1 /* vi:set ts=8 sts=4 sw=4 noet: 2 * 3 * VIM - Vi IMproved by Bram Moolenaar 4 * 5 * Do ":help uganda" in Vim to read copying and usage conditions. 6 * Do ":help credits" in Vim to see a list of people who contributed. 7 * See README.txt for an overview of the Vim source code. 8 */ 9 10 /* 11 * hashtab.c: Handling of a hashtable with Vim-specific properties. 12 * 13 * Each item in a hashtable has a NUL terminated string key. A key can appear 14 * only once in the table. 15 * 16 * A hash number is computed from the key for quick lookup. When the hashes 17 * of two different keys point to the same entry an algorithm is used to 18 * iterate over other entries in the table until the right one is found. 19 * To make the iteration work removed keys are different from entries where a 20 * key was never present. 21 * 22 * The mechanism has been partly based on how Python Dictionaries are 23 * implemented. The algorithm is from Knuth Vol. 3, Sec. 6.4. 24 * 25 * The hashtable grows to accommodate more entries when needed. At least 1/3 26 * of the entries is empty to keep the lookup efficient (at the cost of extra 27 * memory). 28 */ 29 30 #include "vim.h" 31 32 #if 0 33 # define HT_DEBUG // extra checks for table consistency and statistics 34 35 static long hash_count_lookup = 0; // count number of hashtab lookups 36 static long hash_count_perturb = 0; // count number of "misses" 37 #endif 38 39 // Magic value for algorithm that walks through the array. 40 #define PERTURB_SHIFT 5 41 42 static int hash_may_resize(hashtab_T *ht, int minitems); 43 44 #if 0 // currently not used 45 /* 46 * Create an empty hash table. 47 * Returns NULL when out of memory. 48 */ 49 hashtab_T * 50 hash_create(void) 51 { 52 hashtab_T *ht; 53 54 ht = ALLOC_ONE(hashtab_T); 55 if (ht != NULL) 56 hash_init(ht); 57 return ht; 58 } 59 #endif 60 61 /* 62 * Initialize an empty hash table. 63 */ 64 void 65 hash_init(hashtab_T *ht) 66 { 67 // This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray". 68 CLEAR_POINTER(ht); 69 ht->ht_array = ht->ht_smallarray; 70 ht->ht_mask = HT_INIT_SIZE - 1; 71 } 72 73 /* 74 * Free the array of a hash table. Does not free the items it contains! 75 * If "ht" is not freed then you should call hash_init() next! 76 */ 77 void 78 hash_clear(hashtab_T *ht) 79 { 80 if (ht->ht_array != ht->ht_smallarray) 81 vim_free(ht->ht_array); 82 } 83 84 #if defined(FEAT_SPELL) || defined(FEAT_TERMINAL) || defined(PROTO) 85 /* 86 * Free the array of a hash table and all the keys it contains. The keys must 87 * have been allocated. "off" is the offset from the start of the allocate 88 * memory to the location of the key (it's always positive). 89 */ 90 void 91 hash_clear_all(hashtab_T *ht, int off) 92 { 93 long todo; 94 hashitem_T *hi; 95 96 todo = (long)ht->ht_used; 97 for (hi = ht->ht_array; todo > 0; ++hi) 98 { 99 if (!HASHITEM_EMPTY(hi)) 100 { 101 vim_free(hi->hi_key - off); 102 --todo; 103 } 104 } 105 hash_clear(ht); 106 } 107 #endif 108 109 /* 110 * Find "key" in hashtable "ht". "key" must not be NULL. 111 * Always returns a pointer to a hashitem. If the item was not found then 112 * HASHITEM_EMPTY() is TRUE. The pointer is then the place where the key 113 * would be added. 114 * WARNING: The returned pointer becomes invalid when the hashtable is changed 115 * (adding, setting or removing an item)! 116 */ 117 hashitem_T * 118 hash_find(hashtab_T *ht, char_u *key) 119 { 120 return hash_lookup(ht, key, hash_hash(key)); 121 } 122 123 /* 124 * Like hash_find(), but caller computes "hash". 125 */ 126 hashitem_T * 127 hash_lookup(hashtab_T *ht, char_u *key, hash_T hash) 128 { 129 hash_T perturb; 130 hashitem_T *freeitem; 131 hashitem_T *hi; 132 unsigned idx; 133 134 #ifdef HT_DEBUG 135 ++hash_count_lookup; 136 #endif 137 138 /* 139 * Quickly handle the most common situations: 140 * - return if there is no item at all 141 * - skip over a removed item 142 * - return if the item matches 143 */ 144 idx = (unsigned)(hash & ht->ht_mask); 145 hi = &ht->ht_array[idx]; 146 147 if (hi->hi_key == NULL) 148 return hi; 149 if (hi->hi_key == HI_KEY_REMOVED) 150 freeitem = hi; 151 else if (hi->hi_hash == hash && STRCMP(hi->hi_key, key) == 0) 152 return hi; 153 else 154 freeitem = NULL; 155 156 /* 157 * Need to search through the table to find the key. The algorithm 158 * to step through the table starts with large steps, gradually becoming 159 * smaller down to (1/4 table size + 1). This means it goes through all 160 * table entries in the end. 161 * When we run into a NULL key it's clear that the key isn't there. 162 * Return the first available slot found (can be a slot of a removed 163 * item). 164 */ 165 for (perturb = hash; ; perturb >>= PERTURB_SHIFT) 166 { 167 #ifdef HT_DEBUG 168 ++hash_count_perturb; // count a "miss" for hashtab lookup 169 #endif 170 idx = (unsigned)((idx << 2U) + idx + perturb + 1U); 171 hi = &ht->ht_array[idx & ht->ht_mask]; 172 if (hi->hi_key == NULL) 173 return freeitem == NULL ? hi : freeitem; 174 if (hi->hi_hash == hash 175 && hi->hi_key != HI_KEY_REMOVED 176 && STRCMP(hi->hi_key, key) == 0) 177 return hi; 178 if (hi->hi_key == HI_KEY_REMOVED && freeitem == NULL) 179 freeitem = hi; 180 } 181 } 182 183 #if defined(FEAT_EVAL) || defined(FEAT_SYN_HL) || defined(PROTO) 184 /* 185 * Print the efficiency of hashtable lookups. 186 * Useful when trying different hash algorithms. 187 * Called when exiting. 188 */ 189 void 190 hash_debug_results(void) 191 { 192 #ifdef HT_DEBUG 193 fprintf(stderr, "\r\n\r\n\r\n\r\n"); 194 fprintf(stderr, "Number of hashtable lookups: %ld\r\n", hash_count_lookup); 195 fprintf(stderr, "Number of perturb loops: %ld\r\n", hash_count_perturb); 196 fprintf(stderr, "Percentage of perturb loops: %ld%%\r\n", 197 hash_count_perturb * 100 / hash_count_lookup); 198 #endif 199 } 200 #endif 201 202 /* 203 * Add item with key "key" to hashtable "ht". 204 * Returns FAIL when out of memory or the key is already present. 205 */ 206 int 207 hash_add(hashtab_T *ht, char_u *key) 208 { 209 hash_T hash = hash_hash(key); 210 hashitem_T *hi; 211 212 hi = hash_lookup(ht, key, hash); 213 if (!HASHITEM_EMPTY(hi)) 214 { 215 internal_error("hash_add()"); 216 return FAIL; 217 } 218 return hash_add_item(ht, hi, key, hash); 219 } 220 221 /* 222 * Add item "hi" with "key" to hashtable "ht". "key" must not be NULL and 223 * "hi" must have been obtained with hash_lookup() and point to an empty item. 224 * "hi" is invalid after this! 225 * Returns OK or FAIL (out of memory). 226 */ 227 int 228 hash_add_item( 229 hashtab_T *ht, 230 hashitem_T *hi, 231 char_u *key, 232 hash_T hash) 233 { 234 // If resizing failed before and it fails again we can't add an item. 235 if (ht->ht_error && hash_may_resize(ht, 0) == FAIL) 236 return FAIL; 237 238 ++ht->ht_used; 239 ++ht->ht_changed; 240 if (hi->hi_key == NULL) 241 ++ht->ht_filled; 242 hi->hi_key = key; 243 hi->hi_hash = hash; 244 245 // When the space gets low may resize the array. 246 return hash_may_resize(ht, 0); 247 } 248 249 #if 0 // not used 250 /* 251 * Overwrite hashtable item "hi" with "key". "hi" must point to the item that 252 * is to be overwritten. Thus the number of items in the hashtable doesn't 253 * change. 254 * Although the key must be identical, the pointer may be different, thus it's 255 * set anyway (the key is part of an item with that key). 256 * The caller must take care of freeing the old item. 257 * "hi" is invalid after this! 258 */ 259 void 260 hash_set(hashitem_T *hi, char_u *key) 261 { 262 hi->hi_key = key; 263 } 264 #endif 265 266 /* 267 * Remove item "hi" from hashtable "ht". "hi" must have been obtained with 268 * hash_lookup(). 269 * The caller must take care of freeing the item itself. 270 */ 271 void 272 hash_remove(hashtab_T *ht, hashitem_T *hi) 273 { 274 --ht->ht_used; 275 ++ht->ht_changed; 276 hi->hi_key = HI_KEY_REMOVED; 277 hash_may_resize(ht, 0); 278 } 279 280 /* 281 * Lock a hashtable: prevent that ht_array changes. 282 * Don't use this when items are to be added! 283 * Must call hash_unlock() later. 284 */ 285 void 286 hash_lock(hashtab_T *ht) 287 { 288 ++ht->ht_locked; 289 } 290 291 /* 292 * Lock a hashtable at the specified number of entries. 293 * Caller must make sure no more than "size" entries will be added. 294 * Must call hash_unlock() later. 295 */ 296 void 297 hash_lock_size(hashtab_T *ht, int size) 298 { 299 (void)hash_may_resize(ht, size); 300 ++ht->ht_locked; 301 } 302 303 /* 304 * Unlock a hashtable: allow ht_array changes again. 305 * Table will be resized (shrink) when necessary. 306 * This must balance a call to hash_lock(). 307 */ 308 void 309 hash_unlock(hashtab_T *ht) 310 { 311 --ht->ht_locked; 312 (void)hash_may_resize(ht, 0); 313 } 314 315 /* 316 * Shrink a hashtable when there is too much empty space. 317 * Grow a hashtable when there is not enough empty space. 318 * Returns OK or FAIL (out of memory). 319 */ 320 static int 321 hash_may_resize( 322 hashtab_T *ht, 323 int minitems) // minimal number of items 324 { 325 hashitem_T temparray[HT_INIT_SIZE]; 326 hashitem_T *oldarray, *newarray; 327 hashitem_T *olditem, *newitem; 328 unsigned newi; 329 int todo; 330 long_u oldsize, newsize; 331 long_u minsize; 332 long_u newmask; 333 hash_T perturb; 334 335 // Don't resize a locked table. 336 if (ht->ht_locked > 0) 337 return OK; 338 339 #ifdef HT_DEBUG 340 if (ht->ht_used > ht->ht_filled) 341 emsg("hash_may_resize(): more used than filled"); 342 if (ht->ht_filled >= ht->ht_mask + 1) 343 emsg("hash_may_resize(): table completely filled"); 344 #endif 345 346 if (minitems == 0) 347 { 348 // Return quickly for small tables with at least two NULL items. NULL 349 // items are required for the lookup to decide a key isn't there. 350 if (ht->ht_filled < HT_INIT_SIZE - 1 351 && ht->ht_array == ht->ht_smallarray) 352 return OK; 353 354 /* 355 * Grow or refill the array when it's more than 2/3 full (including 356 * removed items, so that they get cleaned up). 357 * Shrink the array when it's less than 1/5 full. When growing it is 358 * at least 1/4 full (avoids repeated grow-shrink operations) 359 */ 360 oldsize = ht->ht_mask + 1; 361 if (ht->ht_filled * 3 < oldsize * 2 && ht->ht_used > oldsize / 5) 362 return OK; 363 364 if (ht->ht_used > 1000) 365 minsize = ht->ht_used * 2; // it's big, don't make too much room 366 else 367 minsize = ht->ht_used * 4; // make plenty of room 368 } 369 else 370 { 371 // Use specified size. 372 if ((long_u)minitems < ht->ht_used) // just in case... 373 minitems = (int)ht->ht_used; 374 minsize = (minitems * 3 + 1) / 2; // array is up to 2/3 full 375 } 376 377 newsize = HT_INIT_SIZE; 378 while (newsize < minsize) 379 { 380 newsize <<= 1; // make sure it's always a power of 2 381 if (newsize == 0) 382 return FAIL; // overflow 383 } 384 385 if (newsize == HT_INIT_SIZE) 386 { 387 // Use the small array inside the hashdict structure. 388 newarray = ht->ht_smallarray; 389 if (ht->ht_array == newarray) 390 { 391 // Moving from ht_smallarray to ht_smallarray! Happens when there 392 // are many removed items. Copy the items to be able to clean up 393 // removed items. 394 mch_memmove(temparray, newarray, sizeof(temparray)); 395 oldarray = temparray; 396 } 397 else 398 oldarray = ht->ht_array; 399 CLEAR_FIELD(ht->ht_smallarray); 400 } 401 else 402 { 403 // Allocate an array. 404 newarray = ALLOC_CLEAR_MULT(hashitem_T, newsize); 405 if (newarray == NULL) 406 { 407 // Out of memory. When there are NULL items still return OK. 408 // Otherwise set ht_error, because lookup may result in a hang if 409 // we add another item. 410 if (ht->ht_filled < ht->ht_mask) 411 return OK; 412 ht->ht_error = TRUE; 413 return FAIL; 414 } 415 oldarray = ht->ht_array; 416 } 417 418 /* 419 * Move all the items from the old array to the new one, placing them in 420 * the right spot. The new array won't have any removed items, thus this 421 * is also a cleanup action. 422 */ 423 newmask = newsize - 1; 424 todo = (int)ht->ht_used; 425 for (olditem = oldarray; todo > 0; ++olditem) 426 if (!HASHITEM_EMPTY(olditem)) 427 { 428 /* 429 * The algorithm to find the spot to add the item is identical to 430 * the algorithm to find an item in hash_lookup(). But we only 431 * need to search for a NULL key, thus it's simpler. 432 */ 433 newi = (unsigned)(olditem->hi_hash & newmask); 434 newitem = &newarray[newi]; 435 436 if (newitem->hi_key != NULL) 437 for (perturb = olditem->hi_hash; ; perturb >>= PERTURB_SHIFT) 438 { 439 newi = (unsigned)((newi << 2U) + newi + perturb + 1U); 440 newitem = &newarray[newi & newmask]; 441 if (newitem->hi_key == NULL) 442 break; 443 } 444 *newitem = *olditem; 445 --todo; 446 } 447 448 if (ht->ht_array != ht->ht_smallarray) 449 vim_free(ht->ht_array); 450 ht->ht_array = newarray; 451 ht->ht_mask = newmask; 452 ht->ht_filled = ht->ht_used; 453 ++ht->ht_changed; 454 ht->ht_error = FALSE; 455 456 return OK; 457 } 458 459 /* 460 * Get the hash number for a key. 461 * If you think you know a better hash function: Compile with HT_DEBUG set and 462 * run a script that uses hashtables a lot. Vim will then print statistics 463 * when exiting. Try that with the current hash algorithm and yours. The 464 * lower the percentage the better. 465 */ 466 hash_T 467 hash_hash(char_u *key) 468 { 469 hash_T hash; 470 char_u *p; 471 472 if ((hash = *key) == 0) 473 return (hash_T)0; 474 p = key + 1; 475 476 // A simplistic algorithm that appears to do very well. 477 // Suggested by George Reilly. 478 while (*p != NUL) 479 hash = hash * 101 + *p++; 480 481 return hash; 482 } 483