xref: /vim-8.2.3635/src/hashtab.c (revision cf2d8dee)
1 /* vi:set ts=8 sts=4 sw=4:
2  *
3  * VIM - Vi IMproved	by Bram Moolenaar
4  *
5  * Do ":help uganda"  in Vim to read copying and usage conditions.
6  * Do ":help credits" in Vim to see a list of people who contributed.
7  * See README.txt for an overview of the Vim source code.
8  */
9 
10 /*
11  * hashtab.c: Handling of a hashtable with Vim-specific properties.
12  *
13  * Each item in a hashtable has a NUL terminated string key.  A key can appear
14  * only once in the table.
15  *
16  * A hash number is computed from the key for quick lookup.  When the hashes
17  * of two different keys point to the same entry an algorithm is used to
18  * iterate over other entries in the table until the right one is found.
19  * To make the iteration work removed keys are different from entries where a
20  * key was never present.
21  *
22  * The mechanism has been partly based on how Python Dictionaries are
23  * implemented.  The algorithm is from Knuth Vol. 3, Sec. 6.4.
24  *
25  * The hashtable grows to accommodate more entries when needed.  At least 1/3
26  * of the entries is empty to keep the lookup efficient (at the cost of extra
27  * memory).
28  */
29 
30 #include "vim.h"
31 
32 #if defined(FEAT_EVAL) || defined(FEAT_SYN_HL) || defined(PROTO)
33 
34 #if 0
35 # define HT_DEBUG	/* extra checks for table consistency  and statistics */
36 
37 static long hash_count_lookup = 0;	/* count number of hashtab lookups */
38 static long hash_count_perturb = 0;	/* count number of "misses" */
39 #endif
40 
41 /* Magic value for algorithm that walks through the array. */
42 #define PERTURB_SHIFT 5
43 
44 static int hash_may_resize(hashtab_T *ht, int minitems);
45 
46 #if 0 /* currently not used */
47 /*
48  * Create an empty hash table.
49  * Returns NULL when out of memory.
50  */
51     hashtab_T *
52 hash_create(void)
53 {
54     hashtab_T *ht;
55 
56     ht = (hashtab_T *)alloc(sizeof(hashtab_T));
57     if (ht != NULL)
58 	hash_init(ht);
59     return ht;
60 }
61 #endif
62 
63 /*
64  * Initialize an empty hash table.
65  */
66     void
67 hash_init(hashtab_T *ht)
68 {
69     /* This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray". */
70     vim_memset(ht, 0, sizeof(hashtab_T));
71     ht->ht_array = ht->ht_smallarray;
72     ht->ht_mask = HT_INIT_SIZE - 1;
73 }
74 
75 /*
76  * Free the array of a hash table.  Does not free the items it contains!
77  * If "ht" is not freed then you should call hash_init() next!
78  */
79     void
80 hash_clear(hashtab_T *ht)
81 {
82     if (ht->ht_array != ht->ht_smallarray)
83 	vim_free(ht->ht_array);
84 }
85 
86 /*
87  * Free the array of a hash table and all the keys it contains.  The keys must
88  * have been allocated.  "off" is the offset from the start of the allocate
89  * memory to the location of the key (it's always positive).
90  */
91     void
92 hash_clear_all(hashtab_T *ht, int off)
93 {
94     long	todo;
95     hashitem_T	*hi;
96 
97     todo = (long)ht->ht_used;
98     for (hi = ht->ht_array; todo > 0; ++hi)
99     {
100 	if (!HASHITEM_EMPTY(hi))
101 	{
102 	    vim_free(hi->hi_key - off);
103 	    --todo;
104 	}
105     }
106     hash_clear(ht);
107 }
108 
109 /*
110  * Find "key" in hashtable "ht".  "key" must not be NULL.
111  * Always returns a pointer to a hashitem.  If the item was not found then
112  * HASHITEM_EMPTY() is TRUE.  The pointer is then the place where the key
113  * would be added.
114  * WARNING: The returned pointer becomes invalid when the hashtable is changed
115  * (adding, setting or removing an item)!
116  */
117     hashitem_T *
118 hash_find(hashtab_T *ht, char_u *key)
119 {
120     return hash_lookup(ht, key, hash_hash(key));
121 }
122 
123 /*
124  * Like hash_find(), but caller computes "hash".
125  */
126     hashitem_T *
127 hash_lookup(hashtab_T *ht, char_u *key, hash_T hash)
128 {
129     hash_T	perturb;
130     hashitem_T	*freeitem;
131     hashitem_T	*hi;
132     unsigned	idx;
133 
134 #ifdef HT_DEBUG
135     ++hash_count_lookup;
136 #endif
137 
138     /*
139      * Quickly handle the most common situations:
140      * - return if there is no item at all
141      * - skip over a removed item
142      * - return if the item matches
143      */
144     idx = (unsigned)(hash & ht->ht_mask);
145     hi = &ht->ht_array[idx];
146 
147     if (hi->hi_key == NULL)
148 	return hi;
149     if (hi->hi_key == HI_KEY_REMOVED)
150 	freeitem = hi;
151     else if (hi->hi_hash == hash && STRCMP(hi->hi_key, key) == 0)
152 	return hi;
153     else
154 	freeitem = NULL;
155 
156     /*
157      * Need to search through the table to find the key.  The algorithm
158      * to step through the table starts with large steps, gradually becoming
159      * smaller down to (1/4 table size + 1).  This means it goes through all
160      * table entries in the end.
161      * When we run into a NULL key it's clear that the key isn't there.
162      * Return the first available slot found (can be a slot of a removed
163      * item).
164      */
165     for (perturb = hash; ; perturb >>= PERTURB_SHIFT)
166     {
167 #ifdef HT_DEBUG
168 	++hash_count_perturb;	    /* count a "miss" for hashtab lookup */
169 #endif
170 	idx = (unsigned)((idx << 2U) + idx + perturb + 1U);
171 	hi = &ht->ht_array[idx & ht->ht_mask];
172 	if (hi->hi_key == NULL)
173 	    return freeitem == NULL ? hi : freeitem;
174 	if (hi->hi_hash == hash
175 		&& hi->hi_key != HI_KEY_REMOVED
176 		&& STRCMP(hi->hi_key, key) == 0)
177 	    return hi;
178 	if (hi->hi_key == HI_KEY_REMOVED && freeitem == NULL)
179 	    freeitem = hi;
180     }
181 }
182 
183 /*
184  * Print the efficiency of hashtable lookups.
185  * Useful when trying different hash algorithms.
186  * Called when exiting.
187  */
188     void
189 hash_debug_results(void)
190 {
191 #ifdef HT_DEBUG
192     fprintf(stderr, "\r\n\r\n\r\n\r\n");
193     fprintf(stderr, "Number of hashtable lookups: %ld\r\n", hash_count_lookup);
194     fprintf(stderr, "Number of perturb loops: %ld\r\n", hash_count_perturb);
195     fprintf(stderr, "Percentage of perturb loops: %ld%%\r\n",
196 				hash_count_perturb * 100 / hash_count_lookup);
197 #endif
198 }
199 
200 /*
201  * Add item with key "key" to hashtable "ht".
202  * Returns FAIL when out of memory or the key is already present.
203  */
204     int
205 hash_add(hashtab_T *ht, char_u *key)
206 {
207     hash_T	hash = hash_hash(key);
208     hashitem_T	*hi;
209 
210     hi = hash_lookup(ht, key, hash);
211     if (!HASHITEM_EMPTY(hi))
212     {
213 	EMSG2(_(e_intern2), "hash_add()");
214 	return FAIL;
215     }
216     return hash_add_item(ht, hi, key, hash);
217 }
218 
219 /*
220  * Add item "hi" with "key" to hashtable "ht".  "key" must not be NULL and
221  * "hi" must have been obtained with hash_lookup() and point to an empty item.
222  * "hi" is invalid after this!
223  * Returns OK or FAIL (out of memory).
224  */
225     int
226 hash_add_item(
227     hashtab_T	*ht,
228     hashitem_T	*hi,
229     char_u	*key,
230     hash_T	hash)
231 {
232     /* If resizing failed before and it fails again we can't add an item. */
233     if (ht->ht_error && hash_may_resize(ht, 0) == FAIL)
234 	return FAIL;
235 
236     ++ht->ht_used;
237     if (hi->hi_key == NULL)
238 	++ht->ht_filled;
239     hi->hi_key = key;
240     hi->hi_hash = hash;
241 
242     /* When the space gets low may resize the array. */
243     return hash_may_resize(ht, 0);
244 }
245 
246 #if 0  /* not used */
247 /*
248  * Overwrite hashtable item "hi" with "key".  "hi" must point to the item that
249  * is to be overwritten.  Thus the number of items in the hashtable doesn't
250  * change.
251  * Although the key must be identical, the pointer may be different, thus it's
252  * set anyway (the key is part of an item with that key).
253  * The caller must take care of freeing the old item.
254  * "hi" is invalid after this!
255  */
256     void
257 hash_set(hashitem_T *hi, char_u *key)
258 {
259     hi->hi_key = key;
260 }
261 #endif
262 
263 /*
264  * Remove item "hi" from  hashtable "ht".  "hi" must have been obtained with
265  * hash_lookup().
266  * The caller must take care of freeing the item itself.
267  */
268     void
269 hash_remove(hashtab_T *ht, hashitem_T *hi)
270 {
271     --ht->ht_used;
272     hi->hi_key = HI_KEY_REMOVED;
273     hash_may_resize(ht, 0);
274 }
275 
276 /*
277  * Lock a hashtable: prevent that ht_array changes.
278  * Don't use this when items are to be added!
279  * Must call hash_unlock() later.
280  */
281     void
282 hash_lock(hashtab_T *ht)
283 {
284     ++ht->ht_locked;
285 }
286 
287 #if 0	    /* currently not used */
288 /*
289  * Lock a hashtable at the specified number of entries.
290  * Caller must make sure no more than "size" entries will be added.
291  * Must call hash_unlock() later.
292  */
293     void
294 hash_lock_size(hashtab_T *ht, int size)
295 {
296     (void)hash_may_resize(ht, size);
297     ++ht->ht_locked;
298 }
299 #endif
300 
301 /*
302  * Unlock a hashtable: allow ht_array changes again.
303  * Table will be resized (shrink) when necessary.
304  * This must balance a call to hash_lock().
305  */
306     void
307 hash_unlock(hashtab_T *ht)
308 {
309     --ht->ht_locked;
310     (void)hash_may_resize(ht, 0);
311 }
312 
313 /*
314  * Shrink a hashtable when there is too much empty space.
315  * Grow a hashtable when there is not enough empty space.
316  * Returns OK or FAIL (out of memory).
317  */
318     static int
319 hash_may_resize(
320     hashtab_T	*ht,
321     int		minitems)		/* minimal number of items */
322 {
323     hashitem_T	temparray[HT_INIT_SIZE];
324     hashitem_T	*oldarray, *newarray;
325     hashitem_T	*olditem, *newitem;
326     unsigned	newi;
327     int		todo;
328     long_u	oldsize, newsize;
329     long_u	minsize;
330     long_u	newmask;
331     hash_T	perturb;
332 
333     /* Don't resize a locked table. */
334     if (ht->ht_locked > 0)
335 	return OK;
336 
337 #ifdef HT_DEBUG
338     if (ht->ht_used > ht->ht_filled)
339 	EMSG("hash_may_resize(): more used than filled");
340     if (ht->ht_filled >= ht->ht_mask + 1)
341 	EMSG("hash_may_resize(): table completely filled");
342 #endif
343 
344     if (minitems == 0)
345     {
346 	/* Return quickly for small tables with at least two NULL items.  NULL
347 	 * items are required for the lookup to decide a key isn't there. */
348 	if (ht->ht_filled < HT_INIT_SIZE - 1
349 					 && ht->ht_array == ht->ht_smallarray)
350 	    return OK;
351 
352 	/*
353 	 * Grow or refill the array when it's more than 2/3 full (including
354 	 * removed items, so that they get cleaned up).
355 	 * Shrink the array when it's less than 1/5 full.  When growing it is
356 	 * at least 1/4 full (avoids repeated grow-shrink operations)
357 	 */
358 	oldsize = ht->ht_mask + 1;
359 	if (ht->ht_filled * 3 < oldsize * 2 && ht->ht_used > oldsize / 5)
360 	    return OK;
361 
362 	if (ht->ht_used > 1000)
363 	    minsize = ht->ht_used * 2;  /* it's big, don't make too much room */
364 	else
365 	    minsize = ht->ht_used * 4;  /* make plenty of room */
366     }
367     else
368     {
369 	/* Use specified size. */
370 	if ((long_u)minitems < ht->ht_used)	/* just in case... */
371 	    minitems = (int)ht->ht_used;
372 	minsize = minitems * 3 / 2;	/* array is up to 2/3 full */
373     }
374 
375     newsize = HT_INIT_SIZE;
376     while (newsize < minsize)
377     {
378 	newsize <<= 1;		/* make sure it's always a power of 2 */
379 	if (newsize == 0)
380 	    return FAIL;	/* overflow */
381     }
382 
383     if (newsize == HT_INIT_SIZE)
384     {
385 	/* Use the small array inside the hashdict structure. */
386 	newarray = ht->ht_smallarray;
387 	if (ht->ht_array == newarray)
388 	{
389 	    /* Moving from ht_smallarray to ht_smallarray!  Happens when there
390 	     * are many removed items.  Copy the items to be able to clean up
391 	     * removed items. */
392 	    mch_memmove(temparray, newarray, sizeof(temparray));
393 	    oldarray = temparray;
394 	}
395 	else
396 	    oldarray = ht->ht_array;
397     }
398     else
399     {
400 	/* Allocate an array. */
401 	newarray = (hashitem_T *)alloc((unsigned)
402 					      (sizeof(hashitem_T) * newsize));
403 	if (newarray == NULL)
404 	{
405 	    /* Out of memory.  When there are NULL items still return OK.
406 	     * Otherwise set ht_error, because lookup may result in a hang if
407 	     * we add another item. */
408 	    if (ht->ht_filled < ht->ht_mask)
409 		return OK;
410 	    ht->ht_error = TRUE;
411 	    return FAIL;
412 	}
413 	oldarray = ht->ht_array;
414     }
415     vim_memset(newarray, 0, (size_t)(sizeof(hashitem_T) * newsize));
416 
417     /*
418      * Move all the items from the old array to the new one, placing them in
419      * the right spot.  The new array won't have any removed items, thus this
420      * is also a cleanup action.
421      */
422     newmask = newsize - 1;
423     todo = (int)ht->ht_used;
424     for (olditem = oldarray; todo > 0; ++olditem)
425 	if (!HASHITEM_EMPTY(olditem))
426 	{
427 	    /*
428 	     * The algorithm to find the spot to add the item is identical to
429 	     * the algorithm to find an item in hash_lookup().  But we only
430 	     * need to search for a NULL key, thus it's simpler.
431 	     */
432 	    newi = (unsigned)(olditem->hi_hash & newmask);
433 	    newitem = &newarray[newi];
434 
435 	    if (newitem->hi_key != NULL)
436 		for (perturb = olditem->hi_hash; ; perturb >>= PERTURB_SHIFT)
437 		{
438 		    newi = (unsigned)((newi << 2U) + newi + perturb + 1U);
439 		    newitem = &newarray[newi & newmask];
440 		    if (newitem->hi_key == NULL)
441 			break;
442 		}
443 	    *newitem = *olditem;
444 	    --todo;
445 	}
446 
447     if (ht->ht_array != ht->ht_smallarray)
448 	vim_free(ht->ht_array);
449     ht->ht_array = newarray;
450     ht->ht_mask = newmask;
451     ht->ht_filled = ht->ht_used;
452     ht->ht_error = FALSE;
453 
454     return OK;
455 }
456 
457 /*
458  * Get the hash number for a key.
459  * If you think you know a better hash function: Compile with HT_DEBUG set and
460  * run a script that uses hashtables a lot.  Vim will then print statistics
461  * when exiting.  Try that with the current hash algorithm and yours.  The
462  * lower the percentage the better.
463  */
464     hash_T
465 hash_hash(char_u *key)
466 {
467     hash_T	hash;
468     char_u	*p;
469 
470     if ((hash = *key) == 0)
471 	return (hash_T)0;	/* Empty keys are not allowed, but we don't
472 				   want to crash if we get one. */
473     p = key + 1;
474 
475     /* A simplistic algorithm that appears to do very well.
476      * Suggested by George Reilly. */
477     while (*p != NUL)
478 	hash = hash * 101 + *p++;
479 
480     return hash;
481 }
482 
483 #endif
484