1# 2005 November 30 2# 3# The author disclaims copyright to this source code. In place of 4# a legal notice, here is a blessing: 5# 6# May you do good and not evil. 7# May you find forgiveness for yourself and forgive others. 8# May you share freely, never taking more than you give. 9# 10#*********************************************************************** 11# 12# This file contains test cases focused on the two memory-management APIs, 13# sqlite3_soft_heap_limit() and sqlite3_release_memory(). 14# 15# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding 16# the configured soft heap limit could cause sqlite to upgrade database 17# locks and flush dirty pages to the file system. As of 3.6.2, this is 18# no longer the case. In version 3.6.2, sqlite3_release_memory() only 19# reclaims clean pages. This test file has been updated accordingly. 20# 21# $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $ 22 23set testdir [file dirname $argv0] 24source $testdir/tester.tcl 25source $testdir/malloc_common.tcl 26db close 27 28# Only run these tests if memory debugging is turned on. 29# 30if {!$MEMDEBUG} { 31 puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." 32 finish_test 33 return 34} 35 36# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time. 37ifcapable !memorymanage { 38 finish_test 39 return 40} 41 42# The sizes of memory allocations from system malloc() might vary, 43# depending on the memory allocator algorithms used. The following 44# routine is designed to support answers that fall within a range 45# of values while also supplying easy-to-understand "expected" values 46# when errors occur. 47# 48proc value_in_range {target x args} { 49 set v [lindex $args 0] 50 if {$v!=""} { 51 if {$v<$target*$x} {return $v} 52 if {$v>$target/$x} {return $v} 53 } 54 return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]" 55} 56set mrange 0.98 ;# plus or minus 2% 57 58test_set_config_pagecache 0 100 59 60sqlite3_soft_heap_limit 0 61sqlite3 db test.db 62# db eval {PRAGMA cache_size=1} 63 64do_test malloc5-1.1 { 65 # Simplest possible test. Call sqlite3_release_memory when there is exactly 66 # one unused page in a single pager cache. The page cannot be freed, as 67 # it is dirty. So sqlite3_release_memory() returns 0. 68 # 69 execsql { 70 PRAGMA auto_vacuum=OFF; 71 BEGIN; 72 CREATE TABLE abc(a, b, c); 73 } 74 sqlite3_release_memory 75} {0} 76 77do_test malloc5-1.2 { 78 # Test that the transaction started in the above test is still active. 79 # The lock on the database file should not have been upgraded (this was 80 # not the case before version 3.6.2). 81 # 82 sqlite3 db2 test.db 83 execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2 84} {} 85do_test malloc5-1.3 { 86 # Call [sqlite3_release_memory] when there is exactly one unused page 87 # in the cache belonging to db2. 88 # 89 set ::pgalloc [sqlite3_release_memory] 90 value_in_range 1288 0.75 91} [value_in_range 1288 0.75] 92 93do_test malloc5-1.4 { 94 # Commit the transaction and open a new one. Read 1 page into the cache. 95 # Because the page is not dirty, it is eligible for collection even 96 # before the transaction is concluded. 97 # 98 execsql { 99 COMMIT; 100 BEGIN; 101 SELECT * FROM abc; 102 } 103 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] 104} [value_in_range $::pgalloc $::mrange] 105 106do_test malloc5-1.5 { 107 # Conclude the transaction opened in the previous [do_test] block. This 108 # causes another page (page 1) to become eligible for recycling. 109 # 110 execsql { COMMIT } 111 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] 112} [value_in_range $::pgalloc $::mrange] 113 114do_test malloc5-1.6 { 115 # Manipulate the cache so that it contains two unused pages. One requires 116 # a journal-sync to free, the other does not. 117 db2 close 118 execsql { 119 BEGIN; 120 CREATE TABLE def(d, e, f); 121 SELECT * FROM abc; 122 } 123 value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500] 124} [value_in_range $::pgalloc $::mrange] 125do_test malloc5-1.7 { 126 # Database should not be locked this time. 127 sqlite3 db2 test.db 128 catchsql { SELECT * FROM abc } db2 129} {0 {}} 130do_test malloc5-1.8 { 131 # Try to release another block of memory. This will fail as the only 132 # pages currently in the cache are dirty (page 3) or pinned (page 1). 133 db2 close 134 sqlite3_release_memory 500 135} 0 136do_test malloc5-1.8 { 137 # Database is still not locked. 138 # 139 sqlite3 db2 test.db 140 catchsql { SELECT * FROM abc } db2 141} {0 {}} 142do_test malloc5-1.9 { 143 execsql { 144 COMMIT; 145 } 146} {} 147 148do_test malloc5-2.1 { 149 # Put some data in tables abc and def. Both tables are still wholly 150 # contained within their root pages. 151 execsql { 152 INSERT INTO abc VALUES(1, 2, 3); 153 INSERT INTO abc VALUES(4, 5, 6); 154 INSERT INTO def VALUES(7, 8, 9); 155 INSERT INTO def VALUES(10,11,12); 156 } 157} {} 158do_test malloc5-2.2 { 159 # Load the root-page for table def into the cache. Then query table abc. 160 # Halfway through the query call sqlite3_release_memory(). The goal of this 161 # test is to make sure we don't free pages that are in use (specifically, 162 # the root of table abc). 163 sqlite3_release_memory 164 set nRelease 0 165 execsql { 166 BEGIN; 167 SELECT * FROM def; 168 } 169 set data [list] 170 db eval {SELECT * FROM abc} { 171 incr nRelease [sqlite3_release_memory] 172 lappend data $a $b $c 173 } 174 execsql { 175 COMMIT; 176 } 177 value_in_range $::pgalloc $::mrange $nRelease 178} [value_in_range $::pgalloc $::mrange] 179do_test malloc5-2.2.1 { 180 set data 181} {1 2 3 4 5 6} 182 183do_test malloc5-3.1 { 184 # Simple test to show that if two pagers are opened from within this 185 # thread, memory is freed from both when sqlite3_release_memory() is 186 # called. 187 execsql { 188 BEGIN; 189 SELECT * FROM abc; 190 } 191 execsql { 192 SELECT * FROM sqlite_master; 193 BEGIN; 194 SELECT * FROM def; 195 } db2 196 value_in_range [expr $::pgalloc*2] 0.99 [sqlite3_release_memory] 197} [value_in_range [expr $::pgalloc * 2] 0.99] 198do_test malloc5-3.2 { 199 concat \ 200 [execsql {SELECT * FROM abc; COMMIT}] \ 201 [execsql {SELECT * FROM def; COMMIT} db2] 202} {1 2 3 4 5 6 7 8 9 10 11 12} 203 204db2 close 205puts "Highwater mark: [sqlite3_memory_highwater]" 206 207# The following two test cases each execute a transaction in which 208# 10000 rows are inserted into table abc. The first test case is used 209# to ensure that more than 1MB of dynamic memory is used to perform 210# the transaction. 211# 212# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) 213# and tests to see that this limit is not exceeded at any point during 214# transaction execution. 215# 216# Before executing malloc5-4.* we save the value of the current soft heap 217# limit in variable ::soft_limit. The original value is restored after 218# running the tests. 219# 220set ::soft_limit [sqlite3_soft_heap_limit -1] 221execsql {PRAGMA cache_size=2000} 222do_test malloc5-4.1 { 223 execsql {BEGIN;} 224 execsql {DELETE FROM abc;} 225 for {set i 0} {$i < 10000} {incr i} { 226 execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" 227 } 228 execsql {COMMIT;} 229 db cache flush 230 sqlite3_release_memory 231 sqlite3_memory_highwater 1 232 execsql {SELECT * FROM abc} 233 set nMaxBytes [sqlite3_memory_highwater 1] 234 puts -nonewline " (Highwater mark: $nMaxBytes) " 235 expr $nMaxBytes > 1000000 236} {1} 237do_test malloc5-4.2 { 238 db eval {PRAGMA cache_size=1} 239 db cache flush 240 sqlite3_release_memory 241 sqlite3_soft_heap_limit 200000 242 sqlite3_memory_highwater 1 243 execsql {SELECT * FROM abc} 244 set nMaxBytes [sqlite3_memory_highwater 1] 245 puts -nonewline " (Highwater mark: $nMaxBytes) " 246 expr $nMaxBytes <= 210000 247} {1} 248do_test malloc5-4.3 { 249 # Check that the content of table abc is at least roughly as expected. 250 execsql { 251 SELECT count(*), sum(a), sum(b) FROM abc; 252 } 253} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]] 254 255# Restore the soft heap limit. 256sqlite3_soft_heap_limit $::soft_limit 257 258# Test that there are no problems calling sqlite3_release_memory when 259# there are open in-memory databases. 260# 261# At one point these tests would cause a seg-fault. 262# 263do_test malloc5-5.1 { 264 db close 265 sqlite3 db :memory: 266 execsql { 267 BEGIN; 268 CREATE TABLE abc(a, b, c); 269 INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); 270 INSERT INTO abc SELECT * FROM abc; 271 INSERT INTO abc SELECT * FROM abc; 272 INSERT INTO abc SELECT * FROM abc; 273 INSERT INTO abc SELECT * FROM abc; 274 INSERT INTO abc SELECT * FROM abc; 275 INSERT INTO abc SELECT * FROM abc; 276 INSERT INTO abc SELECT * FROM abc; 277 } 278 sqlite3_release_memory 279} 0 280do_test malloc5-5.2 { 281 sqlite3_soft_heap_limit 5000 282 execsql { 283 COMMIT; 284 PRAGMA temp_store = memory; 285 SELECT * FROM abc ORDER BY a; 286 } 287 expr 1 288} {1} 289sqlite3_soft_heap_limit $::soft_limit 290 291#------------------------------------------------------------------------- 292# The following test cases (malloc5-6.*) test the new global LRU list 293# used to determine the pages to recycle when sqlite3_release_memory is 294# called and there is more than one pager open. 295# 296proc nPage {db} { 297 set bt [btree_from_db $db] 298 array set stats [btree_pager_stats $bt] 299 set stats(page) 300} 301db close 302forcedelete test.db test.db-journal test2.db test2.db-journal 303 304# This block of test-cases (malloc5-6.1.*) prepares two database files 305# for the subsequent tests. 306do_test malloc5-6.1.1 { 307 sqlite3 db test.db 308 execsql { 309 PRAGMA page_size=1024; 310 PRAGMA default_cache_size=2; 311 } 312 execsql { 313 PRAGMA temp_store = memory; 314 BEGIN; 315 CREATE TABLE abc(a PRIMARY KEY, b, c); 316 INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); 317 INSERT INTO abc 318 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 319 INSERT INTO abc 320 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 321 INSERT INTO abc 322 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 323 INSERT INTO abc 324 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 325 INSERT INTO abc 326 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 327 INSERT INTO abc 328 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 329 COMMIT; 330 } 331 forcecopy test.db test2.db 332 sqlite3 db2 test2.db 333 db2 eval {PRAGMA cache_size=2} 334 list \ 335 [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20] 336} {1 1} 337do_test malloc5-6.1.2 { 338 list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2] 339} {2 2} 340 341do_test malloc5-6.2.1 { 342 execsql {SELECT * FROM abc} db2 343 execsql {SELECT * FROM abc} db 344 expr [nPage db] + [nPage db2] 345} {4} 346 347do_test malloc5-6.2.2 { 348 # If we now try to reclaim some memory, it should come from the db2 cache. 349 sqlite3_release_memory 3000 350 expr [nPage db] + [nPage db2] 351} {1} 352do_test malloc5-6.2.3 { 353 # Access the db2 cache again, so that all the db2 pages have been used 354 # more recently than all the db pages. Then try to reclaim 3000 bytes. 355 # This time, 3 pages should be pulled from the db cache. 356 execsql { SELECT * FROM abc } db2 357 sqlite3_release_memory 3000 358 expr [nPage db] + [nPage db2] 359} {0} 360 361do_test malloc5-6.3.1 { 362 # Now open a transaction and update 2 pages in the db2 cache. Then 363 # do a SELECT on the db cache so that all the db pages are more recently 364 # used than the db2 pages. When we try to free memory, SQLite should 365 # free the non-dirty db2 pages, then the db pages, then finally use 366 # sync() to free up the dirty db2 pages. The only page that cannot be 367 # freed is page1 of db2. Because there is an open transaction, the 368 # btree layer holds a reference to page 1 in the db2 cache. 369 # 370 # UPDATE: No longer. As release_memory() does not cause a sync() 371 execsql { 372 BEGIN; 373 UPDATE abc SET c = randstr(100,100) 374 WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); 375 } db2 376 execsql { SELECT * FROM abc } db 377 expr [nPage db] + [nPage db2] 378} {4} 379do_test malloc5-6.3.2 { 380 # Try to release 7700 bytes. This should release all the 381 # non-dirty pages held by db2. 382 sqlite3_release_memory [expr 7*1132] 383 list [nPage db] [nPage db2] 384} {0 3} 385do_test malloc5-6.3.3 { 386 # Try to release another 1000 bytes. This should come fromt the db 387 # cache, since all three pages held by db2 are either in-use or diry. 388 sqlite3_release_memory 1000 389 list [nPage db] [nPage db2] 390} {0 3} 391do_test malloc5-6.3.4 { 392 # Now release 9900 more (about 9 pages worth). This should expunge 393 # the rest of the db cache. But the db2 cache remains intact, because 394 # SQLite tries to avoid calling sync(). 395 if {$::tcl_platform(wordSize)==8} { 396 sqlite3_release_memory 10500 397 } else { 398 sqlite3_release_memory 9900 399 } 400 list [nPage db] [nPage db2] 401} {0 3} 402do_test malloc5-6.3.5 { 403 # But if we are really insistent, SQLite will consent to call sync() 404 # if there is no other option. UPDATE: As of 3.6.2, SQLite will not 405 # call sync() in this scenario. So no further memory can be reclaimed. 406 sqlite3_release_memory 1000 407 list [nPage db] [nPage db2] 408} {0 3} 409do_test malloc5-6.3.6 { 410 # The referenced page (page 1 of the db2 cache) will not be freed no 411 # matter how much memory we ask for: 412 sqlite3_release_memory 31459 413 list [nPage db] [nPage db2] 414} {0 3} 415 416db2 close 417 418sqlite3_soft_heap_limit $::soft_limit 419test_restore_config_pagecache 420finish_test 421catch {db close} 422