1 /*
2 * Copyright (c) 2000-2021 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
61 */
62 /*
63 * NOTICE: This file was modified by SPARTA, Inc. in 2007 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
66 * Version 2.0.
67 */
68
69 #define _IP_VHL
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/mbuf.h>
74 #include <sys/malloc.h>
75 #include <sys/domain.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/time.h>
79 #include <sys/kernel.h>
80 #include <sys/syslog.h>
81 #include <sys/sysctl.h>
82 #include <sys/mcache.h>
83 #include <sys/socketvar.h>
84 #include <sys/kdebug.h>
85 #include <mach/mach_time.h>
86 #include <mach/sdt.h>
87
88 #include <machine/endian.h>
89 #include <dev/random/randomdev.h>
90
91 #include <kern/queue.h>
92 #include <kern/locks.h>
93 #include <libkern/OSAtomic.h>
94
95 #include <pexpert/pexpert.h>
96
97 #include <net/if.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/route.h>
101 #include <net/kpi_protocol.h>
102 #include <net/ntstat.h>
103 #include <net/dlil.h>
104 #include <net/classq/classq.h>
105 #include <net/net_perf.h>
106 #include <net/init.h>
107 #if PF
108 #include <net/pfvar.h>
109 #endif /* PF */
110 #include <net/if_ports_used.h>
111 #include <net/droptap.h>
112
113 #include <netinet/in.h>
114 #include <netinet/in_systm.h>
115 #include <netinet/in_var.h>
116 #include <netinet/in_arp.h>
117 #include <netinet/ip.h>
118 #include <netinet/in_pcb.h>
119 #include <netinet/ip_var.h>
120 #include <netinet/ip_icmp.h>
121 #include <netinet/kpi_ipfilter_var.h>
122 #include <netinet/udp.h>
123 #include <netinet/udp_var.h>
124 #include <netinet/bootp.h>
125
126 #if DUMMYNET
127 #include <netinet/ip_dummynet.h>
128 #endif /* DUMMYNET */
129
130 #if IPSEC
131 #include <netinet6/ipsec.h>
132 #include <netkey/key.h>
133 #endif /* IPSEC */
134
135 #include <net/sockaddr_utils.h>
136
137 #include <os/log.h>
138
139 extern struct inpcbinfo ripcbinfo;
140
141 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0)
142 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2)
143 #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8))
144
145 #if IPSEC
146 extern int ipsec_bypass;
147 #endif /* IPSEC */
148
149 MBUFQ_HEAD(fq_head);
150
151 static int frag_timeout_run; /* frag timer is scheduled to run */
152 static void frag_timeout(void *);
153 static void frag_sched_timeout(void);
154
155 static struct ipq *ipq_alloc(void);
156 static void ipq_free(struct ipq *);
157 static void ipq_updateparams(void);
158 static void ip_input_second_pass(struct mbuf *, struct ifnet *,
159 int, int, struct ip_fw_in_args *);
160
161 static LCK_GRP_DECLARE(ipqlock_grp, "ipqlock");
162 static LCK_MTX_DECLARE(ipqlock, &ipqlock_grp);
163
164
165 /* Packet reassembly stuff */
166 #define IPREASS_NHASH_LOG2 6
167 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
168 #define IPREASS_HMASK (IPREASS_NHASH - 1)
169 #define IPREASS_HASH(x, y) \
170 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
171
172 /* IP fragment reassembly queues (protected by ipqlock) */
173 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH]; /* ip reassembly queues */
174 static int maxnipq; /* max packets in reass queues */
175 static u_int32_t maxfragsperpacket; /* max frags/packet in reass queues */
176 static u_int32_t nipq; /* # of packets in reass queues */
177 static u_int32_t ipq_limit; /* ipq allocation limit */
178 static u_int32_t ipq_count; /* current # of allocated ipq's */
179
180 static int sysctl_ipforwarding SYSCTL_HANDLER_ARGS;
181 static int sysctl_maxnipq SYSCTL_HANDLER_ARGS;
182 static int sysctl_maxfragsperpacket SYSCTL_HANDLER_ARGS;
183
184 #if (DEBUG || DEVELOPMENT)
185 static int sysctl_reset_ip_input_stats SYSCTL_HANDLER_ARGS;
186 static int sysctl_ip_input_measure_bins SYSCTL_HANDLER_ARGS;
187 static int sysctl_ip_input_getperf SYSCTL_HANDLER_ARGS;
188 #endif /* (DEBUG || DEVELOPMENT) */
189
190 int ipforwarding = 0;
191 SYSCTL_PROC(_net_inet_ip, IPCTL_FORWARDING, forwarding,
192 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ipforwarding, 0,
193 sysctl_ipforwarding, "I", "Enable IP forwarding between interfaces");
194
195 static int ipsendredirects = 1; /* XXX */
196 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect,
197 CTLFLAG_RW | CTLFLAG_LOCKED, &ipsendredirects, 0,
198 "Enable sending IP redirects");
199
200 int ip_defttl = IPDEFTTL;
201 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW | CTLFLAG_LOCKED,
202 &ip_defttl, 0, "Maximum TTL on IP packets");
203
204 static int ip_dosourceroute = 0;
205 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute,
206 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_dosourceroute, 0,
207 "Enable forwarding source routed IP packets");
208
209 static int ip_acceptsourceroute = 0;
210 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
211 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_acceptsourceroute, 0,
212 "Enable accepting source routed IP packets");
213
214 static int ip_sendsourcequench = 0;
215 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench,
216 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_sendsourcequench, 0,
217 "Enable the transmission of source quench packets");
218
219 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets,
220 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &maxnipq, 0, sysctl_maxnipq,
221 "I", "Maximum number of IPv4 fragment reassembly queue entries");
222
223 SYSCTL_UINT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD | CTLFLAG_LOCKED,
224 &nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
225
226 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragsperpacket,
227 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &maxfragsperpacket, 0,
228 sysctl_maxfragsperpacket, "I",
229 "Maximum number of IPv4 fragments allowed per packet");
230
231 static uint32_t ip_adj_clear_hwcksum = 0;
232 SYSCTL_UINT(_net_inet_ip, OID_AUTO, adj_clear_hwcksum,
233 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_adj_clear_hwcksum, 0,
234 "Invalidate hwcksum info when adjusting length");
235
236 static uint32_t ip_adj_partial_sum = 1;
237 SYSCTL_UINT(_net_inet_ip, OID_AUTO, adj_partial_sum,
238 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_adj_partial_sum, 0,
239 "Perform partial sum adjustment of trailing bytes at IP layer");
240
241 /*
242 * ip_checkinterface controls the receive side of the models for multihoming
243 * that are discussed in RFC 1122.
244 *
245 * ip_checkinterface values are:
246 * IP_CHECKINTERFACE_WEAK_ES:
247 * This corresponds to the Weak End-System model where incoming packets from
248 * any interface are accepted provided the destination address of the incoming packet
249 * is assigned to some interface.
250 *
251 * IP_CHECKINTERFACE_HYBRID_ES:
252 * The Hybrid End-System model use the Strong End-System for tunnel interfaces
253 * (ipsec and utun) and the weak End-System model for other interfaces families.
254 * This prevents a rogue middle box to probe for signs of TCP connections
255 * that use the tunnel interface.
256 *
257 * IP_CHECKINTERFACE_STRONG_ES:
258 * The Strong model model requires the packet arrived on an interface that
259 * is assigned the destination address of the packet.
260 *
261 * Since the routing table and transmit implementation do not implement the Strong ES model,
262 * setting this to a value different from IP_CHECKINTERFACE_WEAK_ES may lead to unexpected results.
263 *
264 * When forwarding is enabled, the system reverts to the Weak ES model as a router
265 * is expected by design to receive packets from several interfaces to the same address.
266 *
267 * XXX - ip_checkinterface currently must be set to IP_CHECKINTERFACE_WEAK_ES if you use ipnat
268 * to translate the destination address to another local interface.
269 *
270 * XXX - ip_checkinterface must be set to IP_CHECKINTERFACE_WEAK_ES if you add IP aliases
271 * to the loopback interface instead of the interface where the
272 * packets for those addresses are received.
273 */
274 #define IP_CHECKINTERFACE_WEAK_ES 0
275 #define IP_CHECKINTERFACE_HYBRID_ES 1
276 #define IP_CHECKINTERFACE_STRONG_ES 2
277
278 static int ip_checkinterface = IP_CHECKINTERFACE_HYBRID_ES;
279
280 static int sysctl_ip_checkinterface SYSCTL_HANDLER_ARGS;
281 SYSCTL_PROC(_net_inet_ip, OID_AUTO, check_interface,
282 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
283 0, 0, sysctl_ip_checkinterface, "I", "Verify packet arrives on correct interface");
284
285 #if (DEBUG || DEVELOPMENT)
286 #define IP_CHECK_IF_DEBUG 1
287 #else
288 #define IP_CHECK_IF_DEBUG 0
289 #endif /* (DEBUG || DEVELOPMENT) */
290 static int ip_checkinterface_debug = IP_CHECK_IF_DEBUG;
291 SYSCTL_INT(_net_inet_ip, OID_AUTO, checkinterface_debug, CTLFLAG_RW | CTLFLAG_LOCKED,
292 &ip_checkinterface_debug, IP_CHECK_IF_DEBUG, "");
293
294 static int ip_chaining = 1;
295 SYSCTL_INT(_net_inet_ip, OID_AUTO, rx_chaining, CTLFLAG_RW | CTLFLAG_LOCKED,
296 &ip_chaining, 1, "Do receive side ip address based chaining");
297
298 static int ip_chainsz = 6;
299 SYSCTL_INT(_net_inet_ip, OID_AUTO, rx_chainsz, CTLFLAG_RW | CTLFLAG_LOCKED,
300 &ip_chainsz, 1, "IP receive side max chaining");
301
302 #if (DEBUG || DEVELOPMENT)
303 static int ip_input_measure = 0;
304 SYSCTL_PROC(_net_inet_ip, OID_AUTO, input_perf,
305 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
306 &ip_input_measure, 0, sysctl_reset_ip_input_stats, "I", "Do time measurement");
307
308 static uint64_t ip_input_measure_bins = 0;
309 SYSCTL_PROC(_net_inet_ip, OID_AUTO, input_perf_bins,
310 CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_input_measure_bins, 0,
311 sysctl_ip_input_measure_bins, "I",
312 "bins for chaining performance data histogram");
313
314 static net_perf_t net_perf;
315 SYSCTL_PROC(_net_inet_ip, OID_AUTO, input_perf_data,
316 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
317 0, 0, sysctl_ip_input_getperf, "S,net_perf",
318 "IP input performance data (struct net_perf, net/net_perf.h)");
319 #endif /* (DEBUG || DEVELOPMENT) */
320
321 #if DIAGNOSTIC
322 static int ipprintfs = 0;
323 #endif
324
325 struct protosw *ip_protox[IPPROTO_MAX];
326
327 static LCK_GRP_DECLARE(in_ifaddr_rwlock_grp, "in_ifaddr_rwlock");
328 LCK_RW_DECLARE(in_ifaddr_rwlock, &in_ifaddr_rwlock_grp);
329
330 #define INADDR_NHASH 61
331 static uint32_t inaddr_nhash; /* hash table size */
332 static uint32_t inaddr_hashp; /* next largest prime */
333
334 /* Protected by in_ifaddr_rwlock */
335 struct in_ifaddrhead in_ifaddrhead; /* first inet address */
336 static struct in_ifaddrhashhead *__counted_by(inaddr_nhash) in_ifaddrhashtbl = NULL; /* inet addr hash table */
337
338 static int ip_getstat SYSCTL_HANDLER_ARGS;
339 struct ipstat ipstat;
340 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats,
341 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
342 0, 0, ip_getstat, "S,ipstat",
343 "IP statistics (struct ipstat, netinet/ip_var.h)");
344
345 #if IPCTL_DEFMTU
346 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW | CTLFLAG_LOCKED,
347 &ip_mtu, 0, "Default MTU");
348 #endif /* IPCTL_DEFMTU */
349
350 #if IPSTEALTH
351 static int ipstealth = 0;
352 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW | CTLFLAG_LOCKED,
353 &ipstealth, 0, "");
354 #endif /* IPSTEALTH */
355
356 #if DUMMYNET
357 ip_dn_io_t *ip_dn_io_ptr;
358 #endif /* DUMMYNET */
359
360 SYSCTL_NODE(_net_inet_ip, OID_AUTO, linklocal,
361 CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local");
362
363 struct ip_linklocal_stat ip_linklocal_stat;
364 SYSCTL_STRUCT(_net_inet_ip_linklocal, OID_AUTO, stat,
365 CTLFLAG_RD | CTLFLAG_LOCKED, &ip_linklocal_stat, ip_linklocal_stat,
366 "Number of link local packets with TTL less than 255");
367
368 SYSCTL_NODE(_net_inet_ip_linklocal, OID_AUTO, in,
369 CTLFLAG_RW | CTLFLAG_LOCKED, 0, "link local input");
370
371 int ip_linklocal_in_allowbadttl = 1;
372 SYSCTL_INT(_net_inet_ip_linklocal_in, OID_AUTO, allowbadttl,
373 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_linklocal_in_allowbadttl, 0,
374 "Allow incoming link local packets with TTL less than 255");
375
376
377 /*
378 * We need to save the IP options in case a protocol wants to respond
379 * to an incoming packet over the same route if the packet got here
380 * using IP source routing. This allows connection establishment and
381 * maintenance when the remote end is on a network that is not known
382 * to us.
383 */
384 static int ip_nhops = 0;
385 static struct ip_srcrt {
386 struct in_addr dst; /* final destination */
387 char nop; /* one NOP to align */
388 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
389 struct in_addr route[MAX_IPOPTLEN / sizeof(struct in_addr)];
390 } ip_srcrt;
391
392 static void in_ifaddrhashtbl_init(void);
393 static void save_rte(u_char *__indexable, struct in_addr);
394 static int ip_dooptions(struct mbuf *, int, struct sockaddr_in *);
395 static void ip_forward(struct mbuf *, int, struct sockaddr_in *);
396 static void frag_freef(struct ipqhead *, struct ipq *, drop_reason_t);
397 static struct mbuf *ip_reass(struct mbuf *);
398 static void ip_fwd_route_copyout(struct ifnet *, struct route *);
399 static void ip_fwd_route_copyin(struct ifnet *, struct route *);
400 static inline u_short ip_cksum(struct mbuf *, int);
401
402 /*
403 * On platforms which require strict alignment (currently for anything but
404 * i386 or x86_64 or arm64), check if the IP header pointer is 32-bit aligned; if not,
405 * copy the contents of the mbuf chain into a new chain, and free the original
406 * one. Create some head room in the first mbuf of the new chain, in case
407 * it's needed later on.
408 */
409 #if defined(__i386__) || defined(__x86_64__) || defined(__arm64__)
410 #define IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
411 #else /* !__i386__ && !__x86_64__ && !__arm64__ */
412 #define IP_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { \
413 if (!IP_HDR_ALIGNED_P(mtod(_m, caddr_t))) { \
414 struct mbuf *_n; \
415 struct ifnet *__ifp = (_ifp); \
416 os_atomic_inc(&(__ifp)->if_alignerrs, relaxed); \
417 if (((_m)->m_flags & M_PKTHDR) && \
418 (_m)->m_pkthdr.pkt_hdr != NULL) \
419 (_m)->m_pkthdr.pkt_hdr = NULL; \
420 _n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT); \
421 if (_n == NULL) { \
422 os_atomic_inc(&ipstat.ips_toosmall, relaxed); \
423 m_drop(_m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_TOO_SMALL, NULL, 0);\
424 (_m) = NULL; \
425 _action; \
426 } else { \
427 VERIFY(_n != (_m)); \
428 (_m) = _n; \
429 } \
430 } \
431 } while (0)
432 #endif /* !__i386__ && !__x86_64__ && !__arm64__ */
433
434
435 typedef enum ip_check_if_result {
436 IP_CHECK_IF_NONE = 0,
437 IP_CHECK_IF_OURS = 1,
438 IP_CHECK_IF_DROP = 2,
439 IP_CHECK_IF_FORWARD = 3
440 } ip_check_if_result_t;
441
442 static ip_check_if_result_t ip_input_check_interface(struct mbuf **, struct ip *, struct ifnet *);
443
444 /*
445 * GRE input handler function, settable via ip_gre_register_input() for PPTP.
446 */
447 static gre_input_func_t gre_input_func;
448
449 static void
ip_init_delayed(void)450 ip_init_delayed(void)
451 {
452 struct ifreq ifr;
453 int error;
454 struct sockaddr_in *__single sin;
455
456 bzero(&ifr, sizeof(ifr));
457 strlcpy(ifr.ifr_name, "lo0", sizeof(ifr.ifr_name));
458 sin = SIN(&ifr.ifr_addr);
459 sin->sin_len = sizeof(struct sockaddr_in);
460 sin->sin_family = AF_INET;
461 sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
462 error = in_control(NULL, SIOCSIFADDR, (caddr_t)&ifr, lo_ifp, kernproc);
463 if (error) {
464 printf("%s: failed to initialise lo0's address, error=%d\n",
465 __func__, error);
466 }
467 }
468
469 /*
470 * IP initialization: fill in IP protocol switch table.
471 * All protocols not implemented in kernel go to raw IP protocol handler.
472 */
473 void
ip_init(struct protosw * pp,struct domain * dp)474 ip_init(struct protosw *pp, struct domain *dp)
475 {
476 static int ip_initialized = 0;
477 struct protosw *__single pr;
478 struct timeval tv;
479 int i;
480
481 domain_proto_mtx_lock_assert_held();
482 VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED);
483
484 /*
485 * Some ioctls (e.g. SIOCAIFADDR) use ifaliasreq struct, which is
486 * interchangeable with in_aliasreq; they must have the same size.
487 */
488 _CASSERT(sizeof(struct ifaliasreq) == sizeof(struct in_aliasreq));
489
490 if (ip_initialized) {
491 return;
492 }
493 ip_initialized = 1;
494
495 TAILQ_INIT(&in_ifaddrhead);
496 in_ifaddrhashtbl_init();
497
498 ip_moptions_init();
499
500 pr = pffindproto_locked(PF_INET, IPPROTO_RAW, SOCK_RAW);
501 if (pr == NULL) {
502 panic("%s: Unable to find [PF_INET,IPPROTO_RAW,SOCK_RAW]",
503 __func__);
504 /* NOTREACHED */
505 }
506
507 /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
508 for (i = 0; i < IPPROTO_MAX; i++) {
509 ip_protox[i] = pr;
510 }
511 /*
512 * Cycle through IP protocols and put them into the appropriate place
513 * in ip_protox[], skipping protocols IPPROTO_{IP,RAW}.
514 */
515 VERIFY(dp == inetdomain && dp->dom_family == PF_INET);
516 TAILQ_FOREACH(pr, &dp->dom_protosw, pr_entry) {
517 VERIFY(pr->pr_domain == dp);
518 if (pr->pr_protocol != 0 && pr->pr_protocol != IPPROTO_RAW) {
519 /* Be careful to only index valid IP protocols. */
520 if (pr->pr_protocol < IPPROTO_MAX) {
521 ip_protox[pr->pr_protocol] = pr;
522 }
523 }
524 }
525
526 lck_mtx_lock(&ipqlock);
527 /* Initialize IP reassembly queue. */
528 for (i = 0; i < IPREASS_NHASH; i++) {
529 TAILQ_INIT(&ipq[i]);
530 }
531
532 maxnipq = nmbclusters / 32;
533 maxfragsperpacket = 128; /* enough for 64k in 512 byte fragments */
534 ipq_updateparams();
535 lck_mtx_unlock(&ipqlock);
536
537 getmicrotime(&tv);
538 ip_id = (u_short)(RandomULong() ^ tv.tv_usec);
539
540 PE_parse_boot_argn("ip_checkinterface", &i, sizeof(i));
541 switch (i) {
542 case IP_CHECKINTERFACE_WEAK_ES:
543 case IP_CHECKINTERFACE_HYBRID_ES:
544 case IP_CHECKINTERFACE_STRONG_ES:
545 ip_checkinterface = i;
546 break;
547 default:
548 break;
549 }
550
551 net_init_add(ip_init_delayed);
552 }
553
554 /*
555 * Initialize IPv4 source address hash table.
556 */
557 static void
in_ifaddrhashtbl_init(void)558 in_ifaddrhashtbl_init(void)
559 {
560 int i, k, p;
561 uint32_t nhash = 0;
562 uint32_t hash_size;
563
564 if (in_ifaddrhashtbl != NULL) {
565 return;
566 }
567
568 PE_parse_boot_argn("inaddr_nhash", &nhash,
569 sizeof(inaddr_nhash));
570 if (nhash == 0) {
571 nhash = INADDR_NHASH;
572 }
573
574 hash_size = nhash * sizeof(*in_ifaddrhashtbl);
575
576 in_ifaddrhashtbl = zalloc_permanent(
577 hash_size,
578 ZALIGN_PTR);
579 inaddr_nhash = nhash;
580
581 /*
582 * Generate the next largest prime greater than inaddr_nhash.
583 */
584 k = (inaddr_nhash % 2 == 0) ? inaddr_nhash + 1 : inaddr_nhash + 2;
585 for (;;) {
586 p = 1;
587 for (i = 3; i * i <= k; i += 2) {
588 if (k % i == 0) {
589 p = 0;
590 }
591 }
592 if (p == 1) {
593 break;
594 }
595 k += 2;
596 }
597 inaddr_hashp = k;
598 }
599
600 uint32_t
inaddr_hashval(uint32_t key)601 inaddr_hashval(uint32_t key)
602 {
603 /*
604 * The hash index is the computed prime times the key modulo
605 * the hash size, as documented in "Introduction to Algorithms"
606 * (Cormen, Leiserson, Rivest).
607 */
608 if (inaddr_nhash > 1) {
609 return (key * inaddr_hashp) % inaddr_nhash;
610 } else {
611 return 0;
612 }
613 }
614
615 struct in_ifaddrhashhead *
inaddr_hashlookup(uint32_t key)616 inaddr_hashlookup(uint32_t key)
617 {
618 return &in_ifaddrhashtbl[inaddr_hashval(key)];
619 }
620
621 __private_extern__ void
ip_proto_dispatch_in(struct mbuf * m,int hlen,u_int8_t proto,ipfilter_t inject_ipfref)622 ip_proto_dispatch_in(struct mbuf *m, int hlen, u_int8_t proto,
623 ipfilter_t inject_ipfref)
624 {
625 struct ipfilter *__single filter;
626 int seen = (inject_ipfref == NULL);
627 int changed_header = 0;
628 struct ip *ip;
629 void (*pr_input)(struct mbuf *, int len);
630
631 if (!TAILQ_EMPTY(&ipv4_filters)) {
632 ipf_ref();
633 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
634 if (seen == 0) {
635 if ((struct ipfilter *)inject_ipfref == filter) {
636 seen = 1;
637 }
638 } else if (filter->ipf_filter.ipf_input) {
639 errno_t result;
640
641 if (changed_header == 0) {
642 /*
643 * Perform IP header alignment fixup,
644 * if needed, before passing packet
645 * into filter(s).
646 */
647 IP_HDR_ALIGNMENT_FIXUP(m,
648 m->m_pkthdr.rcvif, ipf_unref());
649
650 /* ipf_unref() already called */
651 if (m == NULL) {
652 return;
653 }
654
655 changed_header = 1;
656 ip = mtod(m, struct ip *);
657 ip->ip_len = htons(ip->ip_len + (uint16_t)hlen);
658 ip->ip_off = htons(ip->ip_off);
659 ip->ip_sum = 0;
660 ip->ip_sum = ip_cksum_hdr_in(m, hlen);
661 }
662 result = filter->ipf_filter.ipf_input(
663 filter->ipf_filter.cookie, (mbuf_t *)&m,
664 hlen, proto);
665 if (result == EJUSTRETURN) {
666 ipf_unref();
667 return;
668 }
669 if (result != 0) {
670 ipstat.ips_input_ipf_drop++;
671 ipf_unref();
672 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_FILTER_DROP,
673 NULL, 0);
674 return;
675 }
676 }
677 }
678 ipf_unref();
679 }
680
681 /* Perform IP header alignment fixup (post-filters), if needed */
682 IP_HDR_ALIGNMENT_FIXUP(m, m->m_pkthdr.rcvif, return );
683
684 ip = mtod(m, struct ip *);
685
686 if (changed_header) {
687 ip->ip_len = ntohs(ip->ip_len) - (u_short)hlen;
688 ip->ip_off = ntohs(ip->ip_off);
689 }
690
691 /*
692 * If there isn't a specific lock for the protocol
693 * we're about to call, use the generic lock for AF_INET.
694 * otherwise let the protocol deal with its own locking
695 */
696 if ((pr_input = ip_protox[ip->ip_p]->pr_input) == NULL) {
697 ipstat.ips_input_no_proto++;
698 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_NO_PROTO,
699 NULL, 0);
700 } else if (!(ip_protox[ip->ip_p]->pr_flags & PR_PROTOLOCK)) {
701 lck_mtx_lock(inet_domain_mutex);
702 pr_input(m, hlen);
703 lck_mtx_unlock(inet_domain_mutex);
704 } else {
705 pr_input(m, hlen);
706 }
707 }
708
709 struct pktchain_elm {
710 struct mbuf *pkte_head;
711 struct mbuf *pkte_tail;
712 struct in_addr pkte_saddr;
713 struct in_addr pkte_daddr;
714 uint16_t pkte_npkts;
715 uint16_t pkte_proto;
716 uint32_t pkte_nbytes;
717 };
718
719 typedef struct pktchain_elm pktchain_elm_t;
720
721 /* Store upto PKTTBL_SZ unique flows on the stack */
722 #define PKTTBL_SZ 7
723
724 static struct mbuf *
ip_chain_insert(struct mbuf * packet,pktchain_elm_t * __counted_by (PKTTBL_SZ)tbl)725 ip_chain_insert(struct mbuf *packet, pktchain_elm_t *__counted_by(PKTTBL_SZ) tbl)
726 {
727 struct ip* ip;
728 int pkttbl_idx = 0;
729
730 ip = mtod(packet, struct ip*);
731
732 /* reusing the hash function from inaddr_hashval */
733 pkttbl_idx = inaddr_hashval(ntohl(ip->ip_src.s_addr)) % PKTTBL_SZ;
734 if (tbl[pkttbl_idx].pkte_head == NULL) {
735 tbl[pkttbl_idx].pkte_head = packet;
736 tbl[pkttbl_idx].pkte_saddr.s_addr = ip->ip_src.s_addr;
737 tbl[pkttbl_idx].pkte_daddr.s_addr = ip->ip_dst.s_addr;
738 tbl[pkttbl_idx].pkte_proto = ip->ip_p;
739 } else {
740 if ((ip->ip_dst.s_addr == tbl[pkttbl_idx].pkte_daddr.s_addr) &&
741 (ip->ip_src.s_addr == tbl[pkttbl_idx].pkte_saddr.s_addr) &&
742 (ip->ip_p == tbl[pkttbl_idx].pkte_proto)) {
743 } else {
744 return packet;
745 }
746 }
747 if (tbl[pkttbl_idx].pkte_tail != NULL) {
748 mbuf_setnextpkt(tbl[pkttbl_idx].pkte_tail, packet);
749 }
750
751 tbl[pkttbl_idx].pkte_tail = packet;
752 tbl[pkttbl_idx].pkte_npkts += 1;
753 tbl[pkttbl_idx].pkte_nbytes += packet->m_pkthdr.len;
754 return NULL;
755 }
756
757 /* args is a dummy variable here for backward compatibility */
758 static void
ip_input_second_pass_loop_tbl(pktchain_elm_t * __counted_by (PKTTBL_SZ)tbl,struct ip_fw_in_args * args)759 ip_input_second_pass_loop_tbl(pktchain_elm_t *__counted_by(PKTTBL_SZ) tbl, struct ip_fw_in_args *args)
760 {
761 int i = 0;
762
763 for (i = 0; i < PKTTBL_SZ; i++) {
764 if (tbl[i].pkte_head != NULL) {
765 struct mbuf *m = tbl[i].pkte_head;
766 ip_input_second_pass(m, m->m_pkthdr.rcvif,
767 tbl[i].pkte_npkts, tbl[i].pkte_nbytes, args);
768
769 if (tbl[i].pkte_npkts > 2) {
770 ipstat.ips_rxc_chainsz_gt2++;
771 }
772 if (tbl[i].pkte_npkts > 4) {
773 ipstat.ips_rxc_chainsz_gt4++;
774 }
775 #if (DEBUG || DEVELOPMENT)
776 if (ip_input_measure) {
777 net_perf_histogram(&net_perf, tbl[i].pkte_npkts);
778 }
779 #endif /* (DEBUG || DEVELOPMENT) */
780 tbl[i].pkte_head = tbl[i].pkte_tail = NULL;
781 tbl[i].pkte_npkts = 0;
782 tbl[i].pkte_nbytes = 0;
783 /* no need to initialize address and protocol in tbl */
784 }
785 }
786 }
787
788 static void
ip_input_cpout_args(struct ip_fw_in_args * args,struct ip_fw_args * args1,boolean_t * done_init)789 ip_input_cpout_args(struct ip_fw_in_args *args, struct ip_fw_args *args1,
790 boolean_t *done_init)
791 {
792 if (*done_init == FALSE) {
793 bzero(args1, sizeof(struct ip_fw_args));
794 *done_init = TRUE;
795 }
796 args1->fwa_pf_rule = args->fwai_pf_rule;
797 }
798
799 static void
ip_input_cpin_args(struct ip_fw_args * args1,struct ip_fw_in_args * args)800 ip_input_cpin_args(struct ip_fw_args *args1, struct ip_fw_in_args *args)
801 {
802 args->fwai_pf_rule = args1->fwa_pf_rule;
803 }
804
805 typedef enum {
806 IPINPUT_DOCHAIN = 0,
807 IPINPUT_DONTCHAIN,
808 IPINPUT_FREED,
809 IPINPUT_DONE
810 } ipinput_chain_ret_t;
811
812 static void
ip_input_update_nstat(struct ifnet * ifp,struct in_addr src_ip,u_int32_t packets,u_int32_t bytes)813 ip_input_update_nstat(struct ifnet *ifp, struct in_addr src_ip,
814 u_int32_t packets, u_int32_t bytes)
815 {
816 if (nstat_collect) {
817 struct rtentry *rt = ifnet_cached_rtlookup_inet(ifp,
818 src_ip);
819 if (rt != NULL) {
820 nstat_route_rx(rt, packets, bytes, 0);
821 rtfree(rt);
822 }
823 }
824 }
825
826 static void
ip_input_dispatch_chain(struct mbuf * m)827 ip_input_dispatch_chain(struct mbuf *m)
828 {
829 mbuf_ref_t tmp_mbuf = m;
830 mbuf_ref_t nxt_mbuf = NULL;
831 struct ip *__single ip = NULL;
832 unsigned int hlen;
833
834 ip = mtod(tmp_mbuf, struct ip *);
835 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
836 while (tmp_mbuf != NULL) {
837 nxt_mbuf = mbuf_nextpkt(tmp_mbuf);
838 mbuf_setnextpkt(tmp_mbuf, NULL);
839 ip_proto_dispatch_in(tmp_mbuf, hlen, ip->ip_p, 0);
840 tmp_mbuf = nxt_mbuf;
841 if (tmp_mbuf) {
842 ip = mtod(tmp_mbuf, struct ip *);
843 /* first mbuf of chain already has adjusted ip_len */
844 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
845 ip->ip_len -= hlen;
846 }
847 }
848 }
849
850 static void
ip_input_setdst_chain(struct mbuf * m,uint16_t ifindex,struct in_ifaddr * ia)851 ip_input_setdst_chain(struct mbuf *m, uint16_t ifindex, struct in_ifaddr *ia)
852 {
853 mbuf_ref_t tmp_mbuf = m;
854
855 while (tmp_mbuf != NULL) {
856 ip_setdstifaddr_info(tmp_mbuf, ifindex, ia);
857 tmp_mbuf = mbuf_nextpkt(tmp_mbuf);
858 }
859 }
860
861 static void
ip_input_adjust(struct mbuf * m,struct ip * ip,struct ifnet * inifp)862 ip_input_adjust(struct mbuf *m, struct ip *ip, struct ifnet *inifp)
863 {
864 boolean_t adjust = TRUE;
865
866 ASSERT(m_pktlen(m) > ip->ip_len);
867
868 /*
869 * Invalidate hardware checksum info if ip_adj_clear_hwcksum
870 * is set; useful to handle buggy drivers. Note that this
871 * should not be enabled by default, as we may get here due
872 * to link-layer padding.
873 */
874 if (ip_adj_clear_hwcksum &&
875 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
876 !(inifp->if_flags & IFF_LOOPBACK) &&
877 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
878 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
879 m->m_pkthdr.csum_data = 0;
880 ipstat.ips_adj_hwcsum_clr++;
881 }
882
883 /*
884 * If partial checksum information is available, subtract
885 * out the partial sum of postpended extraneous bytes, and
886 * update the checksum metadata accordingly. By doing it
887 * here, the upper layer transport only needs to adjust any
888 * prepended extraneous bytes (else it will do both.)
889 */
890 if (ip_adj_partial_sum &&
891 (m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PARTIAL)) ==
892 (CSUM_DATA_VALID | CSUM_PARTIAL)) {
893 m->m_pkthdr.csum_rx_val = m_adj_sum16(m,
894 m->m_pkthdr.csum_rx_start, m->m_pkthdr.csum_rx_start,
895 (ip->ip_len - m->m_pkthdr.csum_rx_start),
896 m->m_pkthdr.csum_rx_val);
897 } else if ((m->m_pkthdr.csum_flags &
898 (CSUM_DATA_VALID | CSUM_PARTIAL)) ==
899 (CSUM_DATA_VALID | CSUM_PARTIAL)) {
900 /*
901 * If packet has partial checksum info and we decided not
902 * to subtract the partial sum of postpended extraneous
903 * bytes here (not the default case), leave that work to
904 * be handled by the other layers. For now, only TCP, UDP
905 * layers are capable of dealing with this. For all other
906 * protocols (including fragments), trim and ditch the
907 * partial sum as those layers might not implement partial
908 * checksumming (or adjustment) at all.
909 */
910 if ((ip->ip_off & (IP_MF | IP_OFFMASK)) == 0 &&
911 (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_UDP)) {
912 adjust = FALSE;
913 } else {
914 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
915 m->m_pkthdr.csum_data = 0;
916 ipstat.ips_adj_hwcsum_clr++;
917 }
918 }
919
920 if (adjust) {
921 ipstat.ips_adj++;
922 if (m->m_len == m->m_pkthdr.len) {
923 m->m_len = ip->ip_len;
924 m->m_pkthdr.len = ip->ip_len;
925 } else {
926 m_adj(m, ip->ip_len - m->m_pkthdr.len);
927 }
928 }
929 }
930
931 /*
932 * First pass does all essential packet validation and places on a per flow
933 * queue for doing operations that have same outcome for all packets of a flow.
934 */
935 static ipinput_chain_ret_t
ip_input_first_pass(struct mbuf * m,struct ip_fw_in_args * args,struct mbuf ** modm)936 ip_input_first_pass(struct mbuf *m, struct ip_fw_in_args *args, struct mbuf **modm)
937 {
938 struct ip *__single ip;
939 ifnet_ref_t inifp;
940 unsigned int hlen;
941 int retval = IPINPUT_DOCHAIN;
942 int len = 0;
943 struct in_addr src_ip;
944 #if DUMMYNET
945 struct m_tag *copy;
946 struct m_tag *p;
947 boolean_t delete = FALSE;
948 struct ip_fw_args args1;
949 boolean_t init = FALSE;
950 #endif /* DUMMYNET */
951 ipfilter_t __single inject_filter_ref = NULL;
952
953 /* Check if the mbuf is still valid after interface filter processing */
954 MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
955 inifp = mbuf_pkthdr_rcvif(m);
956 VERIFY(inifp != NULL);
957
958 /* Perform IP header alignment fixup, if needed */
959 IP_HDR_ALIGNMENT_FIXUP(m, inifp, return );
960
961 m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
962
963 #if DUMMYNET
964 /*
965 * Don't bother searching for tag(s) if there's none.
966 */
967 if (SLIST_EMPTY(&m->m_pkthdr.tags)) {
968 goto ipfw_tags_done;
969 }
970
971 /* Grab info from mtags prepended to the chain */
972 p = m_tag_first(m);
973 while (p) {
974 if (p->m_tag_id == KERNEL_MODULE_TAG_ID) {
975 if (p->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET) {
976 struct dn_pkt_tag *dn_tag;
977
978 dn_tag = (struct dn_pkt_tag *)(p->m_tag_data);
979 args->fwai_pf_rule = dn_tag->dn_pf_rule;
980 delete = TRUE;
981 }
982
983 if (delete) {
984 copy = p;
985 p = m_tag_next(m, p);
986 m_tag_delete(m, copy);
987 } else {
988 p = m_tag_next(m, p);
989 }
990 } else {
991 p = m_tag_next(m, p);
992 }
993 }
994
995 #if DIAGNOSTIC
996 if (m == NULL || !(m->m_flags & M_PKTHDR)) {
997 panic("ip_input no HDR");
998 }
999 #endif
1000
1001 if (args->fwai_pf_rule) {
1002 /* dummynet already filtered us */
1003 ip = mtod(m, struct ip *);
1004 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1005 inject_filter_ref = ipf_get_inject_filter(m);
1006 if (args->fwai_pf_rule) {
1007 goto check_with_pf;
1008 }
1009 }
1010 ipfw_tags_done:
1011 #endif /* DUMMYNET */
1012
1013 /*
1014 * No need to process packet twice if we've already seen it.
1015 */
1016 if (!SLIST_EMPTY(&m->m_pkthdr.tags)) {
1017 inject_filter_ref = ipf_get_inject_filter(m);
1018 }
1019 if (inject_filter_ref != NULL) {
1020 ip = mtod(m, struct ip *);
1021 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1022
1023 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
1024 struct ip *, ip, struct ifnet *, inifp,
1025 struct ip *, ip, struct ip6_hdr *, NULL);
1026
1027 ip->ip_len = ntohs(ip->ip_len) - (u_short)hlen;
1028 ip->ip_off = ntohs(ip->ip_off);
1029 ip_proto_dispatch_in(m, hlen, ip->ip_p, inject_filter_ref);
1030 return IPINPUT_DONE;
1031 }
1032
1033 if (__improbable(m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT)) {
1034 if_ports_used_match_mbuf(inifp, PF_INET, m);
1035 }
1036
1037 if (m->m_pkthdr.len < sizeof(struct ip)) {
1038 OSAddAtomic(1, &ipstat.ips_total);
1039 OSAddAtomic(1, &ipstat.ips_tooshort);
1040 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_TOO_SHORT,
1041 NULL, 0);
1042 return IPINPUT_FREED;
1043 }
1044
1045 if (m->m_len < sizeof(struct ip) &&
1046 (m = m_pullup(m, sizeof(struct ip))) == NULL) {
1047 OSAddAtomic(1, &ipstat.ips_total);
1048 OSAddAtomic(1, &ipstat.ips_toosmall);
1049 return IPINPUT_FREED;
1050 }
1051
1052 ip = mtod(m, struct ip *);
1053 *modm = m;
1054
1055 KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr,
1056 ip->ip_p, ip->ip_off, ip->ip_len);
1057
1058 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
1059 OSAddAtomic(1, &ipstat.ips_total);
1060 OSAddAtomic(1, &ipstat.ips_badvers);
1061 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1062 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_BAD_VERSION,
1063 NULL, 0);
1064 return IPINPUT_FREED;
1065 }
1066
1067 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1068 if (hlen < sizeof(struct ip)) {
1069 OSAddAtomic(1, &ipstat.ips_total);
1070 OSAddAtomic(1, &ipstat.ips_badhlen);
1071 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1072 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_BAD_HDR_LENGTH,
1073 NULL, 0);
1074 return IPINPUT_FREED;
1075 }
1076
1077 if (hlen > m->m_len) {
1078 if ((m = m_pullup(m, hlen)) == NULL) {
1079 OSAddAtomic(1, &ipstat.ips_total);
1080 OSAddAtomic(1, &ipstat.ips_badhlen);
1081 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1082 return IPINPUT_FREED;
1083 }
1084 ip = mtod(m, struct ip *);
1085 *modm = m;
1086 }
1087
1088 if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT1) {
1089 m->m_pkthdr.pkt_ext_flags |= PKTF_EXT_L4S;
1090 }
1091
1092 /* 127/8 must not appear on wire - RFC1122 */
1093 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
1094 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
1095 /*
1096 * Allow for the following exceptions:
1097 *
1098 * 1. If the packet was sent to loopback (i.e. rcvif
1099 * would have been set earlier at output time.)
1100 *
1101 * 2. If the packet was sent out on loopback from a local
1102 * source address which belongs to a non-loopback
1103 * interface (i.e. rcvif may not necessarily be a
1104 * loopback interface, hence the test for PKTF_LOOP.)
1105 * Unlike IPv6, there is no interface scope ID, and
1106 * therefore we don't care so much about PKTF_IFINFO.
1107 */
1108 if (!(inifp->if_flags & IFF_LOOPBACK) &&
1109 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
1110 OSAddAtomic(1, &ipstat.ips_total);
1111 OSAddAtomic(1, &ipstat.ips_badaddr);
1112 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1113 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_INVALID_ADDR,
1114 NULL, 0);
1115 return IPINPUT_FREED;
1116 }
1117 }
1118
1119 /* IPv4 Link-Local Addresses as defined in RFC3927 */
1120 if ((IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) ||
1121 IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)))) {
1122 ip_linklocal_stat.iplls_in_total++;
1123 if (ip->ip_ttl != MAXTTL) {
1124 OSAddAtomic(1, &ip_linklocal_stat.iplls_in_badttl);
1125 /* Silently drop link local traffic with bad TTL */
1126 if (!ip_linklocal_in_allowbadttl) {
1127 OSAddAtomic(1, &ipstat.ips_total);
1128 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1129 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_BAD_TTL,
1130 NULL, 0);
1131 return IPINPUT_FREED;
1132 }
1133 }
1134 }
1135
1136 if (ip_cksum(m, hlen)) {
1137 OSAddAtomic(1, &ipstat.ips_total);
1138 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1139 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_BAD_CHECKSUM,
1140 NULL, 0);
1141 return IPINPUT_FREED;
1142 }
1143
1144 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
1145 struct ip *, ip, struct ifnet *, inifp,
1146 struct ip *, ip, struct ip6_hdr *, NULL);
1147
1148 /*
1149 * Convert fields to host representation.
1150 */
1151 #if BYTE_ORDER != BIG_ENDIAN
1152 NTOHS(ip->ip_len);
1153 #endif
1154
1155 if (ip->ip_len < hlen) {
1156 OSAddAtomic(1, &ipstat.ips_total);
1157 OSAddAtomic(1, &ipstat.ips_badlen);
1158 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1159 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_BAD_LENGTH,
1160 NULL, 0);
1161 return IPINPUT_FREED;
1162 }
1163
1164 #if BYTE_ORDER != BIG_ENDIAN
1165 NTOHS(ip->ip_off);
1166 #endif
1167
1168 /*
1169 * Check that the amount of data in the buffers
1170 * is as at least much as the IP header would have us expect.
1171 * Trim mbufs if longer than we expect.
1172 * Drop packet if shorter than we expect.
1173 */
1174 if (m->m_pkthdr.len < ip->ip_len) {
1175 OSAddAtomic(1, &ipstat.ips_total);
1176 OSAddAtomic(1, &ipstat.ips_tooshort);
1177 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1178 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_TOO_SHORT,
1179 NULL, 0);
1180 return IPINPUT_FREED;
1181 }
1182
1183 if (m->m_pkthdr.len > ip->ip_len) {
1184 ip_input_adjust(m, ip, inifp);
1185 }
1186
1187 /* for netstat route statistics */
1188 src_ip = ip->ip_src;
1189 len = m->m_pkthdr.len;
1190
1191 #if DUMMYNET
1192 check_with_pf:
1193 #endif /* DUMMYNET */
1194 #if PF
1195 /* Invoke inbound packet filter */
1196 if (PF_IS_ENABLED) {
1197 int error;
1198 ip_input_cpout_args(args, &args1, &init);
1199 ip = mtod(m, struct ip *);
1200 src_ip = ip->ip_src;
1201
1202 #if DUMMYNET
1203 error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, &args1);
1204 #else
1205 error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, NULL);
1206 #endif /* DUMMYNET */
1207 if (error != 0 || m == NULL) {
1208 if (m != NULL) {
1209 panic("%s: unexpected packet %p",
1210 __func__, m);
1211 /* NOTREACHED */
1212 }
1213 /* Already freed by callee */
1214 ip_input_update_nstat(inifp, src_ip, 1, len);
1215 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1216 OSAddAtomic(1, &ipstat.ips_total);
1217 return IPINPUT_FREED;
1218 }
1219 ip = mtod(m, struct ip *);
1220 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1221 *modm = m;
1222 ip_input_cpin_args(&args1, args);
1223 }
1224 #endif /* PF */
1225
1226 #if IPSEC
1227 if (ipsec_bypass == 0 && ipsec_get_history_count(m)) {
1228 retval = IPINPUT_DONTCHAIN; /* XXX scope for chaining here? */
1229 goto pass;
1230 }
1231 #endif
1232
1233 #if IPSEC
1234 pass:
1235 #endif
1236 /*
1237 * Process options and, if not destined for us,
1238 * ship it on. ip_dooptions returns 1 when an
1239 * error was detected (causing an icmp message
1240 * to be sent and the original packet to be freed).
1241 */
1242 ip_nhops = 0; /* for source routed packets */
1243 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, NULL)) {
1244 src_ip = ip->ip_src;
1245 ip_input_update_nstat(inifp, src_ip, 1, len);
1246 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1247 OSAddAtomic(1, &ipstat.ips_total);
1248 return IPINPUT_FREED;
1249 }
1250
1251 /*
1252 * Don't chain fragmented packets
1253 */
1254 if (ip->ip_off & ~(IP_DF | IP_RF)) {
1255 return IPINPUT_DONTCHAIN;
1256 }
1257
1258 /* Allow DHCP/BootP responses through */
1259 if ((inifp->if_eflags & IFEF_AUTOCONFIGURING) &&
1260 hlen == sizeof(struct ip) && ip->ip_p == IPPROTO_UDP) {
1261 struct udpiphdr *__single ui;
1262
1263 if (m->m_len < sizeof(struct udpiphdr) &&
1264 (m = m_pullup(m, sizeof(struct udpiphdr))) == NULL) {
1265 OSAddAtomic(1, &udpstat.udps_hdrops);
1266 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1267 OSAddAtomic(1, &ipstat.ips_total);
1268 return IPINPUT_FREED;
1269 }
1270 *modm = m;
1271 ui = mtod(m, struct udpiphdr *);
1272 if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) {
1273 ip_setdstifaddr_info(m, inifp->if_index, NULL);
1274 return IPINPUT_DONTCHAIN;
1275 }
1276 }
1277
1278 /* Avoid chaining raw sockets as ipsec checks occur later for them */
1279 if (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR) {
1280 return IPINPUT_DONTCHAIN;
1281 }
1282
1283 return retval;
1284 }
1285
1286 /*
1287 * Because the call to m_pullup() may freem the mbuf, the function frees the mbuf packet
1288 * chain before it return IP_CHECK_IF_DROP
1289 */
1290 static ip_check_if_result_t
ip_input_check_interface(struct mbuf ** mp,struct ip * ip,struct ifnet * inifp)1291 ip_input_check_interface(struct mbuf **mp, struct ip *ip, struct ifnet *inifp)
1292 {
1293 mbuf_ref_t m = *mp;
1294 struct in_ifaddr *__single ia = NULL;
1295 struct in_ifaddr *__single best_ia = NULL;
1296 ifnet_ref_t match_ifp = NULL;
1297 ip_check_if_result_t result = IP_CHECK_IF_NONE;
1298
1299 /*
1300 * Host broadcast and all network broadcast addresses are always a match
1301 */
1302 if (ip->ip_dst.s_addr == (u_int32_t)INADDR_BROADCAST ||
1303 ip->ip_dst.s_addr == INADDR_ANY) {
1304 ip_input_setdst_chain(m, inifp->if_index, NULL);
1305 return IP_CHECK_IF_OURS;
1306 }
1307
1308 /*
1309 * Check for a match in the hash bucket.
1310 */
1311 lck_rw_lock_shared(&in_ifaddr_rwlock);
1312 TAILQ_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
1313 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr) {
1314 best_ia = ia;
1315 match_ifp = best_ia->ia_ifp;
1316
1317 if (ia->ia_ifp == inifp || (inifp->if_flags & IFF_LOOPBACK) ||
1318 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
1319 /*
1320 * A locally originated packet or packet from the loopback
1321 * interface is always an exact interface address match
1322 */
1323 match_ifp = inifp;
1324 break;
1325 }
1326 /*
1327 * Continue the loop in case there's a exact match with another
1328 * interface
1329 */
1330 }
1331 }
1332 if (best_ia != NULL) {
1333 if (match_ifp != inifp && ipforwarding == 0 &&
1334 ((ip_checkinterface == IP_CHECKINTERFACE_HYBRID_ES &&
1335 (match_ifp->if_family == IFNET_FAMILY_IPSEC ||
1336 match_ifp->if_family == IFNET_FAMILY_UTUN)) ||
1337 ip_checkinterface == IP_CHECKINTERFACE_STRONG_ES)) {
1338 /*
1339 * Drop when interface address check is strict and forwarding
1340 * is disabled
1341 */
1342 result = IP_CHECK_IF_DROP;
1343 } else {
1344 result = IP_CHECK_IF_OURS;
1345 ip_input_setdst_chain(m, 0, best_ia);
1346 }
1347 }
1348 lck_rw_done(&in_ifaddr_rwlock);
1349
1350 if (result == IP_CHECK_IF_NONE && (inifp->if_flags & IFF_BROADCAST)) {
1351 /*
1352 * Check for broadcast addresses.
1353 *
1354 * Only accept broadcast packets that arrive via the matching
1355 * interface. Reception of forwarded directed broadcasts would be
1356 * handled via ip_forward() and ether_frameout() with the loopback
1357 * into the stack for SIMPLEX interfaces handled by ether_frameout().
1358 */
1359 struct ifaddr *__single ifa;
1360
1361 ifnet_lock_shared(inifp);
1362 TAILQ_FOREACH(ifa, &inifp->if_addrhead, ifa_link) {
1363 if (ifa->ifa_addr->sa_family != AF_INET) {
1364 continue;
1365 }
1366 ia = ifatoia(ifa);
1367 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == ip->ip_dst.s_addr ||
1368 ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
1369 ip_input_setdst_chain(m, 0, ia);
1370 result = IP_CHECK_IF_OURS;
1371 match_ifp = inifp;
1372 break;
1373 }
1374 }
1375 ifnet_lock_done(inifp);
1376 }
1377
1378 /* Allow DHCP/BootP responses through */
1379 if (result == IP_CHECK_IF_NONE && (inifp->if_eflags & IFEF_AUTOCONFIGURING) &&
1380 ip->ip_p == IPPROTO_UDP && (IP_VHL_HL(ip->ip_vhl) << 2) == sizeof(struct ip)) {
1381 struct udpiphdr *__single ui;
1382
1383 if (m->m_len < sizeof(struct udpiphdr)) {
1384 if ((m = m_pullup(m, sizeof(struct udpiphdr))) == NULL) {
1385 OSAddAtomic(1, &udpstat.udps_hdrops);
1386 *mp = NULL;
1387 return IP_CHECK_IF_DROP;
1388 }
1389 /*
1390 * m_pullup can return a different mbuf
1391 */
1392 *mp = m;
1393 ip = mtod(m, struct ip *);
1394 }
1395 ui = mtod(m, struct udpiphdr *);
1396 if (ntohs(ui->ui_dport) == IPPORT_BOOTPC) {
1397 ip_input_setdst_chain(m, inifp->if_index, NULL);
1398 result = IP_CHECK_IF_OURS;
1399 match_ifp = inifp;
1400 }
1401 }
1402
1403 if (result == IP_CHECK_IF_NONE) {
1404 if (ipforwarding == 0) {
1405 result = IP_CHECK_IF_DROP;
1406 } else {
1407 result = IP_CHECK_IF_FORWARD;
1408 ip_input_setdst_chain(m, inifp->if_index, NULL);
1409 }
1410 }
1411
1412 if (result == IP_CHECK_IF_OURS && match_ifp != inifp) {
1413 ipstat.ips_rcv_if_weak_match++;
1414
1415 /* Logging is too noisy when forwarding is enabled */
1416 if (ip_checkinterface_debug != 0 && ipforwarding == 0) {
1417 char src_str[MAX_IPv4_STR_LEN];
1418 char dst_str[MAX_IPv4_STR_LEN];
1419
1420 inet_ntop(AF_INET, &ip->ip_src, src_str, sizeof(src_str));
1421 inet_ntop(AF_INET, &ip->ip_dst, dst_str, sizeof(dst_str));
1422 os_log_info(OS_LOG_DEFAULT,
1423 "%s: weak ES interface match to %s for packet from %s to %s proto %u received via %s",
1424 __func__, best_ia->ia_ifp->if_xname, src_str, dst_str, ip->ip_p, inifp->if_xname);
1425 }
1426 } else if (result == IP_CHECK_IF_DROP) {
1427 if (ip_checkinterface_debug > 0) {
1428 char src_str[MAX_IPv4_STR_LEN];
1429 char dst_str[MAX_IPv4_STR_LEN];
1430
1431 inet_ntop(AF_INET, &ip->ip_src, src_str, sizeof(src_str));
1432 inet_ntop(AF_INET, &ip->ip_dst, dst_str, sizeof(dst_str));
1433 os_log(OS_LOG_DEFAULT,
1434 "%s: no interface match for packet from %s to %s proto %u received via %s",
1435 __func__, src_str, dst_str, ip->ip_p, inifp->if_xname);
1436 }
1437 mbuf_ref_t tmp_mbuf = m;
1438 while (tmp_mbuf != NULL) {
1439 ipstat.ips_rcv_if_no_match++;
1440 tmp_mbuf = tmp_mbuf->m_nextpkt;
1441 }
1442 m_drop_list(m, NULL, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_RCV_IF_NO_MATCH, NULL, 0);
1443 *mp = NULL;
1444 }
1445
1446 return result;
1447 }
1448
1449 static void
ip_input_second_pass(struct mbuf * m,struct ifnet * inifp,int npkts_in_chain,int bytes_in_chain,struct ip_fw_in_args * args)1450 ip_input_second_pass(struct mbuf *m, struct ifnet *inifp,
1451 int npkts_in_chain, int bytes_in_chain, struct ip_fw_in_args *args)
1452 {
1453 struct mbuf *tmp_mbuf = NULL;
1454 unsigned int hlen;
1455
1456 #pragma unused (args)
1457
1458 struct ip *__single ip = mtod(m, struct ip *);
1459 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1460
1461 OSAddAtomic(npkts_in_chain, &ipstat.ips_total);
1462
1463 /*
1464 * Naively assume we can attribute inbound data to the route we would
1465 * use to send to this destination. Asymmetric routing breaks this
1466 * assumption, but it still allows us to account for traffic from
1467 * a remote node in the routing table.
1468 * this has a very significant performance impact so we bypass
1469 * if nstat_collect is disabled. We may also bypass if the
1470 * protocol is tcp in the future because tcp will have a route that
1471 * we can use to attribute the data to. That does mean we would not
1472 * account for forwarded tcp traffic.
1473 */
1474 ip_input_update_nstat(inifp, ip->ip_src, npkts_in_chain,
1475 bytes_in_chain);
1476
1477 /*
1478 * Check our list of addresses, to see if the packet is for us.
1479 * If we don't have any addresses, assume any unicast packet
1480 * we receive might be for us (and let the upper layers deal
1481 * with it).
1482 */
1483 tmp_mbuf = m;
1484 if (TAILQ_EMPTY(&in_ifaddrhead)) {
1485 while (tmp_mbuf != NULL) {
1486 if (!(tmp_mbuf->m_flags & (M_MCAST | M_BCAST))) {
1487 ip_setdstifaddr_info(tmp_mbuf, inifp->if_index,
1488 NULL);
1489 }
1490 tmp_mbuf = mbuf_nextpkt(tmp_mbuf);
1491 }
1492 goto ours;
1493 }
1494
1495 /*
1496 * Enable a consistency check between the destination address
1497 * and the arrival interface for a unicast packet (the RFC 1122
1498 * strong ES model) if IP forwarding is disabled and the packet
1499 * is not locally generated
1500 *
1501 * XXX - Checking also should be disabled if the destination
1502 * address is ipnat'ed to a different interface.
1503 *
1504 * XXX - Checking is incompatible with IP aliases added
1505 * to the loopback interface instead of the interface where
1506 * the packets are received.
1507 */
1508 if (!IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
1509 ip_check_if_result_t ip_check_if_result = IP_CHECK_IF_NONE;
1510
1511 ip_check_if_result = ip_input_check_interface(&m, ip, inifp);
1512 ASSERT(ip_check_if_result != IP_CHECK_IF_NONE);
1513 if (ip_check_if_result == IP_CHECK_IF_OURS) {
1514 goto ours;
1515 } else if (ip_check_if_result == IP_CHECK_IF_DROP) {
1516 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1517 return;
1518 }
1519 } else {
1520 struct in_multi *__single inm;
1521 /*
1522 * See if we belong to the destination multicast group on the
1523 * arrival interface.
1524 */
1525 in_multihead_lock_shared();
1526 IN_LOOKUP_MULTI(&ip->ip_dst, inifp, inm);
1527 in_multihead_lock_done();
1528 if (inm == NULL) {
1529 OSAddAtomic(npkts_in_chain, &ipstat.ips_notmember);
1530 m_drop_list(m, NULL, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_UNKNOWN_MULTICAST_GROUP,
1531 NULL, 0);
1532 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1533 return;
1534 }
1535 ip_input_setdst_chain(m, inifp->if_index, NULL);
1536 INM_REMREF(inm);
1537 goto ours;
1538 }
1539
1540 tmp_mbuf = m;
1541 struct mbuf *__single nxt_mbuf = NULL;
1542 while (tmp_mbuf != NULL) {
1543 nxt_mbuf = mbuf_nextpkt(tmp_mbuf);
1544 /*
1545 * Not for us; forward if possible and desirable.
1546 */
1547 mbuf_setnextpkt(tmp_mbuf, NULL);
1548 if (ipforwarding == 0) {
1549 OSAddAtomic(1, &ipstat.ips_cantforward);
1550 m_drop(tmp_mbuf, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_CANNOT_FORWARD,
1551 NULL, 0);
1552 } else {
1553 ip_forward(tmp_mbuf, 0, NULL);
1554 }
1555 tmp_mbuf = nxt_mbuf;
1556 }
1557 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1558 return;
1559 ours:
1560 ip = mtod(m, struct ip *); /* in case it changed */
1561 /*
1562 * If offset is set, must reassemble.
1563 */
1564 if (ip->ip_off & ~(IP_DF | IP_RF)) {
1565 VERIFY(npkts_in_chain == 1);
1566 m = ip_reass(m);
1567 if (m == NULL) {
1568 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1569 return;
1570 }
1571 ip = mtod(m, struct ip *);
1572 /* Get the header length of the reassembled packet */
1573 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1574 }
1575
1576 /*
1577 * Further protocols expect the packet length to be w/o the
1578 * IP header.
1579 */
1580 ip->ip_len -= hlen;
1581
1582 #if IPSEC
1583 /*
1584 * enforce IPsec policy checking if we are seeing last header.
1585 * note that we do not visit this with protocols with pcb layer
1586 * code - like udp/tcp/raw ip.
1587 */
1588 if (ipsec_bypass == 0 && (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR)) {
1589 VERIFY(npkts_in_chain == 1);
1590 if (ipsec4_in_reject(m, NULL)) {
1591 IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
1592 m_drop(tmp_mbuf, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IPSEC_REJECT,
1593 NULL, 0);
1594 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1595 return;
1596 }
1597 }
1598 #endif /* IPSEC */
1599
1600 /*
1601 * Switch out to protocol's input routine.
1602 */
1603 OSAddAtomic(npkts_in_chain, &ipstat.ips_delivered);
1604
1605 ip_input_dispatch_chain(m);
1606
1607 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
1608 return;
1609 }
1610
1611 void
ip_input_process_list(struct mbuf * packet_list)1612 ip_input_process_list(struct mbuf *packet_list)
1613 {
1614 pktchain_elm_t pktchain_tbl[PKTTBL_SZ];
1615
1616 mbuf_ref_t packet = NULL;
1617 mbuf_ref_t modm = NULL; /* modified mbuf */
1618 int retval = 0;
1619 #if (DEBUG || DEVELOPMENT)
1620 struct timeval start_tv;
1621 #endif /* (DEBUG || DEVELOPMENT) */
1622 int num_pkts = 0;
1623 int chain = 0;
1624 struct ip_fw_in_args args;
1625
1626 if (ip_chaining == 0) {
1627 mbuf_ref_t m = packet_list;
1628 #if (DEBUG || DEVELOPMENT)
1629 if (ip_input_measure) {
1630 net_perf_start_time(&net_perf, &start_tv);
1631 }
1632 #endif /* (DEBUG || DEVELOPMENT) */
1633
1634 while (m) {
1635 packet_list = mbuf_nextpkt(m);
1636 mbuf_setnextpkt(m, NULL);
1637 ip_input(m);
1638 m = packet_list;
1639 num_pkts++;
1640 }
1641 #if (DEBUG || DEVELOPMENT)
1642 if (ip_input_measure) {
1643 net_perf_measure_time(&net_perf, &start_tv, num_pkts);
1644 }
1645 #endif /* (DEBUG || DEVELOPMENT) */
1646 return;
1647 }
1648 #if (DEBUG || DEVELOPMENT)
1649 if (ip_input_measure) {
1650 net_perf_start_time(&net_perf, &start_tv);
1651 }
1652 #endif /* (DEBUG || DEVELOPMENT) */
1653
1654 bzero(&pktchain_tbl, sizeof(pktchain_tbl));
1655 restart_list_process:
1656 chain = 0;
1657 for (packet = packet_list; packet; packet = packet_list) {
1658 m_add_crumb(packet, PKT_CRUMB_IP_INPUT);
1659
1660 packet_list = mbuf_nextpkt(packet);
1661 mbuf_setnextpkt(packet, NULL);
1662
1663 num_pkts++;
1664 modm = NULL;
1665 bzero(&args, sizeof(args));
1666
1667 retval = ip_input_first_pass(packet, &args, &modm);
1668
1669 if (retval == IPINPUT_DOCHAIN) {
1670 if (modm) {
1671 packet = modm;
1672 }
1673 packet = ip_chain_insert(packet, &pktchain_tbl[0]);
1674 if (packet == NULL) {
1675 ipstat.ips_rxc_chained++;
1676 chain++;
1677 if (chain > ip_chainsz) {
1678 break;
1679 }
1680 } else {
1681 ipstat.ips_rxc_collisions++;
1682 break;
1683 }
1684 } else if (retval == IPINPUT_DONTCHAIN) {
1685 /* in order to preserve order, exit from chaining */
1686 if (modm) {
1687 packet = modm;
1688 }
1689 ipstat.ips_rxc_notchain++;
1690 break;
1691 } else {
1692 /* packet was freed or delivered, do nothing. */
1693 }
1694 }
1695
1696 /* do second pass here for pktchain_tbl */
1697 if (chain) {
1698 ip_input_second_pass_loop_tbl(&pktchain_tbl[0], &args);
1699 }
1700
1701 if (packet) {
1702 /*
1703 * equivalent update in chaining case if performed in
1704 * ip_input_second_pass_loop_tbl().
1705 */
1706 #if (DEBUG || DEVELOPMENT)
1707 if (ip_input_measure) {
1708 net_perf_histogram(&net_perf, 1);
1709 }
1710 #endif /* (DEBUG || DEVELOPMENT) */
1711 ip_input_second_pass(packet, packet->m_pkthdr.rcvif,
1712 1, packet->m_pkthdr.len, &args);
1713 }
1714
1715 if (packet_list) {
1716 goto restart_list_process;
1717 }
1718
1719 #if (DEBUG || DEVELOPMENT)
1720 if (ip_input_measure) {
1721 net_perf_measure_time(&net_perf, &start_tv, num_pkts);
1722 }
1723 #endif /* (DEBUG || DEVELOPMENT) */
1724 }
1725 /*
1726 * Ip input routine. Checksum and byte swap header. If fragmented
1727 * try to reassemble. Process options. Pass to next level.
1728 */
1729 void
ip_input(struct mbuf * m)1730 ip_input(struct mbuf *m)
1731 {
1732 struct ip *__single ip;
1733 unsigned int hlen;
1734 u_short sum = 0;
1735 #if DUMMYNET
1736 struct ip_fw_args args;
1737 struct m_tag *__single tag;
1738 #endif
1739 ipfilter_t __single inject_filter_ref = NULL;
1740 ifnet_ref_t inifp;
1741
1742 /* Check if the mbuf is still valid after interface filter processing */
1743 MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
1744 inifp = m->m_pkthdr.rcvif;
1745 VERIFY(inifp != NULL);
1746
1747 m_add_crumb(m, PKT_CRUMB_IP_INPUT);
1748
1749 ipstat.ips_rxc_notlist++;
1750
1751 /* Perform IP header alignment fixup, if needed */
1752 IP_HDR_ALIGNMENT_FIXUP(m, inifp, return );
1753
1754 m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
1755
1756 #if DUMMYNET
1757 bzero(&args, sizeof(struct ip_fw_args));
1758
1759 /*
1760 * Don't bother searching for tag(s) if there's none.
1761 */
1762 if (SLIST_EMPTY(&m->m_pkthdr.tags)) {
1763 goto ipfw_tags_done;
1764 }
1765
1766 /* Grab info from mtags prepended to the chain */
1767 if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1768 KERNEL_TAG_TYPE_DUMMYNET)) != NULL) {
1769 struct dn_pkt_tag *__single dn_tag;
1770
1771 dn_tag = (struct dn_pkt_tag *)(tag->m_tag_data);
1772 args.fwa_pf_rule = dn_tag->dn_pf_rule;
1773
1774 m_tag_delete(m, tag);
1775 }
1776
1777 #if DIAGNOSTIC
1778 if (m == NULL || !(m->m_flags & M_PKTHDR)) {
1779 panic("ip_input no HDR");
1780 }
1781 #endif
1782
1783 if (args.fwa_pf_rule) {
1784 /* dummynet already filtered us */
1785 ip = mtod(m, struct ip *);
1786 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1787 inject_filter_ref = ipf_get_inject_filter(m);
1788 if (args.fwa_pf_rule) {
1789 goto check_with_pf;
1790 }
1791 }
1792 ipfw_tags_done:
1793 #endif /* DUMMYNET */
1794
1795 /*
1796 * No need to process packet twice if we've already seen it.
1797 */
1798 if (!SLIST_EMPTY(&m->m_pkthdr.tags)) {
1799 inject_filter_ref = ipf_get_inject_filter(m);
1800 }
1801 if (inject_filter_ref != NULL) {
1802 ip = mtod(m, struct ip *);
1803 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1804
1805 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
1806 struct ip *, ip, struct ifnet *, inifp,
1807 struct ip *, ip, struct ip6_hdr *, NULL);
1808
1809 ip->ip_len = ntohs(ip->ip_len) - (u_short)hlen;
1810 ip->ip_off = ntohs(ip->ip_off);
1811 ip_proto_dispatch_in(m, hlen, ip->ip_p, inject_filter_ref);
1812 return;
1813 }
1814
1815 if (__improbable(m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT)) {
1816 if_ports_used_match_mbuf(inifp, PF_INET, m);
1817 }
1818
1819 OSAddAtomic(1, &ipstat.ips_total);
1820 if (m->m_pkthdr.len < sizeof(struct ip)) {
1821 goto tooshort;
1822 }
1823
1824 if (m->m_len < sizeof(struct ip) &&
1825 (m = m_pullup(m, sizeof(struct ip))) == NULL) {
1826 OSAddAtomic(1, &ipstat.ips_toosmall);
1827 return;
1828 }
1829 ip = mtod(m, struct ip *);
1830
1831 KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr,
1832 ip->ip_p, ip->ip_off, ip->ip_len);
1833
1834 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
1835 OSAddAtomic(1, &ipstat.ips_badvers);
1836 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_BAD_VERSION,
1837 NULL, 0);
1838 goto bad;
1839 }
1840
1841 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1842 if (hlen < sizeof(struct ip)) { /* minimum header length */
1843 OSAddAtomic(1, &ipstat.ips_badhlen);
1844 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_BAD_HDR_LENGTH,
1845 NULL, 0);
1846 goto bad;
1847 }
1848 if (hlen > m->m_len) {
1849 if ((m = m_pullup(m, hlen)) == NULL) {
1850 OSAddAtomic(1, &ipstat.ips_badhlen);
1851 return;
1852 }
1853 ip = mtod(m, struct ip *);
1854 }
1855
1856 /* 127/8 must not appear on wire - RFC1122 */
1857 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
1858 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
1859 /*
1860 * Allow for the following exceptions:
1861 *
1862 * 1. If the packet was sent to loopback (i.e. rcvif
1863 * would have been set earlier at output time.)
1864 *
1865 * 2. If the packet was sent out on loopback from a local
1866 * source address which belongs to a non-loopback
1867 * interface (i.e. rcvif may not necessarily be a
1868 * loopback interface, hence the test for PKTF_LOOP.)
1869 * Unlike IPv6, there is no interface scope ID, and
1870 * therefore we don't care so much about PKTF_IFINFO.
1871 */
1872 if (!(inifp->if_flags & IFF_LOOPBACK) &&
1873 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
1874 OSAddAtomic(1, &ipstat.ips_badaddr);
1875 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_INVALID_ADDR,
1876 NULL, 0);
1877 goto bad;
1878 }
1879 }
1880
1881 /* IPv4 Link-Local Addresses as defined in RFC3927 */
1882 if ((IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) ||
1883 IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)))) {
1884 ip_linklocal_stat.iplls_in_total++;
1885 if (ip->ip_ttl != MAXTTL) {
1886 OSAddAtomic(1, &ip_linklocal_stat.iplls_in_badttl);
1887 /* Silently drop link local traffic with bad TTL */
1888 if (!ip_linklocal_in_allowbadttl) {
1889 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_BAD_TTL,
1890 NULL, 0);
1891 goto bad;
1892 }
1893 }
1894 }
1895
1896 sum = ip_cksum(m, hlen);
1897 if (sum) {
1898 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_BAD_CHECKSUM,
1899 NULL, 0);
1900 goto bad;
1901 }
1902
1903 DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
1904 struct ip *, ip, struct ifnet *, inifp,
1905 struct ip *, ip, struct ip6_hdr *, NULL);
1906
1907 /*
1908 * Naively assume we can attribute inbound data to the route we would
1909 * use to send to this destination. Asymmetric routing breaks this
1910 * assumption, but it still allows us to account for traffic from
1911 * a remote node in the routing table.
1912 * this has a very significant performance impact so we bypass
1913 * if nstat_collect is disabled. We may also bypass if the
1914 * protocol is tcp in the future because tcp will have a route that
1915 * we can use to attribute the data to. That does mean we would not
1916 * account for forwarded tcp traffic.
1917 */
1918 if (nstat_collect) {
1919 rtentry_ref_t rt = ifnet_cached_rtlookup_inet(inifp, ip->ip_src);
1920 if (rt != NULL) {
1921 nstat_route_rx(rt, 1, m->m_pkthdr.len, 0);
1922 rtfree(rt);
1923 }
1924 }
1925
1926 /*
1927 * Convert fields to host representation.
1928 */
1929 #if BYTE_ORDER != BIG_ENDIAN
1930 NTOHS(ip->ip_len);
1931 #endif
1932
1933 if (ip->ip_len < hlen) {
1934 OSAddAtomic(1, &ipstat.ips_badlen);
1935 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_BAD_LENGTH,
1936 NULL, 0);
1937 goto bad;
1938 }
1939
1940 #if BYTE_ORDER != BIG_ENDIAN
1941 NTOHS(ip->ip_off);
1942 #endif
1943 /*
1944 * Check that the amount of data in the buffers
1945 * is as at least much as the IP header would have us expect.
1946 * Trim mbufs if longer than we expect.
1947 * Drop packet if shorter than we expect.
1948 */
1949 if (m->m_pkthdr.len < ip->ip_len) {
1950 tooshort:
1951 OSAddAtomic(1, &ipstat.ips_tooshort);
1952 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_TOO_SHORT,
1953 NULL, 0);
1954 goto bad;
1955 }
1956 if (m->m_pkthdr.len > ip->ip_len) {
1957 ip_input_adjust(m, ip, inifp);
1958 }
1959
1960 #if DUMMYNET
1961 check_with_pf:
1962 #endif
1963 #if PF
1964 /* Invoke inbound packet filter */
1965 if (PF_IS_ENABLED) {
1966 int error;
1967 #if DUMMYNET
1968 error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, &args);
1969 #else
1970 error = pf_af_hook(inifp, NULL, &m, AF_INET, TRUE, NULL);
1971 #endif /* DUMMYNET */
1972 if (error != 0 || m == NULL) {
1973 if (m != NULL) {
1974 panic("%s: unexpected packet %p",
1975 __func__, m);
1976 /* NOTREACHED */
1977 }
1978 /* Already freed by callee */
1979 return;
1980 }
1981 ip = mtod(m, struct ip *);
1982 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1983 }
1984 #endif /* PF */
1985
1986 #if IPSEC
1987 if (ipsec_bypass == 0 && ipsec_get_history_count(m)) {
1988 goto pass;
1989 }
1990 #endif
1991
1992 pass:
1993 /*
1994 * Process options and, if not destined for us,
1995 * ship it on. ip_dooptions returns 1 when an
1996 * error was detected (causing an icmp message
1997 * to be sent and the original packet to be freed).
1998 */
1999 ip_nhops = 0; /* for source routed packets */
2000 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, NULL)) {
2001 return;
2002 }
2003
2004 /*
2005 * Check our list of addresses, to see if the packet is for us.
2006 * If we don't have any addresses, assume any unicast packet
2007 * we receive might be for us (and let the upper layers deal
2008 * with it).
2009 */
2010 if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST))) {
2011 ip_setdstifaddr_info(m, inifp->if_index, NULL);
2012 goto ours;
2013 }
2014
2015 /*
2016 * Enable a consistency check between the destination address
2017 * and the arrival interface for a unicast packet (the RFC 1122
2018 * strong ES model) if IP forwarding is disabled and the packet
2019 * is not locally generated and the packet is not subject to
2020 * 'ipfw fwd'.
2021 *
2022 * XXX - Checking also should be disabled if the destination
2023 * address is ipnat'ed to a different interface.
2024 *
2025 * XXX - Checking is incompatible with IP aliases added
2026 * to the loopback interface instead of the interface where
2027 * the packets are received.
2028 */
2029 if (!IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
2030 ip_check_if_result_t check_if_result = IP_CHECK_IF_NONE;
2031
2032 check_if_result = ip_input_check_interface(&m, ip, inifp);
2033 ASSERT(check_if_result != IP_CHECK_IF_NONE);
2034 if (check_if_result == IP_CHECK_IF_OURS) {
2035 goto ours;
2036 } else if (check_if_result == IP_CHECK_IF_DROP) {
2037 return;
2038 }
2039 } else {
2040 struct in_multi *__single inm;
2041 /*
2042 * See if we belong to the destination multicast group on the
2043 * arrival interface.
2044 */
2045 in_multihead_lock_shared();
2046 IN_LOOKUP_MULTI(&ip->ip_dst, inifp, inm);
2047 in_multihead_lock_done();
2048 if (inm == NULL) {
2049 OSAddAtomic(1, &ipstat.ips_notmember);
2050 HTONS(ip->ip_len);
2051 HTONS(ip->ip_off);
2052 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING,
2053 DROP_REASON_IP_UNKNOWN_MULTICAST_GROUP, NULL, 0);
2054 return;
2055 }
2056 ip_setdstifaddr_info(m, inifp->if_index, NULL);
2057 INM_REMREF(inm);
2058 goto ours;
2059 }
2060
2061 /*
2062 * Not for us; forward if possible and desirable.
2063 */
2064 if (ipforwarding == 0) {
2065 OSAddAtomic(1, &ipstat.ips_cantforward);
2066 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_UNKNOWN_MULTICAST_GROUP,
2067 NULL, 0);
2068 } else {
2069 ip_forward(m, 0, NULL);
2070 }
2071 return;
2072
2073 ours:
2074 /*
2075 * If offset or IP_MF are set, must reassemble.
2076 */
2077 if (ip->ip_off & ~(IP_DF | IP_RF)) {
2078 m = ip_reass(m);
2079 if (m == NULL) {
2080 return;
2081 }
2082 ip = mtod(m, struct ip *);
2083 /* Get the header length of the reassembled packet */
2084 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
2085 }
2086
2087 /*
2088 * Further protocols expect the packet length to be w/o the
2089 * IP header.
2090 */
2091 ip->ip_len -= hlen;
2092
2093
2094 #if IPSEC
2095 /*
2096 * enforce IPsec policy checking if we are seeing last header.
2097 * note that we do not visit this with protocols with pcb layer
2098 * code - like udp/tcp/raw ip.
2099 */
2100 if (ipsec_bypass == 0 && (ip_protox[ip->ip_p]->pr_flags & PR_LASTHDR)) {
2101 if (ipsec4_in_reject(m, NULL)) {
2102 IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
2103 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IPSEC_REJECT,
2104 NULL, 0);
2105 goto bad;
2106 }
2107 }
2108 #endif /* IPSEC */
2109
2110 /*
2111 * Switch out to protocol's input routine.
2112 */
2113 OSAddAtomic(1, &ipstat.ips_delivered);
2114
2115 ip_proto_dispatch_in(m, hlen, ip->ip_p, 0);
2116 bad:
2117 KERNEL_DEBUG(DBG_LAYER_END, 0, 0, 0, 0, 0);
2118 }
2119
2120 static void
ipq_updateparams(void)2121 ipq_updateparams(void)
2122 {
2123 LCK_MTX_ASSERT(&ipqlock, LCK_MTX_ASSERT_OWNED);
2124 /*
2125 * -1 for unlimited allocation.
2126 */
2127 if (maxnipq < 0) {
2128 ipq_limit = 0;
2129 }
2130 /*
2131 * Positive number for specific bound.
2132 */
2133 if (maxnipq > 0) {
2134 ipq_limit = maxnipq;
2135 }
2136 /*
2137 * Zero specifies no further fragment queue allocation -- set the
2138 * bound very low, but rely on implementation elsewhere to actually
2139 * prevent allocation and reclaim current queues.
2140 */
2141 if (maxnipq == 0) {
2142 ipq_limit = 1;
2143 }
2144 /*
2145 * Arm the purge timer if not already and if there's work to do
2146 */
2147 frag_sched_timeout();
2148 }
2149
2150 static int
2151 sysctl_maxnipq SYSCTL_HANDLER_ARGS
2152 {
2153 #pragma unused(arg1, arg2)
2154 int error, i;
2155
2156 lck_mtx_lock(&ipqlock);
2157 i = maxnipq;
2158 error = sysctl_handle_int(oidp, &i, 0, req);
2159 if (error || req->newptr == USER_ADDR_NULL) {
2160 goto done;
2161 }
2162 /* impose bounds */
2163 if (i < -1 || i > (nmbclusters / 4)) {
2164 error = EINVAL;
2165 goto done;
2166 }
2167 maxnipq = i;
2168 ipq_updateparams();
2169 done:
2170 lck_mtx_unlock(&ipqlock);
2171 return error;
2172 }
2173
2174 static int
2175 sysctl_maxfragsperpacket SYSCTL_HANDLER_ARGS
2176 {
2177 #pragma unused(arg1, arg2)
2178 int error, i;
2179
2180 lck_mtx_lock(&ipqlock);
2181 i = maxfragsperpacket;
2182 error = sysctl_handle_int(oidp, &i, 0, req);
2183 if (error || req->newptr == USER_ADDR_NULL) {
2184 goto done;
2185 }
2186 maxfragsperpacket = i;
2187 ipq_updateparams(); /* see if we need to arm timer */
2188 done:
2189 lck_mtx_unlock(&ipqlock);
2190 return error;
2191 }
2192
2193 /*
2194 * Take incoming datagram fragment and try to reassemble it into
2195 * whole datagram. If a chain for reassembly of this datagram already
2196 * exists, then it is given as fp; otherwise have to make a chain.
2197 *
2198 * The IP header is *NOT* adjusted out of iplen (but in host byte order).
2199 */
2200 static struct mbuf *
ip_reass(struct mbuf * m)2201 ip_reass(struct mbuf *m)
2202 {
2203 struct ip *__single ip;
2204 mbuf_ref_t p, q, nq, t;
2205 struct ipq *__single fp = NULL;
2206 struct ipqhead *__single head;
2207 int i, hlen, next;
2208 u_int8_t ecn, ecn0;
2209 uint32_t csum, csum_flags;
2210 uint16_t hash;
2211 struct fq_head dfq;
2212
2213 MBUFQ_INIT(&dfq); /* for deferred frees */
2214
2215 /* If maxnipq or maxfragsperpacket is 0, never accept fragments. */
2216 if (maxnipq == 0 || maxfragsperpacket == 0) {
2217 ipstat.ips_fragments++;
2218 ipstat.ips_fragdropped++;
2219 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_FRAG_NOT_ACCEPTED,
2220 NULL, 0);
2221 if (nipq > 0) {
2222 lck_mtx_lock(&ipqlock);
2223 frag_sched_timeout(); /* purge stale fragments */
2224 lck_mtx_unlock(&ipqlock);
2225 }
2226 return NULL;
2227 }
2228
2229 ip = mtod(m, struct ip *);
2230 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
2231
2232 lck_mtx_lock(&ipqlock);
2233
2234 hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
2235 head = &ipq[hash];
2236
2237 /*
2238 * Look for queue of fragments
2239 * of this datagram.
2240 */
2241 TAILQ_FOREACH(fp, head, ipq_list) {
2242 if (ip->ip_id == fp->ipq_id &&
2243 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
2244 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
2245 ip->ip_p == fp->ipq_p) {
2246 goto found;
2247 }
2248 }
2249
2250 fp = NULL;
2251
2252 /*
2253 * Attempt to trim the number of allocated fragment queues if it
2254 * exceeds the administrative limit.
2255 */
2256 if ((nipq > (unsigned)maxnipq) && (maxnipq > 0)) {
2257 /*
2258 * drop something from the tail of the current queue
2259 * before proceeding further
2260 */
2261 struct ipq *__single fq = TAILQ_LAST(head, ipqhead);
2262 if (fq == NULL) { /* gak */
2263 for (i = 0; i < IPREASS_NHASH; i++) {
2264 struct ipq *__single r = TAILQ_LAST(&ipq[i], ipqhead);
2265 if (r) {
2266 ipstat.ips_fragdropped += r->ipq_nfrags;
2267 frag_freef(&ipq[i], r, DROP_REASON_IP_FRAG_TOO_MANY);
2268 break;
2269 }
2270 }
2271 } else {
2272 ipstat.ips_fragdropped += fq->ipq_nfrags;
2273 frag_freef(head, fq, DROP_REASON_IP_FRAG_TOO_MANY);
2274 }
2275 }
2276
2277 found:
2278 /*
2279 * Leverage partial checksum offload for IP fragments. Narrow down
2280 * the scope to cover only UDP without IP options, as that is the
2281 * most common case.
2282 *
2283 * Perform 1's complement adjustment of octets that got included/
2284 * excluded in the hardware-calculated checksum value. Ignore cases
2285 * where the value includes the entire IPv4 header span, as the sum
2286 * for those octets would already be 0 by the time we get here; IP
2287 * has already performed its header checksum validation. Also take
2288 * care of any trailing bytes and subtract out their partial sum.
2289 */
2290 if (ip->ip_p == IPPROTO_UDP && hlen == sizeof(struct ip) &&
2291 (m->m_pkthdr.csum_flags &
2292 (CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
2293 (CSUM_DATA_VALID | CSUM_PARTIAL)) {
2294 uint32_t start = m->m_pkthdr.csum_rx_start;
2295 int32_t trailer = (m_pktlen(m) - ip->ip_len);
2296 uint32_t swbytes = (uint32_t)trailer;
2297
2298 csum = m->m_pkthdr.csum_rx_val;
2299
2300 ASSERT(trailer >= 0);
2301 if ((start != 0 && start != hlen) || trailer != 0) {
2302 uint32_t datalen = ip->ip_len - hlen;
2303
2304 #if BYTE_ORDER != BIG_ENDIAN
2305 if (start < hlen) {
2306 HTONS(ip->ip_len);
2307 HTONS(ip->ip_off);
2308 }
2309 #endif /* BYTE_ORDER != BIG_ENDIAN */
2310 /* callee folds in sum */
2311 csum = m_adj_sum16(m, start, hlen, datalen, csum);
2312 if (hlen > start) {
2313 swbytes += (hlen - start);
2314 } else {
2315 swbytes += (start - hlen);
2316 }
2317 #if BYTE_ORDER != BIG_ENDIAN
2318 if (start < hlen) {
2319 NTOHS(ip->ip_off);
2320 NTOHS(ip->ip_len);
2321 }
2322 #endif /* BYTE_ORDER != BIG_ENDIAN */
2323 }
2324 csum_flags = m->m_pkthdr.csum_flags;
2325
2326 if (swbytes != 0) {
2327 udp_in_cksum_stats(swbytes);
2328 }
2329 if (trailer != 0) {
2330 m_adj(m, -trailer);
2331 }
2332 } else {
2333 csum = 0;
2334 csum_flags = 0;
2335 }
2336
2337 /* Invalidate checksum */
2338 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
2339
2340 ipstat.ips_fragments++;
2341
2342 /*
2343 * Adjust ip_len to not reflect header,
2344 * convert offset of this to bytes.
2345 */
2346 ip->ip_len -= hlen;
2347 if (ip->ip_off & IP_MF) {
2348 /*
2349 * Make sure that fragments have a data length
2350 * that's a non-zero multiple of 8 bytes.
2351 */
2352 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
2353 OSAddAtomic(1, &ipstat.ips_toosmall);
2354 /*
2355 * Reassembly queue may have been found if previous
2356 * fragments were valid; given that this one is bad,
2357 * we need to drop it. Make sure to set fp to NULL
2358 * if not already, since we don't want to decrement
2359 * ipq_nfrags as it doesn't include this packet.
2360 */
2361 fp = NULL;
2362 goto dropfrag;
2363 }
2364 m->m_flags |= M_FRAG;
2365 } else {
2366 /* Clear the flag in case packet comes from loopback */
2367 m->m_flags &= ~M_FRAG;
2368 }
2369 ip->ip_off = (u_short)(ip->ip_off << 3);
2370
2371 m->m_pkthdr.pkt_hdr = ip;
2372
2373 /* Previous ip_reass() started here. */
2374 /*
2375 * Presence of header sizes in mbufs
2376 * would confuse code below.
2377 */
2378 m->m_data += hlen;
2379 m->m_len -= hlen;
2380
2381 /*
2382 * If first fragment to arrive, create a reassembly queue.
2383 */
2384 if (fp == NULL) {
2385 fp = ipq_alloc();
2386 if (fp == NULL) {
2387 goto dropfrag;
2388 }
2389 TAILQ_INSERT_HEAD(head, fp, ipq_list);
2390 nipq++;
2391 fp->ipq_nfrags = 1;
2392 fp->ipq_ttl = IPFRAGTTL;
2393 fp->ipq_p = ip->ip_p;
2394 fp->ipq_id = ip->ip_id;
2395 fp->ipq_src = ip->ip_src;
2396 fp->ipq_dst = ip->ip_dst;
2397 fp->ipq_frags = m;
2398 m->m_nextpkt = NULL;
2399 /*
2400 * If the first fragment has valid checksum offload
2401 * info, the rest of fragments are eligible as well.
2402 */
2403 if (csum_flags != 0) {
2404 fp->ipq_csum = csum;
2405 fp->ipq_csum_flags = csum_flags;
2406 }
2407 m = NULL; /* nothing to return */
2408 goto done;
2409 } else {
2410 fp->ipq_nfrags++;
2411 }
2412
2413 #define GETIP(m) ((struct ip *)((m)->m_pkthdr.pkt_hdr))
2414
2415 /*
2416 * Handle ECN by comparing this segment with the first one;
2417 * if CE is set, do not lose CE.
2418 * drop if CE and not-ECT are mixed for the same packet.
2419 */
2420 ecn = ip->ip_tos & IPTOS_ECN_MASK;
2421 ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
2422 if (ecn == IPTOS_ECN_CE) {
2423 if (ecn0 == IPTOS_ECN_NOTECT) {
2424 goto dropfrag;
2425 }
2426 if (ecn0 != IPTOS_ECN_CE) {
2427 GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
2428 }
2429 }
2430 if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) {
2431 goto dropfrag;
2432 }
2433
2434 /*
2435 * Find a segment which begins after this one does.
2436 */
2437 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
2438 if (GETIP(q)->ip_off > ip->ip_off) {
2439 break;
2440 }
2441 }
2442
2443 /*
2444 * If there is a preceding segment, it may provide some of
2445 * our data already. If so, drop the data from the incoming
2446 * segment. If it provides all of our data, drop us, otherwise
2447 * stick new segment in the proper place.
2448 *
2449 * If some of the data is dropped from the preceding
2450 * segment, then it's checksum is invalidated.
2451 */
2452 if (p) {
2453 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
2454 if (i > 0) {
2455 if (i >= ip->ip_len) {
2456 goto dropfrag;
2457 }
2458 m_adj(m, i);
2459 fp->ipq_csum_flags = 0;
2460 ip->ip_off += i;
2461 ip->ip_len -= i;
2462 }
2463 m->m_nextpkt = p->m_nextpkt;
2464 p->m_nextpkt = m;
2465 } else {
2466 m->m_nextpkt = fp->ipq_frags;
2467 fp->ipq_frags = m;
2468 }
2469
2470 /*
2471 * While we overlap succeeding segments trim them or,
2472 * if they are completely covered, dequeue them.
2473 */
2474 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
2475 q = nq) {
2476 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
2477 if (i < GETIP(q)->ip_len) {
2478 GETIP(q)->ip_len -= i;
2479 GETIP(q)->ip_off += i;
2480 m_adj(q, i);
2481 fp->ipq_csum_flags = 0;
2482 break;
2483 }
2484 nq = q->m_nextpkt;
2485 m->m_nextpkt = nq;
2486 ipstat.ips_fragdropped++;
2487 fp->ipq_nfrags--;
2488 /* defer freeing until after lock is dropped */
2489 MBUFQ_ENQUEUE(&dfq, q);
2490 }
2491
2492 /*
2493 * If this fragment contains similar checksum offload info
2494 * as that of the existing ones, accumulate checksum. Otherwise,
2495 * invalidate checksum offload info for the entire datagram.
2496 */
2497 if (csum_flags != 0 && csum_flags == fp->ipq_csum_flags) {
2498 fp->ipq_csum += csum;
2499 } else if (fp->ipq_csum_flags != 0) {
2500 fp->ipq_csum_flags = 0;
2501 }
2502
2503
2504 /*
2505 * Check for complete reassembly and perform frag per packet
2506 * limiting.
2507 *
2508 * Frag limiting is performed here so that the nth frag has
2509 * a chance to complete the packet before we drop the packet.
2510 * As a result, n+1 frags are actually allowed per packet, but
2511 * only n will ever be stored. (n = maxfragsperpacket.)
2512 *
2513 */
2514 next = 0;
2515 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
2516 if (GETIP(q)->ip_off != next) {
2517 if (fp->ipq_nfrags > maxfragsperpacket) {
2518 ipstat.ips_fragdropped += fp->ipq_nfrags;
2519 frag_freef(head, fp, DROP_REASON_IP_FRAG_TOO_MANY);
2520 }
2521 m = NULL; /* nothing to return */
2522 goto done;
2523 }
2524 next += GETIP(q)->ip_len;
2525 }
2526 /* Make sure the last packet didn't have the IP_MF flag */
2527 if (p->m_flags & M_FRAG) {
2528 if (fp->ipq_nfrags > maxfragsperpacket) {
2529 ipstat.ips_fragdropped += fp->ipq_nfrags;
2530 frag_freef(head, fp, DROP_REASON_IP_FRAG_TOO_MANY);
2531 }
2532 m = NULL; /* nothing to return */
2533 goto done;
2534 }
2535
2536 /*
2537 * Reassembly is complete. Make sure the packet is a sane size.
2538 */
2539 q = fp->ipq_frags;
2540 ip = GETIP(q);
2541 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
2542 ipstat.ips_toolong++;
2543 ipstat.ips_fragdropped += fp->ipq_nfrags;
2544 frag_freef(head, fp, DROP_REASON_IP_FRAG_TOO_LONG);
2545 m = NULL; /* nothing to return */
2546 goto done;
2547 }
2548
2549 /*
2550 * Concatenate fragments.
2551 */
2552 m = q;
2553 t = m->m_next;
2554 m->m_next = NULL;
2555 m_cat(m, t);
2556 nq = q->m_nextpkt;
2557 q->m_nextpkt = NULL;
2558 for (q = nq; q != NULL; q = nq) {
2559 nq = q->m_nextpkt;
2560 q->m_nextpkt = NULL;
2561 m_cat(m, q);
2562 }
2563
2564 /*
2565 * Store partial hardware checksum info from the fragment queue;
2566 * the receive start offset is set to 20 bytes (see code at the
2567 * top of this routine.)
2568 */
2569 if (fp->ipq_csum_flags != 0) {
2570 csum = fp->ipq_csum;
2571
2572 ADDCARRY(csum);
2573
2574 m->m_pkthdr.csum_rx_val = (uint16_t)csum;
2575 m->m_pkthdr.csum_rx_start = sizeof(struct ip);
2576 m->m_pkthdr.csum_flags = fp->ipq_csum_flags;
2577 } else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
2578 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
2579 /* loopback checksums are always OK */
2580 m->m_pkthdr.csum_data = 0xffff;
2581 m->m_pkthdr.csum_flags =
2582 CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
2583 CSUM_IP_CHECKED | CSUM_IP_VALID;
2584 }
2585
2586 /*
2587 * Create header for new ip packet by modifying header of first
2588 * packet; dequeue and discard fragment reassembly header.
2589 * Make header visible.
2590 */
2591 ip->ip_len = (u_short)((IP_VHL_HL(ip->ip_vhl) << 2) + next);
2592 ip->ip_src = fp->ipq_src;
2593 ip->ip_dst = fp->ipq_dst;
2594
2595 fp->ipq_frags = NULL; /* return to caller as 'm' */
2596 frag_freef(head, fp, DROP_REASON_UNSPECIFIED);
2597 fp = NULL;
2598
2599 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
2600 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
2601 /* some debugging cruft by sklower, below, will go away soon */
2602 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
2603 m_fixhdr(m);
2604 }
2605 ipstat.ips_reassembled++;
2606
2607 /* arm the purge timer if not already and if there's work to do */
2608 frag_sched_timeout();
2609 lck_mtx_unlock(&ipqlock);
2610 /* perform deferred free (if needed) now that lock is dropped */
2611 if (!MBUFQ_EMPTY(&dfq)) {
2612 MBUFQ_DRAIN(&dfq);
2613 }
2614 VERIFY(MBUFQ_EMPTY(&dfq));
2615 return m;
2616
2617 done:
2618 VERIFY(m == NULL);
2619 /* arm the purge timer if not already and if there's work to do */
2620 frag_sched_timeout();
2621 lck_mtx_unlock(&ipqlock);
2622 /* perform deferred free (if needed) */
2623 if (!MBUFQ_EMPTY(&dfq)) {
2624 MBUFQ_DRAIN(&dfq);
2625 }
2626 VERIFY(MBUFQ_EMPTY(&dfq));
2627 return NULL;
2628
2629 dropfrag:
2630 ipstat.ips_fragdropped++;
2631 if (fp != NULL) {
2632 fp->ipq_nfrags--;
2633 }
2634 /* arm the purge timer if not already and if there's work to do */
2635 frag_sched_timeout();
2636 lck_mtx_unlock(&ipqlock);
2637 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_FRAG_DROPPED,
2638 NULL, 0);
2639 /* perform deferred free (if needed) */
2640 if (!MBUFQ_EMPTY(&dfq)) {
2641 MBUFQ_DRAIN(&dfq);
2642 }
2643 VERIFY(MBUFQ_EMPTY(&dfq));
2644 return NULL;
2645 #undef GETIP
2646 }
2647
2648 /*
2649 * Free a fragment reassembly header and all
2650 * associated datagrams.
2651 */
2652 static void
frag_freef(struct ipqhead * fhp,struct ipq * fp,drop_reason_t drop_reason)2653 frag_freef(struct ipqhead *fhp, struct ipq *fp, drop_reason_t drop_reason)
2654 {
2655 LCK_MTX_ASSERT(&ipqlock, LCK_MTX_ASSERT_OWNED);
2656
2657 fp->ipq_nfrags = 0;
2658 if (fp->ipq_frags != NULL) {
2659 if (drop_reason == DROP_REASON_UNSPECIFIED) {
2660 m_freem_list(fp->ipq_frags);
2661 } else {
2662 m_drop_list(fp->ipq_frags, NULL, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, drop_reason, NULL, 0);
2663 }
2664 fp->ipq_frags = NULL;
2665 }
2666 TAILQ_REMOVE(fhp, fp, ipq_list);
2667 nipq--;
2668 ipq_free(fp);
2669 }
2670
2671 /*
2672 * IP reassembly timer processing
2673 */
2674 static void
frag_timeout(void * arg)2675 frag_timeout(void *arg)
2676 {
2677 #pragma unused(arg)
2678 struct ipq *__single fp;
2679 int i;
2680
2681 /*
2682 * Update coarse-grained networking timestamp (in sec.); the idea
2683 * is to piggy-back on the timeout callout to update the counter
2684 * returnable via net_uptime().
2685 */
2686 net_update_uptime();
2687
2688 lck_mtx_lock(&ipqlock);
2689 for (i = 0; i < IPREASS_NHASH; i++) {
2690 for (fp = TAILQ_FIRST(&ipq[i]); fp;) {
2691 struct ipq *__single fpp;
2692
2693 fpp = fp;
2694 fp = TAILQ_NEXT(fp, ipq_list);
2695 if (--fpp->ipq_ttl == 0) {
2696 ipstat.ips_fragtimeout += fpp->ipq_nfrags;
2697 frag_freef(&ipq[i], fpp, DROP_REASON_IP_FRAG_TIMEOUT);
2698 }
2699 }
2700 }
2701 /*
2702 * If we are over the maximum number of fragments
2703 * (due to the limit being lowered), drain off
2704 * enough to get down to the new limit.
2705 */
2706 if (maxnipq >= 0 && nipq > (unsigned)maxnipq) {
2707 for (i = 0; i < IPREASS_NHASH; i++) {
2708 while (nipq > (unsigned)maxnipq &&
2709 !TAILQ_EMPTY(&ipq[i])) {
2710 ipstat.ips_fragdropped +=
2711 TAILQ_FIRST(&ipq[i])->ipq_nfrags;
2712 frag_freef(&ipq[i], TAILQ_FIRST(&ipq[i]), DROP_REASON_IP_FRAG_DROPPED);
2713 }
2714 }
2715 }
2716 /* re-arm the purge timer if there's work to do */
2717 frag_timeout_run = 0;
2718 frag_sched_timeout();
2719 lck_mtx_unlock(&ipqlock);
2720 }
2721
2722 static void
frag_sched_timeout(void)2723 frag_sched_timeout(void)
2724 {
2725 LCK_MTX_ASSERT(&ipqlock, LCK_MTX_ASSERT_OWNED);
2726
2727 if (!frag_timeout_run && nipq > 0) {
2728 frag_timeout_run = 1;
2729 timeout(frag_timeout, NULL, hz);
2730 }
2731 }
2732
2733 /*
2734 * Drain off all datagram fragments.
2735 */
2736 static void
frag_drain(void)2737 frag_drain(void)
2738 {
2739 int i;
2740
2741 lck_mtx_lock(&ipqlock);
2742 for (i = 0; i < IPREASS_NHASH; i++) {
2743 while (!TAILQ_EMPTY(&ipq[i])) {
2744 ipstat.ips_fragdropped +=
2745 TAILQ_FIRST(&ipq[i])->ipq_nfrags;
2746 frag_freef(&ipq[i], TAILQ_FIRST(&ipq[i]), DROP_REASON_IP_FRAG_DRAINED);
2747 }
2748 }
2749 lck_mtx_unlock(&ipqlock);
2750 }
2751
2752 static struct ipq *
ipq_alloc(void)2753 ipq_alloc(void)
2754 {
2755 struct ipq *__single fp;
2756
2757 /*
2758 * See comments in ipq_updateparams(). Keep the count separate
2759 * from nipq since the latter represents the elements already
2760 * in the reassembly queues.
2761 */
2762 if (ipq_limit > 0 && ipq_count > ipq_limit) {
2763 return NULL;
2764 }
2765
2766 fp = kalloc_type(struct ipq, Z_NOWAIT | Z_ZERO);
2767 if (fp != NULL) {
2768 os_atomic_inc(&ipq_count, relaxed);
2769 }
2770 return fp;
2771 }
2772
2773 static void
ipq_free(struct ipq * fp)2774 ipq_free(struct ipq *fp)
2775 {
2776 kfree_type(struct ipq, fp);
2777 os_atomic_dec(&ipq_count, relaxed);
2778 }
2779
2780 /*
2781 * Drain callback
2782 */
2783 void
ip_drain(void)2784 ip_drain(void)
2785 {
2786 frag_drain(); /* fragments */
2787 in_rtqdrain(); /* protocol cloned routes */
2788 in_arpdrain(NULL); /* cloned routes: ARP */
2789 }
2790
2791 /*
2792 * Do option processing on a datagram,
2793 * possibly discarding it if bad options are encountered,
2794 * or forwarding it if source-routed.
2795 * The pass argument is used when operating in the IPSTEALTH
2796 * mode to tell what options to process:
2797 * [LS]SRR (pass 0) or the others (pass 1).
2798 * The reason for as many as two passes is that when doing IPSTEALTH,
2799 * non-routing options should be processed only if the packet is for us.
2800 * Returns 1 if packet has been forwarded/freed,
2801 * 0 if the packet should be processed further.
2802 */
2803 static int
ip_dooptions(struct mbuf * m,int pass,struct sockaddr_in * next_hop)2804 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
2805 {
2806 #pragma unused(pass)
2807 struct ip *ip = mtod(m, struct ip *);
2808 u_char *cp;
2809 struct ip_timestamp *__single ipt;
2810 struct in_ifaddr *__single ia;
2811 int opt, optlen, cnt, off, type = ICMP_PARAMPROB, forward = 0;
2812 uint8_t code = 0;
2813 struct in_addr *__single sin, dst;
2814 u_int32_t ntime;
2815 struct sockaddr_in ipaddr = {
2816 .sin_len = sizeof(ipaddr),
2817 .sin_family = AF_INET,
2818 .sin_port = 0,
2819 .sin_addr = { .s_addr = 0 },
2820 .sin_zero = { 0, }
2821 };
2822
2823 /* Expect 32-bit aligned data pointer on strict-align platforms */
2824 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
2825
2826 dst = ip->ip_dst;
2827 cp = (u_char *)(ip + 1);
2828 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
2829 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2830 opt = cp[IPOPT_OPTVAL];
2831 if (opt == IPOPT_EOL) {
2832 break;
2833 }
2834 if (opt == IPOPT_NOP) {
2835 optlen = 1;
2836 } else {
2837 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
2838 code = (uint8_t)(&cp[IPOPT_OLEN] - (u_char *)ip);
2839 goto bad;
2840 }
2841 optlen = cp[IPOPT_OLEN];
2842 if (optlen < IPOPT_OLEN + sizeof(*cp) ||
2843 optlen > cnt) {
2844 code = (uint8_t)(&cp[IPOPT_OLEN] - (u_char *)ip);
2845 goto bad;
2846 }
2847 }
2848 switch (opt) {
2849 default:
2850 break;
2851
2852 /*
2853 * Source routing with record.
2854 * Find interface with current destination address.
2855 * If none on this machine then drop if strictly routed,
2856 * or do nothing if loosely routed.
2857 * Record interface address and bring up next address
2858 * component. If strictly routed make sure next
2859 * address is on directly accessible net.
2860 */
2861 case IPOPT_LSRR:
2862 case IPOPT_SSRR:
2863 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
2864 code = (uint8_t)(&cp[IPOPT_OLEN] - (u_char *)ip);
2865 goto bad;
2866 }
2867 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
2868 code = (uint8_t)(&cp[IPOPT_OFFSET] - (u_char *)ip);
2869 goto bad;
2870 }
2871 ipaddr.sin_addr = ip->ip_dst;
2872 ia = ifatoia(ifa_ifwithaddr(SA(&ipaddr)));
2873 if (ia == NULL) {
2874 if (opt == IPOPT_SSRR) {
2875 type = ICMP_UNREACH;
2876 code = ICMP_UNREACH_SRCFAIL;
2877 goto bad;
2878 }
2879 if (!ip_dosourceroute) {
2880 goto nosourcerouting;
2881 }
2882 /*
2883 * Loose routing, and not at next destination
2884 * yet; nothing to do except forward.
2885 */
2886 break;
2887 } else {
2888 ifa_remref(&ia->ia_ifa);
2889 ia = NULL;
2890 }
2891 off--; /* 0 origin */
2892 if (off > optlen - (int)sizeof(struct in_addr)) {
2893 /*
2894 * End of source route. Should be for us.
2895 */
2896 if (!ip_acceptsourceroute) {
2897 goto nosourcerouting;
2898 }
2899 save_rte(cp, ip->ip_src);
2900 break;
2901 }
2902
2903 if (!ip_dosourceroute) {
2904 if (ipforwarding) {
2905 char buf[MAX_IPv4_STR_LEN];
2906 char buf2[MAX_IPv4_STR_LEN];
2907 /*
2908 * Acting as a router, so generate ICMP
2909 */
2910 nosourcerouting:
2911 log(LOG_WARNING,
2912 "attempted source route from %s "
2913 "to %s\n",
2914 inet_ntop(AF_INET, &ip->ip_src,
2915 buf, sizeof(buf)),
2916 inet_ntop(AF_INET, &ip->ip_dst,
2917 buf2, sizeof(buf2)));
2918 type = ICMP_UNREACH;
2919 code = ICMP_UNREACH_SRCFAIL;
2920 goto bad;
2921 } else {
2922 /*
2923 * Not acting as a router,
2924 * so silently drop.
2925 */
2926 OSAddAtomic(1, &ipstat.ips_cantforward);
2927 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_CANNOT_FORWARD,
2928 NULL, 0);
2929 return 1;
2930 }
2931 }
2932
2933 /*
2934 * locate outgoing interface
2935 */
2936 (void) memcpy(&ipaddr.sin_addr, cp + off,
2937 sizeof(ipaddr.sin_addr));
2938
2939 if (opt == IPOPT_SSRR) {
2940 #define INA struct in_ifaddr *
2941 if ((ia = (INA)ifa_ifwithdstaddr(
2942 SA(&ipaddr))) == NULL) {
2943 ia = (INA)ifa_ifwithnet(SA(&ipaddr));
2944 }
2945 } else {
2946 ia = ip_rtaddr(ipaddr.sin_addr);
2947 }
2948 if (ia == NULL) {
2949 type = ICMP_UNREACH;
2950 code = ICMP_UNREACH_SRCFAIL;
2951 goto bad;
2952 }
2953 ip->ip_dst = ipaddr.sin_addr;
2954 IFA_LOCK(&ia->ia_ifa);
2955 (void) memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
2956 sizeof(struct in_addr));
2957 IFA_UNLOCK(&ia->ia_ifa);
2958 ifa_remref(&ia->ia_ifa);
2959 ia = NULL;
2960 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
2961 /*
2962 * Let ip_intr's mcast routing check handle mcast pkts
2963 */
2964 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
2965 break;
2966
2967 case IPOPT_RR:
2968 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
2969 code = (uint8_t)(&cp[IPOPT_OFFSET] - (u_char *)ip);
2970 goto bad;
2971 }
2972 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
2973 code = (uint8_t)(&cp[IPOPT_OFFSET] - (u_char *)ip);
2974 goto bad;
2975 }
2976 /*
2977 * If no space remains, ignore.
2978 */
2979 off--; /* 0 origin */
2980 if (off > optlen - (int)sizeof(struct in_addr)) {
2981 break;
2982 }
2983 (void) memcpy(&ipaddr.sin_addr, &ip->ip_dst,
2984 sizeof(ipaddr.sin_addr));
2985 /*
2986 * locate outgoing interface; if we're the destination,
2987 * use the incoming interface (should be same).
2988 */
2989 if ((ia = (INA)ifa_ifwithaddr(SA(&ipaddr))) == NULL) {
2990 if ((ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
2991 type = ICMP_UNREACH;
2992 code = ICMP_UNREACH_HOST;
2993 goto bad;
2994 }
2995 }
2996 IFA_LOCK(&ia->ia_ifa);
2997 (void) memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
2998 sizeof(struct in_addr));
2999 IFA_UNLOCK(&ia->ia_ifa);
3000 ifa_remref(&ia->ia_ifa);
3001 ia = NULL;
3002 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
3003 break;
3004
3005 case IPOPT_TS:
3006 code = (uint8_t)(cp - (u_char *)ip);
3007 ipt = (struct ip_timestamp *)(void *)cp;
3008 if (ipt->ipt_len < 4 || ipt->ipt_len > 40) {
3009 code = (uint8_t)((u_char *)&ipt->ipt_len -
3010 (u_char *)ip);
3011 goto bad;
3012 }
3013 if (ipt->ipt_ptr < 5) {
3014 code = (uint8_t)((u_char *)&ipt->ipt_ptr -
3015 (u_char *)ip);
3016 goto bad;
3017 }
3018 if (ipt->ipt_ptr >
3019 ipt->ipt_len - (int)sizeof(int32_t)) {
3020 if (++ipt->ipt_oflw == 0) {
3021 code = (uint8_t)((u_char *)&ipt->ipt_ptr -
3022 (u_char *)ip);
3023 goto bad;
3024 }
3025 break;
3026 }
3027 sin = (struct in_addr *)(void *)(cp + ipt->ipt_ptr - 1);
3028 switch (ipt->ipt_flg) {
3029 case IPOPT_TS_TSONLY:
3030 break;
3031
3032 case IPOPT_TS_TSANDADDR:
3033 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
3034 sizeof(struct in_addr) > ipt->ipt_len) {
3035 code = (uint8_t)((u_char *)&ipt->ipt_ptr -
3036 (u_char *)ip);
3037 goto bad;
3038 }
3039 ipaddr.sin_addr = dst;
3040 ia = (INA)ifaof_ifpforaddr(SA(&ipaddr),
3041 m->m_pkthdr.rcvif);
3042 if (ia == NULL) {
3043 continue;
3044 }
3045 IFA_LOCK(&ia->ia_ifa);
3046 (void) memcpy(sin, &IA_SIN(ia)->sin_addr,
3047 sizeof(struct in_addr));
3048 IFA_UNLOCK(&ia->ia_ifa);
3049 ipt->ipt_ptr += sizeof(struct in_addr);
3050 ifa_remref(&ia->ia_ifa);
3051 ia = NULL;
3052 break;
3053
3054 case IPOPT_TS_PRESPEC:
3055 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
3056 sizeof(struct in_addr) > ipt->ipt_len) {
3057 code = (uint8_t)((u_char *)&ipt->ipt_ptr -
3058 (u_char *)ip);
3059 goto bad;
3060 }
3061 (void) memcpy(&ipaddr.sin_addr, sin,
3062 sizeof(struct in_addr));
3063 if ((ia = ifatoia(ifa_ifwithaddr(
3064 SA(&ipaddr)))) == NULL) {
3065 continue;
3066 }
3067 ifa_remref(&ia->ia_ifa);
3068 ia = NULL;
3069 ipt->ipt_ptr += sizeof(struct in_addr);
3070 break;
3071
3072 default:
3073 /* XXX can't take &ipt->ipt_flg */
3074 code = (uint8_t)((u_char *)&ipt->ipt_ptr -
3075 (u_char *)ip + 1);
3076 goto bad;
3077 }
3078 ntime = iptime();
3079 (void) memcpy(cp + ipt->ipt_ptr - 1, &ntime,
3080 sizeof(n_time));
3081 ipt->ipt_ptr += sizeof(n_time);
3082 }
3083 }
3084 if (forward && ipforwarding) {
3085 ip_forward(m, 1, next_hop);
3086 return 1;
3087 }
3088 return 0;
3089 bad:
3090 icmp_error(m, type, code, 0, 0);
3091 OSAddAtomic(1, &ipstat.ips_badoptions);
3092 return 1;
3093 }
3094
3095 /*
3096 * Check for the presence of the IP Router Alert option [RFC2113]
3097 * in the header of an IPv4 datagram.
3098 *
3099 * This call is not intended for use from the forwarding path; it is here
3100 * so that protocol domains may check for the presence of the option.
3101 * Given how FreeBSD's IPv4 stack is currently structured, the Router Alert
3102 * option does not have much relevance to the implementation, though this
3103 * may change in future.
3104 * Router alert options SHOULD be passed if running in IPSTEALTH mode and
3105 * we are not the endpoint.
3106 * Length checks on individual options should already have been peformed
3107 * by ip_dooptions() therefore they are folded under DIAGNOSTIC here.
3108 *
3109 * Return zero if not present or options are invalid, non-zero if present.
3110 */
3111 int
ip_checkrouteralert(struct mbuf * m)3112 ip_checkrouteralert(struct mbuf *m)
3113 {
3114 struct ip *ip = mtod(m, struct ip *);
3115 u_char *cp;
3116 int opt, optlen, cnt, found_ra;
3117
3118 found_ra = 0;
3119 cp = (u_char *)(ip + 1);
3120 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
3121 for (; cnt > 0; cnt -= optlen, cp += optlen) {
3122 opt = cp[IPOPT_OPTVAL];
3123 if (opt == IPOPT_EOL) {
3124 break;
3125 }
3126 if (opt == IPOPT_NOP) {
3127 optlen = 1;
3128 } else {
3129 #ifdef DIAGNOSTIC
3130 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
3131 break;
3132 }
3133 #endif
3134 optlen = cp[IPOPT_OLEN];
3135 #ifdef DIAGNOSTIC
3136 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
3137 break;
3138 }
3139 #endif
3140 }
3141 switch (opt) {
3142 case IPOPT_RA:
3143 #ifdef DIAGNOSTIC
3144 if (optlen != IPOPT_OFFSET + sizeof(uint16_t) ||
3145 (*((uint16_t *)(void *)&cp[IPOPT_OFFSET]) != 0)) {
3146 break;
3147 } else
3148 #endif
3149 found_ra = 1;
3150 break;
3151 default:
3152 break;
3153 }
3154 }
3155
3156 return found_ra;
3157 }
3158
3159 /*
3160 * Given address of next destination (final or next hop),
3161 * return internet address info of interface to be used to get there.
3162 */
3163 struct in_ifaddr *
ip_rtaddr(struct in_addr dst)3164 ip_rtaddr(struct in_addr dst)
3165 {
3166 struct sockaddr_in *__single sin;
3167 struct ifaddr *__single rt_ifa;
3168 struct route ro;
3169
3170 bzero(&ro, sizeof(ro));
3171 sin = SIN(&ro.ro_dst);
3172 sin->sin_family = AF_INET;
3173 sin->sin_len = sizeof(*sin);
3174 sin->sin_addr = dst;
3175
3176 rtalloc_ign(&ro, RTF_PRCLONING);
3177 if (ro.ro_rt == NULL) {
3178 ROUTE_RELEASE(&ro);
3179 return NULL;
3180 }
3181
3182 RT_LOCK(ro.ro_rt);
3183 if ((rt_ifa = ro.ro_rt->rt_ifa) != NULL) {
3184 ifa_addref(rt_ifa);
3185 }
3186 RT_UNLOCK(ro.ro_rt);
3187 ROUTE_RELEASE(&ro);
3188
3189 return ifatoia(rt_ifa);
3190 }
3191
3192 /*
3193 * Save incoming source route for use in replies,
3194 * to be picked up later by ip_srcroute if the receiver is interested.
3195 */
3196 static void
save_rte(u_char * __indexable option,struct in_addr dst)3197 save_rte(u_char *__indexable option, struct in_addr dst)
3198 {
3199 unsigned olen;
3200
3201 olen = option[IPOPT_OLEN];
3202 #if DIAGNOSTIC
3203 if (ipprintfs) {
3204 printf("save_rte: olen %d\n", olen);
3205 }
3206 #endif
3207 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) {
3208 return;
3209 }
3210 bcopy(option, ip_srcrt.srcopt, olen);
3211 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
3212 ip_srcrt.dst = dst;
3213 }
3214
3215 /*
3216 * Retrieve incoming source route for use in replies,
3217 * in the same form used by setsockopt.
3218 * The first hop is placed before the options, will be removed later.
3219 */
3220 struct mbuf *
ip_srcroute(void)3221 ip_srcroute(void)
3222 {
3223 struct in_addr *p, *q;
3224 struct mbuf *m;
3225
3226 if (ip_nhops == 0) {
3227 return NULL;
3228 }
3229
3230 m = m_get(M_DONTWAIT, MT_HEADER);
3231 if (m == NULL) {
3232 return NULL;
3233 }
3234
3235 #define OPTSIZ (sizeof (ip_srcrt.nop) + sizeof (ip_srcrt.srcopt))
3236
3237 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
3238 m->m_len = ip_nhops * sizeof(struct in_addr) +
3239 sizeof(struct in_addr) + OPTSIZ;
3240 #if DIAGNOSTIC
3241 if (ipprintfs) {
3242 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
3243 }
3244 #endif
3245
3246 /*
3247 * Notes: to the astute reader:
3248 * 1. The code is sequenced in the order
3249 * of writing to the mbuf contents.
3250 * 2. The order of addresses in `ip_srcrt.route`
3251 * is the reverse of the order in the wire format.
3252 */
3253 /*
3254 * First save first hop for return route
3255 */
3256 p = &ip_srcrt.route[ip_nhops - 1];
3257 *(mtod(m, struct in_addr *)) = *p;
3258 #if DIAGNOSTIC
3259 if (ipprintfs) {
3260 printf(" hops %lx",
3261 (u_int32_t)ntohl(mtod(m, struct in_addr *)->s_addr));
3262 }
3263 #endif
3264
3265 /*
3266 * Copy option fields and padding (nop) to mbuf.
3267 */
3268 ip_srcrt.nop = IPOPT_NOP;
3269 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
3270 (void) __nochk_memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
3271 (caddr_t)&ip_srcrt + sizeof(struct in_addr), OPTSIZ);
3272 q = (struct in_addr *)(void *)(mtod(m, caddr_t) +
3273 sizeof(struct in_addr) + OPTSIZ);
3274 #undef OPTSIZ
3275 /*
3276 * If multiple return addresses were provided,
3277 * record the return path as an IP source route,
3278 * reversing the path.
3279 */
3280 for (int i = 0; i < (ip_nhops - 1); i++) {
3281 q[i] = ip_srcrt.route[ip_nhops - (i + 2)];
3282 #if DIAGNOSTIC
3283 if (ipprintfs) {
3284 printf(" %lx", (u_int32_t)ntohl(q[i].s_addr));
3285 }
3286 #endif
3287 }
3288 /*
3289 * Last hop goes to final destination.
3290 */
3291 q[ip_nhops - 1] = ip_srcrt.dst;
3292 #if DIAGNOSTIC
3293 if (ipprintfs) {
3294 printf(" %lx\n", (u_int32_t)ntohl(q[ip_nhops - 1].s_addr));
3295 }
3296 #endif
3297 return m;
3298 }
3299
3300 /*
3301 * Strip out IP options, at higher level protocol in the kernel.
3302 */
3303 void
ip_stripoptions(struct mbuf * m)3304 ip_stripoptions(struct mbuf *m)
3305 {
3306 int i;
3307 struct ip *ip = mtod(m, struct ip *);
3308 caddr_t opts;
3309 int olen;
3310
3311 /* Expect 32-bit aligned data pointer on strict-align platforms */
3312 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
3313
3314 /* use bcopy() since it supports overlapping range */
3315 olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
3316 opts = (caddr_t)(ip + 1);
3317 i = m->m_len - (sizeof(struct ip) + olen);
3318 bcopy(opts + olen, opts, (unsigned)i);
3319 m->m_len -= olen;
3320 if (m->m_flags & M_PKTHDR) {
3321 m->m_pkthdr.len -= olen;
3322 }
3323 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
3324
3325 /*
3326 * We expect ip_{off,len} to be in host order by now, and
3327 * that the original IP header length has been subtracted
3328 * out from ip_len. Temporarily adjust ip_len for checksum
3329 * recalculation, and restore it afterwards.
3330 */
3331 ip->ip_len += sizeof(struct ip);
3332
3333 /* recompute checksum now that IP header is smaller */
3334 #if BYTE_ORDER != BIG_ENDIAN
3335 HTONS(ip->ip_len);
3336 HTONS(ip->ip_off);
3337 #endif /* BYTE_ORDER != BIG_ENDIAN */
3338 ip->ip_sum = in_cksum_hdr(ip);
3339 #if BYTE_ORDER != BIG_ENDIAN
3340 NTOHS(ip->ip_off);
3341 NTOHS(ip->ip_len);
3342 #endif /* BYTE_ORDER != BIG_ENDIAN */
3343
3344 ip->ip_len -= sizeof(struct ip);
3345
3346 /*
3347 * Given that we've just stripped IP options from the header,
3348 * we need to adjust the start offset accordingly if this
3349 * packet had gone thru partial checksum offload.
3350 */
3351 if ((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PARTIAL)) ==
3352 (CSUM_DATA_VALID | CSUM_PARTIAL)) {
3353 if (m->m_pkthdr.csum_rx_start >= (sizeof(struct ip) + olen)) {
3354 /* most common case */
3355 m->m_pkthdr.csum_rx_start -= olen;
3356 } else {
3357 /* compute checksum in software instead */
3358 m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
3359 m->m_pkthdr.csum_data = 0;
3360 ipstat.ips_adj_hwcsum_clr++;
3361 }
3362 }
3363 }
3364
3365 u_char inetctlerrmap[PRC_NCMDS] = {
3366 0, 0, 0, 0,
3367 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
3368 ENETUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
3369 EMSGSIZE, EHOSTUNREACH, 0, 0,
3370 0, 0, EHOSTUNREACH, 0,
3371 ENOPROTOOPT, ECONNREFUSED
3372 };
3373
3374 static int
3375 sysctl_ipforwarding SYSCTL_HANDLER_ARGS
3376 {
3377 #pragma unused(arg1, arg2)
3378 int i, was_ipforwarding = ipforwarding;
3379
3380 i = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
3381 if (i != 0 || req->newptr == USER_ADDR_NULL) {
3382 return i;
3383 }
3384
3385 if (was_ipforwarding && !ipforwarding) {
3386 /* clean up IPv4 forwarding cached routes */
3387 ifnet_head_lock_shared();
3388 for (i = 0; i <= if_index; i++) {
3389 ifnet_ref_t ifp = ifindex2ifnet[i];
3390 if (ifp != NULL) {
3391 lck_mtx_lock(&ifp->if_cached_route_lock);
3392 ROUTE_RELEASE(&ifp->if_fwd_route);
3393 bzero(&ifp->if_fwd_route,
3394 sizeof(ifp->if_fwd_route));
3395 lck_mtx_unlock(&ifp->if_cached_route_lock);
3396 }
3397 }
3398 ifnet_head_done();
3399 }
3400
3401 return 0;
3402 }
3403
3404 /*
3405 * Similar to inp_route_{copyout,copyin} routines except that these copy
3406 * out the cached IPv4 forwarding route from struct ifnet instead of the
3407 * inpcb. See comments for those routines for explanations.
3408 */
3409 static void
ip_fwd_route_copyout(struct ifnet * ifp,struct route * dst)3410 ip_fwd_route_copyout(struct ifnet *ifp, struct route *dst)
3411 {
3412 struct route *src = &ifp->if_fwd_route;
3413
3414 lck_mtx_lock_spin(&ifp->if_cached_route_lock);
3415 lck_mtx_convert_spin(&ifp->if_cached_route_lock);
3416
3417 /* Minor sanity check */
3418 if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) {
3419 panic("%s: wrong or corrupted route: %p", __func__, src);
3420 }
3421
3422 route_copyout(dst, src, sizeof(*dst));
3423
3424 lck_mtx_unlock(&ifp->if_cached_route_lock);
3425 }
3426
3427 static void
ip_fwd_route_copyin(struct ifnet * ifp,struct route * src)3428 ip_fwd_route_copyin(struct ifnet *ifp, struct route *src)
3429 {
3430 struct route *dst = &ifp->if_fwd_route;
3431
3432 lck_mtx_lock_spin(&ifp->if_cached_route_lock);
3433 lck_mtx_convert_spin(&ifp->if_cached_route_lock);
3434
3435 /* Minor sanity check */
3436 if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) {
3437 panic("%s: wrong or corrupted route: %p", __func__, src);
3438 }
3439
3440 if (ifp->if_fwd_cacheok) {
3441 route_copyin(src, dst, sizeof(*src));
3442 }
3443
3444 lck_mtx_unlock(&ifp->if_cached_route_lock);
3445 }
3446
3447 /*
3448 * Forward a packet. If some error occurs return the sender
3449 * an icmp packet. Note we can't always generate a meaningful
3450 * icmp message because icmp doesn't have a large enough repertoire
3451 * of codes and types.
3452 *
3453 * If not forwarding, just drop the packet. This could be confusing
3454 * if ipforwarding was zero but some routing protocol was advancing
3455 * us as a gateway to somewhere. However, we must let the routing
3456 * protocol deal with that.
3457 *
3458 * The srcrt parameter indicates whether the packet is being forwarded
3459 * via a source route.
3460 */
3461 static void
ip_forward(struct mbuf * m,int srcrt,struct sockaddr_in * next_hop)3462 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
3463 {
3464 #pragma unused(next_hop)
3465 struct ip *__single ip = mtod(m, struct ip *);
3466 struct sockaddr_in *__single sin;
3467 rtentry_ref_t rt;
3468 struct route fwd_rt;
3469 int error, type = 0, code = 0;
3470 mbuf_ref_t mcopy;
3471 n_long dest;
3472 struct in_addr pkt_dst;
3473 u_int32_t nextmtu = 0, len;
3474 struct ip_out_args ipoa;
3475 struct ifnet *__single rcvifp = m->m_pkthdr.rcvif;
3476
3477 bzero(&ipoa, sizeof(ipoa));
3478 ipoa.ipoa_boundif = IFSCOPE_NONE;
3479 ipoa.ipoa_sotc = SO_TC_UNSPEC;
3480 ipoa.ipoa_netsvctype = _NET_SERVICE_TYPE_UNSPEC;
3481
3482 #if IPSEC
3483 struct secpolicy *sp = NULL;
3484 int ipsecerror;
3485 #endif /* IPSEC */
3486 #if PF
3487 struct pf_mtag *pf_mtag;
3488 #endif /* PF */
3489
3490 dest = 0;
3491 pkt_dst = ip->ip_dst;
3492
3493 #if DIAGNOSTIC
3494 if (ipprintfs) {
3495 printf("forward: src %lx dst %lx ttl %x\n",
3496 (u_int32_t)ip->ip_src.s_addr, (u_int32_t)pkt_dst.s_addr,
3497 ip->ip_ttl);
3498 }
3499 #endif
3500
3501 if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
3502 OSAddAtomic(1, &ipstat.ips_cantforward);
3503 m_drop(m, DROPTAP_FLAG_DIR_IN | DROPTAP_FLAG_L2_MISSING, DROP_REASON_IP_CANNOT_FORWARD,
3504 NULL, 0);
3505 return;
3506 }
3507 #if IPSTEALTH
3508 if (!ipstealth) {
3509 #endif /* IPSTEALTH */
3510 if (ip->ip_ttl <= IPTTLDEC) {
3511 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
3512 dest, 0);
3513 return;
3514 }
3515 #if IPSTEALTH
3516 }
3517 #endif /* IPSTEALTH */
3518
3519 #if PF
3520 pf_mtag = pf_find_mtag(m);
3521 if (pf_mtag != NULL && pf_mtag->pftag_rtableid != IFSCOPE_NONE) {
3522 ipoa.ipoa_boundif = pf_mtag->pftag_rtableid;
3523 ipoa.ipoa_flags |= IPOAF_BOUND_IF;
3524 }
3525 #endif /* PF */
3526
3527 ip_fwd_route_copyout(rcvifp, &fwd_rt);
3528
3529 sin = SIN(&fwd_rt.ro_dst);
3530 if (ROUTE_UNUSABLE(&fwd_rt) || pkt_dst.s_addr != sin->sin_addr.s_addr) {
3531 ROUTE_RELEASE(&fwd_rt);
3532
3533 sin->sin_family = AF_INET;
3534 sin->sin_len = sizeof(*sin);
3535 sin->sin_addr = pkt_dst;
3536
3537 rtalloc_scoped_ign(&fwd_rt, RTF_PRCLONING, ipoa.ipoa_boundif);
3538 if (fwd_rt.ro_rt == NULL) {
3539 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
3540 goto done;
3541 }
3542 }
3543 rt = fwd_rt.ro_rt;
3544
3545 /*
3546 * Save the IP header and at most 8 bytes of the payload,
3547 * in case we need to generate an ICMP message to the src.
3548 *
3549 * We don't use m_copy() because it might return a reference
3550 * to a shared cluster. Both this function and ip_output()
3551 * assume exclusive access to the IP header in `m', so any
3552 * data in a cluster may change before we reach icmp_error().
3553 */
3554 MGET(mcopy, M_DONTWAIT, m->m_type);
3555 if (mcopy != NULL && m_dup_pkthdr(mcopy, m, M_DONTWAIT) == 0) {
3556 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
3557 (int)ip->ip_len);
3558 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
3559 }
3560
3561 #if IPSTEALTH
3562 if (!ipstealth) {
3563 #endif /* IPSTEALTH */
3564 ip->ip_ttl -= IPTTLDEC;
3565 #if IPSTEALTH
3566 }
3567 #endif /* IPSTEALTH */
3568
3569 /*
3570 * If forwarding packet using same interface that it came in on,
3571 * perhaps should send a redirect to sender to shortcut a hop.
3572 * Only send redirect if source is sending directly to us,
3573 * and if packet was not source routed (or has any options).
3574 * Also, don't send redirect if forwarding using a default route
3575 * or a route modified by a redirect.
3576 */
3577 RT_LOCK_SPIN(rt);
3578 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
3579 !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
3580 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
3581 ipsendredirects && !srcrt && rt->rt_ifa != NULL) {
3582 struct in_ifaddr *ia = ifatoia(rt->rt_ifa);
3583 u_int32_t src = ntohl(ip->ip_src.s_addr);
3584
3585 /* Become a regular mutex */
3586 RT_CONVERT_LOCK(rt);
3587 IFA_LOCK_SPIN(&ia->ia_ifa);
3588 if ((src & ia->ia_subnetmask) == ia->ia_subnet) {
3589 if (rt->rt_flags & RTF_GATEWAY) {
3590 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
3591 } else {
3592 dest = pkt_dst.s_addr;
3593 }
3594 /*
3595 * Router requirements says to only send
3596 * host redirects.
3597 */
3598 type = ICMP_REDIRECT;
3599 code = ICMP_REDIRECT_HOST;
3600 #if DIAGNOSTIC
3601 if (ipprintfs) {
3602 printf("redirect (%d) to %lx\n", code,
3603 (u_int32_t)dest);
3604 }
3605 #endif
3606 }
3607 IFA_UNLOCK(&ia->ia_ifa);
3608 }
3609 RT_UNLOCK(rt);
3610
3611
3612 /* Mark this packet as being forwarded from another interface */
3613 m->m_pkthdr.pkt_flags |= PKTF_FORWARDED;
3614 len = m_pktlen(m);
3615
3616 error = ip_output(m, NULL, &fwd_rt, IP_FORWARDING | IP_OUTARGS,
3617 NULL, &ipoa);
3618
3619 /* Refresh rt since the route could have changed while in IP */
3620 rt = fwd_rt.ro_rt;
3621
3622 if (error != 0) {
3623 OSAddAtomic(1, &ipstat.ips_cantforward);
3624 } else {
3625 /*
3626 * Increment stats on the source interface; the ones
3627 * for destination interface has been taken care of
3628 * during output above by virtue of PKTF_FORWARDED.
3629 */
3630 rcvifp->if_fpackets++;
3631 rcvifp->if_fbytes += len;
3632
3633 OSAddAtomic(1, &ipstat.ips_forward);
3634 if (type != 0) {
3635 OSAddAtomic(1, &ipstat.ips_redirectsent);
3636 } else {
3637 if (mcopy != NULL) {
3638 /*
3639 * If we didn't have to go thru ipflow and
3640 * the packet was successfully consumed by
3641 * ip_output, the mcopy is rather a waste;
3642 * this could be further optimized.
3643 */
3644 m_freem(mcopy);
3645 }
3646 goto done;
3647 }
3648 }
3649 if (mcopy == NULL) {
3650 goto done;
3651 }
3652
3653 switch (error) {
3654 case 0: /* forwarded, but need redirect */
3655 /* type, code set above */
3656 break;
3657
3658 case ENETUNREACH: /* shouldn't happen, checked above */
3659 case EHOSTUNREACH:
3660 case ENETDOWN:
3661 case EHOSTDOWN:
3662 default:
3663 type = ICMP_UNREACH;
3664 code = ICMP_UNREACH_HOST;
3665 break;
3666
3667 case EMSGSIZE:
3668 type = ICMP_UNREACH;
3669 code = ICMP_UNREACH_NEEDFRAG;
3670
3671 if (rt == NULL) {
3672 break;
3673 } else {
3674 RT_LOCK_SPIN(rt);
3675 if (rt->rt_ifp != NULL) {
3676 nextmtu = rt->rt_ifp->if_mtu;
3677 }
3678 RT_UNLOCK(rt);
3679 }
3680 #ifdef IPSEC
3681 if (ipsec_bypass) {
3682 break;
3683 }
3684
3685 /*
3686 * If the packet is routed over IPsec tunnel, tell the
3687 * originator the tunnel MTU.
3688 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
3689 * XXX quickhack!!!
3690 */
3691 sp = ipsec4_getpolicybyaddr(mcopy, IPSEC_DIR_OUTBOUND,
3692 IP_FORWARDING, &ipsecerror);
3693
3694 if (sp == NULL) {
3695 break;
3696 }
3697
3698 /*
3699 * find the correct route for outer IPv4
3700 * header, compute tunnel MTU.
3701 */
3702 nextmtu = 0;
3703
3704 if (sp->req != NULL &&
3705 sp->req->saidx.mode == IPSEC_MODE_TUNNEL) {
3706 struct secasindex saidx;
3707 struct secasvar *__single sav;
3708 struct route *__single ro;
3709 struct ip *__single ipm;
3710 size_t ipsechdr;
3711
3712 /* count IPsec header size */
3713 ipsechdr = ipsec_hdrsiz(sp);
3714
3715 ipm = mtod(mcopy, struct ip *);
3716 bcopy(&sp->req->saidx, &saidx, sizeof(saidx));
3717 saidx.mode = sp->req->saidx.mode;
3718 saidx.reqid = sp->req->saidx.reqid;
3719 sin = SIN(&saidx.src);
3720 if (sin->sin_len == 0) {
3721 sin->sin_len = sizeof(*sin);
3722 sin->sin_family = AF_INET;
3723 sin->sin_port = IPSEC_PORT_ANY;
3724 bcopy(&ipm->ip_src, &sin->sin_addr,
3725 sizeof(sin->sin_addr));
3726 }
3727 sin = SIN(&saidx.dst);
3728 if (sin->sin_len == 0) {
3729 sin->sin_len = sizeof(*sin);
3730 sin->sin_family = AF_INET;
3731 sin->sin_port = IPSEC_PORT_ANY;
3732 bcopy(&ipm->ip_dst, &sin->sin_addr,
3733 sizeof(sin->sin_addr));
3734 }
3735 sav = key_allocsa_policy(&saidx);
3736 if (sav != NULL) {
3737 lck_mtx_lock(sadb_mutex);
3738 if (sav->sah != NULL) {
3739 ro = (struct route *)&sav->sah->sa_route;
3740 if (ro->ro_rt != NULL) {
3741 RT_LOCK(ro->ro_rt);
3742 if (ro->ro_rt->rt_ifp != NULL) {
3743 nextmtu = ro->ro_rt->
3744 rt_ifp->if_mtu;
3745 nextmtu -= ipsechdr;
3746 }
3747 RT_UNLOCK(ro->ro_rt);
3748 }
3749 }
3750 key_freesav(sav, KEY_SADB_LOCKED);
3751 lck_mtx_unlock(sadb_mutex);
3752 }
3753 }
3754 key_freesp(sp, KEY_SADB_UNLOCKED);
3755 #endif /* IPSEC */
3756 break;
3757
3758 case ENOBUFS:
3759 /*
3760 * A router should not generate ICMP_SOURCEQUENCH as
3761 * required in RFC1812 Requirements for IP Version 4 Routers.
3762 * Source quench could be a big problem under DoS attacks,
3763 * or if the underlying interface is rate-limited.
3764 * Those who need source quench packets may re-enable them
3765 * via the net.inet.ip.sendsourcequench sysctl.
3766 */
3767 if (ip_sendsourcequench == 0) {
3768 m_freem(mcopy);
3769 goto done;
3770 } else {
3771 type = ICMP_SOURCEQUENCH;
3772 code = 0;
3773 }
3774 break;
3775
3776 case EACCES:
3777 m_freem(mcopy);
3778 goto done;
3779 }
3780
3781 if (type == ICMP_UNREACH && code == ICMP_UNREACH_NEEDFRAG) {
3782 OSAddAtomic(1, &ipstat.ips_cantfrag);
3783 }
3784
3785 icmp_error(mcopy, type, code, dest, nextmtu);
3786 done:
3787 ip_fwd_route_copyin(rcvifp, &fwd_rt);
3788 }
3789
3790 int
ip_savecontrol(struct inpcb * inp,struct mbuf ** mp,struct ip * ip,struct mbuf * m)3791 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
3792 struct mbuf *m)
3793 {
3794 *mp = NULL;
3795 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
3796 struct timeval tv;
3797
3798 getmicrotime(&tv);
3799 mp = sbcreatecontrol_mbuf((caddr_t)&tv, sizeof(tv),
3800 SCM_TIMESTAMP, SOL_SOCKET, mp);
3801 if (*mp == NULL) {
3802 goto no_mbufs;
3803 }
3804 }
3805 if (inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) {
3806 uint64_t time;
3807
3808 time = mach_absolute_time();
3809 mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof(time),
3810 SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp);
3811 if (*mp == NULL) {
3812 goto no_mbufs;
3813 }
3814 }
3815 if (inp->inp_socket->so_options & SO_TIMESTAMP_CONTINUOUS) {
3816 uint64_t time;
3817
3818 time = mach_continuous_time();
3819 mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof(time),
3820 SCM_TIMESTAMP_CONTINUOUS, SOL_SOCKET, mp);
3821 if (*mp == NULL) {
3822 goto no_mbufs;
3823 }
3824 }
3825 if (inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) {
3826 int tc = m_get_traffic_class(m);
3827
3828 mp = sbcreatecontrol_mbuf((caddr_t)&tc, sizeof(tc),
3829 SO_TRAFFIC_CLASS, SOL_SOCKET, mp);
3830 if (*mp == NULL) {
3831 goto no_mbufs;
3832 }
3833 }
3834 if ((inp->inp_socket->so_flags & SOF_RECV_WAKE_PKT) &&
3835 (m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT)) {
3836 int flag = 1;
3837
3838 mp = sbcreatecontrol_mbuf((caddr_t)&flag, sizeof(flag),
3839 SO_RECV_WAKE_PKT, SOL_SOCKET, mp);
3840 if (*mp == NULL) {
3841 goto no_mbufs;
3842 }
3843 }
3844
3845 if (inp->inp_flags & INP_RECVDSTADDR || SOFLOW_ENABLED(inp->inp_socket)) {
3846 mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_dst,
3847 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP, mp);
3848 if (*mp == NULL) {
3849 goto no_mbufs;
3850 }
3851 }
3852 #ifdef notyet
3853 /*
3854 * XXX
3855 * Moving these out of udp_input() made them even more broken
3856 * than they already were.
3857 */
3858 /* options were tossed already */
3859 if (inp->inp_flags & INP_RECVOPTS) {
3860 mp = sbcreatecontrol_mbuf((caddr_t)opts_deleted_above,
3861 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP, mp);
3862 if (*mp == NULL) {
3863 goto no_mbufs;
3864 }
3865 }
3866 /* ip_srcroute doesn't do what we want here, need to fix */
3867 if (inp->inp_flags & INP_RECVRETOPTS) {
3868 mp = sbcreatecontrol_mbuf((caddr_t)ip_srcroute(),
3869 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP, mp);
3870 if (*mp == NULL) {
3871 goto no_mbufs;
3872 }
3873 }
3874 #endif /* notyet */
3875 if (inp->inp_flags & INP_RECVIF) {
3876 ifnet_ref_t ifp;
3877 uint8_t sdlbuf[SOCK_MAXADDRLEN + 1];
3878 struct sockaddr_dl *sdl2 = SDL(sdlbuf);
3879
3880 /*
3881 * Make sure to accomodate the largest possible
3882 * size of SA(if_lladdr)->sa_len.
3883 */
3884 _CASSERT(sizeof(sdlbuf) == (SOCK_MAXADDRLEN + 1));
3885
3886 ifnet_head_lock_shared();
3887 if ((ifp = m->m_pkthdr.rcvif) != NULL &&
3888 ifp->if_index && IF_INDEX_IN_RANGE(ifp->if_index)) {
3889 struct ifaddr *__single ifa = ifnet_addrs[ifp->if_index - 1];
3890 struct sockaddr_dl *sdp;
3891
3892 if (!ifa || !ifa->ifa_addr) {
3893 goto makedummy;
3894 }
3895
3896 IFA_LOCK_SPIN(ifa);
3897 sdp = SDL(ifa->ifa_addr);
3898 /*
3899 * Change our mind and don't try copy.
3900 */
3901 if (sdp->sdl_family != AF_LINK) {
3902 IFA_UNLOCK(ifa);
3903 goto makedummy;
3904 }
3905 /* the above _CASSERT ensures sdl_len fits in sdlbuf */
3906 SOCKADDR_COPY(sdp, sdl2, sdp->sdl_len);
3907 IFA_UNLOCK(ifa);
3908 } else {
3909 makedummy:
3910 sdl2->sdl_len =
3911 offsetof(struct sockaddr_dl, sdl_data[0]);
3912 sdl2->sdl_family = AF_LINK;
3913 sdl2->sdl_index = 0;
3914 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
3915 }
3916 ifnet_head_done();
3917 mp = sbcreatecontrol_mbuf((caddr_t)SA_BYTES(sdl2), sdl2->sdl_len,
3918 IP_RECVIF, IPPROTO_IP, mp);
3919 if (*mp == NULL) {
3920 goto no_mbufs;
3921 }
3922 }
3923 if (inp->inp_flags & INP_RECVTTL) {
3924 mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_ttl,
3925 sizeof(ip->ip_ttl), IP_RECVTTL, IPPROTO_IP, mp);
3926 if (*mp == NULL) {
3927 goto no_mbufs;
3928 }
3929 }
3930 if (inp->inp_flags & INP_PKTINFO) {
3931 struct in_pktinfo pi;
3932
3933 bzero(&pi, sizeof(struct in_pktinfo));
3934 bcopy(&ip->ip_dst, &pi.ipi_addr, sizeof(struct in_addr));
3935 pi.ipi_ifindex = (m != NULL && m->m_pkthdr.rcvif != NULL) ?
3936 m->m_pkthdr.rcvif->if_index : 0;
3937
3938 mp = sbcreatecontrol_mbuf((caddr_t)&pi,
3939 sizeof(struct in_pktinfo), IP_RECVPKTINFO, IPPROTO_IP, mp);
3940 if (*mp == NULL) {
3941 goto no_mbufs;
3942 }
3943 }
3944 if (inp->inp_flags & INP_RECVTOS) {
3945 mp = sbcreatecontrol_mbuf((caddr_t)&ip->ip_tos,
3946 sizeof(u_char), IP_RECVTOS, IPPROTO_IP, mp);
3947 if (*mp == NULL) {
3948 goto no_mbufs;
3949 }
3950 }
3951 return 0;
3952
3953 no_mbufs:
3954 ipstat.ips_pktdropcntrl++;
3955 return ENOBUFS;
3956 }
3957
3958 static inline u_short
ip_cksum(struct mbuf * m,int hlen)3959 ip_cksum(struct mbuf *m, int hlen)
3960 {
3961 u_short sum;
3962
3963 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
3964 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
3965 } else if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
3966 !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
3967 /*
3968 * The packet arrived on an interface which isn't capable
3969 * of performing IP header checksum; compute it now.
3970 */
3971 sum = ip_cksum_hdr_in(m, hlen);
3972 } else {
3973 sum = 0;
3974 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
3975 CSUM_IP_CHECKED | CSUM_IP_VALID);
3976 m->m_pkthdr.csum_data = 0xffff;
3977 }
3978
3979 if (sum != 0) {
3980 OSAddAtomic(1, &ipstat.ips_badsum);
3981 }
3982
3983 return sum;
3984 }
3985
3986 static int
3987 ip_getstat SYSCTL_HANDLER_ARGS
3988 {
3989 #pragma unused(oidp, arg1, arg2)
3990 if (req->oldptr == USER_ADDR_NULL) {
3991 req->oldlen = (size_t)sizeof(struct ipstat);
3992 }
3993
3994 return SYSCTL_OUT(req, &ipstat, MIN(sizeof(ipstat), req->oldlen));
3995 }
3996
3997 void
ip_setsrcifaddr_info(struct mbuf * m,uint16_t src_idx,struct in_ifaddr * ia)3998 ip_setsrcifaddr_info(struct mbuf *m, uint16_t src_idx, struct in_ifaddr *ia)
3999 {
4000 VERIFY(m->m_flags & M_PKTHDR);
4001
4002 /*
4003 * If the source ifaddr is specified, pick up the information
4004 * from there; otherwise just grab the passed-in ifindex as the
4005 * caller may not have the ifaddr available.
4006 */
4007 if (ia != NULL) {
4008 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
4009 m->m_pkthdr.src_ifindex = ia->ia_ifp->if_index;
4010 } else {
4011 m->m_pkthdr.src_ifindex = src_idx;
4012 if (src_idx != 0) {
4013 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
4014 }
4015 }
4016 }
4017
4018 void
ip_setdstifaddr_info(struct mbuf * m,uint16_t dst_idx,struct in_ifaddr * ia)4019 ip_setdstifaddr_info(struct mbuf *m, uint16_t dst_idx, struct in_ifaddr *ia)
4020 {
4021 VERIFY(m->m_flags & M_PKTHDR);
4022
4023 /*
4024 * If the destination ifaddr is specified, pick up the information
4025 * from there; otherwise just grab the passed-in ifindex as the
4026 * caller may not have the ifaddr available.
4027 */
4028 if (ia != NULL) {
4029 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
4030 m->m_pkthdr.dst_ifindex = ia->ia_ifp->if_index;
4031 } else {
4032 m->m_pkthdr.dst_ifindex = dst_idx;
4033 if (dst_idx != 0) {
4034 m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
4035 }
4036 }
4037 }
4038
4039 int
ip_getsrcifaddr_info(struct mbuf * m,uint32_t * src_idx,uint32_t * iaf)4040 ip_getsrcifaddr_info(struct mbuf *m, uint32_t *src_idx, uint32_t *iaf)
4041 {
4042 VERIFY(m->m_flags & M_PKTHDR);
4043
4044 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) {
4045 return -1;
4046 }
4047
4048 if (src_idx != NULL) {
4049 *src_idx = m->m_pkthdr.src_ifindex;
4050 }
4051
4052 if (iaf != NULL) {
4053 *iaf = 0;
4054 }
4055
4056 return 0;
4057 }
4058
4059 int
ip_getdstifaddr_info(struct mbuf * m,uint32_t * dst_idx,uint32_t * iaf)4060 ip_getdstifaddr_info(struct mbuf *m, uint32_t *dst_idx, uint32_t *iaf)
4061 {
4062 VERIFY(m->m_flags & M_PKTHDR);
4063
4064 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) {
4065 return -1;
4066 }
4067
4068 if (dst_idx != NULL) {
4069 *dst_idx = m->m_pkthdr.dst_ifindex;
4070 }
4071
4072 if (iaf != NULL) {
4073 *iaf = 0;
4074 }
4075
4076 return 0;
4077 }
4078
4079 /*
4080 * Protocol input handler for IPPROTO_GRE.
4081 */
4082 void
gre_input(struct mbuf * m,int off)4083 gre_input(struct mbuf *m, int off)
4084 {
4085 gre_input_func_t fn = gre_input_func;
4086
4087 /*
4088 * If there is a registered GRE input handler, pass mbuf to it.
4089 */
4090 if (fn != NULL) {
4091 lck_mtx_unlock(inet_domain_mutex);
4092 m = fn(m, off, (mtod(m, struct ip *))->ip_p);
4093 lck_mtx_lock(inet_domain_mutex);
4094 }
4095
4096 /*
4097 * If no matching tunnel that is up is found, we inject
4098 * the mbuf to raw ip socket to see if anyone picks it up.
4099 */
4100 if (m != NULL) {
4101 rip_input(m, off);
4102 }
4103 }
4104
4105 /*
4106 * Private KPI for PPP/PPTP.
4107 */
4108 int
ip_gre_register_input(gre_input_func_t fn)4109 ip_gre_register_input(gre_input_func_t fn)
4110 {
4111 lck_mtx_lock(inet_domain_mutex);
4112 gre_input_func = fn;
4113 lck_mtx_unlock(inet_domain_mutex);
4114
4115 return 0;
4116 }
4117
4118 #if (DEBUG || DEVELOPMENT)
4119 static int
4120 sysctl_reset_ip_input_stats SYSCTL_HANDLER_ARGS
4121 {
4122 #pragma unused(arg1, arg2)
4123 int error, i;
4124
4125 i = ip_input_measure;
4126 error = sysctl_handle_int(oidp, &i, 0, req);
4127 if (error || req->newptr == USER_ADDR_NULL) {
4128 goto done;
4129 }
4130 /* impose bounds */
4131 if (i < 0 || i > 1) {
4132 error = EINVAL;
4133 goto done;
4134 }
4135 if (ip_input_measure != i && i == 1) {
4136 net_perf_initialize(&net_perf, ip_input_measure_bins);
4137 }
4138 ip_input_measure = i;
4139 done:
4140 return error;
4141 }
4142
4143 static int
4144 sysctl_ip_input_measure_bins SYSCTL_HANDLER_ARGS
4145 {
4146 #pragma unused(arg1, arg2)
4147 int error;
4148 uint64_t i;
4149
4150 i = ip_input_measure_bins;
4151 error = sysctl_handle_quad(oidp, &i, 0, req);
4152 if (error || req->newptr == USER_ADDR_NULL) {
4153 goto done;
4154 }
4155 /* validate data */
4156 if (!net_perf_validate_bins(i)) {
4157 error = EINVAL;
4158 goto done;
4159 }
4160 ip_input_measure_bins = i;
4161 done:
4162 return error;
4163 }
4164
4165 static int
4166 sysctl_ip_input_getperf SYSCTL_HANDLER_ARGS
4167 {
4168 #pragma unused(oidp, arg1, arg2)
4169 if (req->oldptr == USER_ADDR_NULL) {
4170 req->oldlen = (size_t)sizeof(struct ipstat);
4171 }
4172
4173 return SYSCTL_OUT(req, &net_perf, MIN(sizeof(net_perf), req->oldlen));
4174 }
4175 #endif /* (DEBUG || DEVELOPMENT) */
4176
4177 static int
4178 sysctl_ip_checkinterface SYSCTL_HANDLER_ARGS
4179 {
4180 #pragma unused(arg1, arg2)
4181 int error, i;
4182
4183 i = ip_checkinterface;
4184 error = sysctl_handle_int(oidp, &i, 0, req);
4185 if (error != 0 || req->newptr == USER_ADDR_NULL) {
4186 return error;
4187 }
4188
4189 switch (i) {
4190 case IP_CHECKINTERFACE_WEAK_ES:
4191 case IP_CHECKINTERFACE_HYBRID_ES:
4192 case IP_CHECKINTERFACE_STRONG_ES:
4193 if (ip_checkinterface != i) {
4194 ip_checkinterface = i;
4195 os_log(OS_LOG_DEFAULT, "%s: ip_checkinterface is now %d\n",
4196 __func__, ip_checkinterface);
4197 }
4198 break;
4199 default:
4200 error = EINVAL;
4201 break;
4202 }
4203 return error;
4204 }
4205