1 /* 2 ** 2004 May 22 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ****************************************************************************** 12 ** 13 ** This file contains the VFS implementation for unix-like operating systems 14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others. 15 ** 16 ** There are actually several different VFS implementations in this file. 17 ** The differences are in the way that file locking is done. The default 18 ** implementation uses Posix Advisory Locks. Alternative implementations 19 ** use flock(), dot-files, various proprietary locking schemas, or simply 20 ** skip locking all together. 21 ** 22 ** This source file is organized into divisions where the logic for various 23 ** subfunctions is contained within the appropriate division. PLEASE 24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed 25 ** in the correct division and should be clearly labeled. 26 ** 27 ** The layout of divisions is as follows: 28 ** 29 ** * General-purpose declarations and utility functions. 30 ** * Unique file ID logic used by VxWorks. 31 ** * Various locking primitive implementations (all except proxy locking): 32 ** + for Posix Advisory Locks 33 ** + for no-op locks 34 ** + for dot-file locks 35 ** + for flock() locking 36 ** + for named semaphore locks (VxWorks only) 37 ** + for AFP filesystem locks (MacOSX only) 38 ** * sqlite3_file methods not associated with locking. 39 ** * Definitions of sqlite3_io_methods objects for all locking 40 ** methods plus "finder" functions for each locking method. 41 ** * sqlite3_vfs method implementations. 42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) 43 ** * Definitions of sqlite3_vfs objects for all locking methods 44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). 45 */ 46 #include "sqliteInt.h" 47 #if SQLITE_OS_UNIX /* This file is used on unix only */ 48 49 /* 50 ** There are various methods for file locking used for concurrency 51 ** control: 52 ** 53 ** 1. POSIX locking (the default), 54 ** 2. No locking, 55 ** 3. Dot-file locking, 56 ** 4. flock() locking, 57 ** 5. AFP locking (OSX only), 58 ** 6. Named POSIX semaphores (VXWorks only), 59 ** 7. proxy locking. (OSX only) 60 ** 61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE 62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic 63 ** selection of the appropriate locking style based on the filesystem 64 ** where the database is located. 65 */ 66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) 67 # if defined(__APPLE__) 68 # define SQLITE_ENABLE_LOCKING_STYLE 1 69 # else 70 # define SQLITE_ENABLE_LOCKING_STYLE 0 71 # endif 72 #endif 73 74 /* 75 ** Define the OS_VXWORKS pre-processor macro to 1 if building on 76 ** vxworks, or 0 otherwise. 77 */ 78 #ifndef OS_VXWORKS 79 # if defined(__RTP__) || defined(_WRS_KERNEL) 80 # define OS_VXWORKS 1 81 # else 82 # define OS_VXWORKS 0 83 # endif 84 #endif 85 86 /* 87 ** These #defines should enable >2GB file support on Posix if the 88 ** underlying operating system supports it. If the OS lacks 89 ** large file support, these should be no-ops. 90 ** 91 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 92 ** on the compiler command line. This is necessary if you are compiling 93 ** on a recent machine (ex: RedHat 7.2) but you want your code to work 94 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 95 ** without this option, LFS is enable. But LFS does not exist in the kernel 96 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary 97 ** portability you should omit LFS. 98 ** 99 ** The previous paragraph was written in 2005. (This paragraph is written 100 ** on 2008-11-28.) These days, all Linux kernels support large files, so 101 ** you should probably leave LFS enabled. But some embedded platforms might 102 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful. 103 */ 104 #ifndef SQLITE_DISABLE_LFS 105 # define _LARGE_FILE 1 106 # ifndef _FILE_OFFSET_BITS 107 # define _FILE_OFFSET_BITS 64 108 # endif 109 # define _LARGEFILE_SOURCE 1 110 #endif 111 112 /* 113 ** standard include files. 114 */ 115 #include <sys/types.h> 116 #include <sys/stat.h> 117 #include <fcntl.h> 118 #include <unistd.h> 119 #include <time.h> 120 #include <sys/time.h> 121 #include <errno.h> 122 #include <sys/mman.h> 123 124 #if SQLITE_ENABLE_LOCKING_STYLE 125 # include <sys/ioctl.h> 126 # if OS_VXWORKS 127 # include <semaphore.h> 128 # include <limits.h> 129 # else 130 # include <sys/file.h> 131 # include <sys/param.h> 132 # endif 133 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ 134 135 #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS) 136 # include <sys/mount.h> 137 #endif 138 139 /* 140 ** Allowed values of unixFile.fsFlags 141 */ 142 #define SQLITE_FSFLAGS_IS_MSDOS 0x1 143 144 /* 145 ** If we are to be thread-safe, include the pthreads header and define 146 ** the SQLITE_UNIX_THREADS macro. 147 */ 148 #if SQLITE_THREADSAFE 149 # include <pthread.h> 150 # define SQLITE_UNIX_THREADS 1 151 #endif 152 153 /* 154 ** Default permissions when creating a new file 155 */ 156 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS 157 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 158 #endif 159 160 /* 161 ** Default permissions when creating auto proxy dir 162 */ 163 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 164 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 165 #endif 166 167 /* 168 ** Maximum supported path-length. 169 */ 170 #define MAX_PATHNAME 512 171 172 /* 173 ** Only set the lastErrno if the error code is a real error and not 174 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK 175 */ 176 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) 177 178 /* Forward references */ 179 typedef struct unixShm unixShm; /* Connection shared memory */ 180 typedef struct unixShmNode unixShmNode; /* Shared memory instance */ 181 typedef struct unixInodeInfo unixInodeInfo; /* An i-node */ 182 typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */ 183 184 /* 185 ** Sometimes, after a file handle is closed by SQLite, the file descriptor 186 ** cannot be closed immediately. In these cases, instances of the following 187 ** structure are used to store the file descriptor while waiting for an 188 ** opportunity to either close or reuse it. 189 */ 190 struct UnixUnusedFd { 191 int fd; /* File descriptor to close */ 192 int flags; /* Flags this file descriptor was opened with */ 193 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ 194 }; 195 196 /* 197 ** The unixFile structure is subclass of sqlite3_file specific to the unix 198 ** VFS implementations. 199 */ 200 typedef struct unixFile unixFile; 201 struct unixFile { 202 sqlite3_io_methods const *pMethod; /* Always the first entry */ 203 unixInodeInfo *pInode; /* Info about locks on this inode */ 204 int h; /* The file descriptor */ 205 int dirfd; /* File descriptor for the directory */ 206 unsigned char eFileLock; /* The type of lock held on this fd */ 207 int lastErrno; /* The unix errno from last I/O error */ 208 void *lockingContext; /* Locking style specific state */ 209 UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ 210 int fileFlags; /* Miscellanous flags */ 211 const char *zPath; /* Name of the file */ 212 unixShm *pShm; /* Shared memory segment information */ 213 int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ 214 #if SQLITE_ENABLE_LOCKING_STYLE 215 int openFlags; /* The flags specified at open() */ 216 #endif 217 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) 218 unsigned fsFlags; /* cached details from statfs() */ 219 #endif 220 #if OS_VXWORKS 221 int isDelete; /* Delete on close if true */ 222 struct vxworksFileId *pId; /* Unique file ID */ 223 #endif 224 #ifndef NDEBUG 225 /* The next group of variables are used to track whether or not the 226 ** transaction counter in bytes 24-27 of database files are updated 227 ** whenever any part of the database changes. An assertion fault will 228 ** occur if a file is updated without also updating the transaction 229 ** counter. This test is made to avoid new problems similar to the 230 ** one described by ticket #3584. 231 */ 232 unsigned char transCntrChng; /* True if the transaction counter changed */ 233 unsigned char dbUpdate; /* True if any part of database file changed */ 234 unsigned char inNormalWrite; /* True if in a normal write operation */ 235 #endif 236 #ifdef SQLITE_TEST 237 /* In test mode, increase the size of this structure a bit so that 238 ** it is larger than the struct CrashFile defined in test6.c. 239 */ 240 char aPadding[32]; 241 #endif 242 }; 243 244 /* 245 ** The following macros define bits in unixFile.fileFlags 246 */ 247 #define SQLITE_WHOLE_FILE_LOCKING 0x0001 /* Use whole-file locking */ 248 249 /* 250 ** Include code that is common to all os_*.c files 251 */ 252 #include "os_common.h" 253 254 /* 255 ** Define various macros that are missing from some systems. 256 */ 257 #ifndef O_LARGEFILE 258 # define O_LARGEFILE 0 259 #endif 260 #ifdef SQLITE_DISABLE_LFS 261 # undef O_LARGEFILE 262 # define O_LARGEFILE 0 263 #endif 264 #ifndef O_NOFOLLOW 265 # define O_NOFOLLOW 0 266 #endif 267 #ifndef O_BINARY 268 # define O_BINARY 0 269 #endif 270 271 /* 272 ** The DJGPP compiler environment looks mostly like Unix, but it 273 ** lacks the fcntl() system call. So redefine fcntl() to be something 274 ** that always succeeds. This means that locking does not occur under 275 ** DJGPP. But it is DOS - what did you expect? 276 */ 277 #ifdef __DJGPP__ 278 # define fcntl(A,B,C) 0 279 #endif 280 281 /* 282 ** The threadid macro resolves to the thread-id or to 0. Used for 283 ** testing and debugging only. 284 */ 285 #if SQLITE_THREADSAFE 286 #define threadid pthread_self() 287 #else 288 #define threadid 0 289 #endif 290 291 292 /* 293 ** Helper functions to obtain and relinquish the global mutex. The 294 ** global mutex is used to protect the unixInodeInfo and 295 ** vxworksFileId objects used by this file, all of which may be 296 ** shared by multiple threads. 297 ** 298 ** Function unixMutexHeld() is used to assert() that the global mutex 299 ** is held when required. This function is only used as part of assert() 300 ** statements. e.g. 301 ** 302 ** unixEnterMutex() 303 ** assert( unixMutexHeld() ); 304 ** unixEnterLeave() 305 */ 306 static void unixEnterMutex(void){ 307 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 308 } 309 static void unixLeaveMutex(void){ 310 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 311 } 312 #ifdef SQLITE_DEBUG 313 static int unixMutexHeld(void) { 314 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); 315 } 316 #endif 317 318 319 #ifdef SQLITE_DEBUG 320 /* 321 ** Helper function for printing out trace information from debugging 322 ** binaries. This returns the string represetation of the supplied 323 ** integer lock-type. 324 */ 325 static const char *azFileLock(int eFileLock){ 326 switch( eFileLock ){ 327 case NO_LOCK: return "NONE"; 328 case SHARED_LOCK: return "SHARED"; 329 case RESERVED_LOCK: return "RESERVED"; 330 case PENDING_LOCK: return "PENDING"; 331 case EXCLUSIVE_LOCK: return "EXCLUSIVE"; 332 } 333 return "ERROR"; 334 } 335 #endif 336 337 #ifdef SQLITE_LOCK_TRACE 338 /* 339 ** Print out information about all locking operations. 340 ** 341 ** This routine is used for troubleshooting locks on multithreaded 342 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE 343 ** command-line option on the compiler. This code is normally 344 ** turned off. 345 */ 346 static int lockTrace(int fd, int op, struct flock *p){ 347 char *zOpName, *zType; 348 int s; 349 int savedErrno; 350 if( op==F_GETLK ){ 351 zOpName = "GETLK"; 352 }else if( op==F_SETLK ){ 353 zOpName = "SETLK"; 354 }else{ 355 s = fcntl(fd, op, p); 356 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); 357 return s; 358 } 359 if( p->l_type==F_RDLCK ){ 360 zType = "RDLCK"; 361 }else if( p->l_type==F_WRLCK ){ 362 zType = "WRLCK"; 363 }else if( p->l_type==F_UNLCK ){ 364 zType = "UNLCK"; 365 }else{ 366 assert( 0 ); 367 } 368 assert( p->l_whence==SEEK_SET ); 369 s = fcntl(fd, op, p); 370 savedErrno = errno; 371 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", 372 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, 373 (int)p->l_pid, s); 374 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ 375 struct flock l2; 376 l2 = *p; 377 fcntl(fd, F_GETLK, &l2); 378 if( l2.l_type==F_RDLCK ){ 379 zType = "RDLCK"; 380 }else if( l2.l_type==F_WRLCK ){ 381 zType = "WRLCK"; 382 }else if( l2.l_type==F_UNLCK ){ 383 zType = "UNLCK"; 384 }else{ 385 assert( 0 ); 386 } 387 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", 388 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); 389 } 390 errno = savedErrno; 391 return s; 392 } 393 #define fcntl lockTrace 394 #endif /* SQLITE_LOCK_TRACE */ 395 396 397 398 /* 399 ** This routine translates a standard POSIX errno code into something 400 ** useful to the clients of the sqlite3 functions. Specifically, it is 401 ** intended to translate a variety of "try again" errors into SQLITE_BUSY 402 ** and a variety of "please close the file descriptor NOW" errors into 403 ** SQLITE_IOERR 404 ** 405 ** Errors during initialization of locks, or file system support for locks, 406 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. 407 */ 408 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { 409 switch (posixError) { 410 case 0: 411 return SQLITE_OK; 412 413 case EAGAIN: 414 case ETIMEDOUT: 415 case EBUSY: 416 case EINTR: 417 case ENOLCK: 418 /* random NFS retry error, unless during file system support 419 * introspection, in which it actually means what it says */ 420 return SQLITE_BUSY; 421 422 case EACCES: 423 /* EACCES is like EAGAIN during locking operations, but not any other time*/ 424 if( (sqliteIOErr == SQLITE_IOERR_LOCK) || 425 (sqliteIOErr == SQLITE_IOERR_UNLOCK) || 426 (sqliteIOErr == SQLITE_IOERR_RDLOCK) || 427 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){ 428 return SQLITE_BUSY; 429 } 430 /* else fall through */ 431 case EPERM: 432 return SQLITE_PERM; 433 434 case EDEADLK: 435 return SQLITE_IOERR_BLOCKED; 436 437 #if EOPNOTSUPP!=ENOTSUP 438 case EOPNOTSUPP: 439 /* something went terribly awry, unless during file system support 440 * introspection, in which it actually means what it says */ 441 #endif 442 #ifdef ENOTSUP 443 case ENOTSUP: 444 /* invalid fd, unless during file system support introspection, in which 445 * it actually means what it says */ 446 #endif 447 case EIO: 448 case EBADF: 449 case EINVAL: 450 case ENOTCONN: 451 case ENODEV: 452 case ENXIO: 453 case ENOENT: 454 case ESTALE: 455 case ENOSYS: 456 /* these should force the client to close the file and reconnect */ 457 458 default: 459 return sqliteIOErr; 460 } 461 } 462 463 464 465 /****************************************************************************** 466 ****************** Begin Unique File ID Utility Used By VxWorks *************** 467 ** 468 ** On most versions of unix, we can get a unique ID for a file by concatenating 469 ** the device number and the inode number. But this does not work on VxWorks. 470 ** On VxWorks, a unique file id must be based on the canonical filename. 471 ** 472 ** A pointer to an instance of the following structure can be used as a 473 ** unique file ID in VxWorks. Each instance of this structure contains 474 ** a copy of the canonical filename. There is also a reference count. 475 ** The structure is reclaimed when the number of pointers to it drops to 476 ** zero. 477 ** 478 ** There are never very many files open at one time and lookups are not 479 ** a performance-critical path, so it is sufficient to put these 480 ** structures on a linked list. 481 */ 482 struct vxworksFileId { 483 struct vxworksFileId *pNext; /* Next in a list of them all */ 484 int nRef; /* Number of references to this one */ 485 int nName; /* Length of the zCanonicalName[] string */ 486 char *zCanonicalName; /* Canonical filename */ 487 }; 488 489 #if OS_VXWORKS 490 /* 491 ** All unique filenames are held on a linked list headed by this 492 ** variable: 493 */ 494 static struct vxworksFileId *vxworksFileList = 0; 495 496 /* 497 ** Simplify a filename into its canonical form 498 ** by making the following changes: 499 ** 500 ** * removing any trailing and duplicate / 501 ** * convert /./ into just / 502 ** * convert /A/../ where A is any simple name into just / 503 ** 504 ** Changes are made in-place. Return the new name length. 505 ** 506 ** The original filename is in z[0..n-1]. Return the number of 507 ** characters in the simplified name. 508 */ 509 static int vxworksSimplifyName(char *z, int n){ 510 int i, j; 511 while( n>1 && z[n-1]=='/' ){ n--; } 512 for(i=j=0; i<n; i++){ 513 if( z[i]=='/' ){ 514 if( z[i+1]=='/' ) continue; 515 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ 516 i += 1; 517 continue; 518 } 519 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ 520 while( j>0 && z[j-1]!='/' ){ j--; } 521 if( j>0 ){ j--; } 522 i += 2; 523 continue; 524 } 525 } 526 z[j++] = z[i]; 527 } 528 z[j] = 0; 529 return j; 530 } 531 532 /* 533 ** Find a unique file ID for the given absolute pathname. Return 534 ** a pointer to the vxworksFileId object. This pointer is the unique 535 ** file ID. 536 ** 537 ** The nRef field of the vxworksFileId object is incremented before 538 ** the object is returned. A new vxworksFileId object is created 539 ** and added to the global list if necessary. 540 ** 541 ** If a memory allocation error occurs, return NULL. 542 */ 543 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){ 544 struct vxworksFileId *pNew; /* search key and new file ID */ 545 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */ 546 int n; /* Length of zAbsoluteName string */ 547 548 assert( zAbsoluteName[0]=='/' ); 549 n = (int)strlen(zAbsoluteName); 550 pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) ); 551 if( pNew==0 ) return 0; 552 pNew->zCanonicalName = (char*)&pNew[1]; 553 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1); 554 n = vxworksSimplifyName(pNew->zCanonicalName, n); 555 556 /* Search for an existing entry that matching the canonical name. 557 ** If found, increment the reference count and return a pointer to 558 ** the existing file ID. 559 */ 560 unixEnterMutex(); 561 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){ 562 if( pCandidate->nName==n 563 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0 564 ){ 565 sqlite3_free(pNew); 566 pCandidate->nRef++; 567 unixLeaveMutex(); 568 return pCandidate; 569 } 570 } 571 572 /* No match was found. We will make a new file ID */ 573 pNew->nRef = 1; 574 pNew->nName = n; 575 pNew->pNext = vxworksFileList; 576 vxworksFileList = pNew; 577 unixLeaveMutex(); 578 return pNew; 579 } 580 581 /* 582 ** Decrement the reference count on a vxworksFileId object. Free 583 ** the object when the reference count reaches zero. 584 */ 585 static void vxworksReleaseFileId(struct vxworksFileId *pId){ 586 unixEnterMutex(); 587 assert( pId->nRef>0 ); 588 pId->nRef--; 589 if( pId->nRef==0 ){ 590 struct vxworksFileId **pp; 591 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){} 592 assert( *pp==pId ); 593 *pp = pId->pNext; 594 sqlite3_free(pId); 595 } 596 unixLeaveMutex(); 597 } 598 #endif /* OS_VXWORKS */ 599 /*************** End of Unique File ID Utility Used By VxWorks **************** 600 ******************************************************************************/ 601 602 603 /****************************************************************************** 604 *************************** Posix Advisory Locking **************************** 605 ** 606 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996) 607 ** section 6.5.2.2 lines 483 through 490 specify that when a process 608 ** sets or clears a lock, that operation overrides any prior locks set 609 ** by the same process. It does not explicitly say so, but this implies 610 ** that it overrides locks set by the same process using a different 611 ** file descriptor. Consider this test case: 612 ** 613 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); 614 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); 615 ** 616 ** Suppose ./file1 and ./file2 are really the same file (because 617 ** one is a hard or symbolic link to the other) then if you set 618 ** an exclusive lock on fd1, then try to get an exclusive lock 619 ** on fd2, it works. I would have expected the second lock to 620 ** fail since there was already a lock on the file due to fd1. 621 ** But not so. Since both locks came from the same process, the 622 ** second overrides the first, even though they were on different 623 ** file descriptors opened on different file names. 624 ** 625 ** This means that we cannot use POSIX locks to synchronize file access 626 ** among competing threads of the same process. POSIX locks will work fine 627 ** to synchronize access for threads in separate processes, but not 628 ** threads within the same process. 629 ** 630 ** To work around the problem, SQLite has to manage file locks internally 631 ** on its own. Whenever a new database is opened, we have to find the 632 ** specific inode of the database file (the inode is determined by the 633 ** st_dev and st_ino fields of the stat structure that fstat() fills in) 634 ** and check for locks already existing on that inode. When locks are 635 ** created or removed, we have to look at our own internal record of the 636 ** locks to see if another thread has previously set a lock on that same 637 ** inode. 638 ** 639 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks. 640 ** For VxWorks, we have to use the alternative unique ID system based on 641 ** canonical filename and implemented in the previous division.) 642 ** 643 ** The sqlite3_file structure for POSIX is no longer just an integer file 644 ** descriptor. It is now a structure that holds the integer file 645 ** descriptor and a pointer to a structure that describes the internal 646 ** locks on the corresponding inode. There is one locking structure 647 ** per inode, so if the same inode is opened twice, both unixFile structures 648 ** point to the same locking structure. The locking structure keeps 649 ** a reference count (so we will know when to delete it) and a "cnt" 650 ** field that tells us its internal lock status. cnt==0 means the 651 ** file is unlocked. cnt==-1 means the file has an exclusive lock. 652 ** cnt>0 means there are cnt shared locks on the file. 653 ** 654 ** Any attempt to lock or unlock a file first checks the locking 655 ** structure. The fcntl() system call is only invoked to set a 656 ** POSIX lock if the internal lock structure transitions between 657 ** a locked and an unlocked state. 658 ** 659 ** But wait: there are yet more problems with POSIX advisory locks. 660 ** 661 ** If you close a file descriptor that points to a file that has locks, 662 ** all locks on that file that are owned by the current process are 663 ** released. To work around this problem, each unixInodeInfo object 664 ** maintains a count of the number of pending locks on tha inode. 665 ** When an attempt is made to close an unixFile, if there are 666 ** other unixFile open on the same inode that are holding locks, the call 667 ** to close() the file descriptor is deferred until all of the locks clear. 668 ** The unixInodeInfo structure keeps a list of file descriptors that need to 669 ** be closed and that list is walked (and cleared) when the last lock 670 ** clears. 671 ** 672 ** Yet another problem: LinuxThreads do not play well with posix locks. 673 ** 674 ** Many older versions of linux use the LinuxThreads library which is 675 ** not posix compliant. Under LinuxThreads, a lock created by thread 676 ** A cannot be modified or overridden by a different thread B. 677 ** Only thread A can modify the lock. Locking behavior is correct 678 ** if the appliation uses the newer Native Posix Thread Library (NPTL) 679 ** on linux - with NPTL a lock created by thread A can override locks 680 ** in thread B. But there is no way to know at compile-time which 681 ** threading library is being used. So there is no way to know at 682 ** compile-time whether or not thread A can override locks on thread B. 683 ** One has to do a run-time check to discover the behavior of the 684 ** current process. 685 ** 686 ** SQLite used to support LinuxThreads. But support for LinuxThreads 687 ** was dropped beginning with version 3.7.0. SQLite will still work with 688 ** LinuxThreads provided that (1) there is no more than one connection 689 ** per database file in the same process and (2) database connections 690 ** do not move across threads. 691 */ 692 693 /* 694 ** An instance of the following structure serves as the key used 695 ** to locate a particular unixInodeInfo object. 696 */ 697 struct unixFileId { 698 dev_t dev; /* Device number */ 699 #if OS_VXWORKS 700 struct vxworksFileId *pId; /* Unique file ID for vxworks. */ 701 #else 702 ino_t ino; /* Inode number */ 703 #endif 704 }; 705 706 /* 707 ** An instance of the following structure is allocated for each open 708 ** inode. Or, on LinuxThreads, there is one of these structures for 709 ** each inode opened by each thread. 710 ** 711 ** A single inode can have multiple file descriptors, so each unixFile 712 ** structure contains a pointer to an instance of this object and this 713 ** object keeps a count of the number of unixFile pointing to it. 714 */ 715 struct unixInodeInfo { 716 struct unixFileId fileId; /* The lookup key */ 717 int nShared; /* Number of SHARED locks held */ 718 int eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ 719 int nRef; /* Number of pointers to this structure */ 720 unixShmNode *pShmNode; /* Shared memory associated with this inode */ 721 int nLock; /* Number of outstanding file locks */ 722 UnixUnusedFd *pUnused; /* Unused file descriptors to close */ 723 unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ 724 unixInodeInfo *pPrev; /* .... doubly linked */ 725 #if defined(SQLITE_ENABLE_LOCKING_STYLE) 726 unsigned long long sharedByte; /* for AFP simulated shared lock */ 727 #endif 728 #if OS_VXWORKS 729 sem_t *pSem; /* Named POSIX semaphore */ 730 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ 731 #endif 732 }; 733 734 /* 735 ** A lists of all unixInodeInfo objects. 736 */ 737 static unixInodeInfo *inodeList = 0; 738 739 /* 740 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list. 741 ** If all such file descriptors are closed without error, the list is 742 ** cleared and SQLITE_OK returned. 743 ** 744 ** Otherwise, if an error occurs, then successfully closed file descriptor 745 ** entries are removed from the list, and SQLITE_IOERR_CLOSE returned. 746 ** not deleted and SQLITE_IOERR_CLOSE returned. 747 */ 748 static int closePendingFds(unixFile *pFile){ 749 int rc = SQLITE_OK; 750 unixInodeInfo *pInode = pFile->pInode; 751 UnixUnusedFd *pError = 0; 752 UnixUnusedFd *p; 753 UnixUnusedFd *pNext; 754 for(p=pInode->pUnused; p; p=pNext){ 755 pNext = p->pNext; 756 if( close(p->fd) ){ 757 pFile->lastErrno = errno; 758 rc = SQLITE_IOERR_CLOSE; 759 p->pNext = pError; 760 pError = p; 761 }else{ 762 sqlite3_free(p); 763 } 764 } 765 pInode->pUnused = pError; 766 return rc; 767 } 768 769 /* 770 ** Release a unixInodeInfo structure previously allocated by findInodeInfo(). 771 ** 772 ** The mutex entered using the unixEnterMutex() function must be held 773 ** when this function is called. 774 */ 775 static void releaseInodeInfo(unixFile *pFile){ 776 unixInodeInfo *pInode = pFile->pInode; 777 assert( unixMutexHeld() ); 778 if( pInode ){ 779 pInode->nRef--; 780 if( pInode->nRef==0 ){ 781 assert( pInode->pShmNode==0 ); 782 closePendingFds(pFile); 783 if( pInode->pPrev ){ 784 assert( pInode->pPrev->pNext==pInode ); 785 pInode->pPrev->pNext = pInode->pNext; 786 }else{ 787 assert( inodeList==pInode ); 788 inodeList = pInode->pNext; 789 } 790 if( pInode->pNext ){ 791 assert( pInode->pNext->pPrev==pInode ); 792 pInode->pNext->pPrev = pInode->pPrev; 793 } 794 sqlite3_free(pInode); 795 } 796 } 797 } 798 799 /* 800 ** Given a file descriptor, locate the unixInodeInfo object that 801 ** describes that file descriptor. Create a new one if necessary. The 802 ** return value might be uninitialized if an error occurs. 803 ** 804 ** The mutex entered using the unixEnterMutex() function must be held 805 ** when this function is called. 806 ** 807 ** Return an appropriate error code. 808 */ 809 static int findInodeInfo( 810 unixFile *pFile, /* Unix file with file desc used in the key */ 811 unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ 812 ){ 813 int rc; /* System call return code */ 814 int fd; /* The file descriptor for pFile */ 815 struct unixFileId fileId; /* Lookup key for the unixInodeInfo */ 816 struct stat statbuf; /* Low-level file information */ 817 unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */ 818 819 assert( unixMutexHeld() ); 820 821 /* Get low-level information about the file that we can used to 822 ** create a unique name for the file. 823 */ 824 fd = pFile->h; 825 rc = fstat(fd, &statbuf); 826 if( rc!=0 ){ 827 pFile->lastErrno = errno; 828 #ifdef EOVERFLOW 829 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; 830 #endif 831 return SQLITE_IOERR; 832 } 833 834 #ifdef __APPLE__ 835 /* On OS X on an msdos filesystem, the inode number is reported 836 ** incorrectly for zero-size files. See ticket #3260. To work 837 ** around this problem (we consider it a bug in OS X, not SQLite) 838 ** we always increase the file size to 1 by writing a single byte 839 ** prior to accessing the inode number. The one byte written is 840 ** an ASCII 'S' character which also happens to be the first byte 841 ** in the header of every SQLite database. In this way, if there 842 ** is a race condition such that another thread has already populated 843 ** the first page of the database, no damage is done. 844 */ 845 if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ 846 rc = write(fd, "S", 1); 847 if( rc!=1 ){ 848 pFile->lastErrno = errno; 849 return SQLITE_IOERR; 850 } 851 rc = fstat(fd, &statbuf); 852 if( rc!=0 ){ 853 pFile->lastErrno = errno; 854 return SQLITE_IOERR; 855 } 856 } 857 #endif 858 859 memset(&fileId, 0, sizeof(fileId)); 860 fileId.dev = statbuf.st_dev; 861 #if OS_VXWORKS 862 fileId.pId = pFile->pId; 863 #else 864 fileId.ino = statbuf.st_ino; 865 #endif 866 pInode = inodeList; 867 while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ 868 pInode = pInode->pNext; 869 } 870 if( pInode==0 ){ 871 pInode = sqlite3_malloc( sizeof(*pInode) ); 872 if( pInode==0 ){ 873 return SQLITE_NOMEM; 874 } 875 memset(pInode, 0, sizeof(*pInode)); 876 memcpy(&pInode->fileId, &fileId, sizeof(fileId)); 877 pInode->nRef = 1; 878 pInode->pNext = inodeList; 879 pInode->pPrev = 0; 880 if( inodeList ) inodeList->pPrev = pInode; 881 inodeList = pInode; 882 }else{ 883 pInode->nRef++; 884 } 885 *ppInode = pInode; 886 return SQLITE_OK; 887 } 888 889 890 /* 891 ** This routine checks if there is a RESERVED lock held on the specified 892 ** file by this or any other process. If such a lock is held, set *pResOut 893 ** to a non-zero value otherwise *pResOut is set to zero. The return value 894 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 895 */ 896 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ 897 int rc = SQLITE_OK; 898 int reserved = 0; 899 unixFile *pFile = (unixFile*)id; 900 901 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); 902 903 assert( pFile ); 904 unixEnterMutex(); /* Because pFile->pInode is shared across threads */ 905 906 /* Check if a thread in this process holds such a lock */ 907 if( pFile->pInode->eFileLock>SHARED_LOCK ){ 908 reserved = 1; 909 } 910 911 /* Otherwise see if some other process holds it. 912 */ 913 #ifndef __DJGPP__ 914 if( !reserved ){ 915 struct flock lock; 916 lock.l_whence = SEEK_SET; 917 lock.l_start = RESERVED_BYTE; 918 lock.l_len = 1; 919 lock.l_type = F_WRLCK; 920 if (-1 == fcntl(pFile->h, F_GETLK, &lock)) { 921 int tErrno = errno; 922 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); 923 pFile->lastErrno = tErrno; 924 } else if( lock.l_type!=F_UNLCK ){ 925 reserved = 1; 926 } 927 } 928 #endif 929 930 unixLeaveMutex(); 931 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); 932 933 *pResOut = reserved; 934 return rc; 935 } 936 937 /* 938 ** Lock the file with the lock specified by parameter eFileLock - one 939 ** of the following: 940 ** 941 ** (1) SHARED_LOCK 942 ** (2) RESERVED_LOCK 943 ** (3) PENDING_LOCK 944 ** (4) EXCLUSIVE_LOCK 945 ** 946 ** Sometimes when requesting one lock state, additional lock states 947 ** are inserted in between. The locking might fail on one of the later 948 ** transitions leaving the lock state different from what it started but 949 ** still short of its goal. The following chart shows the allowed 950 ** transitions and the inserted intermediate states: 951 ** 952 ** UNLOCKED -> SHARED 953 ** SHARED -> RESERVED 954 ** SHARED -> (PENDING) -> EXCLUSIVE 955 ** RESERVED -> (PENDING) -> EXCLUSIVE 956 ** PENDING -> EXCLUSIVE 957 ** 958 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 959 ** routine to lower a locking level. 960 */ 961 static int unixLock(sqlite3_file *id, int eFileLock){ 962 /* The following describes the implementation of the various locks and 963 ** lock transitions in terms of the POSIX advisory shared and exclusive 964 ** lock primitives (called read-locks and write-locks below, to avoid 965 ** confusion with SQLite lock names). The algorithms are complicated 966 ** slightly in order to be compatible with windows systems simultaneously 967 ** accessing the same database file, in case that is ever required. 968 ** 969 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved 970 ** byte', each single bytes at well known offsets, and the 'shared byte 971 ** range', a range of 510 bytes at a well known offset. 972 ** 973 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending 974 ** byte'. If this is successful, a random byte from the 'shared byte 975 ** range' is read-locked and the lock on the 'pending byte' released. 976 ** 977 ** A process may only obtain a RESERVED lock after it has a SHARED lock. 978 ** A RESERVED lock is implemented by grabbing a write-lock on the 979 ** 'reserved byte'. 980 ** 981 ** A process may only obtain a PENDING lock after it has obtained a 982 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock 983 ** on the 'pending byte'. This ensures that no new SHARED locks can be 984 ** obtained, but existing SHARED locks are allowed to persist. A process 985 ** does not have to obtain a RESERVED lock on the way to a PENDING lock. 986 ** This property is used by the algorithm for rolling back a journal file 987 ** after a crash. 988 ** 989 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is 990 ** implemented by obtaining a write-lock on the entire 'shared byte 991 ** range'. Since all other locks require a read-lock on one of the bytes 992 ** within this range, this ensures that no other locks are held on the 993 ** database. 994 ** 995 ** The reason a single byte cannot be used instead of the 'shared byte 996 ** range' is that some versions of windows do not support read-locks. By 997 ** locking a random byte from a range, concurrent SHARED locks may exist 998 ** even if the locking primitive used is always a write-lock. 999 */ 1000 int rc = SQLITE_OK; 1001 unixFile *pFile = (unixFile*)id; 1002 unixInodeInfo *pInode = pFile->pInode; 1003 struct flock lock; 1004 int s = 0; 1005 int tErrno = 0; 1006 1007 assert( pFile ); 1008 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, 1009 azFileLock(eFileLock), azFileLock(pFile->eFileLock), 1010 azFileLock(pInode->eFileLock), pInode->nShared , getpid())); 1011 1012 /* If there is already a lock of this type or more restrictive on the 1013 ** unixFile, do nothing. Don't use the end_lock: exit path, as 1014 ** unixEnterMutex() hasn't been called yet. 1015 */ 1016 if( pFile->eFileLock>=eFileLock ){ 1017 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, 1018 azFileLock(eFileLock))); 1019 return SQLITE_OK; 1020 } 1021 1022 /* Make sure the locking sequence is correct. 1023 ** (1) We never move from unlocked to anything higher than shared lock. 1024 ** (2) SQLite never explicitly requests a pendig lock. 1025 ** (3) A shared lock is always held when a reserve lock is requested. 1026 */ 1027 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); 1028 assert( eFileLock!=PENDING_LOCK ); 1029 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); 1030 1031 /* This mutex is needed because pFile->pInode is shared across threads 1032 */ 1033 unixEnterMutex(); 1034 pInode = pFile->pInode; 1035 1036 /* If some thread using this PID has a lock via a different unixFile* 1037 ** handle that precludes the requested lock, return BUSY. 1038 */ 1039 if( (pFile->eFileLock!=pInode->eFileLock && 1040 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) 1041 ){ 1042 rc = SQLITE_BUSY; 1043 goto end_lock; 1044 } 1045 1046 /* If a SHARED lock is requested, and some thread using this PID already 1047 ** has a SHARED or RESERVED lock, then increment reference counts and 1048 ** return SQLITE_OK. 1049 */ 1050 if( eFileLock==SHARED_LOCK && 1051 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ 1052 assert( eFileLock==SHARED_LOCK ); 1053 assert( pFile->eFileLock==0 ); 1054 assert( pInode->nShared>0 ); 1055 pFile->eFileLock = SHARED_LOCK; 1056 pInode->nShared++; 1057 pInode->nLock++; 1058 goto end_lock; 1059 } 1060 1061 1062 /* A PENDING lock is needed before acquiring a SHARED lock and before 1063 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will 1064 ** be released. 1065 */ 1066 lock.l_len = 1L; 1067 lock.l_whence = SEEK_SET; 1068 if( eFileLock==SHARED_LOCK 1069 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) 1070 ){ 1071 lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); 1072 lock.l_start = PENDING_BYTE; 1073 s = fcntl(pFile->h, F_SETLK, &lock); 1074 if( s==(-1) ){ 1075 tErrno = errno; 1076 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 1077 if( IS_LOCK_ERROR(rc) ){ 1078 pFile->lastErrno = tErrno; 1079 } 1080 goto end_lock; 1081 } 1082 } 1083 1084 1085 /* If control gets to this point, then actually go ahead and make 1086 ** operating system calls for the specified lock. 1087 */ 1088 if( eFileLock==SHARED_LOCK ){ 1089 assert( pInode->nShared==0 ); 1090 assert( pInode->eFileLock==0 ); 1091 1092 /* Now get the read-lock */ 1093 lock.l_start = SHARED_FIRST; 1094 lock.l_len = SHARED_SIZE; 1095 if( (s = fcntl(pFile->h, F_SETLK, &lock))==(-1) ){ 1096 tErrno = errno; 1097 } 1098 /* Drop the temporary PENDING lock */ 1099 lock.l_start = PENDING_BYTE; 1100 lock.l_len = 1L; 1101 lock.l_type = F_UNLCK; 1102 if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){ 1103 if( s != -1 ){ 1104 /* This could happen with a network mount */ 1105 tErrno = errno; 1106 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 1107 if( IS_LOCK_ERROR(rc) ){ 1108 pFile->lastErrno = tErrno; 1109 } 1110 goto end_lock; 1111 } 1112 } 1113 if( s==(-1) ){ 1114 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 1115 if( IS_LOCK_ERROR(rc) ){ 1116 pFile->lastErrno = tErrno; 1117 } 1118 }else{ 1119 pFile->eFileLock = SHARED_LOCK; 1120 pInode->nLock++; 1121 pInode->nShared = 1; 1122 } 1123 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ 1124 /* We are trying for an exclusive lock but another thread in this 1125 ** same process is still holding a shared lock. */ 1126 rc = SQLITE_BUSY; 1127 }else{ 1128 /* The request was for a RESERVED or EXCLUSIVE lock. It is 1129 ** assumed that there is a SHARED or greater lock on the file 1130 ** already. 1131 */ 1132 assert( 0!=pFile->eFileLock ); 1133 lock.l_type = F_WRLCK; 1134 switch( eFileLock ){ 1135 case RESERVED_LOCK: 1136 lock.l_start = RESERVED_BYTE; 1137 break; 1138 case EXCLUSIVE_LOCK: 1139 lock.l_start = SHARED_FIRST; 1140 lock.l_len = SHARED_SIZE; 1141 break; 1142 default: 1143 assert(0); 1144 } 1145 s = fcntl(pFile->h, F_SETLK, &lock); 1146 if( s==(-1) ){ 1147 tErrno = errno; 1148 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 1149 if( IS_LOCK_ERROR(rc) ){ 1150 pFile->lastErrno = tErrno; 1151 } 1152 } 1153 } 1154 1155 1156 #ifndef NDEBUG 1157 /* Set up the transaction-counter change checking flags when 1158 ** transitioning from a SHARED to a RESERVED lock. The change 1159 ** from SHARED to RESERVED marks the beginning of a normal 1160 ** write operation (not a hot journal rollback). 1161 */ 1162 if( rc==SQLITE_OK 1163 && pFile->eFileLock<=SHARED_LOCK 1164 && eFileLock==RESERVED_LOCK 1165 ){ 1166 pFile->transCntrChng = 0; 1167 pFile->dbUpdate = 0; 1168 pFile->inNormalWrite = 1; 1169 } 1170 #endif 1171 1172 1173 if( rc==SQLITE_OK ){ 1174 pFile->eFileLock = eFileLock; 1175 pInode->eFileLock = eFileLock; 1176 }else if( eFileLock==EXCLUSIVE_LOCK ){ 1177 pFile->eFileLock = PENDING_LOCK; 1178 pInode->eFileLock = PENDING_LOCK; 1179 } 1180 1181 end_lock: 1182 unixLeaveMutex(); 1183 OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), 1184 rc==SQLITE_OK ? "ok" : "failed")); 1185 return rc; 1186 } 1187 1188 /* 1189 ** Add the file descriptor used by file handle pFile to the corresponding 1190 ** pUnused list. 1191 */ 1192 static void setPendingFd(unixFile *pFile){ 1193 unixInodeInfo *pInode = pFile->pInode; 1194 UnixUnusedFd *p = pFile->pUnused; 1195 p->pNext = pInode->pUnused; 1196 pInode->pUnused = p; 1197 pFile->h = -1; 1198 pFile->pUnused = 0; 1199 } 1200 1201 /* 1202 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 1203 ** must be either NO_LOCK or SHARED_LOCK. 1204 ** 1205 ** If the locking level of the file descriptor is already at or below 1206 ** the requested locking level, this routine is a no-op. 1207 ** 1208 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED 1209 ** the byte range is divided into 2 parts and the first part is unlocked then 1210 ** set to a read lock, then the other part is simply unlocked. This works 1211 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to 1212 ** remove the write lock on a region when a read lock is set. 1213 */ 1214 static int _posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ 1215 unixFile *pFile = (unixFile*)id; 1216 unixInodeInfo *pInode; 1217 struct flock lock; 1218 int rc = SQLITE_OK; 1219 int h; 1220 int tErrno; /* Error code from system call errors */ 1221 1222 assert( pFile ); 1223 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, 1224 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, 1225 getpid())); 1226 1227 assert( eFileLock<=SHARED_LOCK ); 1228 if( pFile->eFileLock<=eFileLock ){ 1229 return SQLITE_OK; 1230 } 1231 unixEnterMutex(); 1232 h = pFile->h; 1233 pInode = pFile->pInode; 1234 assert( pInode->nShared!=0 ); 1235 if( pFile->eFileLock>SHARED_LOCK ){ 1236 assert( pInode->eFileLock==pFile->eFileLock ); 1237 SimulateIOErrorBenign(1); 1238 SimulateIOError( h=(-1) ) 1239 SimulateIOErrorBenign(0); 1240 1241 #ifndef NDEBUG 1242 /* When reducing a lock such that other processes can start 1243 ** reading the database file again, make sure that the 1244 ** transaction counter was updated if any part of the database 1245 ** file changed. If the transaction counter is not updated, 1246 ** other connections to the same file might not realize that 1247 ** the file has changed and hence might not know to flush their 1248 ** cache. The use of a stale cache can lead to database corruption. 1249 */ 1250 #if 0 1251 assert( pFile->inNormalWrite==0 1252 || pFile->dbUpdate==0 1253 || pFile->transCntrChng==1 ); 1254 #endif 1255 pFile->inNormalWrite = 0; 1256 #endif 1257 1258 /* downgrading to a shared lock on NFS involves clearing the write lock 1259 ** before establishing the readlock - to avoid a race condition we downgrade 1260 ** the lock in 2 blocks, so that part of the range will be covered by a 1261 ** write lock until the rest is covered by a read lock: 1262 ** 1: [WWWWW] 1263 ** 2: [....W] 1264 ** 3: [RRRRW] 1265 ** 4: [RRRR.] 1266 */ 1267 if( eFileLock==SHARED_LOCK ){ 1268 if( handleNFSUnlock ){ 1269 off_t divSize = SHARED_SIZE - 1; 1270 1271 lock.l_type = F_UNLCK; 1272 lock.l_whence = SEEK_SET; 1273 lock.l_start = SHARED_FIRST; 1274 lock.l_len = divSize; 1275 if( fcntl(h, F_SETLK, &lock)==(-1) ){ 1276 tErrno = errno; 1277 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 1278 if( IS_LOCK_ERROR(rc) ){ 1279 pFile->lastErrno = tErrno; 1280 } 1281 goto end_unlock; 1282 } 1283 lock.l_type = F_RDLCK; 1284 lock.l_whence = SEEK_SET; 1285 lock.l_start = SHARED_FIRST; 1286 lock.l_len = divSize; 1287 if( fcntl(h, F_SETLK, &lock)==(-1) ){ 1288 tErrno = errno; 1289 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); 1290 if( IS_LOCK_ERROR(rc) ){ 1291 pFile->lastErrno = tErrno; 1292 } 1293 goto end_unlock; 1294 } 1295 lock.l_type = F_UNLCK; 1296 lock.l_whence = SEEK_SET; 1297 lock.l_start = SHARED_FIRST+divSize; 1298 lock.l_len = SHARED_SIZE-divSize; 1299 if( fcntl(h, F_SETLK, &lock)==(-1) ){ 1300 tErrno = errno; 1301 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 1302 if( IS_LOCK_ERROR(rc) ){ 1303 pFile->lastErrno = tErrno; 1304 } 1305 goto end_unlock; 1306 } 1307 }else{ 1308 lock.l_type = F_RDLCK; 1309 lock.l_whence = SEEK_SET; 1310 lock.l_start = SHARED_FIRST; 1311 lock.l_len = SHARED_SIZE; 1312 if( fcntl(h, F_SETLK, &lock)==(-1) ){ 1313 tErrno = errno; 1314 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); 1315 if( IS_LOCK_ERROR(rc) ){ 1316 pFile->lastErrno = tErrno; 1317 } 1318 goto end_unlock; 1319 } 1320 } 1321 } 1322 lock.l_type = F_UNLCK; 1323 lock.l_whence = SEEK_SET; 1324 lock.l_start = PENDING_BYTE; 1325 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); 1326 if( fcntl(h, F_SETLK, &lock)!=(-1) ){ 1327 pInode->eFileLock = SHARED_LOCK; 1328 }else{ 1329 tErrno = errno; 1330 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 1331 if( IS_LOCK_ERROR(rc) ){ 1332 pFile->lastErrno = tErrno; 1333 } 1334 goto end_unlock; 1335 } 1336 } 1337 if( eFileLock==NO_LOCK ){ 1338 /* Decrement the shared lock counter. Release the lock using an 1339 ** OS call only when all threads in this same process have released 1340 ** the lock. 1341 */ 1342 pInode->nShared--; 1343 if( pInode->nShared==0 ){ 1344 lock.l_type = F_UNLCK; 1345 lock.l_whence = SEEK_SET; 1346 lock.l_start = lock.l_len = 0L; 1347 SimulateIOErrorBenign(1); 1348 SimulateIOError( h=(-1) ) 1349 SimulateIOErrorBenign(0); 1350 if( fcntl(h, F_SETLK, &lock)!=(-1) ){ 1351 pInode->eFileLock = NO_LOCK; 1352 }else{ 1353 tErrno = errno; 1354 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 1355 if( IS_LOCK_ERROR(rc) ){ 1356 pFile->lastErrno = tErrno; 1357 } 1358 pInode->eFileLock = NO_LOCK; 1359 pFile->eFileLock = NO_LOCK; 1360 } 1361 } 1362 1363 /* Decrement the count of locks against this same file. When the 1364 ** count reaches zero, close any other file descriptors whose close 1365 ** was deferred because of outstanding locks. 1366 */ 1367 pInode->nLock--; 1368 assert( pInode->nLock>=0 ); 1369 if( pInode->nLock==0 ){ 1370 int rc2 = closePendingFds(pFile); 1371 if( rc==SQLITE_OK ){ 1372 rc = rc2; 1373 } 1374 } 1375 } 1376 1377 end_unlock: 1378 unixLeaveMutex(); 1379 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; 1380 return rc; 1381 } 1382 1383 /* 1384 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 1385 ** must be either NO_LOCK or SHARED_LOCK. 1386 ** 1387 ** If the locking level of the file descriptor is already at or below 1388 ** the requested locking level, this routine is a no-op. 1389 */ 1390 static int unixUnlock(sqlite3_file *id, int eFileLock){ 1391 return _posixUnlock(id, eFileLock, 0); 1392 } 1393 1394 /* 1395 ** This function performs the parts of the "close file" operation 1396 ** common to all locking schemes. It closes the directory and file 1397 ** handles, if they are valid, and sets all fields of the unixFile 1398 ** structure to 0. 1399 ** 1400 ** It is *not* necessary to hold the mutex when this routine is called, 1401 ** even on VxWorks. A mutex will be acquired on VxWorks by the 1402 ** vxworksReleaseFileId() routine. 1403 */ 1404 static int closeUnixFile(sqlite3_file *id){ 1405 unixFile *pFile = (unixFile*)id; 1406 if( pFile ){ 1407 if( pFile->dirfd>=0 ){ 1408 int err = close(pFile->dirfd); 1409 if( err ){ 1410 pFile->lastErrno = errno; 1411 return SQLITE_IOERR_DIR_CLOSE; 1412 }else{ 1413 pFile->dirfd=-1; 1414 } 1415 } 1416 if( pFile->h>=0 ){ 1417 int err = close(pFile->h); 1418 if( err ){ 1419 pFile->lastErrno = errno; 1420 return SQLITE_IOERR_CLOSE; 1421 } 1422 } 1423 #if OS_VXWORKS 1424 if( pFile->pId ){ 1425 if( pFile->isDelete ){ 1426 unlink(pFile->pId->zCanonicalName); 1427 } 1428 vxworksReleaseFileId(pFile->pId); 1429 pFile->pId = 0; 1430 } 1431 #endif 1432 OSTRACE(("CLOSE %-3d\n", pFile->h)); 1433 OpenCounter(-1); 1434 sqlite3_free(pFile->pUnused); 1435 memset(pFile, 0, sizeof(unixFile)); 1436 } 1437 return SQLITE_OK; 1438 } 1439 1440 /* 1441 ** Close a file. 1442 */ 1443 static int unixClose(sqlite3_file *id){ 1444 int rc = SQLITE_OK; 1445 if( id ){ 1446 unixFile *pFile = (unixFile *)id; 1447 unixUnlock(id, NO_LOCK); 1448 unixEnterMutex(); 1449 if( pFile->pInode && pFile->pInode->nLock ){ 1450 /* If there are outstanding locks, do not actually close the file just 1451 ** yet because that would clear those locks. Instead, add the file 1452 ** descriptor to pInode->pUnused list. It will be automatically closed 1453 ** when the last lock is cleared. 1454 */ 1455 setPendingFd(pFile); 1456 } 1457 releaseInodeInfo(pFile); 1458 rc = closeUnixFile(id); 1459 unixLeaveMutex(); 1460 } 1461 return rc; 1462 } 1463 1464 /************** End of the posix advisory lock implementation ***************** 1465 ******************************************************************************/ 1466 1467 /****************************************************************************** 1468 ****************************** No-op Locking ********************************** 1469 ** 1470 ** Of the various locking implementations available, this is by far the 1471 ** simplest: locking is ignored. No attempt is made to lock the database 1472 ** file for reading or writing. 1473 ** 1474 ** This locking mode is appropriate for use on read-only databases 1475 ** (ex: databases that are burned into CD-ROM, for example.) It can 1476 ** also be used if the application employs some external mechanism to 1477 ** prevent simultaneous access of the same database by two or more 1478 ** database connections. But there is a serious risk of database 1479 ** corruption if this locking mode is used in situations where multiple 1480 ** database connections are accessing the same database file at the same 1481 ** time and one or more of those connections are writing. 1482 */ 1483 1484 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){ 1485 UNUSED_PARAMETER(NotUsed); 1486 *pResOut = 0; 1487 return SQLITE_OK; 1488 } 1489 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){ 1490 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1491 return SQLITE_OK; 1492 } 1493 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){ 1494 UNUSED_PARAMETER2(NotUsed, NotUsed2); 1495 return SQLITE_OK; 1496 } 1497 1498 /* 1499 ** Close the file. 1500 */ 1501 static int nolockClose(sqlite3_file *id) { 1502 return closeUnixFile(id); 1503 } 1504 1505 /******************* End of the no-op lock implementation ********************* 1506 ******************************************************************************/ 1507 1508 /****************************************************************************** 1509 ************************* Begin dot-file Locking ****************************** 1510 ** 1511 ** The dotfile locking implementation uses the existance of separate lock 1512 ** files in order to control access to the database. This works on just 1513 ** about every filesystem imaginable. But there are serious downsides: 1514 ** 1515 ** (1) There is zero concurrency. A single reader blocks all other 1516 ** connections from reading or writing the database. 1517 ** 1518 ** (2) An application crash or power loss can leave stale lock files 1519 ** sitting around that need to be cleared manually. 1520 ** 1521 ** Nevertheless, a dotlock is an appropriate locking mode for use if no 1522 ** other locking strategy is available. 1523 ** 1524 ** Dotfile locking works by creating a file in the same directory as the 1525 ** database and with the same name but with a ".lock" extension added. 1526 ** The existance of a lock file implies an EXCLUSIVE lock. All other lock 1527 ** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE. 1528 */ 1529 1530 /* 1531 ** The file suffix added to the data base filename in order to create the 1532 ** lock file. 1533 */ 1534 #define DOTLOCK_SUFFIX ".lock" 1535 1536 /* 1537 ** This routine checks if there is a RESERVED lock held on the specified 1538 ** file by this or any other process. If such a lock is held, set *pResOut 1539 ** to a non-zero value otherwise *pResOut is set to zero. The return value 1540 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 1541 ** 1542 ** In dotfile locking, either a lock exists or it does not. So in this 1543 ** variation of CheckReservedLock(), *pResOut is set to true if any lock 1544 ** is held on the file and false if the file is unlocked. 1545 */ 1546 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { 1547 int rc = SQLITE_OK; 1548 int reserved = 0; 1549 unixFile *pFile = (unixFile*)id; 1550 1551 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); 1552 1553 assert( pFile ); 1554 1555 /* Check if a thread in this process holds such a lock */ 1556 if( pFile->eFileLock>SHARED_LOCK ){ 1557 /* Either this connection or some other connection in the same process 1558 ** holds a lock on the file. No need to check further. */ 1559 reserved = 1; 1560 }else{ 1561 /* The lock is held if and only if the lockfile exists */ 1562 const char *zLockFile = (const char*)pFile->lockingContext; 1563 reserved = access(zLockFile, 0)==0; 1564 } 1565 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); 1566 *pResOut = reserved; 1567 return rc; 1568 } 1569 1570 /* 1571 ** Lock the file with the lock specified by parameter eFileLock - one 1572 ** of the following: 1573 ** 1574 ** (1) SHARED_LOCK 1575 ** (2) RESERVED_LOCK 1576 ** (3) PENDING_LOCK 1577 ** (4) EXCLUSIVE_LOCK 1578 ** 1579 ** Sometimes when requesting one lock state, additional lock states 1580 ** are inserted in between. The locking might fail on one of the later 1581 ** transitions leaving the lock state different from what it started but 1582 ** still short of its goal. The following chart shows the allowed 1583 ** transitions and the inserted intermediate states: 1584 ** 1585 ** UNLOCKED -> SHARED 1586 ** SHARED -> RESERVED 1587 ** SHARED -> (PENDING) -> EXCLUSIVE 1588 ** RESERVED -> (PENDING) -> EXCLUSIVE 1589 ** PENDING -> EXCLUSIVE 1590 ** 1591 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 1592 ** routine to lower a locking level. 1593 ** 1594 ** With dotfile locking, we really only support state (4): EXCLUSIVE. 1595 ** But we track the other locking levels internally. 1596 */ 1597 static int dotlockLock(sqlite3_file *id, int eFileLock) { 1598 unixFile *pFile = (unixFile*)id; 1599 int fd; 1600 char *zLockFile = (char *)pFile->lockingContext; 1601 int rc = SQLITE_OK; 1602 1603 1604 /* If we have any lock, then the lock file already exists. All we have 1605 ** to do is adjust our internal record of the lock level. 1606 */ 1607 if( pFile->eFileLock > NO_LOCK ){ 1608 pFile->eFileLock = eFileLock; 1609 #if !OS_VXWORKS 1610 /* Always update the timestamp on the old file */ 1611 utimes(zLockFile, NULL); 1612 #endif 1613 return SQLITE_OK; 1614 } 1615 1616 /* grab an exclusive lock */ 1617 fd = open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600); 1618 if( fd<0 ){ 1619 /* failed to open/create the file, someone else may have stolen the lock */ 1620 int tErrno = errno; 1621 if( EEXIST == tErrno ){ 1622 rc = SQLITE_BUSY; 1623 } else { 1624 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 1625 if( IS_LOCK_ERROR(rc) ){ 1626 pFile->lastErrno = tErrno; 1627 } 1628 } 1629 return rc; 1630 } 1631 if( close(fd) ){ 1632 pFile->lastErrno = errno; 1633 rc = SQLITE_IOERR_CLOSE; 1634 } 1635 1636 /* got it, set the type and return ok */ 1637 pFile->eFileLock = eFileLock; 1638 return rc; 1639 } 1640 1641 /* 1642 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 1643 ** must be either NO_LOCK or SHARED_LOCK. 1644 ** 1645 ** If the locking level of the file descriptor is already at or below 1646 ** the requested locking level, this routine is a no-op. 1647 ** 1648 ** When the locking level reaches NO_LOCK, delete the lock file. 1649 */ 1650 static int dotlockUnlock(sqlite3_file *id, int eFileLock) { 1651 unixFile *pFile = (unixFile*)id; 1652 char *zLockFile = (char *)pFile->lockingContext; 1653 1654 assert( pFile ); 1655 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, 1656 pFile->eFileLock, getpid())); 1657 assert( eFileLock<=SHARED_LOCK ); 1658 1659 /* no-op if possible */ 1660 if( pFile->eFileLock==eFileLock ){ 1661 return SQLITE_OK; 1662 } 1663 1664 /* To downgrade to shared, simply update our internal notion of the 1665 ** lock state. No need to mess with the file on disk. 1666 */ 1667 if( eFileLock==SHARED_LOCK ){ 1668 pFile->eFileLock = SHARED_LOCK; 1669 return SQLITE_OK; 1670 } 1671 1672 /* To fully unlock the database, delete the lock file */ 1673 assert( eFileLock==NO_LOCK ); 1674 if( unlink(zLockFile) ){ 1675 int rc = 0; 1676 int tErrno = errno; 1677 if( ENOENT != tErrno ){ 1678 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 1679 } 1680 if( IS_LOCK_ERROR(rc) ){ 1681 pFile->lastErrno = tErrno; 1682 } 1683 return rc; 1684 } 1685 pFile->eFileLock = NO_LOCK; 1686 return SQLITE_OK; 1687 } 1688 1689 /* 1690 ** Close a file. Make sure the lock has been released before closing. 1691 */ 1692 static int dotlockClose(sqlite3_file *id) { 1693 int rc; 1694 if( id ){ 1695 unixFile *pFile = (unixFile*)id; 1696 dotlockUnlock(id, NO_LOCK); 1697 sqlite3_free(pFile->lockingContext); 1698 } 1699 rc = closeUnixFile(id); 1700 return rc; 1701 } 1702 /****************** End of the dot-file lock implementation ******************* 1703 ******************************************************************************/ 1704 1705 /****************************************************************************** 1706 ************************** Begin flock Locking ******************************** 1707 ** 1708 ** Use the flock() system call to do file locking. 1709 ** 1710 ** flock() locking is like dot-file locking in that the various 1711 ** fine-grain locking levels supported by SQLite are collapsed into 1712 ** a single exclusive lock. In other words, SHARED, RESERVED, and 1713 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite 1714 ** still works when you do this, but concurrency is reduced since 1715 ** only a single process can be reading the database at a time. 1716 ** 1717 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if 1718 ** compiling for VXWORKS. 1719 */ 1720 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS 1721 1722 /* 1723 ** This routine checks if there is a RESERVED lock held on the specified 1724 ** file by this or any other process. If such a lock is held, set *pResOut 1725 ** to a non-zero value otherwise *pResOut is set to zero. The return value 1726 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 1727 */ 1728 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ 1729 int rc = SQLITE_OK; 1730 int reserved = 0; 1731 unixFile *pFile = (unixFile*)id; 1732 1733 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); 1734 1735 assert( pFile ); 1736 1737 /* Check if a thread in this process holds such a lock */ 1738 if( pFile->eFileLock>SHARED_LOCK ){ 1739 reserved = 1; 1740 } 1741 1742 /* Otherwise see if some other process holds it. */ 1743 if( !reserved ){ 1744 /* attempt to get the lock */ 1745 int lrc = flock(pFile->h, LOCK_EX | LOCK_NB); 1746 if( !lrc ){ 1747 /* got the lock, unlock it */ 1748 lrc = flock(pFile->h, LOCK_UN); 1749 if ( lrc ) { 1750 int tErrno = errno; 1751 /* unlock failed with an error */ 1752 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 1753 if( IS_LOCK_ERROR(lrc) ){ 1754 pFile->lastErrno = tErrno; 1755 rc = lrc; 1756 } 1757 } 1758 } else { 1759 int tErrno = errno; 1760 reserved = 1; 1761 /* someone else might have it reserved */ 1762 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 1763 if( IS_LOCK_ERROR(lrc) ){ 1764 pFile->lastErrno = tErrno; 1765 rc = lrc; 1766 } 1767 } 1768 } 1769 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved)); 1770 1771 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS 1772 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ 1773 rc = SQLITE_OK; 1774 reserved=1; 1775 } 1776 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ 1777 *pResOut = reserved; 1778 return rc; 1779 } 1780 1781 /* 1782 ** Lock the file with the lock specified by parameter eFileLock - one 1783 ** of the following: 1784 ** 1785 ** (1) SHARED_LOCK 1786 ** (2) RESERVED_LOCK 1787 ** (3) PENDING_LOCK 1788 ** (4) EXCLUSIVE_LOCK 1789 ** 1790 ** Sometimes when requesting one lock state, additional lock states 1791 ** are inserted in between. The locking might fail on one of the later 1792 ** transitions leaving the lock state different from what it started but 1793 ** still short of its goal. The following chart shows the allowed 1794 ** transitions and the inserted intermediate states: 1795 ** 1796 ** UNLOCKED -> SHARED 1797 ** SHARED -> RESERVED 1798 ** SHARED -> (PENDING) -> EXCLUSIVE 1799 ** RESERVED -> (PENDING) -> EXCLUSIVE 1800 ** PENDING -> EXCLUSIVE 1801 ** 1802 ** flock() only really support EXCLUSIVE locks. We track intermediate 1803 ** lock states in the sqlite3_file structure, but all locks SHARED or 1804 ** above are really EXCLUSIVE locks and exclude all other processes from 1805 ** access the file. 1806 ** 1807 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 1808 ** routine to lower a locking level. 1809 */ 1810 static int flockLock(sqlite3_file *id, int eFileLock) { 1811 int rc = SQLITE_OK; 1812 unixFile *pFile = (unixFile*)id; 1813 1814 assert( pFile ); 1815 1816 /* if we already have a lock, it is exclusive. 1817 ** Just adjust level and punt on outta here. */ 1818 if (pFile->eFileLock > NO_LOCK) { 1819 pFile->eFileLock = eFileLock; 1820 return SQLITE_OK; 1821 } 1822 1823 /* grab an exclusive lock */ 1824 1825 if (flock(pFile->h, LOCK_EX | LOCK_NB)) { 1826 int tErrno = errno; 1827 /* didn't get, must be busy */ 1828 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 1829 if( IS_LOCK_ERROR(rc) ){ 1830 pFile->lastErrno = tErrno; 1831 } 1832 } else { 1833 /* got it, set the type and return ok */ 1834 pFile->eFileLock = eFileLock; 1835 } 1836 OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), 1837 rc==SQLITE_OK ? "ok" : "failed")); 1838 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS 1839 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ 1840 rc = SQLITE_BUSY; 1841 } 1842 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ 1843 return rc; 1844 } 1845 1846 1847 /* 1848 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 1849 ** must be either NO_LOCK or SHARED_LOCK. 1850 ** 1851 ** If the locking level of the file descriptor is already at or below 1852 ** the requested locking level, this routine is a no-op. 1853 */ 1854 static int flockUnlock(sqlite3_file *id, int eFileLock) { 1855 unixFile *pFile = (unixFile*)id; 1856 1857 assert( pFile ); 1858 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, 1859 pFile->eFileLock, getpid())); 1860 assert( eFileLock<=SHARED_LOCK ); 1861 1862 /* no-op if possible */ 1863 if( pFile->eFileLock==eFileLock ){ 1864 return SQLITE_OK; 1865 } 1866 1867 /* shared can just be set because we always have an exclusive */ 1868 if (eFileLock==SHARED_LOCK) { 1869 pFile->eFileLock = eFileLock; 1870 return SQLITE_OK; 1871 } 1872 1873 /* no, really, unlock. */ 1874 int rc = flock(pFile->h, LOCK_UN); 1875 if (rc) { 1876 int r, tErrno = errno; 1877 r = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 1878 if( IS_LOCK_ERROR(r) ){ 1879 pFile->lastErrno = tErrno; 1880 } 1881 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS 1882 if( (r & SQLITE_IOERR) == SQLITE_IOERR ){ 1883 r = SQLITE_BUSY; 1884 } 1885 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ 1886 1887 return r; 1888 } else { 1889 pFile->eFileLock = NO_LOCK; 1890 return SQLITE_OK; 1891 } 1892 } 1893 1894 /* 1895 ** Close a file. 1896 */ 1897 static int flockClose(sqlite3_file *id) { 1898 if( id ){ 1899 flockUnlock(id, NO_LOCK); 1900 } 1901 return closeUnixFile(id); 1902 } 1903 1904 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */ 1905 1906 /******************* End of the flock lock implementation ********************* 1907 ******************************************************************************/ 1908 1909 /****************************************************************************** 1910 ************************ Begin Named Semaphore Locking ************************ 1911 ** 1912 ** Named semaphore locking is only supported on VxWorks. 1913 ** 1914 ** Semaphore locking is like dot-lock and flock in that it really only 1915 ** supports EXCLUSIVE locking. Only a single process can read or write 1916 ** the database file at a time. This reduces potential concurrency, but 1917 ** makes the lock implementation much easier. 1918 */ 1919 #if OS_VXWORKS 1920 1921 /* 1922 ** This routine checks if there is a RESERVED lock held on the specified 1923 ** file by this or any other process. If such a lock is held, set *pResOut 1924 ** to a non-zero value otherwise *pResOut is set to zero. The return value 1925 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 1926 */ 1927 static int semCheckReservedLock(sqlite3_file *id, int *pResOut) { 1928 int rc = SQLITE_OK; 1929 int reserved = 0; 1930 unixFile *pFile = (unixFile*)id; 1931 1932 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); 1933 1934 assert( pFile ); 1935 1936 /* Check if a thread in this process holds such a lock */ 1937 if( pFile->eFileLock>SHARED_LOCK ){ 1938 reserved = 1; 1939 } 1940 1941 /* Otherwise see if some other process holds it. */ 1942 if( !reserved ){ 1943 sem_t *pSem = pFile->pInode->pSem; 1944 struct stat statBuf; 1945 1946 if( sem_trywait(pSem)==-1 ){ 1947 int tErrno = errno; 1948 if( EAGAIN != tErrno ){ 1949 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); 1950 pFile->lastErrno = tErrno; 1951 } else { 1952 /* someone else has the lock when we are in NO_LOCK */ 1953 reserved = (pFile->eFileLock < SHARED_LOCK); 1954 } 1955 }else{ 1956 /* we could have it if we want it */ 1957 sem_post(pSem); 1958 } 1959 } 1960 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved)); 1961 1962 *pResOut = reserved; 1963 return rc; 1964 } 1965 1966 /* 1967 ** Lock the file with the lock specified by parameter eFileLock - one 1968 ** of the following: 1969 ** 1970 ** (1) SHARED_LOCK 1971 ** (2) RESERVED_LOCK 1972 ** (3) PENDING_LOCK 1973 ** (4) EXCLUSIVE_LOCK 1974 ** 1975 ** Sometimes when requesting one lock state, additional lock states 1976 ** are inserted in between. The locking might fail on one of the later 1977 ** transitions leaving the lock state different from what it started but 1978 ** still short of its goal. The following chart shows the allowed 1979 ** transitions and the inserted intermediate states: 1980 ** 1981 ** UNLOCKED -> SHARED 1982 ** SHARED -> RESERVED 1983 ** SHARED -> (PENDING) -> EXCLUSIVE 1984 ** RESERVED -> (PENDING) -> EXCLUSIVE 1985 ** PENDING -> EXCLUSIVE 1986 ** 1987 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate 1988 ** lock states in the sqlite3_file structure, but all locks SHARED or 1989 ** above are really EXCLUSIVE locks and exclude all other processes from 1990 ** access the file. 1991 ** 1992 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 1993 ** routine to lower a locking level. 1994 */ 1995 static int semLock(sqlite3_file *id, int eFileLock) { 1996 unixFile *pFile = (unixFile*)id; 1997 int fd; 1998 sem_t *pSem = pFile->pInode->pSem; 1999 int rc = SQLITE_OK; 2000 2001 /* if we already have a lock, it is exclusive. 2002 ** Just adjust level and punt on outta here. */ 2003 if (pFile->eFileLock > NO_LOCK) { 2004 pFile->eFileLock = eFileLock; 2005 rc = SQLITE_OK; 2006 goto sem_end_lock; 2007 } 2008 2009 /* lock semaphore now but bail out when already locked. */ 2010 if( sem_trywait(pSem)==-1 ){ 2011 rc = SQLITE_BUSY; 2012 goto sem_end_lock; 2013 } 2014 2015 /* got it, set the type and return ok */ 2016 pFile->eFileLock = eFileLock; 2017 2018 sem_end_lock: 2019 return rc; 2020 } 2021 2022 /* 2023 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 2024 ** must be either NO_LOCK or SHARED_LOCK. 2025 ** 2026 ** If the locking level of the file descriptor is already at or below 2027 ** the requested locking level, this routine is a no-op. 2028 */ 2029 static int semUnlock(sqlite3_file *id, int eFileLock) { 2030 unixFile *pFile = (unixFile*)id; 2031 sem_t *pSem = pFile->pInode->pSem; 2032 2033 assert( pFile ); 2034 assert( pSem ); 2035 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, 2036 pFile->eFileLock, getpid())); 2037 assert( eFileLock<=SHARED_LOCK ); 2038 2039 /* no-op if possible */ 2040 if( pFile->eFileLock==eFileLock ){ 2041 return SQLITE_OK; 2042 } 2043 2044 /* shared can just be set because we always have an exclusive */ 2045 if (eFileLock==SHARED_LOCK) { 2046 pFile->eFileLock = eFileLock; 2047 return SQLITE_OK; 2048 } 2049 2050 /* no, really unlock. */ 2051 if ( sem_post(pSem)==-1 ) { 2052 int rc, tErrno = errno; 2053 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 2054 if( IS_LOCK_ERROR(rc) ){ 2055 pFile->lastErrno = tErrno; 2056 } 2057 return rc; 2058 } 2059 pFile->eFileLock = NO_LOCK; 2060 return SQLITE_OK; 2061 } 2062 2063 /* 2064 ** Close a file. 2065 */ 2066 static int semClose(sqlite3_file *id) { 2067 if( id ){ 2068 unixFile *pFile = (unixFile*)id; 2069 semUnlock(id, NO_LOCK); 2070 assert( pFile ); 2071 unixEnterMutex(); 2072 releaseInodeInfo(pFile); 2073 unixLeaveMutex(); 2074 closeUnixFile(id); 2075 } 2076 return SQLITE_OK; 2077 } 2078 2079 #endif /* OS_VXWORKS */ 2080 /* 2081 ** Named semaphore locking is only available on VxWorks. 2082 ** 2083 *************** End of the named semaphore lock implementation **************** 2084 ******************************************************************************/ 2085 2086 2087 /****************************************************************************** 2088 *************************** Begin AFP Locking ********************************* 2089 ** 2090 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found 2091 ** on Apple Macintosh computers - both OS9 and OSX. 2092 ** 2093 ** Third-party implementations of AFP are available. But this code here 2094 ** only works on OSX. 2095 */ 2096 2097 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 2098 /* 2099 ** The afpLockingContext structure contains all afp lock specific state 2100 */ 2101 typedef struct afpLockingContext afpLockingContext; 2102 struct afpLockingContext { 2103 int reserved; 2104 const char *dbPath; /* Name of the open file */ 2105 }; 2106 2107 struct ByteRangeLockPB2 2108 { 2109 unsigned long long offset; /* offset to first byte to lock */ 2110 unsigned long long length; /* nbr of bytes to lock */ 2111 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ 2112 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ 2113 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ 2114 int fd; /* file desc to assoc this lock with */ 2115 }; 2116 2117 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) 2118 2119 /* 2120 ** This is a utility for setting or clearing a bit-range lock on an 2121 ** AFP filesystem. 2122 ** 2123 ** Return SQLITE_OK on success, SQLITE_BUSY on failure. 2124 */ 2125 static int afpSetLock( 2126 const char *path, /* Name of the file to be locked or unlocked */ 2127 unixFile *pFile, /* Open file descriptor on path */ 2128 unsigned long long offset, /* First byte to be locked */ 2129 unsigned long long length, /* Number of bytes to lock */ 2130 int setLockFlag /* True to set lock. False to clear lock */ 2131 ){ 2132 struct ByteRangeLockPB2 pb; 2133 int err; 2134 2135 pb.unLockFlag = setLockFlag ? 0 : 1; 2136 pb.startEndFlag = 0; 2137 pb.offset = offset; 2138 pb.length = length; 2139 pb.fd = pFile->h; 2140 2141 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", 2142 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""), 2143 offset, length)); 2144 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); 2145 if ( err==-1 ) { 2146 int rc; 2147 int tErrno = errno; 2148 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n", 2149 path, tErrno, strerror(tErrno))); 2150 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS 2151 rc = SQLITE_BUSY; 2152 #else 2153 rc = sqliteErrorFromPosixError(tErrno, 2154 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); 2155 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */ 2156 if( IS_LOCK_ERROR(rc) ){ 2157 pFile->lastErrno = tErrno; 2158 } 2159 return rc; 2160 } else { 2161 return SQLITE_OK; 2162 } 2163 } 2164 2165 /* 2166 ** This routine checks if there is a RESERVED lock held on the specified 2167 ** file by this or any other process. If such a lock is held, set *pResOut 2168 ** to a non-zero value otherwise *pResOut is set to zero. The return value 2169 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 2170 */ 2171 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ 2172 int rc = SQLITE_OK; 2173 int reserved = 0; 2174 unixFile *pFile = (unixFile*)id; 2175 2176 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); 2177 2178 assert( pFile ); 2179 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; 2180 if( context->reserved ){ 2181 *pResOut = 1; 2182 return SQLITE_OK; 2183 } 2184 unixEnterMutex(); /* Because pFile->pInode is shared across threads */ 2185 2186 /* Check if a thread in this process holds such a lock */ 2187 if( pFile->pInode->eFileLock>SHARED_LOCK ){ 2188 reserved = 1; 2189 } 2190 2191 /* Otherwise see if some other process holds it. 2192 */ 2193 if( !reserved ){ 2194 /* lock the RESERVED byte */ 2195 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); 2196 if( SQLITE_OK==lrc ){ 2197 /* if we succeeded in taking the reserved lock, unlock it to restore 2198 ** the original state */ 2199 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); 2200 } else { 2201 /* if we failed to get the lock then someone else must have it */ 2202 reserved = 1; 2203 } 2204 if( IS_LOCK_ERROR(lrc) ){ 2205 rc=lrc; 2206 } 2207 } 2208 2209 unixLeaveMutex(); 2210 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved)); 2211 2212 *pResOut = reserved; 2213 return rc; 2214 } 2215 2216 /* 2217 ** Lock the file with the lock specified by parameter eFileLock - one 2218 ** of the following: 2219 ** 2220 ** (1) SHARED_LOCK 2221 ** (2) RESERVED_LOCK 2222 ** (3) PENDING_LOCK 2223 ** (4) EXCLUSIVE_LOCK 2224 ** 2225 ** Sometimes when requesting one lock state, additional lock states 2226 ** are inserted in between. The locking might fail on one of the later 2227 ** transitions leaving the lock state different from what it started but 2228 ** still short of its goal. The following chart shows the allowed 2229 ** transitions and the inserted intermediate states: 2230 ** 2231 ** UNLOCKED -> SHARED 2232 ** SHARED -> RESERVED 2233 ** SHARED -> (PENDING) -> EXCLUSIVE 2234 ** RESERVED -> (PENDING) -> EXCLUSIVE 2235 ** PENDING -> EXCLUSIVE 2236 ** 2237 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 2238 ** routine to lower a locking level. 2239 */ 2240 static int afpLock(sqlite3_file *id, int eFileLock){ 2241 int rc = SQLITE_OK; 2242 unixFile *pFile = (unixFile*)id; 2243 unixInodeInfo *pInode = pFile->pInode; 2244 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; 2245 2246 assert( pFile ); 2247 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, 2248 azFileLock(eFileLock), azFileLock(pFile->eFileLock), 2249 azFileLock(pInode->eFileLock), pInode->nShared , getpid())); 2250 2251 /* If there is already a lock of this type or more restrictive on the 2252 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as 2253 ** unixEnterMutex() hasn't been called yet. 2254 */ 2255 if( pFile->eFileLock>=eFileLock ){ 2256 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, 2257 azFileLock(eFileLock))); 2258 return SQLITE_OK; 2259 } 2260 2261 /* Make sure the locking sequence is correct 2262 ** (1) We never move from unlocked to anything higher than shared lock. 2263 ** (2) SQLite never explicitly requests a pendig lock. 2264 ** (3) A shared lock is always held when a reserve lock is requested. 2265 */ 2266 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); 2267 assert( eFileLock!=PENDING_LOCK ); 2268 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); 2269 2270 /* This mutex is needed because pFile->pInode is shared across threads 2271 */ 2272 unixEnterMutex(); 2273 pInode = pFile->pInode; 2274 2275 /* If some thread using this PID has a lock via a different unixFile* 2276 ** handle that precludes the requested lock, return BUSY. 2277 */ 2278 if( (pFile->eFileLock!=pInode->eFileLock && 2279 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) 2280 ){ 2281 rc = SQLITE_BUSY; 2282 goto afp_end_lock; 2283 } 2284 2285 /* If a SHARED lock is requested, and some thread using this PID already 2286 ** has a SHARED or RESERVED lock, then increment reference counts and 2287 ** return SQLITE_OK. 2288 */ 2289 if( eFileLock==SHARED_LOCK && 2290 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ 2291 assert( eFileLock==SHARED_LOCK ); 2292 assert( pFile->eFileLock==0 ); 2293 assert( pInode->nShared>0 ); 2294 pFile->eFileLock = SHARED_LOCK; 2295 pInode->nShared++; 2296 pInode->nLock++; 2297 goto afp_end_lock; 2298 } 2299 2300 /* A PENDING lock is needed before acquiring a SHARED lock and before 2301 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will 2302 ** be released. 2303 */ 2304 if( eFileLock==SHARED_LOCK 2305 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) 2306 ){ 2307 int failed; 2308 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1); 2309 if (failed) { 2310 rc = failed; 2311 goto afp_end_lock; 2312 } 2313 } 2314 2315 /* If control gets to this point, then actually go ahead and make 2316 ** operating system calls for the specified lock. 2317 */ 2318 if( eFileLock==SHARED_LOCK ){ 2319 int lrc1, lrc2, lrc1Errno; 2320 long lk, mask; 2321 2322 assert( pInode->nShared==0 ); 2323 assert( pInode->eFileLock==0 ); 2324 2325 mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff; 2326 /* Now get the read-lock SHARED_LOCK */ 2327 /* note that the quality of the randomness doesn't matter that much */ 2328 lk = random(); 2329 pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1); 2330 lrc1 = afpSetLock(context->dbPath, pFile, 2331 SHARED_FIRST+pInode->sharedByte, 1, 1); 2332 if( IS_LOCK_ERROR(lrc1) ){ 2333 lrc1Errno = pFile->lastErrno; 2334 } 2335 /* Drop the temporary PENDING lock */ 2336 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); 2337 2338 if( IS_LOCK_ERROR(lrc1) ) { 2339 pFile->lastErrno = lrc1Errno; 2340 rc = lrc1; 2341 goto afp_end_lock; 2342 } else if( IS_LOCK_ERROR(lrc2) ){ 2343 rc = lrc2; 2344 goto afp_end_lock; 2345 } else if( lrc1 != SQLITE_OK ) { 2346 rc = lrc1; 2347 } else { 2348 pFile->eFileLock = SHARED_LOCK; 2349 pInode->nLock++; 2350 pInode->nShared = 1; 2351 } 2352 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ 2353 /* We are trying for an exclusive lock but another thread in this 2354 ** same process is still holding a shared lock. */ 2355 rc = SQLITE_BUSY; 2356 }else{ 2357 /* The request was for a RESERVED or EXCLUSIVE lock. It is 2358 ** assumed that there is a SHARED or greater lock on the file 2359 ** already. 2360 */ 2361 int failed = 0; 2362 assert( 0!=pFile->eFileLock ); 2363 if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) { 2364 /* Acquire a RESERVED lock */ 2365 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); 2366 if( !failed ){ 2367 context->reserved = 1; 2368 } 2369 } 2370 if (!failed && eFileLock == EXCLUSIVE_LOCK) { 2371 /* Acquire an EXCLUSIVE lock */ 2372 2373 /* Remove the shared lock before trying the range. we'll need to 2374 ** reestablish the shared lock if we can't get the afpUnlock 2375 */ 2376 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + 2377 pInode->sharedByte, 1, 0)) ){ 2378 int failed2 = SQLITE_OK; 2379 /* now attemmpt to get the exclusive lock range */ 2380 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, 2381 SHARED_SIZE, 1); 2382 if( failed && (failed2 = afpSetLock(context->dbPath, pFile, 2383 SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ 2384 /* Can't reestablish the shared lock. Sqlite can't deal, this is 2385 ** a critical I/O error 2386 */ 2387 rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 : 2388 SQLITE_IOERR_LOCK; 2389 goto afp_end_lock; 2390 } 2391 }else{ 2392 rc = failed; 2393 } 2394 } 2395 if( failed ){ 2396 rc = failed; 2397 } 2398 } 2399 2400 if( rc==SQLITE_OK ){ 2401 pFile->eFileLock = eFileLock; 2402 pInode->eFileLock = eFileLock; 2403 }else if( eFileLock==EXCLUSIVE_LOCK ){ 2404 pFile->eFileLock = PENDING_LOCK; 2405 pInode->eFileLock = PENDING_LOCK; 2406 } 2407 2408 afp_end_lock: 2409 unixLeaveMutex(); 2410 OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), 2411 rc==SQLITE_OK ? "ok" : "failed")); 2412 return rc; 2413 } 2414 2415 /* 2416 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 2417 ** must be either NO_LOCK or SHARED_LOCK. 2418 ** 2419 ** If the locking level of the file descriptor is already at or below 2420 ** the requested locking level, this routine is a no-op. 2421 */ 2422 static int afpUnlock(sqlite3_file *id, int eFileLock) { 2423 int rc = SQLITE_OK; 2424 unixFile *pFile = (unixFile*)id; 2425 unixInodeInfo *pInode; 2426 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; 2427 int skipShared = 0; 2428 #ifdef SQLITE_TEST 2429 int h = pFile->h; 2430 #endif 2431 2432 assert( pFile ); 2433 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, 2434 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, 2435 getpid())); 2436 2437 assert( eFileLock<=SHARED_LOCK ); 2438 if( pFile->eFileLock<=eFileLock ){ 2439 return SQLITE_OK; 2440 } 2441 unixEnterMutex(); 2442 pInode = pFile->pInode; 2443 assert( pInode->nShared!=0 ); 2444 if( pFile->eFileLock>SHARED_LOCK ){ 2445 assert( pInode->eFileLock==pFile->eFileLock ); 2446 SimulateIOErrorBenign(1); 2447 SimulateIOError( h=(-1) ) 2448 SimulateIOErrorBenign(0); 2449 2450 #ifndef NDEBUG 2451 /* When reducing a lock such that other processes can start 2452 ** reading the database file again, make sure that the 2453 ** transaction counter was updated if any part of the database 2454 ** file changed. If the transaction counter is not updated, 2455 ** other connections to the same file might not realize that 2456 ** the file has changed and hence might not know to flush their 2457 ** cache. The use of a stale cache can lead to database corruption. 2458 */ 2459 assert( pFile->inNormalWrite==0 2460 || pFile->dbUpdate==0 2461 || pFile->transCntrChng==1 ); 2462 pFile->inNormalWrite = 0; 2463 #endif 2464 2465 if( pFile->eFileLock==EXCLUSIVE_LOCK ){ 2466 rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0); 2467 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){ 2468 /* only re-establish the shared lock if necessary */ 2469 int sharedLockByte = SHARED_FIRST+pInode->sharedByte; 2470 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1); 2471 } else { 2472 skipShared = 1; 2473 } 2474 } 2475 if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){ 2476 rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); 2477 } 2478 if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){ 2479 rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); 2480 if( !rc ){ 2481 context->reserved = 0; 2482 } 2483 } 2484 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){ 2485 pInode->eFileLock = SHARED_LOCK; 2486 } 2487 } 2488 if( rc==SQLITE_OK && eFileLock==NO_LOCK ){ 2489 2490 /* Decrement the shared lock counter. Release the lock using an 2491 ** OS call only when all threads in this same process have released 2492 ** the lock. 2493 */ 2494 unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte; 2495 pInode->nShared--; 2496 if( pInode->nShared==0 ){ 2497 SimulateIOErrorBenign(1); 2498 SimulateIOError( h=(-1) ) 2499 SimulateIOErrorBenign(0); 2500 if( !skipShared ){ 2501 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0); 2502 } 2503 if( !rc ){ 2504 pInode->eFileLock = NO_LOCK; 2505 pFile->eFileLock = NO_LOCK; 2506 } 2507 } 2508 if( rc==SQLITE_OK ){ 2509 pInode->nLock--; 2510 assert( pInode->nLock>=0 ); 2511 if( pInode->nLock==0 ){ 2512 rc = closePendingFds(pFile); 2513 } 2514 } 2515 } 2516 2517 unixLeaveMutex(); 2518 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; 2519 return rc; 2520 } 2521 2522 /* 2523 ** Close a file & cleanup AFP specific locking context 2524 */ 2525 static int afpClose(sqlite3_file *id) { 2526 int rc = SQLITE_OK; 2527 if( id ){ 2528 unixFile *pFile = (unixFile*)id; 2529 afpUnlock(id, NO_LOCK); 2530 unixEnterMutex(); 2531 if( pFile->pInode && pFile->pInode->nLock ){ 2532 /* If there are outstanding locks, do not actually close the file just 2533 ** yet because that would clear those locks. Instead, add the file 2534 ** descriptor to pInode->aPending. It will be automatically closed when 2535 ** the last lock is cleared. 2536 */ 2537 setPendingFd(pFile); 2538 } 2539 releaseInodeInfo(pFile); 2540 sqlite3_free(pFile->lockingContext); 2541 rc = closeUnixFile(id); 2542 unixLeaveMutex(); 2543 } 2544 return rc; 2545 } 2546 2547 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ 2548 /* 2549 ** The code above is the AFP lock implementation. The code is specific 2550 ** to MacOSX and does not work on other unix platforms. No alternative 2551 ** is available. If you don't compile for a mac, then the "unix-afp" 2552 ** VFS is not available. 2553 ** 2554 ********************* End of the AFP lock implementation ********************** 2555 ******************************************************************************/ 2556 2557 /****************************************************************************** 2558 *************************** Begin NFS Locking ********************************/ 2559 2560 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 2561 /* 2562 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 2563 ** must be either NO_LOCK or SHARED_LOCK. 2564 ** 2565 ** If the locking level of the file descriptor is already at or below 2566 ** the requested locking level, this routine is a no-op. 2567 */ 2568 static int nfsUnlock(sqlite3_file *id, int eFileLock){ 2569 return _posixUnlock(id, eFileLock, 1); 2570 } 2571 2572 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ 2573 /* 2574 ** The code above is the NFS lock implementation. The code is specific 2575 ** to MacOSX and does not work on other unix platforms. No alternative 2576 ** is available. 2577 ** 2578 ********************* End of the NFS lock implementation ********************** 2579 ******************************************************************************/ 2580 2581 /****************************************************************************** 2582 **************** Non-locking sqlite3_file methods ***************************** 2583 ** 2584 ** The next division contains implementations for all methods of the 2585 ** sqlite3_file object other than the locking methods. The locking 2586 ** methods were defined in divisions above (one locking method per 2587 ** division). Those methods that are common to all locking modes 2588 ** are gather together into this division. 2589 */ 2590 2591 /* 2592 ** Seek to the offset passed as the second argument, then read cnt 2593 ** bytes into pBuf. Return the number of bytes actually read. 2594 ** 2595 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also 2596 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from 2597 ** one system to another. Since SQLite does not define USE_PREAD 2598 ** any any form by default, we will not attempt to define _XOPEN_SOURCE. 2599 ** See tickets #2741 and #2681. 2600 ** 2601 ** To avoid stomping the errno value on a failed read the lastErrno value 2602 ** is set before returning. 2603 */ 2604 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ 2605 int got; 2606 #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) 2607 i64 newOffset; 2608 #endif 2609 TIMER_START; 2610 #if defined(USE_PREAD) 2611 got = pread(id->h, pBuf, cnt, offset); 2612 SimulateIOError( got = -1 ); 2613 #elif defined(USE_PREAD64) 2614 got = pread64(id->h, pBuf, cnt, offset); 2615 SimulateIOError( got = -1 ); 2616 #else 2617 newOffset = lseek(id->h, offset, SEEK_SET); 2618 SimulateIOError( newOffset-- ); 2619 if( newOffset!=offset ){ 2620 if( newOffset == -1 ){ 2621 ((unixFile*)id)->lastErrno = errno; 2622 }else{ 2623 ((unixFile*)id)->lastErrno = 0; 2624 } 2625 return -1; 2626 } 2627 got = read(id->h, pBuf, cnt); 2628 #endif 2629 TIMER_END; 2630 if( got<0 ){ 2631 ((unixFile*)id)->lastErrno = errno; 2632 } 2633 OSTRACE(("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED)); 2634 return got; 2635 } 2636 2637 /* 2638 ** Read data from a file into a buffer. Return SQLITE_OK if all 2639 ** bytes were read successfully and SQLITE_IOERR if anything goes 2640 ** wrong. 2641 */ 2642 static int unixRead( 2643 sqlite3_file *id, 2644 void *pBuf, 2645 int amt, 2646 sqlite3_int64 offset 2647 ){ 2648 unixFile *pFile = (unixFile *)id; 2649 int got; 2650 assert( id ); 2651 2652 /* If this is a database file (not a journal, master-journal or temp 2653 ** file), the bytes in the locking range should never be read or written. */ 2654 #if 0 2655 assert( pFile->pUnused==0 2656 || offset>=PENDING_BYTE+512 2657 || offset+amt<=PENDING_BYTE 2658 ); 2659 #endif 2660 2661 got = seekAndRead(pFile, offset, pBuf, amt); 2662 if( got==amt ){ 2663 return SQLITE_OK; 2664 }else if( got<0 ){ 2665 /* lastErrno set by seekAndRead */ 2666 return SQLITE_IOERR_READ; 2667 }else{ 2668 pFile->lastErrno = 0; /* not a system error */ 2669 /* Unread parts of the buffer must be zero-filled */ 2670 memset(&((char*)pBuf)[got], 0, amt-got); 2671 return SQLITE_IOERR_SHORT_READ; 2672 } 2673 } 2674 2675 /* 2676 ** Seek to the offset in id->offset then read cnt bytes into pBuf. 2677 ** Return the number of bytes actually read. Update the offset. 2678 ** 2679 ** To avoid stomping the errno value on a failed write the lastErrno value 2680 ** is set before returning. 2681 */ 2682 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ 2683 int got; 2684 #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) 2685 i64 newOffset; 2686 #endif 2687 TIMER_START; 2688 #if defined(USE_PREAD) 2689 got = pwrite(id->h, pBuf, cnt, offset); 2690 #elif defined(USE_PREAD64) 2691 got = pwrite64(id->h, pBuf, cnt, offset); 2692 #else 2693 newOffset = lseek(id->h, offset, SEEK_SET); 2694 if( newOffset!=offset ){ 2695 if( newOffset == -1 ){ 2696 ((unixFile*)id)->lastErrno = errno; 2697 }else{ 2698 ((unixFile*)id)->lastErrno = 0; 2699 } 2700 return -1; 2701 } 2702 got = write(id->h, pBuf, cnt); 2703 #endif 2704 TIMER_END; 2705 if( got<0 ){ 2706 ((unixFile*)id)->lastErrno = errno; 2707 } 2708 2709 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED)); 2710 return got; 2711 } 2712 2713 2714 /* 2715 ** Write data from a buffer into a file. Return SQLITE_OK on success 2716 ** or some other error code on failure. 2717 */ 2718 static int unixWrite( 2719 sqlite3_file *id, 2720 const void *pBuf, 2721 int amt, 2722 sqlite3_int64 offset 2723 ){ 2724 unixFile *pFile = (unixFile*)id; 2725 int wrote = 0; 2726 assert( id ); 2727 assert( amt>0 ); 2728 2729 /* If this is a database file (not a journal, master-journal or temp 2730 ** file), the bytes in the locking range should never be read or written. */ 2731 #if 0 2732 assert( pFile->pUnused==0 2733 || offset>=PENDING_BYTE+512 2734 || offset+amt<=PENDING_BYTE 2735 ); 2736 #endif 2737 2738 #ifndef NDEBUG 2739 /* If we are doing a normal write to a database file (as opposed to 2740 ** doing a hot-journal rollback or a write to some file other than a 2741 ** normal database file) then record the fact that the database 2742 ** has changed. If the transaction counter is modified, record that 2743 ** fact too. 2744 */ 2745 if( pFile->inNormalWrite ){ 2746 pFile->dbUpdate = 1; /* The database has been modified */ 2747 if( offset<=24 && offset+amt>=27 ){ 2748 int rc; 2749 char oldCntr[4]; 2750 SimulateIOErrorBenign(1); 2751 rc = seekAndRead(pFile, 24, oldCntr, 4); 2752 SimulateIOErrorBenign(0); 2753 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ 2754 pFile->transCntrChng = 1; /* The transaction counter has changed */ 2755 } 2756 } 2757 } 2758 #endif 2759 2760 while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){ 2761 amt -= wrote; 2762 offset += wrote; 2763 pBuf = &((char*)pBuf)[wrote]; 2764 } 2765 SimulateIOError(( wrote=(-1), amt=1 )); 2766 SimulateDiskfullError(( wrote=0, amt=1 )); 2767 2768 if( amt>0 ){ 2769 if( wrote<0 ){ 2770 /* lastErrno set by seekAndWrite */ 2771 return SQLITE_IOERR_WRITE; 2772 }else{ 2773 pFile->lastErrno = 0; /* not a system error */ 2774 return SQLITE_FULL; 2775 } 2776 } 2777 2778 return SQLITE_OK; 2779 } 2780 2781 #ifdef SQLITE_TEST 2782 /* 2783 ** Count the number of fullsyncs and normal syncs. This is used to test 2784 ** that syncs and fullsyncs are occurring at the right times. 2785 */ 2786 int sqlite3_sync_count = 0; 2787 int sqlite3_fullsync_count = 0; 2788 #endif 2789 2790 /* 2791 ** We do not trust systems to provide a working fdatasync(). Some do. 2792 ** Others do no. To be safe, we will stick with the (slower) fsync(). 2793 ** If you know that your system does support fdatasync() correctly, 2794 ** then simply compile with -Dfdatasync=fdatasync 2795 */ 2796 #if !defined(fdatasync) && !defined(__linux__) 2797 # define fdatasync fsync 2798 #endif 2799 2800 /* 2801 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not 2802 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently 2803 ** only available on Mac OS X. But that could change. 2804 */ 2805 #ifdef F_FULLFSYNC 2806 # define HAVE_FULLFSYNC 1 2807 #else 2808 # define HAVE_FULLFSYNC 0 2809 #endif 2810 2811 2812 /* 2813 ** The fsync() system call does not work as advertised on many 2814 ** unix systems. The following procedure is an attempt to make 2815 ** it work better. 2816 ** 2817 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful 2818 ** for testing when we want to run through the test suite quickly. 2819 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC 2820 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash 2821 ** or power failure will likely corrupt the database file. 2822 ** 2823 ** SQLite sets the dataOnly flag if the size of the file is unchanged. 2824 ** The idea behind dataOnly is that it should only write the file content 2825 ** to disk, not the inode. We only set dataOnly if the file size is 2826 ** unchanged since the file size is part of the inode. However, 2827 ** Ted Ts'o tells us that fdatasync() will also write the inode if the 2828 ** file size has changed. The only real difference between fdatasync() 2829 ** and fsync(), Ted tells us, is that fdatasync() will not flush the 2830 ** inode if the mtime or owner or other inode attributes have changed. 2831 ** We only care about the file size, not the other file attributes, so 2832 ** as far as SQLite is concerned, an fdatasync() is always adequate. 2833 ** So, we always use fdatasync() if it is available, regardless of 2834 ** the value of the dataOnly flag. 2835 */ 2836 static int full_fsync(int fd, int fullSync, int dataOnly){ 2837 int rc; 2838 2839 /* The following "ifdef/elif/else/" block has the same structure as 2840 ** the one below. It is replicated here solely to avoid cluttering 2841 ** up the real code with the UNUSED_PARAMETER() macros. 2842 */ 2843 #ifdef SQLITE_NO_SYNC 2844 UNUSED_PARAMETER(fd); 2845 UNUSED_PARAMETER(fullSync); 2846 UNUSED_PARAMETER(dataOnly); 2847 #elif HAVE_FULLFSYNC 2848 UNUSED_PARAMETER(dataOnly); 2849 #else 2850 UNUSED_PARAMETER(fullSync); 2851 UNUSED_PARAMETER(dataOnly); 2852 #endif 2853 2854 /* Record the number of times that we do a normal fsync() and 2855 ** FULLSYNC. This is used during testing to verify that this procedure 2856 ** gets called with the correct arguments. 2857 */ 2858 #ifdef SQLITE_TEST 2859 if( fullSync ) sqlite3_fullsync_count++; 2860 sqlite3_sync_count++; 2861 #endif 2862 2863 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a 2864 ** no-op 2865 */ 2866 #ifdef SQLITE_NO_SYNC 2867 rc = SQLITE_OK; 2868 #elif HAVE_FULLFSYNC 2869 if( fullSync ){ 2870 rc = fcntl(fd, F_FULLFSYNC, 0); 2871 }else{ 2872 rc = 1; 2873 } 2874 /* If the FULLFSYNC failed, fall back to attempting an fsync(). 2875 ** It shouldn't be possible for fullfsync to fail on the local 2876 ** file system (on OSX), so failure indicates that FULLFSYNC 2877 ** isn't supported for this file system. So, attempt an fsync 2878 ** and (for now) ignore the overhead of a superfluous fcntl call. 2879 ** It'd be better to detect fullfsync support once and avoid 2880 ** the fcntl call every time sync is called. 2881 */ 2882 if( rc ) rc = fsync(fd); 2883 2884 #elif defined(__APPLE__) 2885 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly 2886 ** so currently we default to the macro that redefines fdatasync to fsync 2887 */ 2888 rc = fsync(fd); 2889 #else 2890 rc = fdatasync(fd); 2891 #if OS_VXWORKS 2892 if( rc==-1 && errno==ENOTSUP ){ 2893 rc = fsync(fd); 2894 } 2895 #endif /* OS_VXWORKS */ 2896 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */ 2897 2898 if( OS_VXWORKS && rc!= -1 ){ 2899 rc = 0; 2900 } 2901 return rc; 2902 } 2903 2904 /* 2905 ** Make sure all writes to a particular file are committed to disk. 2906 ** 2907 ** If dataOnly==0 then both the file itself and its metadata (file 2908 ** size, access time, etc) are synced. If dataOnly!=0 then only the 2909 ** file data is synced. 2910 ** 2911 ** Under Unix, also make sure that the directory entry for the file 2912 ** has been created by fsync-ing the directory that contains the file. 2913 ** If we do not do this and we encounter a power failure, the directory 2914 ** entry for the journal might not exist after we reboot. The next 2915 ** SQLite to access the file will not know that the journal exists (because 2916 ** the directory entry for the journal was never created) and the transaction 2917 ** will not roll back - possibly leading to database corruption. 2918 */ 2919 static int unixSync(sqlite3_file *id, int flags){ 2920 int rc; 2921 unixFile *pFile = (unixFile*)id; 2922 2923 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); 2924 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; 2925 2926 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ 2927 assert((flags&0x0F)==SQLITE_SYNC_NORMAL 2928 || (flags&0x0F)==SQLITE_SYNC_FULL 2929 ); 2930 2931 /* Unix cannot, but some systems may return SQLITE_FULL from here. This 2932 ** line is to test that doing so does not cause any problems. 2933 */ 2934 SimulateDiskfullError( return SQLITE_FULL ); 2935 2936 assert( pFile ); 2937 OSTRACE(("SYNC %-3d\n", pFile->h)); 2938 rc = full_fsync(pFile->h, isFullsync, isDataOnly); 2939 SimulateIOError( rc=1 ); 2940 if( rc ){ 2941 pFile->lastErrno = errno; 2942 return SQLITE_IOERR_FSYNC; 2943 } 2944 if( pFile->dirfd>=0 ){ 2945 int err; 2946 OSTRACE(("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd, 2947 HAVE_FULLFSYNC, isFullsync)); 2948 #ifndef SQLITE_DISABLE_DIRSYNC 2949 /* The directory sync is only attempted if full_fsync is 2950 ** turned off or unavailable. If a full_fsync occurred above, 2951 ** then the directory sync is superfluous. 2952 */ 2953 if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){ 2954 /* 2955 ** We have received multiple reports of fsync() returning 2956 ** errors when applied to directories on certain file systems. 2957 ** A failed directory sync is not a big deal. So it seems 2958 ** better to ignore the error. Ticket #1657 2959 */ 2960 /* pFile->lastErrno = errno; */ 2961 /* return SQLITE_IOERR; */ 2962 } 2963 #endif 2964 err = close(pFile->dirfd); /* Only need to sync once, so close the */ 2965 if( err==0 ){ /* directory when we are done */ 2966 pFile->dirfd = -1; 2967 }else{ 2968 pFile->lastErrno = errno; 2969 rc = SQLITE_IOERR_DIR_CLOSE; 2970 } 2971 } 2972 return rc; 2973 } 2974 2975 /* 2976 ** Truncate an open file to a specified size 2977 */ 2978 static int unixTruncate(sqlite3_file *id, i64 nByte){ 2979 unixFile *pFile = (unixFile *)id; 2980 int rc; 2981 assert( pFile ); 2982 SimulateIOError( return SQLITE_IOERR_TRUNCATE ); 2983 2984 /* If the user has configured a chunk-size for this file, truncate the 2985 ** file so that it consists of an integer number of chunks (i.e. the 2986 ** actual file size after the operation may be larger than the requested 2987 ** size). 2988 */ 2989 if( pFile->szChunk ){ 2990 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; 2991 } 2992 2993 rc = ftruncate(pFile->h, (off_t)nByte); 2994 if( rc ){ 2995 pFile->lastErrno = errno; 2996 return SQLITE_IOERR_TRUNCATE; 2997 }else{ 2998 #ifndef NDEBUG 2999 /* If we are doing a normal write to a database file (as opposed to 3000 ** doing a hot-journal rollback or a write to some file other than a 3001 ** normal database file) and we truncate the file to zero length, 3002 ** that effectively updates the change counter. This might happen 3003 ** when restoring a database using the backup API from a zero-length 3004 ** source. 3005 */ 3006 if( pFile->inNormalWrite && nByte==0 ){ 3007 pFile->transCntrChng = 1; 3008 } 3009 #endif 3010 3011 return SQLITE_OK; 3012 } 3013 } 3014 3015 /* 3016 ** Determine the current size of a file in bytes 3017 */ 3018 static int unixFileSize(sqlite3_file *id, i64 *pSize){ 3019 int rc; 3020 struct stat buf; 3021 assert( id ); 3022 rc = fstat(((unixFile*)id)->h, &buf); 3023 SimulateIOError( rc=1 ); 3024 if( rc!=0 ){ 3025 ((unixFile*)id)->lastErrno = errno; 3026 return SQLITE_IOERR_FSTAT; 3027 } 3028 *pSize = buf.st_size; 3029 3030 /* When opening a zero-size database, the findInodeInfo() procedure 3031 ** writes a single byte into that file in order to work around a bug 3032 ** in the OS-X msdos filesystem. In order to avoid problems with upper 3033 ** layers, we need to report this file size as zero even though it is 3034 ** really 1. Ticket #3260. 3035 */ 3036 if( *pSize==1 ) *pSize = 0; 3037 3038 3039 return SQLITE_OK; 3040 } 3041 3042 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) 3043 /* 3044 ** Handler for proxy-locking file-control verbs. Defined below in the 3045 ** proxying locking division. 3046 */ 3047 static int proxyFileControl(sqlite3_file*,int,void*); 3048 #endif 3049 3050 /* 3051 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT 3052 ** file-control operation. 3053 ** 3054 ** If the user has configured a chunk-size for this file, it could be 3055 ** that the file needs to be extended at this point. Otherwise, the 3056 ** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix. 3057 */ 3058 static int fcntlSizeHint(unixFile *pFile, i64 nByte){ 3059 if( pFile->szChunk ){ 3060 i64 nSize; /* Required file size */ 3061 struct stat buf; /* Used to hold return values of fstat() */ 3062 3063 if( fstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT; 3064 3065 nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; 3066 if( nSize>(i64)buf.st_size ){ 3067 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE 3068 if( posix_fallocate(pFile->h, buf.st_size, nSize-buf.st_size) ){ 3069 return SQLITE_IOERR_WRITE; 3070 } 3071 #else 3072 /* If the OS does not have posix_fallocate(), fake it. First use 3073 ** ftruncate() to set the file size, then write a single byte to 3074 ** the last byte in each block within the extended region. This 3075 ** is the same technique used by glibc to implement posix_fallocate() 3076 ** on systems that do not have a real fallocate() system call. 3077 */ 3078 int nBlk = buf.st_blksize; /* File-system block size */ 3079 i64 iWrite; /* Next offset to write to */ 3080 int nWrite; /* Return value from seekAndWrite() */ 3081 3082 if( ftruncate(pFile->h, nSize) ){ 3083 pFile->lastErrno = errno; 3084 return SQLITE_IOERR_TRUNCATE; 3085 } 3086 iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1; 3087 do { 3088 nWrite = seekAndWrite(pFile, iWrite, "", 1); 3089 iWrite += nBlk; 3090 } while( nWrite==1 && iWrite<nSize ); 3091 if( nWrite!=1 ) return SQLITE_IOERR_WRITE; 3092 #endif 3093 } 3094 } 3095 3096 return SQLITE_OK; 3097 } 3098 3099 /* 3100 ** Information and control of an open file handle. 3101 */ 3102 static int unixFileControl(sqlite3_file *id, int op, void *pArg){ 3103 switch( op ){ 3104 case SQLITE_FCNTL_LOCKSTATE: { 3105 *(int*)pArg = ((unixFile*)id)->eFileLock; 3106 return SQLITE_OK; 3107 } 3108 case SQLITE_LAST_ERRNO: { 3109 *(int*)pArg = ((unixFile*)id)->lastErrno; 3110 return SQLITE_OK; 3111 } 3112 case SQLITE_FCNTL_CHUNK_SIZE: { 3113 ((unixFile*)id)->szChunk = *(int *)pArg; 3114 return SQLITE_OK; 3115 } 3116 case SQLITE_FCNTL_SIZE_HINT: { 3117 return fcntlSizeHint((unixFile *)id, *(i64 *)pArg); 3118 } 3119 #ifndef NDEBUG 3120 /* The pager calls this method to signal that it has done 3121 ** a rollback and that the database is therefore unchanged and 3122 ** it hence it is OK for the transaction change counter to be 3123 ** unchanged. 3124 */ 3125 case SQLITE_FCNTL_DB_UNCHANGED: { 3126 ((unixFile*)id)->dbUpdate = 0; 3127 return SQLITE_OK; 3128 } 3129 #endif 3130 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) 3131 case SQLITE_SET_LOCKPROXYFILE: 3132 case SQLITE_GET_LOCKPROXYFILE: { 3133 return proxyFileControl(id,op,pArg); 3134 } 3135 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */ 3136 } 3137 return SQLITE_ERROR; 3138 } 3139 3140 /* 3141 ** Return the sector size in bytes of the underlying block device for 3142 ** the specified file. This is almost always 512 bytes, but may be 3143 ** larger for some devices. 3144 ** 3145 ** SQLite code assumes this function cannot fail. It also assumes that 3146 ** if two files are created in the same file-system directory (i.e. 3147 ** a database and its journal file) that the sector size will be the 3148 ** same for both. 3149 */ 3150 static int unixSectorSize(sqlite3_file *NotUsed){ 3151 UNUSED_PARAMETER(NotUsed); 3152 return SQLITE_DEFAULT_SECTOR_SIZE; 3153 } 3154 3155 /* 3156 ** Return the device characteristics for the file. This is always 0 for unix. 3157 */ 3158 static int unixDeviceCharacteristics(sqlite3_file *NotUsed){ 3159 UNUSED_PARAMETER(NotUsed); 3160 return 0; 3161 } 3162 3163 #ifndef SQLITE_OMIT_WAL 3164 3165 3166 /* 3167 ** Object used to represent an shared memory buffer. 3168 ** 3169 ** When multiple threads all reference the same wal-index, each thread 3170 ** has its own unixShm object, but they all point to a single instance 3171 ** of this unixShmNode object. In other words, each wal-index is opened 3172 ** only once per process. 3173 ** 3174 ** Each unixShmNode object is connected to a single unixInodeInfo object. 3175 ** We could coalesce this object into unixInodeInfo, but that would mean 3176 ** every open file that does not use shared memory (in other words, most 3177 ** open files) would have to carry around this extra information. So 3178 ** the unixInodeInfo object contains a pointer to this unixShmNode object 3179 ** and the unixShmNode object is created only when needed. 3180 ** 3181 ** unixMutexHeld() must be true when creating or destroying 3182 ** this object or while reading or writing the following fields: 3183 ** 3184 ** nRef 3185 ** 3186 ** The following fields are read-only after the object is created: 3187 ** 3188 ** fid 3189 ** zFilename 3190 ** 3191 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and 3192 ** unixMutexHeld() is true when reading or writing any other field 3193 ** in this structure. 3194 */ 3195 struct unixShmNode { 3196 unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ 3197 sqlite3_mutex *mutex; /* Mutex to access this object */ 3198 char *zFilename; /* Name of the mmapped file */ 3199 int h; /* Open file descriptor */ 3200 int szRegion; /* Size of shared-memory regions */ 3201 int nRegion; /* Size of array apRegion */ 3202 char **apRegion; /* Array of mapped shared-memory regions */ 3203 int nRef; /* Number of unixShm objects pointing to this */ 3204 unixShm *pFirst; /* All unixShm objects pointing to this */ 3205 #ifdef SQLITE_DEBUG 3206 u8 exclMask; /* Mask of exclusive locks held */ 3207 u8 sharedMask; /* Mask of shared locks held */ 3208 u8 nextShmId; /* Next available unixShm.id value */ 3209 #endif 3210 }; 3211 3212 /* 3213 ** Structure used internally by this VFS to record the state of an 3214 ** open shared memory connection. 3215 ** 3216 ** The following fields are initialized when this object is created and 3217 ** are read-only thereafter: 3218 ** 3219 ** unixShm.pFile 3220 ** unixShm.id 3221 ** 3222 ** All other fields are read/write. The unixShm.pFile->mutex must be held 3223 ** while accessing any read/write fields. 3224 */ 3225 struct unixShm { 3226 unixShmNode *pShmNode; /* The underlying unixShmNode object */ 3227 unixShm *pNext; /* Next unixShm with the same unixShmNode */ 3228 u8 hasMutex; /* True if holding the unixShmNode mutex */ 3229 u16 sharedMask; /* Mask of shared locks held */ 3230 u16 exclMask; /* Mask of exclusive locks held */ 3231 #ifdef SQLITE_DEBUG 3232 u8 id; /* Id of this connection within its unixShmNode */ 3233 #endif 3234 }; 3235 3236 /* 3237 ** Constants used for locking 3238 */ 3239 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ 3240 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ 3241 3242 /* 3243 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1. 3244 ** 3245 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking 3246 ** otherwise. 3247 */ 3248 static int unixShmSystemLock( 3249 unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */ 3250 int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ 3251 int ofst, /* First byte of the locking range */ 3252 int n /* Number of bytes to lock */ 3253 ){ 3254 struct flock f; /* The posix advisory locking structure */ 3255 int rc = SQLITE_OK; /* Result code form fcntl() */ 3256 3257 /* Access to the unixShmNode object is serialized by the caller */ 3258 assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 ); 3259 3260 /* Shared locks never span more than one byte */ 3261 assert( n==1 || lockType!=F_RDLCK ); 3262 3263 /* Locks are within range */ 3264 assert( n>=1 && n<SQLITE_SHM_NLOCK ); 3265 3266 /* Initialize the locking parameters */ 3267 memset(&f, 0, sizeof(f)); 3268 f.l_type = lockType; 3269 f.l_whence = SEEK_SET; 3270 f.l_start = ofst; 3271 f.l_len = n; 3272 3273 rc = fcntl(pShmNode->h, F_SETLK, &f); 3274 rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; 3275 3276 /* Update the global lock state and do debug tracing */ 3277 #ifdef SQLITE_DEBUG 3278 { u16 mask; 3279 OSTRACE(("SHM-LOCK ")); 3280 mask = (1<<(ofst+n)) - (1<<ofst); 3281 if( rc==SQLITE_OK ){ 3282 if( lockType==F_UNLCK ){ 3283 OSTRACE(("unlock %d ok", ofst)); 3284 pShmNode->exclMask &= ~mask; 3285 pShmNode->sharedMask &= ~mask; 3286 }else if( lockType==F_RDLCK ){ 3287 OSTRACE(("read-lock %d ok", ofst)); 3288 pShmNode->exclMask &= ~mask; 3289 pShmNode->sharedMask |= mask; 3290 }else{ 3291 assert( lockType==F_WRLCK ); 3292 OSTRACE(("write-lock %d ok", ofst)); 3293 pShmNode->exclMask |= mask; 3294 pShmNode->sharedMask &= ~mask; 3295 } 3296 }else{ 3297 if( lockType==F_UNLCK ){ 3298 OSTRACE(("unlock %d failed", ofst)); 3299 }else if( lockType==F_RDLCK ){ 3300 OSTRACE(("read-lock failed")); 3301 }else{ 3302 assert( lockType==F_WRLCK ); 3303 OSTRACE(("write-lock %d failed", ofst)); 3304 } 3305 } 3306 OSTRACE((" - afterwards %03x,%03x\n", 3307 pShmNode->sharedMask, pShmNode->exclMask)); 3308 } 3309 #endif 3310 3311 return rc; 3312 } 3313 3314 3315 /* 3316 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0. 3317 ** 3318 ** This is not a VFS shared-memory method; it is a utility function called 3319 ** by VFS shared-memory methods. 3320 */ 3321 static void unixShmPurge(unixFile *pFd){ 3322 unixShmNode *p = pFd->pInode->pShmNode; 3323 assert( unixMutexHeld() ); 3324 if( p && p->nRef==0 ){ 3325 int i; 3326 assert( p->pInode==pFd->pInode ); 3327 if( p->mutex ) sqlite3_mutex_free(p->mutex); 3328 for(i=0; i<p->nRegion; i++){ 3329 munmap(p->apRegion[i], p->szRegion); 3330 } 3331 sqlite3_free(p->apRegion); 3332 if( p->h>=0 ) close(p->h); 3333 p->pInode->pShmNode = 0; 3334 sqlite3_free(p); 3335 } 3336 } 3337 3338 /* 3339 ** Open a shared-memory area associated with open database file pDbFd. 3340 ** This particular implementation uses mmapped files. 3341 ** 3342 ** The file used to implement shared-memory is in the same directory 3343 ** as the open database file and has the same name as the open database 3344 ** file with the "-shm" suffix added. For example, if the database file 3345 ** is "/home/user1/config.db" then the file that is created and mmapped 3346 ** for shared memory will be called "/home/user1/config.db-shm". 3347 ** 3348 ** Another approach to is to use files in /dev/shm or /dev/tmp or an 3349 ** some other tmpfs mount. But if a file in a different directory 3350 ** from the database file is used, then differing access permissions 3351 ** or a chroot() might cause two different processes on the same 3352 ** database to end up using different files for shared memory - 3353 ** meaning that their memory would not really be shared - resulting 3354 ** in database corruption. Nevertheless, this tmpfs file usage 3355 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm" 3356 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time 3357 ** option results in an incompatible build of SQLite; builds of SQLite 3358 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the 3359 ** same database file at the same time, database corruption will likely 3360 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered 3361 ** "unsupported" and may go away in a future SQLite release. 3362 ** 3363 ** When opening a new shared-memory file, if no other instances of that 3364 ** file are currently open, in this process or in other processes, then 3365 ** the file must be truncated to zero length or have its header cleared. 3366 */ 3367 static int unixOpenSharedMemory(unixFile *pDbFd){ 3368 struct unixShm *p = 0; /* The connection to be opened */ 3369 struct unixShmNode *pShmNode; /* The underlying mmapped file */ 3370 int rc; /* Result code */ 3371 unixInodeInfo *pInode; /* The inode of fd */ 3372 char *zShmFilename; /* Name of the file used for SHM */ 3373 int nShmFilename; /* Size of the SHM filename in bytes */ 3374 3375 /* Allocate space for the new unixShm object. */ 3376 p = sqlite3_malloc( sizeof(*p) ); 3377 if( p==0 ) return SQLITE_NOMEM; 3378 memset(p, 0, sizeof(*p)); 3379 assert( pDbFd->pShm==0 ); 3380 3381 /* Check to see if a unixShmNode object already exists. Reuse an existing 3382 ** one if present. Create a new one if necessary. 3383 */ 3384 unixEnterMutex(); 3385 pInode = pDbFd->pInode; 3386 pShmNode = pInode->pShmNode; 3387 if( pShmNode==0 ){ 3388 struct stat sStat; /* fstat() info for database file */ 3389 3390 /* Call fstat() to figure out the permissions on the database file. If 3391 ** a new *-shm file is created, an attempt will be made to create it 3392 ** with the same permissions. The actual permissions the file is created 3393 ** with are subject to the current umask setting. 3394 */ 3395 if( fstat(pDbFd->h, &sStat) ){ 3396 rc = SQLITE_IOERR_FSTAT; 3397 goto shm_open_err; 3398 } 3399 3400 #ifdef SQLITE_SHM_DIRECTORY 3401 nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 30; 3402 #else 3403 nShmFilename = 5 + (int)strlen(pDbFd->zPath); 3404 #endif 3405 pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename ); 3406 if( pShmNode==0 ){ 3407 rc = SQLITE_NOMEM; 3408 goto shm_open_err; 3409 } 3410 memset(pShmNode, 0, sizeof(*pShmNode)); 3411 zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1]; 3412 #ifdef SQLITE_SHM_DIRECTORY 3413 sqlite3_snprintf(nShmFilename, zShmFilename, 3414 SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", 3415 (u32)sStat.st_ino, (u32)sStat.st_dev); 3416 #else 3417 sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath); 3418 #endif 3419 pShmNode->h = -1; 3420 pDbFd->pInode->pShmNode = pShmNode; 3421 pShmNode->pInode = pDbFd->pInode; 3422 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); 3423 if( pShmNode->mutex==0 ){ 3424 rc = SQLITE_NOMEM; 3425 goto shm_open_err; 3426 } 3427 3428 pShmNode->h = open(zShmFilename, O_RDWR|O_CREAT, (sStat.st_mode & 0777)); 3429 if( pShmNode->h<0 ){ 3430 rc = SQLITE_CANTOPEN_BKPT; 3431 goto shm_open_err; 3432 } 3433 3434 /* Check to see if another process is holding the dead-man switch. 3435 ** If not, truncate the file to zero length. 3436 */ 3437 rc = SQLITE_OK; 3438 if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){ 3439 if( ftruncate(pShmNode->h, 0) ){ 3440 rc = SQLITE_IOERR_SHMOPEN; 3441 } 3442 } 3443 if( rc==SQLITE_OK ){ 3444 rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1); 3445 } 3446 if( rc ) goto shm_open_err; 3447 } 3448 3449 /* Make the new connection a child of the unixShmNode */ 3450 p->pShmNode = pShmNode; 3451 #ifdef SQLITE_DEBUG 3452 p->id = pShmNode->nextShmId++; 3453 #endif 3454 pShmNode->nRef++; 3455 pDbFd->pShm = p; 3456 unixLeaveMutex(); 3457 3458 /* The reference count on pShmNode has already been incremented under 3459 ** the cover of the unixEnterMutex() mutex and the pointer from the 3460 ** new (struct unixShm) object to the pShmNode has been set. All that is 3461 ** left to do is to link the new object into the linked list starting 3462 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex 3463 ** mutex. 3464 */ 3465 sqlite3_mutex_enter(pShmNode->mutex); 3466 p->pNext = pShmNode->pFirst; 3467 pShmNode->pFirst = p; 3468 sqlite3_mutex_leave(pShmNode->mutex); 3469 return SQLITE_OK; 3470 3471 /* Jump here on any error */ 3472 shm_open_err: 3473 unixShmPurge(pDbFd); /* This call frees pShmNode if required */ 3474 sqlite3_free(p); 3475 unixLeaveMutex(); 3476 return rc; 3477 } 3478 3479 /* 3480 ** This function is called to obtain a pointer to region iRegion of the 3481 ** shared-memory associated with the database file fd. Shared-memory regions 3482 ** are numbered starting from zero. Each shared-memory region is szRegion 3483 ** bytes in size. 3484 ** 3485 ** If an error occurs, an error code is returned and *pp is set to NULL. 3486 ** 3487 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory 3488 ** region has not been allocated (by any client, including one running in a 3489 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If 3490 ** bExtend is non-zero and the requested shared-memory region has not yet 3491 ** been allocated, it is allocated by this function. 3492 ** 3493 ** If the shared-memory region has already been allocated or is allocated by 3494 ** this call as described above, then it is mapped into this processes 3495 ** address space (if it is not already), *pp is set to point to the mapped 3496 ** memory and SQLITE_OK returned. 3497 */ 3498 static int unixShmMap( 3499 sqlite3_file *fd, /* Handle open on database file */ 3500 int iRegion, /* Region to retrieve */ 3501 int szRegion, /* Size of regions */ 3502 int bExtend, /* True to extend file if necessary */ 3503 void volatile **pp /* OUT: Mapped memory */ 3504 ){ 3505 unixFile *pDbFd = (unixFile*)fd; 3506 unixShm *p; 3507 unixShmNode *pShmNode; 3508 int rc = SQLITE_OK; 3509 3510 /* If the shared-memory file has not yet been opened, open it now. */ 3511 if( pDbFd->pShm==0 ){ 3512 rc = unixOpenSharedMemory(pDbFd); 3513 if( rc!=SQLITE_OK ) return rc; 3514 } 3515 3516 p = pDbFd->pShm; 3517 pShmNode = p->pShmNode; 3518 sqlite3_mutex_enter(pShmNode->mutex); 3519 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); 3520 3521 if( pShmNode->nRegion<=iRegion ){ 3522 char **apNew; /* New apRegion[] array */ 3523 int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ 3524 struct stat sStat; /* Used by fstat() */ 3525 3526 pShmNode->szRegion = szRegion; 3527 3528 /* The requested region is not mapped into this processes address space. 3529 ** Check to see if it has been allocated (i.e. if the wal-index file is 3530 ** large enough to contain the requested region). 3531 */ 3532 if( fstat(pShmNode->h, &sStat) ){ 3533 rc = SQLITE_IOERR_SHMSIZE; 3534 goto shmpage_out; 3535 } 3536 3537 if( sStat.st_size<nByte ){ 3538 /* The requested memory region does not exist. If bExtend is set to 3539 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned. 3540 ** 3541 ** Alternatively, if bExtend is true, use ftruncate() to allocate 3542 ** the requested memory region. 3543 */ 3544 if( !bExtend ) goto shmpage_out; 3545 if( ftruncate(pShmNode->h, nByte) ){ 3546 rc = SQLITE_IOERR_SHMSIZE; 3547 goto shmpage_out; 3548 } 3549 } 3550 3551 /* Map the requested memory region into this processes address space. */ 3552 apNew = (char **)sqlite3_realloc( 3553 pShmNode->apRegion, (iRegion+1)*sizeof(char *) 3554 ); 3555 if( !apNew ){ 3556 rc = SQLITE_IOERR_NOMEM; 3557 goto shmpage_out; 3558 } 3559 pShmNode->apRegion = apNew; 3560 while(pShmNode->nRegion<=iRegion){ 3561 void *pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE, 3562 MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion 3563 ); 3564 if( pMem==MAP_FAILED ){ 3565 rc = SQLITE_IOERR; 3566 goto shmpage_out; 3567 } 3568 pShmNode->apRegion[pShmNode->nRegion] = pMem; 3569 pShmNode->nRegion++; 3570 } 3571 } 3572 3573 shmpage_out: 3574 if( pShmNode->nRegion>iRegion ){ 3575 *pp = pShmNode->apRegion[iRegion]; 3576 }else{ 3577 *pp = 0; 3578 } 3579 sqlite3_mutex_leave(pShmNode->mutex); 3580 return rc; 3581 } 3582 3583 /* 3584 ** Change the lock state for a shared-memory segment. 3585 ** 3586 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little 3587 ** different here than in posix. In xShmLock(), one can go from unlocked 3588 ** to shared and back or from unlocked to exclusive and back. But one may 3589 ** not go from shared to exclusive or from exclusive to shared. 3590 */ 3591 static int unixShmLock( 3592 sqlite3_file *fd, /* Database file holding the shared memory */ 3593 int ofst, /* First lock to acquire or release */ 3594 int n, /* Number of locks to acquire or release */ 3595 int flags /* What to do with the lock */ 3596 ){ 3597 unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */ 3598 unixShm *p = pDbFd->pShm; /* The shared memory being locked */ 3599 unixShm *pX; /* For looping over all siblings */ 3600 unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */ 3601 int rc = SQLITE_OK; /* Result code */ 3602 u16 mask; /* Mask of locks to take or release */ 3603 3604 assert( pShmNode==pDbFd->pInode->pShmNode ); 3605 assert( pShmNode->pInode==pDbFd->pInode ); 3606 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); 3607 assert( n>=1 ); 3608 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) 3609 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) 3610 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) 3611 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); 3612 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); 3613 3614 mask = (1<<(ofst+n)) - (1<<ofst); 3615 assert( n>1 || mask==(1<<ofst) ); 3616 sqlite3_mutex_enter(pShmNode->mutex); 3617 if( flags & SQLITE_SHM_UNLOCK ){ 3618 u16 allMask = 0; /* Mask of locks held by siblings */ 3619 3620 /* See if any siblings hold this same lock */ 3621 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ 3622 if( pX==p ) continue; 3623 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); 3624 allMask |= pX->sharedMask; 3625 } 3626 3627 /* Unlock the system-level locks */ 3628 if( (mask & allMask)==0 ){ 3629 rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n); 3630 }else{ 3631 rc = SQLITE_OK; 3632 } 3633 3634 /* Undo the local locks */ 3635 if( rc==SQLITE_OK ){ 3636 p->exclMask &= ~mask; 3637 p->sharedMask &= ~mask; 3638 } 3639 }else if( flags & SQLITE_SHM_SHARED ){ 3640 u16 allShared = 0; /* Union of locks held by connections other than "p" */ 3641 3642 /* Find out which shared locks are already held by sibling connections. 3643 ** If any sibling already holds an exclusive lock, go ahead and return 3644 ** SQLITE_BUSY. 3645 */ 3646 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ 3647 if( (pX->exclMask & mask)!=0 ){ 3648 rc = SQLITE_BUSY; 3649 break; 3650 } 3651 allShared |= pX->sharedMask; 3652 } 3653 3654 /* Get shared locks at the system level, if necessary */ 3655 if( rc==SQLITE_OK ){ 3656 if( (allShared & mask)==0 ){ 3657 rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n); 3658 }else{ 3659 rc = SQLITE_OK; 3660 } 3661 } 3662 3663 /* Get the local shared locks */ 3664 if( rc==SQLITE_OK ){ 3665 p->sharedMask |= mask; 3666 } 3667 }else{ 3668 /* Make sure no sibling connections hold locks that will block this 3669 ** lock. If any do, return SQLITE_BUSY right away. 3670 */ 3671 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ 3672 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ 3673 rc = SQLITE_BUSY; 3674 break; 3675 } 3676 } 3677 3678 /* Get the exclusive locks at the system level. Then if successful 3679 ** also mark the local connection as being locked. 3680 */ 3681 if( rc==SQLITE_OK ){ 3682 rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n); 3683 if( rc==SQLITE_OK ){ 3684 assert( (p->sharedMask & mask)==0 ); 3685 p->exclMask |= mask; 3686 } 3687 } 3688 } 3689 sqlite3_mutex_leave(pShmNode->mutex); 3690 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", 3691 p->id, getpid(), p->sharedMask, p->exclMask)); 3692 return rc; 3693 } 3694 3695 /* 3696 ** Implement a memory barrier or memory fence on shared memory. 3697 ** 3698 ** All loads and stores begun before the barrier must complete before 3699 ** any load or store begun after the barrier. 3700 */ 3701 static void unixShmBarrier( 3702 sqlite3_file *fd /* Database file holding the shared memory */ 3703 ){ 3704 UNUSED_PARAMETER(fd); 3705 unixEnterMutex(); 3706 unixLeaveMutex(); 3707 } 3708 3709 /* 3710 ** Close a connection to shared-memory. Delete the underlying 3711 ** storage if deleteFlag is true. 3712 ** 3713 ** If there is no shared memory associated with the connection then this 3714 ** routine is a harmless no-op. 3715 */ 3716 static int unixShmUnmap( 3717 sqlite3_file *fd, /* The underlying database file */ 3718 int deleteFlag /* Delete shared-memory if true */ 3719 ){ 3720 unixShm *p; /* The connection to be closed */ 3721 unixShmNode *pShmNode; /* The underlying shared-memory file */ 3722 unixShm **pp; /* For looping over sibling connections */ 3723 unixFile *pDbFd; /* The underlying database file */ 3724 3725 pDbFd = (unixFile*)fd; 3726 p = pDbFd->pShm; 3727 if( p==0 ) return SQLITE_OK; 3728 pShmNode = p->pShmNode; 3729 3730 assert( pShmNode==pDbFd->pInode->pShmNode ); 3731 assert( pShmNode->pInode==pDbFd->pInode ); 3732 3733 /* Remove connection p from the set of connections associated 3734 ** with pShmNode */ 3735 sqlite3_mutex_enter(pShmNode->mutex); 3736 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} 3737 *pp = p->pNext; 3738 3739 /* Free the connection p */ 3740 sqlite3_free(p); 3741 pDbFd->pShm = 0; 3742 sqlite3_mutex_leave(pShmNode->mutex); 3743 3744 /* If pShmNode->nRef has reached 0, then close the underlying 3745 ** shared-memory file, too */ 3746 unixEnterMutex(); 3747 assert( pShmNode->nRef>0 ); 3748 pShmNode->nRef--; 3749 if( pShmNode->nRef==0 ){ 3750 if( deleteFlag ) unlink(pShmNode->zFilename); 3751 unixShmPurge(pDbFd); 3752 } 3753 unixLeaveMutex(); 3754 3755 return SQLITE_OK; 3756 } 3757 3758 3759 #else 3760 # define unixShmMap 0 3761 # define unixShmLock 0 3762 # define unixShmBarrier 0 3763 # define unixShmUnmap 0 3764 #endif /* #ifndef SQLITE_OMIT_WAL */ 3765 3766 /* 3767 ** Here ends the implementation of all sqlite3_file methods. 3768 ** 3769 ********************** End sqlite3_file Methods ******************************* 3770 ******************************************************************************/ 3771 3772 /* 3773 ** This division contains definitions of sqlite3_io_methods objects that 3774 ** implement various file locking strategies. It also contains definitions 3775 ** of "finder" functions. A finder-function is used to locate the appropriate 3776 ** sqlite3_io_methods object for a particular database file. The pAppData 3777 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to 3778 ** the correct finder-function for that VFS. 3779 ** 3780 ** Most finder functions return a pointer to a fixed sqlite3_io_methods 3781 ** object. The only interesting finder-function is autolockIoFinder, which 3782 ** looks at the filesystem type and tries to guess the best locking 3783 ** strategy from that. 3784 ** 3785 ** For finder-funtion F, two objects are created: 3786 ** 3787 ** (1) The real finder-function named "FImpt()". 3788 ** 3789 ** (2) A constant pointer to this function named just "F". 3790 ** 3791 ** 3792 ** A pointer to the F pointer is used as the pAppData value for VFS 3793 ** objects. We have to do this instead of letting pAppData point 3794 ** directly at the finder-function since C90 rules prevent a void* 3795 ** from be cast into a function pointer. 3796 ** 3797 ** 3798 ** Each instance of this macro generates two objects: 3799 ** 3800 ** * A constant sqlite3_io_methods object call METHOD that has locking 3801 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK. 3802 ** 3803 ** * An I/O method finder function called FINDER that returns a pointer 3804 ** to the METHOD object in the previous bullet. 3805 */ 3806 #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK) \ 3807 static const sqlite3_io_methods METHOD = { \ 3808 VERSION, /* iVersion */ \ 3809 CLOSE, /* xClose */ \ 3810 unixRead, /* xRead */ \ 3811 unixWrite, /* xWrite */ \ 3812 unixTruncate, /* xTruncate */ \ 3813 unixSync, /* xSync */ \ 3814 unixFileSize, /* xFileSize */ \ 3815 LOCK, /* xLock */ \ 3816 UNLOCK, /* xUnlock */ \ 3817 CKLOCK, /* xCheckReservedLock */ \ 3818 unixFileControl, /* xFileControl */ \ 3819 unixSectorSize, /* xSectorSize */ \ 3820 unixDeviceCharacteristics, /* xDeviceCapabilities */ \ 3821 unixShmMap, /* xShmMap */ \ 3822 unixShmLock, /* xShmLock */ \ 3823 unixShmBarrier, /* xShmBarrier */ \ 3824 unixShmUnmap /* xShmUnmap */ \ 3825 }; \ 3826 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ 3827 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ 3828 return &METHOD; \ 3829 } \ 3830 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ 3831 = FINDER##Impl; 3832 3833 /* 3834 ** Here are all of the sqlite3_io_methods objects for each of the 3835 ** locking strategies. Functions that return pointers to these methods 3836 ** are also created. 3837 */ 3838 IOMETHODS( 3839 posixIoFinder, /* Finder function name */ 3840 posixIoMethods, /* sqlite3_io_methods object name */ 3841 2, /* shared memory is enabled */ 3842 unixClose, /* xClose method */ 3843 unixLock, /* xLock method */ 3844 unixUnlock, /* xUnlock method */ 3845 unixCheckReservedLock /* xCheckReservedLock method */ 3846 ) 3847 IOMETHODS( 3848 nolockIoFinder, /* Finder function name */ 3849 nolockIoMethods, /* sqlite3_io_methods object name */ 3850 1, /* shared memory is disabled */ 3851 nolockClose, /* xClose method */ 3852 nolockLock, /* xLock method */ 3853 nolockUnlock, /* xUnlock method */ 3854 nolockCheckReservedLock /* xCheckReservedLock method */ 3855 ) 3856 IOMETHODS( 3857 dotlockIoFinder, /* Finder function name */ 3858 dotlockIoMethods, /* sqlite3_io_methods object name */ 3859 1, /* shared memory is disabled */ 3860 dotlockClose, /* xClose method */ 3861 dotlockLock, /* xLock method */ 3862 dotlockUnlock, /* xUnlock method */ 3863 dotlockCheckReservedLock /* xCheckReservedLock method */ 3864 ) 3865 3866 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS 3867 IOMETHODS( 3868 flockIoFinder, /* Finder function name */ 3869 flockIoMethods, /* sqlite3_io_methods object name */ 3870 1, /* shared memory is disabled */ 3871 flockClose, /* xClose method */ 3872 flockLock, /* xLock method */ 3873 flockUnlock, /* xUnlock method */ 3874 flockCheckReservedLock /* xCheckReservedLock method */ 3875 ) 3876 #endif 3877 3878 #if OS_VXWORKS 3879 IOMETHODS( 3880 semIoFinder, /* Finder function name */ 3881 semIoMethods, /* sqlite3_io_methods object name */ 3882 1, /* shared memory is disabled */ 3883 semClose, /* xClose method */ 3884 semLock, /* xLock method */ 3885 semUnlock, /* xUnlock method */ 3886 semCheckReservedLock /* xCheckReservedLock method */ 3887 ) 3888 #endif 3889 3890 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 3891 IOMETHODS( 3892 afpIoFinder, /* Finder function name */ 3893 afpIoMethods, /* sqlite3_io_methods object name */ 3894 1, /* shared memory is disabled */ 3895 afpClose, /* xClose method */ 3896 afpLock, /* xLock method */ 3897 afpUnlock, /* xUnlock method */ 3898 afpCheckReservedLock /* xCheckReservedLock method */ 3899 ) 3900 #endif 3901 3902 /* 3903 ** The proxy locking method is a "super-method" in the sense that it 3904 ** opens secondary file descriptors for the conch and lock files and 3905 ** it uses proxy, dot-file, AFP, and flock() locking methods on those 3906 ** secondary files. For this reason, the division that implements 3907 ** proxy locking is located much further down in the file. But we need 3908 ** to go ahead and define the sqlite3_io_methods and finder function 3909 ** for proxy locking here. So we forward declare the I/O methods. 3910 */ 3911 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 3912 static int proxyClose(sqlite3_file*); 3913 static int proxyLock(sqlite3_file*, int); 3914 static int proxyUnlock(sqlite3_file*, int); 3915 static int proxyCheckReservedLock(sqlite3_file*, int*); 3916 IOMETHODS( 3917 proxyIoFinder, /* Finder function name */ 3918 proxyIoMethods, /* sqlite3_io_methods object name */ 3919 1, /* shared memory is disabled */ 3920 proxyClose, /* xClose method */ 3921 proxyLock, /* xLock method */ 3922 proxyUnlock, /* xUnlock method */ 3923 proxyCheckReservedLock /* xCheckReservedLock method */ 3924 ) 3925 #endif 3926 3927 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */ 3928 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 3929 IOMETHODS( 3930 nfsIoFinder, /* Finder function name */ 3931 nfsIoMethods, /* sqlite3_io_methods object name */ 3932 1, /* shared memory is disabled */ 3933 unixClose, /* xClose method */ 3934 unixLock, /* xLock method */ 3935 nfsUnlock, /* xUnlock method */ 3936 unixCheckReservedLock /* xCheckReservedLock method */ 3937 ) 3938 #endif 3939 3940 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 3941 /* 3942 ** This "finder" function attempts to determine the best locking strategy 3943 ** for the database file "filePath". It then returns the sqlite3_io_methods 3944 ** object that implements that strategy. 3945 ** 3946 ** This is for MacOSX only. 3947 */ 3948 static const sqlite3_io_methods *autolockIoFinderImpl( 3949 const char *filePath, /* name of the database file */ 3950 unixFile *pNew /* open file object for the database file */ 3951 ){ 3952 static const struct Mapping { 3953 const char *zFilesystem; /* Filesystem type name */ 3954 const sqlite3_io_methods *pMethods; /* Appropriate locking method */ 3955 } aMap[] = { 3956 { "hfs", &posixIoMethods }, 3957 { "ufs", &posixIoMethods }, 3958 { "afpfs", &afpIoMethods }, 3959 { "smbfs", &afpIoMethods }, 3960 { "webdav", &nolockIoMethods }, 3961 { 0, 0 } 3962 }; 3963 int i; 3964 struct statfs fsInfo; 3965 struct flock lockInfo; 3966 3967 if( !filePath ){ 3968 /* If filePath==NULL that means we are dealing with a transient file 3969 ** that does not need to be locked. */ 3970 return &nolockIoMethods; 3971 } 3972 if( statfs(filePath, &fsInfo) != -1 ){ 3973 if( fsInfo.f_flags & MNT_RDONLY ){ 3974 return &nolockIoMethods; 3975 } 3976 for(i=0; aMap[i].zFilesystem; i++){ 3977 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ 3978 return aMap[i].pMethods; 3979 } 3980 } 3981 } 3982 3983 /* Default case. Handles, amongst others, "nfs". 3984 ** Test byte-range lock using fcntl(). If the call succeeds, 3985 ** assume that the file-system supports POSIX style locks. 3986 */ 3987 lockInfo.l_len = 1; 3988 lockInfo.l_start = 0; 3989 lockInfo.l_whence = SEEK_SET; 3990 lockInfo.l_type = F_RDLCK; 3991 if( fcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { 3992 if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ 3993 return &nfsIoMethods; 3994 } else { 3995 return &posixIoMethods; 3996 } 3997 }else{ 3998 return &dotlockIoMethods; 3999 } 4000 } 4001 static const sqlite3_io_methods 4002 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; 4003 4004 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ 4005 4006 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE 4007 /* 4008 ** This "finder" function attempts to determine the best locking strategy 4009 ** for the database file "filePath". It then returns the sqlite3_io_methods 4010 ** object that implements that strategy. 4011 ** 4012 ** This is for VXWorks only. 4013 */ 4014 static const sqlite3_io_methods *autolockIoFinderImpl( 4015 const char *filePath, /* name of the database file */ 4016 unixFile *pNew /* the open file object */ 4017 ){ 4018 struct flock lockInfo; 4019 4020 if( !filePath ){ 4021 /* If filePath==NULL that means we are dealing with a transient file 4022 ** that does not need to be locked. */ 4023 return &nolockIoMethods; 4024 } 4025 4026 /* Test if fcntl() is supported and use POSIX style locks. 4027 ** Otherwise fall back to the named semaphore method. 4028 */ 4029 lockInfo.l_len = 1; 4030 lockInfo.l_start = 0; 4031 lockInfo.l_whence = SEEK_SET; 4032 lockInfo.l_type = F_RDLCK; 4033 if( fcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { 4034 return &posixIoMethods; 4035 }else{ 4036 return &semIoMethods; 4037 } 4038 } 4039 static const sqlite3_io_methods 4040 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; 4041 4042 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */ 4043 4044 /* 4045 ** An abstract type for a pointer to a IO method finder function: 4046 */ 4047 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); 4048 4049 4050 /**************************************************************************** 4051 **************************** sqlite3_vfs methods **************************** 4052 ** 4053 ** This division contains the implementation of methods on the 4054 ** sqlite3_vfs object. 4055 */ 4056 4057 /* 4058 ** Initialize the contents of the unixFile structure pointed to by pId. 4059 */ 4060 static int fillInUnixFile( 4061 sqlite3_vfs *pVfs, /* Pointer to vfs object */ 4062 int h, /* Open file descriptor of file being opened */ 4063 int dirfd, /* Directory file descriptor */ 4064 sqlite3_file *pId, /* Write to the unixFile structure here */ 4065 const char *zFilename, /* Name of the file being opened */ 4066 int noLock, /* Omit locking if true */ 4067 int isDelete /* Delete on close if true */ 4068 ){ 4069 const sqlite3_io_methods *pLockingStyle; 4070 unixFile *pNew = (unixFile *)pId; 4071 int rc = SQLITE_OK; 4072 4073 assert( pNew->pInode==NULL ); 4074 4075 /* Parameter isDelete is only used on vxworks. Express this explicitly 4076 ** here to prevent compiler warnings about unused parameters. 4077 */ 4078 UNUSED_PARAMETER(isDelete); 4079 4080 OSTRACE(("OPEN %-3d %s\n", h, zFilename)); 4081 pNew->h = h; 4082 pNew->dirfd = dirfd; 4083 pNew->fileFlags = 0; 4084 assert( zFilename==0 || zFilename[0]=='/' ); /* Never a relative pathname */ 4085 pNew->zPath = zFilename; 4086 4087 #if OS_VXWORKS 4088 pNew->pId = vxworksFindFileId(zFilename); 4089 if( pNew->pId==0 ){ 4090 noLock = 1; 4091 rc = SQLITE_NOMEM; 4092 } 4093 #endif 4094 4095 if( noLock ){ 4096 pLockingStyle = &nolockIoMethods; 4097 }else{ 4098 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); 4099 #if SQLITE_ENABLE_LOCKING_STYLE 4100 /* Cache zFilename in the locking context (AFP and dotlock override) for 4101 ** proxyLock activation is possible (remote proxy is based on db name) 4102 ** zFilename remains valid until file is closed, to support */ 4103 pNew->lockingContext = (void*)zFilename; 4104 #endif 4105 } 4106 4107 if( pLockingStyle == &posixIoMethods 4108 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 4109 || pLockingStyle == &nfsIoMethods 4110 #endif 4111 ){ 4112 unixEnterMutex(); 4113 rc = findInodeInfo(pNew, &pNew->pInode); 4114 if( rc!=SQLITE_OK ){ 4115 /* If an error occured in findInodeInfo(), close the file descriptor 4116 ** immediately, before releasing the mutex. findInodeInfo() may fail 4117 ** in two scenarios: 4118 ** 4119 ** (a) A call to fstat() failed. 4120 ** (b) A malloc failed. 4121 ** 4122 ** Scenario (b) may only occur if the process is holding no other 4123 ** file descriptors open on the same file. If there were other file 4124 ** descriptors on this file, then no malloc would be required by 4125 ** findInodeInfo(). If this is the case, it is quite safe to close 4126 ** handle h - as it is guaranteed that no posix locks will be released 4127 ** by doing so. 4128 ** 4129 ** If scenario (a) caused the error then things are not so safe. The 4130 ** implicit assumption here is that if fstat() fails, things are in 4131 ** such bad shape that dropping a lock or two doesn't matter much. 4132 */ 4133 close(h); 4134 h = -1; 4135 } 4136 unixLeaveMutex(); 4137 } 4138 4139 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) 4140 else if( pLockingStyle == &afpIoMethods ){ 4141 /* AFP locking uses the file path so it needs to be included in 4142 ** the afpLockingContext. 4143 */ 4144 afpLockingContext *pCtx; 4145 pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) ); 4146 if( pCtx==0 ){ 4147 rc = SQLITE_NOMEM; 4148 }else{ 4149 /* NB: zFilename exists and remains valid until the file is closed 4150 ** according to requirement F11141. So we do not need to make a 4151 ** copy of the filename. */ 4152 pCtx->dbPath = zFilename; 4153 pCtx->reserved = 0; 4154 srandomdev(); 4155 unixEnterMutex(); 4156 rc = findInodeInfo(pNew, &pNew->pInode); 4157 if( rc!=SQLITE_OK ){ 4158 sqlite3_free(pNew->lockingContext); 4159 close(h); 4160 h = -1; 4161 } 4162 unixLeaveMutex(); 4163 } 4164 } 4165 #endif 4166 4167 else if( pLockingStyle == &dotlockIoMethods ){ 4168 /* Dotfile locking uses the file path so it needs to be included in 4169 ** the dotlockLockingContext 4170 */ 4171 char *zLockFile; 4172 int nFilename; 4173 nFilename = (int)strlen(zFilename) + 6; 4174 zLockFile = (char *)sqlite3_malloc(nFilename); 4175 if( zLockFile==0 ){ 4176 rc = SQLITE_NOMEM; 4177 }else{ 4178 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename); 4179 } 4180 pNew->lockingContext = zLockFile; 4181 } 4182 4183 #if OS_VXWORKS 4184 else if( pLockingStyle == &semIoMethods ){ 4185 /* Named semaphore locking uses the file path so it needs to be 4186 ** included in the semLockingContext 4187 */ 4188 unixEnterMutex(); 4189 rc = findInodeInfo(pNew, &pNew->pInode); 4190 if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){ 4191 char *zSemName = pNew->pInode->aSemName; 4192 int n; 4193 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", 4194 pNew->pId->zCanonicalName); 4195 for( n=1; zSemName[n]; n++ ) 4196 if( zSemName[n]=='/' ) zSemName[n] = '_'; 4197 pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1); 4198 if( pNew->pInode->pSem == SEM_FAILED ){ 4199 rc = SQLITE_NOMEM; 4200 pNew->pInode->aSemName[0] = '\0'; 4201 } 4202 } 4203 unixLeaveMutex(); 4204 } 4205 #endif 4206 4207 pNew->lastErrno = 0; 4208 #if OS_VXWORKS 4209 if( rc!=SQLITE_OK ){ 4210 if( h>=0 ) close(h); 4211 h = -1; 4212 unlink(zFilename); 4213 isDelete = 0; 4214 } 4215 pNew->isDelete = isDelete; 4216 #endif 4217 if( rc!=SQLITE_OK ){ 4218 if( dirfd>=0 ) close(dirfd); /* silent leak if fail, already in error */ 4219 if( h>=0 ) close(h); 4220 }else{ 4221 pNew->pMethod = pLockingStyle; 4222 OpenCounter(+1); 4223 } 4224 return rc; 4225 } 4226 4227 /* 4228 ** Open a file descriptor to the directory containing file zFilename. 4229 ** If successful, *pFd is set to the opened file descriptor and 4230 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM 4231 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined 4232 ** value. 4233 ** 4234 ** If SQLITE_OK is returned, the caller is responsible for closing 4235 ** the file descriptor *pFd using close(). 4236 */ 4237 static int openDirectory(const char *zFilename, int *pFd){ 4238 int ii; 4239 int fd = -1; 4240 char zDirname[MAX_PATHNAME+1]; 4241 4242 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); 4243 for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--); 4244 if( ii>0 ){ 4245 zDirname[ii] = '\0'; 4246 fd = open(zDirname, O_RDONLY|O_BINARY, 0); 4247 if( fd>=0 ){ 4248 #ifdef FD_CLOEXEC 4249 fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC); 4250 #endif 4251 OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); 4252 } 4253 } 4254 *pFd = fd; 4255 return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN_BKPT); 4256 } 4257 4258 /* 4259 ** Return the name of a directory in which to put temporary files. 4260 ** If no suitable temporary file directory can be found, return NULL. 4261 */ 4262 static const char *unixTempFileDir(void){ 4263 static const char *azDirs[] = { 4264 0, 4265 0, 4266 "/var/tmp", 4267 "/usr/tmp", 4268 "/tmp", 4269 0 /* List terminator */ 4270 }; 4271 unsigned int i; 4272 struct stat buf; 4273 const char *zDir = 0; 4274 4275 azDirs[0] = sqlite3_temp_directory; 4276 if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR"); 4277 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){ 4278 if( zDir==0 ) continue; 4279 if( stat(zDir, &buf) ) continue; 4280 if( !S_ISDIR(buf.st_mode) ) continue; 4281 if( access(zDir, 07) ) continue; 4282 break; 4283 } 4284 return zDir; 4285 } 4286 4287 /* 4288 ** Create a temporary file name in zBuf. zBuf must be allocated 4289 ** by the calling process and must be big enough to hold at least 4290 ** pVfs->mxPathname bytes. 4291 */ 4292 static int unixGetTempname(int nBuf, char *zBuf){ 4293 static const unsigned char zChars[] = 4294 "abcdefghijklmnopqrstuvwxyz" 4295 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 4296 "0123456789"; 4297 unsigned int i, j; 4298 const char *zDir; 4299 4300 /* It's odd to simulate an io-error here, but really this is just 4301 ** using the io-error infrastructure to test that SQLite handles this 4302 ** function failing. 4303 */ 4304 SimulateIOError( return SQLITE_IOERR ); 4305 4306 zDir = unixTempFileDir(); 4307 if( zDir==0 ) zDir = "."; 4308 4309 /* Check that the output buffer is large enough for the temporary file 4310 ** name. If it is not, return SQLITE_ERROR. 4311 */ 4312 if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= (size_t)nBuf ){ 4313 return SQLITE_ERROR; 4314 } 4315 4316 do{ 4317 sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); 4318 j = (int)strlen(zBuf); 4319 sqlite3_randomness(15, &zBuf[j]); 4320 for(i=0; i<15; i++, j++){ 4321 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; 4322 } 4323 zBuf[j] = 0; 4324 }while( access(zBuf,0)==0 ); 4325 return SQLITE_OK; 4326 } 4327 4328 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) 4329 /* 4330 ** Routine to transform a unixFile into a proxy-locking unixFile. 4331 ** Implementation in the proxy-lock division, but used by unixOpen() 4332 ** if SQLITE_PREFER_PROXY_LOCKING is defined. 4333 */ 4334 static int proxyTransformUnixFile(unixFile*, const char*); 4335 #endif 4336 4337 /* 4338 ** Search for an unused file descriptor that was opened on the database 4339 ** file (not a journal or master-journal file) identified by pathname 4340 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second 4341 ** argument to this function. 4342 ** 4343 ** Such a file descriptor may exist if a database connection was closed 4344 ** but the associated file descriptor could not be closed because some 4345 ** other file descriptor open on the same file is holding a file-lock. 4346 ** Refer to comments in the unixClose() function and the lengthy comment 4347 ** describing "Posix Advisory Locking" at the start of this file for 4348 ** further details. Also, ticket #4018. 4349 ** 4350 ** If a suitable file descriptor is found, then it is returned. If no 4351 ** such file descriptor is located, -1 is returned. 4352 */ 4353 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ 4354 UnixUnusedFd *pUnused = 0; 4355 4356 /* Do not search for an unused file descriptor on vxworks. Not because 4357 ** vxworks would not benefit from the change (it might, we're not sure), 4358 ** but because no way to test it is currently available. It is better 4359 ** not to risk breaking vxworks support for the sake of such an obscure 4360 ** feature. */ 4361 #if !OS_VXWORKS 4362 struct stat sStat; /* Results of stat() call */ 4363 4364 /* A stat() call may fail for various reasons. If this happens, it is 4365 ** almost certain that an open() call on the same path will also fail. 4366 ** For this reason, if an error occurs in the stat() call here, it is 4367 ** ignored and -1 is returned. The caller will try to open a new file 4368 ** descriptor on the same path, fail, and return an error to SQLite. 4369 ** 4370 ** Even if a subsequent open() call does succeed, the consequences of 4371 ** not searching for a resusable file descriptor are not dire. */ 4372 if( 0==stat(zPath, &sStat) ){ 4373 unixInodeInfo *pInode; 4374 4375 unixEnterMutex(); 4376 pInode = inodeList; 4377 while( pInode && (pInode->fileId.dev!=sStat.st_dev 4378 || pInode->fileId.ino!=sStat.st_ino) ){ 4379 pInode = pInode->pNext; 4380 } 4381 if( pInode ){ 4382 UnixUnusedFd **pp; 4383 for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); 4384 pUnused = *pp; 4385 if( pUnused ){ 4386 *pp = pUnused->pNext; 4387 } 4388 } 4389 unixLeaveMutex(); 4390 } 4391 #endif /* if !OS_VXWORKS */ 4392 return pUnused; 4393 } 4394 4395 /* 4396 ** This function is called by unixOpen() to determine the unix permissions 4397 ** to create new files with. If no error occurs, then SQLITE_OK is returned 4398 ** and a value suitable for passing as the third argument to open(2) is 4399 ** written to *pMode. If an IO error occurs, an SQLite error code is 4400 ** returned and the value of *pMode is not modified. 4401 ** 4402 ** If the file being opened is a temporary file, it is always created with 4403 ** the octal permissions 0600 (read/writable by owner only). If the file 4404 ** is a database or master journal file, it is created with the permissions 4405 ** mask SQLITE_DEFAULT_FILE_PERMISSIONS. 4406 ** 4407 ** Finally, if the file being opened is a WAL or regular journal file, then 4408 ** this function queries the file-system for the permissions on the 4409 ** corresponding database file and sets *pMode to this value. Whenever 4410 ** possible, WAL and journal files are created using the same permissions 4411 ** as the associated database file. 4412 */ 4413 static int findCreateFileMode( 4414 const char *zPath, /* Path of file (possibly) being created */ 4415 int flags, /* Flags passed as 4th argument to xOpen() */ 4416 mode_t *pMode /* OUT: Permissions to open file with */ 4417 ){ 4418 int rc = SQLITE_OK; /* Return Code */ 4419 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ 4420 char zDb[MAX_PATHNAME+1]; /* Database file path */ 4421 int nDb; /* Number of valid bytes in zDb */ 4422 struct stat sStat; /* Output of stat() on database file */ 4423 4424 nDb = sqlite3Strlen30(zPath) - ((flags & SQLITE_OPEN_WAL) ? 4 : 8); 4425 memcpy(zDb, zPath, nDb); 4426 zDb[nDb] = '\0'; 4427 if( 0==stat(zDb, &sStat) ){ 4428 *pMode = sStat.st_mode & 0777; 4429 }else{ 4430 rc = SQLITE_IOERR_FSTAT; 4431 } 4432 }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ 4433 *pMode = 0600; 4434 }else{ 4435 *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS; 4436 } 4437 return rc; 4438 } 4439 4440 /* 4441 ** Open the file zPath. 4442 ** 4443 ** Previously, the SQLite OS layer used three functions in place of this 4444 ** one: 4445 ** 4446 ** sqlite3OsOpenReadWrite(); 4447 ** sqlite3OsOpenReadOnly(); 4448 ** sqlite3OsOpenExclusive(); 4449 ** 4450 ** These calls correspond to the following combinations of flags: 4451 ** 4452 ** ReadWrite() -> (READWRITE | CREATE) 4453 ** ReadOnly() -> (READONLY) 4454 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) 4455 ** 4456 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If 4457 ** true, the file was configured to be automatically deleted when the 4458 ** file handle closed. To achieve the same effect using this new 4459 ** interface, add the DELETEONCLOSE flag to those specified above for 4460 ** OpenExclusive(). 4461 */ 4462 static int unixOpen( 4463 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ 4464 const char *zPath, /* Pathname of file to be opened */ 4465 sqlite3_file *pFile, /* The file descriptor to be filled in */ 4466 int flags, /* Input flags to control the opening */ 4467 int *pOutFlags /* Output flags returned to SQLite core */ 4468 ){ 4469 unixFile *p = (unixFile *)pFile; 4470 int fd = -1; /* File descriptor returned by open() */ 4471 int dirfd = -1; /* Directory file descriptor */ 4472 int openFlags = 0; /* Flags to pass to open() */ 4473 int eType = flags&0xFFFFFF00; /* Type of file to open */ 4474 int noLock; /* True to omit locking primitives */ 4475 int rc = SQLITE_OK; /* Function Return Code */ 4476 4477 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); 4478 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); 4479 int isCreate = (flags & SQLITE_OPEN_CREATE); 4480 int isReadonly = (flags & SQLITE_OPEN_READONLY); 4481 int isReadWrite = (flags & SQLITE_OPEN_READWRITE); 4482 #if SQLITE_ENABLE_LOCKING_STYLE 4483 int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY); 4484 #endif 4485 4486 /* If creating a master or main-file journal, this function will open 4487 ** a file-descriptor on the directory too. The first time unixSync() 4488 ** is called the directory file descriptor will be fsync()ed and close()d. 4489 */ 4490 int isOpenDirectory = (isCreate && ( 4491 eType==SQLITE_OPEN_MASTER_JOURNAL 4492 || eType==SQLITE_OPEN_MAIN_JOURNAL 4493 || eType==SQLITE_OPEN_WAL 4494 )); 4495 4496 /* If argument zPath is a NULL pointer, this function is required to open 4497 ** a temporary file. Use this buffer to store the file name in. 4498 */ 4499 char zTmpname[MAX_PATHNAME+1]; 4500 const char *zName = zPath; 4501 4502 /* Check the following statements are true: 4503 ** 4504 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and 4505 ** (b) if CREATE is set, then READWRITE must also be set, and 4506 ** (c) if EXCLUSIVE is set, then CREATE must also be set. 4507 ** (d) if DELETEONCLOSE is set, then CREATE must also be set. 4508 */ 4509 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); 4510 assert(isCreate==0 || isReadWrite); 4511 assert(isExclusive==0 || isCreate); 4512 assert(isDelete==0 || isCreate); 4513 4514 /* The main DB, main journal, WAL file and master journal are never 4515 ** automatically deleted. Nor are they ever temporary files. */ 4516 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); 4517 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); 4518 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); 4519 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); 4520 4521 /* Assert that the upper layer has set one of the "file-type" flags. */ 4522 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB 4523 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 4524 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL 4525 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL 4526 ); 4527 4528 memset(p, 0, sizeof(unixFile)); 4529 4530 if( eType==SQLITE_OPEN_MAIN_DB ){ 4531 UnixUnusedFd *pUnused; 4532 pUnused = findReusableFd(zName, flags); 4533 if( pUnused ){ 4534 fd = pUnused->fd; 4535 }else{ 4536 pUnused = sqlite3_malloc(sizeof(*pUnused)); 4537 if( !pUnused ){ 4538 return SQLITE_NOMEM; 4539 } 4540 } 4541 p->pUnused = pUnused; 4542 }else if( !zName ){ 4543 /* If zName is NULL, the upper layer is requesting a temp file. */ 4544 assert(isDelete && !isOpenDirectory); 4545 rc = unixGetTempname(MAX_PATHNAME+1, zTmpname); 4546 if( rc!=SQLITE_OK ){ 4547 return rc; 4548 } 4549 zName = zTmpname; 4550 } 4551 4552 /* Determine the value of the flags parameter passed to POSIX function 4553 ** open(). These must be calculated even if open() is not called, as 4554 ** they may be stored as part of the file handle and used by the 4555 ** 'conch file' locking functions later on. */ 4556 if( isReadonly ) openFlags |= O_RDONLY; 4557 if( isReadWrite ) openFlags |= O_RDWR; 4558 if( isCreate ) openFlags |= O_CREAT; 4559 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); 4560 openFlags |= (O_LARGEFILE|O_BINARY); 4561 4562 if( fd<0 ){ 4563 mode_t openMode; /* Permissions to create file with */ 4564 rc = findCreateFileMode(zName, flags, &openMode); 4565 if( rc!=SQLITE_OK ){ 4566 assert( !p->pUnused ); 4567 assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); 4568 return rc; 4569 } 4570 fd = open(zName, openFlags, openMode); 4571 OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); 4572 if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ 4573 /* Failed to open the file for read/write access. Try read-only. */ 4574 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); 4575 openFlags &= ~(O_RDWR|O_CREAT); 4576 flags |= SQLITE_OPEN_READONLY; 4577 openFlags |= O_RDONLY; 4578 fd = open(zName, openFlags, openMode); 4579 } 4580 if( fd<0 ){ 4581 rc = SQLITE_CANTOPEN_BKPT; 4582 goto open_finished; 4583 } 4584 } 4585 assert( fd>=0 ); 4586 if( pOutFlags ){ 4587 *pOutFlags = flags; 4588 } 4589 4590 if( p->pUnused ){ 4591 p->pUnused->fd = fd; 4592 p->pUnused->flags = flags; 4593 } 4594 4595 if( isDelete ){ 4596 #if OS_VXWORKS 4597 zPath = zName; 4598 #else 4599 unlink(zName); 4600 #endif 4601 } 4602 #if SQLITE_ENABLE_LOCKING_STYLE 4603 else{ 4604 p->openFlags = openFlags; 4605 } 4606 #endif 4607 4608 if( isOpenDirectory ){ 4609 rc = openDirectory(zPath, &dirfd); 4610 if( rc!=SQLITE_OK ){ 4611 /* It is safe to close fd at this point, because it is guaranteed not 4612 ** to be open on a database file. If it were open on a database file, 4613 ** it would not be safe to close as this would release any locks held 4614 ** on the file by this process. */ 4615 assert( eType!=SQLITE_OPEN_MAIN_DB ); 4616 close(fd); /* silently leak if fail, already in error */ 4617 goto open_finished; 4618 } 4619 } 4620 4621 #ifdef FD_CLOEXEC 4622 fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC); 4623 #endif 4624 4625 noLock = eType!=SQLITE_OPEN_MAIN_DB; 4626 4627 4628 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE 4629 struct statfs fsInfo; 4630 if( fstatfs(fd, &fsInfo) == -1 ){ 4631 ((unixFile*)pFile)->lastErrno = errno; 4632 if( dirfd>=0 ) close(dirfd); /* silently leak if fail, in error */ 4633 close(fd); /* silently leak if fail, in error */ 4634 return SQLITE_IOERR_ACCESS; 4635 } 4636 if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { 4637 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; 4638 } 4639 #endif 4640 4641 #if SQLITE_ENABLE_LOCKING_STYLE 4642 #if SQLITE_PREFER_PROXY_LOCKING 4643 isAutoProxy = 1; 4644 #endif 4645 if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){ 4646 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); 4647 int useProxy = 0; 4648 4649 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means 4650 ** never use proxy, NULL means use proxy for non-local files only. */ 4651 if( envforce!=NULL ){ 4652 useProxy = atoi(envforce)>0; 4653 }else{ 4654 struct statfs fsInfo; 4655 if( statfs(zPath, &fsInfo) == -1 ){ 4656 /* In theory, the close(fd) call is sub-optimal. If the file opened 4657 ** with fd is a database file, and there are other connections open 4658 ** on that file that are currently holding advisory locks on it, 4659 ** then the call to close() will cancel those locks. In practice, 4660 ** we're assuming that statfs() doesn't fail very often. At least 4661 ** not while other file descriptors opened by the same process on 4662 ** the same file are working. */ 4663 p->lastErrno = errno; 4664 if( dirfd>=0 ){ 4665 close(dirfd); /* silently leak if fail, in error */ 4666 } 4667 close(fd); /* silently leak if fail, in error */ 4668 rc = SQLITE_IOERR_ACCESS; 4669 goto open_finished; 4670 } 4671 useProxy = !(fsInfo.f_flags&MNT_LOCAL); 4672 } 4673 if( useProxy ){ 4674 rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete); 4675 if( rc==SQLITE_OK ){ 4676 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); 4677 if( rc!=SQLITE_OK ){ 4678 /* Use unixClose to clean up the resources added in fillInUnixFile 4679 ** and clear all the structure's references. Specifically, 4680 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op 4681 */ 4682 unixClose(pFile); 4683 return rc; 4684 } 4685 } 4686 goto open_finished; 4687 } 4688 } 4689 #endif 4690 4691 rc = fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock, isDelete); 4692 open_finished: 4693 if( rc!=SQLITE_OK ){ 4694 sqlite3_free(p->pUnused); 4695 } 4696 return rc; 4697 } 4698 4699 4700 /* 4701 ** Delete the file at zPath. If the dirSync argument is true, fsync() 4702 ** the directory after deleting the file. 4703 */ 4704 static int unixDelete( 4705 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ 4706 const char *zPath, /* Name of file to be deleted */ 4707 int dirSync /* If true, fsync() directory after deleting file */ 4708 ){ 4709 int rc = SQLITE_OK; 4710 UNUSED_PARAMETER(NotUsed); 4711 SimulateIOError(return SQLITE_IOERR_DELETE); 4712 if( unlink(zPath)==(-1) && errno!=ENOENT ){ 4713 return SQLITE_IOERR_DELETE; 4714 } 4715 #ifndef SQLITE_DISABLE_DIRSYNC 4716 if( dirSync ){ 4717 int fd; 4718 rc = openDirectory(zPath, &fd); 4719 if( rc==SQLITE_OK ){ 4720 #if OS_VXWORKS 4721 if( fsync(fd)==-1 ) 4722 #else 4723 if( fsync(fd) ) 4724 #endif 4725 { 4726 rc = SQLITE_IOERR_DIR_FSYNC; 4727 } 4728 if( close(fd)&&!rc ){ 4729 rc = SQLITE_IOERR_DIR_CLOSE; 4730 } 4731 } 4732 } 4733 #endif 4734 return rc; 4735 } 4736 4737 /* 4738 ** Test the existance of or access permissions of file zPath. The 4739 ** test performed depends on the value of flags: 4740 ** 4741 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists 4742 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. 4743 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. 4744 ** 4745 ** Otherwise return 0. 4746 */ 4747 static int unixAccess( 4748 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */ 4749 const char *zPath, /* Path of the file to examine */ 4750 int flags, /* What do we want to learn about the zPath file? */ 4751 int *pResOut /* Write result boolean here */ 4752 ){ 4753 int amode = 0; 4754 UNUSED_PARAMETER(NotUsed); 4755 SimulateIOError( return SQLITE_IOERR_ACCESS; ); 4756 switch( flags ){ 4757 case SQLITE_ACCESS_EXISTS: 4758 amode = F_OK; 4759 break; 4760 case SQLITE_ACCESS_READWRITE: 4761 amode = W_OK|R_OK; 4762 break; 4763 case SQLITE_ACCESS_READ: 4764 amode = R_OK; 4765 break; 4766 4767 default: 4768 assert(!"Invalid flags argument"); 4769 } 4770 *pResOut = (access(zPath, amode)==0); 4771 if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){ 4772 struct stat buf; 4773 if( 0==stat(zPath, &buf) && buf.st_size==0 ){ 4774 *pResOut = 0; 4775 } 4776 } 4777 return SQLITE_OK; 4778 } 4779 4780 4781 /* 4782 ** Turn a relative pathname into a full pathname. The relative path 4783 ** is stored as a nul-terminated string in the buffer pointed to by 4784 ** zPath. 4785 ** 4786 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 4787 ** (in this case, MAX_PATHNAME bytes). The full-path is written to 4788 ** this buffer before returning. 4789 */ 4790 static int unixFullPathname( 4791 sqlite3_vfs *pVfs, /* Pointer to vfs object */ 4792 const char *zPath, /* Possibly relative input path */ 4793 int nOut, /* Size of output buffer in bytes */ 4794 char *zOut /* Output buffer */ 4795 ){ 4796 4797 /* It's odd to simulate an io-error here, but really this is just 4798 ** using the io-error infrastructure to test that SQLite handles this 4799 ** function failing. This function could fail if, for example, the 4800 ** current working directory has been unlinked. 4801 */ 4802 SimulateIOError( return SQLITE_ERROR ); 4803 4804 assert( pVfs->mxPathname==MAX_PATHNAME ); 4805 UNUSED_PARAMETER(pVfs); 4806 4807 zOut[nOut-1] = '\0'; 4808 if( zPath[0]=='/' ){ 4809 sqlite3_snprintf(nOut, zOut, "%s", zPath); 4810 }else{ 4811 int nCwd; 4812 if( getcwd(zOut, nOut-1)==0 ){ 4813 return SQLITE_CANTOPEN_BKPT; 4814 } 4815 nCwd = (int)strlen(zOut); 4816 sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath); 4817 } 4818 return SQLITE_OK; 4819 } 4820 4821 4822 #ifndef SQLITE_OMIT_LOAD_EXTENSION 4823 /* 4824 ** Interfaces for opening a shared library, finding entry points 4825 ** within the shared library, and closing the shared library. 4826 */ 4827 #include <dlfcn.h> 4828 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){ 4829 UNUSED_PARAMETER(NotUsed); 4830 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); 4831 } 4832 4833 /* 4834 ** SQLite calls this function immediately after a call to unixDlSym() or 4835 ** unixDlOpen() fails (returns a null pointer). If a more detailed error 4836 ** message is available, it is written to zBufOut. If no error message 4837 ** is available, zBufOut is left unmodified and SQLite uses a default 4838 ** error message. 4839 */ 4840 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){ 4841 char *zErr; 4842 UNUSED_PARAMETER(NotUsed); 4843 unixEnterMutex(); 4844 zErr = dlerror(); 4845 if( zErr ){ 4846 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); 4847 } 4848 unixLeaveMutex(); 4849 } 4850 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){ 4851 /* 4852 ** GCC with -pedantic-errors says that C90 does not allow a void* to be 4853 ** cast into a pointer to a function. And yet the library dlsym() routine 4854 ** returns a void* which is really a pointer to a function. So how do we 4855 ** use dlsym() with -pedantic-errors? 4856 ** 4857 ** Variable x below is defined to be a pointer to a function taking 4858 ** parameters void* and const char* and returning a pointer to a function. 4859 ** We initialize x by assigning it a pointer to the dlsym() function. 4860 ** (That assignment requires a cast.) Then we call the function that 4861 ** x points to. 4862 ** 4863 ** This work-around is unlikely to work correctly on any system where 4864 ** you really cannot cast a function pointer into void*. But then, on the 4865 ** other hand, dlsym() will not work on such a system either, so we have 4866 ** not really lost anything. 4867 */ 4868 void (*(*x)(void*,const char*))(void); 4869 UNUSED_PARAMETER(NotUsed); 4870 x = (void(*(*)(void*,const char*))(void))dlsym; 4871 return (*x)(p, zSym); 4872 } 4873 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){ 4874 UNUSED_PARAMETER(NotUsed); 4875 dlclose(pHandle); 4876 } 4877 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ 4878 #define unixDlOpen 0 4879 #define unixDlError 0 4880 #define unixDlSym 0 4881 #define unixDlClose 0 4882 #endif 4883 4884 /* 4885 ** Write nBuf bytes of random data to the supplied buffer zBuf. 4886 */ 4887 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){ 4888 UNUSED_PARAMETER(NotUsed); 4889 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int))); 4890 4891 /* We have to initialize zBuf to prevent valgrind from reporting 4892 ** errors. The reports issued by valgrind are incorrect - we would 4893 ** prefer that the randomness be increased by making use of the 4894 ** uninitialized space in zBuf - but valgrind errors tend to worry 4895 ** some users. Rather than argue, it seems easier just to initialize 4896 ** the whole array and silence valgrind, even if that means less randomness 4897 ** in the random seed. 4898 ** 4899 ** When testing, initializing zBuf[] to zero is all we do. That means 4900 ** that we always use the same random number sequence. This makes the 4901 ** tests repeatable. 4902 */ 4903 memset(zBuf, 0, nBuf); 4904 #if !defined(SQLITE_TEST) 4905 { 4906 int pid, fd; 4907 fd = open("/dev/urandom", O_RDONLY); 4908 if( fd<0 ){ 4909 time_t t; 4910 time(&t); 4911 memcpy(zBuf, &t, sizeof(t)); 4912 pid = getpid(); 4913 memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid)); 4914 assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf ); 4915 nBuf = sizeof(t) + sizeof(pid); 4916 }else{ 4917 nBuf = read(fd, zBuf, nBuf); 4918 close(fd); 4919 } 4920 } 4921 #endif 4922 return nBuf; 4923 } 4924 4925 4926 /* 4927 ** Sleep for a little while. Return the amount of time slept. 4928 ** The argument is the number of microseconds we want to sleep. 4929 ** The return value is the number of microseconds of sleep actually 4930 ** requested from the underlying operating system, a number which 4931 ** might be greater than or equal to the argument, but not less 4932 ** than the argument. 4933 */ 4934 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ 4935 #if OS_VXWORKS 4936 struct timespec sp; 4937 4938 sp.tv_sec = microseconds / 1000000; 4939 sp.tv_nsec = (microseconds % 1000000) * 1000; 4940 nanosleep(&sp, NULL); 4941 UNUSED_PARAMETER(NotUsed); 4942 return microseconds; 4943 #elif defined(HAVE_USLEEP) && HAVE_USLEEP 4944 usleep(microseconds); 4945 UNUSED_PARAMETER(NotUsed); 4946 return microseconds; 4947 #else 4948 int seconds = (microseconds+999999)/1000000; 4949 sleep(seconds); 4950 UNUSED_PARAMETER(NotUsed); 4951 return seconds*1000000; 4952 #endif 4953 } 4954 4955 /* 4956 ** The following variable, if set to a non-zero value, is interpreted as 4957 ** the number of seconds since 1970 and is used to set the result of 4958 ** sqlite3OsCurrentTime() during testing. 4959 */ 4960 #ifdef SQLITE_TEST 4961 int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ 4962 #endif 4963 4964 /* 4965 ** Find the current time (in Universal Coordinated Time). Write into *piNow 4966 ** the current time and date as a Julian Day number times 86_400_000. In 4967 ** other words, write into *piNow the number of milliseconds since the Julian 4968 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the 4969 ** proleptic Gregorian calendar. 4970 ** 4971 ** On success, return 0. Return 1 if the time and date cannot be found. 4972 */ 4973 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){ 4974 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; 4975 #if defined(NO_GETTOD) 4976 time_t t; 4977 time(&t); 4978 *piNow = ((sqlite3_int64)i)*1000 + unixEpoch; 4979 #elif OS_VXWORKS 4980 struct timespec sNow; 4981 clock_gettime(CLOCK_REALTIME, &sNow); 4982 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000; 4983 #else 4984 struct timeval sNow; 4985 gettimeofday(&sNow, 0); 4986 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; 4987 #endif 4988 4989 #ifdef SQLITE_TEST 4990 if( sqlite3_current_time ){ 4991 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; 4992 } 4993 #endif 4994 UNUSED_PARAMETER(NotUsed); 4995 return 0; 4996 } 4997 4998 /* 4999 ** Find the current time (in Universal Coordinated Time). Write the 5000 ** current time and date as a Julian Day number into *prNow and 5001 ** return 0. Return 1 if the time and date cannot be found. 5002 */ 5003 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){ 5004 sqlite3_int64 i; 5005 UNUSED_PARAMETER(NotUsed); 5006 unixCurrentTimeInt64(0, &i); 5007 *prNow = i/86400000.0; 5008 return 0; 5009 } 5010 5011 /* 5012 ** We added the xGetLastError() method with the intention of providing 5013 ** better low-level error messages when operating-system problems come up 5014 ** during SQLite operation. But so far, none of that has been implemented 5015 ** in the core. So this routine is never called. For now, it is merely 5016 ** a place-holder. 5017 */ 5018 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){ 5019 UNUSED_PARAMETER(NotUsed); 5020 UNUSED_PARAMETER(NotUsed2); 5021 UNUSED_PARAMETER(NotUsed3); 5022 return 0; 5023 } 5024 5025 5026 /* 5027 ************************ End of sqlite3_vfs methods *************************** 5028 ******************************************************************************/ 5029 5030 /****************************************************************************** 5031 ************************** Begin Proxy Locking ******************************** 5032 ** 5033 ** Proxy locking is a "uber-locking-method" in this sense: It uses the 5034 ** other locking methods on secondary lock files. Proxy locking is a 5035 ** meta-layer over top of the primitive locking implemented above. For 5036 ** this reason, the division that implements of proxy locking is deferred 5037 ** until late in the file (here) after all of the other I/O methods have 5038 ** been defined - so that the primitive locking methods are available 5039 ** as services to help with the implementation of proxy locking. 5040 ** 5041 **** 5042 ** 5043 ** The default locking schemes in SQLite use byte-range locks on the 5044 ** database file to coordinate safe, concurrent access by multiple readers 5045 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking 5046 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented 5047 ** as POSIX read & write locks over fixed set of locations (via fsctl), 5048 ** on AFP and SMB only exclusive byte-range locks are available via fsctl 5049 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states. 5050 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected 5051 ** address in the shared range is taken for a SHARED lock, the entire 5052 ** shared range is taken for an EXCLUSIVE lock): 5053 ** 5054 ** PENDING_BYTE 0x40000000 5055 ** RESERVED_BYTE 0x40000001 5056 ** SHARED_RANGE 0x40000002 -> 0x40000200 5057 ** 5058 ** This works well on the local file system, but shows a nearly 100x 5059 ** slowdown in read performance on AFP because the AFP client disables 5060 ** the read cache when byte-range locks are present. Enabling the read 5061 ** cache exposes a cache coherency problem that is present on all OS X 5062 ** supported network file systems. NFS and AFP both observe the 5063 ** close-to-open semantics for ensuring cache coherency 5064 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively 5065 ** address the requirements for concurrent database access by multiple 5066 ** readers and writers 5067 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html]. 5068 ** 5069 ** To address the performance and cache coherency issues, proxy file locking 5070 ** changes the way database access is controlled by limiting access to a 5071 ** single host at a time and moving file locks off of the database file 5072 ** and onto a proxy file on the local file system. 5073 ** 5074 ** 5075 ** Using proxy locks 5076 ** ----------------- 5077 ** 5078 ** C APIs 5079 ** 5080 ** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE, 5081 ** <proxy_path> | ":auto:"); 5082 ** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>); 5083 ** 5084 ** 5085 ** SQL pragmas 5086 ** 5087 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto: 5088 ** PRAGMA [database.]lock_proxy_file 5089 ** 5090 ** Specifying ":auto:" means that if there is a conch file with a matching 5091 ** host ID in it, the proxy path in the conch file will be used, otherwise 5092 ** a proxy path based on the user's temp dir 5093 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the 5094 ** actual proxy file name is generated from the name and path of the 5095 ** database file. For example: 5096 ** 5097 ** For database path "/Users/me/foo.db" 5098 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:") 5099 ** 5100 ** Once a lock proxy is configured for a database connection, it can not 5101 ** be removed, however it may be switched to a different proxy path via 5102 ** the above APIs (assuming the conch file is not being held by another 5103 ** connection or process). 5104 ** 5105 ** 5106 ** How proxy locking works 5107 ** ----------------------- 5108 ** 5109 ** Proxy file locking relies primarily on two new supporting files: 5110 ** 5111 ** * conch file to limit access to the database file to a single host 5112 ** at a time 5113 ** 5114 ** * proxy file to act as a proxy for the advisory locks normally 5115 ** taken on the database 5116 ** 5117 ** The conch file - to use a proxy file, sqlite must first "hold the conch" 5118 ** by taking an sqlite-style shared lock on the conch file, reading the 5119 ** contents and comparing the host's unique host ID (see below) and lock 5120 ** proxy path against the values stored in the conch. The conch file is 5121 ** stored in the same directory as the database file and the file name 5122 ** is patterned after the database file name as ".<databasename>-conch". 5123 ** If the conch file does not exist, or it's contents do not match the 5124 ** host ID and/or proxy path, then the lock is escalated to an exclusive 5125 ** lock and the conch file contents is updated with the host ID and proxy 5126 ** path and the lock is downgraded to a shared lock again. If the conch 5127 ** is held by another process (with a shared lock), the exclusive lock 5128 ** will fail and SQLITE_BUSY is returned. 5129 ** 5130 ** The proxy file - a single-byte file used for all advisory file locks 5131 ** normally taken on the database file. This allows for safe sharing 5132 ** of the database file for multiple readers and writers on the same 5133 ** host (the conch ensures that they all use the same local lock file). 5134 ** 5135 ** Requesting the lock proxy does not immediately take the conch, it is 5136 ** only taken when the first request to lock database file is made. 5137 ** This matches the semantics of the traditional locking behavior, where 5138 ** opening a connection to a database file does not take a lock on it. 5139 ** The shared lock and an open file descriptor are maintained until 5140 ** the connection to the database is closed. 5141 ** 5142 ** The proxy file and the lock file are never deleted so they only need 5143 ** to be created the first time they are used. 5144 ** 5145 ** Configuration options 5146 ** --------------------- 5147 ** 5148 ** SQLITE_PREFER_PROXY_LOCKING 5149 ** 5150 ** Database files accessed on non-local file systems are 5151 ** automatically configured for proxy locking, lock files are 5152 ** named automatically using the same logic as 5153 ** PRAGMA lock_proxy_file=":auto:" 5154 ** 5155 ** SQLITE_PROXY_DEBUG 5156 ** 5157 ** Enables the logging of error messages during host id file 5158 ** retrieval and creation 5159 ** 5160 ** LOCKPROXYDIR 5161 ** 5162 ** Overrides the default directory used for lock proxy files that 5163 ** are named automatically via the ":auto:" setting 5164 ** 5165 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 5166 ** 5167 ** Permissions to use when creating a directory for storing the 5168 ** lock proxy files, only used when LOCKPROXYDIR is not set. 5169 ** 5170 ** 5171 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, 5172 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will 5173 ** force proxy locking to be used for every database file opened, and 0 5174 ** will force automatic proxy locking to be disabled for all database 5175 ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or 5176 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). 5177 */ 5178 5179 /* 5180 ** Proxy locking is only available on MacOSX 5181 */ 5182 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE 5183 5184 /* 5185 ** The proxyLockingContext has the path and file structures for the remote 5186 ** and local proxy files in it 5187 */ 5188 typedef struct proxyLockingContext proxyLockingContext; 5189 struct proxyLockingContext { 5190 unixFile *conchFile; /* Open conch file */ 5191 char *conchFilePath; /* Name of the conch file */ 5192 unixFile *lockProxy; /* Open proxy lock file */ 5193 char *lockProxyPath; /* Name of the proxy lock file */ 5194 char *dbPath; /* Name of the open file */ 5195 int conchHeld; /* 1 if the conch is held, -1 if lockless */ 5196 void *oldLockingContext; /* Original lockingcontext to restore on close */ 5197 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */ 5198 }; 5199 5200 /* 5201 ** The proxy lock file path for the database at dbPath is written into lPath, 5202 ** which must point to valid, writable memory large enough for a maxLen length 5203 ** file path. 5204 */ 5205 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){ 5206 int len; 5207 int dbLen; 5208 int i; 5209 5210 #ifdef LOCKPROXYDIR 5211 len = strlcpy(lPath, LOCKPROXYDIR, maxLen); 5212 #else 5213 # ifdef _CS_DARWIN_USER_TEMP_DIR 5214 { 5215 if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ 5216 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", 5217 lPath, errno, getpid())); 5218 return SQLITE_IOERR_LOCK; 5219 } 5220 len = strlcat(lPath, "sqliteplocks", maxLen); 5221 } 5222 # else 5223 len = strlcpy(lPath, "/tmp/", maxLen); 5224 # endif 5225 #endif 5226 5227 if( lPath[len-1]!='/' ){ 5228 len = strlcat(lPath, "/", maxLen); 5229 } 5230 5231 /* transform the db path to a unique cache name */ 5232 dbLen = (int)strlen(dbPath); 5233 for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ 5234 char c = dbPath[i]; 5235 lPath[i+len] = (c=='/')?'_':c; 5236 } 5237 lPath[i+len]='\0'; 5238 strlcat(lPath, ":auto:", maxLen); 5239 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, getpid())); 5240 return SQLITE_OK; 5241 } 5242 5243 /* 5244 ** Creates the lock file and any missing directories in lockPath 5245 */ 5246 static int proxyCreateLockPath(const char *lockPath){ 5247 int i, len; 5248 char buf[MAXPATHLEN]; 5249 int start = 0; 5250 5251 assert(lockPath!=NULL); 5252 /* try to create all the intermediate directories */ 5253 len = (int)strlen(lockPath); 5254 buf[0] = lockPath[0]; 5255 for( i=1; i<len; i++ ){ 5256 if( lockPath[i] == '/' && (i - start > 0) ){ 5257 /* only mkdir if leaf dir != "." or "/" or ".." */ 5258 if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') 5259 || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ 5260 buf[i]='\0'; 5261 if( mkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ 5262 int err=errno; 5263 if( err!=EEXIST ) { 5264 OSTRACE(("CREATELOCKPATH FAILED creating %s, " 5265 "'%s' proxy lock path=%s pid=%d\n", 5266 buf, strerror(err), lockPath, getpid())); 5267 return err; 5268 } 5269 } 5270 } 5271 start=i+1; 5272 } 5273 buf[i] = lockPath[i]; 5274 } 5275 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid())); 5276 return 0; 5277 } 5278 5279 /* 5280 ** Create a new VFS file descriptor (stored in memory obtained from 5281 ** sqlite3_malloc) and open the file named "path" in the file descriptor. 5282 ** 5283 ** The caller is responsible not only for closing the file descriptor 5284 ** but also for freeing the memory associated with the file descriptor. 5285 */ 5286 static int proxyCreateUnixFile( 5287 const char *path, /* path for the new unixFile */ 5288 unixFile **ppFile, /* unixFile created and returned by ref */ 5289 int islockfile /* if non zero missing dirs will be created */ 5290 ) { 5291 int fd = -1; 5292 int dirfd = -1; 5293 unixFile *pNew; 5294 int rc = SQLITE_OK; 5295 int openFlags = O_RDWR | O_CREAT; 5296 sqlite3_vfs dummyVfs; 5297 int terrno = 0; 5298 UnixUnusedFd *pUnused = NULL; 5299 5300 /* 1. first try to open/create the file 5301 ** 2. if that fails, and this is a lock file (not-conch), try creating 5302 ** the parent directories and then try again. 5303 ** 3. if that fails, try to open the file read-only 5304 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file 5305 */ 5306 pUnused = findReusableFd(path, openFlags); 5307 if( pUnused ){ 5308 fd = pUnused->fd; 5309 }else{ 5310 pUnused = sqlite3_malloc(sizeof(*pUnused)); 5311 if( !pUnused ){ 5312 return SQLITE_NOMEM; 5313 } 5314 } 5315 if( fd<0 ){ 5316 fd = open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); 5317 terrno = errno; 5318 if( fd<0 && errno==ENOENT && islockfile ){ 5319 if( proxyCreateLockPath(path) == SQLITE_OK ){ 5320 fd = open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); 5321 } 5322 } 5323 } 5324 if( fd<0 ){ 5325 openFlags = O_RDONLY; 5326 fd = open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS); 5327 terrno = errno; 5328 } 5329 if( fd<0 ){ 5330 if( islockfile ){ 5331 return SQLITE_BUSY; 5332 } 5333 switch (terrno) { 5334 case EACCES: 5335 return SQLITE_PERM; 5336 case EIO: 5337 return SQLITE_IOERR_LOCK; /* even though it is the conch */ 5338 default: 5339 return SQLITE_CANTOPEN_BKPT; 5340 } 5341 } 5342 5343 pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew)); 5344 if( pNew==NULL ){ 5345 rc = SQLITE_NOMEM; 5346 goto end_create_proxy; 5347 } 5348 memset(pNew, 0, sizeof(unixFile)); 5349 pNew->openFlags = openFlags; 5350 dummyVfs.pAppData = (void*)&autolockIoFinder; 5351 pUnused->fd = fd; 5352 pUnused->flags = openFlags; 5353 pNew->pUnused = pUnused; 5354 5355 rc = fillInUnixFile(&dummyVfs, fd, dirfd, (sqlite3_file*)pNew, path, 0, 0); 5356 if( rc==SQLITE_OK ){ 5357 *ppFile = pNew; 5358 return SQLITE_OK; 5359 } 5360 end_create_proxy: 5361 close(fd); /* silently leak fd if error, we're already in error */ 5362 sqlite3_free(pNew); 5363 sqlite3_free(pUnused); 5364 return rc; 5365 } 5366 5367 #ifdef SQLITE_TEST 5368 /* simulate multiple hosts by creating unique hostid file paths */ 5369 int sqlite3_hostid_num = 0; 5370 #endif 5371 5372 #define PROXY_HOSTIDLEN 16 /* conch file host id length */ 5373 5374 /* Not always defined in the headers as it ought to be */ 5375 extern int gethostuuid(uuid_t id, const struct timespec *wait); 5376 5377 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN 5378 ** bytes of writable memory. 5379 */ 5380 static int proxyGetHostID(unsigned char *pHostID, int *pError){ 5381 struct timespec timeout = {1, 0}; /* 1 sec timeout */ 5382 5383 assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); 5384 memset(pHostID, 0, PROXY_HOSTIDLEN); 5385 if( gethostuuid(pHostID, &timeout) ){ 5386 int err = errno; 5387 if( pError ){ 5388 *pError = err; 5389 } 5390 return SQLITE_IOERR; 5391 } 5392 #ifdef SQLITE_TEST 5393 /* simulate multiple hosts by creating unique hostid file paths */ 5394 if( sqlite3_hostid_num != 0){ 5395 pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF)); 5396 } 5397 #endif 5398 5399 return SQLITE_OK; 5400 } 5401 5402 /* The conch file contains the header, host id and lock file path 5403 */ 5404 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */ 5405 #define PROXY_HEADERLEN 1 /* conch file header length */ 5406 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN) 5407 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN) 5408 5409 /* 5410 ** Takes an open conch file, copies the contents to a new path and then moves 5411 ** it back. The newly created file's file descriptor is assigned to the 5412 ** conch file structure and finally the original conch file descriptor is 5413 ** closed. Returns zero if successful. 5414 */ 5415 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){ 5416 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 5417 unixFile *conchFile = pCtx->conchFile; 5418 char tPath[MAXPATHLEN]; 5419 char buf[PROXY_MAXCONCHLEN]; 5420 char *cPath = pCtx->conchFilePath; 5421 size_t readLen = 0; 5422 size_t pathLen = 0; 5423 char errmsg[64] = ""; 5424 int fd = -1; 5425 int rc = -1; 5426 UNUSED_PARAMETER(myHostID); 5427 5428 /* create a new path by replace the trailing '-conch' with '-break' */ 5429 pathLen = strlcpy(tPath, cPath, MAXPATHLEN); 5430 if( pathLen>MAXPATHLEN || pathLen<6 || 5431 (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ 5432 sprintf(errmsg, "path error (len %d)", (int)pathLen); 5433 goto end_breaklock; 5434 } 5435 /* read the conch content */ 5436 readLen = pread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); 5437 if( readLen<PROXY_PATHINDEX ){ 5438 sprintf(errmsg, "read error (len %d)", (int)readLen); 5439 goto end_breaklock; 5440 } 5441 /* write it out to the temporary break file */ 5442 fd = open(tPath, (O_RDWR|O_CREAT|O_EXCL), SQLITE_DEFAULT_FILE_PERMISSIONS); 5443 if( fd<0 ){ 5444 sprintf(errmsg, "create failed (%d)", errno); 5445 goto end_breaklock; 5446 } 5447 if( pwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){ 5448 sprintf(errmsg, "write failed (%d)", errno); 5449 goto end_breaklock; 5450 } 5451 if( rename(tPath, cPath) ){ 5452 sprintf(errmsg, "rename failed (%d)", errno); 5453 goto end_breaklock; 5454 } 5455 rc = 0; 5456 fprintf(stderr, "broke stale lock on %s\n", cPath); 5457 close(conchFile->h); 5458 conchFile->h = fd; 5459 conchFile->openFlags = O_RDWR | O_CREAT; 5460 5461 end_breaklock: 5462 if( rc ){ 5463 if( fd>=0 ){ 5464 unlink(tPath); 5465 close(fd); 5466 } 5467 fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); 5468 } 5469 return rc; 5470 } 5471 5472 /* Take the requested lock on the conch file and break a stale lock if the 5473 ** host id matches. 5474 */ 5475 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){ 5476 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 5477 unixFile *conchFile = pCtx->conchFile; 5478 int rc = SQLITE_OK; 5479 int nTries = 0; 5480 struct timespec conchModTime; 5481 5482 do { 5483 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); 5484 nTries ++; 5485 if( rc==SQLITE_BUSY ){ 5486 /* If the lock failed (busy): 5487 * 1st try: get the mod time of the conch, wait 0.5s and try again. 5488 * 2nd try: fail if the mod time changed or host id is different, wait 5489 * 10 sec and try again 5490 * 3rd try: break the lock unless the mod time has changed. 5491 */ 5492 struct stat buf; 5493 if( fstat(conchFile->h, &buf) ){ 5494 pFile->lastErrno = errno; 5495 return SQLITE_IOERR_LOCK; 5496 } 5497 5498 if( nTries==1 ){ 5499 conchModTime = buf.st_mtimespec; 5500 usleep(500000); /* wait 0.5 sec and try the lock again*/ 5501 continue; 5502 } 5503 5504 assert( nTries>1 ); 5505 if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || 5506 conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ 5507 return SQLITE_BUSY; 5508 } 5509 5510 if( nTries==2 ){ 5511 char tBuf[PROXY_MAXCONCHLEN]; 5512 int len = pread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); 5513 if( len<0 ){ 5514 pFile->lastErrno = errno; 5515 return SQLITE_IOERR_LOCK; 5516 } 5517 if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ 5518 /* don't break the lock if the host id doesn't match */ 5519 if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ 5520 return SQLITE_BUSY; 5521 } 5522 }else{ 5523 /* don't break the lock on short read or a version mismatch */ 5524 return SQLITE_BUSY; 5525 } 5526 usleep(10000000); /* wait 10 sec and try the lock again */ 5527 continue; 5528 } 5529 5530 assert( nTries==3 ); 5531 if( 0==proxyBreakConchLock(pFile, myHostID) ){ 5532 rc = SQLITE_OK; 5533 if( lockType==EXCLUSIVE_LOCK ){ 5534 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK); 5535 } 5536 if( !rc ){ 5537 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); 5538 } 5539 } 5540 } 5541 } while( rc==SQLITE_BUSY && nTries<3 ); 5542 5543 return rc; 5544 } 5545 5546 /* Takes the conch by taking a shared lock and read the contents conch, if 5547 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL 5548 ** lockPath means that the lockPath in the conch file will be used if the 5549 ** host IDs match, or a new lock path will be generated automatically 5550 ** and written to the conch file. 5551 */ 5552 static int proxyTakeConch(unixFile *pFile){ 5553 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 5554 5555 if( pCtx->conchHeld!=0 ){ 5556 return SQLITE_OK; 5557 }else{ 5558 unixFile *conchFile = pCtx->conchFile; 5559 uuid_t myHostID; 5560 int pError = 0; 5561 char readBuf[PROXY_MAXCONCHLEN]; 5562 char lockPath[MAXPATHLEN]; 5563 char *tempLockPath = NULL; 5564 int rc = SQLITE_OK; 5565 int createConch = 0; 5566 int hostIdMatch = 0; 5567 int readLen = 0; 5568 int tryOldLockPath = 0; 5569 int forceNewLockPath = 0; 5570 5571 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, 5572 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid())); 5573 5574 rc = proxyGetHostID(myHostID, &pError); 5575 if( (rc&0xff)==SQLITE_IOERR ){ 5576 pFile->lastErrno = pError; 5577 goto end_takeconch; 5578 } 5579 rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); 5580 if( rc!=SQLITE_OK ){ 5581 goto end_takeconch; 5582 } 5583 /* read the existing conch file */ 5584 readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN); 5585 if( readLen<0 ){ 5586 /* I/O error: lastErrno set by seekAndRead */ 5587 pFile->lastErrno = conchFile->lastErrno; 5588 rc = SQLITE_IOERR_READ; 5589 goto end_takeconch; 5590 }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || 5591 readBuf[0]!=(char)PROXY_CONCHVERSION ){ 5592 /* a short read or version format mismatch means we need to create a new 5593 ** conch file. 5594 */ 5595 createConch = 1; 5596 } 5597 /* if the host id matches and the lock path already exists in the conch 5598 ** we'll try to use the path there, if we can't open that path, we'll 5599 ** retry with a new auto-generated path 5600 */ 5601 do { /* in case we need to try again for an :auto: named lock file */ 5602 5603 if( !createConch && !forceNewLockPath ){ 5604 hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, 5605 PROXY_HOSTIDLEN); 5606 /* if the conch has data compare the contents */ 5607 if( !pCtx->lockProxyPath ){ 5608 /* for auto-named local lock file, just check the host ID and we'll 5609 ** use the local lock file path that's already in there 5610 */ 5611 if( hostIdMatch ){ 5612 size_t pathLen = (readLen - PROXY_PATHINDEX); 5613 5614 if( pathLen>=MAXPATHLEN ){ 5615 pathLen=MAXPATHLEN-1; 5616 } 5617 memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen); 5618 lockPath[pathLen] = 0; 5619 tempLockPath = lockPath; 5620 tryOldLockPath = 1; 5621 /* create a copy of the lock path if the conch is taken */ 5622 goto end_takeconch; 5623 } 5624 }else if( hostIdMatch 5625 && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX], 5626 readLen-PROXY_PATHINDEX) 5627 ){ 5628 /* conch host and lock path match */ 5629 goto end_takeconch; 5630 } 5631 } 5632 5633 /* if the conch isn't writable and doesn't match, we can't take it */ 5634 if( (conchFile->openFlags&O_RDWR) == 0 ){ 5635 rc = SQLITE_BUSY; 5636 goto end_takeconch; 5637 } 5638 5639 /* either the conch didn't match or we need to create a new one */ 5640 if( !pCtx->lockProxyPath ){ 5641 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN); 5642 tempLockPath = lockPath; 5643 /* create a copy of the lock path _only_ if the conch is taken */ 5644 } 5645 5646 /* update conch with host and path (this will fail if other process 5647 ** has a shared lock already), if the host id matches, use the big 5648 ** stick. 5649 */ 5650 futimes(conchFile->h, NULL); 5651 if( hostIdMatch && !createConch ){ 5652 if( conchFile->pInode && conchFile->pInode->nShared>1 ){ 5653 /* We are trying for an exclusive lock but another thread in this 5654 ** same process is still holding a shared lock. */ 5655 rc = SQLITE_BUSY; 5656 } else { 5657 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); 5658 } 5659 }else{ 5660 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK); 5661 } 5662 if( rc==SQLITE_OK ){ 5663 char writeBuffer[PROXY_MAXCONCHLEN]; 5664 int writeSize = 0; 5665 5666 writeBuffer[0] = (char)PROXY_CONCHVERSION; 5667 memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); 5668 if( pCtx->lockProxyPath!=NULL ){ 5669 strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN); 5670 }else{ 5671 strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); 5672 } 5673 writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); 5674 ftruncate(conchFile->h, writeSize); 5675 rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); 5676 fsync(conchFile->h); 5677 /* If we created a new conch file (not just updated the contents of a 5678 ** valid conch file), try to match the permissions of the database 5679 */ 5680 if( rc==SQLITE_OK && createConch ){ 5681 struct stat buf; 5682 int err = fstat(pFile->h, &buf); 5683 if( err==0 ){ 5684 mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | 5685 S_IROTH|S_IWOTH); 5686 /* try to match the database file R/W permissions, ignore failure */ 5687 #ifndef SQLITE_PROXY_DEBUG 5688 fchmod(conchFile->h, cmode); 5689 #else 5690 if( fchmod(conchFile->h, cmode)!=0 ){ 5691 int code = errno; 5692 fprintf(stderr, "fchmod %o FAILED with %d %s\n", 5693 cmode, code, strerror(code)); 5694 } else { 5695 fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); 5696 } 5697 }else{ 5698 int code = errno; 5699 fprintf(stderr, "STAT FAILED[%d] with %d %s\n", 5700 err, code, strerror(code)); 5701 #endif 5702 } 5703 } 5704 } 5705 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); 5706 5707 end_takeconch: 5708 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); 5709 if( rc==SQLITE_OK && pFile->openFlags ){ 5710 if( pFile->h>=0 ){ 5711 #ifdef STRICT_CLOSE_ERROR 5712 if( close(pFile->h) ){ 5713 pFile->lastErrno = errno; 5714 return SQLITE_IOERR_CLOSE; 5715 } 5716 #else 5717 close(pFile->h); /* silently leak fd if fail */ 5718 #endif 5719 } 5720 pFile->h = -1; 5721 int fd = open(pCtx->dbPath, pFile->openFlags, 5722 SQLITE_DEFAULT_FILE_PERMISSIONS); 5723 OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); 5724 if( fd>=0 ){ 5725 pFile->h = fd; 5726 }else{ 5727 rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called 5728 during locking */ 5729 } 5730 } 5731 if( rc==SQLITE_OK && !pCtx->lockProxy ){ 5732 char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath; 5733 rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1); 5734 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){ 5735 /* we couldn't create the proxy lock file with the old lock file path 5736 ** so try again via auto-naming 5737 */ 5738 forceNewLockPath = 1; 5739 tryOldLockPath = 0; 5740 continue; /* go back to the do {} while start point, try again */ 5741 } 5742 } 5743 if( rc==SQLITE_OK ){ 5744 /* Need to make a copy of path if we extracted the value 5745 ** from the conch file or the path was allocated on the stack 5746 */ 5747 if( tempLockPath ){ 5748 pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath); 5749 if( !pCtx->lockProxyPath ){ 5750 rc = SQLITE_NOMEM; 5751 } 5752 } 5753 } 5754 if( rc==SQLITE_OK ){ 5755 pCtx->conchHeld = 1; 5756 5757 if( pCtx->lockProxy->pMethod == &afpIoMethods ){ 5758 afpLockingContext *afpCtx; 5759 afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext; 5760 afpCtx->dbPath = pCtx->lockProxyPath; 5761 } 5762 } else { 5763 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); 5764 } 5765 OSTRACE(("TAKECONCH %d %s\n", conchFile->h, 5766 rc==SQLITE_OK?"ok":"failed")); 5767 return rc; 5768 } while (1); /* in case we need to retry the :auto: lock file - 5769 ** we should never get here except via the 'continue' call. */ 5770 } 5771 } 5772 5773 /* 5774 ** If pFile holds a lock on a conch file, then release that lock. 5775 */ 5776 static int proxyReleaseConch(unixFile *pFile){ 5777 int rc = SQLITE_OK; /* Subroutine return code */ 5778 proxyLockingContext *pCtx; /* The locking context for the proxy lock */ 5779 unixFile *conchFile; /* Name of the conch file */ 5780 5781 pCtx = (proxyLockingContext *)pFile->lockingContext; 5782 conchFile = pCtx->conchFile; 5783 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, 5784 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), 5785 getpid())); 5786 if( pCtx->conchHeld>0 ){ 5787 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); 5788 } 5789 pCtx->conchHeld = 0; 5790 OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, 5791 (rc==SQLITE_OK ? "ok" : "failed"))); 5792 return rc; 5793 } 5794 5795 /* 5796 ** Given the name of a database file, compute the name of its conch file. 5797 ** Store the conch filename in memory obtained from sqlite3_malloc(). 5798 ** Make *pConchPath point to the new name. Return SQLITE_OK on success 5799 ** or SQLITE_NOMEM if unable to obtain memory. 5800 ** 5801 ** The caller is responsible for ensuring that the allocated memory 5802 ** space is eventually freed. 5803 ** 5804 ** *pConchPath is set to NULL if a memory allocation error occurs. 5805 */ 5806 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){ 5807 int i; /* Loop counter */ 5808 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */ 5809 char *conchPath; /* buffer in which to construct conch name */ 5810 5811 /* Allocate space for the conch filename and initialize the name to 5812 ** the name of the original database file. */ 5813 *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8); 5814 if( conchPath==0 ){ 5815 return SQLITE_NOMEM; 5816 } 5817 memcpy(conchPath, dbPath, len+1); 5818 5819 /* now insert a "." before the last / character */ 5820 for( i=(len-1); i>=0; i-- ){ 5821 if( conchPath[i]=='/' ){ 5822 i++; 5823 break; 5824 } 5825 } 5826 conchPath[i]='.'; 5827 while ( i<len ){ 5828 conchPath[i+1]=dbPath[i]; 5829 i++; 5830 } 5831 5832 /* append the "-conch" suffix to the file */ 5833 memcpy(&conchPath[i+1], "-conch", 7); 5834 assert( (int)strlen(conchPath) == len+7 ); 5835 5836 return SQLITE_OK; 5837 } 5838 5839 5840 /* Takes a fully configured proxy locking-style unix file and switches 5841 ** the local lock file path 5842 */ 5843 static int switchLockProxyPath(unixFile *pFile, const char *path) { 5844 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; 5845 char *oldPath = pCtx->lockProxyPath; 5846 int rc = SQLITE_OK; 5847 5848 if( pFile->eFileLock!=NO_LOCK ){ 5849 return SQLITE_BUSY; 5850 } 5851 5852 /* nothing to do if the path is NULL, :auto: or matches the existing path */ 5853 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") || 5854 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){ 5855 return SQLITE_OK; 5856 }else{ 5857 unixFile *lockProxy = pCtx->lockProxy; 5858 pCtx->lockProxy=NULL; 5859 pCtx->conchHeld = 0; 5860 if( lockProxy!=NULL ){ 5861 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy); 5862 if( rc ) return rc; 5863 sqlite3_free(lockProxy); 5864 } 5865 sqlite3_free(oldPath); 5866 pCtx->lockProxyPath = sqlite3DbStrDup(0, path); 5867 } 5868 5869 return rc; 5870 } 5871 5872 /* 5873 ** pFile is a file that has been opened by a prior xOpen call. dbPath 5874 ** is a string buffer at least MAXPATHLEN+1 characters in size. 5875 ** 5876 ** This routine find the filename associated with pFile and writes it 5877 ** int dbPath. 5878 */ 5879 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){ 5880 #if defined(__APPLE__) 5881 if( pFile->pMethod == &afpIoMethods ){ 5882 /* afp style keeps a reference to the db path in the filePath field 5883 ** of the struct */ 5884 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); 5885 strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN); 5886 } else 5887 #endif 5888 if( pFile->pMethod == &dotlockIoMethods ){ 5889 /* dot lock style uses the locking context to store the dot lock 5890 ** file path */ 5891 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX); 5892 memcpy(dbPath, (char *)pFile->lockingContext, len + 1); 5893 }else{ 5894 /* all other styles use the locking context to store the db file path */ 5895 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); 5896 strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN); 5897 } 5898 return SQLITE_OK; 5899 } 5900 5901 /* 5902 ** Takes an already filled in unix file and alters it so all file locking 5903 ** will be performed on the local proxy lock file. The following fields 5904 ** are preserved in the locking context so that they can be restored and 5905 ** the unix structure properly cleaned up at close time: 5906 ** ->lockingContext 5907 ** ->pMethod 5908 */ 5909 static int proxyTransformUnixFile(unixFile *pFile, const char *path) { 5910 proxyLockingContext *pCtx; 5911 char dbPath[MAXPATHLEN+1]; /* Name of the database file */ 5912 char *lockPath=NULL; 5913 int rc = SQLITE_OK; 5914 5915 if( pFile->eFileLock!=NO_LOCK ){ 5916 return SQLITE_BUSY; 5917 } 5918 proxyGetDbPathForUnixFile(pFile, dbPath); 5919 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ 5920 lockPath=NULL; 5921 }else{ 5922 lockPath=(char *)path; 5923 } 5924 5925 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, 5926 (lockPath ? lockPath : ":auto:"), getpid())); 5927 5928 pCtx = sqlite3_malloc( sizeof(*pCtx) ); 5929 if( pCtx==0 ){ 5930 return SQLITE_NOMEM; 5931 } 5932 memset(pCtx, 0, sizeof(*pCtx)); 5933 5934 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath); 5935 if( rc==SQLITE_OK ){ 5936 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0); 5937 if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){ 5938 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and 5939 ** (c) the file system is read-only, then enable no-locking access. 5940 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts 5941 ** that openFlags will have only one of O_RDONLY or O_RDWR. 5942 */ 5943 struct statfs fsInfo; 5944 struct stat conchInfo; 5945 int goLockless = 0; 5946 5947 if( stat(pCtx->conchFilePath, &conchInfo) == -1 ) { 5948 int err = errno; 5949 if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ 5950 goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; 5951 } 5952 } 5953 if( goLockless ){ 5954 pCtx->conchHeld = -1; /* read only FS/ lockless */ 5955 rc = SQLITE_OK; 5956 } 5957 } 5958 } 5959 if( rc==SQLITE_OK && lockPath ){ 5960 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath); 5961 } 5962 5963 if( rc==SQLITE_OK ){ 5964 pCtx->dbPath = sqlite3DbStrDup(0, dbPath); 5965 if( pCtx->dbPath==NULL ){ 5966 rc = SQLITE_NOMEM; 5967 } 5968 } 5969 if( rc==SQLITE_OK ){ 5970 /* all memory is allocated, proxys are created and assigned, 5971 ** switch the locking context and pMethod then return. 5972 */ 5973 pCtx->oldLockingContext = pFile->lockingContext; 5974 pFile->lockingContext = pCtx; 5975 pCtx->pOldMethod = pFile->pMethod; 5976 pFile->pMethod = &proxyIoMethods; 5977 }else{ 5978 if( pCtx->conchFile ){ 5979 pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); 5980 sqlite3_free(pCtx->conchFile); 5981 } 5982 sqlite3DbFree(0, pCtx->lockProxyPath); 5983 sqlite3_free(pCtx->conchFilePath); 5984 sqlite3_free(pCtx); 5985 } 5986 OSTRACE(("TRANSPROXY %d %s\n", pFile->h, 5987 (rc==SQLITE_OK ? "ok" : "failed"))); 5988 return rc; 5989 } 5990 5991 5992 /* 5993 ** This routine handles sqlite3_file_control() calls that are specific 5994 ** to proxy locking. 5995 */ 5996 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ 5997 switch( op ){ 5998 case SQLITE_GET_LOCKPROXYFILE: { 5999 unixFile *pFile = (unixFile*)id; 6000 if( pFile->pMethod == &proxyIoMethods ){ 6001 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; 6002 proxyTakeConch(pFile); 6003 if( pCtx->lockProxyPath ){ 6004 *(const char **)pArg = pCtx->lockProxyPath; 6005 }else{ 6006 *(const char **)pArg = ":auto: (not held)"; 6007 } 6008 } else { 6009 *(const char **)pArg = NULL; 6010 } 6011 return SQLITE_OK; 6012 } 6013 case SQLITE_SET_LOCKPROXYFILE: { 6014 unixFile *pFile = (unixFile*)id; 6015 int rc = SQLITE_OK; 6016 int isProxyStyle = (pFile->pMethod == &proxyIoMethods); 6017 if( pArg==NULL || (const char *)pArg==0 ){ 6018 if( isProxyStyle ){ 6019 /* turn off proxy locking - not supported */ 6020 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/; 6021 }else{ 6022 /* turn off proxy locking - already off - NOOP */ 6023 rc = SQLITE_OK; 6024 } 6025 }else{ 6026 const char *proxyPath = (const char *)pArg; 6027 if( isProxyStyle ){ 6028 proxyLockingContext *pCtx = 6029 (proxyLockingContext*)pFile->lockingContext; 6030 if( !strcmp(pArg, ":auto:") 6031 || (pCtx->lockProxyPath && 6032 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN)) 6033 ){ 6034 rc = SQLITE_OK; 6035 }else{ 6036 rc = switchLockProxyPath(pFile, proxyPath); 6037 } 6038 }else{ 6039 /* turn on proxy file locking */ 6040 rc = proxyTransformUnixFile(pFile, proxyPath); 6041 } 6042 } 6043 return rc; 6044 } 6045 default: { 6046 assert( 0 ); /* The call assures that only valid opcodes are sent */ 6047 } 6048 } 6049 /*NOTREACHED*/ 6050 return SQLITE_ERROR; 6051 } 6052 6053 /* 6054 ** Within this division (the proxying locking implementation) the procedures 6055 ** above this point are all utilities. The lock-related methods of the 6056 ** proxy-locking sqlite3_io_method object follow. 6057 */ 6058 6059 6060 /* 6061 ** This routine checks if there is a RESERVED lock held on the specified 6062 ** file by this or any other process. If such a lock is held, set *pResOut 6063 ** to a non-zero value otherwise *pResOut is set to zero. The return value 6064 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. 6065 */ 6066 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) { 6067 unixFile *pFile = (unixFile*)id; 6068 int rc = proxyTakeConch(pFile); 6069 if( rc==SQLITE_OK ){ 6070 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 6071 if( pCtx->conchHeld>0 ){ 6072 unixFile *proxy = pCtx->lockProxy; 6073 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut); 6074 }else{ /* conchHeld < 0 is lockless */ 6075 pResOut=0; 6076 } 6077 } 6078 return rc; 6079 } 6080 6081 /* 6082 ** Lock the file with the lock specified by parameter eFileLock - one 6083 ** of the following: 6084 ** 6085 ** (1) SHARED_LOCK 6086 ** (2) RESERVED_LOCK 6087 ** (3) PENDING_LOCK 6088 ** (4) EXCLUSIVE_LOCK 6089 ** 6090 ** Sometimes when requesting one lock state, additional lock states 6091 ** are inserted in between. The locking might fail on one of the later 6092 ** transitions leaving the lock state different from what it started but 6093 ** still short of its goal. The following chart shows the allowed 6094 ** transitions and the inserted intermediate states: 6095 ** 6096 ** UNLOCKED -> SHARED 6097 ** SHARED -> RESERVED 6098 ** SHARED -> (PENDING) -> EXCLUSIVE 6099 ** RESERVED -> (PENDING) -> EXCLUSIVE 6100 ** PENDING -> EXCLUSIVE 6101 ** 6102 ** This routine will only increase a lock. Use the sqlite3OsUnlock() 6103 ** routine to lower a locking level. 6104 */ 6105 static int proxyLock(sqlite3_file *id, int eFileLock) { 6106 unixFile *pFile = (unixFile*)id; 6107 int rc = proxyTakeConch(pFile); 6108 if( rc==SQLITE_OK ){ 6109 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 6110 if( pCtx->conchHeld>0 ){ 6111 unixFile *proxy = pCtx->lockProxy; 6112 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock); 6113 pFile->eFileLock = proxy->eFileLock; 6114 }else{ 6115 /* conchHeld < 0 is lockless */ 6116 } 6117 } 6118 return rc; 6119 } 6120 6121 6122 /* 6123 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock 6124 ** must be either NO_LOCK or SHARED_LOCK. 6125 ** 6126 ** If the locking level of the file descriptor is already at or below 6127 ** the requested locking level, this routine is a no-op. 6128 */ 6129 static int proxyUnlock(sqlite3_file *id, int eFileLock) { 6130 unixFile *pFile = (unixFile*)id; 6131 int rc = proxyTakeConch(pFile); 6132 if( rc==SQLITE_OK ){ 6133 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 6134 if( pCtx->conchHeld>0 ){ 6135 unixFile *proxy = pCtx->lockProxy; 6136 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock); 6137 pFile->eFileLock = proxy->eFileLock; 6138 }else{ 6139 /* conchHeld < 0 is lockless */ 6140 } 6141 } 6142 return rc; 6143 } 6144 6145 /* 6146 ** Close a file that uses proxy locks. 6147 */ 6148 static int proxyClose(sqlite3_file *id) { 6149 if( id ){ 6150 unixFile *pFile = (unixFile*)id; 6151 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 6152 unixFile *lockProxy = pCtx->lockProxy; 6153 unixFile *conchFile = pCtx->conchFile; 6154 int rc = SQLITE_OK; 6155 6156 if( lockProxy ){ 6157 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK); 6158 if( rc ) return rc; 6159 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy); 6160 if( rc ) return rc; 6161 sqlite3_free(lockProxy); 6162 pCtx->lockProxy = 0; 6163 } 6164 if( conchFile ){ 6165 if( pCtx->conchHeld ){ 6166 rc = proxyReleaseConch(pFile); 6167 if( rc ) return rc; 6168 } 6169 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); 6170 if( rc ) return rc; 6171 sqlite3_free(conchFile); 6172 } 6173 sqlite3DbFree(0, pCtx->lockProxyPath); 6174 sqlite3_free(pCtx->conchFilePath); 6175 sqlite3DbFree(0, pCtx->dbPath); 6176 /* restore the original locking context and pMethod then close it */ 6177 pFile->lockingContext = pCtx->oldLockingContext; 6178 pFile->pMethod = pCtx->pOldMethod; 6179 sqlite3_free(pCtx); 6180 return pFile->pMethod->xClose(id); 6181 } 6182 return SQLITE_OK; 6183 } 6184 6185 6186 6187 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ 6188 /* 6189 ** The proxy locking style is intended for use with AFP filesystems. 6190 ** And since AFP is only supported on MacOSX, the proxy locking is also 6191 ** restricted to MacOSX. 6192 ** 6193 ** 6194 ******************* End of the proxy lock implementation ********************** 6195 ******************************************************************************/ 6196 6197 /* 6198 ** Initialize the operating system interface. 6199 ** 6200 ** This routine registers all VFS implementations for unix-like operating 6201 ** systems. This routine, and the sqlite3_os_end() routine that follows, 6202 ** should be the only routines in this file that are visible from other 6203 ** files. 6204 ** 6205 ** This routine is called once during SQLite initialization and by a 6206 ** single thread. The memory allocation and mutex subsystems have not 6207 ** necessarily been initialized when this routine is called, and so they 6208 ** should not be used. 6209 */ 6210 int sqlite3_os_init(void){ 6211 /* 6212 ** The following macro defines an initializer for an sqlite3_vfs object. 6213 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer 6214 ** to the "finder" function. (pAppData is a pointer to a pointer because 6215 ** silly C90 rules prohibit a void* from being cast to a function pointer 6216 ** and so we have to go through the intermediate pointer to avoid problems 6217 ** when compiling with -pedantic-errors on GCC.) 6218 ** 6219 ** The FINDER parameter to this macro is the name of the pointer to the 6220 ** finder-function. The finder-function returns a pointer to the 6221 ** sqlite_io_methods object that implements the desired locking 6222 ** behaviors. See the division above that contains the IOMETHODS 6223 ** macro for addition information on finder-functions. 6224 ** 6225 ** Most finders simply return a pointer to a fixed sqlite3_io_methods 6226 ** object. But the "autolockIoFinder" available on MacOSX does a little 6227 ** more than that; it looks at the filesystem type that hosts the 6228 ** database file and tries to choose an locking method appropriate for 6229 ** that filesystem time. 6230 */ 6231 #define UNIXVFS(VFSNAME, FINDER) { \ 6232 2, /* iVersion */ \ 6233 sizeof(unixFile), /* szOsFile */ \ 6234 MAX_PATHNAME, /* mxPathname */ \ 6235 0, /* pNext */ \ 6236 VFSNAME, /* zName */ \ 6237 (void*)&FINDER, /* pAppData */ \ 6238 unixOpen, /* xOpen */ \ 6239 unixDelete, /* xDelete */ \ 6240 unixAccess, /* xAccess */ \ 6241 unixFullPathname, /* xFullPathname */ \ 6242 unixDlOpen, /* xDlOpen */ \ 6243 unixDlError, /* xDlError */ \ 6244 unixDlSym, /* xDlSym */ \ 6245 unixDlClose, /* xDlClose */ \ 6246 unixRandomness, /* xRandomness */ \ 6247 unixSleep, /* xSleep */ \ 6248 unixCurrentTime, /* xCurrentTime */ \ 6249 unixGetLastError, /* xGetLastError */ \ 6250 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ 6251 } 6252 6253 /* 6254 ** All default VFSes for unix are contained in the following array. 6255 ** 6256 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified 6257 ** by the SQLite core when the VFS is registered. So the following 6258 ** array cannot be const. 6259 */ 6260 static sqlite3_vfs aVfs[] = { 6261 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__)) 6262 UNIXVFS("unix", autolockIoFinder ), 6263 #else 6264 UNIXVFS("unix", posixIoFinder ), 6265 #endif 6266 UNIXVFS("unix-none", nolockIoFinder ), 6267 UNIXVFS("unix-dotfile", dotlockIoFinder ), 6268 #if OS_VXWORKS 6269 UNIXVFS("unix-namedsem", semIoFinder ), 6270 #endif 6271 #if SQLITE_ENABLE_LOCKING_STYLE 6272 UNIXVFS("unix-posix", posixIoFinder ), 6273 #if !OS_VXWORKS 6274 UNIXVFS("unix-flock", flockIoFinder ), 6275 #endif 6276 #endif 6277 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) 6278 UNIXVFS("unix-afp", afpIoFinder ), 6279 UNIXVFS("unix-nfs", nfsIoFinder ), 6280 UNIXVFS("unix-proxy", proxyIoFinder ), 6281 #endif 6282 }; 6283 unsigned int i; /* Loop counter */ 6284 6285 /* Register all VFSes defined in the aVfs[] array */ 6286 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ 6287 sqlite3_vfs_register(&aVfs[i], i==0); 6288 } 6289 return SQLITE_OK; 6290 } 6291 6292 /* 6293 ** Shutdown the operating system interface. 6294 ** 6295 ** Some operating systems might need to do some cleanup in this routine, 6296 ** to release dynamically allocated objects. But not on unix. 6297 ** This routine is a no-op for unix. 6298 */ 6299 int sqlite3_os_end(void){ 6300 return SQLITE_OK; 6301 } 6302 6303 #endif /* SQLITE_OS_UNIX */ 6304