1# 2005 November 30 2# 3# The author disclaims copyright to this source code. In place of 4# a legal notice, here is a blessing: 5# 6# May you do good and not evil. 7# May you find forgiveness for yourself and forgive others. 8# May you share freely, never taking more than you give. 9# 10#*********************************************************************** 11# 12# This file contains test cases focused on the two memory-management APIs, 13# sqlite3_soft_heap_limit() and sqlite3_release_memory(). 14# 15# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding 16# the configured soft heap limit could cause sqlite to upgrade database 17# locks and flush dirty pages to the file system. As of 3.6.2, this is 18# no longer the case. In version 3.6.2, sqlite3_release_memory() only 19# reclaims clean pages. This test file has been updated accordingly. 20# 21# $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $ 22 23set testdir [file dirname $argv0] 24source $testdir/tester.tcl 25source $testdir/malloc_common.tcl 26db close 27 28# Only run these tests if memory debugging is turned on. 29# 30if {!$MEMDEBUG} { 31 puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." 32 finish_test 33 return 34} 35 36# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time. 37ifcapable !memorymanage { 38 finish_test 39 return 40} 41 42# The sizes of memory allocations from system malloc() might vary, 43# depending on the memory allocator algorithms used. The following 44# routine is designed to support answers that fall within a range 45# of values while also supplying easy-to-understand "expected" values 46# when errors occur. 47# 48proc value_in_range {target x args} { 49 set v [lindex $args 0] 50 if {$v!=""} { 51 if {$v<$target*$x} {return $v} 52 if {$v>$target/$x} {return $v} 53 } 54 return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]" 55} 56set mrange 0.98 ;# plus or minus 2% 57 58test_set_config_pagecache 0 100 59 60sqlite3_soft_heap_limit 0 61sqlite3 db test.db 62# db eval {PRAGMA cache_size=1} 63 64do_test malloc5-1.1 { 65 # Simplest possible test. Call sqlite3_release_memory when there is exactly 66 # one unused page in a single pager cache. The page cannot be freed, as 67 # it is dirty. So sqlite3_release_memory() returns 0. 68 # 69 execsql { 70 PRAGMA auto_vacuum=OFF; 71 BEGIN; 72 CREATE TABLE abc(a, b, c); 73 } 74 sqlite3_release_memory 75} {0} 76 77do_test malloc5-1.2 { 78 # Test that the transaction started in the above test is still active. 79 # The lock on the database file should not have been upgraded (this was 80 # not the case before version 3.6.2). 81 # 82 sqlite3 db2 test.db 83 execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2 84} {} 85do_test malloc5-1.3 { 86 # Call [sqlite3_release_memory] when there is exactly one unused page 87 # in the cache belonging to db2. 88 # 89 set ::pgalloc [sqlite3_release_memory] 90 value_in_range 1288 0.75 91} [value_in_range 1288 0.75] 92 93do_test malloc5-1.4 { 94 # Commit the transaction and open a new one. Read 1 page into the cache. 95 # Because the page is not dirty, it is eligible for collection even 96 # before the transaction is concluded. 97 # 98 execsql { 99 COMMIT; 100 BEGIN; 101 SELECT * FROM abc; 102 } 103 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] 104} [value_in_range $::pgalloc $::mrange] 105 106do_test malloc5-1.5 { 107 # Conclude the transaction opened in the previous [do_test] block. This 108 # causes another page (page 1) to become eligible for recycling. 109 # 110 execsql { COMMIT } 111 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] 112} [value_in_range $::pgalloc $::mrange] 113 114do_test malloc5-1.6 { 115 # Manipulate the cache so that it contains two unused pages. One requires 116 # a journal-sync to free, the other does not. 117 db2 close 118 execsql { 119 BEGIN; 120 CREATE TABLE def(d, e, f); 121 SELECT * FROM abc; 122 } 123 value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500] 124} [value_in_range $::pgalloc $::mrange] 125do_test malloc5-1.7 { 126 # Database should not be locked this time. 127 sqlite3 db2 test.db 128 catchsql { SELECT * FROM abc } db2 129} {0 {}} 130do_test malloc5-1.8 { 131 # Try to release another block of memory. This will fail as the only 132 # pages currently in the cache are dirty (page 3) or pinned (page 1). 133 db2 close 134 sqlite3_release_memory 500 135} 0 136do_test malloc5-1.8 { 137 # Database is still not locked. 138 # 139 sqlite3 db2 test.db 140 catchsql { SELECT * FROM abc } db2 141} {0 {}} 142do_test malloc5-1.9 { 143 execsql { 144 COMMIT; 145 } 146} {} 147 148do_test malloc5-2.1 { 149 # Put some data in tables abc and def. Both tables are still wholly 150 # contained within their root pages. 151 execsql { 152 INSERT INTO abc VALUES(1, 2, 3); 153 INSERT INTO abc VALUES(4, 5, 6); 154 INSERT INTO def VALUES(7, 8, 9); 155 INSERT INTO def VALUES(10,11,12); 156 } 157} {} 158do_test malloc5-2.2 { 159 # Load the root-page for table def into the cache. Then query table abc. 160 # Halfway through the query call sqlite3_release_memory(). The goal of this 161 # test is to make sure we don't free pages that are in use (specifically, 162 # the root of table abc). 163 sqlite3_release_memory 164 set nRelease 0 165 execsql { 166 BEGIN; 167 SELECT * FROM def; 168 } 169 set data [list] 170 db eval {SELECT * FROM abc} { 171 incr nRelease [sqlite3_release_memory] 172 lappend data $a $b $c 173 } 174 execsql { 175 COMMIT; 176 } 177 list $nRelease $data 178} [list $pgalloc [list 1 2 3 4 5 6]] 179 180do_test malloc5-3.1 { 181 # Simple test to show that if two pagers are opened from within this 182 # thread, memory is freed from both when sqlite3_release_memory() is 183 # called. 184 execsql { 185 BEGIN; 186 SELECT * FROM abc; 187 } 188 execsql { 189 SELECT * FROM sqlite_master; 190 BEGIN; 191 SELECT * FROM def; 192 } db2 193 value_in_range [expr $::pgalloc*2] 0.99 [sqlite3_release_memory] 194} [value_in_range [expr $::pgalloc * 2] 0.99] 195do_test malloc5-3.2 { 196 concat \ 197 [execsql {SELECT * FROM abc; COMMIT}] \ 198 [execsql {SELECT * FROM def; COMMIT} db2] 199} {1 2 3 4 5 6 7 8 9 10 11 12} 200 201db2 close 202puts "Highwater mark: [sqlite3_memory_highwater]" 203 204# The following two test cases each execute a transaction in which 205# 10000 rows are inserted into table abc. The first test case is used 206# to ensure that more than 1MB of dynamic memory is used to perform 207# the transaction. 208# 209# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) 210# and tests to see that this limit is not exceeded at any point during 211# transaction execution. 212# 213# Before executing malloc5-4.* we save the value of the current soft heap 214# limit in variable ::soft_limit. The original value is restored after 215# running the tests. 216# 217set ::soft_limit [sqlite3_soft_heap_limit -1] 218execsql {PRAGMA cache_size=2000} 219do_test malloc5-4.1 { 220 execsql {BEGIN;} 221 execsql {DELETE FROM abc;} 222 for {set i 0} {$i < 10000} {incr i} { 223 execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" 224 } 225 execsql {COMMIT;} 226 db cache flush 227 sqlite3_release_memory 228 sqlite3_memory_highwater 1 229 execsql {SELECT * FROM abc} 230 set nMaxBytes [sqlite3_memory_highwater 1] 231 puts -nonewline " (Highwater mark: $nMaxBytes) " 232 expr $nMaxBytes > 1000000 233} {1} 234do_test malloc5-4.2 { 235 db eval {PRAGMA cache_size=1} 236 db cache flush 237 sqlite3_release_memory 238 sqlite3_soft_heap_limit 200000 239 sqlite3_memory_highwater 1 240 execsql {SELECT * FROM abc} 241 set nMaxBytes [sqlite3_memory_highwater 1] 242 puts -nonewline " (Highwater mark: $nMaxBytes) " 243 expr $nMaxBytes <= 210000 244} {1} 245do_test malloc5-4.3 { 246 # Check that the content of table abc is at least roughly as expected. 247 execsql { 248 SELECT count(*), sum(a), sum(b) FROM abc; 249 } 250} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]] 251 252# Restore the soft heap limit. 253sqlite3_soft_heap_limit $::soft_limit 254 255# Test that there are no problems calling sqlite3_release_memory when 256# there are open in-memory databases. 257# 258# At one point these tests would cause a seg-fault. 259# 260do_test malloc5-5.1 { 261 db close 262 sqlite3 db :memory: 263 execsql { 264 BEGIN; 265 CREATE TABLE abc(a, b, c); 266 INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); 267 INSERT INTO abc SELECT * FROM abc; 268 INSERT INTO abc SELECT * FROM abc; 269 INSERT INTO abc SELECT * FROM abc; 270 INSERT INTO abc SELECT * FROM abc; 271 INSERT INTO abc SELECT * FROM abc; 272 INSERT INTO abc SELECT * FROM abc; 273 INSERT INTO abc SELECT * FROM abc; 274 } 275 sqlite3_release_memory 276} 0 277do_test malloc5-5.2 { 278 sqlite3_soft_heap_limit 5000 279 execsql { 280 COMMIT; 281 PRAGMA temp_store = memory; 282 SELECT * FROM abc ORDER BY a; 283 } 284 expr 1 285} {1} 286sqlite3_soft_heap_limit $::soft_limit 287 288#------------------------------------------------------------------------- 289# The following test cases (malloc5-6.*) test the new global LRU list 290# used to determine the pages to recycle when sqlite3_release_memory is 291# called and there is more than one pager open. 292# 293proc nPage {db} { 294 set bt [btree_from_db $db] 295 array set stats [btree_pager_stats $bt] 296 set stats(page) 297} 298db close 299forcedelete test.db test.db-journal test2.db test2.db-journal 300 301# This block of test-cases (malloc5-6.1.*) prepares two database files 302# for the subsequent tests. 303do_test malloc5-6.1.1 { 304 sqlite3 db test.db 305 execsql { 306 PRAGMA page_size=1024; 307 PRAGMA default_cache_size=2; 308 } 309 execsql { 310 PRAGMA temp_store = memory; 311 BEGIN; 312 CREATE TABLE abc(a PRIMARY KEY, b, c); 313 INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); 314 INSERT INTO abc 315 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 316 INSERT INTO abc 317 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 318 INSERT INTO abc 319 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 320 INSERT INTO abc 321 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 322 INSERT INTO abc 323 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 324 INSERT INTO abc 325 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 326 COMMIT; 327 } 328 forcecopy test.db test2.db 329 sqlite3 db2 test2.db 330 db2 eval {PRAGMA cache_size=2} 331 list \ 332 [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20] 333} {1 1} 334do_test malloc5-6.1.2 { 335 list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2] 336} {2 2} 337 338do_test malloc5-6.2.1 { 339 execsql {SELECT * FROM abc} db2 340 execsql {SELECT * FROM abc} db 341 expr [nPage db] + [nPage db2] 342} {4} 343 344do_test malloc5-6.2.2 { 345 # If we now try to reclaim some memory, it should come from the db2 cache. 346 sqlite3_release_memory 3000 347 expr [nPage db] + [nPage db2] 348} {1} 349do_test malloc5-6.2.3 { 350 # Access the db2 cache again, so that all the db2 pages have been used 351 # more recently than all the db pages. Then try to reclaim 3000 bytes. 352 # This time, 3 pages should be pulled from the db cache. 353 execsql { SELECT * FROM abc } db2 354 sqlite3_release_memory 3000 355 expr [nPage db] + [nPage db2] 356} {0} 357 358do_test malloc5-6.3.1 { 359 # Now open a transaction and update 2 pages in the db2 cache. Then 360 # do a SELECT on the db cache so that all the db pages are more recently 361 # used than the db2 pages. When we try to free memory, SQLite should 362 # free the non-dirty db2 pages, then the db pages, then finally use 363 # sync() to free up the dirty db2 pages. The only page that cannot be 364 # freed is page1 of db2. Because there is an open transaction, the 365 # btree layer holds a reference to page 1 in the db2 cache. 366 # 367 # UPDATE: No longer. As release_memory() does not cause a sync() 368 execsql { 369 BEGIN; 370 UPDATE abc SET c = randstr(100,100) 371 WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); 372 } db2 373 execsql { SELECT * FROM abc } db 374 expr [nPage db] + [nPage db2] 375} {4} 376do_test malloc5-6.3.2 { 377 # Try to release 7700 bytes. This should release all the 378 # non-dirty pages held by db2. 379 sqlite3_release_memory [expr 7*1132] 380 list [nPage db] [nPage db2] 381} {0 3} 382do_test malloc5-6.3.3 { 383 # Try to release another 1000 bytes. This should come fromt the db 384 # cache, since all three pages held by db2 are either in-use or diry. 385 sqlite3_release_memory 1000 386 list [nPage db] [nPage db2] 387} {0 3} 388do_test malloc5-6.3.4 { 389 # Now release 9900 more (about 9 pages worth). This should expunge 390 # the rest of the db cache. But the db2 cache remains intact, because 391 # SQLite tries to avoid calling sync(). 392 if {$::tcl_platform(wordSize)==8} { 393 sqlite3_release_memory 10500 394 } else { 395 sqlite3_release_memory 9900 396 } 397 list [nPage db] [nPage db2] 398} {0 3} 399do_test malloc5-6.3.5 { 400 # But if we are really insistent, SQLite will consent to call sync() 401 # if there is no other option. UPDATE: As of 3.6.2, SQLite will not 402 # call sync() in this scenario. So no further memory can be reclaimed. 403 sqlite3_release_memory 1000 404 list [nPage db] [nPage db2] 405} {0 3} 406do_test malloc5-6.3.6 { 407 # The referenced page (page 1 of the db2 cache) will not be freed no 408 # matter how much memory we ask for: 409 sqlite3_release_memory 31459 410 list [nPage db] [nPage db2] 411} {0 3} 412 413db2 close 414 415sqlite3_soft_heap_limit $::soft_limit 416test_restore_config_pagecache 417finish_test 418catch {db close} 419