xref: /xnu-11215/bsd/dev/dtrace/blist.c (revision e7776783)
1 /*
2  * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
3  *
4  *	(c)Copyright 1998, Matthew Dillon.  Terms for use and redistribution
5  *	are covered by the BSD Copyright as found in /usr/src/COPYRIGHT.
6  *
7  *	This module implements a general bitmap allocator/deallocator.  The
8  *	allocator eats around 2 bits per 'block'.  The module does not
9  *	try to interpret the meaning of a 'block' other then to return
10  *	SWAPBLK_NONE on an allocation failure.
11  *
12  *	A radix tree is used to maintain the bitmap.  Two radix constants are
13  *	involved:  One for the bitmaps contained in the leaf nodes (typically
14  *	32), and one for the meta nodes (typically 16).  Both meta and leaf
15  *	nodes have a hint field.  This field gives us a hint as to the largest
16  *	free contiguous range of blocks under the node.  It may contain a
17  *	value that is too high, but will never contain a value that is too
18  *	low.  When the radix tree is searched, allocation failures in subtrees
19  *	update the hint.
20  *
21  *	The radix tree also implements two collapsed states for meta nodes:
22  *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
23  *	in either of these two states, all information contained underneath
24  *	the node is considered stale.  These states are used to optimize
25  *	allocation and freeing operations.
26  *
27  *      The hinting greatly increases code efficiency for allocations while
28  *	the general radix structure optimizes both allocations and frees.  The
29  *	radix tree should be able to operate well no matter how much
30  *	fragmentation there is and no matter how large a bitmap is used.
31  *
32  *	Unlike the rlist code, the blist code wires all necessary memory at
33  *	creation time.  Neither allocations nor frees require interaction with
34  *	the memory subsystem.  In contrast, the rlist code may allocate memory
35  *	on an rlist_free() call.  The non-blocking features of the blist code
36  *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
37  *	rlist code uses a little less overall memory then the blist code (but
38  *	due to swap interleaving not all that much less), but the blist code
39  *	scales much, much better.
40  *
41  *	LAYOUT: The radix tree is layed out recursively using a
42  *	linear array.  Each meta node is immediately followed (layed out
43  *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
44  *	is a recursive structure but one that can be easily scanned through
45  *	a very simple 'skip' calculation.  In order to support large radixes,
46  *	portions of the tree may reside outside our memory allocation.  We
47  *	handle this with an early-termination optimization (when bighint is
48  *	set to -1) on the scan.  The memory allocation is only large enough
49  *	to cover the number of blocks requested at creation time even if it
50  *	must be encompassed in larger root-node radix.
51  *
52  *	NOTE: the allocator cannot currently allocate more then
53  *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
54  *	large' if you try.  This is an area that could use improvement.  The
55  *	radix is large enough that this restriction does not effect the swap
56  *	system, though.  Currently only the allocation code is effected by
57  *	this algorithmic unfeature.  The freeing code can handle arbitrary
58  *	ranges.
59  *
60  *	This code can be compiled stand-alone for debugging.
61  *
62  * $FreeBSD: src/sys/kern/subr_blist.c,v 1.5.2.1 2000/03/17 10:47:29 ps Exp $
63  */
64 
65 typedef unsigned int u_daddr_t;
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/lock.h>
70 #include <sys/kernel.h>
71 #include "blist.h"
72 #include <sys/malloc.h>
73 
74 #if !defined(__APPLE__)
75 #define SWAPBLK_NONE ((daddr_t)-1)
76 #endif
77 
78 /*
79  * static support functions
80  */
81 
82 static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
83 static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
84     daddr_t count, daddr_t radix, int skip);
85 static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
86 static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
87     daddr_t radix, int skip, daddr_t blk);
88 static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
89     daddr_t skip, blist_t dest, daddr_t count);
90 static daddr_t  blst_radix_init(blmeta_t *scan, daddr_t radix,
91     int skip, daddr_t count);
92 
93 /*
94  * blist_create() - create a blist capable of handling up to the specified
95  *		    number of blocks
96  *
97  *	blocks must be greater then 0
98  *
99  *	The smallest blist consists of a single leaf node capable of
100  *	managing BLIST_BMAP_RADIX blocks.
101  */
102 
103 blist_t
blist_create(daddr_t blocks)104 blist_create(daddr_t blocks)
105 {
106 	blist_t bl;
107 	int radix;
108 	int skip = 0;
109 
110 	/*
111 	 * Calculate radix and skip field used for scanning.
112 	 */
113 	radix = BLIST_BMAP_RADIX;
114 
115 	while (radix < blocks) {
116 		radix <<= BLIST_META_RADIX_SHIFT;
117 		skip = (skip + 1) << BLIST_META_RADIX_SHIFT;
118 	}
119 
120 	bl = kalloc_type(struct blist, Z_ZERO | Z_WAITOK);
121 
122 	bl->bl_blocks = blocks;
123 	bl->bl_radix = radix;
124 	bl->bl_skip = skip;
125 	bl->bl_rootblks = 1 +
126 	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
127 	bl->bl_root = (blmeta_t *)kalloc_data(sizeof(blmeta_t) * bl->bl_rootblks, Z_WAITOK);
128 
129 #if defined(BLIST_DEBUG)
130 	printf(
131 		"BLIST representing %d blocks (%d MB of swap)"
132 		", requiring %dK of ram\n",
133 		bl->bl_blocks,
134 		bl->bl_blocks * 4 / 1024,
135 		(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
136 		);
137 	printf("BLIST raw radix tree contains %d records\n", bl->bl_rootblks);
138 #endif
139 	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
140 
141 	return bl;
142 }
143 
144 void
blist_destroy(blist_t bl)145 blist_destroy(blist_t bl)
146 {
147 	kfree_data(bl->bl_root, sizeof(blmeta_t) * bl->bl_rootblks);
148 	kfree_type(struct blist, bl);
149 }
150 
151 /*
152  * blist_alloc() - reserve space in the block bitmap.  Return the base
153  *		     of a contiguous region or SWAPBLK_NONE if space could
154  *		     not be allocated.
155  */
156 
157 daddr_t
blist_alloc(blist_t bl,daddr_t count)158 blist_alloc(blist_t bl, daddr_t count)
159 {
160 	daddr_t blk = SWAPBLK_NONE;
161 
162 	if (bl) {
163 		if (bl->bl_radix == BLIST_BMAP_RADIX) {
164 			blk = blst_leaf_alloc(bl->bl_root, 0, count);
165 		} else {
166 			blk = blst_meta_alloc(bl->bl_root, 0, count,
167 			    bl->bl_radix, bl->bl_skip);
168 		}
169 		if (blk != SWAPBLK_NONE) {
170 			bl->bl_free -= count;
171 		}
172 	}
173 	return blk;
174 }
175 
176 /*
177  * blist_free() -	free up space in the block bitmap.  Return the base
178  *		        of a contiguous region.  Panic if an inconsistancy is
179  *			found.
180  */
181 
182 void
blist_free(blist_t bl,daddr_t blkno,daddr_t count)183 blist_free(blist_t bl, daddr_t blkno, daddr_t count)
184 {
185 	if (bl) {
186 		if (bl->bl_radix == BLIST_BMAP_RADIX) {
187 			blst_leaf_free(bl->bl_root, blkno, count);
188 		} else {
189 			blst_meta_free(bl->bl_root, blkno, count,
190 			    bl->bl_radix, bl->bl_skip, 0);
191 		}
192 		bl->bl_free += count;
193 	}
194 }
195 
196 /*
197  * blist_resize() -	resize an existing radix tree to handle the
198  *			specified number of blocks.  This will reallocate
199  *			the tree and transfer the previous bitmap to the new
200  *			one.  When extending the tree you can specify whether
201  *			the new blocks are to left allocated or freed.
202  */
203 
204 void
blist_resize(blist_t * pbl,daddr_t count,int freenew)205 blist_resize(blist_t *pbl, daddr_t count, int freenew)
206 {
207 	blist_t newbl = blist_create(count);
208 	blist_t save = *pbl;
209 
210 	*pbl = newbl;
211 	if (count > save->bl_blocks) {
212 		count = save->bl_blocks;
213 	}
214 	blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
215 
216 	/*
217 	 * If resizing upwards, should we free the new space or not?
218 	 */
219 	if (freenew && count < newbl->bl_blocks) {
220 		blist_free(newbl, count, newbl->bl_blocks - count);
221 	}
222 	blist_destroy(save);
223 }
224 
225 #ifdef BLIST_DEBUG
226 
227 /*
228  * blist_print()    - dump radix tree
229  */
230 
231 void
blist_print(blist_t bl)232 blist_print(blist_t bl)
233 {
234 	printf("BLIST {\n");
235 	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
236 	printf("}\n");
237 }
238 
239 #endif
240 
241 /************************************************************************
242  *			  ALLOCATION SUPPORT FUNCTIONS			*
243  ************************************************************************
244  *
245  *	These support functions do all the actual work.  They may seem
246  *	rather longish, but that's because I've commented them up.  The
247  *	actual code is straight forward.
248  *
249  */
250 
251 /*
252  * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
253  *
254  *	This is the core of the allocator and is optimized for the 1 block
255  *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
256  *	somewhat slower.  The 1 block allocation case is log2 and extremely
257  *	quick.
258  */
259 
260 static daddr_t
blst_leaf_alloc(blmeta_t * scan,daddr_t blk,int count)261 blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count)
262 {
263 	u_daddr_t orig = scan->u.bmu_bitmap;
264 
265 	if (orig == 0) {
266 		/*
267 		 * Optimize bitmap all-allocated case.  Also, count = 1
268 		 * case assumes at least 1 bit is free in the bitmap, so
269 		 * we have to take care of this case here.
270 		 */
271 		scan->bm_bighint = 0;
272 		return SWAPBLK_NONE;
273 	}
274 	if (count == 1) {
275 		/*
276 		 * Optimized code to allocate one bit out of the bitmap
277 		 */
278 		u_daddr_t mask;
279 		int j = BLIST_BMAP_RADIX / 2;
280 		int r = 0;
281 
282 		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX / 2);
283 
284 		while (j) {
285 			if ((orig & mask) == 0) {
286 				r += j;
287 				orig >>= j;
288 			}
289 			j >>= 1;
290 			mask >>= j;
291 		}
292 		scan->u.bmu_bitmap &= ~(1 << r);
293 		return blk + r;
294 	}
295 #if !defined(__APPLE__)
296 	if (count <= BLIST_BMAP_RADIX) {
297 #else
298 	if (count <= (int)BLIST_BMAP_RADIX) {
299 #endif /* __APPLE__ */
300 		/*
301 		 * non-optimized code to allocate N bits out of the bitmap.
302 		 * The more bits, the faster the code runs.  It will run
303 		 * the slowest allocating 2 bits, but since there aren't any
304 		 * memory ops in the core loop (or shouldn't be, anyway),
305 		 * you probably won't notice the difference.
306 		 */
307 		int j;
308 		int n = BLIST_BMAP_RADIX - count;
309 		u_daddr_t mask;
310 
311 		mask = (u_daddr_t)-1 >> n;
312 
313 		for (j = 0; j <= n; ++j) {
314 			if ((orig & mask) == mask) {
315 				scan->u.bmu_bitmap &= ~mask;
316 				return blk + j;
317 			}
318 			mask = (mask << 1);
319 		}
320 	}
321 	/*
322 	 * We couldn't allocate count in this subtree, update bighint.
323 	 */
324 	scan->bm_bighint = count - 1;
325 	return SWAPBLK_NONE;
326 }
327 
328 /*
329  * blist_meta_alloc() -	allocate at a meta in the radix tree.
330  *
331  *	Attempt to allocate at a meta node.  If we can't, we update
332  *	bighint and return a failure.  Updating bighint optimize future
333  *	calls that hit this node.  We have to check for our collapse cases
334  *	and we have a few optimizations strewn in as well.
335  */
336 
337 static daddr_t
338 blst_meta_alloc(blmeta_t *scan, daddr_t blk, daddr_t count, daddr_t radix,
339     int skip)
340 {
341 	int i;
342 	int next_skip = (skip >> BLIST_META_RADIX_SHIFT);
343 
344 	if (scan->u.bmu_avail == 0) {
345 		/*
346 		 * ALL-ALLOCATED special case
347 		 */
348 		scan->bm_bighint = count;
349 		return SWAPBLK_NONE;
350 	}
351 
352 	if (scan->u.bmu_avail == radix) {
353 		radix >>= BLIST_META_RADIX_SHIFT;
354 
355 		/*
356 		 * ALL-FREE special case, initialize uninitialize
357 		 * sublevel.
358 		 */
359 		for (i = 1; i <= skip; i += next_skip) {
360 			if (scan[i].bm_bighint == (daddr_t)-1) {
361 				break;
362 			}
363 			if (next_skip == 1) {
364 				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
365 				scan[i].bm_bighint = BLIST_BMAP_RADIX;
366 			} else {
367 				scan[i].bm_bighint = radix;
368 				scan[i].u.bmu_avail = radix;
369 			}
370 		}
371 	} else {
372 		radix >>= BLIST_META_RADIX_SHIFT;
373 	}
374 
375 	for (i = 1; i <= skip; i += next_skip) {
376 		if (count <= scan[i].bm_bighint) {
377 			/*
378 			 * count fits in object
379 			 */
380 			daddr_t r;
381 			if (next_skip == 1) {
382 				r = blst_leaf_alloc(&scan[i], blk, count);
383 			} else {
384 				r = blst_meta_alloc(&scan[i], blk, count,
385 				    radix, next_skip - 1);
386 			}
387 			if (r != SWAPBLK_NONE) {
388 				scan->u.bmu_avail -= count;
389 				if (scan->bm_bighint > scan->u.bmu_avail) {
390 					scan->bm_bighint = scan->u.bmu_avail;
391 				}
392 				return r;
393 			}
394 		} else if (scan[i].bm_bighint == (daddr_t)-1) {
395 			/*
396 			 * Terminator
397 			 */
398 			break;
399 		} else if (count > radix) {
400 			/*
401 			 * count does not fit in object even if it were
402 			 * complete free.
403 			 */
404 			panic("blist_meta_alloc: allocation too large");
405 		}
406 		blk += radix;
407 	}
408 
409 	/*
410 	 * We couldn't allocate count in this subtree, update bighint.
411 	 */
412 	if (scan->bm_bighint >= count) {
413 		scan->bm_bighint = count - 1;
414 	}
415 	return SWAPBLK_NONE;
416 }
417 
418 /*
419  * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
420  *
421  */
422 
423 static void
424 blst_leaf_free(blmeta_t *scan, daddr_t blk, int count)
425 {
426 	/*
427 	 * free some data in this bitmap
428 	 *
429 	 * e.g.
430 	 *	0000111111111110000
431 	 *          \_________/\__/
432 	 *		v        n
433 	 */
434 	int n = blk & (BLIST_BMAP_RADIX - 1);
435 	u_daddr_t mask;
436 
437 	mask = ((u_daddr_t)-1 << n) &
438 	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
439 
440 	if (scan->u.bmu_bitmap & mask) {
441 		panic("blst_radix_free: freeing free block");
442 	}
443 	scan->u.bmu_bitmap |= mask;
444 
445 	/*
446 	 * We could probably do a better job here.  We are required to make
447 	 * bighint at least as large as the biggest contiguous block of
448 	 * data.  If we just shoehorn it, a little extra overhead will
449 	 * be incured on the next allocation (but only that one typically).
450 	 */
451 	scan->bm_bighint = BLIST_BMAP_RADIX;
452 }
453 
454 /*
455  * BLST_META_FREE() - free allocated blocks from radix tree meta info
456  *
457  *	This support routine frees a range of blocks from the bitmap.
458  *	The range must be entirely enclosed by this radix node.  If a
459  *	meta node, we break the range down recursively to free blocks
460  *	in subnodes (which means that this code can free an arbitrary
461  *	range whereas the allocation code cannot allocate an arbitrary
462  *	range).
463  */
464 
465 static void
466 blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count, daddr_t radix,
467     int skip, daddr_t blk)
468 {
469 	int i;
470 	int next_skip = (skip >> BLIST_META_RADIX_SHIFT);
471 
472 #if 0
473 	printf("FREE (%x,%d) FROM (%x,%d)\n",
474 	    freeBlk, count,
475 	    blk, radix
476 	    );
477 #endif
478 
479 	if (scan->u.bmu_avail == 0) {
480 		/*
481 		 * ALL-ALLOCATED special case, with possible
482 		 * shortcut to ALL-FREE special case.
483 		 */
484 		scan->u.bmu_avail = count;
485 		scan->bm_bighint = count;
486 
487 		if (count != radix) {
488 			for (i = 1; i <= skip; i += next_skip) {
489 				if (scan[i].bm_bighint == (daddr_t)-1) {
490 					break;
491 				}
492 				scan[i].bm_bighint = 0;
493 				if (next_skip == 1) {
494 					scan[i].u.bmu_bitmap = 0;
495 				} else {
496 					scan[i].u.bmu_avail = 0;
497 				}
498 			}
499 			/* fall through */
500 		}
501 	} else {
502 		scan->u.bmu_avail += count;
503 		/* scan->bm_bighint = radix; */
504 	}
505 
506 	/*
507 	 * ALL-FREE special case.
508 	 */
509 
510 	if (scan->u.bmu_avail == radix) {
511 		return;
512 	}
513 	if (scan->u.bmu_avail > radix) {
514 		panic("blst_meta_free: freeing already free blocks (%d) %d/%d", count, scan->u.bmu_avail, radix);
515 	}
516 
517 	/*
518 	 * Break the free down into its components
519 	 */
520 
521 	radix >>= BLIST_META_RADIX_SHIFT;
522 
523 	i = (freeBlk - blk) / radix;
524 	blk += i * radix;
525 	i = i * next_skip + 1;
526 
527 	while (i <= skip && blk < freeBlk + count) {
528 		daddr_t v;
529 
530 		v = blk + radix - freeBlk;
531 		if (v > count) {
532 			v = count;
533 		}
534 
535 		if (scan->bm_bighint == (daddr_t)-1) {
536 			panic("blst_meta_free: freeing unexpected range");
537 		}
538 
539 		if (next_skip == 1) {
540 			blst_leaf_free(&scan[i], freeBlk, v);
541 		} else {
542 			blst_meta_free(&scan[i], freeBlk, v, radix,
543 			    next_skip - 1, blk);
544 		}
545 		if (scan->bm_bighint < scan[i].bm_bighint) {
546 			scan->bm_bighint = scan[i].bm_bighint;
547 		}
548 		count -= v;
549 		freeBlk += v;
550 		blk += radix;
551 		i += next_skip;
552 	}
553 }
554 
555 /*
556  * BLIST_RADIX_COPY() - copy one radix tree to another
557  *
558  *	Locates free space in the source tree and frees it in the destination
559  *	tree.  The space may not already be free in the destination.
560  */
561 
562 static void
563 blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
564     daddr_t skip, blist_t dest, daddr_t count)
565 {
566 	int next_skip;
567 	int i;
568 
569 	/*
570 	 * Leaf node
571 	 */
572 
573 	if (radix == BLIST_BMAP_RADIX) {
574 		u_daddr_t v = scan->u.bmu_bitmap;
575 
576 		if (v == (u_daddr_t)-1) {
577 			blist_free(dest, blk, count);
578 		} else if (v != 0) {
579 #if !defined(__APPLE__)
580 			int i;
581 
582 			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
583 				if (v & (1 << i)) {
584 					blist_free(dest, blk + i, 1);
585 				}
586 			}
587 #else
588 			int j;   /* Avoid shadow warnings */
589 
590 			for (j = 0; j < (int)BLIST_BMAP_RADIX && j < count; ++j) {
591 				if (v & (1 << j)) {
592 					blist_free(dest, blk + j, 1);
593 				}
594 			}
595 #endif /* __APPLE__ */
596 		}
597 		return;
598 	}
599 
600 	/*
601 	 * Meta node
602 	 */
603 
604 	/*
605 	 * Source all allocated, leave dest allocated
606 	 */
607 	if (scan->u.bmu_avail == 0) {
608 		return;
609 	}
610 	if (scan->u.bmu_avail == radix) {
611 		/*
612 		 * Source all free, free entire dest
613 		 */
614 		if (count < radix) {
615 			blist_free(dest, blk, count);
616 		} else {
617 			blist_free(dest, blk, radix);
618 		}
619 		return;
620 	}
621 
622 	radix >>= BLIST_META_RADIX_SHIFT;
623 	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
624 
625 	for (i = 1; count && i <= skip; i += next_skip) {
626 		if (scan[i].bm_bighint == (daddr_t)-1) {
627 			break;
628 		}
629 
630 		if (count >= radix) {
631 			blst_copy(
632 				&scan[i],
633 				blk,
634 				radix,
635 				next_skip - 1,
636 				dest,
637 				radix
638 				);
639 			count -= radix;
640 		} else {
641 			if (count) {
642 				blst_copy(
643 					&scan[i],
644 					blk,
645 					radix,
646 					next_skip - 1,
647 					dest,
648 					count
649 					);
650 			}
651 			count = 0;
652 		}
653 		blk += radix;
654 	}
655 }
656 
657 /*
658  * BLST_RADIX_INIT() - initialize radix tree
659  *
660  *	Initialize our meta structures and bitmaps and calculate the exact
661  *	amount of space required to manage 'count' blocks - this space may
662  *	be considerably less then the calculated radix due to the large
663  *	RADIX values we use.
664  */
665 
666 static daddr_t
667 blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
668 {
669 	int i;
670 	int next_skip;
671 	daddr_t memindex = 0;
672 
673 	/*
674 	 * Leaf node
675 	 */
676 
677 	if (radix == BLIST_BMAP_RADIX) {
678 		if (scan) {
679 			scan->bm_bighint = 0;
680 			scan->u.bmu_bitmap = 0;
681 		}
682 		return memindex;
683 	}
684 
685 	/*
686 	 * Meta node.  If allocating the entire object we can special
687 	 * case it.  However, we need to figure out how much memory
688 	 * is required to manage 'count' blocks, so we continue on anyway.
689 	 */
690 
691 	if (scan) {
692 		scan->bm_bighint = 0;
693 		scan->u.bmu_avail = 0;
694 	}
695 
696 	radix >>= BLIST_META_RADIX_SHIFT;
697 	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
698 
699 	for (i = 1; i <= skip; i += next_skip) {
700 		if (count >= radix) {
701 			/*
702 			 * Allocate the entire object
703 			 */
704 			memindex = i + blst_radix_init(
705 				((scan) ? &scan[i] : NULL),
706 				radix,
707 				next_skip - 1,
708 				radix
709 				);
710 			count -= radix;
711 		} else if (count > 0) {
712 			/*
713 			 * Allocate a partial object
714 			 */
715 			memindex = i + blst_radix_init(
716 				((scan) ? &scan[i] : NULL),
717 				radix,
718 				next_skip - 1,
719 				count
720 				);
721 			count = 0;
722 		} else {
723 			/*
724 			 * Add terminator and break out
725 			 */
726 			if (scan) {
727 				scan[i].bm_bighint = (daddr_t)-1;
728 			}
729 			break;
730 		}
731 	}
732 	if (memindex < i) {
733 		memindex = i;
734 	}
735 	return memindex;
736 }
737 
738 #ifdef BLIST_DEBUG
739 
740 static void
741 blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
742 {
743 	int i;
744 	int next_skip;
745 	int lastState = 0;
746 
747 	if (radix == BLIST_BMAP_RADIX) {
748 		printf(
749 			"%*.*s(%04x,%d): bitmap %08x big=%d\n",
750 			tab, tab, "",
751 			blk, radix,
752 			scan->u.bmu_bitmap,
753 			scan->bm_bighint
754 			);
755 		return;
756 	}
757 
758 	if (scan->u.bmu_avail == 0) {
759 		printf(
760 			"%*.*s(%04x,%d) ALL ALLOCATED\n",
761 			tab, tab, "",
762 			blk,
763 			radix
764 			);
765 		return;
766 	}
767 	if (scan->u.bmu_avail == radix) {
768 		printf(
769 			"%*.*s(%04x,%d) ALL FREE\n",
770 			tab, tab, "",
771 			blk,
772 			radix
773 			);
774 		return;
775 	}
776 
777 	printf(
778 		"%*.*s(%04x,%d): subtree (%d/%d) big=%d {\n",
779 		tab, tab, "",
780 		blk, radix,
781 		scan->u.bmu_avail,
782 		radix,
783 		scan->bm_bighint
784 		);
785 
786 	radix >>= BLIST_META_RADIX_SHIFT;
787 	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
788 	tab += 4;
789 
790 	for (i = 1; i <= skip; i += next_skip) {
791 		if (scan[i].bm_bighint == (daddr_t)-1) {
792 			printf(
793 				"%*.*s(%04x,%d): Terminator\n",
794 				tab, tab, "",
795 				blk, radix
796 				);
797 			lastState = 0;
798 			break;
799 		}
800 		blst_radix_print(
801 			&scan[i],
802 			blk,
803 			radix,
804 			next_skip - 1,
805 			tab
806 			);
807 		blk += radix;
808 	}
809 	tab -= 4;
810 
811 	printf(
812 		"%*.*s}\n",
813 		tab, tab, ""
814 		);
815 }
816 
817 #endif
818 
819 #ifdef BLIST_DEBUG
820 
821 int
822 main(int ac, char **av)
823 {
824 	int size = 1024;
825 	int i;
826 	blist_t bl;
827 
828 	for (i = 1; i < ac; ++i) {
829 		const char *ptr = av[i];
830 		if (*ptr != '-') {
831 			size = strtol(ptr, NULL, 0);
832 			continue;
833 		}
834 		ptr += 2;
835 		fprintf(stderr, "Bad option: %s\n", ptr - 2);
836 		exit(1);
837 	}
838 	bl = blist_create(size);
839 	blist_free(bl, 0, size);
840 
841 	for (;;) {
842 		char buf[1024];
843 		daddr_t da = 0;
844 		daddr_t count = 0;
845 
846 
847 		printf("%d/%d/%d> ", bl->bl_free, size, bl->bl_radix);
848 		fflush(stdout);
849 		if (fgets(buf, sizeof(buf), stdin) == NULL) {
850 			break;
851 		}
852 		switch (buf[0]) {
853 		case 'r':
854 			if (sscanf(buf + 1, "%d", &count) == 1) {
855 				blist_resize(&bl, count, 1);
856 			} else {
857 				printf("?\n");
858 			}
859 		case 'p':
860 			blist_print(bl);
861 			break;
862 		case 'a':
863 			if (sscanf(buf + 1, "%d", &count) == 1) {
864 				daddr_t blk = blist_alloc(bl, count);
865 				printf("    R=%04x\n", blk);
866 			} else {
867 				printf("?\n");
868 			}
869 			break;
870 		case 'f':
871 			if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
872 				blist_free(bl, da, count);
873 			} else {
874 				printf("?\n");
875 			}
876 			break;
877 		case '?':
878 		case 'h':
879 			puts(
880 				"p          -print\n"
881 				"a %d       -allocate\n"
882 				"f %x %d    -free\n"
883 				"r %d       -resize\n"
884 				"h/?        -help"
885 				);
886 			break;
887 		default:
888 			printf("?\n");
889 			break;
890 		}
891 	}
892 	return 0;
893 }
894 
895 void
896 panic(const char *ctl, ...)
897 {
898 	va_list va;
899 
900 	va_start(va, ctl);
901 	vfprintf(stderr, ctl, va);
902 	fprintf(stderr, "\n");
903 	va_end(va);
904 	exit(1);
905 }
906 
907 #endif
908