xref: /vim-8.2.3635/src/xdiff/xdiffi.c (revision ba02e472)
1 /*
2  *  LibXDiff by Davide Libenzi ( File Differential Library )
3  *  Copyright (C) 2003	Davide Libenzi
4  *
5  *  This library is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU Lesser General Public
7  *  License as published by the Free Software Foundation; either
8  *  version 2.1 of the License, or (at your option) any later version.
9  *
10  *  This library is distributed in the hope that it will be useful,
11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  *  Lesser General Public License for more details.
14  *
15  *  You should have received a copy of the GNU Lesser General Public
16  *  License along with this library; if not, see
17  *  <http://www.gnu.org/licenses/>.
18  *
19  *  Davide Libenzi <[email protected]>
20  *
21  */
22 
23 #include "xinclude.h"
24 
25 #define XDL_MAX_COST_MIN 256
26 #define XDL_HEUR_MIN_COST 256
27 #define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1)
28 #define XDL_SNAKE_CNT 20
29 #define XDL_K_HEUR 4
30 
31 typedef struct s_xdpsplit {
32 	long i1, i2;
33 	int min_lo, min_hi;
34 } xdpsplit_t;
35 
36 /*
37  * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
38  * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
39  * the forward diagonal starting from (off1, off2) and the backward diagonal
40  * starting from (lim1, lim2). If the K values on the same diagonal crosses
41  * returns the furthest point of reach. We might encounter expensive edge cases
42  * using this algorithm, so a little bit of heuristic is needed to cut the
43  * search and to return a suboptimal point.
44  */
xdl_split(unsigned long const * ha1,long off1,long lim1,unsigned long const * ha2,long off2,long lim2,long * kvdf,long * kvdb,int need_min,xdpsplit_t * spl,xdalgoenv_t * xenv)45 static long xdl_split(unsigned long const *ha1, long off1, long lim1,
46 		      unsigned long const *ha2, long off2, long lim2,
47 		      long *kvdf, long *kvdb, int need_min, xdpsplit_t *spl,
48 		      xdalgoenv_t *xenv) {
49 	long dmin = off1 - lim2, dmax = lim1 - off2;
50 	long fmid = off1 - off2, bmid = lim1 - lim2;
51 	long odd = (fmid - bmid) & 1;
52 	long fmin = fmid, fmax = fmid;
53 	long bmin = bmid, bmax = bmid;
54 	long ec, d, i1, i2, prev1, best, dd, v, k;
55 
56 	/*
57 	 * Set initial diagonal values for both forward and backward path.
58 	 */
59 	kvdf[fmid] = off1;
60 	kvdb[bmid] = lim1;
61 
62 	for (ec = 1;; ec++) {
63 		int got_snake = 0;
64 
65 		/*
66 		 * We need to extend the diagonal "domain" by one. If the next
67 		 * values exits the box boundaries we need to change it in the
68 		 * opposite direction because (max - min) must be a power of
69 		 * two.
70 		 *
71 		 * Also we initialize the external K value to -1 so that we can
72 		 * avoid extra conditions in the check inside the core loop.
73 		 */
74 		if (fmin > dmin)
75 			kvdf[--fmin - 1] = -1;
76 		else
77 			++fmin;
78 		if (fmax < dmax)
79 			kvdf[++fmax + 1] = -1;
80 		else
81 			--fmax;
82 
83 		for (d = fmax; d >= fmin; d -= 2) {
84 			if (kvdf[d - 1] >= kvdf[d + 1])
85 				i1 = kvdf[d - 1] + 1;
86 			else
87 				i1 = kvdf[d + 1];
88 			prev1 = i1;
89 			i2 = i1 - d;
90 			for (; i1 < lim1 && i2 < lim2 && ha1[i1] == ha2[i2]; i1++, i2++);
91 			if (i1 - prev1 > xenv->snake_cnt)
92 				got_snake = 1;
93 			kvdf[d] = i1;
94 			if (odd && bmin <= d && d <= bmax && kvdb[d] <= i1) {
95 				spl->i1 = i1;
96 				spl->i2 = i2;
97 				spl->min_lo = spl->min_hi = 1;
98 				return ec;
99 			}
100 		}
101 
102 		/*
103 		 * We need to extend the diagonal "domain" by one. If the next
104 		 * values exits the box boundaries we need to change it in the
105 		 * opposite direction because (max - min) must be a power of
106 		 * two.
107 		 *
108 		 * Also we initialize the external K value to -1 so that we can
109 		 * avoid extra conditions in the check inside the core loop.
110 		 */
111 		if (bmin > dmin)
112 			kvdb[--bmin - 1] = XDL_LINE_MAX;
113 		else
114 			++bmin;
115 		if (bmax < dmax)
116 			kvdb[++bmax + 1] = XDL_LINE_MAX;
117 		else
118 			--bmax;
119 
120 		for (d = bmax; d >= bmin; d -= 2) {
121 			if (kvdb[d - 1] < kvdb[d + 1])
122 				i1 = kvdb[d - 1];
123 			else
124 				i1 = kvdb[d + 1] - 1;
125 			prev1 = i1;
126 			i2 = i1 - d;
127 			for (; i1 > off1 && i2 > off2 && ha1[i1 - 1] == ha2[i2 - 1]; i1--, i2--);
128 			if (prev1 - i1 > xenv->snake_cnt)
129 				got_snake = 1;
130 			kvdb[d] = i1;
131 			if (!odd && fmin <= d && d <= fmax && i1 <= kvdf[d]) {
132 				spl->i1 = i1;
133 				spl->i2 = i2;
134 				spl->min_lo = spl->min_hi = 1;
135 				return ec;
136 			}
137 		}
138 
139 		if (need_min)
140 			continue;
141 
142 		/*
143 		 * If the edit cost is above the heuristic trigger and if
144 		 * we got a good snake, we sample current diagonals to see
145 		 * if some of them have reached an "interesting" path. Our
146 		 * measure is a function of the distance from the diagonal
147 		 * corner (i1 + i2) penalized with the distance from the
148 		 * mid diagonal itself. If this value is above the current
149 		 * edit cost times a magic factor (XDL_K_HEUR) we consider
150 		 * it interesting.
151 		 */
152 		if (got_snake && ec > xenv->heur_min) {
153 			for (best = 0, d = fmax; d >= fmin; d -= 2) {
154 				dd = d > fmid ? d - fmid: fmid - d;
155 				i1 = kvdf[d];
156 				i2 = i1 - d;
157 				v = (i1 - off1) + (i2 - off2) - dd;
158 
159 				if (v > XDL_K_HEUR * ec && v > best &&
160 				    off1 + xenv->snake_cnt <= i1 && i1 < lim1 &&
161 				    off2 + xenv->snake_cnt <= i2 && i2 < lim2) {
162 					for (k = 1; ha1[i1 - k] == ha2[i2 - k]; k++)
163 						if (k == xenv->snake_cnt) {
164 							best = v;
165 							spl->i1 = i1;
166 							spl->i2 = i2;
167 							break;
168 						}
169 				}
170 			}
171 			if (best > 0) {
172 				spl->min_lo = 1;
173 				spl->min_hi = 0;
174 				return ec;
175 			}
176 
177 			for (best = 0, d = bmax; d >= bmin; d -= 2) {
178 				dd = d > bmid ? d - bmid: bmid - d;
179 				i1 = kvdb[d];
180 				i2 = i1 - d;
181 				v = (lim1 - i1) + (lim2 - i2) - dd;
182 
183 				if (v > XDL_K_HEUR * ec && v > best &&
184 				    off1 < i1 && i1 <= lim1 - xenv->snake_cnt &&
185 				    off2 < i2 && i2 <= lim2 - xenv->snake_cnt) {
186 					for (k = 0; ha1[i1 + k] == ha2[i2 + k]; k++)
187 						if (k == xenv->snake_cnt - 1) {
188 							best = v;
189 							spl->i1 = i1;
190 							spl->i2 = i2;
191 							break;
192 						}
193 				}
194 			}
195 			if (best > 0) {
196 				spl->min_lo = 0;
197 				spl->min_hi = 1;
198 				return ec;
199 			}
200 		}
201 
202 		/*
203 		 * Enough is enough. We spent too much time here and now we
204 		 * collect the furthest reaching path using the (i1 + i2)
205 		 * measure.
206 		 */
207 		if (ec >= xenv->mxcost) {
208 			long fbest, fbest1, bbest, bbest1;
209 
210 			fbest = fbest1 = -1;
211 			for (d = fmax; d >= fmin; d -= 2) {
212 				i1 = XDL_MIN(kvdf[d], lim1);
213 				i2 = i1 - d;
214 				if (lim2 < i2)
215 					i1 = lim2 + d, i2 = lim2;
216 				if (fbest < i1 + i2) {
217 					fbest = i1 + i2;
218 					fbest1 = i1;
219 				}
220 			}
221 
222 			bbest = bbest1 = XDL_LINE_MAX;
223 			for (d = bmax; d >= bmin; d -= 2) {
224 				i1 = XDL_MAX(off1, kvdb[d]);
225 				i2 = i1 - d;
226 				if (i2 < off2)
227 					i1 = off2 + d, i2 = off2;
228 				if (i1 + i2 < bbest) {
229 					bbest = i1 + i2;
230 					bbest1 = i1;
231 				}
232 			}
233 
234 			if ((lim1 + lim2) - bbest < fbest - (off1 + off2)) {
235 				spl->i1 = fbest1;
236 				spl->i2 = fbest - fbest1;
237 				spl->min_lo = 1;
238 				spl->min_hi = 0;
239 			} else {
240 				spl->i1 = bbest1;
241 				spl->i2 = bbest - bbest1;
242 				spl->min_lo = 0;
243 				spl->min_hi = 1;
244 			}
245 			return ec;
246 		}
247 	}
248 }
249 
250 
251 /*
252  * Rule: "Divide et Impera" (divide & conquer). Recursively split the box in
253  * sub-boxes by calling the box splitting function. Note that the real job
254  * (marking changed lines) is done in the two boundary reaching checks.
255  */
xdl_recs_cmp(diffdata_t * dd1,long off1,long lim1,diffdata_t * dd2,long off2,long lim2,long * kvdf,long * kvdb,int need_min,xdalgoenv_t * xenv)256 int xdl_recs_cmp(diffdata_t *dd1, long off1, long lim1,
257 		 diffdata_t *dd2, long off2, long lim2,
258 		 long *kvdf, long *kvdb, int need_min, xdalgoenv_t *xenv) {
259 	unsigned long const *ha1 = dd1->ha, *ha2 = dd2->ha;
260 
261 	/*
262 	 * Shrink the box by walking through each diagonal snake (SW and NE).
263 	 */
264 	for (; off1 < lim1 && off2 < lim2 && ha1[off1] == ha2[off2]; off1++, off2++);
265 	for (; off1 < lim1 && off2 < lim2 && ha1[lim1 - 1] == ha2[lim2 - 1]; lim1--, lim2--);
266 
267 	/*
268 	 * If one dimension is empty, then all records on the other one must
269 	 * be obviously changed.
270 	 */
271 	if (off1 == lim1) {
272 		char *rchg2 = dd2->rchg;
273 		long *rindex2 = dd2->rindex;
274 
275 		for (; off2 < lim2; off2++)
276 			rchg2[rindex2[off2]] = 1;
277 	} else if (off2 == lim2) {
278 		char *rchg1 = dd1->rchg;
279 		long *rindex1 = dd1->rindex;
280 
281 		for (; off1 < lim1; off1++)
282 			rchg1[rindex1[off1]] = 1;
283 	} else {
284 		xdpsplit_t spl;
285 		spl.i1 = spl.i2 = 0;
286 
287 		/*
288 		 * Divide ...
289 		 */
290 		if (xdl_split(ha1, off1, lim1, ha2, off2, lim2, kvdf, kvdb,
291 			      need_min, &spl, xenv) < 0) {
292 
293 			return -1;
294 		}
295 
296 		/*
297 		 * ... et Impera.
298 		 */
299 		if (xdl_recs_cmp(dd1, off1, spl.i1, dd2, off2, spl.i2,
300 				 kvdf, kvdb, spl.min_lo, xenv) < 0 ||
301 		    xdl_recs_cmp(dd1, spl.i1, lim1, dd2, spl.i2, lim2,
302 				 kvdf, kvdb, spl.min_hi, xenv) < 0) {
303 
304 			return -1;
305 		}
306 	}
307 
308 	return 0;
309 }
310 
311 
xdl_do_diff(mmfile_t * mf1,mmfile_t * mf2,xpparam_t const * xpp,xdfenv_t * xe)312 int xdl_do_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
313 		xdfenv_t *xe) {
314 	long ndiags;
315 	long *kvd, *kvdf, *kvdb;
316 	xdalgoenv_t xenv;
317 	diffdata_t dd1, dd2;
318 
319 	if (XDF_DIFF_ALG(xpp->flags) == XDF_PATIENCE_DIFF)
320 		return xdl_do_patience_diff(mf1, mf2, xpp, xe);
321 
322 	if (XDF_DIFF_ALG(xpp->flags) == XDF_HISTOGRAM_DIFF)
323 		return xdl_do_histogram_diff(mf1, mf2, xpp, xe);
324 
325 	if (xdl_prepare_env(mf1, mf2, xpp, xe) < 0) {
326 
327 		return -1;
328 	}
329 
330 	/*
331 	 * Allocate and setup K vectors to be used by the differential
332 	 * algorithm.
333 	 *
334 	 * One is to store the forward path and one to store the backward path.
335 	 */
336 	ndiags = xe->xdf1.nreff + xe->xdf2.nreff + 3;
337 	if (!(kvd = (long *) xdl_malloc((2 * ndiags + 2) * sizeof(long)))) {
338 
339 		xdl_free_env(xe);
340 		return -1;
341 	}
342 	kvdf = kvd;
343 	kvdb = kvdf + ndiags;
344 	kvdf += xe->xdf2.nreff + 1;
345 	kvdb += xe->xdf2.nreff + 1;
346 
347 	xenv.mxcost = xdl_bogosqrt(ndiags);
348 	if (xenv.mxcost < XDL_MAX_COST_MIN)
349 		xenv.mxcost = XDL_MAX_COST_MIN;
350 	xenv.snake_cnt = XDL_SNAKE_CNT;
351 	xenv.heur_min = XDL_HEUR_MIN_COST;
352 
353 	dd1.nrec = xe->xdf1.nreff;
354 	dd1.ha = xe->xdf1.ha;
355 	dd1.rchg = xe->xdf1.rchg;
356 	dd1.rindex = xe->xdf1.rindex;
357 	dd2.nrec = xe->xdf2.nreff;
358 	dd2.ha = xe->xdf2.ha;
359 	dd2.rchg = xe->xdf2.rchg;
360 	dd2.rindex = xe->xdf2.rindex;
361 
362 	if (xdl_recs_cmp(&dd1, 0, dd1.nrec, &dd2, 0, dd2.nrec,
363 			 kvdf, kvdb, (xpp->flags & XDF_NEED_MINIMAL) != 0, &xenv) < 0) {
364 
365 		xdl_free(kvd);
366 		xdl_free_env(xe);
367 		return -1;
368 	}
369 
370 	xdl_free(kvd);
371 
372 	return 0;
373 }
374 
375 
xdl_add_change(xdchange_t * xscr,long i1,long i2,long chg1,long chg2)376 static xdchange_t *xdl_add_change(xdchange_t *xscr, long i1, long i2, long chg1, long chg2) {
377 	xdchange_t *xch;
378 
379 	if (!(xch = (xdchange_t *) xdl_malloc(sizeof(xdchange_t))))
380 		return NULL;
381 
382 	xch->next = xscr;
383 	xch->i1 = i1;
384 	xch->i2 = i2;
385 	xch->chg1 = chg1;
386 	xch->chg2 = chg2;
387 	xch->ignore = 0;
388 
389 	return xch;
390 }
391 
392 
recs_match(xrecord_t * rec1,xrecord_t * rec2,long flags)393 static int recs_match(xrecord_t *rec1, xrecord_t *rec2, long flags)
394 {
395 	return (rec1->ha == rec2->ha &&
396 		xdl_recmatch(rec1->ptr, rec1->size,
397 			     rec2->ptr, rec2->size,
398 			     flags));
399 }
400 
401 /*
402  * If a line is indented more than this, xget_indent() just returns this value.
403  * This avoids having to do absurd amounts of work for data that are not
404  * human-readable text, and also ensures that the output of xget_indent fits within
405  * an int.
406  */
407 #define MAX_INDENT 200
408 
409 /*
410  * Return the amount of indentation of the specified line, treating TAB as 8
411  * columns. Return -1 if line is empty or contains only whitespace. Clamp the
412  * output value at MAX_INDENT.
413  */
xget_indent(xrecord_t * rec)414 static int xget_indent(xrecord_t *rec)
415 {
416 	long i;
417 	int ret = 0;
418 
419 	for (i = 0; i < rec->size; i++) {
420 		char c = rec->ptr[i];
421 
422 		if (!XDL_ISSPACE(c))
423 			return ret;
424 		else if (c == ' ')
425 			ret += 1;
426 		else if (c == '\t')
427 			ret += 8 - ret % 8;
428 		/* ignore other whitespace characters */
429 
430 		if (ret >= MAX_INDENT)
431 			return MAX_INDENT;
432 	}
433 
434 	/* The line contains only whitespace. */
435 	return -1;
436 }
437 
438 /*
439  * If more than this number of consecutive blank rows are found, just return
440  * this value. This avoids requiring O(N^2) work for pathological cases, and
441  * also ensures that the output of score_split fits in an int.
442  */
443 #define MAX_BLANKS 20
444 
445 /* Characteristics measured about a hypothetical split position. */
446 struct split_measurement {
447 	/*
448 	 * Is the split at the end of the file (aside from any blank lines)?
449 	 */
450 	int end_of_file;
451 
452 	/*
453 	 * How much is the line immediately following the split indented (or -1
454 	 * if the line is blank):
455 	 */
456 	int indent;
457 
458 	/*
459 	 * How many consecutive lines above the split are blank?
460 	 */
461 	int pre_blank;
462 
463 	/*
464 	 * How much is the nearest non-blank line above the split indented (or
465 	 * -1 if there is no such line)?
466 	 */
467 	int pre_indent;
468 
469 	/*
470 	 * How many lines after the line following the split are blank?
471 	 */
472 	int post_blank;
473 
474 	/*
475 	 * How much is the nearest non-blank line after the line following the
476 	 * split indented (or -1 if there is no such line)?
477 	 */
478 	int post_indent;
479 };
480 
481 struct split_score {
482 	/* The effective indent of this split (smaller is preferred). */
483 	int effective_indent;
484 
485 	/* Penalty for this split (smaller is preferred). */
486 	int penalty;
487 };
488 
489 /*
490  * Fill m with information about a hypothetical split of xdf above line split.
491  */
measure_split(const xdfile_t * xdf,long split,struct split_measurement * m)492 static void measure_split(const xdfile_t *xdf, long split,
493 			  struct split_measurement *m)
494 {
495 	long i;
496 
497 	if (split >= xdf->nrec) {
498 		m->end_of_file = 1;
499 		m->indent = -1;
500 	} else {
501 		m->end_of_file = 0;
502 		m->indent = xget_indent(xdf->recs[split]);
503 	}
504 
505 	m->pre_blank = 0;
506 	m->pre_indent = -1;
507 	for (i = split - 1; i >= 0; i--) {
508 		m->pre_indent = xget_indent(xdf->recs[i]);
509 		if (m->pre_indent != -1)
510 			break;
511 		m->pre_blank += 1;
512 		if (m->pre_blank == MAX_BLANKS) {
513 			m->pre_indent = 0;
514 			break;
515 		}
516 	}
517 
518 	m->post_blank = 0;
519 	m->post_indent = -1;
520 	for (i = split + 1; i < xdf->nrec; i++) {
521 		m->post_indent = xget_indent(xdf->recs[i]);
522 		if (m->post_indent != -1)
523 			break;
524 		m->post_blank += 1;
525 		if (m->post_blank == MAX_BLANKS) {
526 			m->post_indent = 0;
527 			break;
528 		}
529 	}
530 }
531 
532 /*
533  * The empirically-determined weight factors used by score_split() below.
534  * Larger values means that the position is a less favorable place to split.
535  *
536  * Note that scores are only ever compared against each other, so multiplying
537  * all of these weight/penalty values by the same factor wouldn't change the
538  * heuristic's behavior. Still, we need to set that arbitrary scale *somehow*.
539  * In practice, these numbers are chosen to be large enough that they can be
540  * adjusted relative to each other with sufficient precision despite using
541  * integer math.
542  */
543 
544 /* Penalty if there are no non-blank lines before the split */
545 #define START_OF_FILE_PENALTY 1
546 
547 /* Penalty if there are no non-blank lines after the split */
548 #define END_OF_FILE_PENALTY 21
549 
550 /* Multiplier for the number of blank lines around the split */
551 #define TOTAL_BLANK_WEIGHT (-30)
552 
553 /* Multiplier for the number of blank lines after the split */
554 #define POST_BLANK_WEIGHT 6
555 
556 /*
557  * Penalties applied if the line is indented more than its predecessor
558  */
559 #define RELATIVE_INDENT_PENALTY (-4)
560 #define RELATIVE_INDENT_WITH_BLANK_PENALTY 10
561 
562 /*
563  * Penalties applied if the line is indented less than both its predecessor and
564  * its successor
565  */
566 #define RELATIVE_OUTDENT_PENALTY 24
567 #define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17
568 
569 /*
570  * Penalties applied if the line is indented less than its predecessor but not
571  * less than its successor
572  */
573 #define RELATIVE_DEDENT_PENALTY 23
574 #define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17
575 
576 /*
577  * We only consider whether the sum of the effective indents for splits are
578  * less than (-1), equal to (0), or greater than (+1) each other. The resulting
579  * value is multiplied by the following weight and combined with the penalty to
580  * determine the better of two scores.
581  */
582 #define INDENT_WEIGHT 60
583 
584 /*
585  * How far do we slide a hunk at most?
586  */
587 #define INDENT_HEURISTIC_MAX_SLIDING 100
588 
589 /*
590  * Compute a badness score for the hypothetical split whose measurements are
591  * stored in m. The weight factors were determined empirically using the tools
592  * and corpus described in
593  *
594  *     https://github.com/mhagger/diff-slider-tools
595  *
596  * Also see that project if you want to improve the weights based on, for
597  * example, a larger or more diverse corpus.
598  */
score_add_split(const struct split_measurement * m,struct split_score * s)599 static void score_add_split(const struct split_measurement *m, struct split_score *s)
600 {
601 	/*
602 	 * A place to accumulate penalty factors (positive makes this index more
603 	 * favored):
604 	 */
605 	int post_blank, total_blank, indent, any_blanks;
606 
607 	if (m->pre_indent == -1 && m->pre_blank == 0)
608 		s->penalty += START_OF_FILE_PENALTY;
609 
610 	if (m->end_of_file)
611 		s->penalty += END_OF_FILE_PENALTY;
612 
613 	/*
614 	 * Set post_blank to the number of blank lines following the split,
615 	 * including the line immediately after the split:
616 	 */
617 	post_blank = (m->indent == -1) ? 1 + m->post_blank : 0;
618 	total_blank = m->pre_blank + post_blank;
619 
620 	/* Penalties based on nearby blank lines: */
621 	s->penalty += TOTAL_BLANK_WEIGHT * total_blank;
622 	s->penalty += POST_BLANK_WEIGHT * post_blank;
623 
624 	if (m->indent != -1)
625 		indent = m->indent;
626 	else
627 		indent = m->post_indent;
628 
629 	any_blanks = (total_blank != 0);
630 
631 	/* Note that the effective indent is -1 at the end of the file: */
632 	s->effective_indent += indent;
633 
634 	if (indent == -1) {
635 		/* No additional adjustments needed. */
636 	} else if (m->pre_indent == -1) {
637 		/* No additional adjustments needed. */
638 	} else if (indent > m->pre_indent) {
639 		/*
640 		 * The line is indented more than its predecessor.
641 		 */
642 		s->penalty += any_blanks ?
643 			RELATIVE_INDENT_WITH_BLANK_PENALTY :
644 			RELATIVE_INDENT_PENALTY;
645 	} else if (indent == m->pre_indent) {
646 		/*
647 		 * The line has the same indentation level as its predecessor.
648 		 * No additional adjustments needed.
649 		 */
650 	} else {
651 		/*
652 		 * The line is indented less than its predecessor. It could be
653 		 * the block terminator of the previous block, but it could
654 		 * also be the start of a new block (e.g., an "else" block, or
655 		 * maybe the previous block didn't have a block terminator).
656 		 * Try to distinguish those cases based on what comes next:
657 		 */
658 		if (m->post_indent != -1 && m->post_indent > indent) {
659 			/*
660 			 * The following line is indented more. So it is likely
661 			 * that this line is the start of a block.
662 			 */
663 			s->penalty += any_blanks ?
664 				RELATIVE_OUTDENT_WITH_BLANK_PENALTY :
665 				RELATIVE_OUTDENT_PENALTY;
666 		} else {
667 			/*
668 			 * That was probably the end of a block.
669 			 */
670 			s->penalty += any_blanks ?
671 				RELATIVE_DEDENT_WITH_BLANK_PENALTY :
672 				RELATIVE_DEDENT_PENALTY;
673 		}
674 	}
675 }
676 
score_cmp(struct split_score * s1,struct split_score * s2)677 static int score_cmp(struct split_score *s1, struct split_score *s2)
678 {
679 	/* -1 if s1.effective_indent < s2->effective_indent, etc. */
680 	int cmp_indents = ((s1->effective_indent > s2->effective_indent) -
681 			   (s1->effective_indent < s2->effective_indent));
682 
683 	return INDENT_WEIGHT * cmp_indents + (s1->penalty - s2->penalty);
684 }
685 
686 /*
687  * Represent a group of changed lines in an xdfile_t (i.e., a contiguous group
688  * of lines that was inserted or deleted from the corresponding version of the
689  * file). We consider there to be such a group at the beginning of the file, at
690  * the end of the file, and between any two unchanged lines, though most such
691  * groups will usually be empty.
692  *
693  * If the first line in a group is equal to the line following the group, then
694  * the group can be slid down. Similarly, if the last line in a group is equal
695  * to the line preceding the group, then the group can be slid up. See
696  * group_slide_down() and group_slide_up().
697  *
698  * Note that loops that are testing for changed lines in xdf->rchg do not need
699  * index bounding since the array is prepared with a zero at position -1 and N.
700  */
701 struct xdlgroup {
702 	/*
703 	 * The index of the first changed line in the group, or the index of
704 	 * the unchanged line above which the (empty) group is located.
705 	 */
706 	long start;
707 
708 	/*
709 	 * The index of the first unchanged line after the group. For an empty
710 	 * group, end is equal to start.
711 	 */
712 	long end;
713 };
714 
715 /*
716  * Initialize g to point at the first group in xdf.
717  */
group_init(xdfile_t * xdf,struct xdlgroup * g)718 static void group_init(xdfile_t *xdf, struct xdlgroup *g)
719 {
720 	g->start = g->end = 0;
721 	while (xdf->rchg[g->end])
722 		g->end++;
723 }
724 
725 /*
726  * Move g to describe the next (possibly empty) group in xdf and return 0. If g
727  * is already at the end of the file, do nothing and return -1.
728  */
group_next(xdfile_t * xdf,struct xdlgroup * g)729 static inline int group_next(xdfile_t *xdf, struct xdlgroup *g)
730 {
731 	if (g->end == xdf->nrec)
732 		return -1;
733 
734 	g->start = g->end + 1;
735 	for (g->end = g->start; xdf->rchg[g->end]; g->end++)
736 		;
737 
738 	return 0;
739 }
740 
741 /*
742  * Move g to describe the previous (possibly empty) group in xdf and return 0.
743  * If g is already at the beginning of the file, do nothing and return -1.
744  */
group_previous(xdfile_t * xdf,struct xdlgroup * g)745 static inline int group_previous(xdfile_t *xdf, struct xdlgroup *g)
746 {
747 	if (g->start == 0)
748 		return -1;
749 
750 	g->end = g->start - 1;
751 	for (g->start = g->end; xdf->rchg[g->start - 1]; g->start--)
752 		;
753 
754 	return 0;
755 }
756 
757 /*
758  * If g can be slid toward the end of the file, do so, and if it bumps into a
759  * following group, expand this group to include it. Return 0 on success or -1
760  * if g cannot be slid down.
761  */
group_slide_down(xdfile_t * xdf,struct xdlgroup * g,long flags)762 static int group_slide_down(xdfile_t *xdf, struct xdlgroup *g, long flags)
763 {
764 	if (g->end < xdf->nrec &&
765 	    recs_match(xdf->recs[g->start], xdf->recs[g->end], flags)) {
766 		xdf->rchg[g->start++] = 0;
767 		xdf->rchg[g->end++] = 1;
768 
769 		while (xdf->rchg[g->end])
770 			g->end++;
771 
772 		return 0;
773 	} else {
774 		return -1;
775 	}
776 }
777 
778 /*
779  * If g can be slid toward the beginning of the file, do so, and if it bumps
780  * into a previous group, expand this group to include it. Return 0 on success
781  * or -1 if g cannot be slid up.
782  */
group_slide_up(xdfile_t * xdf,struct xdlgroup * g,long flags)783 static int group_slide_up(xdfile_t *xdf, struct xdlgroup *g, long flags)
784 {
785 	if (g->start > 0 &&
786 	    recs_match(xdf->recs[g->start - 1], xdf->recs[g->end - 1], flags)) {
787 		xdf->rchg[--g->start] = 1;
788 		xdf->rchg[--g->end] = 0;
789 
790 		while (xdf->rchg[g->start - 1])
791 			g->start--;
792 
793 		return 0;
794 	} else {
795 		return -1;
796 	}
797 }
798 
xdl_bug(const char * msg)799 static void xdl_bug(const char *msg)
800 {
801 	fprintf(stderr, "BUG: %s\n", msg);
802 	exit(1);
803 }
804 
805 /*
806  * Move back and forward change groups for a consistent and pretty diff output.
807  * This also helps in finding joinable change groups and reducing the diff
808  * size.
809  */
xdl_change_compact(xdfile_t * xdf,xdfile_t * xdfo,long flags)810 int xdl_change_compact(xdfile_t *xdf, xdfile_t *xdfo, long flags) {
811 	struct xdlgroup g, go;
812 	long earliest_end, end_matching_other;
813 	long groupsize;
814 
815 	group_init(xdf, &g);
816 	group_init(xdfo, &go);
817 
818 	while (1) {
819 		/*
820 		 * If the group is empty in the to-be-compacted file, skip it:
821 		 */
822 		if (g.end == g.start)
823 			goto next;
824 
825 		/*
826 		 * Now shift the change up and then down as far as possible in
827 		 * each direction. If it bumps into any other changes, merge
828 		 * them.
829 		 */
830 		do {
831 			groupsize = g.end - g.start;
832 
833 			/*
834 			 * Keep track of the last "end" index that causes this
835 			 * group to align with a group of changed lines in the
836 			 * other file. -1 indicates that we haven't found such
837 			 * a match yet:
838 			 */
839 			end_matching_other = -1;
840 
841 			/* Shift the group backward as much as possible: */
842 			while (!group_slide_up(xdf, &g, flags))
843 				if (group_previous(xdfo, &go))
844 					xdl_bug("group sync broken sliding up");
845 
846 			/*
847 			 * This is this highest that this group can be shifted.
848 			 * Record its end index:
849 			 */
850 			earliest_end = g.end;
851 
852 			if (go.end > go.start)
853 				end_matching_other = g.end;
854 
855 			/* Now shift the group forward as far as possible: */
856 			while (1) {
857 				if (group_slide_down(xdf, &g, flags))
858 					break;
859 				if (group_next(xdfo, &go))
860 					xdl_bug("group sync broken sliding down");
861 
862 				if (go.end > go.start)
863 					end_matching_other = g.end;
864 			}
865 		} while (groupsize != g.end - g.start);
866 
867 		/*
868 		 * If the group can be shifted, then we can possibly use this
869 		 * freedom to produce a more intuitive diff.
870 		 *
871 		 * The group is currently shifted as far down as possible, so
872 		 * the heuristics below only have to handle upwards shifts.
873 		 */
874 
875 		if (g.end == earliest_end) {
876 			/* no shifting was possible */
877 		} else if (end_matching_other != -1) {
878 			/*
879 			 * Move the possibly merged group of changes back to
880 			 * line up with the last group of changes from the
881 			 * other file that it can align with.
882 			 */
883 			while (go.end == go.start) {
884 				if (group_slide_up(xdf, &g, flags))
885 					xdl_bug("match disappeared");
886 				if (group_previous(xdfo, &go))
887 					xdl_bug("group sync broken sliding to match");
888 			}
889 		} else if (flags & XDF_INDENT_HEURISTIC) {
890 			/*
891 			 * Indent heuristic: a group of pure add/delete lines
892 			 * implies two splits, one between the end of the
893 			 * "before" context and the start of the group, and
894 			 * another between the end of the group and the
895 			 * beginning of the "after" context. Some splits are
896 			 * aesthetically better and some are worse. We compute
897 			 * a badness "score" for each split, and add the scores
898 			 * for the two splits to define a "score" for each
899 			 * position that the group can be shifted to. Then we
900 			 * pick the shift with the lowest score.
901 			 */
902 			long shift, best_shift = -1;
903 			struct split_score best_score;
904 
905 			shift = earliest_end;
906 			if (g.end - groupsize - 1 > shift)
907 				shift = g.end - groupsize - 1;
908 			if (g.end - INDENT_HEURISTIC_MAX_SLIDING > shift)
909 				shift = g.end - INDENT_HEURISTIC_MAX_SLIDING;
910 			for (; shift <= g.end; shift++) {
911 				struct split_measurement m;
912 				struct split_score score = {0, 0};
913 
914 				measure_split(xdf, shift, &m);
915 				score_add_split(&m, &score);
916 				measure_split(xdf, shift - groupsize, &m);
917 				score_add_split(&m, &score);
918 				if (best_shift == -1 ||
919 				    score_cmp(&score, &best_score) <= 0) {
920 					best_score.effective_indent = score.effective_indent;
921 					best_score.penalty = score.penalty;
922 					best_shift = shift;
923 				}
924 			}
925 
926 			while (g.end > best_shift) {
927 				if (group_slide_up(xdf, &g, flags))
928 					xdl_bug("best shift unreached");
929 				if (group_previous(xdfo, &go))
930 					xdl_bug("group sync broken sliding to blank line");
931 			}
932 		}
933 
934 	next:
935 		/* Move past the just-processed group: */
936 		if (group_next(xdf, &g))
937 			break;
938 		if (group_next(xdfo, &go))
939 			xdl_bug("group sync broken moving to next group");
940 	}
941 
942 	if (!group_next(xdfo, &go))
943 		xdl_bug("group sync broken at end of file");
944 
945 	return 0;
946 }
947 
948 
xdl_build_script(xdfenv_t * xe,xdchange_t ** xscr)949 int xdl_build_script(xdfenv_t *xe, xdchange_t **xscr) {
950 	xdchange_t *cscr = NULL, *xch;
951 	char *rchg1 = xe->xdf1.rchg, *rchg2 = xe->xdf2.rchg;
952 	long i1, i2, l1, l2;
953 
954 	/*
955 	 * Trivial. Collects "groups" of changes and creates an edit script.
956 	 */
957 	for (i1 = xe->xdf1.nrec, i2 = xe->xdf2.nrec; i1 >= 0 || i2 >= 0; i1--, i2--)
958 		if (rchg1[i1 - 1] || rchg2[i2 - 1]) {
959 			for (l1 = i1; rchg1[i1 - 1]; i1--);
960 			for (l2 = i2; rchg2[i2 - 1]; i2--);
961 
962 			if (!(xch = xdl_add_change(cscr, i1, i2, l1 - i1, l2 - i2))) {
963 				xdl_free_script(cscr);
964 				return -1;
965 			}
966 			cscr = xch;
967 		}
968 
969 	*xscr = cscr;
970 
971 	return 0;
972 }
973 
974 
xdl_free_script(xdchange_t * xscr)975 void xdl_free_script(xdchange_t *xscr) {
976 	xdchange_t *xch;
977 
978 	while ((xch = xscr) != NULL) {
979 		xscr = xscr->next;
980 		xdl_free(xch);
981 	}
982 }
983 
xdl_call_hunk_func(xdfenv_t * xe UNUSED,xdchange_t * xscr,xdemitcb_t * ecb,xdemitconf_t const * xecfg)984 static int xdl_call_hunk_func(xdfenv_t *xe UNUSED, xdchange_t *xscr, xdemitcb_t *ecb,
985 			      xdemitconf_t const *xecfg)
986 {
987 	xdchange_t *xch, *xche;
988 
989 	for (xch = xscr; xch; xch = xche->next) {
990 		xche = xdl_get_hunk(&xch, xecfg);
991 		if (!xch)
992 			break;
993 		if (xecfg->hunk_func(xch->i1, xche->i1 + xche->chg1 - xch->i1,
994 				     xch->i2, xche->i2 + xche->chg2 - xch->i2,
995 				     ecb->priv) < 0)
996 			return -1;
997 	}
998 	return 0;
999 }
1000 
xdl_mark_ignorable_lines(xdchange_t * xscr,xdfenv_t * xe,long flags)1001 static void xdl_mark_ignorable_lines(xdchange_t *xscr, xdfenv_t *xe, long flags)
1002 {
1003 	xdchange_t *xch;
1004 
1005 	for (xch = xscr; xch; xch = xch->next) {
1006 		int ignore = 1;
1007 		xrecord_t **rec;
1008 		long i;
1009 
1010 		rec = &xe->xdf1.recs[xch->i1];
1011 		for (i = 0; i < xch->chg1 && ignore; i++)
1012 			ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
1013 
1014 		rec = &xe->xdf2.recs[xch->i2];
1015 		for (i = 0; i < xch->chg2 && ignore; i++)
1016 			ignore = xdl_blankline(rec[i]->ptr, rec[i]->size, flags);
1017 
1018 		xch->ignore = ignore;
1019 	}
1020 }
1021 
1022 #if 0 // unused by Vim
1023 static int record_matches_regex(xrecord_t *rec, xpparam_t const *xpp) {
1024 	regmatch_t regmatch;
1025 	int i;
1026 
1027 	for (i = 0; i < xpp->ignore_regex_nr; i++)
1028 		if (!regexec_buf(xpp->ignore_regex[i], rec->ptr, rec->size, 1,
1029 				 &regmatch, 0))
1030 			return 1;
1031 
1032 	return 0;
1033 }
1034 
1035 static void xdl_mark_ignorable_regex(xdchange_t *xscr, const xdfenv_t *xe,
1036 				     xpparam_t const *xpp)
1037 {
1038 	xdchange_t *xch;
1039 
1040 	for (xch = xscr; xch; xch = xch->next) {
1041 		xrecord_t **rec;
1042 		int ignore = 1;
1043 		long i;
1044 
1045 		/*
1046 		 * Do not override --ignore-blank-lines.
1047 		 */
1048 		if (xch->ignore)
1049 			continue;
1050 
1051 		rec = &xe->xdf1.recs[xch->i1];
1052 		for (i = 0; i < xch->chg1 && ignore; i++)
1053 			ignore = record_matches_regex(rec[i], xpp);
1054 
1055 		rec = &xe->xdf2.recs[xch->i2];
1056 		for (i = 0; i < xch->chg2 && ignore; i++)
1057 			ignore = record_matches_regex(rec[i], xpp);
1058 
1059 		xch->ignore = ignore;
1060 	}
1061 }
1062 #endif
1063 
xdl_diff(mmfile_t * mf1,mmfile_t * mf2,xpparam_t const * xpp,xdemitconf_t const * xecfg,xdemitcb_t * ecb)1064 int xdl_diff(mmfile_t *mf1, mmfile_t *mf2, xpparam_t const *xpp,
1065 	     xdemitconf_t const *xecfg, xdemitcb_t *ecb) {
1066 	xdchange_t *xscr;
1067 	xdfenv_t xe;
1068 	emit_func_t ef = xecfg->hunk_func ? xdl_call_hunk_func : xdl_emit_diff;
1069 
1070 	if (xdl_do_diff(mf1, mf2, xpp, &xe) < 0) {
1071 
1072 		return -1;
1073 	}
1074 	if (xdl_change_compact(&xe.xdf1, &xe.xdf2, xpp->flags) < 0 ||
1075 	    xdl_change_compact(&xe.xdf2, &xe.xdf1, xpp->flags) < 0 ||
1076 	    xdl_build_script(&xe, &xscr) < 0) {
1077 
1078 		xdl_free_env(&xe);
1079 		return -1;
1080 	}
1081 	if (xscr) {
1082 		if (xpp->flags & XDF_IGNORE_BLANK_LINES)
1083 			xdl_mark_ignorable_lines(xscr, &xe, xpp->flags);
1084 
1085 #if 0
1086 		if (xpp->ignore_regex)
1087 			xdl_mark_ignorable_regex(xscr, &xe, xpp);
1088 #endif
1089 
1090 		if (ef(&xe, xscr, ecb, xecfg) < 0) {
1091 
1092 			xdl_free_script(xscr);
1093 			xdl_free_env(&xe);
1094 			return -1;
1095 		}
1096 		xdl_free_script(xscr);
1097 	}
1098 	xdl_free_env(&xe);
1099 
1100 	return 0;
1101 }
1102