xref: /vim-8.2.3635/src/xdiff/xpatience.c (revision ba02e472)
1 /*
2  *  LibXDiff by Davide Libenzi ( File Differential Library )
3  *  Copyright (C) 2003-2016 Davide Libenzi, Johannes E. Schindelin
4  *
5  *  This library is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU Lesser General Public
7  *  License as published by the Free Software Foundation; either
8  *  version 2.1 of the License, or (at your option) any later version.
9  *
10  *  This library is distributed in the hope that it will be useful,
11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  *  Lesser General Public License for more details.
14  *
15  *  You should have received a copy of the GNU Lesser General Public
16  *  License along with this library; if not, see
17  *  <http://www.gnu.org/licenses/>.
18  *
19  *  Davide Libenzi <[email protected]>
20  *
21  */
22 #include "xinclude.h"
23 
24 /*
25  * The basic idea of patience diff is to find lines that are unique in
26  * both files.  These are intuitively the ones that we want to see as
27  * common lines.
28  *
29  * The maximal ordered sequence of such line pairs (where ordered means
30  * that the order in the sequence agrees with the order of the lines in
31  * both files) naturally defines an initial set of common lines.
32  *
33  * Now, the algorithm tries to extend the set of common lines by growing
34  * the line ranges where the files have identical lines.
35  *
36  * Between those common lines, the patience diff algorithm is applied
37  * recursively, until no unique line pairs can be found; these line ranges
38  * are handled by the well-known Myers algorithm.
39  */
40 
41 #define NON_UNIQUE ULONG_MAX
42 
43 /*
44  * This is a hash mapping from line hash to line numbers in the first and
45  * second file.
46  */
47 struct hashmap {
48 	int nr, alloc;
49 	struct entry {
50 		unsigned long hash;
51 		/*
52 		 * 0 = unused entry, 1 = first line, 2 = second, etc.
53 		 * line2 is NON_UNIQUE if the line is not unique
54 		 * in either the first or the second file.
55 		 */
56 		unsigned long line1, line2;
57 		/*
58 		 * "next" & "previous" are used for the longest common
59 		 * sequence;
60 		 * initially, "next" reflects only the order in file1.
61 		 */
62 		struct entry *next, *previous;
63 
64 		/*
65 		 * If 1, this entry can serve as an anchor. See
66 		 * Documentation/diff-options.txt for more information.
67 		 */
68 		unsigned anchor : 1;
69 	} *entries, *first, *last;
70 	/* were common records found? */
71 	unsigned long has_matches;
72 	mmfile_t *file1, *file2;
73 	xdfenv_t *env;
74 	xpparam_t const *xpp;
75 };
76 
is_anchor(xpparam_t const * xpp,const char * line)77 static int is_anchor(xpparam_t const *xpp, const char *line)
78 {
79 	int i;
80 	for (i = 0; i < (int)xpp->anchors_nr; i++) {
81 		if (!strncmp(line, xpp->anchors[i], strlen(xpp->anchors[i])))
82 			return 1;
83 	}
84 	return 0;
85 }
86 
87 /* The argument "pass" is 1 for the first file, 2 for the second. */
insert_record(xpparam_t const * xpp,int line,struct hashmap * map,int pass)88 static void insert_record(xpparam_t const *xpp, int line, struct hashmap *map,
89 			  int pass)
90 {
91 	xrecord_t **records = pass == 1 ?
92 		map->env->xdf1.recs : map->env->xdf2.recs;
93 	xrecord_t *record = records[line - 1];
94 	/*
95 	 * After xdl_prepare_env() (or more precisely, due to
96 	 * xdl_classify_record()), the "ha" member of the records (AKA lines)
97 	 * is _not_ the hash anymore, but a linearized version of it.  In
98 	 * other words, the "ha" member is guaranteed to start with 0 and
99 	 * the second record's ha can only be 0 or 1, etc.
100 	 *
101 	 * So we multiply ha by 2 in the hope that the hashing was
102 	 * "unique enough".
103 	 */
104 	int index = (int)((record->ha << 1) % map->alloc);
105 
106 	while (map->entries[index].line1) {
107 		if (map->entries[index].hash != record->ha) {
108 			if (++index >= map->alloc)
109 				index = 0;
110 			continue;
111 		}
112 		if (pass == 2)
113 			map->has_matches = 1;
114 		if (pass == 1 || map->entries[index].line2)
115 			map->entries[index].line2 = NON_UNIQUE;
116 		else
117 			map->entries[index].line2 = line;
118 		return;
119 	}
120 	if (pass == 2)
121 		return;
122 	map->entries[index].line1 = line;
123 	map->entries[index].hash = record->ha;
124 	map->entries[index].anchor = is_anchor(xpp, map->env->xdf1.recs[line - 1]->ptr);
125 	if (!map->first)
126 		map->first = map->entries + index;
127 	if (map->last) {
128 		map->last->next = map->entries + index;
129 		map->entries[index].previous = map->last;
130 	}
131 	map->last = map->entries + index;
132 	map->nr++;
133 }
134 
135 /*
136  * This function has to be called for each recursion into the inter-hunk
137  * parts, as previously non-unique lines can become unique when being
138  * restricted to a smaller part of the files.
139  *
140  * It is assumed that env has been prepared using xdl_prepare().
141  */
fill_hashmap(mmfile_t * file1,mmfile_t * file2,xpparam_t const * xpp,xdfenv_t * env,struct hashmap * result,int line1,int count1,int line2,int count2)142 static int fill_hashmap(mmfile_t *file1, mmfile_t *file2,
143 		xpparam_t const *xpp, xdfenv_t *env,
144 		struct hashmap *result,
145 		int line1, int count1, int line2, int count2)
146 {
147 	result->file1 = file1;
148 	result->file2 = file2;
149 	result->xpp = xpp;
150 	result->env = env;
151 
152 	/* We know exactly how large we want the hash map */
153 	result->alloc = count1 * 2;
154 	result->entries = (struct entry *)
155 		xdl_malloc(result->alloc * sizeof(struct entry));
156 	if (!result->entries)
157 		return -1;
158 	memset(result->entries, 0, result->alloc * sizeof(struct entry));
159 
160 	/* First, fill with entries from the first file */
161 	while (count1--)
162 		insert_record(xpp, line1++, result, 1);
163 
164 	/* Then search for matches in the second file */
165 	while (count2--)
166 		insert_record(xpp, line2++, result, 2);
167 
168 	return 0;
169 }
170 
171 /*
172  * Find the longest sequence with a smaller last element (meaning a smaller
173  * line2, as we construct the sequence with entries ordered by line1).
174  */
binary_search(struct entry ** sequence,int longest,struct entry * entry)175 static int binary_search(struct entry **sequence, int longest,
176 		struct entry *entry)
177 {
178 	int left = -1, right = longest;
179 
180 	while (left + 1 < right) {
181 		int middle = left + (right - left) / 2;
182 		/* by construction, no two entries can be equal */
183 		if (sequence[middle]->line2 > entry->line2)
184 			right = middle;
185 		else
186 			left = middle;
187 	}
188 	/* return the index in "sequence", _not_ the sequence length */
189 	return left;
190 }
191 
192 /*
193  * The idea is to start with the list of common unique lines sorted by
194  * the order in file1.  For each of these pairs, the longest (partial)
195  * sequence whose last element's line2 is smaller is determined.
196  *
197  * For efficiency, the sequences are kept in a list containing exactly one
198  * item per sequence length: the sequence with the smallest last
199  * element (in terms of line2).
200  */
find_longest_common_sequence(struct hashmap * map)201 static struct entry *find_longest_common_sequence(struct hashmap *map)
202 {
203 	struct entry **sequence = xdl_malloc(map->nr * sizeof(struct entry *));
204 	int longest = 0, i;
205 	struct entry *entry;
206 
207 	/*
208 	 * If not -1, this entry in sequence must never be overridden.
209 	 * Therefore, overriding entries before this has no effect, so
210 	 * do not do that either.
211 	 */
212 	int anchor_i = -1;
213 
214 	// Added to silence Coverity.
215 	if (sequence == NULL)
216 		return map->first;
217 
218 	for (entry = map->first; entry; entry = entry->next) {
219 		if (!entry->line2 || entry->line2 == NON_UNIQUE)
220 			continue;
221 		i = binary_search(sequence, longest, entry);
222 		entry->previous = i < 0 ? NULL : sequence[i];
223 		++i;
224 		if (i <= anchor_i)
225 			continue;
226 		sequence[i] = entry;
227 		if (entry->anchor) {
228 			anchor_i = i;
229 			longest = anchor_i + 1;
230 		} else if (i == longest) {
231 			longest++;
232 		}
233 	}
234 
235 	/* No common unique lines were found */
236 	if (!longest) {
237 		xdl_free(sequence);
238 		return NULL;
239 	}
240 
241 	/* Iterate starting at the last element, adjusting the "next" members */
242 	entry = sequence[longest - 1];
243 	entry->next = NULL;
244 	while (entry->previous) {
245 		entry->previous->next = entry;
246 		entry = entry->previous;
247 	}
248 	xdl_free(sequence);
249 	return entry;
250 }
251 
match(struct hashmap * map,int line1,int line2)252 static int match(struct hashmap *map, int line1, int line2)
253 {
254 	xrecord_t *record1 = map->env->xdf1.recs[line1 - 1];
255 	xrecord_t *record2 = map->env->xdf2.recs[line2 - 1];
256 	return record1->ha == record2->ha;
257 }
258 
259 static int patience_diff(mmfile_t *file1, mmfile_t *file2,
260 		xpparam_t const *xpp, xdfenv_t *env,
261 		int line1, int count1, int line2, int count2);
262 
walk_common_sequence(struct hashmap * map,struct entry * first,int line1,int count1,int line2,int count2)263 static int walk_common_sequence(struct hashmap *map, struct entry *first,
264 		int line1, int count1, int line2, int count2)
265 {
266 	int end1 = line1 + count1, end2 = line2 + count2;
267 	int next1, next2;
268 
269 	for (;;) {
270 		/* Try to grow the line ranges of common lines */
271 		if (first) {
272 			next1 = first->line1;
273 			next2 = first->line2;
274 			while (next1 > line1 && next2 > line2 &&
275 					match(map, next1 - 1, next2 - 1)) {
276 				next1--;
277 				next2--;
278 			}
279 		} else {
280 			next1 = end1;
281 			next2 = end2;
282 		}
283 		while (line1 < next1 && line2 < next2 &&
284 				match(map, line1, line2)) {
285 			line1++;
286 			line2++;
287 		}
288 
289 		/* Recurse */
290 		if (next1 > line1 || next2 > line2) {
291 			if (patience_diff(map->file1, map->file2,
292 					map->xpp, map->env,
293 					line1, next1 - line1,
294 					line2, next2 - line2))
295 				return -1;
296 		}
297 
298 		if (!first)
299 			return 0;
300 
301 		while (first->next &&
302 				first->next->line1 == first->line1 + 1 &&
303 				first->next->line2 == first->line2 + 1)
304 			first = first->next;
305 
306 		line1 = first->line1 + 1;
307 		line2 = first->line2 + 1;
308 
309 		first = first->next;
310 	}
311 }
312 
fall_back_to_classic_diff(struct hashmap * map,int line1,int count1,int line2,int count2)313 static int fall_back_to_classic_diff(struct hashmap *map,
314 		int line1, int count1, int line2, int count2)
315 {
316 	xpparam_t xpp;
317 
318 	memset(&xpp, 0, sizeof(xpp));
319 	xpp.flags = map->xpp->flags & ~XDF_DIFF_ALGORITHM_MASK;
320 
321 	return xdl_fall_back_diff(map->env, &xpp,
322 				  line1, count1, line2, count2);
323 }
324 
325 /*
326  * Recursively find the longest common sequence of unique lines,
327  * and if none was found, ask xdl_do_diff() to do the job.
328  *
329  * This function assumes that env was prepared with xdl_prepare_env().
330  */
patience_diff(mmfile_t * file1,mmfile_t * file2,xpparam_t const * xpp,xdfenv_t * env,int line1,int count1,int line2,int count2)331 static int patience_diff(mmfile_t *file1, mmfile_t *file2,
332 		xpparam_t const *xpp, xdfenv_t *env,
333 		int line1, int count1, int line2, int count2)
334 {
335 	struct hashmap map;
336 	struct entry *first;
337 	int result = 0;
338 
339 	/* trivial case: one side is empty */
340 	if (!count1) {
341 		while(count2--)
342 			env->xdf2.rchg[line2++ - 1] = 1;
343 		return 0;
344 	} else if (!count2) {
345 		while(count1--)
346 			env->xdf1.rchg[line1++ - 1] = 1;
347 		return 0;
348 	}
349 
350 	memset(&map, 0, sizeof(map));
351 	if (fill_hashmap(file1, file2, xpp, env, &map,
352 			line1, count1, line2, count2))
353 		return -1;
354 
355 	/* are there any matching lines at all? */
356 	if (!map.has_matches) {
357 		while(count1--)
358 			env->xdf1.rchg[line1++ - 1] = 1;
359 		while(count2--)
360 			env->xdf2.rchg[line2++ - 1] = 1;
361 		xdl_free(map.entries);
362 		return 0;
363 	}
364 
365 	first = find_longest_common_sequence(&map);
366 	if (first)
367 		result = walk_common_sequence(&map, first,
368 			line1, count1, line2, count2);
369 	else
370 		result = fall_back_to_classic_diff(&map,
371 			line1, count1, line2, count2);
372 
373 	xdl_free(map.entries);
374 	return result;
375 }
376 
xdl_do_patience_diff(mmfile_t * file1,mmfile_t * file2,xpparam_t const * xpp,xdfenv_t * env)377 int xdl_do_patience_diff(mmfile_t *file1, mmfile_t *file2,
378 		xpparam_t const *xpp, xdfenv_t *env)
379 {
380 	if (xdl_prepare_env(file1, file2, xpp, env) < 0)
381 		return -1;
382 
383 	/* environment is cleaned up in xdl_diff() */
384 	return patience_diff(file1, file2, xpp, env,
385 			1, env->xdf1.nrec, 1, env->xdf2.nrec);
386 }
387