xref: /sqlite-3.40.0/test/malloc5.test (revision 45f31be8)
1# 2005 November 30
2#
3# The author disclaims copyright to this source code.  In place of
4# a legal notice, here is a blessing:
5#
6#    May you do good and not evil.
7#    May you find forgiveness for yourself and forgive others.
8#    May you share freely, never taking more than you give.
9#
10#***********************************************************************
11#
12# This file contains test cases focused on the two memory-management APIs,
13# sqlite3_soft_heap_limit() and sqlite3_release_memory().
14#
15# Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding
16# the configured soft heap limit could cause sqlite to upgrade database
17# locks and flush dirty pages to the file system. As of 3.6.2, this is
18# no longer the case. In version 3.6.2, sqlite3_release_memory() only
19# reclaims clean pages. This test file has been updated accordingly.
20#
21# $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $
22
23set testdir [file dirname $argv0]
24source $testdir/tester.tcl
25source $testdir/malloc_common.tcl
26db close
27
28# Only run these tests if memory debugging is turned on.
29#
30if {!$MEMDEBUG} {
31   puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..."
32   finish_test
33   return
34}
35
36# Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time.
37ifcapable !memorymanage {
38   finish_test
39   return
40}
41
42test_set_config_pagecache 0 100
43
44sqlite3_soft_heap_limit 0
45sqlite3 db test.db
46db eval {PRAGMA cache_size=1}
47
48do_test malloc5-1.1 {
49  # Simplest possible test. Call sqlite3_release_memory when there is exactly
50  # one unused page in a single pager cache. The page cannot be freed, as
51  # it is dirty. So sqlite3_release_memory() returns 0.
52  #
53  execsql {
54    PRAGMA auto_vacuum=OFF;
55    BEGIN;
56    CREATE TABLE abc(a, b, c);
57  }
58  sqlite3_release_memory
59} {0}
60
61do_test malloc5-1.2 {
62  # Test that the transaction started in the above test is still active.
63  # The lock on the database file should not have been upgraded (this was
64  # not the case before version 3.6.2).
65  #
66  sqlite3 db2 test.db
67  execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2
68} {}
69do_test malloc5-1.3 {
70  # Call [sqlite3_release_memory] when there is exactly one unused page
71  # in the cache belonging to db2.
72  #
73  set ::pgalloc [sqlite3_release_memory]
74} {0}
75
76# The sizes of memory allocations from system malloc() might vary,
77# depending on the memory allocator algorithms used.  The following
78# routine is designed to support answers that fall within a range
79# of values while also supplying easy-to-understand "expected" values
80# when errors occur.
81#
82proc value_in_range {target x args} {
83  set v [lindex $args 0]
84  if {$v!=""} {
85    if {$v<$target*$x} {return $v}
86    if {$v>$target/$x} {return $v}
87  }
88  return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]"
89}
90set mrange 0.98   ;#  plus or minus 2%
91
92
93do_test malloc5-1.4 {
94  # Commit the transaction and open a new one. Read 1 page into the cache.
95  # Because the page is not dirty, it is eligible for collection even
96  # before the transaction is concluded.
97  #
98  execsql {
99    COMMIT;
100    BEGIN;
101    SELECT * FROM abc;
102  }
103  value_in_range $::pgalloc $::mrange [sqlite3_release_memory]
104} [value_in_range $::pgalloc $::mrange]
105
106do_test malloc5-1.5 {
107  # Conclude the transaction opened in the previous [do_test] block. This
108  # causes another page (page 1) to become eligible for recycling.
109  #
110  execsql { COMMIT }
111  value_in_range $::pgalloc $::mrange [sqlite3_release_memory]
112} [value_in_range $::pgalloc $::mrange]
113
114do_test malloc5-1.6 {
115  # Manipulate the cache so that it contains two unused pages. One requires
116  # a journal-sync to free, the other does not.
117  db2 close
118  execsql {
119    BEGIN;
120    SELECT * FROM abc;
121    CREATE TABLE def(d, e, f);
122  }
123  value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500]
124} [value_in_range $::pgalloc $::mrange]
125
126do_test malloc5-1.7 {
127  # Database should not be locked this time.
128  sqlite3 db2 test.db
129  catchsql { SELECT * FROM abc } db2
130} {0 {}}
131do_test malloc5-1.8 {
132  # Try to release another block of memory. This will fail as the only
133  # pages currently in the cache are dirty (page 3) or pinned (page 1).
134  db2 close
135  sqlite3_release_memory 500
136} 0
137do_test malloc5-1.8 {
138  # Database is still not locked.
139  #
140  sqlite3 db2 test.db
141  catchsql { SELECT * FROM abc } db2
142} {0 {}}
143do_test malloc5-1.9 {
144  execsql {
145    COMMIT;
146  }
147} {}
148
149do_test malloc5-2.1 {
150  # Put some data in tables abc and def. Both tables are still wholly
151  # contained within their root pages.
152  execsql {
153    INSERT INTO abc VALUES(1, 2, 3);
154    INSERT INTO abc VALUES(4, 5, 6);
155    INSERT INTO def VALUES(7, 8, 9);
156    INSERT INTO def VALUES(10,11,12);
157  }
158} {}
159do_test malloc5-2.2 {
160  # Load the root-page for table def into the cache. Then query table abc.
161  # Halfway through the query call sqlite3_release_memory(). The goal of this
162  # test is to make sure we don't free pages that are in use (specifically,
163  # the root of table abc).
164  sqlite3_release_memory
165  set nRelease 0
166  execsql {
167    BEGIN;
168    SELECT * FROM def;
169  }
170  set data [list]
171  db eval {SELECT * FROM abc} {
172    incr nRelease [sqlite3_release_memory]
173    lappend data $a $b $c
174  }
175  execsql {
176    COMMIT;
177  }
178  list $nRelease $data
179} [list $pgalloc [list 1 2 3 4 5 6]]
180
181do_test malloc5-3.1 {
182  # Simple test to show that if two pagers are opened from within this
183  # thread, memory is freed from both when sqlite3_release_memory() is
184  # called.
185  execsql {
186    BEGIN;
187    SELECT * FROM abc;
188  }
189  execsql {
190    SELECT * FROM sqlite_master;
191    BEGIN;
192    SELECT * FROM def;
193  } db2
194  value_in_range [expr $::pgalloc*2] 0.99 [sqlite3_release_memory]
195} [value_in_range [expr $::pgalloc * 2] 0.99]
196do_test malloc5-3.2 {
197  concat \
198    [execsql {SELECT * FROM abc; COMMIT}] \
199    [execsql {SELECT * FROM def; COMMIT} db2]
200} {1 2 3 4 5 6 7 8 9 10 11 12}
201
202db2 close
203puts "Highwater mark: [sqlite3_memory_highwater]"
204
205# The following two test cases each execute a transaction in which
206# 10000 rows are inserted into table abc. The first test case is used
207# to ensure that more than 1MB of dynamic memory is used to perform
208# the transaction.
209#
210# The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB)
211# and tests to see that this limit is not exceeded at any point during
212# transaction execution.
213#
214# Before executing malloc5-4.* we save the value of the current soft heap
215# limit in variable ::soft_limit. The original value is restored after
216# running the tests.
217#
218set ::soft_limit [sqlite3_soft_heap_limit -1]
219execsql {PRAGMA cache_size=2000}
220do_test malloc5-4.1 {
221  execsql {BEGIN;}
222  execsql {DELETE FROM abc;}
223  for {set i 0} {$i < 10000} {incr i} {
224    execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');"
225  }
226  execsql {COMMIT;}
227  db cache flush
228  sqlite3_release_memory
229  sqlite3_memory_highwater 1
230  execsql {SELECT * FROM abc}
231  set nMaxBytes [sqlite3_memory_highwater 1]
232  puts -nonewline " (Highwater mark: $nMaxBytes) "
233  expr $nMaxBytes > 1000000
234} {1}
235do_test malloc5-4.2 {
236  db eval {PRAGMA cache_size=1}
237  db cache flush
238  sqlite3_release_memory
239  sqlite3_soft_heap_limit 100000
240  sqlite3_memory_highwater 1
241  execsql {SELECT * FROM abc}
242  set nMaxBytes [sqlite3_memory_highwater 1]
243  puts -nonewline " (Highwater mark: $nMaxBytes) "
244  expr $nMaxBytes <= 110000
245} {1}
246do_test malloc5-4.3 {
247  # Check that the content of table abc is at least roughly as expected.
248  execsql {
249    SELECT count(*), sum(a), sum(b) FROM abc;
250  }
251} [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]]
252
253# Restore the soft heap limit.
254sqlite3_soft_heap_limit $::soft_limit
255
256# Test that there are no problems calling sqlite3_release_memory when
257# there are open in-memory databases.
258#
259# At one point these tests would cause a seg-fault.
260#
261do_test malloc5-5.1 {
262  db close
263  sqlite3 db :memory:
264  execsql {
265    BEGIN;
266    CREATE TABLE abc(a, b, c);
267    INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL);
268    INSERT INTO abc SELECT * FROM abc;
269    INSERT INTO abc SELECT * FROM abc;
270    INSERT INTO abc SELECT * FROM abc;
271    INSERT INTO abc SELECT * FROM abc;
272    INSERT INTO abc SELECT * FROM abc;
273    INSERT INTO abc SELECT * FROM abc;
274    INSERT INTO abc SELECT * FROM abc;
275  }
276  sqlite3_release_memory
277} 0
278do_test malloc5-5.2 {
279  sqlite3_soft_heap_limit 5000
280  execsql {
281    COMMIT;
282    PRAGMA temp_store = memory;
283    SELECT * FROM abc ORDER BY a;
284  }
285  expr 1
286} {1}
287sqlite3_soft_heap_limit $::soft_limit
288
289#-------------------------------------------------------------------------
290# The following test cases (malloc5-6.*) test the new global LRU list
291# used to determine the pages to recycle when sqlite3_release_memory is
292# called and there is more than one pager open.
293#
294proc nPage {db} {
295  set bt [btree_from_db $db]
296  array set stats [btree_pager_stats $bt]
297  set stats(page)
298}
299db close
300forcedelete test.db test.db-journal test2.db test2.db-journal
301
302# This block of test-cases (malloc5-6.1.*) prepares two database files
303# for the subsequent tests.
304do_test malloc5-6.1.1 {
305  sqlite3 db test.db
306  execsql {
307    PRAGMA page_size=1024;
308    PRAGMA default_cache_size=2;
309  }
310  execsql {
311    PRAGMA temp_store = memory;
312    BEGIN;
313    CREATE TABLE abc(a PRIMARY KEY, b, c);
314    INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100));
315    INSERT INTO abc
316        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
317    INSERT INTO abc
318        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
319    INSERT INTO abc
320        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
321    INSERT INTO abc
322        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
323    INSERT INTO abc
324        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
325    INSERT INTO abc
326        SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc;
327    COMMIT;
328  }
329  forcecopy test.db test2.db
330  sqlite3 db2 test2.db
331  db2 eval {PRAGMA cache_size=2}
332  list \
333    [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20]
334} {1 1}
335do_test malloc5-6.1.2 {
336  list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2]
337} {2 2}
338
339do_test malloc5-6.2.1 {
340  execsql {SELECT * FROM abc} db2
341  execsql {SELECT * FROM abc} db
342  expr [nPage db] + [nPage db2]
343} {4}
344
345do_test malloc5-6.2.2 {
346  # If we now try to reclaim some memory, it should come from the db2 cache.
347  sqlite3_release_memory 3000
348  expr [nPage db] + [nPage db2]
349} {4}
350do_test malloc5-6.2.3 {
351  # Access the db2 cache again, so that all the db2 pages have been used
352  # more recently than all the db pages. Then try to reclaim 3000 bytes.
353  # This time, 3 pages should be pulled from the db cache.
354  execsql { SELECT * FROM abc } db2
355  sqlite3_release_memory 3000
356  expr [nPage db] + [nPage db2]
357} {4}
358
359do_test malloc5-6.3.1 {
360  # Now open a transaction and update 2 pages in the db2 cache. Then
361  # do a SELECT on the db cache so that all the db pages are more recently
362  # used than the db2 pages. When we try to free memory, SQLite should
363  # free the non-dirty db2 pages, then the db pages, then finally use
364  # sync() to free up the dirty db2 pages. The only page that cannot be
365  # freed is page1 of db2. Because there is an open transaction, the
366  # btree layer holds a reference to page 1 in the db2 cache.
367  execsql {
368    BEGIN;
369    UPDATE abc SET c = randstr(100,100)
370    WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc);
371  } db2
372  execsql { SELECT * FROM abc } db
373  expr [nPage db] + [nPage db2]
374} {4}
375do_test malloc5-6.3.2 {
376  # Try to release 7700 bytes. This should release all the
377  # non-dirty pages held by db2.
378  sqlite3_release_memory [expr 7*1132]
379  list [nPage db] [nPage db2]
380} {1 3}
381do_test malloc5-6.3.3 {
382  # Try to release another 1000 bytes. This should come fromt the db
383  # cache, since all three pages held by db2 are either in-use or diry.
384  sqlite3_release_memory 1000
385  list [nPage db] [nPage db2]
386} {1 3}
387do_test malloc5-6.3.4 {
388  # Now release 9900 more (about 9 pages worth). This should expunge
389  # the rest of the db cache. But the db2 cache remains intact, because
390  # SQLite tries to avoid calling sync().
391  if {$::tcl_platform(wordSize)==8} {
392    sqlite3_release_memory 10500
393  } else {
394    sqlite3_release_memory 9900
395  }
396  list [nPage db] [nPage db2]
397} {1 3}
398do_test malloc5-6.3.5 {
399  # But if we are really insistent, SQLite will consent to call sync()
400  # if there is no other option. UPDATE: As of 3.6.2, SQLite will not
401  # call sync() in this scenario. So no further memory can be reclaimed.
402  sqlite3_release_memory 1000
403  list [nPage db] [nPage db2]
404} {1 3}
405do_test malloc5-6.3.6 {
406  # The referenced page (page 1 of the db2 cache) will not be freed no
407  # matter how much memory we ask for:
408  sqlite3_release_memory 31459
409  list [nPage db] [nPage db2]
410} {1 3}
411
412db2 close
413
414sqlite3_soft_heap_limit $::soft_limit
415test_restore_config_pagecache
416finish_test
417catch {db close}
418