xref: /xnu-11215/libkern/zlib/trees.c (revision 5c2921b0)
1 /*
2  * Copyright (c) 2008-2016 Apple Inc. All rights reserved.
3  *
4  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5  *
6  * This file contains Original Code and/or Modifications of Original Code
7  * as defined in and that are subject to the Apple Public Source License
8  * Version 2.0 (the 'License'). You may not use this file except in
9  * compliance with the License. The rights granted to you under the License
10  * may not be used to create, or enable the creation or redistribution of,
11  * unlawful or unlicensed copies of an Apple operating system, or to
12  * circumvent, violate, or enable the circumvention or violation of, any
13  * terms of an Apple operating system software license agreement.
14  *
15  * Please obtain a copy of the License at
16  * http://www.opensource.apple.com/apsl/ and read it before using this file.
17  *
18  * The Original Code and all software distributed under the License are
19  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23  * Please see the License for the specific language governing rights and
24  * limitations under the License.
25  *
26  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27  */
28 /* trees.c -- output deflated data using Huffman coding
29  * Copyright (C) 1995-2005 Jean-loup Gailly
30  * For conditions of distribution and use, see copyright notice in zlib.h
31  */
32 
33 /*
34  *  ALGORITHM
35  *
36  *      The "deflation" process uses several Huffman trees. The more
37  *      common source values are represented by shorter bit sequences.
38  *
39  *      Each code tree is stored in a compressed form which is itself
40  * a Huffman encoding of the lengths of all the code strings (in
41  * ascending order by source values).  The actual code strings are
42  * reconstructed from the lengths in the inflate process, as described
43  * in the deflate specification.
44  *
45  *  REFERENCES
46  *
47  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
48  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
49  *
50  *      Storer, James A.
51  *          Data Compression:  Methods and Theory, pp. 49-50.
52  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
53  *
54  *      Sedgewick, R.
55  *          Algorithms, p290.
56  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
57  */
58 
59 /* @(#) $Id$ */
60 
61 /* #define GEN_TREES_H */
62 
63 #include "deflate.h"
64 
65 #ifdef DEBUG
66 #  include <ctype.h>
67 #endif
68 
69 /* ===========================================================================
70  * Constants
71  */
72 
73 #define MAX_BL_BITS 7
74 /* Bit length codes must not exceed MAX_BL_BITS bits */
75 
76 #define END_BLOCK 256
77 /* end of block literal code */
78 
79 #define REP_3_6      16
80 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
81 
82 #define REPZ_3_10    17
83 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
84 
85 #define REPZ_11_138  18
86 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
87 
88 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
89    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
90 
91 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
92    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
93 
94 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
95    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
96 
97 local const uch bl_order[BL_CODES]
98    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
99 /* The lengths of the bit length codes are sent in order of decreasing
100  * probability, to avoid transmitting the lengths for unused bit length codes.
101  */
102 
103 #define Buf_size (8 * 2*sizeof(char))
104 /* Number of bits used within bi_buf. (bi_buf might be implemented on
105  * more than 16 bits on some systems.)
106  */
107 
108 /* ===========================================================================
109  * Local data. These are initialized only once.
110  */
111 
112 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
113 
114 #if defined(GEN_TREES_H) || !defined(STDC)
115 /* non ANSI compilers may not accept trees.h */
116 
117 local ct_data static_ltree[L_CODES+2];
118 /* The static literal tree. Since the bit lengths are imposed, there is no
119  * need for the L_CODES extra codes used during heap construction. However
120  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
121  * below).
122  */
123 
124 local ct_data static_dtree[D_CODES];
125 /* The static distance tree. (Actually a trivial tree since all codes use
126  * 5 bits.)
127  */
128 
129 uch _dist_code[DIST_CODE_LEN];
130 /* Distance codes. The first 256 values correspond to the distances
131  * 3 .. 258, the last 256 values correspond to the top 8 bits of
132  * the 15 bit distances.
133  */
134 
135 uch _length_code[MAX_MATCH-MIN_MATCH+1];
136 /* length code for each normalized match length (0 == MIN_MATCH) */
137 
138 local int base_length[LENGTH_CODES];
139 /* First normalized length for each code (0 = MIN_MATCH) */
140 
141 local int base_dist[D_CODES];
142 /* First normalized distance for each code (0 = distance of 1) */
143 
144 #else
145 #  include "trees.h"
146 #endif /* GEN_TREES_H */
147 
148 struct static_tree_desc_s {
149     const ct_data *static_tree;  /* static tree or NULL */
150     const intf *extra_bits;      /* extra bits for each code or NULL */
151     int     extra_base;          /* base index for extra_bits */
152     int     elems;               /* max number of elements in the tree */
153     int     max_length;          /* max bit length for the codes */
154 };
155 
156 local static_tree_desc  static_l_desc =
157 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
158 
159 local static_tree_desc  static_d_desc =
160 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
161 
162 local static_tree_desc  static_bl_desc =
163 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
164 
165 /* ===========================================================================
166  * Local (static) routines in this file.
167  */
168 
169 local void tr_static_init OF((void));
170 local void init_block     OF((deflate_state *s));
171 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
172 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
173 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
174 local void build_tree     OF((deflate_state *s, tree_desc *desc));
175 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
176 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
177 local int  build_bl_tree  OF((deflate_state *s));
178 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
179                               int blcodes));
180 local void compress_block OF((deflate_state *s, ct_data *ltree,
181                               ct_data *dtree));
182 local void set_data_type  OF((deflate_state *s));
183 local unsigned bi_reverse OF((unsigned value, int length));
184 local void bi_windup      OF((deflate_state *s));
185 local void bi_flush       OF((deflate_state *s));
186 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
187                               int header));
188 
189 #ifdef GEN_TREES_H
190 local void gen_trees_header OF((void));
191 #endif
192 
193 #ifndef DEBUG
194 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
195    /* Send a code of the given tree. c and tree must not have side effects */
196 
197 #else /* DEBUG */
198 #  define send_code(s, c, tree) \
199      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
200        send_bits(s, tree[c].Code, tree[c].Len); }
201 #endif
202 
203 /* ===========================================================================
204  * Output a short LSB first on the stream.
205  * IN assertion: there is enough room in pendingBuf.
206  */
207 #define put_short(s, w) { \
208     put_byte(s, (uch)((w) & 0xff)); \
209     put_byte(s, (uch)((ush)(w) >> 8)); \
210 }
211 
212 /* ===========================================================================
213  * Send a value on a given number of bits.
214  * IN assertion: length <= 16 and value fits in length bits.
215  */
216 #ifdef DEBUG
217 local void send_bits      OF((deflate_state *s, int value, int length));
218 
219 /*
220  * @param value value to send
221  * @param length number of bits
222  */
223 local void
send_bits(deflate_state * s,int value,int length)224 send_bits(deflate_state *s, int value, int length)
225 {
226     Tracevv((stderr," l %2d v %4x ", length, value));
227     Assert(length > 0 && length <= 15, "invalid length");
228     s->bits_sent += (ulg)length;
229 
230     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
231      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
232      * unused bits in value.
233      */
234     if (s->bi_valid > (int)Buf_size - length) {
235         s->bi_buf |= (value << s->bi_valid);
236         put_short(s, s->bi_buf);
237         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
238         s->bi_valid += length - Buf_size;
239     } else {
240         s->bi_buf |= value << s->bi_valid;
241         s->bi_valid += length;
242     }
243 }
244 #else /* !DEBUG */
245 
246 #define send_bits(s, value, length) \
247 { int len = length;\
248   if (s->bi_valid > (int)Buf_size - len) {\
249     int val = value;\
250     s->bi_buf |= (val << s->bi_valid);\
251     put_short(s, s->bi_buf);\
252     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
253     s->bi_valid += len - Buf_size;\
254   } else {\
255     s->bi_buf |= (value) << s->bi_valid;\
256     s->bi_valid += len;\
257   }\
258 }
259 #endif /* DEBUG */
260 
261 
262 /* the arguments must not have side effects */
263 
264 /* ===========================================================================
265  * Initialize the various 'constant' tables.
266  */
267 local void
tr_static_init(void)268 tr_static_init(void)
269 {
270 #if defined(GEN_TREES_H) || !defined(STDC)
271     static int static_init_done = 0;
272     int n;        /* iterates over tree elements */
273     int bits;     /* bit counter */
274     int length;   /* length value */
275     int code;     /* code value */
276     int dist;     /* distance index */
277     ush bl_count[MAX_BITS+1];
278     /* number of codes at each bit length for an optimal tree */
279 
280     if (static_init_done) return;
281 
282     /* For some embedded targets, global variables are not initialized: */
283     static_l_desc.static_tree = static_ltree;
284     static_l_desc.extra_bits = extra_lbits;
285     static_d_desc.static_tree = static_dtree;
286     static_d_desc.extra_bits = extra_dbits;
287     static_bl_desc.extra_bits = extra_blbits;
288 
289     /* Initialize the mapping length (0..255) -> length code (0..28) */
290     length = 0;
291     for (code = 0; code < LENGTH_CODES-1; code++) {
292         base_length[code] = length;
293         for (n = 0; n < (1<<extra_lbits[code]); n++) {
294             _length_code[length++] = (uch)code;
295         }
296     }
297     Assert (length == 256, "tr_static_init: length != 256");
298     /* Note that the length 255 (match length 258) can be represented
299      * in two different ways: code 284 + 5 bits or code 285, so we
300      * overwrite length_code[255] to use the best encoding:
301      */
302     _length_code[length-1] = (uch)code;
303 
304     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
305     dist = 0;
306     for (code = 0 ; code < 16; code++) {
307         base_dist[code] = dist;
308         for (n = 0; n < (1<<extra_dbits[code]); n++) {
309             _dist_code[dist++] = (uch)code;
310         }
311     }
312     Assert (dist == 256, "tr_static_init: dist != 256");
313     dist >>= 7; /* from now on, all distances are divided by 128 */
314     for ( ; code < D_CODES; code++) {
315         base_dist[code] = dist << 7;
316         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
317             _dist_code[256 + dist++] = (uch)code;
318         }
319     }
320     Assert (dist == 256, "tr_static_init: 256+dist != 512");
321 
322     /* Construct the codes of the static literal tree */
323     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
324     n = 0;
325     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
326     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
327     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
328     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
329     /* Codes 286 and 287 do not exist, but we must include them in the
330      * tree construction to get a canonical Huffman tree (longest code
331      * all ones)
332      */
333     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
334 
335     /* The static distance tree is trivial: */
336     for (n = 0; n < D_CODES; n++) {
337         static_dtree[n].Len = 5;
338         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
339     }
340     static_init_done = 1;
341 
342 #  ifdef GEN_TREES_H
343     gen_trees_header();
344 #  endif
345 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
346 }
347 
348 /* ===========================================================================
349  * Genererate the file trees.h describing the static trees.
350  */
351 #ifdef GEN_TREES_H
352 #  ifndef DEBUG
353 #    include <stdio.h>
354 #  endif
355 
356 #  define SEPARATOR(i, last, width) \
357       ((i) == (last)? "\n};\n\n" :    \
358        ((i) % (width) == (width)-1 ? ",\n" : ", "))
359 
360 void
gen_trees_header(void)361 gen_trees_header(void)
362 {
363     FILE *header = fopen("trees.h", "w");
364     int i;
365 
366     Assert (header != NULL, "Can't open trees.h");
367     fprintf(header,
368             "/* header created automatically with -DGEN_TREES_H */\n\n");
369 
370     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
371     for (i = 0; i < L_CODES+2; i++) {
372         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
373                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
374     }
375 
376     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
377     for (i = 0; i < D_CODES; i++) {
378         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
379                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
380     }
381 
382     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
383     for (i = 0; i < DIST_CODE_LEN; i++) {
384         fprintf(header, "%2u%s", _dist_code[i],
385                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
386     }
387 
388     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
389     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
390         fprintf(header, "%2u%s", _length_code[i],
391                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
392     }
393 
394     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
395     for (i = 0; i < LENGTH_CODES; i++) {
396         fprintf(header, "%1u%s", base_length[i],
397                 SEPARATOR(i, LENGTH_CODES-1, 20));
398     }
399 
400     fprintf(header, "local const int base_dist[D_CODES] = {\n");
401     for (i = 0; i < D_CODES; i++) {
402         fprintf(header, "%5u%s", base_dist[i],
403                 SEPARATOR(i, D_CODES-1, 10));
404     }
405 
406     fclose(header);
407 }
408 #endif /* GEN_TREES_H */
409 
410 /* ===========================================================================
411  * Initialize the tree data structures for a new zlib stream.
412  */
413 void
_tr_init(deflate_state * s)414 _tr_init(deflate_state *s)
415 {
416     tr_static_init();
417 
418     s->l_desc.dyn_tree = s->dyn_ltree;
419     s->l_desc.stat_desc = &static_l_desc;
420 
421     s->d_desc.dyn_tree = s->dyn_dtree;
422     s->d_desc.stat_desc = &static_d_desc;
423 
424     s->bl_desc.dyn_tree = s->bl_tree;
425     s->bl_desc.stat_desc = &static_bl_desc;
426 
427     s->bi_buf = 0;
428     s->bi_valid = 0;
429     s->last_eob_len = 8; /* enough lookahead for inflate */
430 #ifdef DEBUG
431     s->compressed_len = 0L;
432     s->bits_sent = 0L;
433 #endif
434 
435     /* Initialize the first block of the first file: */
436     init_block(s);
437 }
438 
439 /* ===========================================================================
440  * Initialize a new block.
441  */
442 local void
init_block(deflate_state * s)443 init_block(deflate_state *s)
444 {
445     int n; /* iterates over tree elements */
446 
447     /* Initialize the trees. */
448     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
449     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
450     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
451 
452     s->dyn_ltree[END_BLOCK].Freq = 1;
453     s->opt_len = s->static_len = 0L;
454     s->last_lit = s->matches = 0;
455 }
456 
457 #define SMALLEST 1
458 /* Index within the heap array of least frequent node in the Huffman tree */
459 
460 
461 /* ===========================================================================
462  * Remove the smallest element from the heap and recreate the heap with
463  * one less element. Updates heap and heap_len.
464  */
465 #define pqremove(s, tree, top) \
466 {\
467     top = s->heap[SMALLEST]; \
468     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
469     pqdownheap(s, tree, SMALLEST); \
470 }
471 
472 /* ===========================================================================
473  * Compares to subtrees, using the tree depth as tie breaker when
474  * the subtrees have equal frequency. This minimizes the worst case length.
475  */
476 #define smaller(tree, n, m, depth) \
477    (tree[n].Freq < tree[m].Freq || \
478    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
479 
480 /* ===========================================================================
481  * Restore the heap property by moving down the tree starting at node k,
482  * exchanging a node with the smallest of its two sons if necessary, stopping
483  * when the heap property is re-established (each father smaller than its
484  * two sons).
485  *
486  * @param tree the tree to restore
487  * @param k node to move down
488  */
489 local void
pqdownheap(deflate_state * s,ct_data * tree,int k)490 pqdownheap(deflate_state *s, ct_data *tree, int k)
491 {
492     int v = s->heap[k];
493     int j = k << 1;  /* left son of k */
494     while (j <= s->heap_len) {
495         /* Set j to the smallest of the two sons: */
496         if (j < s->heap_len &&
497             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
498             j++;
499         }
500         /* Exit if v is smaller than both sons */
501         if (smaller(tree, v, s->heap[j], s->depth)) break;
502 
503         /* Exchange v with the smallest son */
504         s->heap[k] = s->heap[j];  k = j;
505 
506         /* And continue down the tree, setting j to the left son of k */
507         j <<= 1;
508     }
509     s->heap[k] = v;
510 }
511 
512 /* ===========================================================================
513  * Compute the optimal bit lengths for a tree and update the total bit length
514  * for the current block.
515  * IN assertion: the fields freq and dad are set, heap[heap_max] and
516  *    above are the tree nodes sorted by increasing frequency.
517  * OUT assertions: the field len is set to the optimal bit length, the
518  *     array bl_count contains the frequencies for each bit length.
519  *     The length opt_len is updated; static_len is also updated if stree is
520  *     not null.
521  * @param desc the tree descriptor
522  */
523 local void
gen_bitlen(deflate_state * s,tree_desc * desc)524 gen_bitlen(deflate_state *s, tree_desc *desc)
525 {
526     ct_data *tree        = desc->dyn_tree;
527     int max_code         = desc->max_code;
528     const ct_data *stree = desc->stat_desc->static_tree;
529     const intf *extra    = desc->stat_desc->extra_bits;
530     int base             = desc->stat_desc->extra_base;
531     int max_length       = desc->stat_desc->max_length;
532     int h;              /* heap index */
533     int n, m;           /* iterate over the tree elements */
534     int bits;           /* bit length */
535     int xbits;          /* extra bits */
536     ush f;              /* frequency */
537     int overflow = 0;   /* number of elements with bit length too large */
538 
539     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
540 
541     /* In a first pass, compute the optimal bit lengths (which may
542      * overflow in the case of the bit length tree).
543      */
544     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
545 
546     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
547         n = s->heap[h];
548         bits = tree[tree[n].Dad].Len + 1;
549         if (bits > max_length) {
550 	    bits = max_length;
551 	    overflow++;
552 	}
553         tree[n].Len = (ush)bits;
554         /* We overwrite tree[n].Dad which is no longer needed */
555 
556         if (n > max_code) continue; /* not a leaf node */
557 
558         s->bl_count[bits]++;
559         xbits = 0;
560         if (n >= base) xbits = extra[n-base];
561         f = tree[n].Freq;
562         s->opt_len += (ulg)f * (bits + xbits);
563         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
564     }
565     if (overflow == 0) return;
566 
567     Trace((stderr,"\nbit length overflow\n"));
568     /* This happens for example on obj2 and pic of the Calgary corpus */
569 
570     /* Find the first bit length which could increase: */
571     do {
572         bits = max_length-1;
573         while (s->bl_count[bits] == 0) bits--;
574         s->bl_count[bits]--;      /* move one leaf down the tree */
575         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
576         s->bl_count[max_length]--;
577         /* The brother of the overflow item also moves one step up,
578          * but this does not affect bl_count[max_length]
579          */
580         overflow -= 2;
581     } while (overflow > 0);
582 
583     /* Now recompute all bit lengths, scanning in increasing frequency.
584      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
585      * lengths instead of fixing only the wrong ones. This idea is taken
586      * from 'ar' written by Haruhiko Okumura.)
587      */
588     for (bits = max_length; bits != 0; bits--) {
589         n = s->bl_count[bits];
590         while (n != 0) {
591             m = s->heap[--h];
592             if (m > max_code) continue;
593             if ((unsigned) tree[m].Len != (unsigned) bits) {
594                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
595                 s->opt_len += ((long)bits - (long)tree[m].Len)
596                               *(long)tree[m].Freq;
597                 tree[m].Len = (ush)bits;
598             }
599             n--;
600         }
601     }
602 }
603 
604 /* ===========================================================================
605  * Generate the codes for a given tree and bit counts (which need not be
606  * optimal).
607  * IN assertion: the array bl_count contains the bit length statistics for
608  * the given tree and the field len is set for all tree elements.
609  * OUT assertion: the field code is set for all tree elements of non
610  *     zero code length.
611  *
612  * @param tree the tree to decorate
613  * @param max_count largest code with non zero frequency
614  * @param bl_count number of codes at each bit length
615  */
616 local void
gen_codes(ct_data * tree,int max_code,ushf * bl_count)617 gen_codes(ct_data *tree, int max_code, ushf *bl_count)
618 {
619     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
620     ush code = 0;              /* running code value */
621     int bits;                  /* bit index */
622     int n;                     /* code index */
623 
624     /* The distribution counts are first used to generate the code values
625      * without bit reversal.
626      */
627     for (bits = 1; bits <= MAX_BITS; bits++) {
628         next_code[bits] = code = (ush)((code + bl_count[bits-1]) << 1);
629     }
630     /* Check that the bit counts in bl_count are consistent. The last code
631      * must be all ones.
632      */
633     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
634             "inconsistent bit counts");
635     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
636 
637     for (n = 0;  n <= max_code; n++) {
638         int len = tree[n].Len;
639         if (len == 0) continue;
640         /* Now reverse the bits */
641         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
642 
643         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
644              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
645     }
646 }
647 
648 /* ===========================================================================
649  * Construct one Huffman tree and assigns the code bit strings and lengths.
650  * Update the total bit length for the current block.
651  * IN assertion: the field freq is set for all tree elements.
652  * OUT assertions: the fields len and code are set to the optimal bit length
653  *     and corresponding code. The length opt_len is updated; static_len is
654  *     also updated if stree is not null. The field max_code is set.
655  *
656  * @param desc the tree descriptor
657  */
658 local void
build_tree(deflate_state * s,tree_desc * desc)659 build_tree(deflate_state *s, tree_desc *desc)
660 {
661     ct_data *tree         = desc->dyn_tree;
662     const ct_data *stree  = desc->stat_desc->static_tree;
663     int elems             = desc->stat_desc->elems;
664     int n, m;          /* iterate over heap elements */
665     int max_code = -1; /* largest code with non zero frequency */
666     int node;          /* new node being created */
667 
668     /* Construct the initial heap, with least frequent element in
669      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
670      * heap[0] is not used.
671      */
672     s->heap_len = 0;
673     s->heap_max = HEAP_SIZE;
674 
675     for (n = 0; n < elems; n++) {
676         if (tree[n].Freq != 0) {
677             s->heap[++(s->heap_len)] = max_code = n;
678             s->depth[n] = 0;
679         } else {
680             tree[n].Len = 0;
681         }
682     }
683 
684     /* The pkzip format requires that at least one distance code exists,
685      * and that at least one bit should be sent even if there is only one
686      * possible code. So to avoid special checks later on we force at least
687      * two codes of non zero frequency.
688      */
689     while (s->heap_len < 2) {
690         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
691         tree[node].Freq = 1;
692         s->depth[node] = 0;
693         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
694         /* node is 0 or 1 so it does not have extra bits */
695     }
696     desc->max_code = max_code;
697 
698     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
699      * establish sub-heaps of increasing lengths:
700      */
701     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
702 
703     /* Construct the Huffman tree by repeatedly combining the least two
704      * frequent nodes.
705      */
706     node = elems;              /* next internal node of the tree */
707     do {
708         pqremove(s, tree, n);  /* n = node of least frequency */
709         m = s->heap[SMALLEST]; /* m = node of next least frequency */
710 
711         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
712         s->heap[--(s->heap_max)] = m;
713 
714         /* Create a new node father of n and m */
715         tree[node].Freq = tree[n].Freq + tree[m].Freq;
716         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
717                                 s->depth[n] : s->depth[m]) + 1);
718         tree[n].Dad = tree[m].Dad = (ush)node;
719 #ifdef DUMP_BL_TREE
720         if (tree == s->bl_tree) {
721             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
722                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
723         }
724 #endif
725         /* and insert the new node in the heap */
726         s->heap[SMALLEST] = node++;
727         pqdownheap(s, tree, SMALLEST);
728 
729     } while (s->heap_len >= 2);
730 
731     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
732 
733     /* At this point, the fields freq and dad are set. We can now
734      * generate the bit lengths.
735      */
736     gen_bitlen(s, (tree_desc *)desc);
737 
738     /* The field len is now set, we can generate the bit codes */
739     gen_codes ((ct_data *)tree, max_code, s->bl_count);
740 }
741 
742 /* ===========================================================================
743  * Scan a literal or distance tree to determine the frequencies of the codes
744  * in the bit length tree.
745  *
746  * @param tree the tree to be scanned
747  * @param max_code and its largest code of non zero frequency
748  */
749 local void
scan_tree(deflate_state * s,ct_data * tree,int max_code)750 scan_tree(deflate_state *s, ct_data *tree, int max_code)
751 {
752     int n;                     /* iterates over all tree elements */
753     int prevlen = -1;          /* last emitted length */
754     int curlen;                /* length of current code */
755     int nextlen = tree[0].Len; /* length of next code */
756     int count = 0;             /* repeat count of the current code */
757     int max_count = 7;         /* max repeat count */
758     int min_count = 4;         /* min repeat count */
759 
760     if (nextlen == 0) {
761         max_count = 138;
762 	min_count = 3;
763     }
764     tree[max_code+1].Len = (ush)0xffff; /* guard */
765 
766     for (n = 0; n <= max_code; n++) {
767         curlen = nextlen; nextlen = tree[n+1].Len;
768         if (++count < max_count && curlen == nextlen) {
769             continue;
770         } else if (count < min_count) {
771             s->bl_tree[curlen].Freq += count;
772         } else if (curlen != 0) {
773             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
774             s->bl_tree[REP_3_6].Freq++;
775         } else if (count <= 10) {
776             s->bl_tree[REPZ_3_10].Freq++;
777         } else {
778             s->bl_tree[REPZ_11_138].Freq++;
779         }
780         count = 0; prevlen = curlen;
781         if (nextlen == 0) {
782             max_count = 138;
783 	    min_count = 3;
784         } else if (curlen == nextlen) {
785             max_count = 6;
786 	    min_count = 3;
787         } else {
788             max_count = 7;
789 	    min_count = 4;
790         }
791     }
792 }
793 
794 /* ===========================================================================
795  * Send a literal or distance tree in compressed form, using the codes in
796  * bl_tree.
797  *
798  * @param tree the tree to be scanned
799  * @param max_code and its largest code of non zero frequency
800  */
801 local void
send_tree(deflate_state * s,ct_data * tree,int max_code)802 send_tree( deflate_state *s, ct_data *tree, int max_code)
803 {
804     int n;                     /* iterates over all tree elements */
805     int prevlen = -1;          /* last emitted length */
806     int curlen;                /* length of current code */
807     int nextlen = tree[0].Len; /* length of next code */
808     int count = 0;             /* repeat count of the current code */
809     int max_count = 7;         /* max repeat count */
810     int min_count = 4;         /* min repeat count */
811 
812     /* tree[max_code+1].Len = -1; */  /* guard already set */
813     if (nextlen == 0) {
814         max_count = 138;
815 	min_count = 3;
816     }
817 
818     for (n = 0; n <= max_code; n++) {
819         curlen = nextlen; nextlen = tree[n+1].Len;
820         if (++count < max_count && curlen == nextlen) {
821             continue;
822         } else if (count < min_count) {
823             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
824 
825         } else if (curlen != 0) {
826             if (curlen != prevlen) {
827                 send_code(s, curlen, s->bl_tree); count--;
828             }
829             Assert(count >= 3 && count <= 6, " 3_6?");
830             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
831 
832         } else if (count <= 10) {
833             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
834 
835         } else {
836             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
837         }
838         count = 0; prevlen = curlen;
839         if (nextlen == 0) {
840             max_count = 138;
841 	    min_count = 3;
842         } else if (curlen == nextlen) {
843             max_count = 6;
844 	    min_count = 3;
845         } else {
846             max_count = 7;
847 	    min_count = 4;
848         }
849     }
850 }
851 
852 /* ===========================================================================
853  * Construct the Huffman tree for the bit lengths and return the index in
854  * bl_order of the last bit length code to send.
855  */
856 local int
build_bl_tree(deflate_state * s)857 build_bl_tree(deflate_state *s)
858 {
859     int max_blindex;  /* index of last bit length code of non zero freq */
860 
861     /* Determine the bit length frequencies for literal and distance trees */
862     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
863     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
864 
865     /* Build the bit length tree: */
866     build_tree(s, (tree_desc *)(&(s->bl_desc)));
867     /* opt_len now includes the length of the tree representations, except
868      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
869      */
870 
871     /* Determine the number of bit length codes to send. The pkzip format
872      * requires that at least 4 bit length codes be sent. (appnote.txt says
873      * 3 but the actual value used is 4.)
874      */
875     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
876         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
877     }
878     /* Update opt_len to include the bit length tree and counts */
879     s->opt_len += 3*(max_blindex+1) + 5+5+4;
880     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
881             s->opt_len, s->static_len));
882 
883     return max_blindex;
884 }
885 
886 /* ===========================================================================
887  * Send the header for a block using dynamic Huffman trees: the counts, the
888  * lengths of the bit length codes, the literal tree and the distance tree.
889  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
890  *
891  * @param lcodes number of codes for each tree
892  * @param dcodes number of codes for each tree
893  * @param blcodes number of codes for each tree
894  */
895 local void
send_all_trees(deflate_state * s,int lcodes,int dcodes,int blcodes)896 send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
897 {
898     int rank;                    /* index in bl_order */
899 
900     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
901     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
902             "too many codes");
903     Tracev((stderr, "\nbl counts: "));
904     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
905     send_bits(s, dcodes-1,   5);
906     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
907     for (rank = 0; rank < blcodes; rank++) {
908         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
909         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
910     }
911     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
912 
913     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
914     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
915 
916     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
917     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
918 }
919 
920 /* ===========================================================================
921  * Send a stored block
922  *
923  * @param buf input block
924  * @param stored_len length of input block
925  * @param eof true if this is the last block for a file
926  */
927 void
_tr_stored_block(deflate_state * s,charf * buf,ulg stored_len,int eof)928 _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
929 {
930     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
931 #ifdef DEBUG
932     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
933     s->compressed_len += (stored_len + 4) << 3;
934 #endif
935     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
936 }
937 
938 /* ===========================================================================
939  * Send one empty static block to give enough lookahead for inflate.
940  * This takes 10 bits, of which 7 may remain in the bit buffer.
941  * The current inflate code requires 9 bits of lookahead. If the
942  * last two codes for the previous block (real code plus EOB) were coded
943  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
944  * the last real code. In this case we send two empty static blocks instead
945  * of one. (There are no problems if the previous block is stored or fixed.)
946  * To simplify the code, we assume the worst case of last real code encoded
947  * on one bit only.
948  */
949 void
_tr_align(deflate_state * s)950 _tr_align(deflate_state *s)
951 {
952     send_bits(s, STATIC_TREES<<1, 3);
953     send_code(s, END_BLOCK, static_ltree);
954 #ifdef DEBUG
955     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
956 #endif
957     bi_flush(s);
958     /* Of the 10 bits for the empty block, we have already sent
959      * (10 - bi_valid) bits. The lookahead for the last real code (before
960      * the EOB of the previous block) was thus at least one plus the length
961      * of the EOB plus what we have just sent of the empty static block.
962      */
963     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
964         send_bits(s, STATIC_TREES<<1, 3);
965         send_code(s, END_BLOCK, static_ltree);
966 #ifdef DEBUG
967         s->compressed_len += 10L;
968 #endif
969         bi_flush(s);
970     }
971     s->last_eob_len = 7;
972 }
973 
974 /* ===========================================================================
975  * Determine the best encoding for the current block: dynamic trees, static
976  * trees or store, and output the encoded block to the zip file.
977  *
978  * @param buf input block, or NULL if too old
979  * @param stored_len length of input block
980  * @param eof true if this is the last block for a file
981  */
982 void
_tr_flush_block(deflate_state * s,charf * buf,ulg stored_len,int eof)983 _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
984 {
985     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
986     int max_blindex = 0;  /* index of last bit length code of non zero freq */
987 
988     /* Build the Huffman trees unless a stored block is forced */
989     if (s->level > 0) {
990 
991         /* Check if the file is binary or text */
992         if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
993             set_data_type(s);
994 
995         /* Construct the literal and distance trees */
996         build_tree(s, (tree_desc *)(&(s->l_desc)));
997         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
998                 s->static_len));
999 
1000         build_tree(s, (tree_desc *)(&(s->d_desc)));
1001         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1002                 s->static_len));
1003         /* At this point, opt_len and static_len are the total bit lengths of
1004          * the compressed block data, excluding the tree representations.
1005          */
1006 
1007         /* Build the bit length tree for the above two trees, and get the index
1008          * in bl_order of the last bit length code to send.
1009          */
1010         max_blindex = build_bl_tree(s);
1011 
1012         /* Determine the best encoding. Compute the block lengths in bytes. */
1013         opt_lenb = (s->opt_len+3+7)>>3;
1014         static_lenb = (s->static_len+3+7)>>3;
1015 
1016         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1017                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1018                 s->last_lit));
1019 
1020         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
1021 
1022     } else {
1023         Assert(buf != (char*)0, "lost buf");
1024         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1025     }
1026 
1027 #ifdef FORCE_STORED
1028     if (buf != (char*)0) { /* force stored block */
1029 #else
1030     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
1031                        /* 4: two words for the lengths */
1032 #endif
1033         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1034          * Otherwise we can't have processed more than WSIZE input bytes since
1035          * the last block flush, because compression would have been
1036          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1037          * transform a block into a stored block.
1038          */
1039         _tr_stored_block(s, buf, stored_len, eof);
1040 
1041 #ifdef FORCE_STATIC
1042     } else if (static_lenb >= 0) { /* force static trees */
1043 #else
1044     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
1045 #endif
1046         send_bits(s, (STATIC_TREES<<1)+eof, 3);
1047         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
1048 #ifdef DEBUG
1049         s->compressed_len += 3 + s->static_len;
1050 #endif
1051     } else {
1052         send_bits(s, (DYN_TREES<<1)+eof, 3);
1053         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1054                        max_blindex+1);
1055         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1056 #ifdef DEBUG
1057         s->compressed_len += 3 + s->opt_len;
1058 #endif
1059     }
1060     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1061     /* The above check is made mod 2^32, for files larger than 512 MB
1062      * and uLong implemented on 32 bits.
1063      */
1064     init_block(s);
1065 
1066     if (eof) {
1067         bi_windup(s);
1068 #ifdef DEBUG
1069         s->compressed_len += 7;  /* align on byte boundary */
1070 #endif
1071     }
1072     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1073            s->compressed_len-7*eof));
1074 }
1075 
1076 /* ===========================================================================
1077  * Save the match info and tally the frequency counts. Return true if
1078  * the current block must be flushed.
1079  *
1080  * @param dist distance of matched string
1081  * @param lc match length-MIN_MATCH or unmatched char (if dist==0)
1082  */
1083 int
1084 _tr_tally(deflate_state *s, unsigned dist, unsigned lc)
1085 {
1086     s->d_buf[s->last_lit] = (ush)dist;
1087     s->l_buf[s->last_lit++] = (uch)lc;
1088     if (dist == 0) {
1089         /* lc is the unmatched char */
1090         s->dyn_ltree[lc].Freq++;
1091     } else {
1092         s->matches++;
1093         /* Here, lc is the match length - MIN_MATCH */
1094         dist--;             /* dist = match distance - 1 */
1095         Assert((ush)dist < (ush)MAX_DIST(s) &&
1096                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1097                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1098 
1099         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1100         s->dyn_dtree[d_code(dist)].Freq++;
1101     }
1102 
1103 #ifdef TRUNCATE_BLOCK
1104     /* Try to guess if it is profitable to stop the current block here */
1105     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1106         /* Compute an upper bound for the compressed length */
1107         ulg out_length = (ulg)s->last_lit*8L;
1108         ulg in_length = (ulg)((long)s->strstart - s->block_start);
1109         int dcode;
1110         for (dcode = 0; dcode < D_CODES; dcode++) {
1111             out_length += (ulg)s->dyn_dtree[dcode].Freq *
1112                 (5L+extra_dbits[dcode]);
1113         }
1114         out_length >>= 3;
1115         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1116                s->last_lit, in_length, out_length,
1117                100L - out_length*100L/in_length));
1118         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1119     }
1120 #endif
1121     return (s->last_lit == s->lit_bufsize-1);
1122     /* We avoid equality with lit_bufsize because of wraparound at 64K
1123      * on 16 bit machines and because stored blocks are restricted to
1124      * 64K-1 bytes.
1125      */
1126 }
1127 
1128 /* ===========================================================================
1129  * Send the block data compressed using the given Huffman trees
1130  *
1131  * @param ltree literal tree
1132  * @param dtree distance tree
1133  */
1134 
1135 __abortlike __printflike(1, 2)
1136 extern void panic(const char *string, ...);
1137 
1138 
1139 local void
1140 compress_block(deflate_state *s, ct_data *ltree, ct_data *dtree)
1141 {
1142     unsigned dist;      /* distance of matched string */
1143     int lc;             /* match length or unmatched char (if dist == 0) */
1144     unsigned lx = 0;    /* running index in l_buf */
1145     unsigned code;      /* the code to send */
1146     int extra;          /* number of extra bits to send */
1147 
1148     if (s->last_lit != 0) do {
1149 
1150         if (&s->pending_buf[s->pending] > (Bytef *)&s->d_buf[lx]) {
1151             panic("zlib deflate");
1152         }
1153         dist = s->d_buf[lx];
1154         lc = s->l_buf[lx++];
1155         if (dist == 0) {
1156             send_code(s, lc, ltree); /* send a literal byte */
1157             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1158         } else {
1159             /* Here, lc is the match length - MIN_MATCH */
1160             code = _length_code[lc];
1161             send_code(s, code+LITERALS+1, ltree); /* send the length code */
1162             extra = extra_lbits[code];
1163             if (extra != 0) {
1164                 lc -= base_length[code];
1165                 send_bits(s, lc, extra);       /* send the extra length bits */
1166             }
1167             dist--; /* dist is now the match distance - 1 */
1168             code = d_code(dist);
1169             Assert (code < D_CODES, "bad d_code");
1170 
1171             send_code(s, code, dtree);       /* send the distance code */
1172             extra = extra_dbits[code];
1173             if (extra != 0) {
1174                 dist -= base_dist[code];
1175                 send_bits(s, dist, extra);   /* send the extra distance bits */
1176             }
1177         } /* literal or match pair ? */
1178 
1179         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1180         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1181                "pendingBuf overflow");
1182 
1183     } while (lx < s->last_lit);
1184 
1185     send_code(s, END_BLOCK, ltree);
1186     s->last_eob_len = ltree[END_BLOCK].Len;
1187 }
1188 
1189 /* ===========================================================================
1190  * Set the data type to BINARY or TEXT, using a crude approximation:
1191  * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1192  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1193  * IN assertion: the fields Freq of dyn_ltree are set.
1194  */
1195 local void
1196 set_data_type(deflate_state *s)
1197 {
1198     int n;
1199 
1200     for (n = 0; n < 9; n++)
1201         if (s->dyn_ltree[n].Freq != 0)
1202             break;
1203     if (n == 9)
1204         for (n = 14; n < 32; n++)
1205             if (s->dyn_ltree[n].Freq != 0)
1206                 break;
1207     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
1208 }
1209 
1210 /* ===========================================================================
1211  * Reverse the first len bits of a code, using straightforward code (a faster
1212  * method would use a table)
1213  * IN assertion: 1 <= len <= 15
1214  *
1215  * @param code the value to invert
1216  * @param len its bit length
1217  */
1218 local unsigned
1219 bi_reverse(unsigned code, int len)
1220 {
1221     unsigned res = 0;
1222     do {
1223         res |= code & 1;
1224         code >>= 1;
1225 	res <<= 1;
1226     } while (--len > 0);
1227     return res >> 1;
1228 }
1229 
1230 /* ===========================================================================
1231  * Flush the bit buffer, keeping at most 7 bits in it.
1232  */
1233 local void
1234 bi_flush(deflate_state *s)
1235 {
1236     if (s->bi_valid == 16) {
1237         put_short(s, s->bi_buf);
1238         s->bi_buf = 0;
1239         s->bi_valid = 0;
1240     } else if (s->bi_valid >= 8) {
1241         put_byte(s, (Byte)s->bi_buf);
1242         s->bi_buf >>= 8;
1243         s->bi_valid -= 8;
1244     }
1245 }
1246 
1247 /* ===========================================================================
1248  * Flush the bit buffer and align the output on a byte boundary
1249  */
1250 local void
1251 bi_windup(deflate_state *s)
1252 {
1253     if (s->bi_valid > 8) {
1254         put_short(s, s->bi_buf);
1255     } else if (s->bi_valid > 0) {
1256         put_byte(s, (Byte)s->bi_buf);
1257     }
1258     s->bi_buf = 0;
1259     s->bi_valid = 0;
1260 #ifdef DEBUG
1261     s->bits_sent = (s->bits_sent+7) & ~7;
1262 #endif
1263 }
1264 
1265 /* ===========================================================================
1266  * Copy a stored block, storing first the length and its
1267  * one's complement if requested.
1268  *
1269  * @param buf the input data
1270  * @param len its length
1271  * @param header true if block header must be written
1272  */
1273 local void
1274 copy_block(deflate_state *s, charf *buf, unsigned len, int header)
1275 {
1276     bi_windup(s);        /* align on byte boundary */
1277     s->last_eob_len = 8; /* enough lookahead for inflate */
1278 
1279     if (header) {
1280         put_short(s, (ush)len);
1281         put_short(s, (ush)~len);
1282 #ifdef DEBUG
1283         s->bits_sent += 2*16;
1284 #endif
1285     }
1286 #ifdef DEBUG
1287     s->bits_sent += (ulg)len<<3;
1288 #endif
1289     while (len--) {
1290         put_byte(s, *buf++);
1291     }
1292 }
1293