xref: /vim-8.2.3635/src/hashtab.c (revision fcfe1a9b)
1 /* vi:set ts=8 sts=4 sw=4 noet:
2  *
3  * VIM - Vi IMproved	by Bram Moolenaar
4  *
5  * Do ":help uganda"  in Vim to read copying and usage conditions.
6  * Do ":help credits" in Vim to see a list of people who contributed.
7  * See README.txt for an overview of the Vim source code.
8  */
9 
10 /*
11  * hashtab.c: Handling of a hashtable with Vim-specific properties.
12  *
13  * Each item in a hashtable has a NUL terminated string key.  A key can appear
14  * only once in the table.
15  *
16  * A hash number is computed from the key for quick lookup.  When the hashes
17  * of two different keys point to the same entry an algorithm is used to
18  * iterate over other entries in the table until the right one is found.
19  * To make the iteration work removed keys are different from entries where a
20  * key was never present.
21  *
22  * The mechanism has been partly based on how Python Dictionaries are
23  * implemented.  The algorithm is from Knuth Vol. 3, Sec. 6.4.
24  *
25  * The hashtable grows to accommodate more entries when needed.  At least 1/3
26  * of the entries is empty to keep the lookup efficient (at the cost of extra
27  * memory).
28  */
29 
30 #include "vim.h"
31 
32 #if 0
33 # define HT_DEBUG	/* extra checks for table consistency  and statistics */
34 
35 static long hash_count_lookup = 0;	/* count number of hashtab lookups */
36 static long hash_count_perturb = 0;	/* count number of "misses" */
37 #endif
38 
39 /* Magic value for algorithm that walks through the array. */
40 #define PERTURB_SHIFT 5
41 
42 static int hash_may_resize(hashtab_T *ht, int minitems);
43 
44 #if 0 /* currently not used */
45 /*
46  * Create an empty hash table.
47  * Returns NULL when out of memory.
48  */
49     hashtab_T *
50 hash_create(void)
51 {
52     hashtab_T *ht;
53 
54     ht = ALLOC_ONE(hashtab_T);
55     if (ht != NULL)
56 	hash_init(ht);
57     return ht;
58 }
59 #endif
60 
61 /*
62  * Initialize an empty hash table.
63  */
64     void
65 hash_init(hashtab_T *ht)
66 {
67     /* This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray". */
68     vim_memset(ht, 0, sizeof(hashtab_T));
69     ht->ht_array = ht->ht_smallarray;
70     ht->ht_mask = HT_INIT_SIZE - 1;
71 }
72 
73 /*
74  * Free the array of a hash table.  Does not free the items it contains!
75  * If "ht" is not freed then you should call hash_init() next!
76  */
77     void
78 hash_clear(hashtab_T *ht)
79 {
80     if (ht->ht_array != ht->ht_smallarray)
81 	vim_free(ht->ht_array);
82 }
83 
84 #if defined(FEAT_SPELL) || defined(PROTO)
85 /*
86  * Free the array of a hash table and all the keys it contains.  The keys must
87  * have been allocated.  "off" is the offset from the start of the allocate
88  * memory to the location of the key (it's always positive).
89  */
90     void
91 hash_clear_all(hashtab_T *ht, int off)
92 {
93     long	todo;
94     hashitem_T	*hi;
95 
96     todo = (long)ht->ht_used;
97     for (hi = ht->ht_array; todo > 0; ++hi)
98     {
99 	if (!HASHITEM_EMPTY(hi))
100 	{
101 	    vim_free(hi->hi_key - off);
102 	    --todo;
103 	}
104     }
105     hash_clear(ht);
106 }
107 #endif
108 
109 /*
110  * Find "key" in hashtable "ht".  "key" must not be NULL.
111  * Always returns a pointer to a hashitem.  If the item was not found then
112  * HASHITEM_EMPTY() is TRUE.  The pointer is then the place where the key
113  * would be added.
114  * WARNING: The returned pointer becomes invalid when the hashtable is changed
115  * (adding, setting or removing an item)!
116  */
117     hashitem_T *
118 hash_find(hashtab_T *ht, char_u *key)
119 {
120     return hash_lookup(ht, key, hash_hash(key));
121 }
122 
123 /*
124  * Like hash_find(), but caller computes "hash".
125  */
126     hashitem_T *
127 hash_lookup(hashtab_T *ht, char_u *key, hash_T hash)
128 {
129     hash_T	perturb;
130     hashitem_T	*freeitem;
131     hashitem_T	*hi;
132     unsigned	idx;
133 
134 #ifdef HT_DEBUG
135     ++hash_count_lookup;
136 #endif
137 
138     /*
139      * Quickly handle the most common situations:
140      * - return if there is no item at all
141      * - skip over a removed item
142      * - return if the item matches
143      */
144     idx = (unsigned)(hash & ht->ht_mask);
145     hi = &ht->ht_array[idx];
146 
147     if (hi->hi_key == NULL)
148 	return hi;
149     if (hi->hi_key == HI_KEY_REMOVED)
150 	freeitem = hi;
151     else if (hi->hi_hash == hash && STRCMP(hi->hi_key, key) == 0)
152 	return hi;
153     else
154 	freeitem = NULL;
155 
156     /*
157      * Need to search through the table to find the key.  The algorithm
158      * to step through the table starts with large steps, gradually becoming
159      * smaller down to (1/4 table size + 1).  This means it goes through all
160      * table entries in the end.
161      * When we run into a NULL key it's clear that the key isn't there.
162      * Return the first available slot found (can be a slot of a removed
163      * item).
164      */
165     for (perturb = hash; ; perturb >>= PERTURB_SHIFT)
166     {
167 #ifdef HT_DEBUG
168 	++hash_count_perturb;	    /* count a "miss" for hashtab lookup */
169 #endif
170 	idx = (unsigned)((idx << 2U) + idx + perturb + 1U);
171 	hi = &ht->ht_array[idx & ht->ht_mask];
172 	if (hi->hi_key == NULL)
173 	    return freeitem == NULL ? hi : freeitem;
174 	if (hi->hi_hash == hash
175 		&& hi->hi_key != HI_KEY_REMOVED
176 		&& STRCMP(hi->hi_key, key) == 0)
177 	    return hi;
178 	if (hi->hi_key == HI_KEY_REMOVED && freeitem == NULL)
179 	    freeitem = hi;
180     }
181 }
182 
183 #if defined(FEAT_EVAL) || defined(FEAT_SYN_HL) || defined(PROTO)
184 /*
185  * Print the efficiency of hashtable lookups.
186  * Useful when trying different hash algorithms.
187  * Called when exiting.
188  */
189     void
190 hash_debug_results(void)
191 {
192 #ifdef HT_DEBUG
193     fprintf(stderr, "\r\n\r\n\r\n\r\n");
194     fprintf(stderr, "Number of hashtable lookups: %ld\r\n", hash_count_lookup);
195     fprintf(stderr, "Number of perturb loops: %ld\r\n", hash_count_perturb);
196     fprintf(stderr, "Percentage of perturb loops: %ld%%\r\n",
197 				hash_count_perturb * 100 / hash_count_lookup);
198 #endif
199 }
200 #endif
201 
202 /*
203  * Add item with key "key" to hashtable "ht".
204  * Returns FAIL when out of memory or the key is already present.
205  */
206     int
207 hash_add(hashtab_T *ht, char_u *key)
208 {
209     hash_T	hash = hash_hash(key);
210     hashitem_T	*hi;
211 
212     hi = hash_lookup(ht, key, hash);
213     if (!HASHITEM_EMPTY(hi))
214     {
215 	internal_error("hash_add()");
216 	return FAIL;
217     }
218     return hash_add_item(ht, hi, key, hash);
219 }
220 
221 /*
222  * Add item "hi" with "key" to hashtable "ht".  "key" must not be NULL and
223  * "hi" must have been obtained with hash_lookup() and point to an empty item.
224  * "hi" is invalid after this!
225  * Returns OK or FAIL (out of memory).
226  */
227     int
228 hash_add_item(
229     hashtab_T	*ht,
230     hashitem_T	*hi,
231     char_u	*key,
232     hash_T	hash)
233 {
234     /* If resizing failed before and it fails again we can't add an item. */
235     if (ht->ht_error && hash_may_resize(ht, 0) == FAIL)
236 	return FAIL;
237 
238     ++ht->ht_used;
239     if (hi->hi_key == NULL)
240 	++ht->ht_filled;
241     hi->hi_key = key;
242     hi->hi_hash = hash;
243 
244     /* When the space gets low may resize the array. */
245     return hash_may_resize(ht, 0);
246 }
247 
248 #if 0  /* not used */
249 /*
250  * Overwrite hashtable item "hi" with "key".  "hi" must point to the item that
251  * is to be overwritten.  Thus the number of items in the hashtable doesn't
252  * change.
253  * Although the key must be identical, the pointer may be different, thus it's
254  * set anyway (the key is part of an item with that key).
255  * The caller must take care of freeing the old item.
256  * "hi" is invalid after this!
257  */
258     void
259 hash_set(hashitem_T *hi, char_u *key)
260 {
261     hi->hi_key = key;
262 }
263 #endif
264 
265 /*
266  * Remove item "hi" from  hashtable "ht".  "hi" must have been obtained with
267  * hash_lookup().
268  * The caller must take care of freeing the item itself.
269  */
270     void
271 hash_remove(hashtab_T *ht, hashitem_T *hi)
272 {
273     --ht->ht_used;
274     hi->hi_key = HI_KEY_REMOVED;
275     hash_may_resize(ht, 0);
276 }
277 
278 /*
279  * Lock a hashtable: prevent that ht_array changes.
280  * Don't use this when items are to be added!
281  * Must call hash_unlock() later.
282  */
283     void
284 hash_lock(hashtab_T *ht)
285 {
286     ++ht->ht_locked;
287 }
288 
289 /*
290  * Lock a hashtable at the specified number of entries.
291  * Caller must make sure no more than "size" entries will be added.
292  * Must call hash_unlock() later.
293  */
294     void
295 hash_lock_size(hashtab_T *ht, int size)
296 {
297     (void)hash_may_resize(ht, size);
298     ++ht->ht_locked;
299 }
300 
301 /*
302  * Unlock a hashtable: allow ht_array changes again.
303  * Table will be resized (shrink) when necessary.
304  * This must balance a call to hash_lock().
305  */
306     void
307 hash_unlock(hashtab_T *ht)
308 {
309     --ht->ht_locked;
310     (void)hash_may_resize(ht, 0);
311 }
312 
313 /*
314  * Shrink a hashtable when there is too much empty space.
315  * Grow a hashtable when there is not enough empty space.
316  * Returns OK or FAIL (out of memory).
317  */
318     static int
319 hash_may_resize(
320     hashtab_T	*ht,
321     int		minitems)		/* minimal number of items */
322 {
323     hashitem_T	temparray[HT_INIT_SIZE];
324     hashitem_T	*oldarray, *newarray;
325     hashitem_T	*olditem, *newitem;
326     unsigned	newi;
327     int		todo;
328     long_u	oldsize, newsize;
329     long_u	minsize;
330     long_u	newmask;
331     hash_T	perturb;
332 
333     /* Don't resize a locked table. */
334     if (ht->ht_locked > 0)
335 	return OK;
336 
337 #ifdef HT_DEBUG
338     if (ht->ht_used > ht->ht_filled)
339 	emsg("hash_may_resize(): more used than filled");
340     if (ht->ht_filled >= ht->ht_mask + 1)
341 	emsg("hash_may_resize(): table completely filled");
342 #endif
343 
344     if (minitems == 0)
345     {
346 	/* Return quickly for small tables with at least two NULL items.  NULL
347 	 * items are required for the lookup to decide a key isn't there. */
348 	if (ht->ht_filled < HT_INIT_SIZE - 1
349 					 && ht->ht_array == ht->ht_smallarray)
350 	    return OK;
351 
352 	/*
353 	 * Grow or refill the array when it's more than 2/3 full (including
354 	 * removed items, so that they get cleaned up).
355 	 * Shrink the array when it's less than 1/5 full.  When growing it is
356 	 * at least 1/4 full (avoids repeated grow-shrink operations)
357 	 */
358 	oldsize = ht->ht_mask + 1;
359 	if (ht->ht_filled * 3 < oldsize * 2 && ht->ht_used > oldsize / 5)
360 	    return OK;
361 
362 	if (ht->ht_used > 1000)
363 	    minsize = ht->ht_used * 2;  /* it's big, don't make too much room */
364 	else
365 	    minsize = ht->ht_used * 4;  /* make plenty of room */
366     }
367     else
368     {
369 	// Use specified size.
370 	if ((long_u)minitems < ht->ht_used)	// just in case...
371 	    minitems = (int)ht->ht_used;
372 	minsize = (minitems * 3 + 1) / 2;	// array is up to 2/3 full
373     }
374 
375     newsize = HT_INIT_SIZE;
376     while (newsize < minsize)
377     {
378 	newsize <<= 1;		/* make sure it's always a power of 2 */
379 	if (newsize == 0)
380 	    return FAIL;	/* overflow */
381     }
382 
383     if (newsize == HT_INIT_SIZE)
384     {
385 	/* Use the small array inside the hashdict structure. */
386 	newarray = ht->ht_smallarray;
387 	if (ht->ht_array == newarray)
388 	{
389 	    /* Moving from ht_smallarray to ht_smallarray!  Happens when there
390 	     * are many removed items.  Copy the items to be able to clean up
391 	     * removed items. */
392 	    mch_memmove(temparray, newarray, sizeof(temparray));
393 	    oldarray = temparray;
394 	}
395 	else
396 	    oldarray = ht->ht_array;
397     }
398     else
399     {
400 	/* Allocate an array. */
401 	newarray = ALLOC_MULT(hashitem_T, newsize);
402 	if (newarray == NULL)
403 	{
404 	    /* Out of memory.  When there are NULL items still return OK.
405 	     * Otherwise set ht_error, because lookup may result in a hang if
406 	     * we add another item. */
407 	    if (ht->ht_filled < ht->ht_mask)
408 		return OK;
409 	    ht->ht_error = TRUE;
410 	    return FAIL;
411 	}
412 	oldarray = ht->ht_array;
413     }
414     vim_memset(newarray, 0, (size_t)(sizeof(hashitem_T) * newsize));
415 
416     /*
417      * Move all the items from the old array to the new one, placing them in
418      * the right spot.  The new array won't have any removed items, thus this
419      * is also a cleanup action.
420      */
421     newmask = newsize - 1;
422     todo = (int)ht->ht_used;
423     for (olditem = oldarray; todo > 0; ++olditem)
424 	if (!HASHITEM_EMPTY(olditem))
425 	{
426 	    /*
427 	     * The algorithm to find the spot to add the item is identical to
428 	     * the algorithm to find an item in hash_lookup().  But we only
429 	     * need to search for a NULL key, thus it's simpler.
430 	     */
431 	    newi = (unsigned)(olditem->hi_hash & newmask);
432 	    newitem = &newarray[newi];
433 
434 	    if (newitem->hi_key != NULL)
435 		for (perturb = olditem->hi_hash; ; perturb >>= PERTURB_SHIFT)
436 		{
437 		    newi = (unsigned)((newi << 2U) + newi + perturb + 1U);
438 		    newitem = &newarray[newi & newmask];
439 		    if (newitem->hi_key == NULL)
440 			break;
441 		}
442 	    *newitem = *olditem;
443 	    --todo;
444 	}
445 
446     if (ht->ht_array != ht->ht_smallarray)
447 	vim_free(ht->ht_array);
448     ht->ht_array = newarray;
449     ht->ht_mask = newmask;
450     ht->ht_filled = ht->ht_used;
451     ht->ht_error = FALSE;
452 
453     return OK;
454 }
455 
456 /*
457  * Get the hash number for a key.
458  * If you think you know a better hash function: Compile with HT_DEBUG set and
459  * run a script that uses hashtables a lot.  Vim will then print statistics
460  * when exiting.  Try that with the current hash algorithm and yours.  The
461  * lower the percentage the better.
462  */
463     hash_T
464 hash_hash(char_u *key)
465 {
466     hash_T	hash;
467     char_u	*p;
468 
469     if ((hash = *key) == 0)
470 	return (hash_T)0;
471     p = key + 1;
472 
473     /* A simplistic algorithm that appears to do very well.
474      * Suggested by George Reilly. */
475     while (*p != NUL)
476 	hash = hash * 101 + *p++;
477 
478     return hash;
479 }
480