xref: /sqlite-3.40.0/test/malloc5.test (revision cb6acda9)
1# 2005 November 30
2#
3# The author disclaims copyright to this source code.  In place of
4# a legal notice, here is a blessing:
5#
6#    May you do good and not evil.
7#    May you find forgiveness for yourself and forgive others.
8#    May you share freely, never taking more than you give.
9#
10#***********************************************************************
11#
12# This file contains test cases focused on the two memory-management APIs,
13# sqlite3_soft_heap_limit() and sqlite3_release_memory().
14#
15# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding
16# the configured soft heap limit could cause sqlite to upgrade database
17# locks and flush dirty pages to the file system. As of 3.6.2, this is
18# no longer the case. In version 3.6.2, sqlite3_release_memory() only
19# reclaims clean pages. This test file has been updated accordingly.
20#
21# $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $
22
23set testdir [file dirname $argv0]
24source $testdir/tester.tcl
25source $testdir/malloc_common.tcl
26db close
27
28# Only run these tests if memory debugging is turned on.
29#
30if {!$MEMDEBUG} {
31   puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..."
32   finish_test
33   return
34}
35
36# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time.
37ifcapable !memorymanage {
38   finish_test
39   return
40}
41
42# The sizes of memory allocations from system malloc() might vary,
43# depending on the memory allocator algorithms used.  The following
44# routine is designed to support answers that fall within a range
45# of values while also supplying easy-to-understand "expected" values
46# when errors occur.
47#
48proc value_in_range {target x args} {
49  set v [lindex $args 0]
50  if {$v!=""} {
51    if {$v<$target*$x} {return $v}
52    if {$v>$target/$x} {return $v}
53  }
54  return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]"
55}
56set mrange 0.98   ;#  plus or minus 2%
57
58test_set_config_pagecache 0 100
59
60sqlite3_soft_heap_limit 0
61sqlite3 db test.db
62# db eval {PRAGMA cache_size=1}
63
64do_test malloc5-1.1 {
65  # Simplest possible test. Call sqlite3_release_memory when there is exactly
66  # one unused page in a single pager cache. The page cannot be freed, as
67  # it is dirty. So sqlite3_release_memory() returns 0.
68  #
69  execsql {
70    PRAGMA auto_vacuum=OFF;
71    BEGIN;
72    CREATE TABLE abc(a, b, c);
73  }
74  sqlite3_release_memory
75} {0}
76
77do_test malloc5-1.2 {
78  # Test that the transaction started in the above test is still active.
79  # The lock on the database file should not have been upgraded (this was
80  # not the case before version 3.6.2).
81  #
82  sqlite3 db2 test.db
83  execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2
84} {}
85do_test malloc5-1.3 {
86  # Call [sqlite3_release_memory] when there is exactly one unused page
87  # in the cache belonging to db2.
88  #
89  set ::pgalloc [sqlite3_release_memory]
90  value_in_range 1288 0.75
91} [value_in_range 1288 0.75]
92
93do_test malloc5-1.4 {
94  # Commit the transaction and open a new one. Read 1 page into the cache.
95  # Because the page is not dirty, it is eligible for collection even
96  # before the transaction is concluded.
97  #
98  execsql {
99    COMMIT;
100    BEGIN;
101    SELECT * FROM abc;
102  }
103  value_in_range $::pgalloc $::mrange [sqlite3_release_memory]
104} [value_in_range $::pgalloc $::mrange]
105
106do_test malloc5-1.5 {
107  # Conclude the transaction opened in the previous [do_test] block. This
108  # causes another page (page 1) to become eligible for recycling.
109  #
110  execsql { COMMIT }
111  value_in_range $::pgalloc $::mrange [sqlite3_release_memory]
112} [value_in_range $::pgalloc $::mrange]
113
114do_test malloc5-1.6 {
115  # Manipulate the cache so that it contains two unused pages. One requires
116  # a journal-sync to free, the other does not.
117  db2 close
118  execsql {
119    BEGIN;
120    CREATE TABLE def(d, e, f);
121    SELECT * FROM abc;
122  }
123  value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500]
124} [value_in_range $::pgalloc $::mrange]
125do_test malloc5-1.7 {
126  # Database should not be locked this time.
127  sqlite3 db2 test.db
128  catchsql { SELECT * FROM abc } db2
129} {0 {}}
130do_test malloc5-1.8 {
131  # Try to release another block of memory. This will fail as the only
132  # pages currently in the cache are dirty (page 3) or pinned (page 1).
133  db2 close
134  sqlite3_release_memory 500
135} 0
136do_test malloc5-1.8 {
137  # Database is still not locked.
138  #
139  sqlite3 db2 test.db
140  catchsql { SELECT * FROM abc } db2
141} {0 {}}
142do_test malloc5-1.9 {
143  execsql {
144    COMMIT;
145  }
146} {}
147
148do_test malloc5-2.1 {
149  # Put some data in tables abc and def. Both tables are still wholly
150  # contained within their root pages.
151  execsql {
152    INSERT INTO abc VALUES(1, 2, 3);
153    INSERT INTO abc VALUES(4, 5, 6);
154    INSERT INTO def VALUES(7, 8, 9);
155    INSERT INTO def VALUES(10,11,12);
156  }
157} {}
158do_test malloc5-2.2 {
159  # Load the root-page for table def into the cache. Then query table abc.
160  # Halfway through the query call sqlite3_release_memory(). The goal of this
161  # test is to make sure we don't free pages that are in use (specifically,
162  # the root of table abc).
163  sqlite3_release_memory
164  set nRelease 0
165  execsql {
166    BEGIN;
167    SELECT * FROM def;
168  }
169  set data [list]
170  db eval {SELECT * FROM abc} {
171    incr nRelease [sqlite3_release_memory]
172    lappend data $a $b $c
173  }
174  execsql {
175    COMMIT;
176  }
177  list $nRelease $data
178} [list $pgalloc [list 1 2 3 4 5 6]]
179
180do_test malloc5-3.1 {
181  # Simple test to show that if two pagers are opened from within this
182  # thread, memory is freed from both when sqlite3_release_memory() is
183  # called.
184  execsql {
185    BEGIN;
186    SELECT * FROM abc;
187  }
188  execsql {
189    SELECT * FROM sqlite_master;
190    BEGIN;
191    SELECT * FROM def;
192  } db2
193  value_in_range [expr $::pgalloc*2] 0.99 [sqlite3_release_memory]
194} [value_in_range [expr $::pgalloc * 2] 0.99]
195do_test malloc5-3.2 {
196  concat \
197    [execsql {SELECT * FROM abc; COMMIT}] \
198    [execsql {SELECT * FROM def; COMMIT} db2]
199} {1 2 3 4 5 6 7 8 9 10 11 12}
200
201db2 close
202puts "Highwater mark: [sqlite3_memory_highwater]"
203
204# The following two test cases each execute a transaction in which
205# 10000 rows are inserted into table abc. The first test case is used
206# to ensure that more than 1MB of dynamic memory is used to perform
207# the transaction.
208#
209# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB)
210# and tests to see that this limit is not exceeded at any point during
211# transaction execution.
212#
213# Before executing malloc5-4.* we save the value of the current soft heap
214# limit in variable ::soft_limit. The original value is restored after
215# running the tests.
216#
217set ::soft_limit [sqlite3_soft_heap_limit -1]
218execsql {PRAGMA cache_size=2000}
219do_test malloc5-4.1 {
220  execsql {BEGIN;}
221  execsql {DELETE FROM abc;}
222  for {set i 0} {$i < 10000} {incr i} {
223    execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
224  }
225  execsql {COMMIT;}
226  db cache flush
227  sqlite3_release_memory
228  sqlite3_memory_highwater 1
229  execsql {SELECT * FROM abc}
230  set nMaxBytes [sqlite3_memory_highwater 1]
231  puts -nonewline " (Highwater mark: $nMaxBytes) "
232  expr $nMaxBytes > 1000000
233} {1}
234do_test malloc5-4.2 {
235  db eval {PRAGMA cache_size=1}
236  db cache flush
237  sqlite3_release_memory
238  sqlite3_soft_heap_limit 200000
239  sqlite3_memory_highwater 1
240  execsql {SELECT * FROM abc}
241  set nMaxBytes [sqlite3_memory_highwater 1]
242  puts -nonewline " (Highwater mark: $nMaxBytes) "
243  expr $nMaxBytes <= 210000
244} {1}
245do_test malloc5-4.3 {
246  # Check that the content of table abc is at least roughly as expected.
247  execsql {
248    SELECT count(*), sum(a), sum(b) FROM abc;
249  }
250} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]]
251
252# Restore the soft heap limit.
253sqlite3_soft_heap_limit $::soft_limit
254
255# Test that there are no problems calling sqlite3_release_memory when
256# there are open in-memory databases.
257#
258# At one point these tests would cause a seg-fault.
259#
260do_test malloc5-5.1 {
261  db close
262  sqlite3 db :memory:
263  execsql {
264    BEGIN;
265    CREATE TABLE abc(a, b, c);
266    INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL);
267    INSERT INTO abc SELECT * FROM abc;
268    INSERT INTO abc SELECT * FROM abc;
269    INSERT INTO abc SELECT * FROM abc;
270    INSERT INTO abc SELECT * FROM abc;
271    INSERT INTO abc SELECT * FROM abc;
272    INSERT INTO abc SELECT * FROM abc;
273    INSERT INTO abc SELECT * FROM abc;
274  }
275  sqlite3_release_memory
276} 0
277do_test malloc5-5.2 {
278  sqlite3_soft_heap_limit 5000
279  execsql {
280    COMMIT;
281    PRAGMA temp_store = memory;
282    SELECT * FROM abc ORDER BY a;
283  }
284  expr 1
285} {1}
286sqlite3_soft_heap_limit $::soft_limit
287
288#-------------------------------------------------------------------------
289# The following test cases (malloc5-6.*) test the new global LRU list
290# used to determine the pages to recycle when sqlite3_release_memory is
291# called and there is more than one pager open.
292#
293proc nPage {db} {
294  set bt [btree_from_db $db]
295  array set stats [btree_pager_stats $bt]
296  set stats(page)
297}
298db close
299forcedelete test.db test.db-journal test2.db test2.db-journal
300
301# This block of test-cases (malloc5-6.1.*) prepares two database files
302# for the subsequent tests.
303do_test malloc5-6.1.1 {
304  sqlite3 db test.db
305  execsql {
306    PRAGMA page_size=1024;
307    PRAGMA default_cache_size=2;
308  }
309  execsql {
310    PRAGMA temp_store = memory;
311    BEGIN;
312    CREATE TABLE abc(a PRIMARY KEY, b, c);
313    INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100));
314    INSERT INTO abc
315        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
316    INSERT INTO abc
317        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
318    INSERT INTO abc
319        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
320    INSERT INTO abc
321        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
322    INSERT INTO abc
323        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
324    INSERT INTO abc
325        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
326    COMMIT;
327  }
328  forcecopy test.db test2.db
329  sqlite3 db2 test2.db
330  db2 eval {PRAGMA cache_size=2}
331  list \
332    [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20]
333} {1 1}
334do_test malloc5-6.1.2 {
335  list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2]
336} {2 2}
337
338do_test malloc5-6.2.1 {
339  execsql {SELECT * FROM abc} db2
340  execsql {SELECT * FROM abc} db
341  expr [nPage db] + [nPage db2]
342} {4}
343
344do_test malloc5-6.2.2 {
345  # If we now try to reclaim some memory, it should come from the db2 cache.
346  sqlite3_release_memory 3000
347  expr [nPage db] + [nPage db2]
348} {1}
349do_test malloc5-6.2.3 {
350  # Access the db2 cache again, so that all the db2 pages have been used
351  # more recently than all the db pages. Then try to reclaim 3000 bytes.
352  # This time, 3 pages should be pulled from the db cache.
353  execsql { SELECT * FROM abc } db2
354  sqlite3_release_memory 3000
355  expr [nPage db] + [nPage db2]
356} {0}
357
358do_test malloc5-6.3.1 {
359  # Now open a transaction and update 2 pages in the db2 cache. Then
360  # do a SELECT on the db cache so that all the db pages are more recently
361  # used than the db2 pages. When we try to free memory, SQLite should
362  # free the non-dirty db2 pages, then the db pages, then finally use
363  # sync() to free up the dirty db2 pages. The only page that cannot be
364  # freed is page1 of db2. Because there is an open transaction, the
365  # btree layer holds a reference to page 1 in the db2 cache.
366  #
367  # UPDATE: No longer. As release_memory() does not cause a sync()
368  execsql {
369    BEGIN;
370    UPDATE abc SET c = randstr(100,100)
371    WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc);
372  } db2
373  execsql { SELECT * FROM abc } db
374  expr [nPage db] + [nPage db2]
375} {4}
376do_test malloc5-6.3.2 {
377  # Try to release 7700 bytes. This should release all the
378  # non-dirty pages held by db2.
379  sqlite3_release_memory [expr 7*1132]
380  list [nPage db] [nPage db2]
381} {0 3}
382do_test malloc5-6.3.3 {
383  # Try to release another 1000 bytes. This should come fromt the db
384  # cache, since all three pages held by db2 are either in-use or diry.
385  sqlite3_release_memory 1000
386  list [nPage db] [nPage db2]
387} {0 3}
388do_test malloc5-6.3.4 {
389  # Now release 9900 more (about 9 pages worth). This should expunge
390  # the rest of the db cache. But the db2 cache remains intact, because
391  # SQLite tries to avoid calling sync().
392  if {$::tcl_platform(wordSize)==8} {
393    sqlite3_release_memory 10500
394  } else {
395    sqlite3_release_memory 9900
396  }
397  list [nPage db] [nPage db2]
398} {0 3}
399do_test malloc5-6.3.5 {
400  # But if we are really insistent, SQLite will consent to call sync()
401  # if there is no other option. UPDATE: As of 3.6.2, SQLite will not
402  # call sync() in this scenario. So no further memory can be reclaimed.
403  sqlite3_release_memory 1000
404  list [nPage db] [nPage db2]
405} {0 3}
406do_test malloc5-6.3.6 {
407  # The referenced page (page 1 of the db2 cache) will not be freed no
408  # matter how much memory we ask for:
409  sqlite3_release_memory 31459
410  list [nPage db] [nPage db2]
411} {0 3}
412
413db2 close
414
415sqlite3_soft_heap_limit $::soft_limit
416test_restore_config_pagecache
417finish_test
418catch {db close}
419