xref: /sqlite-3.40.0/test/whereF.test (revision 8210233c)
1# 2012 November 9
2#
3# The author disclaims copyright to this source code.  In place of
4# a legal notice, here is a blessing:
5#
6#    May you do good and not evil.
7#    May you find forgiveness for yourself and forgive others.
8#    May you share freely, never taking more than you give.
9#
10#***********************************************************************
11#
12# Test cases for query planning decisions.
13
14
15#
16# The tests in this file demonstrate the behaviour of the query planner
17# in determining the order in which joined tables are scanned.
18#
19# Assume there are two tables being joined - t1 and t2. Each has a cost
20# if it is the outer loop, and a cost if it is the inner loop. As follows:
21#
22#   t1(outer) - cost of scanning t1 as the outer loop.
23#   t1(inner) - cost of scanning t1 as the inner loop.
24#   t2(outer) - cost of scanning t2 as the outer loop.
25#   t2(inner) - cost of scanning t2 as the inner loop.
26#
27# Depending on the order in which the planner nests the scans, the total
28# cost of the join query is one of:
29#
30#   t1(outer) * t2(inner)
31#   t2(outer) * t1(inner)
32#
33# The tests in this file attempt to verify that the planner nests joins in
34# the correct order when the following are true:
35#
36#   + (t1(outer) * t2(inner)) > (t1(inner) * t2(outer)
37#   +  t1(outer) < t2(outer)
38#
39# In other words, when the best overall query plan has t2 as the outer loop,
40# but when the outer loop is considered independent of the inner, t1 is the
41# most efficient choice.
42#
43# In order to make them more predictable, automatic indexes are turned off for
44# the tests in this file.
45#
46
47set testdir [file dirname $argv0]
48source $testdir/tester.tcl
49set testprefix whereF
50
51do_execsql_test 1.0 {
52  PRAGMA automatic_index = 0;
53  CREATE TABLE t1(a, b, c);
54  CREATE TABLE t2(d, e, f);
55  CREATE UNIQUE INDEX i1 ON t1(a);
56  CREATE UNIQUE INDEX i2 ON t2(d);
57} {}
58
59foreach {tn sql} {
60  1 "SELECT * FROM t1,           t2 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
61  2 "SELECT * FROM t2,           t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
62  3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
63} {
64  do_test 1.$tn {
65    db eval "EXPLAIN QUERY PLAN $sql"
66   } {/.*SCAN t2\y.*SEARCH t1\y.*/}
67}
68
69do_execsql_test 2.0 {
70  DROP TABLE t1;
71  DROP TABLE t2;
72  CREATE TABLE t1(a, b, c);
73  CREATE TABLE t2(d, e, f);
74
75  CREATE UNIQUE INDEX i1 ON t1(a);
76  CREATE UNIQUE INDEX i2 ON t1(b);
77  CREATE UNIQUE INDEX i3 ON t2(d);
78} {}
79
80foreach {tn sql} {
81  1 "SELECT * FROM t1,           t2 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
82  2 "SELECT * FROM t2,           t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
83  3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
84} {
85  do_test 2.$tn {
86    db eval "EXPLAIN QUERY PLAN $sql"
87   } {/.*SCAN t2\y.*SEARCH t1\y.*/}
88}
89
90do_execsql_test 3.0 {
91  DROP TABLE t1;
92  DROP TABLE t2;
93  CREATE TABLE t1(a, b, c);
94  CREATE TABLE t2(d, e, f);
95
96  CREATE UNIQUE INDEX i1 ON t1(a, b);
97  CREATE INDEX i2 ON t2(d);
98} {}
99
100foreach {tn sql} {
101  1 {SELECT t1.a, t1.b, t2.d, t2.e FROM t1, t2
102     WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}
103
104  2 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2, t1
105     WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}
106
107  3 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2 CROSS JOIN t1
108     WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}
109} {
110  do_test 3.$tn {
111    db eval "EXPLAIN QUERY PLAN $sql"
112   } {/.*SCAN t2\y.*SEARCH t1\y.*/}
113}
114
115do_execsql_test 4.0 {
116  CREATE TABLE t4(a,b,c,d,e, PRIMARY KEY(a,b,c));
117  CREATE INDEX t4adc ON t4(a,d,c);
118  CREATE UNIQUE INDEX t4aebc ON t4(a,e,b,c);
119  EXPLAIN QUERY PLAN SELECT rowid FROM t4 WHERE a=? AND b=?;
120} {/a=. AND b=./}
121
122#-------------------------------------------------------------------------
123# Test the following case:
124#
125#   ... FROM t1, t2 WHERE (
126#     t2.rowid = +t1.rowid OR (t2.f2 = t1.f1 AND t1.f1!=-1)
127#   )
128#
129# where there is an index on t2(f2). The planner should use "t1" as the
130# outer loop. The inner loop, on "t2", is an OR optimization. One pass
131# for:
132#
133#     t2.rowid = $1
134#
135# and another for:
136#
137#     t2.f2=$1 AND $1!=-1
138#
139# the test is to ensure that on the second pass, the ($1!=-1) condition
140# is tested before any seek operations are performed - i.e. outside of
141# the loop through the f2=$1 range of the t2(f2) index.
142#
143reset_db
144do_execsql_test 5.0 {
145  CREATE TABLE t1(f1);
146  CREATE TABLE t2(f2);
147  CREATE INDEX t2f ON t2(f2);
148
149  INSERT INTO t1 VALUES(-1);
150  INSERT INTO t1 VALUES(-1);
151  INSERT INTO t1 VALUES(-1);
152  INSERT INTO t1 VALUES(-1);
153
154  WITH w(i) AS (
155    SELECT 1 UNION ALL SELECT i+1 FROM w WHERE i<1000
156  )
157  INSERT INTO t2 SELECT -1 FROM w;
158}
159
160do_execsql_test 5.1 {
161  SELECT count(*) FROM t1, t2 WHERE t2.rowid = +t1.rowid
162} {4}
163do_test 5.2 { expr [db status vmstep]<200 } 1
164
165do_execsql_test 5.3 {
166  SELECT count(*) FROM t1, t2 WHERE (
167    t2.rowid = +t1.rowid OR t2.f2 = t1.f1
168  )
169} {4000}
170do_test 5.4 { expr [db status vmstep]>1000 } 1
171
172do_execsql_test 5.5 {
173  SELECT count(*) FROM t1, t2 WHERE (
174    t2.rowid = +t1.rowid OR (t2.f2 = t1.f1 AND t1.f1!=-1)
175  )
176} {4}
177do_test 5.6 { expr [db status vmstep]<200 } 1
178
179# 2017-09-04 ticket b899b6042f97f52d
180# Segfault on correlated subquery...
181#
182ifcapable json1&&vtab {
183  do_execsql_test 6.1 {
184    CREATE TABLE t6(x);
185    SELECT * FROM t6 WHERE 1 IN (SELECT value FROM json_each(x));
186  } {}
187
188  do_execsql_test 6.2 {
189    DROP TABLE t6;
190    CREATE TABLE t6(a,b,c);
191    INSERT INTO t6 VALUES
192     (0,null,'{"a":0,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}'),
193     (1,null,'{"a":1,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}'),
194     (2,null,'{"a":9,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}');
195    SELECT * FROM t6
196     WHERE (EXISTS (SELECT 1 FROM json_each(t6.c) AS x WHERE x.value=1));
197  } {1 {} {{"a":1,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}}}
198
199  # Another test case derived from a posting by Wout Mertens on the
200  # sqlite-users mailing list on 2017-10-04.
201  do_execsql_test 6.3 {
202    DROP TABLE IF EXISTS t;
203    CREATE TABLE t(json JSON);
204    SELECT * FROM t
205     WHERE(EXISTS(SELECT 1 FROM json_each(t.json,"$.foo") j
206                   WHERE j.value = 'meep'));
207  } {}
208  do_execsql_test 6.4 {
209    INSERT INTO t VALUES('{"xyzzy":null}');
210    INSERT INTO t VALUES('{"foo":"meep","other":12345}');
211    INSERT INTO t VALUES('{"foo":"bingo","alt":5.25}');
212    SELECT * FROM t
213     WHERE(EXISTS(SELECT 1 FROM json_each(t.json,"$.foo") j
214                   WHERE j.value = 'meep'));
215  } {{{"foo":"meep","other":12345}}}
216}
217
218# 2018-01-27
219# Ticket https://sqlite.org/src/tktview/ec32177c99ccac2b180fd3ea2083
220# Incorrect result when using the new OR clause factoring optimization
221#
222# This is the original test case as reported on the sqlite-users mailing
223# list
224#
225do_execsql_test 7.1 {
226  DROP TABLE IF EXISTS cd;
227  CREATE TABLE cd ( cdid INTEGER PRIMARY KEY NOT NULL, genreid integer );
228  CREATE INDEX cd_idx_genreid ON cd (genreid);
229  INSERT INTO cd  ( cdid, genreid ) VALUES
230                     ( 1,    1 ),
231                     ( 2, NULL ),
232                     ( 3, NULL ),
233                     ( 4, NULL ),
234                     ( 5, NULL );
235
236  SELECT cdid
237    FROM cd me
238  WHERE 2 > (
239    SELECT COUNT( * )
240      FROM cd rownum__emulation
241    WHERE
242      (
243        me.genreid IS NOT NULL
244          AND
245        rownum__emulation.genreid IS NULL
246      )
247        OR
248      (
249        me.genreid IS NOT NULL
250          AND
251        rownum__emulation.genreid IS NOT NULL
252          AND
253        rownum__emulation.genreid < me.genreid
254      )
255        OR
256      (
257        ( me.genreid = rownum__emulation.genreid OR ( me.genreid IS NULL
258  AND rownum__emulation.genreid IS NULL ) )
259          AND
260        rownum__emulation.cdid > me.cdid
261      )
262  );
263} {4 5}
264
265# Simplified test cases from the ticket
266#
267do_execsql_test 7.2 {
268  DROP TABLE IF EXISTS t1;
269  DROP TABLE IF EXISTS t2;
270  CREATE TABLE t1(a INTEGER PRIMARY KEY, b);
271  INSERT INTO t1(a,b) VALUES(1,1);
272  CREATE TABLE t2(aa INTEGER PRIMARY KEY, bb);
273  INSERT INTO t2(aa,bb) VALUES(1,1),(2,NULL),(3,NULL);
274  SELECT (
275    SELECT COUNT(*) FROM t2
276     WHERE ( t1.b IS NOT NULL AND t2.bb IS NULL )
277        OR ( t2.bb < t1.b )
278        OR ( t1.b IS t2.bb AND t2.aa > t1.a )
279    )
280    FROM t1;
281} {2}
282
283# The fix for ticket ec32177c99ccac2b180fd3ea2083 only makes a difference
284# in the output when there is a TERM_VNULL entry in the WhereClause array.
285# And TERM_VNULL entries are only generated when compiling with
286# SQLITE_ENABLE_STAT4.  Nevertheless, it is correct that TERM_VIRTUAL terms
287# should not participate in the factoring optimization.  In all cases other
288# than TERM_VNULL, participation is harmless, but it does consume a few
289# extra CPU cycles.
290#
291# The following test verifies that the TERM_VIRTUAL terms resulting from
292# a GLOB operator do not appear anywhere in the generated code.  This
293# confirms that the problem is fixed, even on builds that omit STAT4.
294#
295do_execsql_test 7.3 {
296  DROP TABLE IF EXISTS t1;
297  DROP TABLE IF EXISTS t2;
298  CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT);
299  INSERT INTO t1(a,b) VALUES(1,'abcxyz');
300  CREATE TABLE t2(aa INTEGER PRIMARY KEY, bb TEXT);
301  INSERT INTO t2(aa,bb) VALUES(1,'abc'),(2,'wxyz'),(3,'xyz');
302  CREATE INDEX t2bb ON t2(bb);
303  EXPLAIN SELECT (
304    SELECT COUNT(*) FROM t2
305     WHERE ( t1.b GLOB 'a*z' AND t2.bb='xyz' )
306        OR ( t2.bb = t1.b )
307        OR ( t2.aa = t1.a )
308    )
309    FROM t1;
310} {~/ (Lt|Ge) /}
311
312finish_test
313