xref: /sqlite-3.40.0/test/malloc5.test (revision 9edb5ceb)
1# 2005 November 30
2#
3# The author disclaims copyright to this source code.  In place of
4# a legal notice, here is a blessing:
5#
6#    May you do good and not evil.
7#    May you find forgiveness for yourself and forgive others.
8#    May you share freely, never taking more than you give.
9#
10#***********************************************************************
11#
12# This file contains test cases focused on the two memory-management APIs,
13# sqlite3_soft_heap_limit() and sqlite3_release_memory().
14#
15# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding
16# the configured soft heap limit could cause sqlite to upgrade database
17# locks and flush dirty pages to the file system. As of 3.6.2, this is
18# no longer the case. In version 3.6.2, sqlite3_release_memory() only
19# reclaims clean pages. This test file has been updated accordingly.
20#
21# $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $
22
23sqlite3_shutdown
24sqlite3_config_pagecache 0 100
25sqlite3_initialize
26autoinstall_test_functions
27
28set testdir [file dirname $argv0]
29source $testdir/tester.tcl
30source $testdir/malloc_common.tcl
31db close
32
33# Only run these tests if memory debugging is turned on.
34#
35if {!$MEMDEBUG} {
36   puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..."
37   finish_test
38   return
39}
40
41# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time.
42ifcapable !memorymanage {
43   finish_test
44   return
45}
46
47sqlite3_soft_heap_limit 0
48sqlite3 db test.db
49db eval {PRAGMA cache_size=1}
50
51do_test malloc5-1.1 {
52  # Simplest possible test. Call sqlite3_release_memory when there is exactly
53  # one unused page in a single pager cache. The page cannot be freed, as
54  # it is dirty. So sqlite3_release_memory() returns 0.
55  #
56  execsql {
57    PRAGMA auto_vacuum=OFF;
58    BEGIN;
59    CREATE TABLE abc(a, b, c);
60  }
61  sqlite3_release_memory
62} {0}
63
64do_test malloc5-1.2 {
65  # Test that the transaction started in the above test is still active.
66  # The lock on the database file should not have been upgraded (this was
67  # not the case before version 3.6.2).
68  #
69  sqlite3 db2 test.db
70  execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2
71} {}
72do_test malloc5-1.3 {
73  # Call [sqlite3_release_memory] when there is exactly one unused page
74  # in the cache belonging to db2.
75  #
76  set ::pgalloc [sqlite3_release_memory]
77} {0}
78
79# The sizes of memory allocations from system malloc() might vary,
80# depending on the memory allocator algorithms used.  The following
81# routine is designed to support answers that fall within a range
82# of values while also supplying easy-to-understand "expected" values
83# when errors occur.
84#
85proc value_in_range {target x args} {
86  set v [lindex $args 0]
87  if {$v!=""} {
88    if {$v<$target*$x} {return $v}
89    if {$v>$target/$x} {return $v}
90  }
91  return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]"
92}
93set mrange 0.98   ;#  plus or minus 2%
94
95
96do_test malloc5-1.4 {
97  # Commit the transaction and open a new one. Read 1 page into the cache.
98  # Because the page is not dirty, it is eligible for collection even
99  # before the transaction is concluded.
100  #
101  execsql {
102    COMMIT;
103    BEGIN;
104    SELECT * FROM abc;
105  }
106  value_in_range $::pgalloc $::mrange [sqlite3_release_memory]
107} [value_in_range $::pgalloc $::mrange]
108
109do_test malloc5-1.5 {
110  # Conclude the transaction opened in the previous [do_test] block. This
111  # causes another page (page 1) to become eligible for recycling.
112  #
113  execsql { COMMIT }
114  value_in_range $::pgalloc $::mrange [sqlite3_release_memory]
115} [value_in_range $::pgalloc $::mrange]
116
117do_test malloc5-1.6 {
118  # Manipulate the cache so that it contains two unused pages. One requires
119  # a journal-sync to free, the other does not.
120  db2 close
121  execsql {
122    BEGIN;
123    SELECT * FROM abc;
124    CREATE TABLE def(d, e, f);
125  }
126  value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500]
127} [value_in_range $::pgalloc $::mrange]
128
129do_test malloc5-1.7 {
130  # Database should not be locked this time.
131  sqlite3 db2 test.db
132  catchsql { SELECT * FROM abc } db2
133} {0 {}}
134do_test malloc5-1.8 {
135  # Try to release another block of memory. This will fail as the only
136  # pages currently in the cache are dirty (page 3) or pinned (page 1).
137  db2 close
138  sqlite3_release_memory 500
139} 0
140do_test malloc5-1.8 {
141  # Database is still not locked.
142  #
143  sqlite3 db2 test.db
144  catchsql { SELECT * FROM abc } db2
145} {0 {}}
146do_test malloc5-1.9 {
147  execsql {
148    COMMIT;
149  }
150} {}
151
152do_test malloc5-2.1 {
153  # Put some data in tables abc and def. Both tables are still wholly
154  # contained within their root pages.
155  execsql {
156    INSERT INTO abc VALUES(1, 2, 3);
157    INSERT INTO abc VALUES(4, 5, 6);
158    INSERT INTO def VALUES(7, 8, 9);
159    INSERT INTO def VALUES(10,11,12);
160  }
161} {}
162do_test malloc5-2.2 {
163  # Load the root-page for table def into the cache. Then query table abc.
164  # Halfway through the query call sqlite3_release_memory(). The goal of this
165  # test is to make sure we don't free pages that are in use (specifically,
166  # the root of table abc).
167  sqlite3_release_memory
168  set nRelease 0
169  execsql {
170    BEGIN;
171    SELECT * FROM def;
172  }
173  set data [list]
174  db eval {SELECT * FROM abc} {
175    incr nRelease [sqlite3_release_memory]
176    lappend data $a $b $c
177  }
178  execsql {
179    COMMIT;
180  }
181  list $nRelease $data
182} [list $pgalloc [list 1 2 3 4 5 6]]
183
184do_test malloc5-3.1 {
185  # Simple test to show that if two pagers are opened from within this
186  # thread, memory is freed from both when sqlite3_release_memory() is
187  # called.
188  execsql {
189    BEGIN;
190    SELECT * FROM abc;
191  }
192  execsql {
193    SELECT * FROM sqlite_master;
194    BEGIN;
195    SELECT * FROM def;
196  } db2
197  value_in_range [expr $::pgalloc*2] 0.99 [sqlite3_release_memory]
198} [value_in_range [expr $::pgalloc * 2] 0.99]
199do_test malloc5-3.2 {
200  concat \
201    [execsql {SELECT * FROM abc; COMMIT}] \
202    [execsql {SELECT * FROM def; COMMIT} db2]
203} {1 2 3 4 5 6 7 8 9 10 11 12}
204
205db2 close
206puts "Highwater mark: [sqlite3_memory_highwater]"
207
208# The following two test cases each execute a transaction in which
209# 10000 rows are inserted into table abc. The first test case is used
210# to ensure that more than 1MB of dynamic memory is used to perform
211# the transaction.
212#
213# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB)
214# and tests to see that this limit is not exceeded at any point during
215# transaction execution.
216#
217# Before executing malloc5-4.* we save the value of the current soft heap
218# limit in variable ::soft_limit. The original value is restored after
219# running the tests.
220#
221set ::soft_limit [sqlite3_soft_heap_limit -1]
222execsql {PRAGMA cache_size=2000}
223do_test malloc5-4.1 {
224  execsql {BEGIN;}
225  execsql {DELETE FROM abc;}
226  for {set i 0} {$i < 10000} {incr i} {
227    execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
228  }
229  execsql {COMMIT;}
230  db cache flush
231  sqlite3_release_memory
232  sqlite3_memory_highwater 1
233  execsql {SELECT * FROM abc}
234  set nMaxBytes [sqlite3_memory_highwater 1]
235  puts -nonewline " (Highwater mark: $nMaxBytes) "
236  expr $nMaxBytes > 1000000
237} {1}
238do_test malloc5-4.2 {
239  db eval {PRAGMA cache_size=1}
240  db cache flush
241  sqlite3_release_memory
242  sqlite3_soft_heap_limit 100000
243  sqlite3_memory_highwater 1
244  execsql {SELECT * FROM abc}
245  set nMaxBytes [sqlite3_memory_highwater 1]
246  puts -nonewline " (Highwater mark: $nMaxBytes) "
247  expr $nMaxBytes <= 110000
248} {1}
249do_test malloc5-4.3 {
250  # Check that the content of table abc is at least roughly as expected.
251  execsql {
252    SELECT count(*), sum(a), sum(b) FROM abc;
253  }
254} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]]
255
256# Restore the soft heap limit.
257sqlite3_soft_heap_limit $::soft_limit
258
259# Test that there are no problems calling sqlite3_release_memory when
260# there are open in-memory databases.
261#
262# At one point these tests would cause a seg-fault.
263#
264do_test malloc5-5.1 {
265  db close
266  sqlite3 db :memory:
267  execsql {
268    BEGIN;
269    CREATE TABLE abc(a, b, c);
270    INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL);
271    INSERT INTO abc SELECT * FROM abc;
272    INSERT INTO abc SELECT * FROM abc;
273    INSERT INTO abc SELECT * FROM abc;
274    INSERT INTO abc SELECT * FROM abc;
275    INSERT INTO abc SELECT * FROM abc;
276    INSERT INTO abc SELECT * FROM abc;
277    INSERT INTO abc SELECT * FROM abc;
278  }
279  sqlite3_release_memory
280} 0
281do_test malloc5-5.2 {
282  sqlite3_soft_heap_limit 5000
283  execsql {
284    COMMIT;
285    PRAGMA temp_store = memory;
286    SELECT * FROM abc ORDER BY a;
287  }
288  expr 1
289} {1}
290sqlite3_soft_heap_limit $::soft_limit
291
292#-------------------------------------------------------------------------
293# The following test cases (malloc5-6.*) test the new global LRU list
294# used to determine the pages to recycle when sqlite3_release_memory is
295# called and there is more than one pager open.
296#
297proc nPage {db} {
298  set bt [btree_from_db $db]
299  array set stats [btree_pager_stats $bt]
300  set stats(page)
301}
302db close
303forcedelete test.db test.db-journal test2.db test2.db-journal
304
305# This block of test-cases (malloc5-6.1.*) prepares two database files
306# for the subsequent tests.
307do_test malloc5-6.1.1 {
308  sqlite3 db test.db
309  execsql {
310    PRAGMA page_size=1024;
311    PRAGMA default_cache_size=2;
312  }
313  execsql {
314    PRAGMA temp_store = memory;
315    BEGIN;
316    CREATE TABLE abc(a PRIMARY KEY, b, c);
317    INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100));
318    INSERT INTO abc
319        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
320    INSERT INTO abc
321        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
322    INSERT INTO abc
323        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
324    INSERT INTO abc
325        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
326    INSERT INTO abc
327        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
328    INSERT INTO abc
329        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
330    COMMIT;
331  }
332  forcecopy test.db test2.db
333  sqlite3 db2 test2.db
334  db2 eval {PRAGMA cache_size=2}
335  list \
336    [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20]
337} {1 1}
338do_test malloc5-6.1.2 {
339  list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2]
340} {2 2}
341
342do_test malloc5-6.2.1 {
343  execsql {SELECT * FROM abc} db2
344  execsql {SELECT * FROM abc} db
345  expr [nPage db] + [nPage db2]
346} {4}
347
348do_test malloc5-6.2.2 {
349  # If we now try to reclaim some memory, it should come from the db2 cache.
350  sqlite3_release_memory 3000
351  expr [nPage db] + [nPage db2]
352} {4}
353do_test malloc5-6.2.3 {
354  # Access the db2 cache again, so that all the db2 pages have been used
355  # more recently than all the db pages. Then try to reclaim 3000 bytes.
356  # This time, 3 pages should be pulled from the db cache.
357  execsql { SELECT * FROM abc } db2
358  sqlite3_release_memory 3000
359  expr [nPage db] + [nPage db2]
360} {4}
361
362do_test malloc5-6.3.1 {
363  # Now open a transaction and update 2 pages in the db2 cache. Then
364  # do a SELECT on the db cache so that all the db pages are more recently
365  # used than the db2 pages. When we try to free memory, SQLite should
366  # free the non-dirty db2 pages, then the db pages, then finally use
367  # sync() to free up the dirty db2 pages. The only page that cannot be
368  # freed is page1 of db2. Because there is an open transaction, the
369  # btree layer holds a reference to page 1 in the db2 cache.
370  execsql {
371    BEGIN;
372    UPDATE abc SET c = randstr(100,100)
373    WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc);
374  } db2
375  execsql { SELECT * FROM abc } db
376  expr [nPage db] + [nPage db2]
377} {4}
378do_test malloc5-6.3.2 {
379  # Try to release 7700 bytes. This should release all the
380  # non-dirty pages held by db2.
381  sqlite3_release_memory [expr 7*1132]
382  list [nPage db] [nPage db2]
383} {1 3}
384do_test malloc5-6.3.3 {
385  # Try to release another 1000 bytes. This should come fromt the db
386  # cache, since all three pages held by db2 are either in-use or diry.
387  sqlite3_release_memory 1000
388  list [nPage db] [nPage db2]
389} {1 3}
390do_test malloc5-6.3.4 {
391  # Now release 9900 more (about 9 pages worth). This should expunge
392  # the rest of the db cache. But the db2 cache remains intact, because
393  # SQLite tries to avoid calling sync().
394  if {$::tcl_platform(wordSize)==8} {
395    sqlite3_release_memory 10500
396  } else {
397    sqlite3_release_memory 9900
398  }
399  list [nPage db] [nPage db2]
400} {1 3}
401do_test malloc5-6.3.5 {
402  # But if we are really insistent, SQLite will consent to call sync()
403  # if there is no other option. UPDATE: As of 3.6.2, SQLite will not
404  # call sync() in this scenario. So no further memory can be reclaimed.
405  sqlite3_release_memory 1000
406  list [nPage db] [nPage db2]
407} {1 3}
408do_test malloc5-6.3.6 {
409  # The referenced page (page 1 of the db2 cache) will not be freed no
410  # matter how much memory we ask for:
411  sqlite3_release_memory 31459
412  list [nPage db] [nPage db2]
413} {1 3}
414
415db2 close
416
417sqlite3_soft_heap_limit $::soft_limit
418finish_test
419catch {db close}
420