1 /* vi:set ts=8 sts=4 sw=4 noet: 2 * 3 * VIM - Vi IMproved by Bram Moolenaar 4 * 5 * Do ":help uganda" in Vim to read copying and usage conditions. 6 * Do ":help credits" in Vim to see a list of people who contributed. 7 * See README.txt for an overview of the Vim source code. 8 */ 9 10 /* 11 * hashtab.c: Handling of a hashtable with Vim-specific properties. 12 * 13 * Each item in a hashtable has a NUL terminated string key. A key can appear 14 * only once in the table. 15 * 16 * A hash number is computed from the key for quick lookup. When the hashes 17 * of two different keys point to the same entry an algorithm is used to 18 * iterate over other entries in the table until the right one is found. 19 * To make the iteration work removed keys are different from entries where a 20 * key was never present. 21 * 22 * The mechanism has been partly based on how Python Dictionaries are 23 * implemented. The algorithm is from Knuth Vol. 3, Sec. 6.4. 24 * 25 * The hashtable grows to accommodate more entries when needed. At least 1/3 26 * of the entries is empty to keep the lookup efficient (at the cost of extra 27 * memory). 28 */ 29 30 #include "vim.h" 31 32 #if 0 33 # define HT_DEBUG /* extra checks for table consistency and statistics */ 34 35 static long hash_count_lookup = 0; /* count number of hashtab lookups */ 36 static long hash_count_perturb = 0; /* count number of "misses" */ 37 #endif 38 39 /* Magic value for algorithm that walks through the array. */ 40 #define PERTURB_SHIFT 5 41 42 static int hash_may_resize(hashtab_T *ht, int minitems); 43 44 #if 0 /* currently not used */ 45 /* 46 * Create an empty hash table. 47 * Returns NULL when out of memory. 48 */ 49 hashtab_T * 50 hash_create(void) 51 { 52 hashtab_T *ht; 53 54 ht = ALLOC_ONE(hashtab_T); 55 if (ht != NULL) 56 hash_init(ht); 57 return ht; 58 } 59 #endif 60 61 /* 62 * Initialize an empty hash table. 63 */ 64 void 65 hash_init(hashtab_T *ht) 66 { 67 /* This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray". */ 68 vim_memset(ht, 0, sizeof(hashtab_T)); 69 ht->ht_array = ht->ht_smallarray; 70 ht->ht_mask = HT_INIT_SIZE - 1; 71 } 72 73 /* 74 * Free the array of a hash table. Does not free the items it contains! 75 * If "ht" is not freed then you should call hash_init() next! 76 */ 77 void 78 hash_clear(hashtab_T *ht) 79 { 80 if (ht->ht_array != ht->ht_smallarray) 81 vim_free(ht->ht_array); 82 } 83 84 #if defined(FEAT_SPELL) || defined(PROTO) 85 /* 86 * Free the array of a hash table and all the keys it contains. The keys must 87 * have been allocated. "off" is the offset from the start of the allocate 88 * memory to the location of the key (it's always positive). 89 */ 90 void 91 hash_clear_all(hashtab_T *ht, int off) 92 { 93 long todo; 94 hashitem_T *hi; 95 96 todo = (long)ht->ht_used; 97 for (hi = ht->ht_array; todo > 0; ++hi) 98 { 99 if (!HASHITEM_EMPTY(hi)) 100 { 101 vim_free(hi->hi_key - off); 102 --todo; 103 } 104 } 105 hash_clear(ht); 106 } 107 #endif 108 109 /* 110 * Find "key" in hashtable "ht". "key" must not be NULL. 111 * Always returns a pointer to a hashitem. If the item was not found then 112 * HASHITEM_EMPTY() is TRUE. The pointer is then the place where the key 113 * would be added. 114 * WARNING: The returned pointer becomes invalid when the hashtable is changed 115 * (adding, setting or removing an item)! 116 */ 117 hashitem_T * 118 hash_find(hashtab_T *ht, char_u *key) 119 { 120 return hash_lookup(ht, key, hash_hash(key)); 121 } 122 123 /* 124 * Like hash_find(), but caller computes "hash". 125 */ 126 hashitem_T * 127 hash_lookup(hashtab_T *ht, char_u *key, hash_T hash) 128 { 129 hash_T perturb; 130 hashitem_T *freeitem; 131 hashitem_T *hi; 132 unsigned idx; 133 134 #ifdef HT_DEBUG 135 ++hash_count_lookup; 136 #endif 137 138 /* 139 * Quickly handle the most common situations: 140 * - return if there is no item at all 141 * - skip over a removed item 142 * - return if the item matches 143 */ 144 idx = (unsigned)(hash & ht->ht_mask); 145 hi = &ht->ht_array[idx]; 146 147 if (hi->hi_key == NULL) 148 return hi; 149 if (hi->hi_key == HI_KEY_REMOVED) 150 freeitem = hi; 151 else if (hi->hi_hash == hash && STRCMP(hi->hi_key, key) == 0) 152 return hi; 153 else 154 freeitem = NULL; 155 156 /* 157 * Need to search through the table to find the key. The algorithm 158 * to step through the table starts with large steps, gradually becoming 159 * smaller down to (1/4 table size + 1). This means it goes through all 160 * table entries in the end. 161 * When we run into a NULL key it's clear that the key isn't there. 162 * Return the first available slot found (can be a slot of a removed 163 * item). 164 */ 165 for (perturb = hash; ; perturb >>= PERTURB_SHIFT) 166 { 167 #ifdef HT_DEBUG 168 ++hash_count_perturb; /* count a "miss" for hashtab lookup */ 169 #endif 170 idx = (unsigned)((idx << 2U) + idx + perturb + 1U); 171 hi = &ht->ht_array[idx & ht->ht_mask]; 172 if (hi->hi_key == NULL) 173 return freeitem == NULL ? hi : freeitem; 174 if (hi->hi_hash == hash 175 && hi->hi_key != HI_KEY_REMOVED 176 && STRCMP(hi->hi_key, key) == 0) 177 return hi; 178 if (hi->hi_key == HI_KEY_REMOVED && freeitem == NULL) 179 freeitem = hi; 180 } 181 } 182 183 #if defined(FEAT_EVAL) || defined(FEAT_SYN_HL) || defined(PROTO) 184 /* 185 * Print the efficiency of hashtable lookups. 186 * Useful when trying different hash algorithms. 187 * Called when exiting. 188 */ 189 void 190 hash_debug_results(void) 191 { 192 #ifdef HT_DEBUG 193 fprintf(stderr, "\r\n\r\n\r\n\r\n"); 194 fprintf(stderr, "Number of hashtable lookups: %ld\r\n", hash_count_lookup); 195 fprintf(stderr, "Number of perturb loops: %ld\r\n", hash_count_perturb); 196 fprintf(stderr, "Percentage of perturb loops: %ld%%\r\n", 197 hash_count_perturb * 100 / hash_count_lookup); 198 #endif 199 } 200 #endif 201 202 /* 203 * Add item with key "key" to hashtable "ht". 204 * Returns FAIL when out of memory or the key is already present. 205 */ 206 int 207 hash_add(hashtab_T *ht, char_u *key) 208 { 209 hash_T hash = hash_hash(key); 210 hashitem_T *hi; 211 212 hi = hash_lookup(ht, key, hash); 213 if (!HASHITEM_EMPTY(hi)) 214 { 215 internal_error("hash_add()"); 216 return FAIL; 217 } 218 return hash_add_item(ht, hi, key, hash); 219 } 220 221 /* 222 * Add item "hi" with "key" to hashtable "ht". "key" must not be NULL and 223 * "hi" must have been obtained with hash_lookup() and point to an empty item. 224 * "hi" is invalid after this! 225 * Returns OK or FAIL (out of memory). 226 */ 227 int 228 hash_add_item( 229 hashtab_T *ht, 230 hashitem_T *hi, 231 char_u *key, 232 hash_T hash) 233 { 234 /* If resizing failed before and it fails again we can't add an item. */ 235 if (ht->ht_error && hash_may_resize(ht, 0) == FAIL) 236 return FAIL; 237 238 ++ht->ht_used; 239 if (hi->hi_key == NULL) 240 ++ht->ht_filled; 241 hi->hi_key = key; 242 hi->hi_hash = hash; 243 244 /* When the space gets low may resize the array. */ 245 return hash_may_resize(ht, 0); 246 } 247 248 #if 0 /* not used */ 249 /* 250 * Overwrite hashtable item "hi" with "key". "hi" must point to the item that 251 * is to be overwritten. Thus the number of items in the hashtable doesn't 252 * change. 253 * Although the key must be identical, the pointer may be different, thus it's 254 * set anyway (the key is part of an item with that key). 255 * The caller must take care of freeing the old item. 256 * "hi" is invalid after this! 257 */ 258 void 259 hash_set(hashitem_T *hi, char_u *key) 260 { 261 hi->hi_key = key; 262 } 263 #endif 264 265 /* 266 * Remove item "hi" from hashtable "ht". "hi" must have been obtained with 267 * hash_lookup(). 268 * The caller must take care of freeing the item itself. 269 */ 270 void 271 hash_remove(hashtab_T *ht, hashitem_T *hi) 272 { 273 --ht->ht_used; 274 hi->hi_key = HI_KEY_REMOVED; 275 hash_may_resize(ht, 0); 276 } 277 278 /* 279 * Lock a hashtable: prevent that ht_array changes. 280 * Don't use this when items are to be added! 281 * Must call hash_unlock() later. 282 */ 283 void 284 hash_lock(hashtab_T *ht) 285 { 286 ++ht->ht_locked; 287 } 288 289 /* 290 * Lock a hashtable at the specified number of entries. 291 * Caller must make sure no more than "size" entries will be added. 292 * Must call hash_unlock() later. 293 */ 294 void 295 hash_lock_size(hashtab_T *ht, int size) 296 { 297 (void)hash_may_resize(ht, size); 298 ++ht->ht_locked; 299 } 300 301 /* 302 * Unlock a hashtable: allow ht_array changes again. 303 * Table will be resized (shrink) when necessary. 304 * This must balance a call to hash_lock(). 305 */ 306 void 307 hash_unlock(hashtab_T *ht) 308 { 309 --ht->ht_locked; 310 (void)hash_may_resize(ht, 0); 311 } 312 313 /* 314 * Shrink a hashtable when there is too much empty space. 315 * Grow a hashtable when there is not enough empty space. 316 * Returns OK or FAIL (out of memory). 317 */ 318 static int 319 hash_may_resize( 320 hashtab_T *ht, 321 int minitems) /* minimal number of items */ 322 { 323 hashitem_T temparray[HT_INIT_SIZE]; 324 hashitem_T *oldarray, *newarray; 325 hashitem_T *olditem, *newitem; 326 unsigned newi; 327 int todo; 328 long_u oldsize, newsize; 329 long_u minsize; 330 long_u newmask; 331 hash_T perturb; 332 333 /* Don't resize a locked table. */ 334 if (ht->ht_locked > 0) 335 return OK; 336 337 #ifdef HT_DEBUG 338 if (ht->ht_used > ht->ht_filled) 339 emsg("hash_may_resize(): more used than filled"); 340 if (ht->ht_filled >= ht->ht_mask + 1) 341 emsg("hash_may_resize(): table completely filled"); 342 #endif 343 344 if (minitems == 0) 345 { 346 /* Return quickly for small tables with at least two NULL items. NULL 347 * items are required for the lookup to decide a key isn't there. */ 348 if (ht->ht_filled < HT_INIT_SIZE - 1 349 && ht->ht_array == ht->ht_smallarray) 350 return OK; 351 352 /* 353 * Grow or refill the array when it's more than 2/3 full (including 354 * removed items, so that they get cleaned up). 355 * Shrink the array when it's less than 1/5 full. When growing it is 356 * at least 1/4 full (avoids repeated grow-shrink operations) 357 */ 358 oldsize = ht->ht_mask + 1; 359 if (ht->ht_filled * 3 < oldsize * 2 && ht->ht_used > oldsize / 5) 360 return OK; 361 362 if (ht->ht_used > 1000) 363 minsize = ht->ht_used * 2; /* it's big, don't make too much room */ 364 else 365 minsize = ht->ht_used * 4; /* make plenty of room */ 366 } 367 else 368 { 369 // Use specified size. 370 if ((long_u)minitems < ht->ht_used) // just in case... 371 minitems = (int)ht->ht_used; 372 minsize = (minitems * 3 + 1) / 2; // array is up to 2/3 full 373 } 374 375 newsize = HT_INIT_SIZE; 376 while (newsize < minsize) 377 { 378 newsize <<= 1; /* make sure it's always a power of 2 */ 379 if (newsize == 0) 380 return FAIL; /* overflow */ 381 } 382 383 if (newsize == HT_INIT_SIZE) 384 { 385 /* Use the small array inside the hashdict structure. */ 386 newarray = ht->ht_smallarray; 387 if (ht->ht_array == newarray) 388 { 389 /* Moving from ht_smallarray to ht_smallarray! Happens when there 390 * are many removed items. Copy the items to be able to clean up 391 * removed items. */ 392 mch_memmove(temparray, newarray, sizeof(temparray)); 393 oldarray = temparray; 394 } 395 else 396 oldarray = ht->ht_array; 397 } 398 else 399 { 400 /* Allocate an array. */ 401 newarray = ALLOC_MULT(hashitem_T, newsize); 402 if (newarray == NULL) 403 { 404 /* Out of memory. When there are NULL items still return OK. 405 * Otherwise set ht_error, because lookup may result in a hang if 406 * we add another item. */ 407 if (ht->ht_filled < ht->ht_mask) 408 return OK; 409 ht->ht_error = TRUE; 410 return FAIL; 411 } 412 oldarray = ht->ht_array; 413 } 414 vim_memset(newarray, 0, (size_t)(sizeof(hashitem_T) * newsize)); 415 416 /* 417 * Move all the items from the old array to the new one, placing them in 418 * the right spot. The new array won't have any removed items, thus this 419 * is also a cleanup action. 420 */ 421 newmask = newsize - 1; 422 todo = (int)ht->ht_used; 423 for (olditem = oldarray; todo > 0; ++olditem) 424 if (!HASHITEM_EMPTY(olditem)) 425 { 426 /* 427 * The algorithm to find the spot to add the item is identical to 428 * the algorithm to find an item in hash_lookup(). But we only 429 * need to search for a NULL key, thus it's simpler. 430 */ 431 newi = (unsigned)(olditem->hi_hash & newmask); 432 newitem = &newarray[newi]; 433 434 if (newitem->hi_key != NULL) 435 for (perturb = olditem->hi_hash; ; perturb >>= PERTURB_SHIFT) 436 { 437 newi = (unsigned)((newi << 2U) + newi + perturb + 1U); 438 newitem = &newarray[newi & newmask]; 439 if (newitem->hi_key == NULL) 440 break; 441 } 442 *newitem = *olditem; 443 --todo; 444 } 445 446 if (ht->ht_array != ht->ht_smallarray) 447 vim_free(ht->ht_array); 448 ht->ht_array = newarray; 449 ht->ht_mask = newmask; 450 ht->ht_filled = ht->ht_used; 451 ht->ht_error = FALSE; 452 453 return OK; 454 } 455 456 /* 457 * Get the hash number for a key. 458 * If you think you know a better hash function: Compile with HT_DEBUG set and 459 * run a script that uses hashtables a lot. Vim will then print statistics 460 * when exiting. Try that with the current hash algorithm and yours. The 461 * lower the percentage the better. 462 */ 463 hash_T 464 hash_hash(char_u *key) 465 { 466 hash_T hash; 467 char_u *p; 468 469 if ((hash = *key) == 0) 470 return (hash_T)0; 471 p = key + 1; 472 473 /* A simplistic algorithm that appears to do very well. 474 * Suggested by George Reilly. */ 475 while (*p != NUL) 476 hash = hash * 101 + *p++; 477 478 return hash; 479 } 480