xref: /vim-8.2.3635/src/hashtab.c (revision 0e655111)
1 /* vi:set ts=8 sts=4 sw=4 noet:
2  *
3  * VIM - Vi IMproved	by Bram Moolenaar
4  *
5  * Do ":help uganda"  in Vim to read copying and usage conditions.
6  * Do ":help credits" in Vim to see a list of people who contributed.
7  * See README.txt for an overview of the Vim source code.
8  */
9 
10 /*
11  * hashtab.c: Handling of a hashtable with Vim-specific properties.
12  *
13  * Each item in a hashtable has a NUL terminated string key.  A key can appear
14  * only once in the table.
15  *
16  * A hash number is computed from the key for quick lookup.  When the hashes
17  * of two different keys point to the same entry an algorithm is used to
18  * iterate over other entries in the table until the right one is found.
19  * To make the iteration work removed keys are different from entries where a
20  * key was never present.
21  *
22  * The mechanism has been partly based on how Python Dictionaries are
23  * implemented.  The algorithm is from Knuth Vol. 3, Sec. 6.4.
24  *
25  * The hashtable grows to accommodate more entries when needed.  At least 1/3
26  * of the entries is empty to keep the lookup efficient (at the cost of extra
27  * memory).
28  */
29 
30 #include "vim.h"
31 
32 #if 0
33 # define HT_DEBUG	// extra checks for table consistency  and statistics
34 
35 static long hash_count_lookup = 0;	// count number of hashtab lookups
36 static long hash_count_perturb = 0;	// count number of "misses"
37 #endif
38 
39 // Magic value for algorithm that walks through the array.
40 #define PERTURB_SHIFT 5
41 
42 static int hash_may_resize(hashtab_T *ht, int minitems);
43 
44 #if 0 // currently not used
45 /*
46  * Create an empty hash table.
47  * Returns NULL when out of memory.
48  */
49     hashtab_T *
50 hash_create(void)
51 {
52     hashtab_T *ht;
53 
54     ht = ALLOC_ONE(hashtab_T);
55     if (ht != NULL)
56 	hash_init(ht);
57     return ht;
58 }
59 #endif
60 
61 /*
62  * Initialize an empty hash table.
63  */
64     void
hash_init(hashtab_T * ht)65 hash_init(hashtab_T *ht)
66 {
67     // This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray".
68     CLEAR_POINTER(ht);
69     ht->ht_array = ht->ht_smallarray;
70     ht->ht_mask = HT_INIT_SIZE - 1;
71 }
72 
73 /*
74  * Free the array of a hash table.  Does not free the items it contains!
75  * If "ht" is not freed then you should call hash_init() next!
76  */
77     void
hash_clear(hashtab_T * ht)78 hash_clear(hashtab_T *ht)
79 {
80     if (ht->ht_array != ht->ht_smallarray)
81 	vim_free(ht->ht_array);
82 }
83 
84 #if defined(FEAT_SPELL) || defined(FEAT_TERMINAL) || defined(PROTO)
85 /*
86  * Free the array of a hash table and all the keys it contains.  The keys must
87  * have been allocated.  "off" is the offset from the start of the allocate
88  * memory to the location of the key (it's always positive).
89  */
90     void
hash_clear_all(hashtab_T * ht,int off)91 hash_clear_all(hashtab_T *ht, int off)
92 {
93     long	todo;
94     hashitem_T	*hi;
95 
96     todo = (long)ht->ht_used;
97     for (hi = ht->ht_array; todo > 0; ++hi)
98     {
99 	if (!HASHITEM_EMPTY(hi))
100 	{
101 	    vim_free(hi->hi_key - off);
102 	    --todo;
103 	}
104     }
105     hash_clear(ht);
106 }
107 #endif
108 
109 /*
110  * Find "key" in hashtable "ht".  "key" must not be NULL.
111  * Always returns a pointer to a hashitem.  If the item was not found then
112  * HASHITEM_EMPTY() is TRUE.  The pointer is then the place where the key
113  * would be added.
114  * WARNING: The returned pointer becomes invalid when the hashtable is changed
115  * (adding, setting or removing an item)!
116  */
117     hashitem_T *
hash_find(hashtab_T * ht,char_u * key)118 hash_find(hashtab_T *ht, char_u *key)
119 {
120     return hash_lookup(ht, key, hash_hash(key));
121 }
122 
123 /*
124  * Like hash_find(), but caller computes "hash".
125  */
126     hashitem_T *
hash_lookup(hashtab_T * ht,char_u * key,hash_T hash)127 hash_lookup(hashtab_T *ht, char_u *key, hash_T hash)
128 {
129     hash_T	perturb;
130     hashitem_T	*freeitem;
131     hashitem_T	*hi;
132     unsigned	idx;
133 
134 #ifdef HT_DEBUG
135     ++hash_count_lookup;
136 #endif
137 
138     /*
139      * Quickly handle the most common situations:
140      * - return if there is no item at all
141      * - skip over a removed item
142      * - return if the item matches
143      */
144     idx = (unsigned)(hash & ht->ht_mask);
145     hi = &ht->ht_array[idx];
146 
147     if (hi->hi_key == NULL)
148 	return hi;
149     if (hi->hi_key == HI_KEY_REMOVED)
150 	freeitem = hi;
151     else if (hi->hi_hash == hash && STRCMP(hi->hi_key, key) == 0)
152 	return hi;
153     else
154 	freeitem = NULL;
155 
156     /*
157      * Need to search through the table to find the key.  The algorithm
158      * to step through the table starts with large steps, gradually becoming
159      * smaller down to (1/4 table size + 1).  This means it goes through all
160      * table entries in the end.
161      * When we run into a NULL key it's clear that the key isn't there.
162      * Return the first available slot found (can be a slot of a removed
163      * item).
164      */
165     for (perturb = hash; ; perturb >>= PERTURB_SHIFT)
166     {
167 #ifdef HT_DEBUG
168 	++hash_count_perturb;	    // count a "miss" for hashtab lookup
169 #endif
170 	idx = (unsigned)((idx << 2U) + idx + perturb + 1U);
171 	hi = &ht->ht_array[idx & ht->ht_mask];
172 	if (hi->hi_key == NULL)
173 	    return freeitem == NULL ? hi : freeitem;
174 	if (hi->hi_hash == hash
175 		&& hi->hi_key != HI_KEY_REMOVED
176 		&& STRCMP(hi->hi_key, key) == 0)
177 	    return hi;
178 	if (hi->hi_key == HI_KEY_REMOVED && freeitem == NULL)
179 	    freeitem = hi;
180     }
181 }
182 
183 #if defined(FEAT_EVAL) || defined(FEAT_SYN_HL) || defined(PROTO)
184 /*
185  * Print the efficiency of hashtable lookups.
186  * Useful when trying different hash algorithms.
187  * Called when exiting.
188  */
189     void
hash_debug_results(void)190 hash_debug_results(void)
191 {
192 #ifdef HT_DEBUG
193     fprintf(stderr, "\r\n\r\n\r\n\r\n");
194     fprintf(stderr, "Number of hashtable lookups: %ld\r\n", hash_count_lookup);
195     fprintf(stderr, "Number of perturb loops: %ld\r\n", hash_count_perturb);
196     fprintf(stderr, "Percentage of perturb loops: %ld%%\r\n",
197 				hash_count_perturb * 100 / hash_count_lookup);
198 #endif
199 }
200 #endif
201 
202 /*
203  * Add item with key "key" to hashtable "ht".
204  * Returns FAIL when out of memory or the key is already present.
205  */
206     int
hash_add(hashtab_T * ht,char_u * key)207 hash_add(hashtab_T *ht, char_u *key)
208 {
209     hash_T	hash = hash_hash(key);
210     hashitem_T	*hi;
211 
212     hi = hash_lookup(ht, key, hash);
213     if (!HASHITEM_EMPTY(hi))
214     {
215 	internal_error("hash_add()");
216 	return FAIL;
217     }
218     return hash_add_item(ht, hi, key, hash);
219 }
220 
221 /*
222  * Add item "hi" with "key" to hashtable "ht".  "key" must not be NULL and
223  * "hi" must have been obtained with hash_lookup() and point to an empty item.
224  * "hi" is invalid after this!
225  * Returns OK or FAIL (out of memory).
226  */
227     int
hash_add_item(hashtab_T * ht,hashitem_T * hi,char_u * key,hash_T hash)228 hash_add_item(
229     hashtab_T	*ht,
230     hashitem_T	*hi,
231     char_u	*key,
232     hash_T	hash)
233 {
234     // If resizing failed before and it fails again we can't add an item.
235     if (ht->ht_error && hash_may_resize(ht, 0) == FAIL)
236 	return FAIL;
237 
238     ++ht->ht_used;
239     ++ht->ht_changed;
240     if (hi->hi_key == NULL)
241 	++ht->ht_filled;
242     hi->hi_key = key;
243     hi->hi_hash = hash;
244 
245     // When the space gets low may resize the array.
246     return hash_may_resize(ht, 0);
247 }
248 
249 #if 0  // not used
250 /*
251  * Overwrite hashtable item "hi" with "key".  "hi" must point to the item that
252  * is to be overwritten.  Thus the number of items in the hashtable doesn't
253  * change.
254  * Although the key must be identical, the pointer may be different, thus it's
255  * set anyway (the key is part of an item with that key).
256  * The caller must take care of freeing the old item.
257  * "hi" is invalid after this!
258  */
259     void
260 hash_set(hashitem_T *hi, char_u *key)
261 {
262     hi->hi_key = key;
263 }
264 #endif
265 
266 /*
267  * Remove item "hi" from  hashtable "ht".  "hi" must have been obtained with
268  * hash_lookup().
269  * The caller must take care of freeing the item itself.
270  */
271     void
hash_remove(hashtab_T * ht,hashitem_T * hi)272 hash_remove(hashtab_T *ht, hashitem_T *hi)
273 {
274     --ht->ht_used;
275     ++ht->ht_changed;
276     hi->hi_key = HI_KEY_REMOVED;
277     hash_may_resize(ht, 0);
278 }
279 
280 /*
281  * Lock a hashtable: prevent that ht_array changes.
282  * Don't use this when items are to be added!
283  * Must call hash_unlock() later.
284  */
285     void
hash_lock(hashtab_T * ht)286 hash_lock(hashtab_T *ht)
287 {
288     ++ht->ht_locked;
289 }
290 
291 /*
292  * Lock a hashtable at the specified number of entries.
293  * Caller must make sure no more than "size" entries will be added.
294  * Must call hash_unlock() later.
295  */
296     void
hash_lock_size(hashtab_T * ht,int size)297 hash_lock_size(hashtab_T *ht, int size)
298 {
299     (void)hash_may_resize(ht, size);
300     ++ht->ht_locked;
301 }
302 
303 /*
304  * Unlock a hashtable: allow ht_array changes again.
305  * Table will be resized (shrink) when necessary.
306  * This must balance a call to hash_lock().
307  */
308     void
hash_unlock(hashtab_T * ht)309 hash_unlock(hashtab_T *ht)
310 {
311     --ht->ht_locked;
312     (void)hash_may_resize(ht, 0);
313 }
314 
315 /*
316  * Shrink a hashtable when there is too much empty space.
317  * Grow a hashtable when there is not enough empty space.
318  * Returns OK or FAIL (out of memory).
319  */
320     static int
hash_may_resize(hashtab_T * ht,int minitems)321 hash_may_resize(
322     hashtab_T	*ht,
323     int		minitems)		// minimal number of items
324 {
325     hashitem_T	temparray[HT_INIT_SIZE];
326     hashitem_T	*oldarray, *newarray;
327     hashitem_T	*olditem, *newitem;
328     unsigned	newi;
329     int		todo;
330     long_u	oldsize, newsize;
331     long_u	minsize;
332     long_u	newmask;
333     hash_T	perturb;
334 
335     // Don't resize a locked table.
336     if (ht->ht_locked > 0)
337 	return OK;
338 
339 #ifdef HT_DEBUG
340     if (ht->ht_used > ht->ht_filled)
341 	emsg("hash_may_resize(): more used than filled");
342     if (ht->ht_filled >= ht->ht_mask + 1)
343 	emsg("hash_may_resize(): table completely filled");
344 #endif
345 
346     if (minitems == 0)
347     {
348 	// Return quickly for small tables with at least two NULL items.  NULL
349 	// items are required for the lookup to decide a key isn't there.
350 	if (ht->ht_filled < HT_INIT_SIZE - 1
351 					 && ht->ht_array == ht->ht_smallarray)
352 	    return OK;
353 
354 	/*
355 	 * Grow or refill the array when it's more than 2/3 full (including
356 	 * removed items, so that they get cleaned up).
357 	 * Shrink the array when it's less than 1/5 full.  When growing it is
358 	 * at least 1/4 full (avoids repeated grow-shrink operations)
359 	 */
360 	oldsize = ht->ht_mask + 1;
361 	if (ht->ht_filled * 3 < oldsize * 2 && ht->ht_used > oldsize / 5)
362 	    return OK;
363 
364 	if (ht->ht_used > 1000)
365 	    minsize = ht->ht_used * 2;  // it's big, don't make too much room
366 	else
367 	    minsize = ht->ht_used * 4;  // make plenty of room
368     }
369     else
370     {
371 	// Use specified size.
372 	if ((long_u)minitems < ht->ht_used)	// just in case...
373 	    minitems = (int)ht->ht_used;
374 	minsize = (minitems * 3 + 1) / 2;	// array is up to 2/3 full
375     }
376 
377     newsize = HT_INIT_SIZE;
378     while (newsize < minsize)
379     {
380 	newsize <<= 1;		// make sure it's always a power of 2
381 	if (newsize == 0)
382 	    return FAIL;	// overflow
383     }
384 
385     if (newsize == HT_INIT_SIZE)
386     {
387 	// Use the small array inside the hashdict structure.
388 	newarray = ht->ht_smallarray;
389 	if (ht->ht_array == newarray)
390 	{
391 	    // Moving from ht_smallarray to ht_smallarray!  Happens when there
392 	    // are many removed items.  Copy the items to be able to clean up
393 	    // removed items.
394 	    mch_memmove(temparray, newarray, sizeof(temparray));
395 	    oldarray = temparray;
396 	}
397 	else
398 	    oldarray = ht->ht_array;
399 	CLEAR_FIELD(ht->ht_smallarray);
400     }
401     else
402     {
403 	// Allocate an array.
404 	newarray = ALLOC_CLEAR_MULT(hashitem_T, newsize);
405 	if (newarray == NULL)
406 	{
407 	    // Out of memory.  When there are NULL items still return OK.
408 	    // Otherwise set ht_error, because lookup may result in a hang if
409 	    // we add another item.
410 	    if (ht->ht_filled < ht->ht_mask)
411 		return OK;
412 	    ht->ht_error = TRUE;
413 	    return FAIL;
414 	}
415 	oldarray = ht->ht_array;
416     }
417 
418     /*
419      * Move all the items from the old array to the new one, placing them in
420      * the right spot.  The new array won't have any removed items, thus this
421      * is also a cleanup action.
422      */
423     newmask = newsize - 1;
424     todo = (int)ht->ht_used;
425     for (olditem = oldarray; todo > 0; ++olditem)
426 	if (!HASHITEM_EMPTY(olditem))
427 	{
428 	    /*
429 	     * The algorithm to find the spot to add the item is identical to
430 	     * the algorithm to find an item in hash_lookup().  But we only
431 	     * need to search for a NULL key, thus it's simpler.
432 	     */
433 	    newi = (unsigned)(olditem->hi_hash & newmask);
434 	    newitem = &newarray[newi];
435 
436 	    if (newitem->hi_key != NULL)
437 		for (perturb = olditem->hi_hash; ; perturb >>= PERTURB_SHIFT)
438 		{
439 		    newi = (unsigned)((newi << 2U) + newi + perturb + 1U);
440 		    newitem = &newarray[newi & newmask];
441 		    if (newitem->hi_key == NULL)
442 			break;
443 		}
444 	    *newitem = *olditem;
445 	    --todo;
446 	}
447 
448     if (ht->ht_array != ht->ht_smallarray)
449 	vim_free(ht->ht_array);
450     ht->ht_array = newarray;
451     ht->ht_mask = newmask;
452     ht->ht_filled = ht->ht_used;
453     ++ht->ht_changed;
454     ht->ht_error = FALSE;
455 
456     return OK;
457 }
458 
459 /*
460  * Get the hash number for a key.
461  * If you think you know a better hash function: Compile with HT_DEBUG set and
462  * run a script that uses hashtables a lot.  Vim will then print statistics
463  * when exiting.  Try that with the current hash algorithm and yours.  The
464  * lower the percentage the better.
465  */
466     hash_T
hash_hash(char_u * key)467 hash_hash(char_u *key)
468 {
469     hash_T	hash;
470     char_u	*p;
471 
472     if ((hash = *key) == 0)
473 	return (hash_T)0;
474     p = key + 1;
475 
476     // A simplistic algorithm that appears to do very well.
477     // Suggested by George Reilly.
478     while (*p != NUL)
479 	hash = hash * 101 + *p++;
480 
481     return hash;
482 }
483