1# 2005 November 30 2# 3# The author disclaims copyright to this source code. In place of 4# a legal notice, here is a blessing: 5# 6# May you do good and not evil. 7# May you find forgiveness for yourself and forgive others. 8# May you share freely, never taking more than you give. 9# 10#*********************************************************************** 11# 12# This file contains test cases focused on the two memory-management APIs, 13# sqlite3_soft_heap_limit() and sqlite3_release_memory(). 14# 15# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding 16# the configured soft heap limit could cause sqlite to upgrade database 17# locks and flush dirty pages to the file system. As of 3.6.2, this is 18# no longer the case. In version 3.6.2, sqlite3_release_memory() only 19# reclaims clean pages. This test file has been updated accordingly. 20# 21# $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $ 22 23set testdir [file dirname $argv0] 24source $testdir/tester.tcl 25source $testdir/malloc_common.tcl 26db close 27 28# Only run these tests if memory debugging is turned on. 29# 30if {!$MEMDEBUG} { 31 puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." 32 finish_test 33 return 34} 35 36# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time. 37ifcapable !memorymanage { 38 finish_test 39 return 40} 41 42sqlite3_soft_heap_limit 0 43sqlite3 db test.db 44 45do_test malloc5-1.1 { 46 # Simplest possible test. Call sqlite3_release_memory when there is exactly 47 # one unused page in a single pager cache. The page cannot be freed, as 48 # it is dirty. So sqlite3_release_memory() returns 0. 49 # 50 execsql { 51 PRAGMA auto_vacuum=OFF; 52 BEGIN; 53 CREATE TABLE abc(a, b, c); 54 } 55 sqlite3_release_memory 56} {0} 57 58do_test malloc5-1.2 { 59 # Test that the transaction started in the above test is still active. 60 # The lock on the database file should not have been upgraded (this was 61 # not the case before version 3.6.2). 62 # 63 sqlite3 db2 test.db 64 execsql { SELECT * FROM sqlite_master } db2 65} {} 66do_test malloc5-1.3 { 67 # Call [sqlite3_release_memory] when there is exactly one unused page 68 # in the cache belonging to db2. 69 # 70 set ::pgalloc [sqlite3_release_memory] 71 expr $::pgalloc > 0 72} {1} 73 74# The sizes of memory allocations from system malloc() might vary, 75# depending on the memory allocator algorithms used. The following 76# routine is designed to support answers that fall within a range 77# of values while also supplying easy-to-understand "expected" values 78# when errors occur. 79# 80proc value_in_range {target x args} { 81 set v [lindex $args 0] 82 if {$v!=""} { 83 if {$v<$target*$x} {return $v} 84 if {$v>$target/$x} {return $v} 85 } 86 return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]" 87} 88set mrange 0.98 ;# plus or minus 2% 89 90 91do_test malloc5-1.4 { 92 # Commit the transaction and open a new one. Read 1 page into the cache. 93 # Because the page is not dirty, it is eligible for collection even 94 # before the transaction is concluded. 95 # 96 execsql { 97 COMMIT; 98 BEGIN; 99 SELECT * FROM abc; 100 } 101 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] 102} [value_in_range $::pgalloc $::mrange] 103 104do_test malloc5-1.5 { 105 # Conclude the transaction opened in the previous [do_test] block. This 106 # causes another page (page 1) to become eligible for recycling. 107 # 108 execsql { COMMIT } 109 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] 110} [value_in_range $::pgalloc $::mrange] 111 112do_test malloc5-1.6 { 113 # Manipulate the cache so that it contains two unused pages. One requires 114 # a journal-sync to free, the other does not. 115 db2 close 116 execsql { 117 BEGIN; 118 SELECT * FROM abc; 119 CREATE TABLE def(d, e, f); 120 } 121 value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500] 122} [value_in_range $::pgalloc $::mrange] 123 124do_test malloc5-1.7 { 125 # Database should not be locked this time. 126 sqlite3 db2 test.db 127 catchsql { SELECT * FROM abc } db2 128} {0 {}} 129do_test malloc5-1.8 { 130 # Try to release another block of memory. This will fail as the only 131 # pages currently in the cache are dirty (page 3) or pinned (page 1). 132 db2 close 133 sqlite3_release_memory 500 134} 0 135do_test malloc5-1.8 { 136 # Database is still not locked. 137 # 138 sqlite3 db2 test.db 139 catchsql { SELECT * FROM abc } db2 140} {0 {}} 141do_test malloc5-1.9 { 142 execsql { 143 COMMIT; 144 } 145} {} 146 147do_test malloc5-2.1 { 148 # Put some data in tables abc and def. Both tables are still wholly 149 # contained within their root pages. 150 execsql { 151 INSERT INTO abc VALUES(1, 2, 3); 152 INSERT INTO abc VALUES(4, 5, 6); 153 INSERT INTO def VALUES(7, 8, 9); 154 INSERT INTO def VALUES(10,11,12); 155 } 156} {} 157do_test malloc5-2.2 { 158 # Load the root-page for table def into the cache. Then query table abc. 159 # Halfway through the query call sqlite3_release_memory(). The goal of this 160 # test is to make sure we don't free pages that are in use (specifically, 161 # the root of table abc). 162 sqlite3_release_memory 163 set nRelease 0 164 execsql { 165 BEGIN; 166 SELECT * FROM def; 167 } 168 set data [list] 169 db eval {SELECT * FROM abc} { 170 incr nRelease [sqlite3_release_memory] 171 lappend data $a $b $c 172 } 173 execsql { 174 COMMIT; 175 } 176 list $nRelease $data 177} [list $pgalloc [list 1 2 3 4 5 6]] 178 179do_test malloc5-3.1 { 180 # Simple test to show that if two pagers are opened from within this 181 # thread, memory is freed from both when sqlite3_release_memory() is 182 # called. 183 execsql { 184 BEGIN; 185 SELECT * FROM abc; 186 } 187 execsql { 188 SELECT * FROM sqlite_master; 189 BEGIN; 190 SELECT * FROM def; 191 } db2 192 sqlite3_release_memory 193} [expr $::pgalloc * 2] 194do_test malloc5-3.2 { 195 concat \ 196 [execsql {SELECT * FROM abc; COMMIT}] \ 197 [execsql {SELECT * FROM def; COMMIT} db2] 198} {1 2 3 4 5 6 7 8 9 10 11 12} 199 200db2 close 201puts "Highwater mark: [sqlite3_memory_highwater]" 202 203# The following two test cases each execute a transaction in which 204# 10000 rows are inserted into table abc. The first test case is used 205# to ensure that more than 1MB of dynamic memory is used to perform 206# the transaction. 207# 208# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) 209# and tests to see that this limit is not exceeded at any point during 210# transaction execution. 211# 212# Before executing malloc5-4.* we save the value of the current soft heap 213# limit in variable ::soft_limit. The original value is restored after 214# running the tests. 215# 216set ::soft_limit [sqlite3_soft_heap_limit -1] 217execsql {PRAGMA cache_size=2000} 218do_test malloc5-4.1 { 219 execsql {BEGIN;} 220 execsql {DELETE FROM abc;} 221 for {set i 0} {$i < 10000} {incr i} { 222 execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" 223 } 224 execsql {COMMIT;} 225 db cache flush 226 sqlite3_release_memory 227 sqlite3_memory_highwater 1 228 execsql {SELECT * FROM abc} 229 set nMaxBytes [sqlite3_memory_highwater 1] 230 puts -nonewline " (Highwater mark: $nMaxBytes) " 231 expr $nMaxBytes > 1000000 232} {1} 233do_test malloc5-4.2 { 234 db cache flush 235 sqlite3_release_memory 236 sqlite3_soft_heap_limit 100000 237 sqlite3_memory_highwater 1 238 execsql {SELECT * FROM abc} 239 set nMaxBytes [sqlite3_memory_highwater 1] 240 puts -nonewline " (Highwater mark: $nMaxBytes) " 241 expr $nMaxBytes <= 110000 242} {1} 243do_test malloc5-4.3 { 244 # Check that the content of table abc is at least roughly as expected. 245 execsql { 246 SELECT count(*), sum(a), sum(b) FROM abc; 247 } 248} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]] 249 250# Restore the soft heap limit. 251sqlite3_soft_heap_limit $::soft_limit 252 253# Test that there are no problems calling sqlite3_release_memory when 254# there are open in-memory databases. 255# 256# At one point these tests would cause a seg-fault. 257# 258do_test malloc5-5.1 { 259 db close 260 sqlite3 db :memory: 261 execsql { 262 BEGIN; 263 CREATE TABLE abc(a, b, c); 264 INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); 265 INSERT INTO abc SELECT * FROM abc; 266 INSERT INTO abc SELECT * FROM abc; 267 INSERT INTO abc SELECT * FROM abc; 268 INSERT INTO abc SELECT * FROM abc; 269 INSERT INTO abc SELECT * FROM abc; 270 INSERT INTO abc SELECT * FROM abc; 271 INSERT INTO abc SELECT * FROM abc; 272 } 273 sqlite3_release_memory 274} 0 275do_test malloc5-5.2 { 276 sqlite3_soft_heap_limit 5000 277 execsql { 278 COMMIT; 279 PRAGMA temp_store = memory; 280 SELECT * FROM abc ORDER BY a; 281 } 282 expr 1 283} {1} 284sqlite3_soft_heap_limit $::soft_limit 285 286#------------------------------------------------------------------------- 287# The following test cases (malloc5-6.*) test the new global LRU list 288# used to determine the pages to recycle when sqlite3_release_memory is 289# called and there is more than one pager open. 290# 291proc nPage {db} { 292 set bt [btree_from_db $db] 293 array set stats [btree_pager_stats $bt] 294 set stats(page) 295} 296db close 297forcedelete test.db test.db-journal test2.db test2.db-journal 298 299# This block of test-cases (malloc5-6.1.*) prepares two database files 300# for the subsequent tests. 301do_test malloc5-6.1.1 { 302 sqlite3 db test.db 303 execsql { 304 PRAGMA page_size=1024; 305 PRAGMA default_cache_size=10; 306 } 307 execsql { 308 PRAGMA temp_store = memory; 309 BEGIN; 310 CREATE TABLE abc(a PRIMARY KEY, b, c); 311 INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); 312 INSERT INTO abc 313 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 314 INSERT INTO abc 315 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 316 INSERT INTO abc 317 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 318 INSERT INTO abc 319 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 320 INSERT INTO abc 321 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 322 INSERT INTO abc 323 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 324 COMMIT; 325 } 326 forcecopy test.db test2.db 327 sqlite3 db2 test2.db 328 list \ 329 [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20] 330} {1 1} 331do_test malloc5-6.1.2 { 332 list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2] 333} {10 10} 334 335do_test malloc5-6.2.1 { 336 execsql {SELECT * FROM abc} db2 337 execsql {SELECT * FROM abc} db 338 expr [nPage db] + [nPage db2] 339} {20} 340 341do_test malloc5-6.2.2 { 342 # If we now try to reclaim some memory, it should come from the db2 cache. 343 sqlite3_release_memory 3000 344 expr [nPage db] + [nPage db2] 345} {17} 346do_test malloc5-6.2.3 { 347 # Access the db2 cache again, so that all the db2 pages have been used 348 # more recently than all the db pages. Then try to reclaim 3000 bytes. 349 # This time, 3 pages should be pulled from the db cache. 350 execsql { SELECT * FROM abc } db2 351 sqlite3_release_memory 3000 352 expr [nPage db] + [nPage db2] 353} {17} 354 355do_test malloc5-6.3.1 { 356 # Now open a transaction and update 2 pages in the db2 cache. Then 357 # do a SELECT on the db cache so that all the db pages are more recently 358 # used than the db2 pages. When we try to free memory, SQLite should 359 # free the non-dirty db2 pages, then the db pages, then finally use 360 # sync() to free up the dirty db2 pages. The only page that cannot be 361 # freed is page1 of db2. Because there is an open transaction, the 362 # btree layer holds a reference to page 1 in the db2 cache. 363 execsql { 364 BEGIN; 365 UPDATE abc SET c = randstr(100,100) 366 WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); 367 } db2 368 execsql { SELECT * FROM abc } db 369 expr [nPage db] + [nPage db2] 370} {20} 371do_test malloc5-6.3.2 { 372 # Try to release 7700 bytes. This should release all the 373 # non-dirty pages held by db2. 374 sqlite3_release_memory [expr 7*1132] 375 list [nPage db] [nPage db2] 376} {10 3} 377do_test malloc5-6.3.3 { 378 # Try to release another 1000 bytes. This should come fromt the db 379 # cache, since all three pages held by db2 are either in-use or diry. 380 sqlite3_release_memory 1000 381 list [nPage db] [nPage db2] 382} {9 3} 383do_test malloc5-6.3.4 { 384 # Now release 9900 more (about 9 pages worth). This should expunge 385 # the rest of the db cache. But the db2 cache remains intact, because 386 # SQLite tries to avoid calling sync(). 387 if {$::tcl_platform(wordSize)==8} { 388 sqlite3_release_memory 10500 389 } else { 390 sqlite3_release_memory 9900 391 } 392 list [nPage db] [nPage db2] 393} {0 3} 394do_test malloc5-6.3.5 { 395 # But if we are really insistent, SQLite will consent to call sync() 396 # if there is no other option. UPDATE: As of 3.6.2, SQLite will not 397 # call sync() in this scenario. So no further memory can be reclaimed. 398 sqlite3_release_memory 1000 399 list [nPage db] [nPage db2] 400} {0 3} 401do_test malloc5-6.3.6 { 402 # The referenced page (page 1 of the db2 cache) will not be freed no 403 # matter how much memory we ask for: 404 sqlite3_release_memory 31459 405 list [nPage db] [nPage db2] 406} {0 3} 407 408db2 close 409 410sqlite3_soft_heap_limit $::soft_limit 411finish_test 412catch {db close} 413