xref: /sqlite-3.40.0/test/malloc5.test (revision eee4c8ca)
1# 2005 November 30
2#
3# The author disclaims copyright to this source code.  In place of
4# a legal notice, here is a blessing:
5#
6#    May you do good and not evil.
7#    May you find forgiveness for yourself and forgive others.
8#    May you share freely, never taking more than you give.
9#
10#***********************************************************************
11#
12# This file contains test cases focused on the two memory-management APIs,
13# sqlite3_soft_heap_limit() and sqlite3_release_memory().
14#
15# $Id: malloc5.test,v 1.18 2008/02/18 22:24:58 drh Exp $
16
17#---------------------------------------------------------------------------
18# NOTES ON EXPECTED BEHAVIOUR
19#
20#---------------------------------------------------------------------------
21
22
23set testdir [file dirname $argv0]
24source $testdir/tester.tcl
25source $testdir/malloc_common.tcl
26db close
27
28# Only run these tests if memory debugging is turned on.
29#
30if {!$MEMDEBUG} {
31   puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..."
32   finish_test
33   return
34}
35
36# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time.
37ifcapable !memorymanage {
38   finish_test
39   return
40}
41
42sqlite3_soft_heap_limit 0
43sqlite3 db test.db
44
45do_test malloc5-1.1 {
46  # Simplest possible test. Call sqlite3_release_memory when there is exactly
47  # one unused page in a single pager cache. This test case set's the
48  # value of the ::pgalloc variable, which is used in subsequent tests.
49  #
50  # Note: Even though executing this statement on an empty database
51  # modifies 2 pages (the root of sqlite_master and the new root page),
52  # the sqlite_master root (page 1) is never freed because the btree layer
53  # retains a reference to it for the entire transaction.
54  execsql {
55    PRAGMA auto_vacuum=OFF;
56    BEGIN;
57    CREATE TABLE abc(a, b, c);
58  }
59  set ::pgalloc [sqlite3_release_memory]
60  expr $::pgalloc > 0
61} {1}
62do_test malloc5-1.2 {
63  # Test that the transaction started in the above test is still active.
64  # Because the page freed had been written to, freeing it required a
65  # journal sync and exclusive lock on the database file. Test the file
66  # appears to be locked.
67  sqlite3 db2 test.db
68  catchsql {
69    SELECT * FROM abc;
70  } db2
71} {1 {database is locked}}
72do_test malloc5-1.3 {
73  # Again call [sqlite3_release_memory] when there is exactly one unused page
74  # in the cache. The same amount of memory is required, but no journal-sync
75  # or exclusive lock should be established.
76  execsql {
77    COMMIT;
78    BEGIN;
79    SELECT * FROM abc;
80  }
81  sqlite3_release_memory
82} $::pgalloc
83do_test malloc5-1.4 {
84  # Database should not be locked this time.
85  catchsql {
86    SELECT * FROM abc;
87  } db2
88} {0 {}}
89do_test malloc5-1.5 {
90  # Manipulate the cache so that it contains two unused pages. One requires
91  # a journal-sync to free, the other does not.
92  db2 close
93  execsql {
94    SELECT * FROM abc;
95    CREATE TABLE def(d, e, f);
96  }
97  sqlite3_release_memory 500
98} $::pgalloc
99do_test malloc5-1.6 {
100  # Database should not be locked this time. The above test case only
101  # requested 500 bytes of memory, which can be obtained by freeing the page
102  # that does not require an fsync().
103  sqlite3 db2 test.db
104  catchsql {
105    SELECT * FROM abc;
106  } db2
107} {0 {}}
108do_test malloc5-1.7 {
109  # Release another 500 bytes of memory. This time we require a sync(),
110  # so the database file will be locked afterwards.
111  db2 close
112  sqlite3_release_memory 500
113} $::pgalloc
114do_test malloc5-1.8 {
115  sqlite3 db2 test.db
116  catchsql {
117    SELECT * FROM abc;
118  } db2
119} {1 {database is locked}}
120do_test malloc5-1.9 {
121  execsql {
122    COMMIT;
123  }
124} {}
125
126do_test malloc5-2.1 {
127  # Put some data in tables abc and def. Both tables are still wholly
128  # contained within their root pages.
129  execsql {
130    INSERT INTO abc VALUES(1, 2, 3);
131    INSERT INTO abc VALUES(4, 5, 6);
132    INSERT INTO def VALUES(7, 8, 9);
133    INSERT INTO def VALUES(10,11,12);
134  }
135} {}
136do_test malloc5-2.2 {
137  # Load the root-page for table def into the cache. Then query table abc.
138  # Halfway through the query call sqlite3_release_memory(). The goal of this
139  # test is to make sure we don't free pages that are in use (specifically,
140  # the root of table abc).
141  set nRelease 0
142  execsql {
143    BEGIN;
144    SELECT * FROM def;
145  }
146  set data [list]
147  db eval {SELECT * FROM abc} {
148    incr nRelease [sqlite3_release_memory]
149    lappend data $a $b $c
150  }
151  execsql {
152    COMMIT;
153  }
154  list $nRelease $data
155} [list $pgalloc [list 1 2 3 4 5 6]]
156
157do_test malloc5-3.1 {
158  # Simple test to show that if two pagers are opened from within this
159  # thread, memory is freed from both when sqlite3_release_memory() is
160  # called.
161  execsql {
162    BEGIN;
163    SELECT * FROM abc;
164  }
165  execsql {
166    SELECT * FROM sqlite_master;
167    BEGIN;
168    SELECT * FROM def;
169  } db2
170  sqlite3_release_memory
171} [expr $::pgalloc * 2]
172do_test malloc5-3.2 {
173  concat \
174    [execsql {SELECT * FROM abc; COMMIT}] \
175    [execsql {SELECT * FROM def; COMMIT} db2]
176} {1 2 3 4 5 6 7 8 9 10 11 12}
177
178db2 close
179puts "Highwater mark: [sqlite3_memory_highwater]"
180
181# The following two test cases each execute a transaction in which
182# 10000 rows are inserted into table abc. The first test case is used
183# to ensure that more than 1MB of dynamic memory is used to perform
184# the transaction.
185#
186# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB)
187# and tests to see that this limit is not exceeded at any point during
188# transaction execution.
189#
190# Before executing malloc5-4.* we save the value of the current soft heap
191# limit in variable ::soft_limit. The original value is restored after
192# running the tests.
193#
194set ::soft_limit [sqlite3_soft_heap_limit -1]
195execsql {PRAGMA cache_size=2000}
196do_test malloc5-4.1 {
197  execsql {BEGIN;}
198  execsql {DELETE FROM abc;}
199  for {set i 0} {$i < 10000} {incr i} {
200    execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
201  }
202  execsql {COMMIT;}
203  set nMaxBytes [sqlite3_memory_highwater 1]
204  puts -nonewline " (Highwater mark: $nMaxBytes) "
205  expr $nMaxBytes > 1000000
206} {1}
207do_test malloc5-4.2 {
208  sqlite3_release_memory
209  sqlite3_soft_heap_limit 100000
210  sqlite3_memory_highwater 1
211  execsql {BEGIN;}
212  for {set i 0} {$i < 10000} {incr i} {
213    execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
214  }
215  execsql {COMMIT;}
216  set nMaxBytes [sqlite3_memory_highwater 1]
217  puts -nonewline " (Highwater mark: $nMaxBytes) "
218
219  # We used to test ($nMaxBytes<100000), because the soft-heap-limit is
220  # 100000 bytes. But if an allocation that will exceed the
221  # soft-heap-limit is requested from within the only pager instance in
222  # the system, then there is no way to free memory and the limit has to
223  # be exceeded. An exception is memory allocated to store actual page
224  # data (the code contains a special case for this).
225  #
226  # This is not a problem because all allocations apart from those
227  # used to store cached page data are both small and transient.
228  #
229  # Summary: the actual high-water mark for memory usage may be slightly
230  # higher than the soft-heap-limit. The specific allocations that cause
231  # the problem are the calls to sqlite3_malloc() inserted into selected
232  # sqlite3OsXXX() functions in test builds.
233  #
234  expr $nMaxBytes <= 100100
235} {1}
236do_test malloc5-4.3 {
237  # Check that the content of table abc is at least roughly as expected.
238  execsql {
239    SELECT count(*), sum(a), sum(b) FROM abc;
240  }
241} [list 20000 [expr int(20000.0 * 4999.5)] [expr int(20000.0 * 4999.5)]]
242
243# Restore the soft heap limit.
244sqlite3_soft_heap_limit $::soft_limit
245
246# Test that there are no problems calling sqlite3_release_memory when
247# there are open in-memory databases.
248#
249# At one point these tests would cause a seg-fault.
250#
251do_test malloc5-5.1 {
252  db close
253  sqlite3 db :memory:
254  execsql {
255    BEGIN;
256    CREATE TABLE abc(a, b, c);
257    INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL);
258    INSERT INTO abc SELECT * FROM abc;
259    INSERT INTO abc SELECT * FROM abc;
260    INSERT INTO abc SELECT * FROM abc;
261    INSERT INTO abc SELECT * FROM abc;
262    INSERT INTO abc SELECT * FROM abc;
263    INSERT INTO abc SELECT * FROM abc;
264    INSERT INTO abc SELECT * FROM abc;
265  }
266  sqlite3_release_memory
267} 0
268do_test malloc5-5.2 {
269  sqlite3_soft_heap_limit 5000
270  execsql {
271    COMMIT;
272    PRAGMA temp_store = memory;
273    SELECT * FROM abc ORDER BY a;
274  }
275  expr 1
276} {1}
277sqlite3_soft_heap_limit $::soft_limit
278
279#-------------------------------------------------------------------------
280# The following test cases (malloc5-6.*) test the new global LRU list
281# used to determine the pages to recycle when sqlite3_release_memory is
282# called and there is more than one pager open.
283#
284proc nPage {db} {
285  set bt [btree_from_db $db]
286  array set stats [btree_pager_stats $bt]
287  set stats(page)
288}
289db close
290file delete -force test.db test.db-journal test2.db test2.db-journal
291
292# This block of test-cases (malloc5-6.1.*) prepares two database files
293# for the subsequent tests.
294do_test malloc5-6.1.1 {
295  sqlite3 db test.db
296  execsql {
297    PRAGMA page_size=1024;
298    PRAGMA default_cache_size=10;
299    BEGIN;
300    CREATE TABLE abc(a PRIMARY KEY, b, c);
301    INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100));
302    INSERT INTO abc
303        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
304    INSERT INTO abc
305        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
306    INSERT INTO abc
307        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
308    INSERT INTO abc
309        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
310    INSERT INTO abc
311        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
312    INSERT INTO abc
313        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
314    COMMIT;
315  }
316  copy_file test.db test2.db
317  sqlite3 db2 test2.db
318  list \
319    [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20]
320} {1 1}
321do_test malloc5-6.1.2 {
322  list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2]
323} {10 10}
324
325do_test malloc5-6.2.1 {
326  execsql { SELECT * FROM abc } db2
327  execsql {SELECT * FROM abc} db
328  list [nPage db] [nPage db2]
329} {10 10}
330do_test malloc5-6.2.2 {
331  # If we now try to reclaim some memory, it should come from the db2 cache.
332  sqlite3_release_memory 3000
333  list [nPage db] [nPage db2]
334} {10 7}
335do_test malloc5-6.2.3 {
336  # Access the db2 cache again, so that all the db2 pages have been used
337  # more recently than all the db pages. Then try to reclaim 3000 bytes.
338  # This time, 3 pages should be pulled from the db cache.
339  execsql { SELECT * FROM abc } db2
340  sqlite3_release_memory 3000
341  list [nPage db] [nPage db2]
342} {7 10}
343
344
345do_test malloc5-6.3.1 {
346  # Now open a transaction and update 2 pages in the db2 cache. Then
347  # do a SELECT on the db cache so that all the db pages are more recently
348  # used than the db2 pages. When we try to free memory, SQLite should
349  # free the non-dirty db2 pages, then the db pages, then finally use
350  # sync() to free up the dirty db2 pages. The only page that cannot be
351  # freed is page1 of db2. Because there is an open transaction, the
352  # btree layer holds a reference to page 1 in the db2 cache.
353  execsql {
354    BEGIN;
355    UPDATE abc SET c = randstr(100,100)
356    WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc);
357  } db2
358  execsql { SELECT * FROM abc } db
359  list [nPage db] [nPage db2]
360} {10 10}
361do_test malloc5-6.3.2 {
362  # Try to release 7700 bytes. This should release all the
363  # non-dirty pages held by db2.
364  sqlite3_release_memory [expr 7*1100]
365  list [nPage db] [nPage db2]
366} {10 3}
367do_test malloc5-6.3.3 {
368  # Try to release another 1000 bytes. This should come fromt the db
369  # cache, since all three pages held by db2 are either in-use or diry.
370  sqlite3_release_memory 1000
371  list [nPage db] [nPage db2]
372} {9 3}
373do_test malloc5-6.3.4 {
374  # Now release 9900 more (about 9 pages worth). This should expunge
375  # the rest of the db cache. But the db2 cache remains intact, because
376  # SQLite tries to avoid calling sync().
377  sqlite3_release_memory 9900
378  list [nPage db] [nPage db2]
379} {0 3}
380do_test malloc5-6.3.5 {
381  # But if we are really insistent, SQLite will consent to call sync()
382  # if there is no other option.
383  sqlite3_release_memory 1000
384  list [nPage db] [nPage db2]
385} {0 2}
386do_test malloc5-6.3.6 {
387  # The referenced page (page 1 of the db2 cache) will not be freed no
388  # matter how much memory we ask for:
389  sqlite3_release_memory 31459
390  list [nPage db] [nPage db2]
391} {0 1}
392
393db2 close
394
395sqlite3_soft_heap_limit $::soft_limit
396finish_test
397catch {db close}
398