1# 2005 November 30 2# 3# The author disclaims copyright to this source code. In place of 4# a legal notice, here is a blessing: 5# 6# May you do good and not evil. 7# May you find forgiveness for yourself and forgive others. 8# May you share freely, never taking more than you give. 9# 10#*********************************************************************** 11# 12# This file contains test cases focused on the two memory-management APIs, 13# sqlite3_soft_heap_limit() and sqlite3_release_memory(). 14# 15# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding 16# the configured soft heap limit could cause sqlite to upgrade database 17# locks and flush dirty pages to the file system. As of 3.6.2, this is 18# no longer the case. In version 3.6.2, sqlite3_release_memory() only 19# reclaims clean pages. This test file has been updated accordingly. 20# 21# $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $ 22 23set testdir [file dirname $argv0] 24source $testdir/tester.tcl 25source $testdir/malloc_common.tcl 26db close 27 28# Only run these tests if memory debugging is turned on. 29# 30if {!$MEMDEBUG} { 31 puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." 32 finish_test 33 return 34} 35 36# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time. 37ifcapable !memorymanage { 38 finish_test 39 return 40} 41 42test_set_config_pagecache 0 100 43 44sqlite3_soft_heap_limit 0 45sqlite3 db test.db 46db eval {PRAGMA cache_size=1} 47 48do_test malloc5-1.1 { 49 # Simplest possible test. Call sqlite3_release_memory when there is exactly 50 # one unused page in a single pager cache. The page cannot be freed, as 51 # it is dirty. So sqlite3_release_memory() returns 0. 52 # 53 execsql { 54 PRAGMA auto_vacuum=OFF; 55 BEGIN; 56 CREATE TABLE abc(a, b, c); 57 } 58 sqlite3_release_memory 59} {0} 60 61do_test malloc5-1.2 { 62 # Test that the transaction started in the above test is still active. 63 # The lock on the database file should not have been upgraded (this was 64 # not the case before version 3.6.2). 65 # 66 sqlite3 db2 test.db 67 execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2 68} {} 69do_test malloc5-1.3 { 70 # Call [sqlite3_release_memory] when there is exactly one unused page 71 # in the cache belonging to db2. 72 # 73 set ::pgalloc [sqlite3_release_memory] 74} {0} 75 76# The sizes of memory allocations from system malloc() might vary, 77# depending on the memory allocator algorithms used. The following 78# routine is designed to support answers that fall within a range 79# of values while also supplying easy-to-understand "expected" values 80# when errors occur. 81# 82proc value_in_range {target x args} { 83 set v [lindex $args 0] 84 if {$v!=""} { 85 if {$v<$target*$x} {return $v} 86 if {$v>$target/$x} {return $v} 87 } 88 return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]" 89} 90set mrange 0.98 ;# plus or minus 2% 91 92 93do_test malloc5-1.4 { 94 # Commit the transaction and open a new one. Read 1 page into the cache. 95 # Because the page is not dirty, it is eligible for collection even 96 # before the transaction is concluded. 97 # 98 execsql { 99 COMMIT; 100 BEGIN; 101 SELECT * FROM abc; 102 } 103 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] 104} [value_in_range $::pgalloc $::mrange] 105 106do_test malloc5-1.5 { 107 # Conclude the transaction opened in the previous [do_test] block. This 108 # causes another page (page 1) to become eligible for recycling. 109 # 110 execsql { COMMIT } 111 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] 112} [value_in_range $::pgalloc $::mrange] 113 114do_test malloc5-1.6 { 115 # Manipulate the cache so that it contains two unused pages. One requires 116 # a journal-sync to free, the other does not. 117 db2 close 118 execsql { 119 BEGIN; 120 SELECT * FROM abc; 121 CREATE TABLE def(d, e, f); 122 } 123 value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500] 124} [value_in_range $::pgalloc $::mrange] 125 126do_test malloc5-1.7 { 127 # Database should not be locked this time. 128 sqlite3 db2 test.db 129 catchsql { SELECT * FROM abc } db2 130} {0 {}} 131do_test malloc5-1.8 { 132 # Try to release another block of memory. This will fail as the only 133 # pages currently in the cache are dirty (page 3) or pinned (page 1). 134 db2 close 135 sqlite3_release_memory 500 136} 0 137do_test malloc5-1.8 { 138 # Database is still not locked. 139 # 140 sqlite3 db2 test.db 141 catchsql { SELECT * FROM abc } db2 142} {0 {}} 143do_test malloc5-1.9 { 144 execsql { 145 COMMIT; 146 } 147} {} 148 149do_test malloc5-2.1 { 150 # Put some data in tables abc and def. Both tables are still wholly 151 # contained within their root pages. 152 execsql { 153 INSERT INTO abc VALUES(1, 2, 3); 154 INSERT INTO abc VALUES(4, 5, 6); 155 INSERT INTO def VALUES(7, 8, 9); 156 INSERT INTO def VALUES(10,11,12); 157 } 158} {} 159do_test malloc5-2.2 { 160 # Load the root-page for table def into the cache. Then query table abc. 161 # Halfway through the query call sqlite3_release_memory(). The goal of this 162 # test is to make sure we don't free pages that are in use (specifically, 163 # the root of table abc). 164 sqlite3_release_memory 165 set nRelease 0 166 execsql { 167 BEGIN; 168 SELECT * FROM def; 169 } 170 set data [list] 171 db eval {SELECT * FROM abc} { 172 incr nRelease [sqlite3_release_memory] 173 lappend data $a $b $c 174 } 175 execsql { 176 COMMIT; 177 } 178 list $nRelease $data 179} [list $pgalloc [list 1 2 3 4 5 6]] 180 181do_test malloc5-3.1 { 182 # Simple test to show that if two pagers are opened from within this 183 # thread, memory is freed from both when sqlite3_release_memory() is 184 # called. 185 execsql { 186 BEGIN; 187 SELECT * FROM abc; 188 } 189 execsql { 190 SELECT * FROM sqlite_master; 191 BEGIN; 192 SELECT * FROM def; 193 } db2 194 value_in_range [expr $::pgalloc*2] 0.99 [sqlite3_release_memory] 195} [value_in_range [expr $::pgalloc * 2] 0.99] 196do_test malloc5-3.2 { 197 concat \ 198 [execsql {SELECT * FROM abc; COMMIT}] \ 199 [execsql {SELECT * FROM def; COMMIT} db2] 200} {1 2 3 4 5 6 7 8 9 10 11 12} 201 202db2 close 203puts "Highwater mark: [sqlite3_memory_highwater]" 204 205# The following two test cases each execute a transaction in which 206# 10000 rows are inserted into table abc. The first test case is used 207# to ensure that more than 1MB of dynamic memory is used to perform 208# the transaction. 209# 210# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) 211# and tests to see that this limit is not exceeded at any point during 212# transaction execution. 213# 214# Before executing malloc5-4.* we save the value of the current soft heap 215# limit in variable ::soft_limit. The original value is restored after 216# running the tests. 217# 218set ::soft_limit [sqlite3_soft_heap_limit -1] 219execsql {PRAGMA cache_size=2000} 220do_test malloc5-4.1 { 221 execsql {BEGIN;} 222 execsql {DELETE FROM abc;} 223 for {set i 0} {$i < 10000} {incr i} { 224 execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" 225 } 226 execsql {COMMIT;} 227 db cache flush 228 sqlite3_release_memory 229 sqlite3_memory_highwater 1 230 execsql {SELECT * FROM abc} 231 set nMaxBytes [sqlite3_memory_highwater 1] 232 puts -nonewline " (Highwater mark: $nMaxBytes) " 233 expr $nMaxBytes > 1000000 234} {1} 235do_test malloc5-4.2 { 236 db eval {PRAGMA cache_size=1} 237 db cache flush 238 sqlite3_release_memory 239 sqlite3_soft_heap_limit 100000 240 sqlite3_memory_highwater 1 241 execsql {SELECT * FROM abc} 242 set nMaxBytes [sqlite3_memory_highwater 1] 243 puts -nonewline " (Highwater mark: $nMaxBytes) " 244 expr $nMaxBytes <= 110000 245} {1} 246do_test malloc5-4.3 { 247 # Check that the content of table abc is at least roughly as expected. 248 execsql { 249 SELECT count(*), sum(a), sum(b) FROM abc; 250 } 251} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]] 252 253# Restore the soft heap limit. 254sqlite3_soft_heap_limit $::soft_limit 255 256# Test that there are no problems calling sqlite3_release_memory when 257# there are open in-memory databases. 258# 259# At one point these tests would cause a seg-fault. 260# 261do_test malloc5-5.1 { 262 db close 263 sqlite3 db :memory: 264 execsql { 265 BEGIN; 266 CREATE TABLE abc(a, b, c); 267 INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); 268 INSERT INTO abc SELECT * FROM abc; 269 INSERT INTO abc SELECT * FROM abc; 270 INSERT INTO abc SELECT * FROM abc; 271 INSERT INTO abc SELECT * FROM abc; 272 INSERT INTO abc SELECT * FROM abc; 273 INSERT INTO abc SELECT * FROM abc; 274 INSERT INTO abc SELECT * FROM abc; 275 } 276 sqlite3_release_memory 277} 0 278do_test malloc5-5.2 { 279 sqlite3_soft_heap_limit 5000 280 execsql { 281 COMMIT; 282 PRAGMA temp_store = memory; 283 SELECT * FROM abc ORDER BY a; 284 } 285 expr 1 286} {1} 287sqlite3_soft_heap_limit $::soft_limit 288 289#------------------------------------------------------------------------- 290# The following test cases (malloc5-6.*) test the new global LRU list 291# used to determine the pages to recycle when sqlite3_release_memory is 292# called and there is more than one pager open. 293# 294proc nPage {db} { 295 set bt [btree_from_db $db] 296 array set stats [btree_pager_stats $bt] 297 set stats(page) 298} 299db close 300forcedelete test.db test.db-journal test2.db test2.db-journal 301 302# This block of test-cases (malloc5-6.1.*) prepares two database files 303# for the subsequent tests. 304do_test malloc5-6.1.1 { 305 sqlite3 db test.db 306 execsql { 307 PRAGMA page_size=1024; 308 PRAGMA default_cache_size=2; 309 } 310 execsql { 311 PRAGMA temp_store = memory; 312 BEGIN; 313 CREATE TABLE abc(a PRIMARY KEY, b, c); 314 INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); 315 INSERT INTO abc 316 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 317 INSERT INTO abc 318 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 319 INSERT INTO abc 320 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 321 INSERT INTO abc 322 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 323 INSERT INTO abc 324 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 325 INSERT INTO abc 326 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; 327 COMMIT; 328 } 329 forcecopy test.db test2.db 330 sqlite3 db2 test2.db 331 db2 eval {PRAGMA cache_size=2} 332 list \ 333 [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20] 334} {1 1} 335do_test malloc5-6.1.2 { 336 list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2] 337} {2 2} 338 339do_test malloc5-6.2.1 { 340 execsql {SELECT * FROM abc} db2 341 execsql {SELECT * FROM abc} db 342 expr [nPage db] + [nPage db2] 343} {4} 344 345do_test malloc5-6.2.2 { 346 # If we now try to reclaim some memory, it should come from the db2 cache. 347 sqlite3_release_memory 3000 348 expr [nPage db] + [nPage db2] 349} {4} 350do_test malloc5-6.2.3 { 351 # Access the db2 cache again, so that all the db2 pages have been used 352 # more recently than all the db pages. Then try to reclaim 3000 bytes. 353 # This time, 3 pages should be pulled from the db cache. 354 execsql { SELECT * FROM abc } db2 355 sqlite3_release_memory 3000 356 expr [nPage db] + [nPage db2] 357} {4} 358 359do_test malloc5-6.3.1 { 360 # Now open a transaction and update 2 pages in the db2 cache. Then 361 # do a SELECT on the db cache so that all the db pages are more recently 362 # used than the db2 pages. When we try to free memory, SQLite should 363 # free the non-dirty db2 pages, then the db pages, then finally use 364 # sync() to free up the dirty db2 pages. The only page that cannot be 365 # freed is page1 of db2. Because there is an open transaction, the 366 # btree layer holds a reference to page 1 in the db2 cache. 367 execsql { 368 BEGIN; 369 UPDATE abc SET c = randstr(100,100) 370 WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); 371 } db2 372 execsql { SELECT * FROM abc } db 373 expr [nPage db] + [nPage db2] 374} {4} 375do_test malloc5-6.3.2 { 376 # Try to release 7700 bytes. This should release all the 377 # non-dirty pages held by db2. 378 sqlite3_release_memory [expr 7*1132] 379 list [nPage db] [nPage db2] 380} {1 3} 381do_test malloc5-6.3.3 { 382 # Try to release another 1000 bytes. This should come fromt the db 383 # cache, since all three pages held by db2 are either in-use or diry. 384 sqlite3_release_memory 1000 385 list [nPage db] [nPage db2] 386} {1 3} 387do_test malloc5-6.3.4 { 388 # Now release 9900 more (about 9 pages worth). This should expunge 389 # the rest of the db cache. But the db2 cache remains intact, because 390 # SQLite tries to avoid calling sync(). 391 if {$::tcl_platform(wordSize)==8} { 392 sqlite3_release_memory 10500 393 } else { 394 sqlite3_release_memory 9900 395 } 396 list [nPage db] [nPage db2] 397} {1 3} 398do_test malloc5-6.3.5 { 399 # But if we are really insistent, SQLite will consent to call sync() 400 # if there is no other option. UPDATE: As of 3.6.2, SQLite will not 401 # call sync() in this scenario. So no further memory can be reclaimed. 402 sqlite3_release_memory 1000 403 list [nPage db] [nPage db2] 404} {1 3} 405do_test malloc5-6.3.6 { 406 # The referenced page (page 1 of the db2 cache) will not be freed no 407 # matter how much memory we ask for: 408 sqlite3_release_memory 31459 409 list [nPage db] [nPage db2] 410} {1 3} 411 412db2 close 413 414sqlite3_soft_heap_limit $::soft_limit 415test_restore_config_pagecache 416finish_test 417catch {db close} 418