIT(remap_fn, fixed); \
3905 IMPL_REMAP_FN_SRC_SIZE_INHERIT(remap_fn, fixed_copy); \
3906 IMPL_REMAP_FN_SRC_SIZE_INHERIT(remap_fn, anywhere); \
3907 \
3908 IMPL_REMAP_FN_SRC_SIZE_FLAGS(remap_fn, nocopy); \
3909 IMPL_REMAP_FN_SRC_SIZE_FLAGS(remap_fn, copy); \
3910 \
3911 IMPL_REMAP_FN_PROT_PAIRS(remap_fn, fixed); \
3912 IMPL_REMAP_FN_PROT_PAIRS(remap_fn, fixed_copy); \
3913 IMPL_REMAP_FN_PROT_PAIRS(remap_fn, anywhere); \
3914 \
3915 IMPL_REMAP_FN_SRC_DST_SIZE(remap_fn, fixed); \
3916 IMPL_REMAP_FN_SRC_DST_SIZE(remap_fn, fixed_copy); \
3917 IMPL_REMAP_FN_SRC_DST_SIZE(remap_fn, anywhere); \
3918
3919 static inline void
check_mach_vm_map_outparam_changes(kern_return_t * kr,mach_vm_address_t addr,mach_vm_address_t saved_addr,int flags,MAP_T map)3920 check_mach_vm_map_outparam_changes(kern_return_t * kr, mach_vm_address_t addr, mach_vm_address_t saved_addr,
3921 int flags, MAP_T map)
3922 {
3923 if (*kr == KERN_SUCCESS) {
3924 if (is_fixed(flags)) {
3925 if (addr != truncate_vm_map_addr_with_flags(map, saved_addr, flags)) {
3926 *kr = OUT_PARAM_BAD;
3927 }
3928 }
3929 } else {
3930 if (addr != saved_addr) {
3931 *kr = OUT_PARAM_BAD;
3932 }
3933 }
3934 }
3935
3936 static inline void
check_mach_vm_remap_outparam_changes(kern_return_t * kr,mach_vm_address_t addr,mach_vm_address_t saved_addr,int flags,vm_prot_t cur_prot,vm_prot_t saved_cur_prot,vm_prot_t max_prot,vm_prot_t saved_max_prot,MAP_T map,mach_vm_address_t src_addr)3937 check_mach_vm_remap_outparam_changes(kern_return_t * kr, mach_vm_address_t addr, mach_vm_address_t saved_addr,
3938 int flags, vm_prot_t cur_prot, vm_prot_t saved_cur_prot, vm_prot_t max_prot, vm_prot_t saved_max_prot, MAP_T map,
3939 mach_vm_address_t src_addr)
3940 {
3941 if (*kr == KERN_SUCCESS) {
3942 if (is_fixed(flags)) {
3943 mach_vm_address_t expected_misalignment = get_expected_remap_misalignment(map, src_addr, flags);
3944 if (addr != trunc_down_map(map, saved_addr) + expected_misalignment) {
3945 *kr = OUT_PARAM_BAD;
3946 }
3947 }
3948 } else {
3949 if ((addr != saved_addr) || (cur_prot != saved_cur_prot) ||
3950 (max_prot != saved_max_prot)) {
3951 *kr = OUT_PARAM_BAD;
3952 }
3953 }
3954 }
3955
3956 #if KERNEL
3957
3958 static inline kern_return_t
mach_vm_remap_wrapped_kern(vm_map_t target_task,mach_vm_address_t * target_address,mach_vm_size_t size,mach_vm_offset_t mask,int flags,vm_map_t src_task,mach_vm_address_t src_address,boolean_t copy,vm_prot_t * cur_protection,vm_prot_t * max_protection,vm_inherit_t inheritance)3959 mach_vm_remap_wrapped_kern(vm_map_t target_task,
3960 mach_vm_address_t *target_address,
3961 mach_vm_size_t size,
3962 mach_vm_offset_t mask,
3963 int flags,
3964 vm_map_t src_task,
3965 mach_vm_address_t src_address,
3966 boolean_t copy,
3967 vm_prot_t *cur_protection,
3968 vm_prot_t *max_protection,
3969 vm_inherit_t inheritance)
3970 {
3971 if (dealloc_would_time_out(*target_address, size, target_task)) {
3972 return ACCEPTABLE;
3973 }
3974
3975 mach_vm_address_t saved_addr = *target_address;
3976 vm_prot_t saved_cur_prot = *cur_protection;
3977 vm_prot_t saved_max_prot = *max_protection;
3978 kern_return_t kr = mach_vm_remap(target_task, target_address, size, mask, flags, src_task, src_address, copy, cur_protection, max_protection, inheritance);
3979 check_mach_vm_remap_outparam_changes(&kr, *target_address, saved_addr, flags,
3980 *cur_protection, saved_cur_prot, *max_protection, saved_max_prot, target_task, src_address);
3981 return kr;
3982 }
IMPL(mach_vm_remap_wrapped_kern)3983 IMPL(mach_vm_remap_wrapped_kern)
3984
3985 static inline kern_return_t
3986 mach_vm_remap_new_kernel_wrapped(vm_map_t target_task,
3987 mach_vm_address_t *target_address,
3988 mach_vm_size_t size,
3989 mach_vm_offset_t mask,
3990 int flags,
3991 vm_map_t src_task,
3992 mach_vm_address_t src_address,
3993 boolean_t copy,
3994 vm_prot_t *cur_protection,
3995 vm_prot_t *max_protection,
3996 vm_inherit_t inheritance)
3997 {
3998 if (dealloc_would_time_out(*target_address, size, target_task)) {
3999 return ACCEPTABLE;
4000 }
4001
4002 mach_vm_address_t saved_addr = *target_address;
4003 vm_prot_t saved_cur_prot = *cur_protection;
4004 vm_prot_t saved_max_prot = *max_protection;
4005 kern_return_t kr = mach_vm_remap_new_kernel(target_task, target_address, size, mask, FLAGS_AND_TAG(flags, VM_KERN_MEMORY_OSFMK), src_task, src_address, copy, cur_protection, max_protection, inheritance);
4006 // remap_new sets VM_FLAGS_RETURN_DATA_ADDR
4007 check_mach_vm_remap_outparam_changes(&kr, *target_address, saved_addr, flags | VM_FLAGS_RETURN_DATA_ADDR,
4008 *cur_protection, saved_cur_prot, *max_protection, saved_max_prot, target_task, src_address);
4009 return kr;
4010 }
4011 IMPL(mach_vm_remap_new_kernel_wrapped)
4012
4013 #else /* !KERNEL */
4014
4015 static inline kern_return_t
4016 mach_vm_remap_user(vm_map_t target_task,
4017 mach_vm_address_t *target_address,
4018 mach_vm_size_t size,
4019 mach_vm_offset_t mask,
4020 int flags,
4021 vm_map_t src_task,
4022 mach_vm_address_t src_address,
4023 boolean_t copy,
4024 vm_prot_t *cur_protection,
4025 vm_prot_t *max_protection,
4026 vm_inherit_t inheritance)
4027 {
4028 mach_vm_address_t saved_addr = *target_address;
4029 vm_prot_t saved_cur_prot = *cur_protection;
4030 vm_prot_t saved_max_prot = *max_protection;
4031 kern_return_t kr = mach_vm_remap(target_task, target_address, size, mask, flags, src_task, src_address, copy, cur_protection, max_protection, inheritance);
4032 check_mach_vm_remap_outparam_changes(&kr, *target_address, saved_addr, flags,
4033 *cur_protection, saved_cur_prot, *max_protection, saved_max_prot, target_task, src_address);
4034 return kr;
4035 }
4036 IMPL(mach_vm_remap_user)
4037
4038 static inline kern_return_t
4039 mach_vm_remap_new_user(vm_map_t target_task,
4040 mach_vm_address_t *target_address,
4041 mach_vm_size_t size,
4042 mach_vm_offset_t mask,
4043 int flags,
4044 vm_map_t src_task,
4045 mach_vm_address_t src_address,
4046 boolean_t copy,
4047 vm_prot_t *cur_protection,
4048 vm_prot_t *max_protection,
4049 vm_inherit_t inheritance)
4050 {
4051 mach_vm_address_t saved_addr = *target_address;
4052 vm_prot_t saved_cur_prot = *cur_protection;
4053 vm_prot_t saved_max_prot = *max_protection;
4054 kern_return_t kr = mach_vm_remap_new(target_task, target_address, size, mask, flags, src_task, src_address, copy, cur_protection, max_protection, inheritance);
4055 // remap_new sets VM_FLAGS_RETURN_DATA_ADDR
4056 check_mach_vm_remap_outparam_changes(&kr, *target_address, saved_addr, flags | VM_FLAGS_RETURN_DATA_ADDR,
4057 *cur_protection, saved_cur_prot, *max_protection, saved_max_prot, target_task, src_address);
4058 return kr;
4059 }
4060 IMPL(mach_vm_remap_new_user)
4061
4062 #if TEST_OLD_STYLE_MACH
4063 static inline kern_return_t
4064 vm_remap_retyped(vm_map_t target_task,
4065 mach_vm_address_t *target_address,
4066 mach_vm_size_t size,
4067 mach_vm_offset_t mask,
4068 int flags,
4069 vm_map_t src_task,
4070 mach_vm_address_t src_address,
4071 boolean_t copy,
4072 vm_prot_t *cur_protection,
4073 vm_prot_t *max_protection,
4074 vm_inherit_t inheritance)
4075 {
4076 vm_address_t addr = (vm_address_t)*target_address;
4077 vm_prot_t saved_cur_prot = *cur_protection;
4078 vm_prot_t saved_max_prot = *max_protection;
4079 kern_return_t kr = vm_remap(target_task, &addr, (vm_size_t)size, (vm_address_t)mask, flags, src_task, (vm_address_t)src_address, copy, cur_protection, max_protection, inheritance);
4080 check_mach_vm_remap_outparam_changes(&kr, addr, (vm_address_t) *target_address, flags,
4081 *cur_protection, saved_cur_prot, *max_protection, saved_max_prot, target_task, src_address);
4082 *target_address = addr;
4083 return kr;
4084 }
4085
4086 IMPL(vm_remap_retyped)
4087
4088 #endif /* TEST_OLD_STYLE_MACH */
4089 #endif /* !KERNEL */
4090
4091 #undef IMPL
4092 #undef IMPL_REMAP_FN_SRC_SIZE
4093 #undef IMPL_REMAP_FN_DST_SIZE
4094 #undef IMPL_REMAP_FN_SRC_DST_SIZE
4095 #undef IMPL_REMAP_FN_SRC_SIZE_INHERIT
4096 #undef IMPL_REMAP_FN_SRC_SIZE_FLAGS
4097 #undef IMPL_REMAP_FN_PROT_PAIRS
4098 #undef IMPL_REMAP_FN_HELPER
4099
4100
4101 /////////////////////////////////////////////////////
4102 // Test runners for functions with commonly-used parameter types and setup code.
4103
4104 #define IMPL(NAME, T) \
4105 /* Test a Mach function */ \
4106 /* Run each trial with an allocated vm region and start/size parameters that reference it. */ \
4107 typedef kern_return_t (*NAME ## mach_with_start_size_fn)(MAP_T map, T start, T size); \
4108 \
4109 /* ...and the allocation has a specified minimum alignment */ \
4110 static results_t * __attribute__((used)) \
4111 test_ ## NAME ## mach_with_allocated_aligned_start_size(NAME ## mach_with_start_size_fn fn, T align_mask, const char *testname) \
4112 { \
4113 MAP_T map SMART_MAP; \
4114 allocation_t base SMART_ALLOCATE_ALIGNED_VM(map, TEST_ALLOC_SIZE, align_mask, VM_PROT_DEFAULT); \
4115 start_size_trials_t *trials SMART_START_SIZE_TRIALS(base.addr); \
4116 results_t *results = alloc_results(testname, eSMART_START_SIZE_TRIALS, base.addr, trials->count); \
4117 \
4118 for (unsigned i = 0; i < trials->count; i++) { \
4119 T start = (T)trials->list[i].start; \
4120 T size = (T)trials->list[i].size; \
4121 kern_return_t ret = fn(map, start, size); \
4122 append_result(results, ret, trials->list[i].name); \
4123 } \
4124 return results; \
4125 } \
4126 \
4127 /* ...and the allocation gets default alignment */ \
4128 static results_t * __attribute__((used)) \
4129 test_ ## NAME ## mach_with_allocated_start_size(NAME ## mach_with_start_size_fn fn, const char *testname) \
4130 { \
4131 return test_ ## NAME ## mach_with_allocated_aligned_start_size(fn, 0, testname); \
4132 } \
4133 \
4134 /* Test a Mach function. */ \
4135 /* Run each trial with an allocated vm region and an addr parameter that reference it. */ \
4136 typedef kern_return_t (*NAME ## mach_with_addr_fn)(MAP_T map, T addr); \
4137 \
4138 static results_t * __attribute__((used)) \
4139 test_ ## NAME ## mach_with_allocated_addr_of_size_n(NAME ## mach_with_addr_fn fn, size_t obj_size, const char *testname) \
4140 { \
4141 MAP_T map SMART_MAP; \
4142 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4143 addr_trials_t *trials SMART_ADDR_TRIALS(base.addr); \
4144 /* Do all the addr trials and an additional trial such that obj_size + addr == 0 */ \
4145 uint64_t trial_args[TRIALSARGUMENTS_SIZE] = {base.addr, obj_size}; \
4146 results_t *results = alloc_results(testname, eSMART_ADDR_TRIALS, trial_args, TRIALSARGUMENTS_SIZE, trials->count+1); \
4147 \
4148 for (unsigned i = 0; i < trials->count; i++) { \
4149 T addr = (T)trials->list[i].addr; \
4150 kern_return_t ret = fn(map, addr); \
4151 append_result(results, ret, trials->list[i].name); \
4152 } \
4153 kern_return_t ret = fn(map, - ((T) obj_size)); \
4154 char *trial_desc; \
4155 kasprintf(&trial_desc, "addr: -0x%lx", obj_size); \
4156 append_result(results, ret, trial_desc); \
4157 kfree_str(trial_desc); \
4158 return results; \
4159 } \
4160 \
4161 /* Test a Mach function. */ \
4162 /* Run each trial with an allocated vm region and an addr parameter that reference it. */ \
4163 typedef kern_return_t (*NAME ## mach_with_addr_fn)(MAP_T map, T addr); \
4164 \
4165 static results_t * __attribute__((used)) \
4166 test_ ## NAME ## mach_with_allocated_addr(NAME ## mach_with_addr_fn fn, const char *testname) \
4167 { \
4168 MAP_T map SMART_MAP; \
4169 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4170 addr_trials_t *trials SMART_ADDR_TRIALS(base.addr); \
4171 results_t *results = alloc_results(testname, eSMART_ADDR_TRIALS, base.addr, trials->count); \
4172 \
4173 for (unsigned i = 0; i < trials->count; i++) { \
4174 T addr = (T)trials->list[i].addr; \
4175 kern_return_t ret = fn(map, addr); \
4176 append_result(results, ret, trials->list[i].name); \
4177 } \
4178 return results; \
4179 } \
4180 \
4181 static results_t * __attribute__((used)) \
4182 test_ ## NAME ## mach_with_allocated_purgeable_addr(NAME ## mach_with_addr_fn fn, const char *testname) \
4183 { \
4184 MAP_T map SMART_MAP; \
4185 allocation_t base SMART_ALLOCATE_PURGEABLE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4186 addr_trials_t *trials SMART_ADDR_TRIALS(base.addr); \
4187 results_t *results = alloc_results(testname, eSMART_ADDR_TRIALS, base.addr, trials->count); \
4188 \
4189 for (unsigned i = 0; i < trials->count; i++) { \
4190 T addr = (T)trials->list[i].addr; \
4191 kern_return_t ret = fn(map, addr); \
4192 append_result(results, ret, trials->list[i].name); \
4193 } \
4194 return results; \
4195 } \
4196 \
4197 /* Test a Mach function. */ \
4198 /* Run each trial with a size parameter. */ \
4199 typedef kern_return_t (*NAME ## mach_with_size_fn)(MAP_T map, T size); \
4200 \
4201 static results_t * __attribute__((used)) \
4202 test_ ## NAME ## mach_with_size(NAME ## mach_with_size_fn fn, const char *testname) \
4203 { \
4204 MAP_T map SMART_MAP; \
4205 size_trials_t *trials SMART_SIZE_TRIALS(); \
4206 results_t *results = alloc_results(testname, eSMART_SIZE_TRIALS, trials->count); \
4207 \
4208 for (unsigned i = 0; i < trials->count; i++) { \
4209 T size = (T)trials->list[i].size; \
4210 kern_return_t ret = fn(map, size); \
4211 append_result(results, ret, trials->list[i].name); \
4212 } \
4213 return results; \
4214 } \
4215 \
4216 /* Test a Mach function. */ \
4217 /* Run each trial with a size parameter. */ \
4218 typedef kern_return_t (*NAME ## mach_with_start_size_offset_object_fn)(MAP_T map, T addr, T size, T offset, T obj_size); \
4219 \
4220 static results_t * __attribute__((used)) \
4221 test_ ## NAME ## mach_with_allocated_start_size_offset_object(NAME ## mach_with_start_size_offset_object_fn fn, const char *testname) \
4222 { \
4223 MAP_T map SMART_MAP; \
4224 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4225 start_size_offset_object_trials_t *trials SMART_START_SIZE_OFFSET_OBJECT_TRIALS(); \
4226 results_t *results = alloc_results(testname, eSMART_START_SIZE_OFFSET_OBJECT_TRIALS, trials->count); \
4227 \
4228 for (unsigned i = 0; i < trials->count; i++) { \
4229 start_size_offset_object_trial_t trial = slide_trial(trials->list[i], base.addr); \
4230 T start = (T)trial.start; \
4231 T size = (T)trial.size; \
4232 T offset = (T)trial.offset; \
4233 T obj_size = (T)trial.obj_size; \
4234 kern_return_t ret = fn(map, start, size, offset, obj_size); \
4235 append_result(results, ret, trials->list[i].name); \
4236 } \
4237 return results; \
4238 } \
4239 /* Test a Mach function. */ \
4240 /* Run each trial with a size parameter. */ \
4241 typedef kern_return_t (*NAME ## mach_with_start_size_offset_fn)(MAP_T map, T addr, T size, T offset, T obj_size); \
4242 \
4243 static results_t * __attribute__((used)) \
4244 test_ ## NAME ## mach_with_allocated_start_size_offset(NAME ## mach_with_start_size_offset_fn fn, const char *testname) \
4245 { \
4246 MAP_T map SMART_MAP; \
4247 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4248 start_size_offset_trials_t *trials SMART_START_SIZE_OFFSET_TRIALS(); \
4249 results_t *results = alloc_results(testname, eSMART_START_SIZE_OFFSET_TRIALS, trials->count); \
4250 \
4251 for (unsigned i = 0; i < trials->count; i++) { \
4252 start_size_offset_trial_t trial = slide_trial(trials->list[i], base.addr); \
4253 T start = (T)trial.start; \
4254 T size = (T)trial.size; \
4255 T offset = (T)trial.offset; \
4256 kern_return_t ret = fn(map, start, size, offset, 1); \
4257 append_result(results, ret, trials->list[i].name); \
4258 } \
4259 return results; \
4260 } \
4261 \
4262 /* Test a Mach function. */ \
4263 /* Run each trial with an allocated vm region and a set of mmap flags. */ \
4264 typedef kern_return_t (*NAME ## mach_with_allocated_mmap_flags_fn)(MAP_T map, T addr, T size, int flags); \
4265 \
4266 static results_t * __attribute__((used)) \
4267 test_ ## NAME ## mach_with_allocated_mmap_flags(NAME ## mach_with_allocated_mmap_flags_fn fn, const char *testname) \
4268 { \
4269 MAP_T map SMART_MAP; \
4270 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4271 mmap_flags_trials_t *trials SMART_MMAP_FLAGS_TRIALS(); \
4272 results_t *results = alloc_results(testname, eSMART_MMAP_FLAGS_TRIALS, trials->count); \
4273 \
4274 for (unsigned i = 0; i < trials->count; i++) { \
4275 int flags = trials->list[i].flags; \
4276 kern_return_t ret = fn(map, (T)base.addr, (T)base.size, flags); \
4277 append_result(results, ret, trials->list[i].name); \
4278 } \
4279 return results; \
4280 } \
4281 \
4282 /* Test a Mach function. */ \
4283 /* Run each trial with an allocated vm region and a generic 32 bit flag. */ \
4284 typedef kern_return_t (*NAME ## mach_with_allocated_generic_flag)(MAP_T map, T addr, T size, int flag); \
4285 \
4286 static results_t * __attribute__((used)) \
4287 test_ ## NAME ## mach_with_allocated_generic_flag(NAME ## mach_with_allocated_generic_flag fn, const char *testname) \
4288 { \
4289 MAP_T map SMART_MAP; \
4290 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4291 generic_flag_trials_t *trials SMART_GENERIC_FLAG_TRIALS(); \
4292 results_t *results = alloc_results(testname, eSMART_GENERIC_FLAG_TRIALS, trials->count); \
4293 \
4294 for (unsigned i = 0; i < trials->count; i++) { \
4295 int flag = trials->list[i].flag; \
4296 kern_return_t ret = fn(map, (T)base.addr, (T)base.size, flag); \
4297 append_result(results, ret, trials->list[i].name); \
4298 } \
4299 return results; \
4300 } \
4301 \
4302 /* Test a Mach function. */ \
4303 /* Run each trial with a vm_prot_t. */ \
4304 typedef kern_return_t (*NAME ## mach_with_prot_fn)(MAP_T map, T size, vm_prot_t prot); \
4305 \
4306 static results_t * __attribute__((used)) \
4307 test_ ## NAME ## mach_vm_prot(NAME ## mach_with_prot_fn fn, const char *testname) \
4308 { \
4309 MAP_T map SMART_MAP; \
4310 vm_prot_trials_t *trials SMART_VM_PROT_TRIALS(); \
4311 results_t *results = alloc_results(testname, eSMART_VM_PROT_TRIALS, trials->count); \
4312 \
4313 for (unsigned i = 0; i < trials->count; i++) { \
4314 kern_return_t ret = fn(map, TEST_ALLOC_SIZE, trials->list[i].prot); \
4315 append_result(results, ret, trials->list[i].name); \
4316 } \
4317 return results; \
4318 } \
4319 \
4320 /* Test a Mach function. */ \
4321 /* Run each trial with a pair of vm_prot_t's. */ \
4322 typedef kern_return_t (*NAME ## mach_with_prot_pair_fn)(MAP_T map, vm_prot_t cur, vm_prot_t max); \
4323 \
4324 static results_t * __attribute__((used)) \
4325 test_ ## NAME ## mach_vm_prot_pair(NAME ## mach_with_prot_pair_fn fn, const char *testname) \
4326 { \
4327 MAP_T map SMART_MAP; \
4328 vm_prot_pair_trials_t *trials SMART_VM_PROT_PAIR_TRIALS(); \
4329 results_t *results = alloc_results(testname, eSMART_VM_PROT_PAIR_TRIALS, trials->count); \
4330 \
4331 for (unsigned i = 0; i < trials->count; i++) { \
4332 kern_return_t ret = fn(map, trials->list[i].cur, trials->list[i].max); \
4333 append_result(results, ret, trials->list[i].name); \
4334 } \
4335 return results; \
4336 } \
4337 \
4338 /* Test a Mach function. */ \
4339 /* Run each trial with a pair of vm_prot_t's. */ \
4340 typedef kern_return_t (*NAME ## mach_with_allocated_prot_pair_fn)(MAP_T map, T addr, T size, vm_prot_t cur, vm_prot_t max); \
4341 \
4342 static results_t * __attribute__((used)) \
4343 test_ ## NAME ## mach_with_allocated_vm_prot_pair(NAME ## mach_with_allocated_prot_pair_fn fn, const char *testname) \
4344 { \
4345 MAP_T map SMART_MAP; \
4346 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4347 vm_prot_pair_trials_t *trials SMART_VM_PROT_PAIR_TRIALS(); \
4348 results_t *results = alloc_results(testname, eSMART_VM_PROT_PAIR_TRIALS, trials->count); \
4349 \
4350 for (unsigned i = 0; i < trials->count; i++) { \
4351 kern_return_t ret = fn(map, (T)base.addr, (T)base.size, trials->list[i].cur, trials->list[i].max); \
4352 append_result(results, ret, trials->list[i].name); \
4353 } \
4354 return results; \
4355 } \
4356 \
4357 /* Test a Mach function. */ \
4358 /* Run each trial with an allocated vm region and a vm_prot_t. */ \
4359 typedef kern_return_t (*NAME ## mach_with_allocated_prot_fn)(MAP_T map, T addr, T size, vm_prot_t prot); \
4360 \
4361 static results_t * __attribute__((used)) \
4362 test_ ## NAME ## mach_with_allocated_vm_prot_t(NAME ## mach_with_allocated_prot_fn fn, const char *testname) \
4363 { \
4364 MAP_T map SMART_MAP; \
4365 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4366 vm_prot_trials_t *trials SMART_VM_PROT_TRIALS(); \
4367 results_t *results = alloc_results(testname, eSMART_VM_PROT_TRIALS, trials->count); \
4368 \
4369 for (unsigned i = 0; i < trials->count; i++) { \
4370 vm_prot_t prot = trials->list[i].prot; \
4371 kern_return_t ret = fn(map, (T)base.addr, (T)base.size, prot); \
4372 append_result(results, ret, trials->list[i].name); \
4373 } \
4374 return results; \
4375 } \
4376 \
4377 /* Test a Mach function. */ \
4378 /* Run each trial with a ledger flag. */ \
4379 typedef kern_return_t (*NAME ## mach_ledger_flag_fn)(MAP_T map, int ledger_flag); \
4380 \
4381 static results_t * __attribute__((used)) \
4382 test_ ## NAME ## mach_with_ledger_flag(NAME ## mach_ledger_flag_fn fn, const char *testname) \
4383 { \
4384 MAP_T map SMART_MAP; \
4385 ledger_flag_trials_t *trials SMART_LEDGER_FLAG_TRIALS(); \
4386 results_t *results = alloc_results(testname, eSMART_LEDGER_FLAG_TRIALS, trials->count); \
4387 \
4388 for (unsigned i = 0; i < trials->count; i++) { \
4389 kern_return_t ret = fn(map, trials->list[i].flag); \
4390 append_result(results, ret, trials->list[i].name); \
4391 } \
4392 return results; \
4393 } \
4394 /* Test a Mach function. */ \
4395 /* Run each trial with a ledger tag. */ \
4396 typedef kern_return_t (*NAME ## mach_ledger_tag_fn)(MAP_T map, int ledger_tag); \
4397 \
4398 static results_t * __attribute__((used)) \
4399 test_ ## NAME ## mach_with_ledger_tag(NAME ## mach_ledger_tag_fn fn, const char *testname) \
4400 { \
4401 MAP_T map SMART_MAP; \
4402 ledger_tag_trials_t *trials SMART_LEDGER_TAG_TRIALS(); \
4403 results_t *results = alloc_results(testname, eSMART_LEDGER_TAG_TRIALS, trials->count); \
4404 \
4405 for (unsigned i = 0; i < trials->count; i++) { \
4406 kern_return_t ret = fn(map, trials->list[i].tag); \
4407 append_result(results, ret, trials->list[i].name); \
4408 } \
4409 return results; \
4410 } \
4411 \
4412 /* Test a Mach function. */ \
4413 /* Run each trial with an allocated region and a vm_inherit_t. */ \
4414 typedef kern_return_t (*NAME ## mach_inherit_fn)(MAP_T map, T addr, T size, vm_inherit_t inherit); \
4415 \
4416 static results_t * __attribute__((used)) \
4417 test_ ## NAME ## mach_with_allocated_vm_inherit_t(NAME ## mach_inherit_fn fn, const char * testname) { \
4418 MAP_T map SMART_MAP; \
4419 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4420 vm_inherit_trials_t *trials SMART_VM_INHERIT_TRIALS(); \
4421 results_t *results = alloc_results(testname, eSMART_VM_INHERIT_TRIALS, trials->count); \
4422 \
4423 for (unsigned i = 0; i < trials->count; i++) { \
4424 vm_inherit_trial_t trial = trials->list[i]; \
4425 int ret = fn(map, (T)base.addr, (T)base.size, trial.value); \
4426 append_result(results, ret, trial.name); \
4427 } \
4428 return results; \
4429 } \
4430 /* Test a Mach function. */ \
4431 /* Run each trial with an allocated vm region and a vm_prot_t. */ \
4432 typedef kern_return_t (*NAME ## with_start_end_fn)(MAP_T map, T addr, T end); \
4433 \
4434 static results_t * __attribute__((used)) \
4435 test_ ## NAME ## mach_with_allocated_start_end(NAME ## with_start_end_fn fn, const char *testname) \
4436 { \
4437 MAP_T map SMART_MAP; \
4438 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4439 start_size_trials_t *trials SMART_START_SIZE_TRIALS(base.addr); \
4440 results_t *results = alloc_results(testname, eSMART_START_SIZE_TRIALS, base.addr, trials->count); \
4441 \
4442 for (unsigned i = 0; i < trials->count; i++) { \
4443 T start = (T)trials->list[i].start; \
4444 T size = (T)trials->list[i].size; \
4445 kern_return_t ret = fn(map, start, start + size); \
4446 append_result(results, ret, trials->list[i].name); \
4447 } \
4448 return results; \
4449 } \
4450 /* Test a Mach function. */ \
4451 /* Run each trial with an allocated vm region and a vm_prot_t. */ \
4452 typedef kern_return_t (*NAME ## with_tag_fn)(MAP_T map, T addr, T end, vm_tag_t tag); \
4453 \
4454 static results_t * __attribute__((used)) \
4455 test_ ## NAME ## mach_with_allocated_tag(NAME ## with_tag_fn fn, const char *testname) \
4456 { \
4457 MAP_T map SMART_MAP; \
4458 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4459 vm_tag_trials_t *trials SMART_VM_TAG_TRIALS(); \
4460 results_t *results = alloc_results(testname, eSMART_VM_TAG_TRIALS, trials->count); \
4461 \
4462 for (unsigned i = 0; i < trials->count; i++) { \
4463 kern_return_t ret = fn(map, (T)base.addr, (T)(base.addr + base.size), trials->list[i].tag); \
4464 append_result(results, ret, trials->list[i].name); \
4465 } \
4466 return results; \
4467 } \
4468 /* Test a Mach function. */ \
4469 /* Run each trial with an allocated region and a vm_behavior_t. */ \
4470 typedef kern_return_t (*NAME ## mach_behavior_fn)(MAP_T map, T addr, T size, vm_behavior_t behavior); \
4471 \
4472 static results_t * __attribute__((used)) \
4473 test_ ## NAME ## mach_with_allocated_aligned_vm_behavior_t(NAME ## mach_behavior_fn fn, mach_vm_size_t align_mask, const char * testname) { \
4474 MAP_T map SMART_MAP; \
4475 allocation_t base SMART_ALLOCATE_ALIGNED_VM(map, TEST_ALLOC_SIZE, align_mask, VM_PROT_DEFAULT); \
4476 vm_behavior_trials_t *trials SMART_VM_BEHAVIOR_TRIALS(); \
4477 results_t *results = alloc_results(testname, eSMART_VM_BEHAVIOR_TRIALS, trials->count); \
4478 \
4479 for (unsigned i = 0; i < trials->count; i++) { \
4480 vm_behavior_trial_t trial = trials->list[i]; \
4481 int ret = fn(map, (T)base.addr, (T)base.size, trial.value); \
4482 append_result(results, ret, trial.name); \
4483 } \
4484 return results; \
4485 } \
4486 \
4487 static results_t * __attribute__((used)) \
4488 test_ ## NAME ## mach_with_allocated_vm_behavior_t(NAME ## mach_behavior_fn fn, const char * testname) { \
4489 return test_ ## NAME ## mach_with_allocated_aligned_vm_behavior_t(fn, 0, testname); \
4490 } \
4491 \
4492 /* Test a Mach function. */ \
4493 /* Run each trial with an allocated region and a vm_sync_t. */ \
4494 typedef kern_return_t (*NAME ## mach_sync_fn)(MAP_T map, T addr, T size, vm_sync_t behavior); \
4495 \
4496 static results_t * __attribute__((used)) \
4497 test_ ## NAME ## mach_with_allocated_vm_sync_t(NAME ## mach_sync_fn fn, const char * testname) { \
4498 MAP_T map SMART_MAP; \
4499 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4500 vm_sync_trials_t *trials SMART_VM_SYNC_TRIALS(); \
4501 results_t *results = alloc_results(testname, eSMART_VM_SYNC_TRIALS, trials->count); \
4502 \
4503 for (unsigned i = 0; i < trials->count; i++) { \
4504 vm_sync_trial_t trial = trials->list[i]; \
4505 int ret = fn(map, (T)base.addr, (T)base.size, trial.value); \
4506 append_result(results, ret, trial.name); \
4507 } \
4508 return results; \
4509 } \
4510 /* Test a Mach function. */ \
4511 /* Run each trial with an allocated region and a vm_machine_attribute_t. */ \
4512 typedef kern_return_t (*NAME ## mach_attribute_fn)(MAP_T map, T addr, T size, vm_machine_attribute_t attr); \
4513 \
4514 static results_t * __attribute__((used)) \
4515 test_ ## NAME ## mach_with_allocated_vm_machine_attribute_t(NAME ## mach_attribute_fn fn, const char * testname) { \
4516 MAP_T map SMART_MAP; \
4517 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4518 vm_machine_attribute_trials_t *trials SMART_VM_MACHINE_ATTRIBUTE_TRIALS(); \
4519 results_t *results = alloc_results(testname, eSMART_VM_MACHINE_ATTRIBUTE_TRIALS, trials->count); \
4520 \
4521 for (unsigned i = 0; i < trials->count; i++) { \
4522 vm_machine_attribute_trial_t trial = trials->list[i]; \
4523 int ret = fn(map, (T)base.addr, (T)base.size, trial.value); \
4524 append_result(results, ret, trial.name); \
4525 } \
4526 return results; \
4527 } \
4528 /* Test a Mach function. */ \
4529 /* Run each trial with an allocated region and a purgeable trial. */ \
4530 typedef kern_return_t (*NAME ## mach_purgable_fn)(MAP_T map, T addr, vm_purgable_t control, int state); \
4531 \
4532 static results_t * __attribute__((used)) \
4533 test_ ## NAME ## mach_with_allocated_purgeable_and_state(NAME ## mach_purgable_fn fn, const char * testname) { \
4534 MAP_T map SMART_MAP; \
4535 vm_purgeable_and_state_trials_t *trials SMART_VM_PURGEABLE_AND_STATE_TRIALS(); \
4536 results_t *results = alloc_results(testname, eSMART_VM_PURGEABLE_AND_STATE_TRIALS, trials->count); \
4537 \
4538 for (unsigned i = 0; i < trials->count; i++) { \
4539 allocation_t base SMART_ALLOCATE_PURGEABLE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT); \
4540 vm_purgeable_and_state_trial_t trial = trials->list[i]; \
4541 int ret = fn(map, (T)base.addr, trial.control, trial.state); \
4542 append_result(results, ret, trial.name); \
4543 } \
4544 return results; \
4545 }
4546
4547 IMPL(, uint64_t)
4548 #if TEST_OLD_STYLE_MACH
IMPL(old,uint32_t)4549 IMPL(old, uint32_t)
4550 #endif
4551 #undef IMPL
4552
4553 #if KERNEL && CONFIG_MAP_RANGES
4554 /*
4555 * The vm_range_create tests assume we don't ever do range_creates that should succeed
4556 * that take more than 2 * PAGE_SIZE. This enforces that.
4557 */
4558 void
4559 verify_largest_valid_trial_size_fits(start_size_start_size_trial_t trial)
4560 {
4561 if (trial.size > 2 * PAGE_SIZE) {
4562 assert(trial.size > 0xfffffffffffffff);
4563 }
4564 if (trial.second_size > 2 * PAGE_SIZE) {
4565 assert(trial.second_size > 0xfffffffffffffff);
4566 }
4567 }
4568
4569 /* Run each trial with start/size/start/size parameters. */
4570 typedef kern_return_t (mach_with_start_size_start_size_fn)(MAP_T map, mach_vm_address_t addr,
4571 mach_vm_size_t size, mach_vm_address_t second_addr, mach_vm_size_t second_size);
4572
4573 static results_t * __attribute__((used))
test_mach_vm_range_create(mach_with_start_size_start_size_fn fn,const char * testname)4574 test_mach_vm_range_create(mach_with_start_size_start_size_fn fn, const char *testname)
4575 {
4576 start_size_start_size_trials_t *trials SMART_START_SIZE_START_SIZE_TRIALS();
4577 results_t *results = alloc_results(testname, eSMART_START_SIZE_START_SIZE_TRIALS, trials->count);
4578
4579 for (unsigned i = 0; i < trials->count; i++) {
4580 /*
4581 * Allocate and configure a new map for every trial so that the map has no user ranges.
4582 */
4583 MAP_T map SMART_RANGE_MAP;
4584 bool has_ranges = vm_map_range_configure(map, false) == KERN_SUCCESS;
4585 bool has_space_in_ranges = false;
4586
4587 struct mach_vm_range void1 = {
4588 .min_address = map->default_range.max_address,
4589 .max_address = map->data_range.min_address,
4590 };
4591 struct mach_vm_range void2 = {
4592 .min_address = map->data_range.max_address,
4593 .max_address = vm_map_max(map),
4594 };
4595 struct mach_vm_range range_to_test;
4596
4597 /*
4598 * For our tests to succeed for good cases, but also trigger failures
4599 * when overlap occurs we need:
4600 * range1 = {.start = addr}, range2 = {.start = addr + PAGE_SIZE * 2}.
4601 * We also want at least 2 * PAGE_SIZE memory available after the start of range2.
4602 * We additionally start our first range 2 PAGE_SIZE away from the start.
4603 */
4604 if (void1.min_address + (PAGE_SIZE * 6) < void1.max_address) {
4605 range_to_test = void1;
4606 has_space_in_ranges = true;
4607 } else if (void2.min_address + (PAGE_SIZE * 6) < void2.max_address) {
4608 range_to_test = void2;
4609 has_space_in_ranges = true;
4610 }
4611
4612 mach_vm_address_t addr_base = range_to_test.min_address + PAGE_SIZE * 2;
4613 if (has_ranges && has_space_in_ranges) {
4614 mach_vm_address_t second_addr_base = addr_base + PAGE_SIZE * 2;
4615
4616 start_size_start_size_trial_t trial = slide_trial(trials->list[i], addr_base, second_addr_base);
4617
4618 verify_largest_valid_trial_size_fits(trial);
4619
4620 mach_vm_address_t start = trial.start;
4621 mach_vm_size_t size = trial.size;
4622 mach_vm_address_t second_start = trial.second_start;
4623 mach_vm_size_t second_size = trial.second_size;
4624 kern_return_t ret = fn(map, start, size, second_start, second_size);
4625 append_result(results, ret, trials->list[i].name);
4626 } else {
4627 append_result(results, IGNORED, trials->list[i].name);
4628 }
4629 }
4630 return results;
4631 }
4632 #endif /* KERNEL && CONFIG_MAP_RANGES */
4633
4634 // Test a mach allocation function with a start/size
4635 static results_t *
test_mach_allocation_func_with_start_size(kern_return_t (* func)(MAP_T map,mach_vm_address_t * start,mach_vm_size_t size),const char * testname)4636 test_mach_allocation_func_with_start_size(kern_return_t (*func)(MAP_T map, mach_vm_address_t * start, mach_vm_size_t size), const char * testname)
4637 {
4638 MAP_T map SMART_MAP;
4639 start_size_trials_t *trials SMART_START_SIZE_TRIALS(0);
4640 results_t *results = alloc_results(testname, eSMART_START_SIZE_TRIALS, 0, trials->count);
4641
4642 for (unsigned i = 0; i < trials->count; i++) {
4643 unallocation_t dst SMART_UNALLOCATE_VM(map, TEST_ALLOC_SIZE);
4644 start_size_trial_t trial = slide_trial(trials->list[i], dst.addr);
4645 mach_vm_address_t addr = trial.start;
4646 kern_return_t ret = func(map, &addr, trial.size);
4647 if (ret == 0) {
4648 (void)mach_vm_deallocate(map, addr, trial.size);
4649 }
4650 append_result(results, ret, trial.name);
4651 }
4652 return results;
4653 }
4654
4655 // Test a mach allocation function with a vm_map_kernel_flags_t
4656 static results_t *
test_mach_allocation_func_with_vm_map_kernel_flags_t(kern_return_t (* func)(MAP_T map,mach_vm_address_t * start,mach_vm_size_t size,int flags),const char * testname)4657 test_mach_allocation_func_with_vm_map_kernel_flags_t(kern_return_t (*func)(MAP_T map, mach_vm_address_t * start, mach_vm_size_t size, int flags), const char * testname)
4658 {
4659 MAP_T map SMART_MAP;
4660 vm_map_kernel_flags_trials_t * trials SMART_VM_MAP_KERNEL_FLAGS_TRIALS();
4661 results_t *results = alloc_results(testname, eSMART_VM_MAP_KERNEL_FLAGS_TRIALS, trials->count);
4662
4663 for (unsigned i = 0; i < trials->count; i++) {
4664 allocation_t fixed_overwrite_dst SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT);
4665 vm_map_kernel_flags_trial_t trial = trials->list[i];
4666 #if KERNEL
4667 if (is_random_anywhere(trial.flags)) {
4668 // RANDOM_ADDR is likely to fall outside pmap's range
4669 append_result(results, PANIC, trial.name);
4670 continue;
4671 }
4672 #endif
4673 mach_vm_address_t addr = 0;
4674 if (is_fixed_overwrite(trial.flags)) {
4675 // use a pre-existing destination for fixed-overwrite
4676 addr = fixed_overwrite_dst.addr;
4677 }
4678 kern_return_t ret = func(map, &addr, TEST_ALLOC_SIZE, trial.flags);
4679 deallocate_if_not_fixed_overwrite(ret, map, addr, TEST_ALLOC_SIZE, trial.flags);
4680 append_result(results, ret, trial.name);
4681 }
4682 return results;
4683 }
4684
4685 static results_t *
test_mach_with_allocated_vm_map_kernel_flags_t(kern_return_t (* func)(MAP_T map,mach_vm_address_t src,mach_vm_size_t size,int flags),const char * testname)4686 test_mach_with_allocated_vm_map_kernel_flags_t(kern_return_t (*func)(MAP_T map, mach_vm_address_t src, mach_vm_size_t size, int flags), const char * testname)
4687 {
4688 MAP_T map SMART_MAP;
4689
4690 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT);
4691 vm_map_kernel_flags_trials_t * trials SMART_VM_MAP_KERNEL_FLAGS_TRIALS();
4692 results_t *results = alloc_results(testname, eSMART_VM_MAP_KERNEL_FLAGS_TRIALS, trials->count);
4693
4694 for (unsigned i = 0; i < trials->count; i++) {
4695 kern_return_t ret = func(map, base.addr, base.size, trials->list[i].flags);
4696 append_result(results, ret, trials->list[i].name);
4697 }
4698 return results;
4699 }
4700
4701 static results_t *
test_unix_with_allocated_vm_prot_t(int (* func)(void * start,size_t size,int flags),const char * testname)4702 test_unix_with_allocated_vm_prot_t(int (*func)(void * start, size_t size, int flags), const char * testname)
4703 {
4704 MAP_T map CURRENT_MAP;
4705 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT);
4706 vm_prot_trials_t * trials SMART_VM_PROT_TRIALS();
4707 results_t *results = alloc_results(testname, eSMART_VM_PROT_TRIALS, trials->count);
4708
4709 for (unsigned i = 0; i < trials->count; i++) {
4710 int ret = func((void *) base.addr, (size_t) base.size, (int) trials->list[i].prot);
4711 append_result(results, ret, trials->list[i].name);
4712 }
4713 return results;
4714 }
4715
4716 // Test a Unix function.
4717 // Run each trial with an allocated vm region and start/size parameters that reference it.
4718 typedef int (*unix_with_start_size_fn)(void *start, size_t size);
4719
4720 static results_t * __unused
test_unix_with_allocated_aligned_start_size(unix_with_start_size_fn fn,mach_vm_size_t align_mask,const char * testname)4721 test_unix_with_allocated_aligned_start_size(unix_with_start_size_fn fn, mach_vm_size_t align_mask, const char *testname)
4722 {
4723 MAP_T map CURRENT_MAP;
4724 allocation_t base SMART_ALLOCATE_ALIGNED_VM(map, TEST_ALLOC_SIZE, align_mask, VM_PROT_DEFAULT);
4725 start_size_trials_t *trials SMART_START_SIZE_TRIALS(base.addr);
4726 results_t *results = alloc_results(testname, eSMART_START_SIZE_TRIALS, base.addr, trials->count);
4727
4728 for (unsigned i = 0; i < trials->count; i++) {
4729 addr_t start = trials->list[i].start;
4730 addr_t size = trials->list[i].size;
4731 int ret = fn((void*)(uintptr_t)start, (size_t)size);
4732 append_result(results, ret, trials->list[i].name);
4733 }
4734 return results;
4735 }
4736
4737 static results_t * __unused
test_unix_with_allocated_start_size(unix_with_start_size_fn fn,const char * testname)4738 test_unix_with_allocated_start_size(unix_with_start_size_fn fn, const char *testname)
4739 {
4740 return test_unix_with_allocated_aligned_start_size(fn, 0, testname);
4741 }
4742
4743 #if KERNEL
4744 static results_t * __unused
test_kext_unix_with_allocated_start_size(unix_with_start_size_fn fn,const char * testname)4745 test_kext_unix_with_allocated_start_size(unix_with_start_size_fn fn, const char *testname)
4746 {
4747 MAP_T map CURRENT_MAP;
4748 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT);
4749 start_size_trials_t *trials SMART_START_SIZE_TRIALS(base.addr);
4750 results_t *results = alloc_results(testname, eSMART_START_SIZE_TRIALS, base.addr, trials->count);
4751
4752 for (unsigned i = 0; i < trials->count; i++) {
4753 addr_t start = trials->list[i].start;
4754 addr_t size = trials->list[i].size;
4755 int ret = fn((void*)(uintptr_t)start, (size_t)size);
4756 append_result(results, ret, trials->list[i].name);
4757 }
4758 return results;
4759 }
4760
4761 /* Test a Kext function requiring memory allocated with a specific tag. */
4762 /* Run each trial with an allocated vm region and an addr parameter that reference it. */
4763
4764 static results_t * __attribute__((used))
test_kext_tagged_with_allocated_addr(kern_return_t (* func)(MAP_T map,mach_vm_address_t addr),const char * testname)4765 test_kext_tagged_with_allocated_addr(kern_return_t (*func)(MAP_T map, mach_vm_address_t addr), const char *testname)
4766 {
4767 MAP_T map CURRENT_MAP;
4768 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT);
4769 addr_trials_t *trials SMART_ADDR_TRIALS(base.addr);
4770 results_t *results = alloc_results(testname, eSMART_ADDR_TRIALS, base.addr, trials->count);
4771
4772 for (unsigned i = 0; i < trials->count; i++) {
4773 mach_vm_address_t addr = (mach_vm_address_t)trials->list[i].addr;
4774 kern_return_t ret = func(map, addr);
4775 append_result(results, ret, trials->list[i].name);
4776 }
4777 return results;
4778 }
4779 #endif /* KERNEL */
4780
4781 static results_t * __attribute__((used))
test_with_int64(kern_return_t (* func)(int64_t),const char * testname)4782 test_with_int64(kern_return_t (*func)(int64_t), const char *testname)
4783 {
4784 size_trials_t *trials SMART_SIZE_TRIALS();
4785 results_t *results = alloc_results(testname, eSMART_SIZE_TRIALS, trials->count);
4786
4787 for (unsigned i = 0; i < trials->count; i++) {
4788 int64_t val = (int64_t)trials->list[i].size;
4789 kern_return_t ret = func(val);
4790 append_result(results, ret, trials->list[i].name);
4791 }
4792 return results;
4793 }
4794
4795
4796 #if !KERNEL
4797
4798 // For deallocators like munmap and vm_deallocate.
4799 // Return a non-zero error code if we should avoid performing this trial.
4800 // Call this BEFORE sliding the trial to a non-zero base address.
4801 extern
4802 kern_return_t
4803 short_circuit_deallocator(MAP_T map, start_size_trial_t trial);
4804
4805 // implemented in vm_parameter_validation.c
4806
4807 #else /* KERNEL */
4808
4809 static inline
4810 kern_return_t
short_circuit_deallocator(MAP_T map __unused,start_size_trial_t trial __unused)4811 short_circuit_deallocator(MAP_T map __unused, start_size_trial_t trial __unused)
4812 {
4813 // Kernel tests run with an empty vm_map so we're free to deallocate whatever we want.
4814 return 0;
4815 }
4816
4817 #endif /* KERNEL */
4818
4819
4820 // Test mach_vm_deallocate or munmap.
4821 // Similar to test_mach_with_allocated_addr_size, but mach_vm_deallocate is destructive
4822 // so we can't test all values and we need to re-allocate the vm allocation each time.
4823 static results_t *
test_deallocator(kern_return_t (* func)(MAP_T map,mach_vm_address_t start,mach_vm_size_t size),const char * testname)4824 test_deallocator(kern_return_t (*func)(MAP_T map, mach_vm_address_t start, mach_vm_size_t size), const char *testname)
4825 {
4826 MAP_T map SMART_MAP;
4827
4828 // allocate trials relative to address zero
4829 // later we slide them to each allocation's address
4830 start_size_trials_t *trials SMART_START_SIZE_TRIALS(0);
4831
4832 results_t *results = alloc_results(testname, eSMART_START_SIZE_TRIALS, 0, trials->count);
4833
4834 for (unsigned i = 0; i < trials->count; i++) {
4835 start_size_trial_t trial = trials->list[i];
4836 allocation_t base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT);
4837
4838 // Avoid trials that might deallocate wildly.
4839 // Check this BEFORE sliding the trial.
4840 kern_return_t ret = short_circuit_deallocator(map, trial);
4841 if (ret == 0) {
4842 // Adjust start and/or size, if that value includes the allocated address
4843 trial = slide_trial(trial, base.addr);
4844
4845 ret = func(map, trial.start, trial.size);
4846 if (ret == 0) {
4847 // Deallocation succeeded. Don't deallocate again.
4848 set_already_deallocated(&base);
4849 }
4850 }
4851 append_result(results, ret, trial.name);
4852 }
4853
4854 return results;
4855 }
4856
4857 static results_t *
test_allocated_src_unallocated_dst_size(kern_return_t (* func)(MAP_T map,mach_vm_address_t src,mach_vm_size_t size,mach_vm_address_t dst),const char * testname)4858 test_allocated_src_unallocated_dst_size(kern_return_t (*func)(MAP_T map, mach_vm_address_t src, mach_vm_size_t size, mach_vm_address_t dst), const char * testname)
4859 {
4860 MAP_T map SMART_MAP;
4861 allocation_t src_base SMART_ALLOCATE_VM(map, TEST_ALLOC_SIZE, VM_PROT_DEFAULT);
4862 src_dst_size_trials_t * trials SMART_SRC_DST_SIZE_TRIALS();
4863 results_t *results = alloc_results(testname, eSMART_SRC_DST_SIZE_TRIALS, trials->count);
4864
4865 for (unsigned i = 0; i < trials->count; i++) {
4866 src_dst_size_trial_t trial = trials->list[i];
4867 unallocation_t dst_base SMART_UNALLOCATE_VM(map, TEST_ALLOC_SIZE);
4868 trial = slide_trial_src(trial, src_base.addr);
4869 trial = slide_trial_dst(trial, dst_base.addr);
4870 int ret = func(map, trial.src, trial.size, trial.dst);
4871 // func deallocates its own allocation
4872 append_result(results, ret, trial.name);
4873 }
4874 return results;
4875 }
4876
4877
4878 static inline void
check_mach_vm_allocate_outparam_changes(kern_return_t * kr,mach_vm_address_t addr,mach_vm_size_t size,mach_vm_address_t saved_start,int flags,MAP_T map)4879 check_mach_vm_allocate_outparam_changes(kern_return_t * kr, mach_vm_address_t addr, mach_vm_size_t size,
4880 mach_vm_address_t saved_start, int flags, MAP_T map)
4881 {
4882 if (*kr == KERN_SUCCESS) {
4883 if (size == 0) {
4884 if (addr != 0) {
4885 *kr = OUT_PARAM_BAD;
4886 }
4887 } else {
4888 if (is_fixed(flags)) {
4889 if (addr != trunc_down_map(map, saved_start)) {
4890 *kr = OUT_PARAM_BAD;
4891 }
4892 }
4893 }
4894 } else {
4895 if (saved_start != addr) {
4896 *kr = OUT_PARAM_BAD;
4897 }
4898 }
4899 }
4900
4901 static kern_return_t
call_mach_vm_behavior_set__start_size__default(MAP_T map,mach_vm_address_t start,mach_vm_size_t size)4902 call_mach_vm_behavior_set__start_size__default(MAP_T map, mach_vm_address_t start, mach_vm_size_t size)
4903 {
4904 kern_return_t kr = mach_vm_behavior_set(map, start, size, VM_BEHAVIOR_DEFAULT);
4905 return kr;
4906 }
4907
4908 /*
4909 * VM_BEHAVIOR_CAN_REUSE is additionally tested as it uses slightly different page rounding semantics
4910 */
4911 static kern_return_t
call_mach_vm_behavior_set__start_size__can_reuse(MAP_T map,mach_vm_address_t start,mach_vm_size_t size)4912 call_mach_vm_behavior_set__start_size__can_reuse(MAP_T map, mach_vm_address_t start, mach_vm_size_t size)
4913 {
4914 kern_return_t kr = mach_vm_behavior_set(map, start, size, VM_BEHAVIOR_CAN_REUSE);
4915 return kr;
4916 }
4917
4918 static kern_return_t
call_mach_vm_behavior_set__vm_behavior(MAP_T map,mach_vm_address_t start,mach_vm_size_t size,vm_behavior_t behavior)4919 call_mach_vm_behavior_set__vm_behavior(MAP_T map, mach_vm_address_t start, mach_vm_size_t size, vm_behavior_t behavior)
4920 {
4921 kern_return_t kr = mach_vm_behavior_set(map, start, size, behavior);
4922 return kr;
4923 }
4924
4925 static void
check_mach_vm_purgable_control_outparam_changes(kern_return_t * kr,int state,int saved_state,int control)4926 check_mach_vm_purgable_control_outparam_changes(kern_return_t * kr, int state, int saved_state, int control)
4927 {
4928 if (*kr == KERN_SUCCESS) {
4929 if (control == VM_PURGABLE_PURGE_ALL || VM_PURGABLE_SET_STATE) {
4930 if (state != saved_state) {
4931 *kr = OUT_PARAM_BAD;
4932 }
4933 }
4934 if (control == VM_PURGABLE_GET_STATE) {
4935 /*
4936 * The default state is VM_PURGABLE_NONVOLATILE for a newly created region
4937 */
4938 if (state != VM_PURGABLE_NONVOLATILE) {
4939 *kr = OUT_PARAM_BAD;
4940 }
4941 }
4942 } else {
4943 if (state != saved_state) {
4944 *kr = OUT_PARAM_BAD;
4945 }
4946 }
4947 }
4948
4949 static void
check_mach_vm_region_outparam_changes(kern_return_t * kr,MAP_T map,void * info,void * saved_info,size_t info_size,mach_port_t object_name,mach_port_t saved_object_name,mach_vm_address_t addr,mach_vm_address_t saved_addr,mach_vm_size_t size,mach_vm_size_t saved_size)4950 check_mach_vm_region_outparam_changes(kern_return_t * kr, MAP_T map, void * info, void * saved_info, size_t info_size,
4951 mach_port_t object_name, mach_port_t saved_object_name, mach_vm_address_t addr, mach_vm_address_t saved_addr,
4952 mach_vm_size_t size, mach_vm_size_t saved_size)
4953 {
4954 if (*kr == KERN_SUCCESS) {
4955 if (object_name != 0) {
4956 *kr = OUT_PARAM_BAD;
4957 }
4958 if (addr < trunc_down_map(map, saved_addr)) {
4959 *kr = OUT_PARAM_BAD;
4960 }
4961 if (size == saved_size) {
4962 *kr = OUT_PARAM_BAD;
4963 }
4964 if (memcmp(info, saved_info, info_size) == 0) {
4965 *kr = OUT_PARAM_BAD;
4966 }
4967 } else {
4968 if (object_name != saved_object_name || addr != saved_addr || size != saved_size || memcmp(info, saved_info, info_size) != 0) {
4969 *kr = OUT_PARAM_BAD;
4970 }
4971 }
4972 }
4973
4974 static int
call_mach_vm_region(MAP_T map,mach_vm_address_t addr)4975 call_mach_vm_region(MAP_T map, mach_vm_address_t addr)
4976 {
4977 mach_vm_address_t addr_cpy = addr;
4978 mach_vm_size_t size_out = UNLIKELY_INITIAL_SIZE;
4979 mach_vm_size_t saved_size = size_out;
4980 mach_port_t object_name_out = UNLIKELY_INITIAL_MACH_PORT;
4981 mach_port_t saved_name = object_name_out;
4982 vm_region_basic_info_data_64_t info;
4983 info.inheritance = INVALID_INHERIT;
4984 vm_region_basic_info_data_64_t saved_info = info;
4985
4986 mach_msg_type_number_t infoCnt = VM_REGION_BASIC_INFO_COUNT_64;
4987 kern_return_t kr = mach_vm_region(map, &addr_cpy, &size_out, VM_REGION_BASIC_INFO_64, (vm_region_info_t)&info,
4988 &infoCnt, &object_name_out);
4989 check_mach_vm_region_outparam_changes(&kr, map, &info, &saved_info, sizeof(info), object_name_out, saved_name, addr_cpy, addr, size_out, saved_size);
4990
4991 return kr;
4992 }
4993
4994 #if TEST_OLD_STYLE_MACH || KERNEL
4995 static int
call_vm_region(MAP_T map,vm_address_t addr)4996 call_vm_region(MAP_T map, vm_address_t addr)
4997 {
4998 vm_address_t addr_cpy = addr;
4999 vm_size_t size_out = UNLIKELY_INITIAL_SIZE;
5000 vm_size_t saved_size = size_out;
5001 mach_port_t object_name_out = UNLIKELY_INITIAL_MACH_PORT;
5002 mach_port_t saved_name = object_name_out;
5003 vm_region_basic_info_data_64_t info;
5004 info.inheritance = INVALID_INHERIT;
5005 vm_region_basic_info_data_64_t saved_info = info;
5006
5007 mach_msg_type_number_t infoCnt = VM_REGION_BASIC_INFO_COUNT_64;
5008 kern_return_t kr = vm_region(map, &addr_cpy, &size_out, VM_REGION_BASIC_INFO_64, (vm_region_info_t)&info,
5009 &infoCnt, &object_name_out);
5010 check_mach_vm_region_outparam_changes(&kr, map, &info, &saved_info, sizeof(info), object_name_out, saved_name, addr_cpy, addr, size_out, saved_size);
5011
5012 return kr;
5013 }
5014 #endif /* TEST_OLD_STYLE_MACH || KERNEL */
5015
5016 static void
check_mach_vm_page_info_outparam_changes(kern_return_t * kr,vm_page_info_basic_data_t info,vm_page_info_basic_data_t saved_info,mach_msg_type_number_t count,mach_msg_type_number_t saved_count)5017 check_mach_vm_page_info_outparam_changes(kern_return_t * kr, vm_page_info_basic_data_t info, vm_page_info_basic_data_t saved_info,
5018 mach_msg_type_number_t count, mach_msg_type_number_t saved_count)
5019 {
5020 if (*kr == KERN_SUCCESS) {
5021 if (memcmp(&info, &saved_info, sizeof(vm_page_info_basic_data_t)) == 0) {
5022 *kr = OUT_PARAM_BAD;
5023 }
5024 } else {
5025 if (memcmp(&info, &saved_info, sizeof(vm_page_info_basic_data_t)) != 0) {
5026 *kr = OUT_PARAM_BAD;
5027 }
5028 }
5029 if (count != saved_count) {
5030 *kr = OUT_PARAM_BAD;
5031 }
5032 }
5033
5034 #pragma clang diagnostic pop
5035
5036 // VM_PARAMETER_VALIDATION_H
5037 #endif
5038