xref: /sqlite-3.40.0/src/os_unix.c (revision 20a9ed1d)
1 /*
2 ** 2004 May 22
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This file contains the VFS implementation for unix-like operating systems
14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
15 **
16 ** There are actually several different VFS implementations in this file.
17 ** The differences are in the way that file locking is done.  The default
18 ** implementation uses Posix Advisory Locks.  Alternative implementations
19 ** use flock(), dot-files, various proprietary locking schemas, or simply
20 ** skip locking all together.
21 **
22 ** This source file is organized into divisions where the logic for various
23 ** subfunctions is contained within the appropriate division.  PLEASE
24 ** KEEP THE STRUCTURE OF THIS FILE INTACT.  New code should be placed
25 ** in the correct division and should be clearly labeled.
26 **
27 ** The layout of divisions is as follows:
28 **
29 **   *  General-purpose declarations and utility functions.
30 **   *  Unique file ID logic used by VxWorks.
31 **   *  Various locking primitive implementations (all except proxy locking):
32 **      + for Posix Advisory Locks
33 **      + for no-op locks
34 **      + for dot-file locks
35 **      + for flock() locking
36 **      + for named semaphore locks (VxWorks only)
37 **      + for AFP filesystem locks (MacOSX only)
38 **   *  sqlite3_file methods not associated with locking.
39 **   *  Definitions of sqlite3_io_methods objects for all locking
40 **      methods plus "finder" functions for each locking method.
41 **   *  sqlite3_vfs method implementations.
42 **   *  Locking primitives for the proxy uber-locking-method. (MacOSX only)
43 **   *  Definitions of sqlite3_vfs objects for all locking methods
44 **      plus implementations of sqlite3_os_init() and sqlite3_os_end().
45 */
46 #include "sqliteInt.h"
47 #if SQLITE_OS_UNIX              /* This file is used on unix only */
48 
49 /*
50 ** There are various methods for file locking used for concurrency
51 ** control:
52 **
53 **   1. POSIX locking (the default),
54 **   2. No locking,
55 **   3. Dot-file locking,
56 **   4. flock() locking,
57 **   5. AFP locking (OSX only),
58 **   6. Named POSIX semaphores (VXWorks only),
59 **   7. proxy locking. (OSX only)
60 **
61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
62 ** is defined to 1.  The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
63 ** selection of the appropriate locking style based on the filesystem
64 ** where the database is located.
65 */
66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
67 #  if defined(__APPLE__)
68 #    define SQLITE_ENABLE_LOCKING_STYLE 1
69 #  else
70 #    define SQLITE_ENABLE_LOCKING_STYLE 0
71 #  endif
72 #endif
73 
74 /* Use pread() and pwrite() if they are available */
75 #if defined(__APPLE__)
76 # define HAVE_PREAD 1
77 # define HAVE_PWRITE 1
78 #endif
79 #if defined(HAVE_PREAD64) && defined(HAVE_PWRITE64)
80 # undef USE_PREAD
81 # define USE_PREAD64 1
82 #elif defined(HAVE_PREAD) && defined(HAVE_PWRITE)
83 # undef USE_PREAD64
84 # define USE_PREAD 1
85 #endif
86 
87 /*
88 ** standard include files.
89 */
90 #include <sys/types.h>   /* amalgamator: keep */
91 #include <sys/stat.h>    /* amalgamator: keep */
92 #include <fcntl.h>
93 #include <sys/ioctl.h>
94 #include <unistd.h>      /* amalgamator: keep */
95 #include <time.h>
96 #include <sys/time.h>    /* amalgamator: keep */
97 #include <errno.h>
98 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
99 # include <sys/mman.h>
100 #endif
101 
102 #if SQLITE_ENABLE_LOCKING_STYLE
103 # include <sys/ioctl.h>
104 # include <sys/file.h>
105 # include <sys/param.h>
106 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
107 
108 /*
109 ** Try to determine if gethostuuid() is available based on standard
110 ** macros.  This might sometimes compute the wrong value for some
111 ** obscure platforms.  For those cases, simply compile with one of
112 ** the following:
113 **
114 **    -DHAVE_GETHOSTUUID=0
115 **    -DHAVE_GETHOSTUUID=1
116 **
117 ** None if this matters except when building on Apple products with
118 ** -DSQLITE_ENABLE_LOCKING_STYLE.
119 */
120 #ifndef HAVE_GETHOSTUUID
121 # define HAVE_GETHOSTUUID 0
122 # if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \
123                             (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000))
124 #    if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \
125         && (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0))\
126         && (!defined(TARGET_OS_MACCATALYST) || (TARGET_OS_MACCATALYST==0))
127 #      undef HAVE_GETHOSTUUID
128 #      define HAVE_GETHOSTUUID 1
129 #    else
130 #      warning "gethostuuid() is disabled."
131 #    endif
132 #  endif
133 #endif
134 
135 
136 #if OS_VXWORKS
137 # include <sys/ioctl.h>
138 # include <semaphore.h>
139 # include <limits.h>
140 #endif /* OS_VXWORKS */
141 
142 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
143 # include <sys/mount.h>
144 #endif
145 
146 #ifdef HAVE_UTIME
147 # include <utime.h>
148 #endif
149 
150 /*
151 ** Allowed values of unixFile.fsFlags
152 */
153 #define SQLITE_FSFLAGS_IS_MSDOS     0x1
154 
155 /*
156 ** If we are to be thread-safe, include the pthreads header.
157 */
158 #if SQLITE_THREADSAFE
159 # include <pthread.h>
160 #endif
161 
162 /*
163 ** Default permissions when creating a new file
164 */
165 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
166 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
167 #endif
168 
169 /*
170 ** Default permissions when creating auto proxy dir
171 */
172 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
173 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
174 #endif
175 
176 /*
177 ** Maximum supported path-length.
178 */
179 #define MAX_PATHNAME 512
180 
181 /*
182 ** Maximum supported symbolic links
183 */
184 #define SQLITE_MAX_SYMLINKS 100
185 
186 /* Always cast the getpid() return type for compatibility with
187 ** kernel modules in VxWorks. */
188 #define osGetpid(X) (pid_t)getpid()
189 
190 /*
191 ** Only set the lastErrno if the error code is a real error and not
192 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
193 */
194 #define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))
195 
196 /* Forward references */
197 typedef struct unixShm unixShm;               /* Connection shared memory */
198 typedef struct unixShmNode unixShmNode;       /* Shared memory instance */
199 typedef struct unixInodeInfo unixInodeInfo;   /* An i-node */
200 typedef struct UnixUnusedFd UnixUnusedFd;     /* An unused file descriptor */
201 
202 /*
203 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
204 ** cannot be closed immediately. In these cases, instances of the following
205 ** structure are used to store the file descriptor while waiting for an
206 ** opportunity to either close or reuse it.
207 */
208 struct UnixUnusedFd {
209   int fd;                   /* File descriptor to close */
210   int flags;                /* Flags this file descriptor was opened with */
211   UnixUnusedFd *pNext;      /* Next unused file descriptor on same file */
212 };
213 
214 /*
215 ** The unixFile structure is subclass of sqlite3_file specific to the unix
216 ** VFS implementations.
217 */
218 typedef struct unixFile unixFile;
219 struct unixFile {
220   sqlite3_io_methods const *pMethod;  /* Always the first entry */
221   sqlite3_vfs *pVfs;                  /* The VFS that created this unixFile */
222   unixInodeInfo *pInode;              /* Info about locks on this inode */
223   int h;                              /* The file descriptor */
224   unsigned char eFileLock;            /* The type of lock held on this fd */
225   unsigned short int ctrlFlags;       /* Behavioral bits.  UNIXFILE_* flags */
226   int lastErrno;                      /* The unix errno from last I/O error */
227   void *lockingContext;               /* Locking style specific state */
228   UnixUnusedFd *pPreallocatedUnused;  /* Pre-allocated UnixUnusedFd */
229   const char *zPath;                  /* Name of the file */
230   unixShm *pShm;                      /* Shared memory segment information */
231   int szChunk;                        /* Configured by FCNTL_CHUNK_SIZE */
232 #if SQLITE_MAX_MMAP_SIZE>0
233   int nFetchOut;                      /* Number of outstanding xFetch refs */
234   sqlite3_int64 mmapSize;             /* Usable size of mapping at pMapRegion */
235   sqlite3_int64 mmapSizeActual;       /* Actual size of mapping at pMapRegion */
236   sqlite3_int64 mmapSizeMax;          /* Configured FCNTL_MMAP_SIZE value */
237   void *pMapRegion;                   /* Memory mapped region */
238 #endif
239   int sectorSize;                     /* Device sector size */
240   int deviceCharacteristics;          /* Precomputed device characteristics */
241 #if SQLITE_ENABLE_LOCKING_STYLE
242   int openFlags;                      /* The flags specified at open() */
243 #endif
244 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
245   unsigned fsFlags;                   /* cached details from statfs() */
246 #endif
247 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
248   unsigned iBusyTimeout;              /* Wait this many millisec on locks */
249 #endif
250 #if OS_VXWORKS
251   struct vxworksFileId *pId;          /* Unique file ID */
252 #endif
253 #ifdef SQLITE_DEBUG
254   /* The next group of variables are used to track whether or not the
255   ** transaction counter in bytes 24-27 of database files are updated
256   ** whenever any part of the database changes.  An assertion fault will
257   ** occur if a file is updated without also updating the transaction
258   ** counter.  This test is made to avoid new problems similar to the
259   ** one described by ticket #3584.
260   */
261   unsigned char transCntrChng;   /* True if the transaction counter changed */
262   unsigned char dbUpdate;        /* True if any part of database file changed */
263   unsigned char inNormalWrite;   /* True if in a normal write operation */
264 
265 #endif
266 
267 #ifdef SQLITE_TEST
268   /* In test mode, increase the size of this structure a bit so that
269   ** it is larger than the struct CrashFile defined in test6.c.
270   */
271   char aPadding[32];
272 #endif
273 };
274 
275 /* This variable holds the process id (pid) from when the xRandomness()
276 ** method was called.  If xOpen() is called from a different process id,
277 ** indicating that a fork() has occurred, the PRNG will be reset.
278 */
279 static pid_t randomnessPid = 0;
280 
281 /*
282 ** Allowed values for the unixFile.ctrlFlags bitmask:
283 */
284 #define UNIXFILE_EXCL        0x01     /* Connections from one process only */
285 #define UNIXFILE_RDONLY      0x02     /* Connection is read only */
286 #define UNIXFILE_PERSIST_WAL 0x04     /* Persistent WAL mode */
287 #ifndef SQLITE_DISABLE_DIRSYNC
288 # define UNIXFILE_DIRSYNC    0x08     /* Directory sync needed */
289 #else
290 # define UNIXFILE_DIRSYNC    0x00
291 #endif
292 #define UNIXFILE_PSOW        0x10     /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
293 #define UNIXFILE_DELETE      0x20     /* Delete on close */
294 #define UNIXFILE_URI         0x40     /* Filename might have query parameters */
295 #define UNIXFILE_NOLOCK      0x80     /* Do no file locking */
296 
297 /*
298 ** Include code that is common to all os_*.c files
299 */
300 #include "os_common.h"
301 
302 /*
303 ** Define various macros that are missing from some systems.
304 */
305 #ifndef O_LARGEFILE
306 # define O_LARGEFILE 0
307 #endif
308 #ifdef SQLITE_DISABLE_LFS
309 # undef O_LARGEFILE
310 # define O_LARGEFILE 0
311 #endif
312 #ifndef O_NOFOLLOW
313 # define O_NOFOLLOW 0
314 #endif
315 #ifndef O_BINARY
316 # define O_BINARY 0
317 #endif
318 
319 /*
320 ** The threadid macro resolves to the thread-id or to 0.  Used for
321 ** testing and debugging only.
322 */
323 #if SQLITE_THREADSAFE
324 #define threadid pthread_self()
325 #else
326 #define threadid 0
327 #endif
328 
329 /*
330 ** HAVE_MREMAP defaults to true on Linux and false everywhere else.
331 */
332 #if !defined(HAVE_MREMAP)
333 # if defined(__linux__) && defined(_GNU_SOURCE)
334 #  define HAVE_MREMAP 1
335 # else
336 #  define HAVE_MREMAP 0
337 # endif
338 #endif
339 
340 /*
341 ** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek()
342 ** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined.
343 */
344 #ifdef __ANDROID__
345 # define lseek lseek64
346 #endif
347 
348 #ifdef __linux__
349 /*
350 ** Linux-specific IOCTL magic numbers used for controlling F2FS
351 */
352 #define F2FS_IOCTL_MAGIC        0xf5
353 #define F2FS_IOC_START_ATOMIC_WRITE     _IO(F2FS_IOCTL_MAGIC, 1)
354 #define F2FS_IOC_COMMIT_ATOMIC_WRITE    _IO(F2FS_IOCTL_MAGIC, 2)
355 #define F2FS_IOC_START_VOLATILE_WRITE   _IO(F2FS_IOCTL_MAGIC, 3)
356 #define F2FS_IOC_ABORT_VOLATILE_WRITE   _IO(F2FS_IOCTL_MAGIC, 5)
357 #define F2FS_IOC_GET_FEATURES           _IOR(F2FS_IOCTL_MAGIC, 12, u32)
358 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
359 #endif /* __linux__ */
360 
361 
362 /*
363 ** Different Unix systems declare open() in different ways.  Same use
364 ** open(const char*,int,mode_t).  Others use open(const char*,int,...).
365 ** The difference is important when using a pointer to the function.
366 **
367 ** The safest way to deal with the problem is to always use this wrapper
368 ** which always has the same well-defined interface.
369 */
posixOpen(const char * zFile,int flags,int mode)370 static int posixOpen(const char *zFile, int flags, int mode){
371   return open(zFile, flags, mode);
372 }
373 
374 /* Forward reference */
375 static int openDirectory(const char*, int*);
376 static int unixGetpagesize(void);
377 
378 /*
379 ** Many system calls are accessed through pointer-to-functions so that
380 ** they may be overridden at runtime to facilitate fault injection during
381 ** testing and sandboxing.  The following array holds the names and pointers
382 ** to all overrideable system calls.
383 */
384 static struct unix_syscall {
385   const char *zName;            /* Name of the system call */
386   sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
387   sqlite3_syscall_ptr pDefault; /* Default value */
388 } aSyscall[] = {
389   { "open",         (sqlite3_syscall_ptr)posixOpen,  0  },
390 #define osOpen      ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
391 
392   { "close",        (sqlite3_syscall_ptr)close,      0  },
393 #define osClose     ((int(*)(int))aSyscall[1].pCurrent)
394 
395   { "access",       (sqlite3_syscall_ptr)access,     0  },
396 #define osAccess    ((int(*)(const char*,int))aSyscall[2].pCurrent)
397 
398   { "getcwd",       (sqlite3_syscall_ptr)getcwd,     0  },
399 #define osGetcwd    ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
400 
401   { "stat",         (sqlite3_syscall_ptr)stat,       0  },
402 #define osStat      ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
403 
404 /*
405 ** The DJGPP compiler environment looks mostly like Unix, but it
406 ** lacks the fcntl() system call.  So redefine fcntl() to be something
407 ** that always succeeds.  This means that locking does not occur under
408 ** DJGPP.  But it is DOS - what did you expect?
409 */
410 #ifdef __DJGPP__
411   { "fstat",        0,                 0  },
412 #define osFstat(a,b,c)    0
413 #else
414   { "fstat",        (sqlite3_syscall_ptr)fstat,      0  },
415 #define osFstat     ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
416 #endif
417 
418   { "ftruncate",    (sqlite3_syscall_ptr)ftruncate,  0  },
419 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
420 
421   { "fcntl",        (sqlite3_syscall_ptr)fcntl,      0  },
422 #define osFcntl     ((int(*)(int,int,...))aSyscall[7].pCurrent)
423 
424   { "read",         (sqlite3_syscall_ptr)read,       0  },
425 #define osRead      ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
426 
427 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
428   { "pread",        (sqlite3_syscall_ptr)pread,      0  },
429 #else
430   { "pread",        (sqlite3_syscall_ptr)0,          0  },
431 #endif
432 #define osPread     ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
433 
434 #if defined(USE_PREAD64)
435   { "pread64",      (sqlite3_syscall_ptr)pread64,    0  },
436 #else
437   { "pread64",      (sqlite3_syscall_ptr)0,          0  },
438 #endif
439 #define osPread64 ((ssize_t(*)(int,void*,size_t,off64_t))aSyscall[10].pCurrent)
440 
441   { "write",        (sqlite3_syscall_ptr)write,      0  },
442 #define osWrite     ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
443 
444 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
445   { "pwrite",       (sqlite3_syscall_ptr)pwrite,     0  },
446 #else
447   { "pwrite",       (sqlite3_syscall_ptr)0,          0  },
448 #endif
449 #define osPwrite    ((ssize_t(*)(int,const void*,size_t,off_t))\
450                     aSyscall[12].pCurrent)
451 
452 #if defined(USE_PREAD64)
453   { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
454 #else
455   { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
456 #endif
457 #define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off64_t))\
458                     aSyscall[13].pCurrent)
459 
460   { "fchmod",       (sqlite3_syscall_ptr)fchmod,          0  },
461 #define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)
462 
463 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
464   { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
465 #else
466   { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
467 #endif
468 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
469 
470   { "unlink",       (sqlite3_syscall_ptr)unlink,           0 },
471 #define osUnlink    ((int(*)(const char*))aSyscall[16].pCurrent)
472 
473   { "openDirectory",    (sqlite3_syscall_ptr)openDirectory,      0 },
474 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
475 
476   { "mkdir",        (sqlite3_syscall_ptr)mkdir,           0 },
477 #define osMkdir     ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
478 
479   { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
480 #define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)
481 
482 #if defined(HAVE_FCHOWN)
483   { "fchown",       (sqlite3_syscall_ptr)fchown,          0 },
484 #else
485   { "fchown",       (sqlite3_syscall_ptr)0,               0 },
486 #endif
487 #define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)
488 
489 #if defined(HAVE_FCHOWN)
490   { "geteuid",      (sqlite3_syscall_ptr)geteuid,         0 },
491 #else
492   { "geteuid",      (sqlite3_syscall_ptr)0,               0 },
493 #endif
494 #define osGeteuid   ((uid_t(*)(void))aSyscall[21].pCurrent)
495 
496 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
497   { "mmap",         (sqlite3_syscall_ptr)mmap,            0 },
498 #else
499   { "mmap",         (sqlite3_syscall_ptr)0,               0 },
500 #endif
501 #define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)
502 
503 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
504   { "munmap",       (sqlite3_syscall_ptr)munmap,          0 },
505 #else
506   { "munmap",       (sqlite3_syscall_ptr)0,               0 },
507 #endif
508 #define osMunmap ((int(*)(void*,size_t))aSyscall[23].pCurrent)
509 
510 #if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
511   { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
512 #else
513   { "mremap",       (sqlite3_syscall_ptr)0,               0 },
514 #endif
515 #define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)
516 
517 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
518   { "getpagesize",  (sqlite3_syscall_ptr)unixGetpagesize, 0 },
519 #else
520   { "getpagesize",  (sqlite3_syscall_ptr)0,               0 },
521 #endif
522 #define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)
523 
524 #if defined(HAVE_READLINK)
525   { "readlink",     (sqlite3_syscall_ptr)readlink,        0 },
526 #else
527   { "readlink",     (sqlite3_syscall_ptr)0,               0 },
528 #endif
529 #define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)
530 
531 #if defined(HAVE_LSTAT)
532   { "lstat",         (sqlite3_syscall_ptr)lstat,          0 },
533 #else
534   { "lstat",         (sqlite3_syscall_ptr)0,              0 },
535 #endif
536 #define osLstat      ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent)
537 
538 #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
539 # ifdef __ANDROID__
540   { "ioctl", (sqlite3_syscall_ptr)(int(*)(int, int, ...))ioctl, 0 },
541 #define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent)
542 # else
543   { "ioctl",         (sqlite3_syscall_ptr)ioctl,          0 },
544 #define osIoctl ((int(*)(int,unsigned long,...))aSyscall[28].pCurrent)
545 # endif
546 #else
547   { "ioctl",         (sqlite3_syscall_ptr)0,              0 },
548 #endif
549 
550 }; /* End of the overrideable system calls */
551 
552 
553 /*
554 ** On some systems, calls to fchown() will trigger a message in a security
555 ** log if they come from non-root processes.  So avoid calling fchown() if
556 ** we are not running as root.
557 */
robustFchown(int fd,uid_t uid,gid_t gid)558 static int robustFchown(int fd, uid_t uid, gid_t gid){
559 #if defined(HAVE_FCHOWN)
560   return osGeteuid() ? 0 : osFchown(fd,uid,gid);
561 #else
562   return 0;
563 #endif
564 }
565 
566 /*
567 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
568 ** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
569 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
570 ** system call named zName.
571 */
unixSetSystemCall(sqlite3_vfs * pNotUsed,const char * zName,sqlite3_syscall_ptr pNewFunc)572 static int unixSetSystemCall(
573   sqlite3_vfs *pNotUsed,        /* The VFS pointer.  Not used */
574   const char *zName,            /* Name of system call to override */
575   sqlite3_syscall_ptr pNewFunc  /* Pointer to new system call value */
576 ){
577   unsigned int i;
578   int rc = SQLITE_NOTFOUND;
579 
580   UNUSED_PARAMETER(pNotUsed);
581   if( zName==0 ){
582     /* If no zName is given, restore all system calls to their default
583     ** settings and return NULL
584     */
585     rc = SQLITE_OK;
586     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
587       if( aSyscall[i].pDefault ){
588         aSyscall[i].pCurrent = aSyscall[i].pDefault;
589       }
590     }
591   }else{
592     /* If zName is specified, operate on only the one system call
593     ** specified.
594     */
595     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
596       if( strcmp(zName, aSyscall[i].zName)==0 ){
597         if( aSyscall[i].pDefault==0 ){
598           aSyscall[i].pDefault = aSyscall[i].pCurrent;
599         }
600         rc = SQLITE_OK;
601         if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
602         aSyscall[i].pCurrent = pNewFunc;
603         break;
604       }
605     }
606   }
607   return rc;
608 }
609 
610 /*
611 ** Return the value of a system call.  Return NULL if zName is not a
612 ** recognized system call name.  NULL is also returned if the system call
613 ** is currently undefined.
614 */
unixGetSystemCall(sqlite3_vfs * pNotUsed,const char * zName)615 static sqlite3_syscall_ptr unixGetSystemCall(
616   sqlite3_vfs *pNotUsed,
617   const char *zName
618 ){
619   unsigned int i;
620 
621   UNUSED_PARAMETER(pNotUsed);
622   for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
623     if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
624   }
625   return 0;
626 }
627 
628 /*
629 ** Return the name of the first system call after zName.  If zName==NULL
630 ** then return the name of the first system call.  Return NULL if zName
631 ** is the last system call or if zName is not the name of a valid
632 ** system call.
633 */
unixNextSystemCall(sqlite3_vfs * p,const char * zName)634 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
635   int i = -1;
636 
637   UNUSED_PARAMETER(p);
638   if( zName ){
639     for(i=0; i<ArraySize(aSyscall)-1; i++){
640       if( strcmp(zName, aSyscall[i].zName)==0 ) break;
641     }
642   }
643   for(i++; i<ArraySize(aSyscall); i++){
644     if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
645   }
646   return 0;
647 }
648 
649 /*
650 ** Do not accept any file descriptor less than this value, in order to avoid
651 ** opening database file using file descriptors that are commonly used for
652 ** standard input, output, and error.
653 */
654 #ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR
655 # define SQLITE_MINIMUM_FILE_DESCRIPTOR 3
656 #endif
657 
658 /*
659 ** Invoke open().  Do so multiple times, until it either succeeds or
660 ** fails for some reason other than EINTR.
661 **
662 ** If the file creation mode "m" is 0 then set it to the default for
663 ** SQLite.  The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
664 ** 0644) as modified by the system umask.  If m is not 0, then
665 ** make the file creation mode be exactly m ignoring the umask.
666 **
667 ** The m parameter will be non-zero only when creating -wal, -journal,
668 ** and -shm files.  We want those files to have *exactly* the same
669 ** permissions as their original database, unadulterated by the umask.
670 ** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
671 ** transaction crashes and leaves behind hot journals, then any
672 ** process that is able to write to the database will also be able to
673 ** recover the hot journals.
674 */
robust_open(const char * z,int f,mode_t m)675 static int robust_open(const char *z, int f, mode_t m){
676   int fd;
677   mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;
678   while(1){
679 #if defined(O_CLOEXEC)
680     fd = osOpen(z,f|O_CLOEXEC,m2);
681 #else
682     fd = osOpen(z,f,m2);
683 #endif
684     if( fd<0 ){
685       if( errno==EINTR ) continue;
686       break;
687     }
688     if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break;
689     osClose(fd);
690     sqlite3_log(SQLITE_WARNING,
691                 "attempt to open \"%s\" as file descriptor %d", z, fd);
692     fd = -1;
693     if( osOpen("/dev/null", O_RDONLY, m)<0 ) break;
694   }
695   if( fd>=0 ){
696     if( m!=0 ){
697       struct stat statbuf;
698       if( osFstat(fd, &statbuf)==0
699        && statbuf.st_size==0
700        && (statbuf.st_mode&0777)!=m
701       ){
702         osFchmod(fd, m);
703       }
704     }
705 #if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
706     osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
707 #endif
708   }
709   return fd;
710 }
711 
712 /*
713 ** Helper functions to obtain and relinquish the global mutex. The
714 ** global mutex is used to protect the unixInodeInfo and
715 ** vxworksFileId objects used by this file, all of which may be
716 ** shared by multiple threads.
717 **
718 ** Function unixMutexHeld() is used to assert() that the global mutex
719 ** is held when required. This function is only used as part of assert()
720 ** statements. e.g.
721 **
722 **   unixEnterMutex()
723 **     assert( unixMutexHeld() );
724 **   unixEnterLeave()
725 **
726 ** To prevent deadlock, the global unixBigLock must must be acquired
727 ** before the unixInodeInfo.pLockMutex mutex, if both are held.  It is
728 ** OK to get the pLockMutex without holding unixBigLock first, but if
729 ** that happens, the unixBigLock mutex must not be acquired until after
730 ** pLockMutex is released.
731 **
732 **      OK:     enter(unixBigLock),  enter(pLockInfo)
733 **      OK:     enter(unixBigLock)
734 **      OK:     enter(pLockInfo)
735 **   ERROR:     enter(pLockInfo), enter(unixBigLock)
736 */
737 static sqlite3_mutex *unixBigLock = 0;
unixEnterMutex(void)738 static void unixEnterMutex(void){
739   assert( sqlite3_mutex_notheld(unixBigLock) );  /* Not a recursive mutex */
740   sqlite3_mutex_enter(unixBigLock);
741 }
unixLeaveMutex(void)742 static void unixLeaveMutex(void){
743   assert( sqlite3_mutex_held(unixBigLock) );
744   sqlite3_mutex_leave(unixBigLock);
745 }
746 #ifdef SQLITE_DEBUG
unixMutexHeld(void)747 static int unixMutexHeld(void) {
748   return sqlite3_mutex_held(unixBigLock);
749 }
750 #endif
751 
752 
753 #ifdef SQLITE_HAVE_OS_TRACE
754 /*
755 ** Helper function for printing out trace information from debugging
756 ** binaries. This returns the string representation of the supplied
757 ** integer lock-type.
758 */
azFileLock(int eFileLock)759 static const char *azFileLock(int eFileLock){
760   switch( eFileLock ){
761     case NO_LOCK: return "NONE";
762     case SHARED_LOCK: return "SHARED";
763     case RESERVED_LOCK: return "RESERVED";
764     case PENDING_LOCK: return "PENDING";
765     case EXCLUSIVE_LOCK: return "EXCLUSIVE";
766   }
767   return "ERROR";
768 }
769 #endif
770 
771 #ifdef SQLITE_LOCK_TRACE
772 /*
773 ** Print out information about all locking operations.
774 **
775 ** This routine is used for troubleshooting locks on multithreaded
776 ** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
777 ** command-line option on the compiler.  This code is normally
778 ** turned off.
779 */
lockTrace(int fd,int op,struct flock * p)780 static int lockTrace(int fd, int op, struct flock *p){
781   char *zOpName, *zType;
782   int s;
783   int savedErrno;
784   if( op==F_GETLK ){
785     zOpName = "GETLK";
786   }else if( op==F_SETLK ){
787     zOpName = "SETLK";
788   }else{
789     s = osFcntl(fd, op, p);
790     sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
791     return s;
792   }
793   if( p->l_type==F_RDLCK ){
794     zType = "RDLCK";
795   }else if( p->l_type==F_WRLCK ){
796     zType = "WRLCK";
797   }else if( p->l_type==F_UNLCK ){
798     zType = "UNLCK";
799   }else{
800     assert( 0 );
801   }
802   assert( p->l_whence==SEEK_SET );
803   s = osFcntl(fd, op, p);
804   savedErrno = errno;
805   sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
806      threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
807      (int)p->l_pid, s);
808   if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
809     struct flock l2;
810     l2 = *p;
811     osFcntl(fd, F_GETLK, &l2);
812     if( l2.l_type==F_RDLCK ){
813       zType = "RDLCK";
814     }else if( l2.l_type==F_WRLCK ){
815       zType = "WRLCK";
816     }else if( l2.l_type==F_UNLCK ){
817       zType = "UNLCK";
818     }else{
819       assert( 0 );
820     }
821     sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
822        zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
823   }
824   errno = savedErrno;
825   return s;
826 }
827 #undef osFcntl
828 #define osFcntl lockTrace
829 #endif /* SQLITE_LOCK_TRACE */
830 
831 /*
832 ** Retry ftruncate() calls that fail due to EINTR
833 **
834 ** All calls to ftruncate() within this file should be made through
835 ** this wrapper.  On the Android platform, bypassing the logic below
836 ** could lead to a corrupt database.
837 */
robust_ftruncate(int h,sqlite3_int64 sz)838 static int robust_ftruncate(int h, sqlite3_int64 sz){
839   int rc;
840 #ifdef __ANDROID__
841   /* On Android, ftruncate() always uses 32-bit offsets, even if
842   ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to
843   ** truncate a file to any size larger than 2GiB. Silently ignore any
844   ** such attempts.  */
845   if( sz>(sqlite3_int64)0x7FFFFFFF ){
846     rc = SQLITE_OK;
847   }else
848 #endif
849   do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
850   return rc;
851 }
852 
853 /*
854 ** This routine translates a standard POSIX errno code into something
855 ** useful to the clients of the sqlite3 functions.  Specifically, it is
856 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
857 ** and a variety of "please close the file descriptor NOW" errors into
858 ** SQLITE_IOERR
859 **
860 ** Errors during initialization of locks, or file system support for locks,
861 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
862 */
sqliteErrorFromPosixError(int posixError,int sqliteIOErr)863 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
864   assert( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
865           (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
866           (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
867           (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) );
868   switch (posixError) {
869   case EACCES:
870   case EAGAIN:
871   case ETIMEDOUT:
872   case EBUSY:
873   case EINTR:
874   case ENOLCK:
875     /* random NFS retry error, unless during file system support
876      * introspection, in which it actually means what it says */
877     return SQLITE_BUSY;
878 
879   case EPERM:
880     return SQLITE_PERM;
881 
882   default:
883     return sqliteIOErr;
884   }
885 }
886 
887 
888 /******************************************************************************
889 ****************** Begin Unique File ID Utility Used By VxWorks ***************
890 **
891 ** On most versions of unix, we can get a unique ID for a file by concatenating
892 ** the device number and the inode number.  But this does not work on VxWorks.
893 ** On VxWorks, a unique file id must be based on the canonical filename.
894 **
895 ** A pointer to an instance of the following structure can be used as a
896 ** unique file ID in VxWorks.  Each instance of this structure contains
897 ** a copy of the canonical filename.  There is also a reference count.
898 ** The structure is reclaimed when the number of pointers to it drops to
899 ** zero.
900 **
901 ** There are never very many files open at one time and lookups are not
902 ** a performance-critical path, so it is sufficient to put these
903 ** structures on a linked list.
904 */
905 struct vxworksFileId {
906   struct vxworksFileId *pNext;  /* Next in a list of them all */
907   int nRef;                     /* Number of references to this one */
908   int nName;                    /* Length of the zCanonicalName[] string */
909   char *zCanonicalName;         /* Canonical filename */
910 };
911 
912 #if OS_VXWORKS
913 /*
914 ** All unique filenames are held on a linked list headed by this
915 ** variable:
916 */
917 static struct vxworksFileId *vxworksFileList = 0;
918 
919 /*
920 ** Simplify a filename into its canonical form
921 ** by making the following changes:
922 **
923 **  * removing any trailing and duplicate /
924 **  * convert /./ into just /
925 **  * convert /A/../ where A is any simple name into just /
926 **
927 ** Changes are made in-place.  Return the new name length.
928 **
929 ** The original filename is in z[0..n-1].  Return the number of
930 ** characters in the simplified name.
931 */
vxworksSimplifyName(char * z,int n)932 static int vxworksSimplifyName(char *z, int n){
933   int i, j;
934   while( n>1 && z[n-1]=='/' ){ n--; }
935   for(i=j=0; i<n; i++){
936     if( z[i]=='/' ){
937       if( z[i+1]=='/' ) continue;
938       if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
939         i += 1;
940         continue;
941       }
942       if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
943         while( j>0 && z[j-1]!='/' ){ j--; }
944         if( j>0 ){ j--; }
945         i += 2;
946         continue;
947       }
948     }
949     z[j++] = z[i];
950   }
951   z[j] = 0;
952   return j;
953 }
954 
955 /*
956 ** Find a unique file ID for the given absolute pathname.  Return
957 ** a pointer to the vxworksFileId object.  This pointer is the unique
958 ** file ID.
959 **
960 ** The nRef field of the vxworksFileId object is incremented before
961 ** the object is returned.  A new vxworksFileId object is created
962 ** and added to the global list if necessary.
963 **
964 ** If a memory allocation error occurs, return NULL.
965 */
vxworksFindFileId(const char * zAbsoluteName)966 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
967   struct vxworksFileId *pNew;         /* search key and new file ID */
968   struct vxworksFileId *pCandidate;   /* For looping over existing file IDs */
969   int n;                              /* Length of zAbsoluteName string */
970 
971   assert( zAbsoluteName[0]=='/' );
972   n = (int)strlen(zAbsoluteName);
973   pNew = sqlite3_malloc64( sizeof(*pNew) + (n+1) );
974   if( pNew==0 ) return 0;
975   pNew->zCanonicalName = (char*)&pNew[1];
976   memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
977   n = vxworksSimplifyName(pNew->zCanonicalName, n);
978 
979   /* Search for an existing entry that matching the canonical name.
980   ** If found, increment the reference count and return a pointer to
981   ** the existing file ID.
982   */
983   unixEnterMutex();
984   for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
985     if( pCandidate->nName==n
986      && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
987     ){
988        sqlite3_free(pNew);
989        pCandidate->nRef++;
990        unixLeaveMutex();
991        return pCandidate;
992     }
993   }
994 
995   /* No match was found.  We will make a new file ID */
996   pNew->nRef = 1;
997   pNew->nName = n;
998   pNew->pNext = vxworksFileList;
999   vxworksFileList = pNew;
1000   unixLeaveMutex();
1001   return pNew;
1002 }
1003 
1004 /*
1005 ** Decrement the reference count on a vxworksFileId object.  Free
1006 ** the object when the reference count reaches zero.
1007 */
vxworksReleaseFileId(struct vxworksFileId * pId)1008 static void vxworksReleaseFileId(struct vxworksFileId *pId){
1009   unixEnterMutex();
1010   assert( pId->nRef>0 );
1011   pId->nRef--;
1012   if( pId->nRef==0 ){
1013     struct vxworksFileId **pp;
1014     for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
1015     assert( *pp==pId );
1016     *pp = pId->pNext;
1017     sqlite3_free(pId);
1018   }
1019   unixLeaveMutex();
1020 }
1021 #endif /* OS_VXWORKS */
1022 /*************** End of Unique File ID Utility Used By VxWorks ****************
1023 ******************************************************************************/
1024 
1025 
1026 /******************************************************************************
1027 *************************** Posix Advisory Locking ****************************
1028 **
1029 ** POSIX advisory locks are broken by design.  ANSI STD 1003.1 (1996)
1030 ** section 6.5.2.2 lines 483 through 490 specify that when a process
1031 ** sets or clears a lock, that operation overrides any prior locks set
1032 ** by the same process.  It does not explicitly say so, but this implies
1033 ** that it overrides locks set by the same process using a different
1034 ** file descriptor.  Consider this test case:
1035 **
1036 **       int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
1037 **       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
1038 **
1039 ** Suppose ./file1 and ./file2 are really the same file (because
1040 ** one is a hard or symbolic link to the other) then if you set
1041 ** an exclusive lock on fd1, then try to get an exclusive lock
1042 ** on fd2, it works.  I would have expected the second lock to
1043 ** fail since there was already a lock on the file due to fd1.
1044 ** But not so.  Since both locks came from the same process, the
1045 ** second overrides the first, even though they were on different
1046 ** file descriptors opened on different file names.
1047 **
1048 ** This means that we cannot use POSIX locks to synchronize file access
1049 ** among competing threads of the same process.  POSIX locks will work fine
1050 ** to synchronize access for threads in separate processes, but not
1051 ** threads within the same process.
1052 **
1053 ** To work around the problem, SQLite has to manage file locks internally
1054 ** on its own.  Whenever a new database is opened, we have to find the
1055 ** specific inode of the database file (the inode is determined by the
1056 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
1057 ** and check for locks already existing on that inode.  When locks are
1058 ** created or removed, we have to look at our own internal record of the
1059 ** locks to see if another thread has previously set a lock on that same
1060 ** inode.
1061 **
1062 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
1063 ** For VxWorks, we have to use the alternative unique ID system based on
1064 ** canonical filename and implemented in the previous division.)
1065 **
1066 ** The sqlite3_file structure for POSIX is no longer just an integer file
1067 ** descriptor.  It is now a structure that holds the integer file
1068 ** descriptor and a pointer to a structure that describes the internal
1069 ** locks on the corresponding inode.  There is one locking structure
1070 ** per inode, so if the same inode is opened twice, both unixFile structures
1071 ** point to the same locking structure.  The locking structure keeps
1072 ** a reference count (so we will know when to delete it) and a "cnt"
1073 ** field that tells us its internal lock status.  cnt==0 means the
1074 ** file is unlocked.  cnt==-1 means the file has an exclusive lock.
1075 ** cnt>0 means there are cnt shared locks on the file.
1076 **
1077 ** Any attempt to lock or unlock a file first checks the locking
1078 ** structure.  The fcntl() system call is only invoked to set a
1079 ** POSIX lock if the internal lock structure transitions between
1080 ** a locked and an unlocked state.
1081 **
1082 ** But wait:  there are yet more problems with POSIX advisory locks.
1083 **
1084 ** If you close a file descriptor that points to a file that has locks,
1085 ** all locks on that file that are owned by the current process are
1086 ** released.  To work around this problem, each unixInodeInfo object
1087 ** maintains a count of the number of pending locks on tha inode.
1088 ** When an attempt is made to close an unixFile, if there are
1089 ** other unixFile open on the same inode that are holding locks, the call
1090 ** to close() the file descriptor is deferred until all of the locks clear.
1091 ** The unixInodeInfo structure keeps a list of file descriptors that need to
1092 ** be closed and that list is walked (and cleared) when the last lock
1093 ** clears.
1094 **
1095 ** Yet another problem:  LinuxThreads do not play well with posix locks.
1096 **
1097 ** Many older versions of linux use the LinuxThreads library which is
1098 ** not posix compliant.  Under LinuxThreads, a lock created by thread
1099 ** A cannot be modified or overridden by a different thread B.
1100 ** Only thread A can modify the lock.  Locking behavior is correct
1101 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
1102 ** on linux - with NPTL a lock created by thread A can override locks
1103 ** in thread B.  But there is no way to know at compile-time which
1104 ** threading library is being used.  So there is no way to know at
1105 ** compile-time whether or not thread A can override locks on thread B.
1106 ** One has to do a run-time check to discover the behavior of the
1107 ** current process.
1108 **
1109 ** SQLite used to support LinuxThreads.  But support for LinuxThreads
1110 ** was dropped beginning with version 3.7.0.  SQLite will still work with
1111 ** LinuxThreads provided that (1) there is no more than one connection
1112 ** per database file in the same process and (2) database connections
1113 ** do not move across threads.
1114 */
1115 
1116 /*
1117 ** An instance of the following structure serves as the key used
1118 ** to locate a particular unixInodeInfo object.
1119 */
1120 struct unixFileId {
1121   dev_t dev;                  /* Device number */
1122 #if OS_VXWORKS
1123   struct vxworksFileId *pId;  /* Unique file ID for vxworks. */
1124 #else
1125   /* We are told that some versions of Android contain a bug that
1126   ** sizes ino_t at only 32-bits instead of 64-bits. (See
1127   ** https://android-review.googlesource.com/#/c/115351/3/dist/sqlite3.c)
1128   ** To work around this, always allocate 64-bits for the inode number.
1129   ** On small machines that only have 32-bit inodes, this wastes 4 bytes,
1130   ** but that should not be a big deal. */
1131   /* WAS:  ino_t ino;   */
1132   u64 ino;                   /* Inode number */
1133 #endif
1134 };
1135 
1136 /*
1137 ** An instance of the following structure is allocated for each open
1138 ** inode.
1139 **
1140 ** A single inode can have multiple file descriptors, so each unixFile
1141 ** structure contains a pointer to an instance of this object and this
1142 ** object keeps a count of the number of unixFile pointing to it.
1143 **
1144 ** Mutex rules:
1145 **
1146 **  (1) Only the pLockMutex mutex must be held in order to read or write
1147 **      any of the locking fields:
1148 **          nShared, nLock, eFileLock, bProcessLock, pUnused
1149 **
1150 **  (2) When nRef>0, then the following fields are unchanging and can
1151 **      be read (but not written) without holding any mutex:
1152 **          fileId, pLockMutex
1153 **
1154 **  (3) With the exceptions above, all the fields may only be read
1155 **      or written while holding the global unixBigLock mutex.
1156 **
1157 ** Deadlock prevention:  The global unixBigLock mutex may not
1158 ** be acquired while holding the pLockMutex mutex.  If both unixBigLock
1159 ** and pLockMutex are needed, then unixBigLock must be acquired first.
1160 */
1161 struct unixInodeInfo {
1162   struct unixFileId fileId;       /* The lookup key */
1163   sqlite3_mutex *pLockMutex;      /* Hold this mutex for... */
1164   int nShared;                      /* Number of SHARED locks held */
1165   int nLock;                        /* Number of outstanding file locks */
1166   unsigned char eFileLock;          /* One of SHARED_LOCK, RESERVED_LOCK etc. */
1167   unsigned char bProcessLock;       /* An exclusive process lock is held */
1168   UnixUnusedFd *pUnused;            /* Unused file descriptors to close */
1169   int nRef;                       /* Number of pointers to this structure */
1170   unixShmNode *pShmNode;          /* Shared memory associated with this inode */
1171   unixInodeInfo *pNext;           /* List of all unixInodeInfo objects */
1172   unixInodeInfo *pPrev;           /*    .... doubly linked */
1173 #if SQLITE_ENABLE_LOCKING_STYLE
1174   unsigned long long sharedByte;  /* for AFP simulated shared lock */
1175 #endif
1176 #if OS_VXWORKS
1177   sem_t *pSem;                    /* Named POSIX semaphore */
1178   char aSemName[MAX_PATHNAME+2];  /* Name of that semaphore */
1179 #endif
1180 };
1181 
1182 /*
1183 ** A lists of all unixInodeInfo objects.
1184 **
1185 ** Must hold unixBigLock in order to read or write this variable.
1186 */
1187 static unixInodeInfo *inodeList = 0;  /* All unixInodeInfo objects */
1188 
1189 #ifdef SQLITE_DEBUG
1190 /*
1191 ** True if the inode mutex (on the unixFile.pFileMutex field) is held, or not.
1192 ** This routine is used only within assert() to help verify correct mutex
1193 ** usage.
1194 */
unixFileMutexHeld(unixFile * pFile)1195 int unixFileMutexHeld(unixFile *pFile){
1196   assert( pFile->pInode );
1197   return sqlite3_mutex_held(pFile->pInode->pLockMutex);
1198 }
unixFileMutexNotheld(unixFile * pFile)1199 int unixFileMutexNotheld(unixFile *pFile){
1200   assert( pFile->pInode );
1201   return sqlite3_mutex_notheld(pFile->pInode->pLockMutex);
1202 }
1203 #endif
1204 
1205 /*
1206 **
1207 ** This function - unixLogErrorAtLine(), is only ever called via the macro
1208 ** unixLogError().
1209 **
1210 ** It is invoked after an error occurs in an OS function and errno has been
1211 ** set. It logs a message using sqlite3_log() containing the current value of
1212 ** errno and, if possible, the human-readable equivalent from strerror() or
1213 ** strerror_r().
1214 **
1215 ** The first argument passed to the macro should be the error code that
1216 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
1217 ** The two subsequent arguments should be the name of the OS function that
1218 ** failed (e.g. "unlink", "open") and the associated file-system path,
1219 ** if any.
1220 */
1221 #define unixLogError(a,b,c)     unixLogErrorAtLine(a,b,c,__LINE__)
unixLogErrorAtLine(int errcode,const char * zFunc,const char * zPath,int iLine)1222 static int unixLogErrorAtLine(
1223   int errcode,                    /* SQLite error code */
1224   const char *zFunc,              /* Name of OS function that failed */
1225   const char *zPath,              /* File path associated with error */
1226   int iLine                       /* Source line number where error occurred */
1227 ){
1228   char *zErr;                     /* Message from strerror() or equivalent */
1229   int iErrno = errno;             /* Saved syscall error number */
1230 
1231   /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
1232   ** the strerror() function to obtain the human-readable error message
1233   ** equivalent to errno. Otherwise, use strerror_r().
1234   */
1235 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
1236   char aErr[80];
1237   memset(aErr, 0, sizeof(aErr));
1238   zErr = aErr;
1239 
1240   /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
1241   ** assume that the system provides the GNU version of strerror_r() that
1242   ** returns a pointer to a buffer containing the error message. That pointer
1243   ** may point to aErr[], or it may point to some static storage somewhere.
1244   ** Otherwise, assume that the system provides the POSIX version of
1245   ** strerror_r(), which always writes an error message into aErr[].
1246   **
1247   ** If the code incorrectly assumes that it is the POSIX version that is
1248   ** available, the error message will often be an empty string. Not a
1249   ** huge problem. Incorrectly concluding that the GNU version is available
1250   ** could lead to a segfault though.
1251   */
1252 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
1253   zErr =
1254 # endif
1255   strerror_r(iErrno, aErr, sizeof(aErr)-1);
1256 
1257 #elif SQLITE_THREADSAFE
1258   /* This is a threadsafe build, but strerror_r() is not available. */
1259   zErr = "";
1260 #else
1261   /* Non-threadsafe build, use strerror(). */
1262   zErr = strerror(iErrno);
1263 #endif
1264 
1265   if( zPath==0 ) zPath = "";
1266   sqlite3_log(errcode,
1267       "os_unix.c:%d: (%d) %s(%s) - %s",
1268       iLine, iErrno, zFunc, zPath, zErr
1269   );
1270 
1271   return errcode;
1272 }
1273 
1274 /*
1275 ** Close a file descriptor.
1276 **
1277 ** We assume that close() almost always works, since it is only in a
1278 ** very sick application or on a very sick platform that it might fail.
1279 ** If it does fail, simply leak the file descriptor, but do log the
1280 ** error.
1281 **
1282 ** Note that it is not safe to retry close() after EINTR since the
1283 ** file descriptor might have already been reused by another thread.
1284 ** So we don't even try to recover from an EINTR.  Just log the error
1285 ** and move on.
1286 */
robust_close(unixFile * pFile,int h,int lineno)1287 static void robust_close(unixFile *pFile, int h, int lineno){
1288   if( osClose(h) ){
1289     unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
1290                        pFile ? pFile->zPath : 0, lineno);
1291   }
1292 }
1293 
1294 /*
1295 ** Set the pFile->lastErrno.  Do this in a subroutine as that provides
1296 ** a convenient place to set a breakpoint.
1297 */
storeLastErrno(unixFile * pFile,int error)1298 static void storeLastErrno(unixFile *pFile, int error){
1299   pFile->lastErrno = error;
1300 }
1301 
1302 /*
1303 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
1304 */
closePendingFds(unixFile * pFile)1305 static void closePendingFds(unixFile *pFile){
1306   unixInodeInfo *pInode = pFile->pInode;
1307   UnixUnusedFd *p;
1308   UnixUnusedFd *pNext;
1309   assert( unixFileMutexHeld(pFile) );
1310   for(p=pInode->pUnused; p; p=pNext){
1311     pNext = p->pNext;
1312     robust_close(pFile, p->fd, __LINE__);
1313     sqlite3_free(p);
1314   }
1315   pInode->pUnused = 0;
1316 }
1317 
1318 /*
1319 ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
1320 **
1321 ** The global mutex must be held when this routine is called, but the mutex
1322 ** on the inode being deleted must NOT be held.
1323 */
releaseInodeInfo(unixFile * pFile)1324 static void releaseInodeInfo(unixFile *pFile){
1325   unixInodeInfo *pInode = pFile->pInode;
1326   assert( unixMutexHeld() );
1327   assert( unixFileMutexNotheld(pFile) );
1328   if( ALWAYS(pInode) ){
1329     pInode->nRef--;
1330     if( pInode->nRef==0 ){
1331       assert( pInode->pShmNode==0 );
1332       sqlite3_mutex_enter(pInode->pLockMutex);
1333       closePendingFds(pFile);
1334       sqlite3_mutex_leave(pInode->pLockMutex);
1335       if( pInode->pPrev ){
1336         assert( pInode->pPrev->pNext==pInode );
1337         pInode->pPrev->pNext = pInode->pNext;
1338       }else{
1339         assert( inodeList==pInode );
1340         inodeList = pInode->pNext;
1341       }
1342       if( pInode->pNext ){
1343         assert( pInode->pNext->pPrev==pInode );
1344         pInode->pNext->pPrev = pInode->pPrev;
1345       }
1346       sqlite3_mutex_free(pInode->pLockMutex);
1347       sqlite3_free(pInode);
1348     }
1349   }
1350 }
1351 
1352 /*
1353 ** Given a file descriptor, locate the unixInodeInfo object that
1354 ** describes that file descriptor.  Create a new one if necessary.  The
1355 ** return value might be uninitialized if an error occurs.
1356 **
1357 ** The global mutex must held when calling this routine.
1358 **
1359 ** Return an appropriate error code.
1360 */
findInodeInfo(unixFile * pFile,unixInodeInfo ** ppInode)1361 static int findInodeInfo(
1362   unixFile *pFile,               /* Unix file with file desc used in the key */
1363   unixInodeInfo **ppInode        /* Return the unixInodeInfo object here */
1364 ){
1365   int rc;                        /* System call return code */
1366   int fd;                        /* The file descriptor for pFile */
1367   struct unixFileId fileId;      /* Lookup key for the unixInodeInfo */
1368   struct stat statbuf;           /* Low-level file information */
1369   unixInodeInfo *pInode = 0;     /* Candidate unixInodeInfo object */
1370 
1371   assert( unixMutexHeld() );
1372 
1373   /* Get low-level information about the file that we can used to
1374   ** create a unique name for the file.
1375   */
1376   fd = pFile->h;
1377   rc = osFstat(fd, &statbuf);
1378   if( rc!=0 ){
1379     storeLastErrno(pFile, errno);
1380 #if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS)
1381     if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
1382 #endif
1383     return SQLITE_IOERR;
1384   }
1385 
1386 #ifdef __APPLE__
1387   /* On OS X on an msdos filesystem, the inode number is reported
1388   ** incorrectly for zero-size files.  See ticket #3260.  To work
1389   ** around this problem (we consider it a bug in OS X, not SQLite)
1390   ** we always increase the file size to 1 by writing a single byte
1391   ** prior to accessing the inode number.  The one byte written is
1392   ** an ASCII 'S' character which also happens to be the first byte
1393   ** in the header of every SQLite database.  In this way, if there
1394   ** is a race condition such that another thread has already populated
1395   ** the first page of the database, no damage is done.
1396   */
1397   if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
1398     do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
1399     if( rc!=1 ){
1400       storeLastErrno(pFile, errno);
1401       return SQLITE_IOERR;
1402     }
1403     rc = osFstat(fd, &statbuf);
1404     if( rc!=0 ){
1405       storeLastErrno(pFile, errno);
1406       return SQLITE_IOERR;
1407     }
1408   }
1409 #endif
1410 
1411   memset(&fileId, 0, sizeof(fileId));
1412   fileId.dev = statbuf.st_dev;
1413 #if OS_VXWORKS
1414   fileId.pId = pFile->pId;
1415 #else
1416   fileId.ino = (u64)statbuf.st_ino;
1417 #endif
1418   assert( unixMutexHeld() );
1419   pInode = inodeList;
1420   while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
1421     pInode = pInode->pNext;
1422   }
1423   if( pInode==0 ){
1424     pInode = sqlite3_malloc64( sizeof(*pInode) );
1425     if( pInode==0 ){
1426       return SQLITE_NOMEM_BKPT;
1427     }
1428     memset(pInode, 0, sizeof(*pInode));
1429     memcpy(&pInode->fileId, &fileId, sizeof(fileId));
1430     if( sqlite3GlobalConfig.bCoreMutex ){
1431       pInode->pLockMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
1432       if( pInode->pLockMutex==0 ){
1433         sqlite3_free(pInode);
1434         return SQLITE_NOMEM_BKPT;
1435       }
1436     }
1437     pInode->nRef = 1;
1438     assert( unixMutexHeld() );
1439     pInode->pNext = inodeList;
1440     pInode->pPrev = 0;
1441     if( inodeList ) inodeList->pPrev = pInode;
1442     inodeList = pInode;
1443   }else{
1444     pInode->nRef++;
1445   }
1446   *ppInode = pInode;
1447   return SQLITE_OK;
1448 }
1449 
1450 /*
1451 ** Return TRUE if pFile has been renamed or unlinked since it was first opened.
1452 */
fileHasMoved(unixFile * pFile)1453 static int fileHasMoved(unixFile *pFile){
1454 #if OS_VXWORKS
1455   return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId;
1456 #else
1457   struct stat buf;
1458   return pFile->pInode!=0 &&
1459       (osStat(pFile->zPath, &buf)!=0
1460          || (u64)buf.st_ino!=pFile->pInode->fileId.ino);
1461 #endif
1462 }
1463 
1464 
1465 /*
1466 ** Check a unixFile that is a database.  Verify the following:
1467 **
1468 ** (1) There is exactly one hard link on the file
1469 ** (2) The file is not a symbolic link
1470 ** (3) The file has not been renamed or unlinked
1471 **
1472 ** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right.
1473 */
verifyDbFile(unixFile * pFile)1474 static void verifyDbFile(unixFile *pFile){
1475   struct stat buf;
1476   int rc;
1477 
1478   /* These verifications occurs for the main database only */
1479   if( pFile->ctrlFlags & UNIXFILE_NOLOCK ) return;
1480 
1481   rc = osFstat(pFile->h, &buf);
1482   if( rc!=0 ){
1483     sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath);
1484     return;
1485   }
1486   if( buf.st_nlink==0 ){
1487     sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath);
1488     return;
1489   }
1490   if( buf.st_nlink>1 ){
1491     sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath);
1492     return;
1493   }
1494   if( fileHasMoved(pFile) ){
1495     sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath);
1496     return;
1497   }
1498 }
1499 
1500 
1501 /*
1502 ** This routine checks if there is a RESERVED lock held on the specified
1503 ** file by this or any other process. If such a lock is held, set *pResOut
1504 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
1505 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1506 */
unixCheckReservedLock(sqlite3_file * id,int * pResOut)1507 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
1508   int rc = SQLITE_OK;
1509   int reserved = 0;
1510   unixFile *pFile = (unixFile*)id;
1511 
1512   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1513 
1514   assert( pFile );
1515   assert( pFile->eFileLock<=SHARED_LOCK );
1516   sqlite3_mutex_enter(pFile->pInode->pLockMutex);
1517 
1518   /* Check if a thread in this process holds such a lock */
1519   if( pFile->pInode->eFileLock>SHARED_LOCK ){
1520     reserved = 1;
1521   }
1522 
1523   /* Otherwise see if some other process holds it.
1524   */
1525 #ifndef __DJGPP__
1526   if( !reserved && !pFile->pInode->bProcessLock ){
1527     struct flock lock;
1528     lock.l_whence = SEEK_SET;
1529     lock.l_start = RESERVED_BYTE;
1530     lock.l_len = 1;
1531     lock.l_type = F_WRLCK;
1532     if( osFcntl(pFile->h, F_GETLK, &lock) ){
1533       rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
1534       storeLastErrno(pFile, errno);
1535     } else if( lock.l_type!=F_UNLCK ){
1536       reserved = 1;
1537     }
1538   }
1539 #endif
1540 
1541   sqlite3_mutex_leave(pFile->pInode->pLockMutex);
1542   OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
1543 
1544   *pResOut = reserved;
1545   return rc;
1546 }
1547 
1548 /* Forward declaration*/
1549 static int unixSleep(sqlite3_vfs*,int);
1550 
1551 /*
1552 ** Set a posix-advisory-lock.
1553 **
1554 ** There are two versions of this routine.  If compiled with
1555 ** SQLITE_ENABLE_SETLK_TIMEOUT then the routine has an extra parameter
1556 ** which is a pointer to a unixFile.  If the unixFile->iBusyTimeout
1557 ** value is set, then it is the number of milliseconds to wait before
1558 ** failing the lock.  The iBusyTimeout value is always reset back to
1559 ** zero on each call.
1560 **
1561 ** If SQLITE_ENABLE_SETLK_TIMEOUT is not defined, then do a non-blocking
1562 ** attempt to set the lock.
1563 */
1564 #ifndef SQLITE_ENABLE_SETLK_TIMEOUT
1565 # define osSetPosixAdvisoryLock(h,x,t) osFcntl(h,F_SETLK,x)
1566 #else
osSetPosixAdvisoryLock(int h,struct flock * pLock,unixFile * pFile)1567 static int osSetPosixAdvisoryLock(
1568   int h,                /* The file descriptor on which to take the lock */
1569   struct flock *pLock,  /* The description of the lock */
1570   unixFile *pFile       /* Structure holding timeout value */
1571 ){
1572   int tm = pFile->iBusyTimeout;
1573   int rc = osFcntl(h,F_SETLK,pLock);
1574   while( rc<0 && tm>0 ){
1575     /* On systems that support some kind of blocking file lock with a timeout,
1576     ** make appropriate changes here to invoke that blocking file lock.  On
1577     ** generic posix, however, there is no such API.  So we simply try the
1578     ** lock once every millisecond until either the timeout expires, or until
1579     ** the lock is obtained. */
1580     unixSleep(0,1000);
1581     rc = osFcntl(h,F_SETLK,pLock);
1582     tm--;
1583   }
1584   return rc;
1585 }
1586 #endif /* SQLITE_ENABLE_SETLK_TIMEOUT */
1587 
1588 
1589 /*
1590 ** Attempt to set a system-lock on the file pFile.  The lock is
1591 ** described by pLock.
1592 **
1593 ** If the pFile was opened read/write from unix-excl, then the only lock
1594 ** ever obtained is an exclusive lock, and it is obtained exactly once
1595 ** the first time any lock is attempted.  All subsequent system locking
1596 ** operations become no-ops.  Locking operations still happen internally,
1597 ** in order to coordinate access between separate database connections
1598 ** within this process, but all of that is handled in memory and the
1599 ** operating system does not participate.
1600 **
1601 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
1602 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
1603 ** and is read-only.
1604 **
1605 ** Zero is returned if the call completes successfully, or -1 if a call
1606 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
1607 */
unixFileLock(unixFile * pFile,struct flock * pLock)1608 static int unixFileLock(unixFile *pFile, struct flock *pLock){
1609   int rc;
1610   unixInodeInfo *pInode = pFile->pInode;
1611   assert( pInode!=0 );
1612   assert( sqlite3_mutex_held(pInode->pLockMutex) );
1613   if( (pFile->ctrlFlags & (UNIXFILE_EXCL|UNIXFILE_RDONLY))==UNIXFILE_EXCL ){
1614     if( pInode->bProcessLock==0 ){
1615       struct flock lock;
1616       assert( pInode->nLock==0 );
1617       lock.l_whence = SEEK_SET;
1618       lock.l_start = SHARED_FIRST;
1619       lock.l_len = SHARED_SIZE;
1620       lock.l_type = F_WRLCK;
1621       rc = osSetPosixAdvisoryLock(pFile->h, &lock, pFile);
1622       if( rc<0 ) return rc;
1623       pInode->bProcessLock = 1;
1624       pInode->nLock++;
1625     }else{
1626       rc = 0;
1627     }
1628   }else{
1629     rc = osSetPosixAdvisoryLock(pFile->h, pLock, pFile);
1630   }
1631   return rc;
1632 }
1633 
1634 /*
1635 ** Lock the file with the lock specified by parameter eFileLock - one
1636 ** of the following:
1637 **
1638 **     (1) SHARED_LOCK
1639 **     (2) RESERVED_LOCK
1640 **     (3) PENDING_LOCK
1641 **     (4) EXCLUSIVE_LOCK
1642 **
1643 ** Sometimes when requesting one lock state, additional lock states
1644 ** are inserted in between.  The locking might fail on one of the later
1645 ** transitions leaving the lock state different from what it started but
1646 ** still short of its goal.  The following chart shows the allowed
1647 ** transitions and the inserted intermediate states:
1648 **
1649 **    UNLOCKED -> SHARED
1650 **    SHARED -> RESERVED
1651 **    SHARED -> (PENDING) -> EXCLUSIVE
1652 **    RESERVED -> (PENDING) -> EXCLUSIVE
1653 **    PENDING -> EXCLUSIVE
1654 **
1655 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
1656 ** routine to lower a locking level.
1657 */
unixLock(sqlite3_file * id,int eFileLock)1658 static int unixLock(sqlite3_file *id, int eFileLock){
1659   /* The following describes the implementation of the various locks and
1660   ** lock transitions in terms of the POSIX advisory shared and exclusive
1661   ** lock primitives (called read-locks and write-locks below, to avoid
1662   ** confusion with SQLite lock names). The algorithms are complicated
1663   ** slightly in order to be compatible with Windows95 systems simultaneously
1664   ** accessing the same database file, in case that is ever required.
1665   **
1666   ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1667   ** byte', each single bytes at well known offsets, and the 'shared byte
1668   ** range', a range of 510 bytes at a well known offset.
1669   **
1670   ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1671   ** byte'.  If this is successful, 'shared byte range' is read-locked
1672   ** and the lock on the 'pending byte' released.  (Legacy note:  When
1673   ** SQLite was first developed, Windows95 systems were still very common,
1674   ** and Widnows95 lacks a shared-lock capability.  So on Windows95, a
1675   ** single randomly selected by from the 'shared byte range' is locked.
1676   ** Windows95 is now pretty much extinct, but this work-around for the
1677   ** lack of shared-locks on Windows95 lives on, for backwards
1678   ** compatibility.)
1679   **
1680   ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1681   ** A RESERVED lock is implemented by grabbing a write-lock on the
1682   ** 'reserved byte'.
1683   **
1684   ** A process may only obtain a PENDING lock after it has obtained a
1685   ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1686   ** on the 'pending byte'. This ensures that no new SHARED locks can be
1687   ** obtained, but existing SHARED locks are allowed to persist. A process
1688   ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1689   ** This property is used by the algorithm for rolling back a journal file
1690   ** after a crash.
1691   **
1692   ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1693   ** implemented by obtaining a write-lock on the entire 'shared byte
1694   ** range'. Since all other locks require a read-lock on one of the bytes
1695   ** within this range, this ensures that no other locks are held on the
1696   ** database.
1697   */
1698   int rc = SQLITE_OK;
1699   unixFile *pFile = (unixFile*)id;
1700   unixInodeInfo *pInode;
1701   struct flock lock;
1702   int tErrno = 0;
1703 
1704   assert( pFile );
1705   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
1706       azFileLock(eFileLock), azFileLock(pFile->eFileLock),
1707       azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared,
1708       osGetpid(0)));
1709 
1710   /* If there is already a lock of this type or more restrictive on the
1711   ** unixFile, do nothing. Don't use the end_lock: exit path, as
1712   ** unixEnterMutex() hasn't been called yet.
1713   */
1714   if( pFile->eFileLock>=eFileLock ){
1715     OSTRACE(("LOCK    %d %s ok (already held) (unix)\n", pFile->h,
1716             azFileLock(eFileLock)));
1717     return SQLITE_OK;
1718   }
1719 
1720   /* Make sure the locking sequence is correct.
1721   **  (1) We never move from unlocked to anything higher than shared lock.
1722   **  (2) SQLite never explicitly requests a pendig lock.
1723   **  (3) A shared lock is always held when a reserve lock is requested.
1724   */
1725   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
1726   assert( eFileLock!=PENDING_LOCK );
1727   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
1728 
1729   /* This mutex is needed because pFile->pInode is shared across threads
1730   */
1731   pInode = pFile->pInode;
1732   sqlite3_mutex_enter(pInode->pLockMutex);
1733 
1734   /* If some thread using this PID has a lock via a different unixFile*
1735   ** handle that precludes the requested lock, return BUSY.
1736   */
1737   if( (pFile->eFileLock!=pInode->eFileLock &&
1738           (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
1739   ){
1740     rc = SQLITE_BUSY;
1741     goto end_lock;
1742   }
1743 
1744   /* If a SHARED lock is requested, and some thread using this PID already
1745   ** has a SHARED or RESERVED lock, then increment reference counts and
1746   ** return SQLITE_OK.
1747   */
1748   if( eFileLock==SHARED_LOCK &&
1749       (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
1750     assert( eFileLock==SHARED_LOCK );
1751     assert( pFile->eFileLock==0 );
1752     assert( pInode->nShared>0 );
1753     pFile->eFileLock = SHARED_LOCK;
1754     pInode->nShared++;
1755     pInode->nLock++;
1756     goto end_lock;
1757   }
1758 
1759 
1760   /* A PENDING lock is needed before acquiring a SHARED lock and before
1761   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
1762   ** be released.
1763   */
1764   lock.l_len = 1L;
1765   lock.l_whence = SEEK_SET;
1766   if( eFileLock==SHARED_LOCK
1767       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
1768   ){
1769     lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
1770     lock.l_start = PENDING_BYTE;
1771     if( unixFileLock(pFile, &lock) ){
1772       tErrno = errno;
1773       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1774       if( rc!=SQLITE_BUSY ){
1775         storeLastErrno(pFile, tErrno);
1776       }
1777       goto end_lock;
1778     }
1779   }
1780 
1781 
1782   /* If control gets to this point, then actually go ahead and make
1783   ** operating system calls for the specified lock.
1784   */
1785   if( eFileLock==SHARED_LOCK ){
1786     assert( pInode->nShared==0 );
1787     assert( pInode->eFileLock==0 );
1788     assert( rc==SQLITE_OK );
1789 
1790     /* Now get the read-lock */
1791     lock.l_start = SHARED_FIRST;
1792     lock.l_len = SHARED_SIZE;
1793     if( unixFileLock(pFile, &lock) ){
1794       tErrno = errno;
1795       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1796     }
1797 
1798     /* Drop the temporary PENDING lock */
1799     lock.l_start = PENDING_BYTE;
1800     lock.l_len = 1L;
1801     lock.l_type = F_UNLCK;
1802     if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
1803       /* This could happen with a network mount */
1804       tErrno = errno;
1805       rc = SQLITE_IOERR_UNLOCK;
1806     }
1807 
1808     if( rc ){
1809       if( rc!=SQLITE_BUSY ){
1810         storeLastErrno(pFile, tErrno);
1811       }
1812       goto end_lock;
1813     }else{
1814       pFile->eFileLock = SHARED_LOCK;
1815       pInode->nLock++;
1816       pInode->nShared = 1;
1817     }
1818   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
1819     /* We are trying for an exclusive lock but another thread in this
1820     ** same process is still holding a shared lock. */
1821     rc = SQLITE_BUSY;
1822   }else{
1823     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
1824     ** assumed that there is a SHARED or greater lock on the file
1825     ** already.
1826     */
1827     assert( 0!=pFile->eFileLock );
1828     lock.l_type = F_WRLCK;
1829 
1830     assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
1831     if( eFileLock==RESERVED_LOCK ){
1832       lock.l_start = RESERVED_BYTE;
1833       lock.l_len = 1L;
1834     }else{
1835       lock.l_start = SHARED_FIRST;
1836       lock.l_len = SHARED_SIZE;
1837     }
1838 
1839     if( unixFileLock(pFile, &lock) ){
1840       tErrno = errno;
1841       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1842       if( rc!=SQLITE_BUSY ){
1843         storeLastErrno(pFile, tErrno);
1844       }
1845     }
1846   }
1847 
1848 
1849 #ifdef SQLITE_DEBUG
1850   /* Set up the transaction-counter change checking flags when
1851   ** transitioning from a SHARED to a RESERVED lock.  The change
1852   ** from SHARED to RESERVED marks the beginning of a normal
1853   ** write operation (not a hot journal rollback).
1854   */
1855   if( rc==SQLITE_OK
1856    && pFile->eFileLock<=SHARED_LOCK
1857    && eFileLock==RESERVED_LOCK
1858   ){
1859     pFile->transCntrChng = 0;
1860     pFile->dbUpdate = 0;
1861     pFile->inNormalWrite = 1;
1862   }
1863 #endif
1864 
1865 
1866   if( rc==SQLITE_OK ){
1867     pFile->eFileLock = eFileLock;
1868     pInode->eFileLock = eFileLock;
1869   }else if( eFileLock==EXCLUSIVE_LOCK ){
1870     pFile->eFileLock = PENDING_LOCK;
1871     pInode->eFileLock = PENDING_LOCK;
1872   }
1873 
1874 end_lock:
1875   sqlite3_mutex_leave(pInode->pLockMutex);
1876   OSTRACE(("LOCK    %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
1877       rc==SQLITE_OK ? "ok" : "failed"));
1878   return rc;
1879 }
1880 
1881 /*
1882 ** Add the file descriptor used by file handle pFile to the corresponding
1883 ** pUnused list.
1884 */
setPendingFd(unixFile * pFile)1885 static void setPendingFd(unixFile *pFile){
1886   unixInodeInfo *pInode = pFile->pInode;
1887   UnixUnusedFd *p = pFile->pPreallocatedUnused;
1888   assert( unixFileMutexHeld(pFile) );
1889   p->pNext = pInode->pUnused;
1890   pInode->pUnused = p;
1891   pFile->h = -1;
1892   pFile->pPreallocatedUnused = 0;
1893 }
1894 
1895 /*
1896 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
1897 ** must be either NO_LOCK or SHARED_LOCK.
1898 **
1899 ** If the locking level of the file descriptor is already at or below
1900 ** the requested locking level, this routine is a no-op.
1901 **
1902 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
1903 ** the byte range is divided into 2 parts and the first part is unlocked then
1904 ** set to a read lock, then the other part is simply unlocked.  This works
1905 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
1906 ** remove the write lock on a region when a read lock is set.
1907 */
posixUnlock(sqlite3_file * id,int eFileLock,int handleNFSUnlock)1908 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
1909   unixFile *pFile = (unixFile*)id;
1910   unixInodeInfo *pInode;
1911   struct flock lock;
1912   int rc = SQLITE_OK;
1913 
1914   assert( pFile );
1915   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
1916       pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
1917       osGetpid(0)));
1918 
1919   assert( eFileLock<=SHARED_LOCK );
1920   if( pFile->eFileLock<=eFileLock ){
1921     return SQLITE_OK;
1922   }
1923   pInode = pFile->pInode;
1924   sqlite3_mutex_enter(pInode->pLockMutex);
1925   assert( pInode->nShared!=0 );
1926   if( pFile->eFileLock>SHARED_LOCK ){
1927     assert( pInode->eFileLock==pFile->eFileLock );
1928 
1929 #ifdef SQLITE_DEBUG
1930     /* When reducing a lock such that other processes can start
1931     ** reading the database file again, make sure that the
1932     ** transaction counter was updated if any part of the database
1933     ** file changed.  If the transaction counter is not updated,
1934     ** other connections to the same file might not realize that
1935     ** the file has changed and hence might not know to flush their
1936     ** cache.  The use of a stale cache can lead to database corruption.
1937     */
1938     pFile->inNormalWrite = 0;
1939 #endif
1940 
1941     /* downgrading to a shared lock on NFS involves clearing the write lock
1942     ** before establishing the readlock - to avoid a race condition we downgrade
1943     ** the lock in 2 blocks, so that part of the range will be covered by a
1944     ** write lock until the rest is covered by a read lock:
1945     **  1:   [WWWWW]
1946     **  2:   [....W]
1947     **  3:   [RRRRW]
1948     **  4:   [RRRR.]
1949     */
1950     if( eFileLock==SHARED_LOCK ){
1951 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
1952       (void)handleNFSUnlock;
1953       assert( handleNFSUnlock==0 );
1954 #endif
1955 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
1956       if( handleNFSUnlock ){
1957         int tErrno;               /* Error code from system call errors */
1958         off_t divSize = SHARED_SIZE - 1;
1959 
1960         lock.l_type = F_UNLCK;
1961         lock.l_whence = SEEK_SET;
1962         lock.l_start = SHARED_FIRST;
1963         lock.l_len = divSize;
1964         if( unixFileLock(pFile, &lock)==(-1) ){
1965           tErrno = errno;
1966           rc = SQLITE_IOERR_UNLOCK;
1967           storeLastErrno(pFile, tErrno);
1968           goto end_unlock;
1969         }
1970         lock.l_type = F_RDLCK;
1971         lock.l_whence = SEEK_SET;
1972         lock.l_start = SHARED_FIRST;
1973         lock.l_len = divSize;
1974         if( unixFileLock(pFile, &lock)==(-1) ){
1975           tErrno = errno;
1976           rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
1977           if( IS_LOCK_ERROR(rc) ){
1978             storeLastErrno(pFile, tErrno);
1979           }
1980           goto end_unlock;
1981         }
1982         lock.l_type = F_UNLCK;
1983         lock.l_whence = SEEK_SET;
1984         lock.l_start = SHARED_FIRST+divSize;
1985         lock.l_len = SHARED_SIZE-divSize;
1986         if( unixFileLock(pFile, &lock)==(-1) ){
1987           tErrno = errno;
1988           rc = SQLITE_IOERR_UNLOCK;
1989           storeLastErrno(pFile, tErrno);
1990           goto end_unlock;
1991         }
1992       }else
1993 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
1994       {
1995         lock.l_type = F_RDLCK;
1996         lock.l_whence = SEEK_SET;
1997         lock.l_start = SHARED_FIRST;
1998         lock.l_len = SHARED_SIZE;
1999         if( unixFileLock(pFile, &lock) ){
2000           /* In theory, the call to unixFileLock() cannot fail because another
2001           ** process is holding an incompatible lock. If it does, this
2002           ** indicates that the other process is not following the locking
2003           ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
2004           ** SQLITE_BUSY would confuse the upper layer (in practice it causes
2005           ** an assert to fail). */
2006           rc = SQLITE_IOERR_RDLOCK;
2007           storeLastErrno(pFile, errno);
2008           goto end_unlock;
2009         }
2010       }
2011     }
2012     lock.l_type = F_UNLCK;
2013     lock.l_whence = SEEK_SET;
2014     lock.l_start = PENDING_BYTE;
2015     lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
2016     if( unixFileLock(pFile, &lock)==0 ){
2017       pInode->eFileLock = SHARED_LOCK;
2018     }else{
2019       rc = SQLITE_IOERR_UNLOCK;
2020       storeLastErrno(pFile, errno);
2021       goto end_unlock;
2022     }
2023   }
2024   if( eFileLock==NO_LOCK ){
2025     /* Decrement the shared lock counter.  Release the lock using an
2026     ** OS call only when all threads in this same process have released
2027     ** the lock.
2028     */
2029     pInode->nShared--;
2030     if( pInode->nShared==0 ){
2031       lock.l_type = F_UNLCK;
2032       lock.l_whence = SEEK_SET;
2033       lock.l_start = lock.l_len = 0L;
2034       if( unixFileLock(pFile, &lock)==0 ){
2035         pInode->eFileLock = NO_LOCK;
2036       }else{
2037         rc = SQLITE_IOERR_UNLOCK;
2038         storeLastErrno(pFile, errno);
2039         pInode->eFileLock = NO_LOCK;
2040         pFile->eFileLock = NO_LOCK;
2041       }
2042     }
2043 
2044     /* Decrement the count of locks against this same file.  When the
2045     ** count reaches zero, close any other file descriptors whose close
2046     ** was deferred because of outstanding locks.
2047     */
2048     pInode->nLock--;
2049     assert( pInode->nLock>=0 );
2050     if( pInode->nLock==0 ) closePendingFds(pFile);
2051   }
2052 
2053 end_unlock:
2054   sqlite3_mutex_leave(pInode->pLockMutex);
2055   if( rc==SQLITE_OK ){
2056     pFile->eFileLock = eFileLock;
2057   }
2058   return rc;
2059 }
2060 
2061 /*
2062 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2063 ** must be either NO_LOCK or SHARED_LOCK.
2064 **
2065 ** If the locking level of the file descriptor is already at or below
2066 ** the requested locking level, this routine is a no-op.
2067 */
unixUnlock(sqlite3_file * id,int eFileLock)2068 static int unixUnlock(sqlite3_file *id, int eFileLock){
2069 #if SQLITE_MAX_MMAP_SIZE>0
2070   assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 );
2071 #endif
2072   return posixUnlock(id, eFileLock, 0);
2073 }
2074 
2075 #if SQLITE_MAX_MMAP_SIZE>0
2076 static int unixMapfile(unixFile *pFd, i64 nByte);
2077 static void unixUnmapfile(unixFile *pFd);
2078 #endif
2079 
2080 /*
2081 ** This function performs the parts of the "close file" operation
2082 ** common to all locking schemes. It closes the directory and file
2083 ** handles, if they are valid, and sets all fields of the unixFile
2084 ** structure to 0.
2085 **
2086 ** It is *not* necessary to hold the mutex when this routine is called,
2087 ** even on VxWorks.  A mutex will be acquired on VxWorks by the
2088 ** vxworksReleaseFileId() routine.
2089 */
closeUnixFile(sqlite3_file * id)2090 static int closeUnixFile(sqlite3_file *id){
2091   unixFile *pFile = (unixFile*)id;
2092 #if SQLITE_MAX_MMAP_SIZE>0
2093   unixUnmapfile(pFile);
2094 #endif
2095   if( pFile->h>=0 ){
2096     robust_close(pFile, pFile->h, __LINE__);
2097     pFile->h = -1;
2098   }
2099 #if OS_VXWORKS
2100   if( pFile->pId ){
2101     if( pFile->ctrlFlags & UNIXFILE_DELETE ){
2102       osUnlink(pFile->pId->zCanonicalName);
2103     }
2104     vxworksReleaseFileId(pFile->pId);
2105     pFile->pId = 0;
2106   }
2107 #endif
2108 #ifdef SQLITE_UNLINK_AFTER_CLOSE
2109   if( pFile->ctrlFlags & UNIXFILE_DELETE ){
2110     osUnlink(pFile->zPath);
2111     sqlite3_free(*(char**)&pFile->zPath);
2112     pFile->zPath = 0;
2113   }
2114 #endif
2115   OSTRACE(("CLOSE   %-3d\n", pFile->h));
2116   OpenCounter(-1);
2117   sqlite3_free(pFile->pPreallocatedUnused);
2118   memset(pFile, 0, sizeof(unixFile));
2119   return SQLITE_OK;
2120 }
2121 
2122 /*
2123 ** Close a file.
2124 */
unixClose(sqlite3_file * id)2125 static int unixClose(sqlite3_file *id){
2126   int rc = SQLITE_OK;
2127   unixFile *pFile = (unixFile *)id;
2128   unixInodeInfo *pInode = pFile->pInode;
2129 
2130   assert( pInode!=0 );
2131   verifyDbFile(pFile);
2132   unixUnlock(id, NO_LOCK);
2133   assert( unixFileMutexNotheld(pFile) );
2134   unixEnterMutex();
2135 
2136   /* unixFile.pInode is always valid here. Otherwise, a different close
2137   ** routine (e.g. nolockClose()) would be called instead.
2138   */
2139   assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
2140   sqlite3_mutex_enter(pInode->pLockMutex);
2141   if( pInode->nLock ){
2142     /* If there are outstanding locks, do not actually close the file just
2143     ** yet because that would clear those locks.  Instead, add the file
2144     ** descriptor to pInode->pUnused list.  It will be automatically closed
2145     ** when the last lock is cleared.
2146     */
2147     setPendingFd(pFile);
2148   }
2149   sqlite3_mutex_leave(pInode->pLockMutex);
2150   releaseInodeInfo(pFile);
2151   assert( pFile->pShm==0 );
2152   rc = closeUnixFile(id);
2153   unixLeaveMutex();
2154   return rc;
2155 }
2156 
2157 /************** End of the posix advisory lock implementation *****************
2158 ******************************************************************************/
2159 
2160 /******************************************************************************
2161 ****************************** No-op Locking **********************************
2162 **
2163 ** Of the various locking implementations available, this is by far the
2164 ** simplest:  locking is ignored.  No attempt is made to lock the database
2165 ** file for reading or writing.
2166 **
2167 ** This locking mode is appropriate for use on read-only databases
2168 ** (ex: databases that are burned into CD-ROM, for example.)  It can
2169 ** also be used if the application employs some external mechanism to
2170 ** prevent simultaneous access of the same database by two or more
2171 ** database connections.  But there is a serious risk of database
2172 ** corruption if this locking mode is used in situations where multiple
2173 ** database connections are accessing the same database file at the same
2174 ** time and one or more of those connections are writing.
2175 */
2176 
nolockCheckReservedLock(sqlite3_file * NotUsed,int * pResOut)2177 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
2178   UNUSED_PARAMETER(NotUsed);
2179   *pResOut = 0;
2180   return SQLITE_OK;
2181 }
nolockLock(sqlite3_file * NotUsed,int NotUsed2)2182 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
2183   UNUSED_PARAMETER2(NotUsed, NotUsed2);
2184   return SQLITE_OK;
2185 }
nolockUnlock(sqlite3_file * NotUsed,int NotUsed2)2186 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
2187   UNUSED_PARAMETER2(NotUsed, NotUsed2);
2188   return SQLITE_OK;
2189 }
2190 
2191 /*
2192 ** Close the file.
2193 */
nolockClose(sqlite3_file * id)2194 static int nolockClose(sqlite3_file *id) {
2195   return closeUnixFile(id);
2196 }
2197 
2198 /******************* End of the no-op lock implementation *********************
2199 ******************************************************************************/
2200 
2201 /******************************************************************************
2202 ************************* Begin dot-file Locking ******************************
2203 **
2204 ** The dotfile locking implementation uses the existence of separate lock
2205 ** files (really a directory) to control access to the database.  This works
2206 ** on just about every filesystem imaginable.  But there are serious downsides:
2207 **
2208 **    (1)  There is zero concurrency.  A single reader blocks all other
2209 **         connections from reading or writing the database.
2210 **
2211 **    (2)  An application crash or power loss can leave stale lock files
2212 **         sitting around that need to be cleared manually.
2213 **
2214 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
2215 ** other locking strategy is available.
2216 **
2217 ** Dotfile locking works by creating a subdirectory in the same directory as
2218 ** the database and with the same name but with a ".lock" extension added.
2219 ** The existence of a lock directory implies an EXCLUSIVE lock.  All other
2220 ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
2221 */
2222 
2223 /*
2224 ** The file suffix added to the data base filename in order to create the
2225 ** lock directory.
2226 */
2227 #define DOTLOCK_SUFFIX ".lock"
2228 
2229 /*
2230 ** This routine checks if there is a RESERVED lock held on the specified
2231 ** file by this or any other process. If such a lock is held, set *pResOut
2232 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
2233 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2234 **
2235 ** In dotfile locking, either a lock exists or it does not.  So in this
2236 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
2237 ** is held on the file and false if the file is unlocked.
2238 */
dotlockCheckReservedLock(sqlite3_file * id,int * pResOut)2239 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
2240   int rc = SQLITE_OK;
2241   int reserved = 0;
2242   unixFile *pFile = (unixFile*)id;
2243 
2244   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2245 
2246   assert( pFile );
2247   reserved = osAccess((const char*)pFile->lockingContext, 0)==0;
2248   OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
2249   *pResOut = reserved;
2250   return rc;
2251 }
2252 
2253 /*
2254 ** Lock the file with the lock specified by parameter eFileLock - one
2255 ** of the following:
2256 **
2257 **     (1) SHARED_LOCK
2258 **     (2) RESERVED_LOCK
2259 **     (3) PENDING_LOCK
2260 **     (4) EXCLUSIVE_LOCK
2261 **
2262 ** Sometimes when requesting one lock state, additional lock states
2263 ** are inserted in between.  The locking might fail on one of the later
2264 ** transitions leaving the lock state different from what it started but
2265 ** still short of its goal.  The following chart shows the allowed
2266 ** transitions and the inserted intermediate states:
2267 **
2268 **    UNLOCKED -> SHARED
2269 **    SHARED -> RESERVED
2270 **    SHARED -> (PENDING) -> EXCLUSIVE
2271 **    RESERVED -> (PENDING) -> EXCLUSIVE
2272 **    PENDING -> EXCLUSIVE
2273 **
2274 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2275 ** routine to lower a locking level.
2276 **
2277 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
2278 ** But we track the other locking levels internally.
2279 */
dotlockLock(sqlite3_file * id,int eFileLock)2280 static int dotlockLock(sqlite3_file *id, int eFileLock) {
2281   unixFile *pFile = (unixFile*)id;
2282   char *zLockFile = (char *)pFile->lockingContext;
2283   int rc = SQLITE_OK;
2284 
2285 
2286   /* If we have any lock, then the lock file already exists.  All we have
2287   ** to do is adjust our internal record of the lock level.
2288   */
2289   if( pFile->eFileLock > NO_LOCK ){
2290     pFile->eFileLock = eFileLock;
2291     /* Always update the timestamp on the old file */
2292 #ifdef HAVE_UTIME
2293     utime(zLockFile, NULL);
2294 #else
2295     utimes(zLockFile, NULL);
2296 #endif
2297     return SQLITE_OK;
2298   }
2299 
2300   /* grab an exclusive lock */
2301   rc = osMkdir(zLockFile, 0777);
2302   if( rc<0 ){
2303     /* failed to open/create the lock directory */
2304     int tErrno = errno;
2305     if( EEXIST == tErrno ){
2306       rc = SQLITE_BUSY;
2307     } else {
2308       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2309       if( rc!=SQLITE_BUSY ){
2310         storeLastErrno(pFile, tErrno);
2311       }
2312     }
2313     return rc;
2314   }
2315 
2316   /* got it, set the type and return ok */
2317   pFile->eFileLock = eFileLock;
2318   return rc;
2319 }
2320 
2321 /*
2322 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2323 ** must be either NO_LOCK or SHARED_LOCK.
2324 **
2325 ** If the locking level of the file descriptor is already at or below
2326 ** the requested locking level, this routine is a no-op.
2327 **
2328 ** When the locking level reaches NO_LOCK, delete the lock file.
2329 */
dotlockUnlock(sqlite3_file * id,int eFileLock)2330 static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
2331   unixFile *pFile = (unixFile*)id;
2332   char *zLockFile = (char *)pFile->lockingContext;
2333   int rc;
2334 
2335   assert( pFile );
2336   OSTRACE(("UNLOCK  %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
2337            pFile->eFileLock, osGetpid(0)));
2338   assert( eFileLock<=SHARED_LOCK );
2339 
2340   /* no-op if possible */
2341   if( pFile->eFileLock==eFileLock ){
2342     return SQLITE_OK;
2343   }
2344 
2345   /* To downgrade to shared, simply update our internal notion of the
2346   ** lock state.  No need to mess with the file on disk.
2347   */
2348   if( eFileLock==SHARED_LOCK ){
2349     pFile->eFileLock = SHARED_LOCK;
2350     return SQLITE_OK;
2351   }
2352 
2353   /* To fully unlock the database, delete the lock file */
2354   assert( eFileLock==NO_LOCK );
2355   rc = osRmdir(zLockFile);
2356   if( rc<0 ){
2357     int tErrno = errno;
2358     if( tErrno==ENOENT ){
2359       rc = SQLITE_OK;
2360     }else{
2361       rc = SQLITE_IOERR_UNLOCK;
2362       storeLastErrno(pFile, tErrno);
2363     }
2364     return rc;
2365   }
2366   pFile->eFileLock = NO_LOCK;
2367   return SQLITE_OK;
2368 }
2369 
2370 /*
2371 ** Close a file.  Make sure the lock has been released before closing.
2372 */
dotlockClose(sqlite3_file * id)2373 static int dotlockClose(sqlite3_file *id) {
2374   unixFile *pFile = (unixFile*)id;
2375   assert( id!=0 );
2376   dotlockUnlock(id, NO_LOCK);
2377   sqlite3_free(pFile->lockingContext);
2378   return closeUnixFile(id);
2379 }
2380 /****************** End of the dot-file lock implementation *******************
2381 ******************************************************************************/
2382 
2383 /******************************************************************************
2384 ************************** Begin flock Locking ********************************
2385 **
2386 ** Use the flock() system call to do file locking.
2387 **
2388 ** flock() locking is like dot-file locking in that the various
2389 ** fine-grain locking levels supported by SQLite are collapsed into
2390 ** a single exclusive lock.  In other words, SHARED, RESERVED, and
2391 ** PENDING locks are the same thing as an EXCLUSIVE lock.  SQLite
2392 ** still works when you do this, but concurrency is reduced since
2393 ** only a single process can be reading the database at a time.
2394 **
2395 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off
2396 */
2397 #if SQLITE_ENABLE_LOCKING_STYLE
2398 
2399 /*
2400 ** Retry flock() calls that fail with EINTR
2401 */
2402 #ifdef EINTR
robust_flock(int fd,int op)2403 static int robust_flock(int fd, int op){
2404   int rc;
2405   do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
2406   return rc;
2407 }
2408 #else
2409 # define robust_flock(a,b) flock(a,b)
2410 #endif
2411 
2412 
2413 /*
2414 ** This routine checks if there is a RESERVED lock held on the specified
2415 ** file by this or any other process. If such a lock is held, set *pResOut
2416 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
2417 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2418 */
flockCheckReservedLock(sqlite3_file * id,int * pResOut)2419 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
2420   int rc = SQLITE_OK;
2421   int reserved = 0;
2422   unixFile *pFile = (unixFile*)id;
2423 
2424   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2425 
2426   assert( pFile );
2427 
2428   /* Check if a thread in this process holds such a lock */
2429   if( pFile->eFileLock>SHARED_LOCK ){
2430     reserved = 1;
2431   }
2432 
2433   /* Otherwise see if some other process holds it. */
2434   if( !reserved ){
2435     /* attempt to get the lock */
2436     int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
2437     if( !lrc ){
2438       /* got the lock, unlock it */
2439       lrc = robust_flock(pFile->h, LOCK_UN);
2440       if ( lrc ) {
2441         int tErrno = errno;
2442         /* unlock failed with an error */
2443         lrc = SQLITE_IOERR_UNLOCK;
2444         storeLastErrno(pFile, tErrno);
2445         rc = lrc;
2446       }
2447     } else {
2448       int tErrno = errno;
2449       reserved = 1;
2450       /* someone else might have it reserved */
2451       lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2452       if( IS_LOCK_ERROR(lrc) ){
2453         storeLastErrno(pFile, tErrno);
2454         rc = lrc;
2455       }
2456     }
2457   }
2458   OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
2459 
2460 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2461   if( (rc & 0xff) == SQLITE_IOERR ){
2462     rc = SQLITE_OK;
2463     reserved=1;
2464   }
2465 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2466   *pResOut = reserved;
2467   return rc;
2468 }
2469 
2470 /*
2471 ** Lock the file with the lock specified by parameter eFileLock - one
2472 ** of the following:
2473 **
2474 **     (1) SHARED_LOCK
2475 **     (2) RESERVED_LOCK
2476 **     (3) PENDING_LOCK
2477 **     (4) EXCLUSIVE_LOCK
2478 **
2479 ** Sometimes when requesting one lock state, additional lock states
2480 ** are inserted in between.  The locking might fail on one of the later
2481 ** transitions leaving the lock state different from what it started but
2482 ** still short of its goal.  The following chart shows the allowed
2483 ** transitions and the inserted intermediate states:
2484 **
2485 **    UNLOCKED -> SHARED
2486 **    SHARED -> RESERVED
2487 **    SHARED -> (PENDING) -> EXCLUSIVE
2488 **    RESERVED -> (PENDING) -> EXCLUSIVE
2489 **    PENDING -> EXCLUSIVE
2490 **
2491 ** flock() only really support EXCLUSIVE locks.  We track intermediate
2492 ** lock states in the sqlite3_file structure, but all locks SHARED or
2493 ** above are really EXCLUSIVE locks and exclude all other processes from
2494 ** access the file.
2495 **
2496 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2497 ** routine to lower a locking level.
2498 */
flockLock(sqlite3_file * id,int eFileLock)2499 static int flockLock(sqlite3_file *id, int eFileLock) {
2500   int rc = SQLITE_OK;
2501   unixFile *pFile = (unixFile*)id;
2502 
2503   assert( pFile );
2504 
2505   /* if we already have a lock, it is exclusive.
2506   ** Just adjust level and punt on outta here. */
2507   if (pFile->eFileLock > NO_LOCK) {
2508     pFile->eFileLock = eFileLock;
2509     return SQLITE_OK;
2510   }
2511 
2512   /* grab an exclusive lock */
2513 
2514   if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
2515     int tErrno = errno;
2516     /* didn't get, must be busy */
2517     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2518     if( IS_LOCK_ERROR(rc) ){
2519       storeLastErrno(pFile, tErrno);
2520     }
2521   } else {
2522     /* got it, set the type and return ok */
2523     pFile->eFileLock = eFileLock;
2524   }
2525   OSTRACE(("LOCK    %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
2526            rc==SQLITE_OK ? "ok" : "failed"));
2527 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2528   if( (rc & 0xff) == SQLITE_IOERR ){
2529     rc = SQLITE_BUSY;
2530   }
2531 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2532   return rc;
2533 }
2534 
2535 
2536 /*
2537 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2538 ** must be either NO_LOCK or SHARED_LOCK.
2539 **
2540 ** If the locking level of the file descriptor is already at or below
2541 ** the requested locking level, this routine is a no-op.
2542 */
flockUnlock(sqlite3_file * id,int eFileLock)2543 static int flockUnlock(sqlite3_file *id, int eFileLock) {
2544   unixFile *pFile = (unixFile*)id;
2545 
2546   assert( pFile );
2547   OSTRACE(("UNLOCK  %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
2548            pFile->eFileLock, osGetpid(0)));
2549   assert( eFileLock<=SHARED_LOCK );
2550 
2551   /* no-op if possible */
2552   if( pFile->eFileLock==eFileLock ){
2553     return SQLITE_OK;
2554   }
2555 
2556   /* shared can just be set because we always have an exclusive */
2557   if (eFileLock==SHARED_LOCK) {
2558     pFile->eFileLock = eFileLock;
2559     return SQLITE_OK;
2560   }
2561 
2562   /* no, really, unlock. */
2563   if( robust_flock(pFile->h, LOCK_UN) ){
2564 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2565     return SQLITE_OK;
2566 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2567     return SQLITE_IOERR_UNLOCK;
2568   }else{
2569     pFile->eFileLock = NO_LOCK;
2570     return SQLITE_OK;
2571   }
2572 }
2573 
2574 /*
2575 ** Close a file.
2576 */
flockClose(sqlite3_file * id)2577 static int flockClose(sqlite3_file *id) {
2578   assert( id!=0 );
2579   flockUnlock(id, NO_LOCK);
2580   return closeUnixFile(id);
2581 }
2582 
2583 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2584 
2585 /******************* End of the flock lock implementation *********************
2586 ******************************************************************************/
2587 
2588 /******************************************************************************
2589 ************************ Begin Named Semaphore Locking ************************
2590 **
2591 ** Named semaphore locking is only supported on VxWorks.
2592 **
2593 ** Semaphore locking is like dot-lock and flock in that it really only
2594 ** supports EXCLUSIVE locking.  Only a single process can read or write
2595 ** the database file at a time.  This reduces potential concurrency, but
2596 ** makes the lock implementation much easier.
2597 */
2598 #if OS_VXWORKS
2599 
2600 /*
2601 ** This routine checks if there is a RESERVED lock held on the specified
2602 ** file by this or any other process. If such a lock is held, set *pResOut
2603 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
2604 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2605 */
semXCheckReservedLock(sqlite3_file * id,int * pResOut)2606 static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) {
2607   int rc = SQLITE_OK;
2608   int reserved = 0;
2609   unixFile *pFile = (unixFile*)id;
2610 
2611   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2612 
2613   assert( pFile );
2614 
2615   /* Check if a thread in this process holds such a lock */
2616   if( pFile->eFileLock>SHARED_LOCK ){
2617     reserved = 1;
2618   }
2619 
2620   /* Otherwise see if some other process holds it. */
2621   if( !reserved ){
2622     sem_t *pSem = pFile->pInode->pSem;
2623 
2624     if( sem_trywait(pSem)==-1 ){
2625       int tErrno = errno;
2626       if( EAGAIN != tErrno ){
2627         rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
2628         storeLastErrno(pFile, tErrno);
2629       } else {
2630         /* someone else has the lock when we are in NO_LOCK */
2631         reserved = (pFile->eFileLock < SHARED_LOCK);
2632       }
2633     }else{
2634       /* we could have it if we want it */
2635       sem_post(pSem);
2636     }
2637   }
2638   OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
2639 
2640   *pResOut = reserved;
2641   return rc;
2642 }
2643 
2644 /*
2645 ** Lock the file with the lock specified by parameter eFileLock - one
2646 ** of the following:
2647 **
2648 **     (1) SHARED_LOCK
2649 **     (2) RESERVED_LOCK
2650 **     (3) PENDING_LOCK
2651 **     (4) EXCLUSIVE_LOCK
2652 **
2653 ** Sometimes when requesting one lock state, additional lock states
2654 ** are inserted in between.  The locking might fail on one of the later
2655 ** transitions leaving the lock state different from what it started but
2656 ** still short of its goal.  The following chart shows the allowed
2657 ** transitions and the inserted intermediate states:
2658 **
2659 **    UNLOCKED -> SHARED
2660 **    SHARED -> RESERVED
2661 **    SHARED -> (PENDING) -> EXCLUSIVE
2662 **    RESERVED -> (PENDING) -> EXCLUSIVE
2663 **    PENDING -> EXCLUSIVE
2664 **
2665 ** Semaphore locks only really support EXCLUSIVE locks.  We track intermediate
2666 ** lock states in the sqlite3_file structure, but all locks SHARED or
2667 ** above are really EXCLUSIVE locks and exclude all other processes from
2668 ** access the file.
2669 **
2670 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2671 ** routine to lower a locking level.
2672 */
semXLock(sqlite3_file * id,int eFileLock)2673 static int semXLock(sqlite3_file *id, int eFileLock) {
2674   unixFile *pFile = (unixFile*)id;
2675   sem_t *pSem = pFile->pInode->pSem;
2676   int rc = SQLITE_OK;
2677 
2678   /* if we already have a lock, it is exclusive.
2679   ** Just adjust level and punt on outta here. */
2680   if (pFile->eFileLock > NO_LOCK) {
2681     pFile->eFileLock = eFileLock;
2682     rc = SQLITE_OK;
2683     goto sem_end_lock;
2684   }
2685 
2686   /* lock semaphore now but bail out when already locked. */
2687   if( sem_trywait(pSem)==-1 ){
2688     rc = SQLITE_BUSY;
2689     goto sem_end_lock;
2690   }
2691 
2692   /* got it, set the type and return ok */
2693   pFile->eFileLock = eFileLock;
2694 
2695  sem_end_lock:
2696   return rc;
2697 }
2698 
2699 /*
2700 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2701 ** must be either NO_LOCK or SHARED_LOCK.
2702 **
2703 ** If the locking level of the file descriptor is already at or below
2704 ** the requested locking level, this routine is a no-op.
2705 */
semXUnlock(sqlite3_file * id,int eFileLock)2706 static int semXUnlock(sqlite3_file *id, int eFileLock) {
2707   unixFile *pFile = (unixFile*)id;
2708   sem_t *pSem = pFile->pInode->pSem;
2709 
2710   assert( pFile );
2711   assert( pSem );
2712   OSTRACE(("UNLOCK  %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
2713            pFile->eFileLock, osGetpid(0)));
2714   assert( eFileLock<=SHARED_LOCK );
2715 
2716   /* no-op if possible */
2717   if( pFile->eFileLock==eFileLock ){
2718     return SQLITE_OK;
2719   }
2720 
2721   /* shared can just be set because we always have an exclusive */
2722   if (eFileLock==SHARED_LOCK) {
2723     pFile->eFileLock = eFileLock;
2724     return SQLITE_OK;
2725   }
2726 
2727   /* no, really unlock. */
2728   if ( sem_post(pSem)==-1 ) {
2729     int rc, tErrno = errno;
2730     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2731     if( IS_LOCK_ERROR(rc) ){
2732       storeLastErrno(pFile, tErrno);
2733     }
2734     return rc;
2735   }
2736   pFile->eFileLock = NO_LOCK;
2737   return SQLITE_OK;
2738 }
2739 
2740 /*
2741  ** Close a file.
2742  */
semXClose(sqlite3_file * id)2743 static int semXClose(sqlite3_file *id) {
2744   if( id ){
2745     unixFile *pFile = (unixFile*)id;
2746     semXUnlock(id, NO_LOCK);
2747     assert( pFile );
2748     assert( unixFileMutexNotheld(pFile) );
2749     unixEnterMutex();
2750     releaseInodeInfo(pFile);
2751     unixLeaveMutex();
2752     closeUnixFile(id);
2753   }
2754   return SQLITE_OK;
2755 }
2756 
2757 #endif /* OS_VXWORKS */
2758 /*
2759 ** Named semaphore locking is only available on VxWorks.
2760 **
2761 *************** End of the named semaphore lock implementation ****************
2762 ******************************************************************************/
2763 
2764 
2765 /******************************************************************************
2766 *************************** Begin AFP Locking *********************************
2767 **
2768 ** AFP is the Apple Filing Protocol.  AFP is a network filesystem found
2769 ** on Apple Macintosh computers - both OS9 and OSX.
2770 **
2771 ** Third-party implementations of AFP are available.  But this code here
2772 ** only works on OSX.
2773 */
2774 
2775 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2776 /*
2777 ** The afpLockingContext structure contains all afp lock specific state
2778 */
2779 typedef struct afpLockingContext afpLockingContext;
2780 struct afpLockingContext {
2781   int reserved;
2782   const char *dbPath;             /* Name of the open file */
2783 };
2784 
2785 struct ByteRangeLockPB2
2786 {
2787   unsigned long long offset;        /* offset to first byte to lock */
2788   unsigned long long length;        /* nbr of bytes to lock */
2789   unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
2790   unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
2791   unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
2792   int fd;                           /* file desc to assoc this lock with */
2793 };
2794 
2795 #define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
2796 
2797 /*
2798 ** This is a utility for setting or clearing a bit-range lock on an
2799 ** AFP filesystem.
2800 **
2801 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2802 */
afpSetLock(const char * path,unixFile * pFile,unsigned long long offset,unsigned long long length,int setLockFlag)2803 static int afpSetLock(
2804   const char *path,              /* Name of the file to be locked or unlocked */
2805   unixFile *pFile,               /* Open file descriptor on path */
2806   unsigned long long offset,     /* First byte to be locked */
2807   unsigned long long length,     /* Number of bytes to lock */
2808   int setLockFlag                /* True to set lock.  False to clear lock */
2809 ){
2810   struct ByteRangeLockPB2 pb;
2811   int err;
2812 
2813   pb.unLockFlag = setLockFlag ? 0 : 1;
2814   pb.startEndFlag = 0;
2815   pb.offset = offset;
2816   pb.length = length;
2817   pb.fd = pFile->h;
2818 
2819   OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
2820     (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
2821     offset, length));
2822   err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
2823   if ( err==-1 ) {
2824     int rc;
2825     int tErrno = errno;
2826     OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2827              path, tErrno, strerror(tErrno)));
2828 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2829     rc = SQLITE_BUSY;
2830 #else
2831     rc = sqliteErrorFromPosixError(tErrno,
2832                     setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
2833 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
2834     if( IS_LOCK_ERROR(rc) ){
2835       storeLastErrno(pFile, tErrno);
2836     }
2837     return rc;
2838   } else {
2839     return SQLITE_OK;
2840   }
2841 }
2842 
2843 /*
2844 ** This routine checks if there is a RESERVED lock held on the specified
2845 ** file by this or any other process. If such a lock is held, set *pResOut
2846 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
2847 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2848 */
afpCheckReservedLock(sqlite3_file * id,int * pResOut)2849 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
2850   int rc = SQLITE_OK;
2851   int reserved = 0;
2852   unixFile *pFile = (unixFile*)id;
2853   afpLockingContext *context;
2854 
2855   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2856 
2857   assert( pFile );
2858   context = (afpLockingContext *) pFile->lockingContext;
2859   if( context->reserved ){
2860     *pResOut = 1;
2861     return SQLITE_OK;
2862   }
2863   sqlite3_mutex_enter(pFile->pInode->pLockMutex);
2864   /* Check if a thread in this process holds such a lock */
2865   if( pFile->pInode->eFileLock>SHARED_LOCK ){
2866     reserved = 1;
2867   }
2868 
2869   /* Otherwise see if some other process holds it.
2870    */
2871   if( !reserved ){
2872     /* lock the RESERVED byte */
2873     int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2874     if( SQLITE_OK==lrc ){
2875       /* if we succeeded in taking the reserved lock, unlock it to restore
2876       ** the original state */
2877       lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2878     } else {
2879       /* if we failed to get the lock then someone else must have it */
2880       reserved = 1;
2881     }
2882     if( IS_LOCK_ERROR(lrc) ){
2883       rc=lrc;
2884     }
2885   }
2886 
2887   sqlite3_mutex_leave(pFile->pInode->pLockMutex);
2888   OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
2889 
2890   *pResOut = reserved;
2891   return rc;
2892 }
2893 
2894 /*
2895 ** Lock the file with the lock specified by parameter eFileLock - one
2896 ** of the following:
2897 **
2898 **     (1) SHARED_LOCK
2899 **     (2) RESERVED_LOCK
2900 **     (3) PENDING_LOCK
2901 **     (4) EXCLUSIVE_LOCK
2902 **
2903 ** Sometimes when requesting one lock state, additional lock states
2904 ** are inserted in between.  The locking might fail on one of the later
2905 ** transitions leaving the lock state different from what it started but
2906 ** still short of its goal.  The following chart shows the allowed
2907 ** transitions and the inserted intermediate states:
2908 **
2909 **    UNLOCKED -> SHARED
2910 **    SHARED -> RESERVED
2911 **    SHARED -> (PENDING) -> EXCLUSIVE
2912 **    RESERVED -> (PENDING) -> EXCLUSIVE
2913 **    PENDING -> EXCLUSIVE
2914 **
2915 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2916 ** routine to lower a locking level.
2917 */
afpLock(sqlite3_file * id,int eFileLock)2918 static int afpLock(sqlite3_file *id, int eFileLock){
2919   int rc = SQLITE_OK;
2920   unixFile *pFile = (unixFile*)id;
2921   unixInodeInfo *pInode = pFile->pInode;
2922   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2923 
2924   assert( pFile );
2925   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
2926            azFileLock(eFileLock), azFileLock(pFile->eFileLock),
2927            azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0)));
2928 
2929   /* If there is already a lock of this type or more restrictive on the
2930   ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
2931   ** unixEnterMutex() hasn't been called yet.
2932   */
2933   if( pFile->eFileLock>=eFileLock ){
2934     OSTRACE(("LOCK    %d %s ok (already held) (afp)\n", pFile->h,
2935            azFileLock(eFileLock)));
2936     return SQLITE_OK;
2937   }
2938 
2939   /* Make sure the locking sequence is correct
2940   **  (1) We never move from unlocked to anything higher than shared lock.
2941   **  (2) SQLite never explicitly requests a pendig lock.
2942   **  (3) A shared lock is always held when a reserve lock is requested.
2943   */
2944   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
2945   assert( eFileLock!=PENDING_LOCK );
2946   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
2947 
2948   /* This mutex is needed because pFile->pInode is shared across threads
2949   */
2950   pInode = pFile->pInode;
2951   sqlite3_mutex_enter(pInode->pLockMutex);
2952 
2953   /* If some thread using this PID has a lock via a different unixFile*
2954   ** handle that precludes the requested lock, return BUSY.
2955   */
2956   if( (pFile->eFileLock!=pInode->eFileLock &&
2957        (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
2958      ){
2959     rc = SQLITE_BUSY;
2960     goto afp_end_lock;
2961   }
2962 
2963   /* If a SHARED lock is requested, and some thread using this PID already
2964   ** has a SHARED or RESERVED lock, then increment reference counts and
2965   ** return SQLITE_OK.
2966   */
2967   if( eFileLock==SHARED_LOCK &&
2968      (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
2969     assert( eFileLock==SHARED_LOCK );
2970     assert( pFile->eFileLock==0 );
2971     assert( pInode->nShared>0 );
2972     pFile->eFileLock = SHARED_LOCK;
2973     pInode->nShared++;
2974     pInode->nLock++;
2975     goto afp_end_lock;
2976   }
2977 
2978   /* A PENDING lock is needed before acquiring a SHARED lock and before
2979   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
2980   ** be released.
2981   */
2982   if( eFileLock==SHARED_LOCK
2983       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
2984   ){
2985     int failed;
2986     failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
2987     if (failed) {
2988       rc = failed;
2989       goto afp_end_lock;
2990     }
2991   }
2992 
2993   /* If control gets to this point, then actually go ahead and make
2994   ** operating system calls for the specified lock.
2995   */
2996   if( eFileLock==SHARED_LOCK ){
2997     int lrc1, lrc2, lrc1Errno = 0;
2998     long lk, mask;
2999 
3000     assert( pInode->nShared==0 );
3001     assert( pInode->eFileLock==0 );
3002 
3003     mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
3004     /* Now get the read-lock SHARED_LOCK */
3005     /* note that the quality of the randomness doesn't matter that much */
3006     lk = random();
3007     pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
3008     lrc1 = afpSetLock(context->dbPath, pFile,
3009           SHARED_FIRST+pInode->sharedByte, 1, 1);
3010     if( IS_LOCK_ERROR(lrc1) ){
3011       lrc1Errno = pFile->lastErrno;
3012     }
3013     /* Drop the temporary PENDING lock */
3014     lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
3015 
3016     if( IS_LOCK_ERROR(lrc1) ) {
3017       storeLastErrno(pFile, lrc1Errno);
3018       rc = lrc1;
3019       goto afp_end_lock;
3020     } else if( IS_LOCK_ERROR(lrc2) ){
3021       rc = lrc2;
3022       goto afp_end_lock;
3023     } else if( lrc1 != SQLITE_OK ) {
3024       rc = lrc1;
3025     } else {
3026       pFile->eFileLock = SHARED_LOCK;
3027       pInode->nLock++;
3028       pInode->nShared = 1;
3029     }
3030   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
3031     /* We are trying for an exclusive lock but another thread in this
3032      ** same process is still holding a shared lock. */
3033     rc = SQLITE_BUSY;
3034   }else{
3035     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
3036     ** assumed that there is a SHARED or greater lock on the file
3037     ** already.
3038     */
3039     int failed = 0;
3040     assert( 0!=pFile->eFileLock );
3041     if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
3042         /* Acquire a RESERVED lock */
3043         failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
3044       if( !failed ){
3045         context->reserved = 1;
3046       }
3047     }
3048     if (!failed && eFileLock == EXCLUSIVE_LOCK) {
3049       /* Acquire an EXCLUSIVE lock */
3050 
3051       /* Remove the shared lock before trying the range.  we'll need to
3052       ** reestablish the shared lock if we can't get the  afpUnlock
3053       */
3054       if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
3055                          pInode->sharedByte, 1, 0)) ){
3056         int failed2 = SQLITE_OK;
3057         /* now attemmpt to get the exclusive lock range */
3058         failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
3059                                SHARED_SIZE, 1);
3060         if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
3061                        SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
3062           /* Can't reestablish the shared lock.  Sqlite can't deal, this is
3063           ** a critical I/O error
3064           */
3065           rc = ((failed & 0xff) == SQLITE_IOERR) ? failed2 :
3066                SQLITE_IOERR_LOCK;
3067           goto afp_end_lock;
3068         }
3069       }else{
3070         rc = failed;
3071       }
3072     }
3073     if( failed ){
3074       rc = failed;
3075     }
3076   }
3077 
3078   if( rc==SQLITE_OK ){
3079     pFile->eFileLock = eFileLock;
3080     pInode->eFileLock = eFileLock;
3081   }else if( eFileLock==EXCLUSIVE_LOCK ){
3082     pFile->eFileLock = PENDING_LOCK;
3083     pInode->eFileLock = PENDING_LOCK;
3084   }
3085 
3086 afp_end_lock:
3087   sqlite3_mutex_leave(pInode->pLockMutex);
3088   OSTRACE(("LOCK    %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
3089          rc==SQLITE_OK ? "ok" : "failed"));
3090   return rc;
3091 }
3092 
3093 /*
3094 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
3095 ** must be either NO_LOCK or SHARED_LOCK.
3096 **
3097 ** If the locking level of the file descriptor is already at or below
3098 ** the requested locking level, this routine is a no-op.
3099 */
afpUnlock(sqlite3_file * id,int eFileLock)3100 static int afpUnlock(sqlite3_file *id, int eFileLock) {
3101   int rc = SQLITE_OK;
3102   unixFile *pFile = (unixFile*)id;
3103   unixInodeInfo *pInode;
3104   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
3105   int skipShared = 0;
3106 #ifdef SQLITE_TEST
3107   int h = pFile->h;
3108 #endif
3109 
3110   assert( pFile );
3111   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
3112            pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
3113            osGetpid(0)));
3114 
3115   assert( eFileLock<=SHARED_LOCK );
3116   if( pFile->eFileLock<=eFileLock ){
3117     return SQLITE_OK;
3118   }
3119   pInode = pFile->pInode;
3120   sqlite3_mutex_enter(pInode->pLockMutex);
3121   assert( pInode->nShared!=0 );
3122   if( pFile->eFileLock>SHARED_LOCK ){
3123     assert( pInode->eFileLock==pFile->eFileLock );
3124     SimulateIOErrorBenign(1);
3125     SimulateIOError( h=(-1) )
3126     SimulateIOErrorBenign(0);
3127 
3128 #ifdef SQLITE_DEBUG
3129     /* When reducing a lock such that other processes can start
3130     ** reading the database file again, make sure that the
3131     ** transaction counter was updated if any part of the database
3132     ** file changed.  If the transaction counter is not updated,
3133     ** other connections to the same file might not realize that
3134     ** the file has changed and hence might not know to flush their
3135     ** cache.  The use of a stale cache can lead to database corruption.
3136     */
3137     assert( pFile->inNormalWrite==0
3138            || pFile->dbUpdate==0
3139            || pFile->transCntrChng==1 );
3140     pFile->inNormalWrite = 0;
3141 #endif
3142 
3143     if( pFile->eFileLock==EXCLUSIVE_LOCK ){
3144       rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
3145       if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
3146         /* only re-establish the shared lock if necessary */
3147         int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
3148         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
3149       } else {
3150         skipShared = 1;
3151       }
3152     }
3153     if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
3154       rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
3155     }
3156     if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
3157       rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
3158       if( !rc ){
3159         context->reserved = 0;
3160       }
3161     }
3162     if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
3163       pInode->eFileLock = SHARED_LOCK;
3164     }
3165   }
3166   if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
3167 
3168     /* Decrement the shared lock counter.  Release the lock using an
3169     ** OS call only when all threads in this same process have released
3170     ** the lock.
3171     */
3172     unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
3173     pInode->nShared--;
3174     if( pInode->nShared==0 ){
3175       SimulateIOErrorBenign(1);
3176       SimulateIOError( h=(-1) )
3177       SimulateIOErrorBenign(0);
3178       if( !skipShared ){
3179         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
3180       }
3181       if( !rc ){
3182         pInode->eFileLock = NO_LOCK;
3183         pFile->eFileLock = NO_LOCK;
3184       }
3185     }
3186     if( rc==SQLITE_OK ){
3187       pInode->nLock--;
3188       assert( pInode->nLock>=0 );
3189       if( pInode->nLock==0 ) closePendingFds(pFile);
3190     }
3191   }
3192 
3193   sqlite3_mutex_leave(pInode->pLockMutex);
3194   if( rc==SQLITE_OK ){
3195     pFile->eFileLock = eFileLock;
3196   }
3197   return rc;
3198 }
3199 
3200 /*
3201 ** Close a file & cleanup AFP specific locking context
3202 */
afpClose(sqlite3_file * id)3203 static int afpClose(sqlite3_file *id) {
3204   int rc = SQLITE_OK;
3205   unixFile *pFile = (unixFile*)id;
3206   assert( id!=0 );
3207   afpUnlock(id, NO_LOCK);
3208   assert( unixFileMutexNotheld(pFile) );
3209   unixEnterMutex();
3210   if( pFile->pInode ){
3211     unixInodeInfo *pInode = pFile->pInode;
3212     sqlite3_mutex_enter(pInode->pLockMutex);
3213     if( pInode->nLock ){
3214       /* If there are outstanding locks, do not actually close the file just
3215       ** yet because that would clear those locks.  Instead, add the file
3216       ** descriptor to pInode->aPending.  It will be automatically closed when
3217       ** the last lock is cleared.
3218       */
3219       setPendingFd(pFile);
3220     }
3221     sqlite3_mutex_leave(pInode->pLockMutex);
3222   }
3223   releaseInodeInfo(pFile);
3224   sqlite3_free(pFile->lockingContext);
3225   rc = closeUnixFile(id);
3226   unixLeaveMutex();
3227   return rc;
3228 }
3229 
3230 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
3231 /*
3232 ** The code above is the AFP lock implementation.  The code is specific
3233 ** to MacOSX and does not work on other unix platforms.  No alternative
3234 ** is available.  If you don't compile for a mac, then the "unix-afp"
3235 ** VFS is not available.
3236 **
3237 ********************* End of the AFP lock implementation **********************
3238 ******************************************************************************/
3239 
3240 /******************************************************************************
3241 *************************** Begin NFS Locking ********************************/
3242 
3243 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
3244 /*
3245  ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
3246  ** must be either NO_LOCK or SHARED_LOCK.
3247  **
3248  ** If the locking level of the file descriptor is already at or below
3249  ** the requested locking level, this routine is a no-op.
3250  */
nfsUnlock(sqlite3_file * id,int eFileLock)3251 static int nfsUnlock(sqlite3_file *id, int eFileLock){
3252   return posixUnlock(id, eFileLock, 1);
3253 }
3254 
3255 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
3256 /*
3257 ** The code above is the NFS lock implementation.  The code is specific
3258 ** to MacOSX and does not work on other unix platforms.  No alternative
3259 ** is available.
3260 **
3261 ********************* End of the NFS lock implementation **********************
3262 ******************************************************************************/
3263 
3264 /******************************************************************************
3265 **************** Non-locking sqlite3_file methods *****************************
3266 **
3267 ** The next division contains implementations for all methods of the
3268 ** sqlite3_file object other than the locking methods.  The locking
3269 ** methods were defined in divisions above (one locking method per
3270 ** division).  Those methods that are common to all locking modes
3271 ** are gather together into this division.
3272 */
3273 
3274 /*
3275 ** Seek to the offset passed as the second argument, then read cnt
3276 ** bytes into pBuf. Return the number of bytes actually read.
3277 **
3278 ** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
3279 ** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
3280 ** one system to another.  Since SQLite does not define USE_PREAD
3281 ** in any form by default, we will not attempt to define _XOPEN_SOURCE.
3282 ** See tickets #2741 and #2681.
3283 **
3284 ** To avoid stomping the errno value on a failed read the lastErrno value
3285 ** is set before returning.
3286 */
seekAndRead(unixFile * id,sqlite3_int64 offset,void * pBuf,int cnt)3287 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
3288   int got;
3289   int prior = 0;
3290 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
3291   i64 newOffset;
3292 #endif
3293   TIMER_START;
3294   assert( cnt==(cnt&0x1ffff) );
3295   assert( id->h>2 );
3296   do{
3297 #if defined(USE_PREAD)
3298     got = osPread(id->h, pBuf, cnt, offset);
3299     SimulateIOError( got = -1 );
3300 #elif defined(USE_PREAD64)
3301     got = osPread64(id->h, pBuf, cnt, offset);
3302     SimulateIOError( got = -1 );
3303 #else
3304     newOffset = lseek(id->h, offset, SEEK_SET);
3305     SimulateIOError( newOffset = -1 );
3306     if( newOffset<0 ){
3307       storeLastErrno((unixFile*)id, errno);
3308       return -1;
3309     }
3310     got = osRead(id->h, pBuf, cnt);
3311 #endif
3312     if( got==cnt ) break;
3313     if( got<0 ){
3314       if( errno==EINTR ){ got = 1; continue; }
3315       prior = 0;
3316       storeLastErrno((unixFile*)id,  errno);
3317       break;
3318     }else if( got>0 ){
3319       cnt -= got;
3320       offset += got;
3321       prior += got;
3322       pBuf = (void*)(got + (char*)pBuf);
3323     }
3324   }while( got>0 );
3325   TIMER_END;
3326   OSTRACE(("READ    %-3d %5d %7lld %llu\n",
3327             id->h, got+prior, offset-prior, TIMER_ELAPSED));
3328   return got+prior;
3329 }
3330 
3331 /*
3332 ** Read data from a file into a buffer.  Return SQLITE_OK if all
3333 ** bytes were read successfully and SQLITE_IOERR if anything goes
3334 ** wrong.
3335 */
unixRead(sqlite3_file * id,void * pBuf,int amt,sqlite3_int64 offset)3336 static int unixRead(
3337   sqlite3_file *id,
3338   void *pBuf,
3339   int amt,
3340   sqlite3_int64 offset
3341 ){
3342   unixFile *pFile = (unixFile *)id;
3343   int got;
3344   assert( id );
3345   assert( offset>=0 );
3346   assert( amt>0 );
3347 
3348   /* If this is a database file (not a journal, super-journal or temp
3349   ** file), the bytes in the locking range should never be read or written. */
3350 #if 0
3351   assert( pFile->pPreallocatedUnused==0
3352        || offset>=PENDING_BYTE+512
3353        || offset+amt<=PENDING_BYTE
3354   );
3355 #endif
3356 
3357 #if SQLITE_MAX_MMAP_SIZE>0
3358   /* Deal with as much of this read request as possible by transfering
3359   ** data from the memory mapping using memcpy().  */
3360   if( offset<pFile->mmapSize ){
3361     if( offset+amt <= pFile->mmapSize ){
3362       memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
3363       return SQLITE_OK;
3364     }else{
3365       int nCopy = pFile->mmapSize - offset;
3366       memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
3367       pBuf = &((u8 *)pBuf)[nCopy];
3368       amt -= nCopy;
3369       offset += nCopy;
3370     }
3371   }
3372 #endif
3373 
3374   got = seekAndRead(pFile, offset, pBuf, amt);
3375   if( got==amt ){
3376     return SQLITE_OK;
3377   }else if( got<0 ){
3378     /* pFile->lastErrno has been set by seekAndRead().
3379     ** Usually we return SQLITE_IOERR_READ here, though for some
3380     ** kinds of errors we return SQLITE_IOERR_CORRUPTFS.  The
3381     ** SQLITE_IOERR_CORRUPTFS will be converted into SQLITE_CORRUPT
3382     ** prior to returning to the application by the sqlite3ApiExit()
3383     ** routine.
3384     */
3385     switch( pFile->lastErrno ){
3386       case ERANGE:
3387       case EIO:
3388 #ifdef ENXIO
3389       case ENXIO:
3390 #endif
3391 #ifdef EDEVERR
3392       case EDEVERR:
3393 #endif
3394         return SQLITE_IOERR_CORRUPTFS;
3395     }
3396     return SQLITE_IOERR_READ;
3397   }else{
3398     storeLastErrno(pFile, 0);   /* not a system error */
3399     /* Unread parts of the buffer must be zero-filled */
3400     memset(&((char*)pBuf)[got], 0, amt-got);
3401     return SQLITE_IOERR_SHORT_READ;
3402   }
3403 }
3404 
3405 /*
3406 ** Attempt to seek the file-descriptor passed as the first argument to
3407 ** absolute offset iOff, then attempt to write nBuf bytes of data from
3408 ** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise,
3409 ** return the actual number of bytes written (which may be less than
3410 ** nBuf).
3411 */
seekAndWriteFd(int fd,i64 iOff,const void * pBuf,int nBuf,int * piErrno)3412 static int seekAndWriteFd(
3413   int fd,                         /* File descriptor to write to */
3414   i64 iOff,                       /* File offset to begin writing at */
3415   const void *pBuf,               /* Copy data from this buffer to the file */
3416   int nBuf,                       /* Size of buffer pBuf in bytes */
3417   int *piErrno                    /* OUT: Error number if error occurs */
3418 ){
3419   int rc = 0;                     /* Value returned by system call */
3420 
3421   assert( nBuf==(nBuf&0x1ffff) );
3422   assert( fd>2 );
3423   assert( piErrno!=0 );
3424   nBuf &= 0x1ffff;
3425   TIMER_START;
3426 
3427 #if defined(USE_PREAD)
3428   do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
3429 #elif defined(USE_PREAD64)
3430   do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
3431 #else
3432   do{
3433     i64 iSeek = lseek(fd, iOff, SEEK_SET);
3434     SimulateIOError( iSeek = -1 );
3435     if( iSeek<0 ){
3436       rc = -1;
3437       break;
3438     }
3439     rc = osWrite(fd, pBuf, nBuf);
3440   }while( rc<0 && errno==EINTR );
3441 #endif
3442 
3443   TIMER_END;
3444   OSTRACE(("WRITE   %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED));
3445 
3446   if( rc<0 ) *piErrno = errno;
3447   return rc;
3448 }
3449 
3450 
3451 /*
3452 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
3453 ** Return the number of bytes actually read.  Update the offset.
3454 **
3455 ** To avoid stomping the errno value on a failed write the lastErrno value
3456 ** is set before returning.
3457 */
seekAndWrite(unixFile * id,i64 offset,const void * pBuf,int cnt)3458 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
3459   return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno);
3460 }
3461 
3462 
3463 /*
3464 ** Write data from a buffer into a file.  Return SQLITE_OK on success
3465 ** or some other error code on failure.
3466 */
unixWrite(sqlite3_file * id,const void * pBuf,int amt,sqlite3_int64 offset)3467 static int unixWrite(
3468   sqlite3_file *id,
3469   const void *pBuf,
3470   int amt,
3471   sqlite3_int64 offset
3472 ){
3473   unixFile *pFile = (unixFile*)id;
3474   int wrote = 0;
3475   assert( id );
3476   assert( amt>0 );
3477 
3478   /* If this is a database file (not a journal, super-journal or temp
3479   ** file), the bytes in the locking range should never be read or written. */
3480 #if 0
3481   assert( pFile->pPreallocatedUnused==0
3482        || offset>=PENDING_BYTE+512
3483        || offset+amt<=PENDING_BYTE
3484   );
3485 #endif
3486 
3487 #ifdef SQLITE_DEBUG
3488   /* If we are doing a normal write to a database file (as opposed to
3489   ** doing a hot-journal rollback or a write to some file other than a
3490   ** normal database file) then record the fact that the database
3491   ** has changed.  If the transaction counter is modified, record that
3492   ** fact too.
3493   */
3494   if( pFile->inNormalWrite ){
3495     pFile->dbUpdate = 1;  /* The database has been modified */
3496     if( offset<=24 && offset+amt>=27 ){
3497       int rc;
3498       char oldCntr[4];
3499       SimulateIOErrorBenign(1);
3500       rc = seekAndRead(pFile, 24, oldCntr, 4);
3501       SimulateIOErrorBenign(0);
3502       if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
3503         pFile->transCntrChng = 1;  /* The transaction counter has changed */
3504       }
3505     }
3506   }
3507 #endif
3508 
3509 #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
3510   /* Deal with as much of this write request as possible by transfering
3511   ** data from the memory mapping using memcpy().  */
3512   if( offset<pFile->mmapSize ){
3513     if( offset+amt <= pFile->mmapSize ){
3514       memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
3515       return SQLITE_OK;
3516     }else{
3517       int nCopy = pFile->mmapSize - offset;
3518       memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
3519       pBuf = &((u8 *)pBuf)[nCopy];
3520       amt -= nCopy;
3521       offset += nCopy;
3522     }
3523   }
3524 #endif
3525 
3526   while( (wrote = seekAndWrite(pFile, offset, pBuf, amt))<amt && wrote>0 ){
3527     amt -= wrote;
3528     offset += wrote;
3529     pBuf = &((char*)pBuf)[wrote];
3530   }
3531   SimulateIOError(( wrote=(-1), amt=1 ));
3532   SimulateDiskfullError(( wrote=0, amt=1 ));
3533 
3534   if( amt>wrote ){
3535     if( wrote<0 && pFile->lastErrno!=ENOSPC ){
3536       /* lastErrno set by seekAndWrite */
3537       return SQLITE_IOERR_WRITE;
3538     }else{
3539       storeLastErrno(pFile, 0); /* not a system error */
3540       return SQLITE_FULL;
3541     }
3542   }
3543 
3544   return SQLITE_OK;
3545 }
3546 
3547 #ifdef SQLITE_TEST
3548 /*
3549 ** Count the number of fullsyncs and normal syncs.  This is used to test
3550 ** that syncs and fullsyncs are occurring at the right times.
3551 */
3552 int sqlite3_sync_count = 0;
3553 int sqlite3_fullsync_count = 0;
3554 #endif
3555 
3556 /*
3557 ** We do not trust systems to provide a working fdatasync().  Some do.
3558 ** Others do no.  To be safe, we will stick with the (slightly slower)
3559 ** fsync(). If you know that your system does support fdatasync() correctly,
3560 ** then simply compile with -Dfdatasync=fdatasync or -DHAVE_FDATASYNC
3561 */
3562 #if !defined(fdatasync) && !HAVE_FDATASYNC
3563 # define fdatasync fsync
3564 #endif
3565 
3566 /*
3567 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
3568 ** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
3569 ** only available on Mac OS X.  But that could change.
3570 */
3571 #ifdef F_FULLFSYNC
3572 # define HAVE_FULLFSYNC 1
3573 #else
3574 # define HAVE_FULLFSYNC 0
3575 #endif
3576 
3577 
3578 /*
3579 ** The fsync() system call does not work as advertised on many
3580 ** unix systems.  The following procedure is an attempt to make
3581 ** it work better.
3582 **
3583 ** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
3584 ** for testing when we want to run through the test suite quickly.
3585 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
3586 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
3587 ** or power failure will likely corrupt the database file.
3588 **
3589 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
3590 ** The idea behind dataOnly is that it should only write the file content
3591 ** to disk, not the inode.  We only set dataOnly if the file size is
3592 ** unchanged since the file size is part of the inode.  However,
3593 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
3594 ** file size has changed.  The only real difference between fdatasync()
3595 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
3596 ** inode if the mtime or owner or other inode attributes have changed.
3597 ** We only care about the file size, not the other file attributes, so
3598 ** as far as SQLite is concerned, an fdatasync() is always adequate.
3599 ** So, we always use fdatasync() if it is available, regardless of
3600 ** the value of the dataOnly flag.
3601 */
full_fsync(int fd,int fullSync,int dataOnly)3602 static int full_fsync(int fd, int fullSync, int dataOnly){
3603   int rc;
3604 
3605   /* The following "ifdef/elif/else/" block has the same structure as
3606   ** the one below. It is replicated here solely to avoid cluttering
3607   ** up the real code with the UNUSED_PARAMETER() macros.
3608   */
3609 #ifdef SQLITE_NO_SYNC
3610   UNUSED_PARAMETER(fd);
3611   UNUSED_PARAMETER(fullSync);
3612   UNUSED_PARAMETER(dataOnly);
3613 #elif HAVE_FULLFSYNC
3614   UNUSED_PARAMETER(dataOnly);
3615 #else
3616   UNUSED_PARAMETER(fullSync);
3617   UNUSED_PARAMETER(dataOnly);
3618 #endif
3619 
3620   /* Record the number of times that we do a normal fsync() and
3621   ** FULLSYNC.  This is used during testing to verify that this procedure
3622   ** gets called with the correct arguments.
3623   */
3624 #ifdef SQLITE_TEST
3625   if( fullSync ) sqlite3_fullsync_count++;
3626   sqlite3_sync_count++;
3627 #endif
3628 
3629   /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3630   ** no-op.  But go ahead and call fstat() to validate the file
3631   ** descriptor as we need a method to provoke a failure during
3632   ** coverate testing.
3633   */
3634 #ifdef SQLITE_NO_SYNC
3635   {
3636     struct stat buf;
3637     rc = osFstat(fd, &buf);
3638   }
3639 #elif HAVE_FULLFSYNC
3640   if( fullSync ){
3641     rc = osFcntl(fd, F_FULLFSYNC, 0);
3642   }else{
3643     rc = 1;
3644   }
3645   /* If the FULLFSYNC failed, fall back to attempting an fsync().
3646   ** It shouldn't be possible for fullfsync to fail on the local
3647   ** file system (on OSX), so failure indicates that FULLFSYNC
3648   ** isn't supported for this file system. So, attempt an fsync
3649   ** and (for now) ignore the overhead of a superfluous fcntl call.
3650   ** It'd be better to detect fullfsync support once and avoid
3651   ** the fcntl call every time sync is called.
3652   */
3653   if( rc ) rc = fsync(fd);
3654 
3655 #elif defined(__APPLE__)
3656   /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
3657   ** so currently we default to the macro that redefines fdatasync to fsync
3658   */
3659   rc = fsync(fd);
3660 #else
3661   rc = fdatasync(fd);
3662 #if OS_VXWORKS
3663   if( rc==-1 && errno==ENOTSUP ){
3664     rc = fsync(fd);
3665   }
3666 #endif /* OS_VXWORKS */
3667 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3668 
3669   if( OS_VXWORKS && rc!= -1 ){
3670     rc = 0;
3671   }
3672   return rc;
3673 }
3674 
3675 /*
3676 ** Open a file descriptor to the directory containing file zFilename.
3677 ** If successful, *pFd is set to the opened file descriptor and
3678 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3679 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3680 ** value.
3681 **
3682 ** The directory file descriptor is used for only one thing - to
3683 ** fsync() a directory to make sure file creation and deletion events
3684 ** are flushed to disk.  Such fsyncs are not needed on newer
3685 ** journaling filesystems, but are required on older filesystems.
3686 **
3687 ** This routine can be overridden using the xSetSysCall interface.
3688 ** The ability to override this routine was added in support of the
3689 ** chromium sandbox.  Opening a directory is a security risk (we are
3690 ** told) so making it overrideable allows the chromium sandbox to
3691 ** replace this routine with a harmless no-op.  To make this routine
3692 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
3693 ** *pFd set to a negative number.
3694 **
3695 ** If SQLITE_OK is returned, the caller is responsible for closing
3696 ** the file descriptor *pFd using close().
3697 */
openDirectory(const char * zFilename,int * pFd)3698 static int openDirectory(const char *zFilename, int *pFd){
3699   int ii;
3700   int fd = -1;
3701   char zDirname[MAX_PATHNAME+1];
3702 
3703   sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
3704   for(ii=(int)strlen(zDirname); ii>0 && zDirname[ii]!='/'; ii--);
3705   if( ii>0 ){
3706     zDirname[ii] = '\0';
3707   }else{
3708     if( zDirname[0]!='/' ) zDirname[0] = '.';
3709     zDirname[1] = 0;
3710   }
3711   fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
3712   if( fd>=0 ){
3713     OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
3714   }
3715   *pFd = fd;
3716   if( fd>=0 ) return SQLITE_OK;
3717   return unixLogError(SQLITE_CANTOPEN_BKPT, "openDirectory", zDirname);
3718 }
3719 
3720 /*
3721 ** Make sure all writes to a particular file are committed to disk.
3722 **
3723 ** If dataOnly==0 then both the file itself and its metadata (file
3724 ** size, access time, etc) are synced.  If dataOnly!=0 then only the
3725 ** file data is synced.
3726 **
3727 ** Under Unix, also make sure that the directory entry for the file
3728 ** has been created by fsync-ing the directory that contains the file.
3729 ** If we do not do this and we encounter a power failure, the directory
3730 ** entry for the journal might not exist after we reboot.  The next
3731 ** SQLite to access the file will not know that the journal exists (because
3732 ** the directory entry for the journal was never created) and the transaction
3733 ** will not roll back - possibly leading to database corruption.
3734 */
unixSync(sqlite3_file * id,int flags)3735 static int unixSync(sqlite3_file *id, int flags){
3736   int rc;
3737   unixFile *pFile = (unixFile*)id;
3738 
3739   int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
3740   int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
3741 
3742   /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3743   assert((flags&0x0F)==SQLITE_SYNC_NORMAL
3744       || (flags&0x0F)==SQLITE_SYNC_FULL
3745   );
3746 
3747   /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3748   ** line is to test that doing so does not cause any problems.
3749   */
3750   SimulateDiskfullError( return SQLITE_FULL );
3751 
3752   assert( pFile );
3753   OSTRACE(("SYNC    %-3d\n", pFile->h));
3754   rc = full_fsync(pFile->h, isFullsync, isDataOnly);
3755   SimulateIOError( rc=1 );
3756   if( rc ){
3757     storeLastErrno(pFile, errno);
3758     return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
3759   }
3760 
3761   /* Also fsync the directory containing the file if the DIRSYNC flag
3762   ** is set.  This is a one-time occurrence.  Many systems (examples: AIX)
3763   ** are unable to fsync a directory, so ignore errors on the fsync.
3764   */
3765   if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
3766     int dirfd;
3767     OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
3768             HAVE_FULLFSYNC, isFullsync));
3769     rc = osOpenDirectory(pFile->zPath, &dirfd);
3770     if( rc==SQLITE_OK ){
3771       full_fsync(dirfd, 0, 0);
3772       robust_close(pFile, dirfd, __LINE__);
3773     }else{
3774       assert( rc==SQLITE_CANTOPEN );
3775       rc = SQLITE_OK;
3776     }
3777     pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
3778   }
3779   return rc;
3780 }
3781 
3782 /*
3783 ** Truncate an open file to a specified size
3784 */
unixTruncate(sqlite3_file * id,i64 nByte)3785 static int unixTruncate(sqlite3_file *id, i64 nByte){
3786   unixFile *pFile = (unixFile *)id;
3787   int rc;
3788   assert( pFile );
3789   SimulateIOError( return SQLITE_IOERR_TRUNCATE );
3790 
3791   /* If the user has configured a chunk-size for this file, truncate the
3792   ** file so that it consists of an integer number of chunks (i.e. the
3793   ** actual file size after the operation may be larger than the requested
3794   ** size).
3795   */
3796   if( pFile->szChunk>0 ){
3797     nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
3798   }
3799 
3800   rc = robust_ftruncate(pFile->h, nByte);
3801   if( rc ){
3802     storeLastErrno(pFile, errno);
3803     return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3804   }else{
3805 #ifdef SQLITE_DEBUG
3806     /* If we are doing a normal write to a database file (as opposed to
3807     ** doing a hot-journal rollback or a write to some file other than a
3808     ** normal database file) and we truncate the file to zero length,
3809     ** that effectively updates the change counter.  This might happen
3810     ** when restoring a database using the backup API from a zero-length
3811     ** source.
3812     */
3813     if( pFile->inNormalWrite && nByte==0 ){
3814       pFile->transCntrChng = 1;
3815     }
3816 #endif
3817 
3818 #if SQLITE_MAX_MMAP_SIZE>0
3819     /* If the file was just truncated to a size smaller than the currently
3820     ** mapped region, reduce the effective mapping size as well. SQLite will
3821     ** use read() and write() to access data beyond this point from now on.
3822     */
3823     if( nByte<pFile->mmapSize ){
3824       pFile->mmapSize = nByte;
3825     }
3826 #endif
3827 
3828     return SQLITE_OK;
3829   }
3830 }
3831 
3832 /*
3833 ** Determine the current size of a file in bytes
3834 */
unixFileSize(sqlite3_file * id,i64 * pSize)3835 static int unixFileSize(sqlite3_file *id, i64 *pSize){
3836   int rc;
3837   struct stat buf;
3838   assert( id );
3839   rc = osFstat(((unixFile*)id)->h, &buf);
3840   SimulateIOError( rc=1 );
3841   if( rc!=0 ){
3842     storeLastErrno((unixFile*)id, errno);
3843     return SQLITE_IOERR_FSTAT;
3844   }
3845   *pSize = buf.st_size;
3846 
3847   /* When opening a zero-size database, the findInodeInfo() procedure
3848   ** writes a single byte into that file in order to work around a bug
3849   ** in the OS-X msdos filesystem.  In order to avoid problems with upper
3850   ** layers, we need to report this file size as zero even though it is
3851   ** really 1.   Ticket #3260.
3852   */
3853   if( *pSize==1 ) *pSize = 0;
3854 
3855 
3856   return SQLITE_OK;
3857 }
3858 
3859 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3860 /*
3861 ** Handler for proxy-locking file-control verbs.  Defined below in the
3862 ** proxying locking division.
3863 */
3864 static int proxyFileControl(sqlite3_file*,int,void*);
3865 #endif
3866 
3867 /*
3868 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
3869 ** file-control operation.  Enlarge the database to nBytes in size
3870 ** (rounded up to the next chunk-size).  If the database is already
3871 ** nBytes or larger, this routine is a no-op.
3872 */
fcntlSizeHint(unixFile * pFile,i64 nByte)3873 static int fcntlSizeHint(unixFile *pFile, i64 nByte){
3874   if( pFile->szChunk>0 ){
3875     i64 nSize;                    /* Required file size */
3876     struct stat buf;              /* Used to hold return values of fstat() */
3877 
3878     if( osFstat(pFile->h, &buf) ){
3879       return SQLITE_IOERR_FSTAT;
3880     }
3881 
3882     nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
3883     if( nSize>(i64)buf.st_size ){
3884 
3885 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
3886       /* The code below is handling the return value of osFallocate()
3887       ** correctly. posix_fallocate() is defined to "returns zero on success,
3888       ** or an error number on  failure". See the manpage for details. */
3889       int err;
3890       do{
3891         err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
3892       }while( err==EINTR );
3893       if( err && err!=EINVAL ) return SQLITE_IOERR_WRITE;
3894 #else
3895       /* If the OS does not have posix_fallocate(), fake it. Write a
3896       ** single byte to the last byte in each block that falls entirely
3897       ** within the extended region. Then, if required, a single byte
3898       ** at offset (nSize-1), to set the size of the file correctly.
3899       ** This is a similar technique to that used by glibc on systems
3900       ** that do not have a real fallocate() call.
3901       */
3902       int nBlk = buf.st_blksize;  /* File-system block size */
3903       int nWrite = 0;             /* Number of bytes written by seekAndWrite */
3904       i64 iWrite;                 /* Next offset to write to */
3905 
3906       iWrite = (buf.st_size/nBlk)*nBlk + nBlk - 1;
3907       assert( iWrite>=buf.st_size );
3908       assert( ((iWrite+1)%nBlk)==0 );
3909       for(/*no-op*/; iWrite<nSize+nBlk-1; iWrite+=nBlk ){
3910         if( iWrite>=nSize ) iWrite = nSize - 1;
3911         nWrite = seekAndWrite(pFile, iWrite, "", 1);
3912         if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
3913       }
3914 #endif
3915     }
3916   }
3917 
3918 #if SQLITE_MAX_MMAP_SIZE>0
3919   if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
3920     int rc;
3921     if( pFile->szChunk<=0 ){
3922       if( robust_ftruncate(pFile->h, nByte) ){
3923         storeLastErrno(pFile, errno);
3924         return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3925       }
3926     }
3927 
3928     rc = unixMapfile(pFile, nByte);
3929     return rc;
3930   }
3931 #endif
3932 
3933   return SQLITE_OK;
3934 }
3935 
3936 /*
3937 ** If *pArg is initially negative then this is a query.  Set *pArg to
3938 ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
3939 **
3940 ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
3941 */
unixModeBit(unixFile * pFile,unsigned char mask,int * pArg)3942 static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
3943   if( *pArg<0 ){
3944     *pArg = (pFile->ctrlFlags & mask)!=0;
3945   }else if( (*pArg)==0 ){
3946     pFile->ctrlFlags &= ~mask;
3947   }else{
3948     pFile->ctrlFlags |= mask;
3949   }
3950 }
3951 
3952 /* Forward declaration */
3953 static int unixGetTempname(int nBuf, char *zBuf);
3954 #ifndef SQLITE_OMIT_WAL
3955  static int unixFcntlExternalReader(unixFile*, int*);
3956 #endif
3957 
3958 /*
3959 ** Information and control of an open file handle.
3960 */
unixFileControl(sqlite3_file * id,int op,void * pArg)3961 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
3962   unixFile *pFile = (unixFile*)id;
3963   switch( op ){
3964 #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
3965     case SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: {
3966       int rc = osIoctl(pFile->h, F2FS_IOC_START_ATOMIC_WRITE);
3967       return rc ? SQLITE_IOERR_BEGIN_ATOMIC : SQLITE_OK;
3968     }
3969     case SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: {
3970       int rc = osIoctl(pFile->h, F2FS_IOC_COMMIT_ATOMIC_WRITE);
3971       return rc ? SQLITE_IOERR_COMMIT_ATOMIC : SQLITE_OK;
3972     }
3973     case SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: {
3974       int rc = osIoctl(pFile->h, F2FS_IOC_ABORT_VOLATILE_WRITE);
3975       return rc ? SQLITE_IOERR_ROLLBACK_ATOMIC : SQLITE_OK;
3976     }
3977 #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
3978 
3979     case SQLITE_FCNTL_LOCKSTATE: {
3980       *(int*)pArg = pFile->eFileLock;
3981       return SQLITE_OK;
3982     }
3983     case SQLITE_FCNTL_LAST_ERRNO: {
3984       *(int*)pArg = pFile->lastErrno;
3985       return SQLITE_OK;
3986     }
3987     case SQLITE_FCNTL_CHUNK_SIZE: {
3988       pFile->szChunk = *(int *)pArg;
3989       return SQLITE_OK;
3990     }
3991     case SQLITE_FCNTL_SIZE_HINT: {
3992       int rc;
3993       SimulateIOErrorBenign(1);
3994       rc = fcntlSizeHint(pFile, *(i64 *)pArg);
3995       SimulateIOErrorBenign(0);
3996       return rc;
3997     }
3998     case SQLITE_FCNTL_PERSIST_WAL: {
3999       unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg);
4000       return SQLITE_OK;
4001     }
4002     case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
4003       unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg);
4004       return SQLITE_OK;
4005     }
4006     case SQLITE_FCNTL_VFSNAME: {
4007       *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
4008       return SQLITE_OK;
4009     }
4010     case SQLITE_FCNTL_TEMPFILENAME: {
4011       char *zTFile = sqlite3_malloc64( pFile->pVfs->mxPathname );
4012       if( zTFile ){
4013         unixGetTempname(pFile->pVfs->mxPathname, zTFile);
4014         *(char**)pArg = zTFile;
4015       }
4016       return SQLITE_OK;
4017     }
4018     case SQLITE_FCNTL_HAS_MOVED: {
4019       *(int*)pArg = fileHasMoved(pFile);
4020       return SQLITE_OK;
4021     }
4022 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
4023     case SQLITE_FCNTL_LOCK_TIMEOUT: {
4024       int iOld = pFile->iBusyTimeout;
4025       pFile->iBusyTimeout = *(int*)pArg;
4026       *(int*)pArg = iOld;
4027       return SQLITE_OK;
4028     }
4029 #endif
4030 #if SQLITE_MAX_MMAP_SIZE>0
4031     case SQLITE_FCNTL_MMAP_SIZE: {
4032       i64 newLimit = *(i64*)pArg;
4033       int rc = SQLITE_OK;
4034       if( newLimit>sqlite3GlobalConfig.mxMmap ){
4035         newLimit = sqlite3GlobalConfig.mxMmap;
4036       }
4037 
4038       /* The value of newLimit may be eventually cast to (size_t) and passed
4039       ** to mmap(). Restrict its value to 2GB if (size_t) is not at least a
4040       ** 64-bit type. */
4041       if( newLimit>0 && sizeof(size_t)<8 ){
4042         newLimit = (newLimit & 0x7FFFFFFF);
4043       }
4044 
4045       *(i64*)pArg = pFile->mmapSizeMax;
4046       if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
4047         pFile->mmapSizeMax = newLimit;
4048         if( pFile->mmapSize>0 ){
4049           unixUnmapfile(pFile);
4050           rc = unixMapfile(pFile, -1);
4051         }
4052       }
4053       return rc;
4054     }
4055 #endif
4056 #ifdef SQLITE_DEBUG
4057     /* The pager calls this method to signal that it has done
4058     ** a rollback and that the database is therefore unchanged and
4059     ** it hence it is OK for the transaction change counter to be
4060     ** unchanged.
4061     */
4062     case SQLITE_FCNTL_DB_UNCHANGED: {
4063       ((unixFile*)id)->dbUpdate = 0;
4064       return SQLITE_OK;
4065     }
4066 #endif
4067 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4068     case SQLITE_FCNTL_SET_LOCKPROXYFILE:
4069     case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
4070       return proxyFileControl(id,op,pArg);
4071     }
4072 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
4073 
4074     case SQLITE_FCNTL_EXTERNAL_READER: {
4075 #ifndef SQLITE_OMIT_WAL
4076       return unixFcntlExternalReader((unixFile*)id, (int*)pArg);
4077 #else
4078       *(int*)pArg = 0;
4079       return SQLITE_OK;
4080 #endif
4081     }
4082   }
4083   return SQLITE_NOTFOUND;
4084 }
4085 
4086 /*
4087 ** If pFd->sectorSize is non-zero when this function is called, it is a
4088 ** no-op. Otherwise, the values of pFd->sectorSize and
4089 ** pFd->deviceCharacteristics are set according to the file-system
4090 ** characteristics.
4091 **
4092 ** There are two versions of this function. One for QNX and one for all
4093 ** other systems.
4094 */
4095 #ifndef __QNXNTO__
setDeviceCharacteristics(unixFile * pFd)4096 static void setDeviceCharacteristics(unixFile *pFd){
4097   assert( pFd->deviceCharacteristics==0 || pFd->sectorSize!=0 );
4098   if( pFd->sectorSize==0 ){
4099 #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
4100     int res;
4101     u32 f = 0;
4102 
4103     /* Check for support for F2FS atomic batch writes. */
4104     res = osIoctl(pFd->h, F2FS_IOC_GET_FEATURES, &f);
4105     if( res==0 && (f & F2FS_FEATURE_ATOMIC_WRITE) ){
4106       pFd->deviceCharacteristics = SQLITE_IOCAP_BATCH_ATOMIC;
4107     }
4108 #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
4109 
4110     /* Set the POWERSAFE_OVERWRITE flag if requested. */
4111     if( pFd->ctrlFlags & UNIXFILE_PSOW ){
4112       pFd->deviceCharacteristics |= SQLITE_IOCAP_POWERSAFE_OVERWRITE;
4113     }
4114 
4115     pFd->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
4116   }
4117 }
4118 #else
4119 #include <sys/dcmd_blk.h>
4120 #include <sys/statvfs.h>
setDeviceCharacteristics(unixFile * pFile)4121 static void setDeviceCharacteristics(unixFile *pFile){
4122   if( pFile->sectorSize == 0 ){
4123     struct statvfs fsInfo;
4124 
4125     /* Set defaults for non-supported filesystems */
4126     pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
4127     pFile->deviceCharacteristics = 0;
4128     if( fstatvfs(pFile->h, &fsInfo) == -1 ) {
4129       return;
4130     }
4131 
4132     if( !strcmp(fsInfo.f_basetype, "tmp") ) {
4133       pFile->sectorSize = fsInfo.f_bsize;
4134       pFile->deviceCharacteristics =
4135         SQLITE_IOCAP_ATOMIC4K |       /* All ram filesystem writes are atomic */
4136         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
4137                                       ** the write succeeds */
4138         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
4139                                       ** so it is ordered */
4140         0;
4141     }else if( strstr(fsInfo.f_basetype, "etfs") ){
4142       pFile->sectorSize = fsInfo.f_bsize;
4143       pFile->deviceCharacteristics =
4144         /* etfs cluster size writes are atomic */
4145         (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) |
4146         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
4147                                       ** the write succeeds */
4148         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
4149                                       ** so it is ordered */
4150         0;
4151     }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){
4152       pFile->sectorSize = fsInfo.f_bsize;
4153       pFile->deviceCharacteristics =
4154         SQLITE_IOCAP_ATOMIC |         /* All filesystem writes are atomic */
4155         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
4156                                       ** the write succeeds */
4157         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
4158                                       ** so it is ordered */
4159         0;
4160     }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){
4161       pFile->sectorSize = fsInfo.f_bsize;
4162       pFile->deviceCharacteristics =
4163         /* full bitset of atomics from max sector size and smaller */
4164         ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
4165         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
4166                                       ** so it is ordered */
4167         0;
4168     }else if( strstr(fsInfo.f_basetype, "dos") ){
4169       pFile->sectorSize = fsInfo.f_bsize;
4170       pFile->deviceCharacteristics =
4171         /* full bitset of atomics from max sector size and smaller */
4172         ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
4173         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
4174                                       ** so it is ordered */
4175         0;
4176     }else{
4177       pFile->deviceCharacteristics =
4178         SQLITE_IOCAP_ATOMIC512 |      /* blocks are atomic */
4179         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
4180                                       ** the write succeeds */
4181         0;
4182     }
4183   }
4184   /* Last chance verification.  If the sector size isn't a multiple of 512
4185   ** then it isn't valid.*/
4186   if( pFile->sectorSize % 512 != 0 ){
4187     pFile->deviceCharacteristics = 0;
4188     pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
4189   }
4190 }
4191 #endif
4192 
4193 /*
4194 ** Return the sector size in bytes of the underlying block device for
4195 ** the specified file. This is almost always 512 bytes, but may be
4196 ** larger for some devices.
4197 **
4198 ** SQLite code assumes this function cannot fail. It also assumes that
4199 ** if two files are created in the same file-system directory (i.e.
4200 ** a database and its journal file) that the sector size will be the
4201 ** same for both.
4202 */
unixSectorSize(sqlite3_file * id)4203 static int unixSectorSize(sqlite3_file *id){
4204   unixFile *pFd = (unixFile*)id;
4205   setDeviceCharacteristics(pFd);
4206   return pFd->sectorSize;
4207 }
4208 
4209 /*
4210 ** Return the device characteristics for the file.
4211 **
4212 ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
4213 ** However, that choice is controversial since technically the underlying
4214 ** file system does not always provide powersafe overwrites.  (In other
4215 ** words, after a power-loss event, parts of the file that were never
4216 ** written might end up being altered.)  However, non-PSOW behavior is very,
4217 ** very rare.  And asserting PSOW makes a large reduction in the amount
4218 ** of required I/O for journaling, since a lot of padding is eliminated.
4219 **  Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
4220 ** available to turn it off and URI query parameter available to turn it off.
4221 */
unixDeviceCharacteristics(sqlite3_file * id)4222 static int unixDeviceCharacteristics(sqlite3_file *id){
4223   unixFile *pFd = (unixFile*)id;
4224   setDeviceCharacteristics(pFd);
4225   return pFd->deviceCharacteristics;
4226 }
4227 
4228 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
4229 
4230 /*
4231 ** Return the system page size.
4232 **
4233 ** This function should not be called directly by other code in this file.
4234 ** Instead, it should be called via macro osGetpagesize().
4235 */
unixGetpagesize(void)4236 static int unixGetpagesize(void){
4237 #if OS_VXWORKS
4238   return 1024;
4239 #elif defined(_BSD_SOURCE)
4240   return getpagesize();
4241 #else
4242   return (int)sysconf(_SC_PAGESIZE);
4243 #endif
4244 }
4245 
4246 #endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */
4247 
4248 #ifndef SQLITE_OMIT_WAL
4249 
4250 /*
4251 ** Object used to represent an shared memory buffer.
4252 **
4253 ** When multiple threads all reference the same wal-index, each thread
4254 ** has its own unixShm object, but they all point to a single instance
4255 ** of this unixShmNode object.  In other words, each wal-index is opened
4256 ** only once per process.
4257 **
4258 ** Each unixShmNode object is connected to a single unixInodeInfo object.
4259 ** We could coalesce this object into unixInodeInfo, but that would mean
4260 ** every open file that does not use shared memory (in other words, most
4261 ** open files) would have to carry around this extra information.  So
4262 ** the unixInodeInfo object contains a pointer to this unixShmNode object
4263 ** and the unixShmNode object is created only when needed.
4264 **
4265 ** unixMutexHeld() must be true when creating or destroying
4266 ** this object or while reading or writing the following fields:
4267 **
4268 **      nRef
4269 **
4270 ** The following fields are read-only after the object is created:
4271 **
4272 **      hShm
4273 **      zFilename
4274 **
4275 ** Either unixShmNode.pShmMutex must be held or unixShmNode.nRef==0 and
4276 ** unixMutexHeld() is true when reading or writing any other field
4277 ** in this structure.
4278 */
4279 struct unixShmNode {
4280   unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
4281   sqlite3_mutex *pShmMutex;  /* Mutex to access this object */
4282   char *zFilename;           /* Name of the mmapped file */
4283   int hShm;                  /* Open file descriptor */
4284   int szRegion;              /* Size of shared-memory regions */
4285   u16 nRegion;               /* Size of array apRegion */
4286   u8 isReadonly;             /* True if read-only */
4287   u8 isUnlocked;             /* True if no DMS lock held */
4288   char **apRegion;           /* Array of mapped shared-memory regions */
4289   int nRef;                  /* Number of unixShm objects pointing to this */
4290   unixShm *pFirst;           /* All unixShm objects pointing to this */
4291   int aLock[SQLITE_SHM_NLOCK];  /* # shared locks on slot, -1==excl lock */
4292 #ifdef SQLITE_DEBUG
4293   u8 exclMask;               /* Mask of exclusive locks held */
4294   u8 sharedMask;             /* Mask of shared locks held */
4295   u8 nextShmId;              /* Next available unixShm.id value */
4296 #endif
4297 };
4298 
4299 /*
4300 ** Structure used internally by this VFS to record the state of an
4301 ** open shared memory connection.
4302 **
4303 ** The following fields are initialized when this object is created and
4304 ** are read-only thereafter:
4305 **
4306 **    unixShm.pShmNode
4307 **    unixShm.id
4308 **
4309 ** All other fields are read/write.  The unixShm.pShmNode->pShmMutex must
4310 ** be held while accessing any read/write fields.
4311 */
4312 struct unixShm {
4313   unixShmNode *pShmNode;     /* The underlying unixShmNode object */
4314   unixShm *pNext;            /* Next unixShm with the same unixShmNode */
4315   u8 hasMutex;               /* True if holding the unixShmNode->pShmMutex */
4316   u8 id;                     /* Id of this connection within its unixShmNode */
4317   u16 sharedMask;            /* Mask of shared locks held */
4318   u16 exclMask;              /* Mask of exclusive locks held */
4319 };
4320 
4321 /*
4322 ** Constants used for locking
4323 */
4324 #define UNIX_SHM_BASE   ((22+SQLITE_SHM_NLOCK)*4)         /* first lock byte */
4325 #define UNIX_SHM_DMS    (UNIX_SHM_BASE+SQLITE_SHM_NLOCK)  /* deadman switch */
4326 
4327 /*
4328 ** Use F_GETLK to check whether or not there are any readers with open
4329 ** wal-mode transactions in other processes on database file pFile. If
4330 ** no error occurs, return SQLITE_OK and set (*piOut) to 1 if there are
4331 ** such transactions, or 0 otherwise. If an error occurs, return an
4332 ** SQLite error code. The final value of *piOut is undefined in this
4333 ** case.
4334 */
unixFcntlExternalReader(unixFile * pFile,int * piOut)4335 static int unixFcntlExternalReader(unixFile *pFile, int *piOut){
4336   int rc = SQLITE_OK;
4337   *piOut = 0;
4338   if( pFile->pShm){
4339     unixShmNode *pShmNode = pFile->pShm->pShmNode;
4340     struct flock f;
4341 
4342     memset(&f, 0, sizeof(f));
4343     f.l_type = F_WRLCK;
4344     f.l_whence = SEEK_SET;
4345     f.l_start = UNIX_SHM_BASE + 3;
4346     f.l_len = SQLITE_SHM_NLOCK - 3;
4347 
4348     sqlite3_mutex_enter(pShmNode->pShmMutex);
4349     if( osFcntl(pShmNode->hShm, F_GETLK, &f)<0 ){
4350       rc = SQLITE_IOERR_LOCK;
4351     }else{
4352       *piOut = (f.l_type!=F_UNLCK);
4353     }
4354     sqlite3_mutex_leave(pShmNode->pShmMutex);
4355   }
4356 
4357   return rc;
4358 }
4359 
4360 
4361 /*
4362 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
4363 **
4364 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
4365 ** otherwise.
4366 */
unixShmSystemLock(unixFile * pFile,int lockType,int ofst,int n)4367 static int unixShmSystemLock(
4368   unixFile *pFile,       /* Open connection to the WAL file */
4369   int lockType,          /* F_UNLCK, F_RDLCK, or F_WRLCK */
4370   int ofst,              /* First byte of the locking range */
4371   int n                  /* Number of bytes to lock */
4372 ){
4373   unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */
4374   struct flock f;        /* The posix advisory locking structure */
4375   int rc = SQLITE_OK;    /* Result code form fcntl() */
4376 
4377   /* Access to the unixShmNode object is serialized by the caller */
4378   pShmNode = pFile->pInode->pShmNode;
4379   assert( pShmNode->nRef==0 || sqlite3_mutex_held(pShmNode->pShmMutex) );
4380   assert( pShmNode->nRef>0 || unixMutexHeld() );
4381 
4382   /* Shared locks never span more than one byte */
4383   assert( n==1 || lockType!=F_RDLCK );
4384 
4385   /* Locks are within range */
4386   assert( n>=1 && n<=SQLITE_SHM_NLOCK );
4387 
4388   if( pShmNode->hShm>=0 ){
4389     int res;
4390     /* Initialize the locking parameters */
4391     f.l_type = lockType;
4392     f.l_whence = SEEK_SET;
4393     f.l_start = ofst;
4394     f.l_len = n;
4395     res = osSetPosixAdvisoryLock(pShmNode->hShm, &f, pFile);
4396     if( res==-1 ){
4397 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
4398       rc = (pFile->iBusyTimeout ? SQLITE_BUSY_TIMEOUT : SQLITE_BUSY);
4399 #else
4400       rc = SQLITE_BUSY;
4401 #endif
4402     }
4403   }
4404 
4405   /* Update the global lock state and do debug tracing */
4406 #ifdef SQLITE_DEBUG
4407   { u16 mask;
4408   OSTRACE(("SHM-LOCK "));
4409   mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst);
4410   if( rc==SQLITE_OK ){
4411     if( lockType==F_UNLCK ){
4412       OSTRACE(("unlock %d ok", ofst));
4413       pShmNode->exclMask &= ~mask;
4414       pShmNode->sharedMask &= ~mask;
4415     }else if( lockType==F_RDLCK ){
4416       OSTRACE(("read-lock %d ok", ofst));
4417       pShmNode->exclMask &= ~mask;
4418       pShmNode->sharedMask |= mask;
4419     }else{
4420       assert( lockType==F_WRLCK );
4421       OSTRACE(("write-lock %d ok", ofst));
4422       pShmNode->exclMask |= mask;
4423       pShmNode->sharedMask &= ~mask;
4424     }
4425   }else{
4426     if( lockType==F_UNLCK ){
4427       OSTRACE(("unlock %d failed", ofst));
4428     }else if( lockType==F_RDLCK ){
4429       OSTRACE(("read-lock failed"));
4430     }else{
4431       assert( lockType==F_WRLCK );
4432       OSTRACE(("write-lock %d failed", ofst));
4433     }
4434   }
4435   OSTRACE((" - afterwards %03x,%03x\n",
4436            pShmNode->sharedMask, pShmNode->exclMask));
4437   }
4438 #endif
4439 
4440   return rc;
4441 }
4442 
4443 /*
4444 ** Return the minimum number of 32KB shm regions that should be mapped at
4445 ** a time, assuming that each mapping must be an integer multiple of the
4446 ** current system page-size.
4447 **
4448 ** Usually, this is 1. The exception seems to be systems that are configured
4449 ** to use 64KB pages - in this case each mapping must cover at least two
4450 ** shm regions.
4451 */
unixShmRegionPerMap(void)4452 static int unixShmRegionPerMap(void){
4453   int shmsz = 32*1024;            /* SHM region size */
4454   int pgsz = osGetpagesize();   /* System page size */
4455   assert( ((pgsz-1)&pgsz)==0 );   /* Page size must be a power of 2 */
4456   if( pgsz<shmsz ) return 1;
4457   return pgsz/shmsz;
4458 }
4459 
4460 /*
4461 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
4462 **
4463 ** This is not a VFS shared-memory method; it is a utility function called
4464 ** by VFS shared-memory methods.
4465 */
unixShmPurge(unixFile * pFd)4466 static void unixShmPurge(unixFile *pFd){
4467   unixShmNode *p = pFd->pInode->pShmNode;
4468   assert( unixMutexHeld() );
4469   if( p && ALWAYS(p->nRef==0) ){
4470     int nShmPerMap = unixShmRegionPerMap();
4471     int i;
4472     assert( p->pInode==pFd->pInode );
4473     sqlite3_mutex_free(p->pShmMutex);
4474     for(i=0; i<p->nRegion; i+=nShmPerMap){
4475       if( p->hShm>=0 ){
4476         osMunmap(p->apRegion[i], p->szRegion);
4477       }else{
4478         sqlite3_free(p->apRegion[i]);
4479       }
4480     }
4481     sqlite3_free(p->apRegion);
4482     if( p->hShm>=0 ){
4483       robust_close(pFd, p->hShm, __LINE__);
4484       p->hShm = -1;
4485     }
4486     p->pInode->pShmNode = 0;
4487     sqlite3_free(p);
4488   }
4489 }
4490 
4491 /*
4492 ** The DMS lock has not yet been taken on shm file pShmNode. Attempt to
4493 ** take it now. Return SQLITE_OK if successful, or an SQLite error
4494 ** code otherwise.
4495 **
4496 ** If the DMS cannot be locked because this is a readonly_shm=1
4497 ** connection and no other process already holds a lock, return
4498 ** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1.
4499 */
unixLockSharedMemory(unixFile * pDbFd,unixShmNode * pShmNode)4500 static int unixLockSharedMemory(unixFile *pDbFd, unixShmNode *pShmNode){
4501   struct flock lock;
4502   int rc = SQLITE_OK;
4503 
4504   /* Use F_GETLK to determine the locks other processes are holding
4505   ** on the DMS byte. If it indicates that another process is holding
4506   ** a SHARED lock, then this process may also take a SHARED lock
4507   ** and proceed with opening the *-shm file.
4508   **
4509   ** Or, if no other process is holding any lock, then this process
4510   ** is the first to open it. In this case take an EXCLUSIVE lock on the
4511   ** DMS byte and truncate the *-shm file to zero bytes in size. Then
4512   ** downgrade to a SHARED lock on the DMS byte.
4513   **
4514   ** If another process is holding an EXCLUSIVE lock on the DMS byte,
4515   ** return SQLITE_BUSY to the caller (it will try again). An earlier
4516   ** version of this code attempted the SHARED lock at this point. But
4517   ** this introduced a subtle race condition: if the process holding
4518   ** EXCLUSIVE failed just before truncating the *-shm file, then this
4519   ** process might open and use the *-shm file without truncating it.
4520   ** And if the *-shm file has been corrupted by a power failure or
4521   ** system crash, the database itself may also become corrupt.  */
4522   lock.l_whence = SEEK_SET;
4523   lock.l_start = UNIX_SHM_DMS;
4524   lock.l_len = 1;
4525   lock.l_type = F_WRLCK;
4526   if( osFcntl(pShmNode->hShm, F_GETLK, &lock)!=0 ) {
4527     rc = SQLITE_IOERR_LOCK;
4528   }else if( lock.l_type==F_UNLCK ){
4529     if( pShmNode->isReadonly ){
4530       pShmNode->isUnlocked = 1;
4531       rc = SQLITE_READONLY_CANTINIT;
4532     }else{
4533       rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1);
4534       /* The first connection to attach must truncate the -shm file.  We
4535       ** truncate to 3 bytes (an arbitrary small number, less than the
4536       ** -shm header size) rather than 0 as a system debugging aid, to
4537       ** help detect if a -shm file truncation is legitimate or is the work
4538       ** or a rogue process. */
4539       if( rc==SQLITE_OK && robust_ftruncate(pShmNode->hShm, 3) ){
4540         rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename);
4541       }
4542     }
4543   }else if( lock.l_type==F_WRLCK ){
4544     rc = SQLITE_BUSY;
4545   }
4546 
4547   if( rc==SQLITE_OK ){
4548     assert( lock.l_type==F_UNLCK || lock.l_type==F_RDLCK );
4549     rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1);
4550   }
4551   return rc;
4552 }
4553 
4554 /*
4555 ** Open a shared-memory area associated with open database file pDbFd.
4556 ** This particular implementation uses mmapped files.
4557 **
4558 ** The file used to implement shared-memory is in the same directory
4559 ** as the open database file and has the same name as the open database
4560 ** file with the "-shm" suffix added.  For example, if the database file
4561 ** is "/home/user1/config.db" then the file that is created and mmapped
4562 ** for shared memory will be called "/home/user1/config.db-shm".
4563 **
4564 ** Another approach to is to use files in /dev/shm or /dev/tmp or an
4565 ** some other tmpfs mount. But if a file in a different directory
4566 ** from the database file is used, then differing access permissions
4567 ** or a chroot() might cause two different processes on the same
4568 ** database to end up using different files for shared memory -
4569 ** meaning that their memory would not really be shared - resulting
4570 ** in database corruption.  Nevertheless, this tmpfs file usage
4571 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
4572 ** or the equivalent.  The use of the SQLITE_SHM_DIRECTORY compile-time
4573 ** option results in an incompatible build of SQLite;  builds of SQLite
4574 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
4575 ** same database file at the same time, database corruption will likely
4576 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
4577 ** "unsupported" and may go away in a future SQLite release.
4578 **
4579 ** When opening a new shared-memory file, if no other instances of that
4580 ** file are currently open, in this process or in other processes, then
4581 ** the file must be truncated to zero length or have its header cleared.
4582 **
4583 ** If the original database file (pDbFd) is using the "unix-excl" VFS
4584 ** that means that an exclusive lock is held on the database file and
4585 ** that no other processes are able to read or write the database.  In
4586 ** that case, we do not really need shared memory.  No shared memory
4587 ** file is created.  The shared memory will be simulated with heap memory.
4588 */
unixOpenSharedMemory(unixFile * pDbFd)4589 static int unixOpenSharedMemory(unixFile *pDbFd){
4590   struct unixShm *p = 0;          /* The connection to be opened */
4591   struct unixShmNode *pShmNode;   /* The underlying mmapped file */
4592   int rc = SQLITE_OK;             /* Result code */
4593   unixInodeInfo *pInode;          /* The inode of fd */
4594   char *zShm;             /* Name of the file used for SHM */
4595   int nShmFilename;               /* Size of the SHM filename in bytes */
4596 
4597   /* Allocate space for the new unixShm object. */
4598   p = sqlite3_malloc64( sizeof(*p) );
4599   if( p==0 ) return SQLITE_NOMEM_BKPT;
4600   memset(p, 0, sizeof(*p));
4601   assert( pDbFd->pShm==0 );
4602 
4603   /* Check to see if a unixShmNode object already exists. Reuse an existing
4604   ** one if present. Create a new one if necessary.
4605   */
4606   assert( unixFileMutexNotheld(pDbFd) );
4607   unixEnterMutex();
4608   pInode = pDbFd->pInode;
4609   pShmNode = pInode->pShmNode;
4610   if( pShmNode==0 ){
4611     struct stat sStat;                 /* fstat() info for database file */
4612 #ifndef SQLITE_SHM_DIRECTORY
4613     const char *zBasePath = pDbFd->zPath;
4614 #endif
4615 
4616     /* Call fstat() to figure out the permissions on the database file. If
4617     ** a new *-shm file is created, an attempt will be made to create it
4618     ** with the same permissions.
4619     */
4620     if( osFstat(pDbFd->h, &sStat) ){
4621       rc = SQLITE_IOERR_FSTAT;
4622       goto shm_open_err;
4623     }
4624 
4625 #ifdef SQLITE_SHM_DIRECTORY
4626     nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
4627 #else
4628     nShmFilename = 6 + (int)strlen(zBasePath);
4629 #endif
4630     pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename );
4631     if( pShmNode==0 ){
4632       rc = SQLITE_NOMEM_BKPT;
4633       goto shm_open_err;
4634     }
4635     memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
4636     zShm = pShmNode->zFilename = (char*)&pShmNode[1];
4637 #ifdef SQLITE_SHM_DIRECTORY
4638     sqlite3_snprintf(nShmFilename, zShm,
4639                      SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
4640                      (u32)sStat.st_ino, (u32)sStat.st_dev);
4641 #else
4642     sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath);
4643     sqlite3FileSuffix3(pDbFd->zPath, zShm);
4644 #endif
4645     pShmNode->hShm = -1;
4646     pDbFd->pInode->pShmNode = pShmNode;
4647     pShmNode->pInode = pDbFd->pInode;
4648     if( sqlite3GlobalConfig.bCoreMutex ){
4649       pShmNode->pShmMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
4650       if( pShmNode->pShmMutex==0 ){
4651         rc = SQLITE_NOMEM_BKPT;
4652         goto shm_open_err;
4653       }
4654     }
4655 
4656     if( pInode->bProcessLock==0 ){
4657       if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
4658         pShmNode->hShm = robust_open(zShm, O_RDWR|O_CREAT|O_NOFOLLOW,
4659                                      (sStat.st_mode&0777));
4660       }
4661       if( pShmNode->hShm<0 ){
4662         pShmNode->hShm = robust_open(zShm, O_RDONLY|O_NOFOLLOW,
4663                                      (sStat.st_mode&0777));
4664         if( pShmNode->hShm<0 ){
4665           rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm);
4666           goto shm_open_err;
4667         }
4668         pShmNode->isReadonly = 1;
4669       }
4670 
4671       /* If this process is running as root, make sure that the SHM file
4672       ** is owned by the same user that owns the original database.  Otherwise,
4673       ** the original owner will not be able to connect.
4674       */
4675       robustFchown(pShmNode->hShm, sStat.st_uid, sStat.st_gid);
4676 
4677       rc = unixLockSharedMemory(pDbFd, pShmNode);
4678       if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err;
4679     }
4680   }
4681 
4682   /* Make the new connection a child of the unixShmNode */
4683   p->pShmNode = pShmNode;
4684 #ifdef SQLITE_DEBUG
4685   p->id = pShmNode->nextShmId++;
4686 #endif
4687   pShmNode->nRef++;
4688   pDbFd->pShm = p;
4689   unixLeaveMutex();
4690 
4691   /* The reference count on pShmNode has already been incremented under
4692   ** the cover of the unixEnterMutex() mutex and the pointer from the
4693   ** new (struct unixShm) object to the pShmNode has been set. All that is
4694   ** left to do is to link the new object into the linked list starting
4695   ** at pShmNode->pFirst. This must be done while holding the
4696   ** pShmNode->pShmMutex.
4697   */
4698   sqlite3_mutex_enter(pShmNode->pShmMutex);
4699   p->pNext = pShmNode->pFirst;
4700   pShmNode->pFirst = p;
4701   sqlite3_mutex_leave(pShmNode->pShmMutex);
4702   return rc;
4703 
4704   /* Jump here on any error */
4705 shm_open_err:
4706   unixShmPurge(pDbFd);       /* This call frees pShmNode if required */
4707   sqlite3_free(p);
4708   unixLeaveMutex();
4709   return rc;
4710 }
4711 
4712 /*
4713 ** This function is called to obtain a pointer to region iRegion of the
4714 ** shared-memory associated with the database file fd. Shared-memory regions
4715 ** are numbered starting from zero. Each shared-memory region is szRegion
4716 ** bytes in size.
4717 **
4718 ** If an error occurs, an error code is returned and *pp is set to NULL.
4719 **
4720 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
4721 ** region has not been allocated (by any client, including one running in a
4722 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
4723 ** bExtend is non-zero and the requested shared-memory region has not yet
4724 ** been allocated, it is allocated by this function.
4725 **
4726 ** If the shared-memory region has already been allocated or is allocated by
4727 ** this call as described above, then it is mapped into this processes
4728 ** address space (if it is not already), *pp is set to point to the mapped
4729 ** memory and SQLITE_OK returned.
4730 */
unixShmMap(sqlite3_file * fd,int iRegion,int szRegion,int bExtend,void volatile ** pp)4731 static int unixShmMap(
4732   sqlite3_file *fd,               /* Handle open on database file */
4733   int iRegion,                    /* Region to retrieve */
4734   int szRegion,                   /* Size of regions */
4735   int bExtend,                    /* True to extend file if necessary */
4736   void volatile **pp              /* OUT: Mapped memory */
4737 ){
4738   unixFile *pDbFd = (unixFile*)fd;
4739   unixShm *p;
4740   unixShmNode *pShmNode;
4741   int rc = SQLITE_OK;
4742   int nShmPerMap = unixShmRegionPerMap();
4743   int nReqRegion;
4744 
4745   /* If the shared-memory file has not yet been opened, open it now. */
4746   if( pDbFd->pShm==0 ){
4747     rc = unixOpenSharedMemory(pDbFd);
4748     if( rc!=SQLITE_OK ) return rc;
4749   }
4750 
4751   p = pDbFd->pShm;
4752   pShmNode = p->pShmNode;
4753   sqlite3_mutex_enter(pShmNode->pShmMutex);
4754   if( pShmNode->isUnlocked ){
4755     rc = unixLockSharedMemory(pDbFd, pShmNode);
4756     if( rc!=SQLITE_OK ) goto shmpage_out;
4757     pShmNode->isUnlocked = 0;
4758   }
4759   assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
4760   assert( pShmNode->pInode==pDbFd->pInode );
4761   assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 );
4762   assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 );
4763 
4764   /* Minimum number of regions required to be mapped. */
4765   nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap;
4766 
4767   if( pShmNode->nRegion<nReqRegion ){
4768     char **apNew;                      /* New apRegion[] array */
4769     int nByte = nReqRegion*szRegion;   /* Minimum required file size */
4770     struct stat sStat;                 /* Used by fstat() */
4771 
4772     pShmNode->szRegion = szRegion;
4773 
4774     if( pShmNode->hShm>=0 ){
4775       /* The requested region is not mapped into this processes address space.
4776       ** Check to see if it has been allocated (i.e. if the wal-index file is
4777       ** large enough to contain the requested region).
4778       */
4779       if( osFstat(pShmNode->hShm, &sStat) ){
4780         rc = SQLITE_IOERR_SHMSIZE;
4781         goto shmpage_out;
4782       }
4783 
4784       if( sStat.st_size<nByte ){
4785         /* The requested memory region does not exist. If bExtend is set to
4786         ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
4787         */
4788         if( !bExtend ){
4789           goto shmpage_out;
4790         }
4791 
4792         /* Alternatively, if bExtend is true, extend the file. Do this by
4793         ** writing a single byte to the end of each (OS) page being
4794         ** allocated or extended. Technically, we need only write to the
4795         ** last page in order to extend the file. But writing to all new
4796         ** pages forces the OS to allocate them immediately, which reduces
4797         ** the chances of SIGBUS while accessing the mapped region later on.
4798         */
4799         else{
4800           static const int pgsz = 4096;
4801           int iPg;
4802 
4803           /* Write to the last byte of each newly allocated or extended page */
4804           assert( (nByte % pgsz)==0 );
4805           for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){
4806             int x = 0;
4807             if( seekAndWriteFd(pShmNode->hShm, iPg*pgsz + pgsz-1,"",1,&x)!=1 ){
4808               const char *zFile = pShmNode->zFilename;
4809               rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile);
4810               goto shmpage_out;
4811             }
4812           }
4813         }
4814       }
4815     }
4816 
4817     /* Map the requested memory region into this processes address space. */
4818     apNew = (char **)sqlite3_realloc(
4819         pShmNode->apRegion, nReqRegion*sizeof(char *)
4820     );
4821     if( !apNew ){
4822       rc = SQLITE_IOERR_NOMEM_BKPT;
4823       goto shmpage_out;
4824     }
4825     pShmNode->apRegion = apNew;
4826     while( pShmNode->nRegion<nReqRegion ){
4827       int nMap = szRegion*nShmPerMap;
4828       int i;
4829       void *pMem;
4830       if( pShmNode->hShm>=0 ){
4831         pMem = osMmap(0, nMap,
4832             pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE,
4833             MAP_SHARED, pShmNode->hShm, szRegion*(i64)pShmNode->nRegion
4834         );
4835         if( pMem==MAP_FAILED ){
4836           rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
4837           goto shmpage_out;
4838         }
4839       }else{
4840         pMem = sqlite3_malloc64(nMap);
4841         if( pMem==0 ){
4842           rc = SQLITE_NOMEM_BKPT;
4843           goto shmpage_out;
4844         }
4845         memset(pMem, 0, nMap);
4846       }
4847 
4848       for(i=0; i<nShmPerMap; i++){
4849         pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i];
4850       }
4851       pShmNode->nRegion += nShmPerMap;
4852     }
4853   }
4854 
4855 shmpage_out:
4856   if( pShmNode->nRegion>iRegion ){
4857     *pp = pShmNode->apRegion[iRegion];
4858   }else{
4859     *pp = 0;
4860   }
4861   if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
4862   sqlite3_mutex_leave(pShmNode->pShmMutex);
4863   return rc;
4864 }
4865 
4866 /*
4867 ** Check that the pShmNode->aLock[] array comports with the locking bitmasks
4868 ** held by each client. Return true if it does, or false otherwise. This
4869 ** is to be used in an assert(). e.g.
4870 **
4871 **     assert( assertLockingArrayOk(pShmNode) );
4872 */
4873 #ifdef SQLITE_DEBUG
assertLockingArrayOk(unixShmNode * pShmNode)4874 static int assertLockingArrayOk(unixShmNode *pShmNode){
4875   unixShm *pX;
4876   int aLock[SQLITE_SHM_NLOCK];
4877   assert( sqlite3_mutex_held(pShmNode->pShmMutex) );
4878 
4879   memset(aLock, 0, sizeof(aLock));
4880   for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4881     int i;
4882     for(i=0; i<SQLITE_SHM_NLOCK; i++){
4883       if( pX->exclMask & (1<<i) ){
4884         assert( aLock[i]==0 );
4885         aLock[i] = -1;
4886       }else if( pX->sharedMask & (1<<i) ){
4887         assert( aLock[i]>=0 );
4888         aLock[i]++;
4889       }
4890     }
4891   }
4892 
4893   assert( 0==memcmp(pShmNode->aLock, aLock, sizeof(aLock)) );
4894   return (memcmp(pShmNode->aLock, aLock, sizeof(aLock))==0);
4895 }
4896 #endif
4897 
4898 /*
4899 ** Change the lock state for a shared-memory segment.
4900 **
4901 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
4902 ** different here than in posix.  In xShmLock(), one can go from unlocked
4903 ** to shared and back or from unlocked to exclusive and back.  But one may
4904 ** not go from shared to exclusive or from exclusive to shared.
4905 */
unixShmLock(sqlite3_file * fd,int ofst,int n,int flags)4906 static int unixShmLock(
4907   sqlite3_file *fd,          /* Database file holding the shared memory */
4908   int ofst,                  /* First lock to acquire or release */
4909   int n,                     /* Number of locks to acquire or release */
4910   int flags                  /* What to do with the lock */
4911 ){
4912   unixFile *pDbFd = (unixFile*)fd;      /* Connection holding shared memory */
4913   unixShm *p;                           /* The shared memory being locked */
4914   unixShmNode *pShmNode;                /* The underlying file iNode */
4915   int rc = SQLITE_OK;                   /* Result code */
4916   u16 mask;                             /* Mask of locks to take or release */
4917   int *aLock;
4918 
4919   p = pDbFd->pShm;
4920   if( p==0 ) return SQLITE_IOERR_SHMLOCK;
4921   pShmNode = p->pShmNode;
4922   if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK;
4923   aLock = pShmNode->aLock;
4924 
4925   assert( pShmNode==pDbFd->pInode->pShmNode );
4926   assert( pShmNode->pInode==pDbFd->pInode );
4927   assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
4928   assert( n>=1 );
4929   assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
4930        || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
4931        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
4932        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
4933   assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
4934   assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 );
4935   assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 );
4936 
4937   /* Check that, if this to be a blocking lock, no locks that occur later
4938   ** in the following list than the lock being obtained are already held:
4939   **
4940   **   1. Checkpointer lock (ofst==1).
4941   **   2. Write lock (ofst==0).
4942   **   3. Read locks (ofst>=3 && ofst<SQLITE_SHM_NLOCK).
4943   **
4944   ** In other words, if this is a blocking lock, none of the locks that
4945   ** occur later in the above list than the lock being obtained may be
4946   ** held.
4947   **
4948   ** It is not permitted to block on the RECOVER lock.
4949   */
4950 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
4951   assert( (flags & SQLITE_SHM_UNLOCK) || pDbFd->iBusyTimeout==0 || (
4952          (ofst!=2)                                   /* not RECOVER */
4953       && (ofst!=1 || (p->exclMask|p->sharedMask)==0)
4954       && (ofst!=0 || (p->exclMask|p->sharedMask)<3)
4955       && (ofst<3  || (p->exclMask|p->sharedMask)<(1<<ofst))
4956   ));
4957 #endif
4958 
4959   mask = (1<<(ofst+n)) - (1<<ofst);
4960   assert( n>1 || mask==(1<<ofst) );
4961   sqlite3_mutex_enter(pShmNode->pShmMutex);
4962   assert( assertLockingArrayOk(pShmNode) );
4963   if( flags & SQLITE_SHM_UNLOCK ){
4964     if( (p->exclMask|p->sharedMask) & mask ){
4965       int ii;
4966       int bUnlock = 1;
4967 
4968       for(ii=ofst; ii<ofst+n; ii++){
4969         if( aLock[ii]>((p->sharedMask & (1<<ii)) ? 1 : 0) ){
4970           bUnlock = 0;
4971         }
4972       }
4973 
4974       if( bUnlock ){
4975         rc = unixShmSystemLock(pDbFd, F_UNLCK, ofst+UNIX_SHM_BASE, n);
4976         if( rc==SQLITE_OK ){
4977           memset(&aLock[ofst], 0, sizeof(int)*n);
4978         }
4979       }else if( ALWAYS(p->sharedMask & (1<<ofst)) ){
4980         assert( n==1 && aLock[ofst]>1 );
4981         aLock[ofst]--;
4982       }
4983 
4984       /* Undo the local locks */
4985       if( rc==SQLITE_OK ){
4986         p->exclMask &= ~mask;
4987         p->sharedMask &= ~mask;
4988       }
4989     }
4990   }else if( flags & SQLITE_SHM_SHARED ){
4991     assert( n==1 );
4992     assert( (p->exclMask & (1<<ofst))==0 );
4993     if( (p->sharedMask & mask)==0 ){
4994       if( aLock[ofst]<0 ){
4995         rc = SQLITE_BUSY;
4996       }else if( aLock[ofst]==0 ){
4997         rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n);
4998       }
4999 
5000       /* Get the local shared locks */
5001       if( rc==SQLITE_OK ){
5002         p->sharedMask |= mask;
5003         aLock[ofst]++;
5004       }
5005     }
5006   }else{
5007     /* Make sure no sibling connections hold locks that will block this
5008     ** lock.  If any do, return SQLITE_BUSY right away.  */
5009     int ii;
5010     for(ii=ofst; ii<ofst+n; ii++){
5011       assert( (p->sharedMask & mask)==0 );
5012       if( ALWAYS((p->exclMask & (1<<ii))==0) && aLock[ii] ){
5013         rc = SQLITE_BUSY;
5014         break;
5015       }
5016     }
5017 
5018     /* Get the exclusive locks at the system level. Then if successful
5019     ** also update the in-memory values. */
5020     if( rc==SQLITE_OK ){
5021       rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n);
5022       if( rc==SQLITE_OK ){
5023         assert( (p->sharedMask & mask)==0 );
5024         p->exclMask |= mask;
5025         for(ii=ofst; ii<ofst+n; ii++){
5026           aLock[ii] = -1;
5027         }
5028       }
5029     }
5030   }
5031   assert( assertLockingArrayOk(pShmNode) );
5032   sqlite3_mutex_leave(pShmNode->pShmMutex);
5033   OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
5034            p->id, osGetpid(0), p->sharedMask, p->exclMask));
5035   return rc;
5036 }
5037 
5038 /*
5039 ** Implement a memory barrier or memory fence on shared memory.
5040 **
5041 ** All loads and stores begun before the barrier must complete before
5042 ** any load or store begun after the barrier.
5043 */
unixShmBarrier(sqlite3_file * fd)5044 static void unixShmBarrier(
5045   sqlite3_file *fd                /* Database file holding the shared memory */
5046 ){
5047   UNUSED_PARAMETER(fd);
5048   sqlite3MemoryBarrier();         /* compiler-defined memory barrier */
5049   assert( fd->pMethods->xLock==nolockLock
5050        || unixFileMutexNotheld((unixFile*)fd)
5051   );
5052   unixEnterMutex();               /* Also mutex, for redundancy */
5053   unixLeaveMutex();
5054 }
5055 
5056 /*
5057 ** Close a connection to shared-memory.  Delete the underlying
5058 ** storage if deleteFlag is true.
5059 **
5060 ** If there is no shared memory associated with the connection then this
5061 ** routine is a harmless no-op.
5062 */
unixShmUnmap(sqlite3_file * fd,int deleteFlag)5063 static int unixShmUnmap(
5064   sqlite3_file *fd,               /* The underlying database file */
5065   int deleteFlag                  /* Delete shared-memory if true */
5066 ){
5067   unixShm *p;                     /* The connection to be closed */
5068   unixShmNode *pShmNode;          /* The underlying shared-memory file */
5069   unixShm **pp;                   /* For looping over sibling connections */
5070   unixFile *pDbFd;                /* The underlying database file */
5071 
5072   pDbFd = (unixFile*)fd;
5073   p = pDbFd->pShm;
5074   if( p==0 ) return SQLITE_OK;
5075   pShmNode = p->pShmNode;
5076 
5077   assert( pShmNode==pDbFd->pInode->pShmNode );
5078   assert( pShmNode->pInode==pDbFd->pInode );
5079 
5080   /* Remove connection p from the set of connections associated
5081   ** with pShmNode */
5082   sqlite3_mutex_enter(pShmNode->pShmMutex);
5083   for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
5084   *pp = p->pNext;
5085 
5086   /* Free the connection p */
5087   sqlite3_free(p);
5088   pDbFd->pShm = 0;
5089   sqlite3_mutex_leave(pShmNode->pShmMutex);
5090 
5091   /* If pShmNode->nRef has reached 0, then close the underlying
5092   ** shared-memory file, too */
5093   assert( unixFileMutexNotheld(pDbFd) );
5094   unixEnterMutex();
5095   assert( pShmNode->nRef>0 );
5096   pShmNode->nRef--;
5097   if( pShmNode->nRef==0 ){
5098     if( deleteFlag && pShmNode->hShm>=0 ){
5099       osUnlink(pShmNode->zFilename);
5100     }
5101     unixShmPurge(pDbFd);
5102   }
5103   unixLeaveMutex();
5104 
5105   return SQLITE_OK;
5106 }
5107 
5108 
5109 #else
5110 # define unixShmMap     0
5111 # define unixShmLock    0
5112 # define unixShmBarrier 0
5113 # define unixShmUnmap   0
5114 #endif /* #ifndef SQLITE_OMIT_WAL */
5115 
5116 #if SQLITE_MAX_MMAP_SIZE>0
5117 /*
5118 ** If it is currently memory mapped, unmap file pFd.
5119 */
unixUnmapfile(unixFile * pFd)5120 static void unixUnmapfile(unixFile *pFd){
5121   assert( pFd->nFetchOut==0 );
5122   if( pFd->pMapRegion ){
5123     osMunmap(pFd->pMapRegion, pFd->mmapSizeActual);
5124     pFd->pMapRegion = 0;
5125     pFd->mmapSize = 0;
5126     pFd->mmapSizeActual = 0;
5127   }
5128 }
5129 
5130 /*
5131 ** Attempt to set the size of the memory mapping maintained by file
5132 ** descriptor pFd to nNew bytes. Any existing mapping is discarded.
5133 **
5134 ** If successful, this function sets the following variables:
5135 **
5136 **       unixFile.pMapRegion
5137 **       unixFile.mmapSize
5138 **       unixFile.mmapSizeActual
5139 **
5140 ** If unsuccessful, an error message is logged via sqlite3_log() and
5141 ** the three variables above are zeroed. In this case SQLite should
5142 ** continue accessing the database using the xRead() and xWrite()
5143 ** methods.
5144 */
unixRemapfile(unixFile * pFd,i64 nNew)5145 static void unixRemapfile(
5146   unixFile *pFd,                  /* File descriptor object */
5147   i64 nNew                        /* Required mapping size */
5148 ){
5149   const char *zErr = "mmap";
5150   int h = pFd->h;                      /* File descriptor open on db file */
5151   u8 *pOrig = (u8 *)pFd->pMapRegion;   /* Pointer to current file mapping */
5152   i64 nOrig = pFd->mmapSizeActual;     /* Size of pOrig region in bytes */
5153   u8 *pNew = 0;                        /* Location of new mapping */
5154   int flags = PROT_READ;               /* Flags to pass to mmap() */
5155 
5156   assert( pFd->nFetchOut==0 );
5157   assert( nNew>pFd->mmapSize );
5158   assert( nNew<=pFd->mmapSizeMax );
5159   assert( nNew>0 );
5160   assert( pFd->mmapSizeActual>=pFd->mmapSize );
5161   assert( MAP_FAILED!=0 );
5162 
5163 #ifdef SQLITE_MMAP_READWRITE
5164   if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;
5165 #endif
5166 
5167   if( pOrig ){
5168 #if HAVE_MREMAP
5169     i64 nReuse = pFd->mmapSize;
5170 #else
5171     const int szSyspage = osGetpagesize();
5172     i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));
5173 #endif
5174     u8 *pReq = &pOrig[nReuse];
5175 
5176     /* Unmap any pages of the existing mapping that cannot be reused. */
5177     if( nReuse!=nOrig ){
5178       osMunmap(pReq, nOrig-nReuse);
5179     }
5180 
5181 #if HAVE_MREMAP
5182     pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE);
5183     zErr = "mremap";
5184 #else
5185     pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse);
5186     if( pNew!=MAP_FAILED ){
5187       if( pNew!=pReq ){
5188         osMunmap(pNew, nNew - nReuse);
5189         pNew = 0;
5190       }else{
5191         pNew = pOrig;
5192       }
5193     }
5194 #endif
5195 
5196     /* The attempt to extend the existing mapping failed. Free it. */
5197     if( pNew==MAP_FAILED || pNew==0 ){
5198       osMunmap(pOrig, nReuse);
5199     }
5200   }
5201 
5202   /* If pNew is still NULL, try to create an entirely new mapping. */
5203   if( pNew==0 ){
5204     pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0);
5205   }
5206 
5207   if( pNew==MAP_FAILED ){
5208     pNew = 0;
5209     nNew = 0;
5210     unixLogError(SQLITE_OK, zErr, pFd->zPath);
5211 
5212     /* If the mmap() above failed, assume that all subsequent mmap() calls
5213     ** will probably fail too. Fall back to using xRead/xWrite exclusively
5214     ** in this case.  */
5215     pFd->mmapSizeMax = 0;
5216   }
5217   pFd->pMapRegion = (void *)pNew;
5218   pFd->mmapSize = pFd->mmapSizeActual = nNew;
5219 }
5220 
5221 /*
5222 ** Memory map or remap the file opened by file-descriptor pFd (if the file
5223 ** is already mapped, the existing mapping is replaced by the new). Or, if
5224 ** there already exists a mapping for this file, and there are still
5225 ** outstanding xFetch() references to it, this function is a no-op.
5226 **
5227 ** If parameter nByte is non-negative, then it is the requested size of
5228 ** the mapping to create. Otherwise, if nByte is less than zero, then the
5229 ** requested size is the size of the file on disk. The actual size of the
5230 ** created mapping is either the requested size or the value configured
5231 ** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
5232 **
5233 ** SQLITE_OK is returned if no error occurs (even if the mapping is not
5234 ** recreated as a result of outstanding references) or an SQLite error
5235 ** code otherwise.
5236 */
unixMapfile(unixFile * pFd,i64 nMap)5237 static int unixMapfile(unixFile *pFd, i64 nMap){
5238   assert( nMap>=0 || pFd->nFetchOut==0 );
5239   assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
5240   if( pFd->nFetchOut>0 ) return SQLITE_OK;
5241 
5242   if( nMap<0 ){
5243     struct stat statbuf;          /* Low-level file information */
5244     if( osFstat(pFd->h, &statbuf) ){
5245       return SQLITE_IOERR_FSTAT;
5246     }
5247     nMap = statbuf.st_size;
5248   }
5249   if( nMap>pFd->mmapSizeMax ){
5250     nMap = pFd->mmapSizeMax;
5251   }
5252 
5253   assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
5254   if( nMap!=pFd->mmapSize ){
5255     unixRemapfile(pFd, nMap);
5256   }
5257 
5258   return SQLITE_OK;
5259 }
5260 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
5261 
5262 /*
5263 ** If possible, return a pointer to a mapping of file fd starting at offset
5264 ** iOff. The mapping must be valid for at least nAmt bytes.
5265 **
5266 ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
5267 ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
5268 ** Finally, if an error does occur, return an SQLite error code. The final
5269 ** value of *pp is undefined in this case.
5270 **
5271 ** If this function does return a pointer, the caller must eventually
5272 ** release the reference by calling unixUnfetch().
5273 */
unixFetch(sqlite3_file * fd,i64 iOff,int nAmt,void ** pp)5274 static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
5275 #if SQLITE_MAX_MMAP_SIZE>0
5276   unixFile *pFd = (unixFile *)fd;   /* The underlying database file */
5277 #endif
5278   *pp = 0;
5279 
5280 #if SQLITE_MAX_MMAP_SIZE>0
5281   if( pFd->mmapSizeMax>0 ){
5282     if( pFd->pMapRegion==0 ){
5283       int rc = unixMapfile(pFd, -1);
5284       if( rc!=SQLITE_OK ) return rc;
5285     }
5286     if( pFd->mmapSize >= iOff+nAmt ){
5287       *pp = &((u8 *)pFd->pMapRegion)[iOff];
5288       pFd->nFetchOut++;
5289     }
5290   }
5291 #endif
5292   return SQLITE_OK;
5293 }
5294 
5295 /*
5296 ** If the third argument is non-NULL, then this function releases a
5297 ** reference obtained by an earlier call to unixFetch(). The second
5298 ** argument passed to this function must be the same as the corresponding
5299 ** argument that was passed to the unixFetch() invocation.
5300 **
5301 ** Or, if the third argument is NULL, then this function is being called
5302 ** to inform the VFS layer that, according to POSIX, any existing mapping
5303 ** may now be invalid and should be unmapped.
5304 */
unixUnfetch(sqlite3_file * fd,i64 iOff,void * p)5305 static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){
5306 #if SQLITE_MAX_MMAP_SIZE>0
5307   unixFile *pFd = (unixFile *)fd;   /* The underlying database file */
5308   UNUSED_PARAMETER(iOff);
5309 
5310   /* If p==0 (unmap the entire file) then there must be no outstanding
5311   ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
5312   ** then there must be at least one outstanding.  */
5313   assert( (p==0)==(pFd->nFetchOut==0) );
5314 
5315   /* If p!=0, it must match the iOff value. */
5316   assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
5317 
5318   if( p ){
5319     pFd->nFetchOut--;
5320   }else{
5321     unixUnmapfile(pFd);
5322   }
5323 
5324   assert( pFd->nFetchOut>=0 );
5325 #else
5326   UNUSED_PARAMETER(fd);
5327   UNUSED_PARAMETER(p);
5328   UNUSED_PARAMETER(iOff);
5329 #endif
5330   return SQLITE_OK;
5331 }
5332 
5333 /*
5334 ** Here ends the implementation of all sqlite3_file methods.
5335 **
5336 ********************** End sqlite3_file Methods *******************************
5337 ******************************************************************************/
5338 
5339 /*
5340 ** This division contains definitions of sqlite3_io_methods objects that
5341 ** implement various file locking strategies.  It also contains definitions
5342 ** of "finder" functions.  A finder-function is used to locate the appropriate
5343 ** sqlite3_io_methods object for a particular database file.  The pAppData
5344 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
5345 ** the correct finder-function for that VFS.
5346 **
5347 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
5348 ** object.  The only interesting finder-function is autolockIoFinder, which
5349 ** looks at the filesystem type and tries to guess the best locking
5350 ** strategy from that.
5351 **
5352 ** For finder-function F, two objects are created:
5353 **
5354 **    (1) The real finder-function named "FImpt()".
5355 **
5356 **    (2) A constant pointer to this function named just "F".
5357 **
5358 **
5359 ** A pointer to the F pointer is used as the pAppData value for VFS
5360 ** objects.  We have to do this instead of letting pAppData point
5361 ** directly at the finder-function since C90 rules prevent a void*
5362 ** from be cast into a function pointer.
5363 **
5364 **
5365 ** Each instance of this macro generates two objects:
5366 **
5367 **   *  A constant sqlite3_io_methods object call METHOD that has locking
5368 **      methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
5369 **
5370 **   *  An I/O method finder function called FINDER that returns a pointer
5371 **      to the METHOD object in the previous bullet.
5372 */
5373 #define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP)     \
5374 static const sqlite3_io_methods METHOD = {                                   \
5375    VERSION,                    /* iVersion */                                \
5376    CLOSE,                      /* xClose */                                  \
5377    unixRead,                   /* xRead */                                   \
5378    unixWrite,                  /* xWrite */                                  \
5379    unixTruncate,               /* xTruncate */                               \
5380    unixSync,                   /* xSync */                                   \
5381    unixFileSize,               /* xFileSize */                               \
5382    LOCK,                       /* xLock */                                   \
5383    UNLOCK,                     /* xUnlock */                                 \
5384    CKLOCK,                     /* xCheckReservedLock */                      \
5385    unixFileControl,            /* xFileControl */                            \
5386    unixSectorSize,             /* xSectorSize */                             \
5387    unixDeviceCharacteristics,  /* xDeviceCapabilities */                     \
5388    SHMMAP,                     /* xShmMap */                                 \
5389    unixShmLock,                /* xShmLock */                                \
5390    unixShmBarrier,             /* xShmBarrier */                             \
5391    unixShmUnmap,               /* xShmUnmap */                               \
5392    unixFetch,                  /* xFetch */                                  \
5393    unixUnfetch,                /* xUnfetch */                                \
5394 };                                                                           \
5395 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){   \
5396   UNUSED_PARAMETER(z); UNUSED_PARAMETER(p);                                  \
5397   return &METHOD;                                                            \
5398 }                                                                            \
5399 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p)    \
5400     = FINDER##Impl;
5401 
5402 /*
5403 ** Here are all of the sqlite3_io_methods objects for each of the
5404 ** locking strategies.  Functions that return pointers to these methods
5405 ** are also created.
5406 */
5407 IOMETHODS(
5408   posixIoFinder,            /* Finder function name */
5409   posixIoMethods,           /* sqlite3_io_methods object name */
5410   3,                        /* shared memory and mmap are enabled */
5411   unixClose,                /* xClose method */
5412   unixLock,                 /* xLock method */
5413   unixUnlock,               /* xUnlock method */
5414   unixCheckReservedLock,    /* xCheckReservedLock method */
5415   unixShmMap                /* xShmMap method */
5416 )
5417 IOMETHODS(
5418   nolockIoFinder,           /* Finder function name */
5419   nolockIoMethods,          /* sqlite3_io_methods object name */
5420   3,                        /* shared memory and mmap are enabled */
5421   nolockClose,              /* xClose method */
5422   nolockLock,               /* xLock method */
5423   nolockUnlock,             /* xUnlock method */
5424   nolockCheckReservedLock,  /* xCheckReservedLock method */
5425   0                         /* xShmMap method */
5426 )
5427 IOMETHODS(
5428   dotlockIoFinder,          /* Finder function name */
5429   dotlockIoMethods,         /* sqlite3_io_methods object name */
5430   1,                        /* shared memory is disabled */
5431   dotlockClose,             /* xClose method */
5432   dotlockLock,              /* xLock method */
5433   dotlockUnlock,            /* xUnlock method */
5434   dotlockCheckReservedLock, /* xCheckReservedLock method */
5435   0                         /* xShmMap method */
5436 )
5437 
5438 #if SQLITE_ENABLE_LOCKING_STYLE
5439 IOMETHODS(
5440   flockIoFinder,            /* Finder function name */
5441   flockIoMethods,           /* sqlite3_io_methods object name */
5442   1,                        /* shared memory is disabled */
5443   flockClose,               /* xClose method */
5444   flockLock,                /* xLock method */
5445   flockUnlock,              /* xUnlock method */
5446   flockCheckReservedLock,   /* xCheckReservedLock method */
5447   0                         /* xShmMap method */
5448 )
5449 #endif
5450 
5451 #if OS_VXWORKS
5452 IOMETHODS(
5453   semIoFinder,              /* Finder function name */
5454   semIoMethods,             /* sqlite3_io_methods object name */
5455   1,                        /* shared memory is disabled */
5456   semXClose,                /* xClose method */
5457   semXLock,                 /* xLock method */
5458   semXUnlock,               /* xUnlock method */
5459   semXCheckReservedLock,    /* xCheckReservedLock method */
5460   0                         /* xShmMap method */
5461 )
5462 #endif
5463 
5464 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5465 IOMETHODS(
5466   afpIoFinder,              /* Finder function name */
5467   afpIoMethods,             /* sqlite3_io_methods object name */
5468   1,                        /* shared memory is disabled */
5469   afpClose,                 /* xClose method */
5470   afpLock,                  /* xLock method */
5471   afpUnlock,                /* xUnlock method */
5472   afpCheckReservedLock,     /* xCheckReservedLock method */
5473   0                         /* xShmMap method */
5474 )
5475 #endif
5476 
5477 /*
5478 ** The proxy locking method is a "super-method" in the sense that it
5479 ** opens secondary file descriptors for the conch and lock files and
5480 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
5481 ** secondary files.  For this reason, the division that implements
5482 ** proxy locking is located much further down in the file.  But we need
5483 ** to go ahead and define the sqlite3_io_methods and finder function
5484 ** for proxy locking here.  So we forward declare the I/O methods.
5485 */
5486 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5487 static int proxyClose(sqlite3_file*);
5488 static int proxyLock(sqlite3_file*, int);
5489 static int proxyUnlock(sqlite3_file*, int);
5490 static int proxyCheckReservedLock(sqlite3_file*, int*);
5491 IOMETHODS(
5492   proxyIoFinder,            /* Finder function name */
5493   proxyIoMethods,           /* sqlite3_io_methods object name */
5494   1,                        /* shared memory is disabled */
5495   proxyClose,               /* xClose method */
5496   proxyLock,                /* xLock method */
5497   proxyUnlock,              /* xUnlock method */
5498   proxyCheckReservedLock,   /* xCheckReservedLock method */
5499   0                         /* xShmMap method */
5500 )
5501 #endif
5502 
5503 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
5504 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5505 IOMETHODS(
5506   nfsIoFinder,               /* Finder function name */
5507   nfsIoMethods,              /* sqlite3_io_methods object name */
5508   1,                         /* shared memory is disabled */
5509   unixClose,                 /* xClose method */
5510   unixLock,                  /* xLock method */
5511   nfsUnlock,                 /* xUnlock method */
5512   unixCheckReservedLock,     /* xCheckReservedLock method */
5513   0                          /* xShmMap method */
5514 )
5515 #endif
5516 
5517 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5518 /*
5519 ** This "finder" function attempts to determine the best locking strategy
5520 ** for the database file "filePath".  It then returns the sqlite3_io_methods
5521 ** object that implements that strategy.
5522 **
5523 ** This is for MacOSX only.
5524 */
autolockIoFinderImpl(const char * filePath,unixFile * pNew)5525 static const sqlite3_io_methods *autolockIoFinderImpl(
5526   const char *filePath,    /* name of the database file */
5527   unixFile *pNew           /* open file object for the database file */
5528 ){
5529   static const struct Mapping {
5530     const char *zFilesystem;              /* Filesystem type name */
5531     const sqlite3_io_methods *pMethods;   /* Appropriate locking method */
5532   } aMap[] = {
5533     { "hfs",    &posixIoMethods },
5534     { "ufs",    &posixIoMethods },
5535     { "afpfs",  &afpIoMethods },
5536     { "smbfs",  &afpIoMethods },
5537     { "webdav", &nolockIoMethods },
5538     { 0, 0 }
5539   };
5540   int i;
5541   struct statfs fsInfo;
5542   struct flock lockInfo;
5543 
5544   if( !filePath ){
5545     /* If filePath==NULL that means we are dealing with a transient file
5546     ** that does not need to be locked. */
5547     return &nolockIoMethods;
5548   }
5549   if( statfs(filePath, &fsInfo) != -1 ){
5550     if( fsInfo.f_flags & MNT_RDONLY ){
5551       return &nolockIoMethods;
5552     }
5553     for(i=0; aMap[i].zFilesystem; i++){
5554       if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
5555         return aMap[i].pMethods;
5556       }
5557     }
5558   }
5559 
5560   /* Default case. Handles, amongst others, "nfs".
5561   ** Test byte-range lock using fcntl(). If the call succeeds,
5562   ** assume that the file-system supports POSIX style locks.
5563   */
5564   lockInfo.l_len = 1;
5565   lockInfo.l_start = 0;
5566   lockInfo.l_whence = SEEK_SET;
5567   lockInfo.l_type = F_RDLCK;
5568   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
5569     if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
5570       return &nfsIoMethods;
5571     } else {
5572       return &posixIoMethods;
5573     }
5574   }else{
5575     return &dotlockIoMethods;
5576   }
5577 }
5578 static const sqlite3_io_methods
5579   *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
5580 
5581 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
5582 
5583 #if OS_VXWORKS
5584 /*
5585 ** This "finder" function for VxWorks checks to see if posix advisory
5586 ** locking works.  If it does, then that is what is used.  If it does not
5587 ** work, then fallback to named semaphore locking.
5588 */
vxworksIoFinderImpl(const char * filePath,unixFile * pNew)5589 static const sqlite3_io_methods *vxworksIoFinderImpl(
5590   const char *filePath,    /* name of the database file */
5591   unixFile *pNew           /* the open file object */
5592 ){
5593   struct flock lockInfo;
5594 
5595   if( !filePath ){
5596     /* If filePath==NULL that means we are dealing with a transient file
5597     ** that does not need to be locked. */
5598     return &nolockIoMethods;
5599   }
5600 
5601   /* Test if fcntl() is supported and use POSIX style locks.
5602   ** Otherwise fall back to the named semaphore method.
5603   */
5604   lockInfo.l_len = 1;
5605   lockInfo.l_start = 0;
5606   lockInfo.l_whence = SEEK_SET;
5607   lockInfo.l_type = F_RDLCK;
5608   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
5609     return &posixIoMethods;
5610   }else{
5611     return &semIoMethods;
5612   }
5613 }
5614 static const sqlite3_io_methods
5615   *(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl;
5616 
5617 #endif /* OS_VXWORKS */
5618 
5619 /*
5620 ** An abstract type for a pointer to an IO method finder function:
5621 */
5622 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
5623 
5624 
5625 /****************************************************************************
5626 **************************** sqlite3_vfs methods ****************************
5627 **
5628 ** This division contains the implementation of methods on the
5629 ** sqlite3_vfs object.
5630 */
5631 
5632 /*
5633 ** Initialize the contents of the unixFile structure pointed to by pId.
5634 */
fillInUnixFile(sqlite3_vfs * pVfs,int h,sqlite3_file * pId,const char * zFilename,int ctrlFlags)5635 static int fillInUnixFile(
5636   sqlite3_vfs *pVfs,      /* Pointer to vfs object */
5637   int h,                  /* Open file descriptor of file being opened */
5638   sqlite3_file *pId,      /* Write to the unixFile structure here */
5639   const char *zFilename,  /* Name of the file being opened */
5640   int ctrlFlags           /* Zero or more UNIXFILE_* values */
5641 ){
5642   const sqlite3_io_methods *pLockingStyle;
5643   unixFile *pNew = (unixFile *)pId;
5644   int rc = SQLITE_OK;
5645 
5646   assert( pNew->pInode==NULL );
5647 
5648   /* No locking occurs in temporary files */
5649   assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );
5650 
5651   OSTRACE(("OPEN    %-3d %s\n", h, zFilename));
5652   pNew->h = h;
5653   pNew->pVfs = pVfs;
5654   pNew->zPath = zFilename;
5655   pNew->ctrlFlags = (u8)ctrlFlags;
5656 #if SQLITE_MAX_MMAP_SIZE>0
5657   pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap;
5658 #endif
5659   if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
5660                            "psow", SQLITE_POWERSAFE_OVERWRITE) ){
5661     pNew->ctrlFlags |= UNIXFILE_PSOW;
5662   }
5663   if( strcmp(pVfs->zName,"unix-excl")==0 ){
5664     pNew->ctrlFlags |= UNIXFILE_EXCL;
5665   }
5666 
5667 #if OS_VXWORKS
5668   pNew->pId = vxworksFindFileId(zFilename);
5669   if( pNew->pId==0 ){
5670     ctrlFlags |= UNIXFILE_NOLOCK;
5671     rc = SQLITE_NOMEM_BKPT;
5672   }
5673 #endif
5674 
5675   if( ctrlFlags & UNIXFILE_NOLOCK ){
5676     pLockingStyle = &nolockIoMethods;
5677   }else{
5678     pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
5679 #if SQLITE_ENABLE_LOCKING_STYLE
5680     /* Cache zFilename in the locking context (AFP and dotlock override) for
5681     ** proxyLock activation is possible (remote proxy is based on db name)
5682     ** zFilename remains valid until file is closed, to support */
5683     pNew->lockingContext = (void*)zFilename;
5684 #endif
5685   }
5686 
5687   if( pLockingStyle == &posixIoMethods
5688 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5689     || pLockingStyle == &nfsIoMethods
5690 #endif
5691   ){
5692     unixEnterMutex();
5693     rc = findInodeInfo(pNew, &pNew->pInode);
5694     if( rc!=SQLITE_OK ){
5695       /* If an error occurred in findInodeInfo(), close the file descriptor
5696       ** immediately, before releasing the mutex. findInodeInfo() may fail
5697       ** in two scenarios:
5698       **
5699       **   (a) A call to fstat() failed.
5700       **   (b) A malloc failed.
5701       **
5702       ** Scenario (b) may only occur if the process is holding no other
5703       ** file descriptors open on the same file. If there were other file
5704       ** descriptors on this file, then no malloc would be required by
5705       ** findInodeInfo(). If this is the case, it is quite safe to close
5706       ** handle h - as it is guaranteed that no posix locks will be released
5707       ** by doing so.
5708       **
5709       ** If scenario (a) caused the error then things are not so safe. The
5710       ** implicit assumption here is that if fstat() fails, things are in
5711       ** such bad shape that dropping a lock or two doesn't matter much.
5712       */
5713       robust_close(pNew, h, __LINE__);
5714       h = -1;
5715     }
5716     unixLeaveMutex();
5717   }
5718 
5719 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
5720   else if( pLockingStyle == &afpIoMethods ){
5721     /* AFP locking uses the file path so it needs to be included in
5722     ** the afpLockingContext.
5723     */
5724     afpLockingContext *pCtx;
5725     pNew->lockingContext = pCtx = sqlite3_malloc64( sizeof(*pCtx) );
5726     if( pCtx==0 ){
5727       rc = SQLITE_NOMEM_BKPT;
5728     }else{
5729       /* NB: zFilename exists and remains valid until the file is closed
5730       ** according to requirement F11141.  So we do not need to make a
5731       ** copy of the filename. */
5732       pCtx->dbPath = zFilename;
5733       pCtx->reserved = 0;
5734       srandomdev();
5735       unixEnterMutex();
5736       rc = findInodeInfo(pNew, &pNew->pInode);
5737       if( rc!=SQLITE_OK ){
5738         sqlite3_free(pNew->lockingContext);
5739         robust_close(pNew, h, __LINE__);
5740         h = -1;
5741       }
5742       unixLeaveMutex();
5743     }
5744   }
5745 #endif
5746 
5747   else if( pLockingStyle == &dotlockIoMethods ){
5748     /* Dotfile locking uses the file path so it needs to be included in
5749     ** the dotlockLockingContext
5750     */
5751     char *zLockFile;
5752     int nFilename;
5753     assert( zFilename!=0 );
5754     nFilename = (int)strlen(zFilename) + 6;
5755     zLockFile = (char *)sqlite3_malloc64(nFilename);
5756     if( zLockFile==0 ){
5757       rc = SQLITE_NOMEM_BKPT;
5758     }else{
5759       sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
5760     }
5761     pNew->lockingContext = zLockFile;
5762   }
5763 
5764 #if OS_VXWORKS
5765   else if( pLockingStyle == &semIoMethods ){
5766     /* Named semaphore locking uses the file path so it needs to be
5767     ** included in the semLockingContext
5768     */
5769     unixEnterMutex();
5770     rc = findInodeInfo(pNew, &pNew->pInode);
5771     if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
5772       char *zSemName = pNew->pInode->aSemName;
5773       int n;
5774       sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
5775                        pNew->pId->zCanonicalName);
5776       for( n=1; zSemName[n]; n++ )
5777         if( zSemName[n]=='/' ) zSemName[n] = '_';
5778       pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
5779       if( pNew->pInode->pSem == SEM_FAILED ){
5780         rc = SQLITE_NOMEM_BKPT;
5781         pNew->pInode->aSemName[0] = '\0';
5782       }
5783     }
5784     unixLeaveMutex();
5785   }
5786 #endif
5787 
5788   storeLastErrno(pNew, 0);
5789 #if OS_VXWORKS
5790   if( rc!=SQLITE_OK ){
5791     if( h>=0 ) robust_close(pNew, h, __LINE__);
5792     h = -1;
5793     osUnlink(zFilename);
5794     pNew->ctrlFlags |= UNIXFILE_DELETE;
5795   }
5796 #endif
5797   if( rc!=SQLITE_OK ){
5798     if( h>=0 ) robust_close(pNew, h, __LINE__);
5799   }else{
5800     pId->pMethods = pLockingStyle;
5801     OpenCounter(+1);
5802     verifyDbFile(pNew);
5803   }
5804   return rc;
5805 }
5806 
5807 /*
5808 ** Directories to consider for temp files.
5809 */
5810 static const char *azTempDirs[] = {
5811   0,
5812   0,
5813   "/var/tmp",
5814   "/usr/tmp",
5815   "/tmp",
5816   "."
5817 };
5818 
5819 /*
5820 ** Initialize first two members of azTempDirs[] array.
5821 */
unixTempFileInit(void)5822 static void unixTempFileInit(void){
5823   azTempDirs[0] = getenv("SQLITE_TMPDIR");
5824   azTempDirs[1] = getenv("TMPDIR");
5825 }
5826 
5827 /*
5828 ** Return the name of a directory in which to put temporary files.
5829 ** If no suitable temporary file directory can be found, return NULL.
5830 */
unixTempFileDir(void)5831 static const char *unixTempFileDir(void){
5832   unsigned int i = 0;
5833   struct stat buf;
5834   const char *zDir = sqlite3_temp_directory;
5835 
5836   while(1){
5837     if( zDir!=0
5838      && osStat(zDir, &buf)==0
5839      && S_ISDIR(buf.st_mode)
5840      && osAccess(zDir, 03)==0
5841     ){
5842       return zDir;
5843     }
5844     if( i>=sizeof(azTempDirs)/sizeof(azTempDirs[0]) ) break;
5845     zDir = azTempDirs[i++];
5846   }
5847   return 0;
5848 }
5849 
5850 /*
5851 ** Create a temporary file name in zBuf.  zBuf must be allocated
5852 ** by the calling process and must be big enough to hold at least
5853 ** pVfs->mxPathname bytes.
5854 */
unixGetTempname(int nBuf,char * zBuf)5855 static int unixGetTempname(int nBuf, char *zBuf){
5856   const char *zDir;
5857   int iLimit = 0;
5858   int rc = SQLITE_OK;
5859 
5860   /* It's odd to simulate an io-error here, but really this is just
5861   ** using the io-error infrastructure to test that SQLite handles this
5862   ** function failing.
5863   */
5864   zBuf[0] = 0;
5865   SimulateIOError( return SQLITE_IOERR );
5866 
5867   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
5868   zDir = unixTempFileDir();
5869   if( zDir==0 ){
5870     rc = SQLITE_IOERR_GETTEMPPATH;
5871   }else{
5872     do{
5873       u64 r;
5874       sqlite3_randomness(sizeof(r), &r);
5875       assert( nBuf>2 );
5876       zBuf[nBuf-2] = 0;
5877       sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c",
5878                        zDir, r, 0);
5879       if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ){
5880         rc = SQLITE_ERROR;
5881         break;
5882       }
5883     }while( osAccess(zBuf,0)==0 );
5884   }
5885   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
5886   return rc;
5887 }
5888 
5889 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
5890 /*
5891 ** Routine to transform a unixFile into a proxy-locking unixFile.
5892 ** Implementation in the proxy-lock division, but used by unixOpen()
5893 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
5894 */
5895 static int proxyTransformUnixFile(unixFile*, const char*);
5896 #endif
5897 
5898 /*
5899 ** Search for an unused file descriptor that was opened on the database
5900 ** file (not a journal or super-journal file) identified by pathname
5901 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
5902 ** argument to this function.
5903 **
5904 ** Such a file descriptor may exist if a database connection was closed
5905 ** but the associated file descriptor could not be closed because some
5906 ** other file descriptor open on the same file is holding a file-lock.
5907 ** Refer to comments in the unixClose() function and the lengthy comment
5908 ** describing "Posix Advisory Locking" at the start of this file for
5909 ** further details. Also, ticket #4018.
5910 **
5911 ** If a suitable file descriptor is found, then it is returned. If no
5912 ** such file descriptor is located, -1 is returned.
5913 */
findReusableFd(const char * zPath,int flags)5914 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
5915   UnixUnusedFd *pUnused = 0;
5916 
5917   /* Do not search for an unused file descriptor on vxworks. Not because
5918   ** vxworks would not benefit from the change (it might, we're not sure),
5919   ** but because no way to test it is currently available. It is better
5920   ** not to risk breaking vxworks support for the sake of such an obscure
5921   ** feature.  */
5922 #if !OS_VXWORKS
5923   struct stat sStat;                   /* Results of stat() call */
5924 
5925   unixEnterMutex();
5926 
5927   /* A stat() call may fail for various reasons. If this happens, it is
5928   ** almost certain that an open() call on the same path will also fail.
5929   ** For this reason, if an error occurs in the stat() call here, it is
5930   ** ignored and -1 is returned. The caller will try to open a new file
5931   ** descriptor on the same path, fail, and return an error to SQLite.
5932   **
5933   ** Even if a subsequent open() call does succeed, the consequences of
5934   ** not searching for a reusable file descriptor are not dire.  */
5935   if( inodeList!=0 && 0==osStat(zPath, &sStat) ){
5936     unixInodeInfo *pInode;
5937 
5938     pInode = inodeList;
5939     while( pInode && (pInode->fileId.dev!=sStat.st_dev
5940                      || pInode->fileId.ino!=(u64)sStat.st_ino) ){
5941        pInode = pInode->pNext;
5942     }
5943     if( pInode ){
5944       UnixUnusedFd **pp;
5945       assert( sqlite3_mutex_notheld(pInode->pLockMutex) );
5946       sqlite3_mutex_enter(pInode->pLockMutex);
5947       flags &= (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE);
5948       for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
5949       pUnused = *pp;
5950       if( pUnused ){
5951         *pp = pUnused->pNext;
5952       }
5953       sqlite3_mutex_leave(pInode->pLockMutex);
5954     }
5955   }
5956   unixLeaveMutex();
5957 #endif    /* if !OS_VXWORKS */
5958   return pUnused;
5959 }
5960 
5961 /*
5962 ** Find the mode, uid and gid of file zFile.
5963 */
getFileMode(const char * zFile,mode_t * pMode,uid_t * pUid,gid_t * pGid)5964 static int getFileMode(
5965   const char *zFile,              /* File name */
5966   mode_t *pMode,                  /* OUT: Permissions of zFile */
5967   uid_t *pUid,                    /* OUT: uid of zFile. */
5968   gid_t *pGid                     /* OUT: gid of zFile. */
5969 ){
5970   struct stat sStat;              /* Output of stat() on database file */
5971   int rc = SQLITE_OK;
5972   if( 0==osStat(zFile, &sStat) ){
5973     *pMode = sStat.st_mode & 0777;
5974     *pUid = sStat.st_uid;
5975     *pGid = sStat.st_gid;
5976   }else{
5977     rc = SQLITE_IOERR_FSTAT;
5978   }
5979   return rc;
5980 }
5981 
5982 /*
5983 ** This function is called by unixOpen() to determine the unix permissions
5984 ** to create new files with. If no error occurs, then SQLITE_OK is returned
5985 ** and a value suitable for passing as the third argument to open(2) is
5986 ** written to *pMode. If an IO error occurs, an SQLite error code is
5987 ** returned and the value of *pMode is not modified.
5988 **
5989 ** In most cases, this routine sets *pMode to 0, which will become
5990 ** an indication to robust_open() to create the file using
5991 ** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask.
5992 ** But if the file being opened is a WAL or regular journal file, then
5993 ** this function queries the file-system for the permissions on the
5994 ** corresponding database file and sets *pMode to this value. Whenever
5995 ** possible, WAL and journal files are created using the same permissions
5996 ** as the associated database file.
5997 **
5998 ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
5999 ** original filename is unavailable.  But 8_3_NAMES is only used for
6000 ** FAT filesystems and permissions do not matter there, so just use
6001 ** the default permissions.  In 8_3_NAMES mode, leave *pMode set to zero.
6002 */
findCreateFileMode(const char * zPath,int flags,mode_t * pMode,uid_t * pUid,gid_t * pGid)6003 static int findCreateFileMode(
6004   const char *zPath,              /* Path of file (possibly) being created */
6005   int flags,                      /* Flags passed as 4th argument to xOpen() */
6006   mode_t *pMode,                  /* OUT: Permissions to open file with */
6007   uid_t *pUid,                    /* OUT: uid to set on the file */
6008   gid_t *pGid                     /* OUT: gid to set on the file */
6009 ){
6010   int rc = SQLITE_OK;             /* Return Code */
6011   *pMode = 0;
6012   *pUid = 0;
6013   *pGid = 0;
6014   if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
6015     char zDb[MAX_PATHNAME+1];     /* Database file path */
6016     int nDb;                      /* Number of valid bytes in zDb */
6017 
6018     /* zPath is a path to a WAL or journal file. The following block derives
6019     ** the path to the associated database file from zPath. This block handles
6020     ** the following naming conventions:
6021     **
6022     **   "<path to db>-journal"
6023     **   "<path to db>-wal"
6024     **   "<path to db>-journalNN"
6025     **   "<path to db>-walNN"
6026     **
6027     ** where NN is a decimal number. The NN naming schemes are
6028     ** used by the test_multiplex.c module.
6029     **
6030     ** In normal operation, the journal file name will always contain
6031     ** a '-' character.  However in 8+3 filename mode, or if a corrupt
6032     ** rollback journal specifies a super-journal with a goofy name, then
6033     ** the '-' might be missing or the '-' might be the first character in
6034     ** the filename.  In that case, just return SQLITE_OK with *pMode==0.
6035     */
6036     nDb = sqlite3Strlen30(zPath) - 1;
6037     while( nDb>0 && zPath[nDb]!='.' ){
6038       if( zPath[nDb]=='-' ){
6039         memcpy(zDb, zPath, nDb);
6040         zDb[nDb] = '\0';
6041         rc = getFileMode(zDb, pMode, pUid, pGid);
6042         break;
6043       }
6044       nDb--;
6045     }
6046   }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
6047     *pMode = 0600;
6048   }else if( flags & SQLITE_OPEN_URI ){
6049     /* If this is a main database file and the file was opened using a URI
6050     ** filename, check for the "modeof" parameter. If present, interpret
6051     ** its value as a filename and try to copy the mode, uid and gid from
6052     ** that file.  */
6053     const char *z = sqlite3_uri_parameter(zPath, "modeof");
6054     if( z ){
6055       rc = getFileMode(z, pMode, pUid, pGid);
6056     }
6057   }
6058   return rc;
6059 }
6060 
6061 /*
6062 ** Open the file zPath.
6063 **
6064 ** Previously, the SQLite OS layer used three functions in place of this
6065 ** one:
6066 **
6067 **     sqlite3OsOpenReadWrite();
6068 **     sqlite3OsOpenReadOnly();
6069 **     sqlite3OsOpenExclusive();
6070 **
6071 ** These calls correspond to the following combinations of flags:
6072 **
6073 **     ReadWrite() ->     (READWRITE | CREATE)
6074 **     ReadOnly()  ->     (READONLY)
6075 **     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
6076 **
6077 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
6078 ** true, the file was configured to be automatically deleted when the
6079 ** file handle closed. To achieve the same effect using this new
6080 ** interface, add the DELETEONCLOSE flag to those specified above for
6081 ** OpenExclusive().
6082 */
unixOpen(sqlite3_vfs * pVfs,const char * zPath,sqlite3_file * pFile,int flags,int * pOutFlags)6083 static int unixOpen(
6084   sqlite3_vfs *pVfs,           /* The VFS for which this is the xOpen method */
6085   const char *zPath,           /* Pathname of file to be opened */
6086   sqlite3_file *pFile,         /* The file descriptor to be filled in */
6087   int flags,                   /* Input flags to control the opening */
6088   int *pOutFlags               /* Output flags returned to SQLite core */
6089 ){
6090   unixFile *p = (unixFile *)pFile;
6091   int fd = -1;                   /* File descriptor returned by open() */
6092   int openFlags = 0;             /* Flags to pass to open() */
6093   int eType = flags&0x0FFF00;  /* Type of file to open */
6094   int noLock;                    /* True to omit locking primitives */
6095   int rc = SQLITE_OK;            /* Function Return Code */
6096   int ctrlFlags = 0;             /* UNIXFILE_* flags */
6097 
6098   int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
6099   int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
6100   int isCreate     = (flags & SQLITE_OPEN_CREATE);
6101   int isReadonly   = (flags & SQLITE_OPEN_READONLY);
6102   int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
6103 #if SQLITE_ENABLE_LOCKING_STYLE
6104   int isAutoProxy  = (flags & SQLITE_OPEN_AUTOPROXY);
6105 #endif
6106 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
6107   struct statfs fsInfo;
6108 #endif
6109 
6110   /* If creating a super- or main-file journal, this function will open
6111   ** a file-descriptor on the directory too. The first time unixSync()
6112   ** is called the directory file descriptor will be fsync()ed and close()d.
6113   */
6114   int isNewJrnl = (isCreate && (
6115         eType==SQLITE_OPEN_SUPER_JOURNAL
6116      || eType==SQLITE_OPEN_MAIN_JOURNAL
6117      || eType==SQLITE_OPEN_WAL
6118   ));
6119 
6120   /* If argument zPath is a NULL pointer, this function is required to open
6121   ** a temporary file. Use this buffer to store the file name in.
6122   */
6123   char zTmpname[MAX_PATHNAME+2];
6124   const char *zName = zPath;
6125 
6126   /* Check the following statements are true:
6127   **
6128   **   (a) Exactly one of the READWRITE and READONLY flags must be set, and
6129   **   (b) if CREATE is set, then READWRITE must also be set, and
6130   **   (c) if EXCLUSIVE is set, then CREATE must also be set.
6131   **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
6132   */
6133   assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
6134   assert(isCreate==0 || isReadWrite);
6135   assert(isExclusive==0 || isCreate);
6136   assert(isDelete==0 || isCreate);
6137 
6138   /* The main DB, main journal, WAL file and super-journal are never
6139   ** automatically deleted. Nor are they ever temporary files.  */
6140   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
6141   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
6142   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL );
6143   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
6144 
6145   /* Assert that the upper layer has set one of the "file-type" flags. */
6146   assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB
6147        || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
6148        || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_SUPER_JOURNAL
6149        || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
6150   );
6151 
6152   /* Detect a pid change and reset the PRNG.  There is a race condition
6153   ** here such that two or more threads all trying to open databases at
6154   ** the same instant might all reset the PRNG.  But multiple resets
6155   ** are harmless.
6156   */
6157   if( randomnessPid!=osGetpid(0) ){
6158     randomnessPid = osGetpid(0);
6159     sqlite3_randomness(0,0);
6160   }
6161   memset(p, 0, sizeof(unixFile));
6162 
6163 #ifdef SQLITE_ASSERT_NO_FILES
6164   /* Applications that never read or write a persistent disk files */
6165   assert( zName==0 );
6166 #endif
6167 
6168   if( eType==SQLITE_OPEN_MAIN_DB ){
6169     UnixUnusedFd *pUnused;
6170     pUnused = findReusableFd(zName, flags);
6171     if( pUnused ){
6172       fd = pUnused->fd;
6173     }else{
6174       pUnused = sqlite3_malloc64(sizeof(*pUnused));
6175       if( !pUnused ){
6176         return SQLITE_NOMEM_BKPT;
6177       }
6178     }
6179     p->pPreallocatedUnused = pUnused;
6180 
6181     /* Database filenames are double-zero terminated if they are not
6182     ** URIs with parameters.  Hence, they can always be passed into
6183     ** sqlite3_uri_parameter(). */
6184     assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );
6185 
6186   }else if( !zName ){
6187     /* If zName is NULL, the upper layer is requesting a temp file. */
6188     assert(isDelete && !isNewJrnl);
6189     rc = unixGetTempname(pVfs->mxPathname, zTmpname);
6190     if( rc!=SQLITE_OK ){
6191       return rc;
6192     }
6193     zName = zTmpname;
6194 
6195     /* Generated temporary filenames are always double-zero terminated
6196     ** for use by sqlite3_uri_parameter(). */
6197     assert( zName[strlen(zName)+1]==0 );
6198   }
6199 
6200   /* Determine the value of the flags parameter passed to POSIX function
6201   ** open(). These must be calculated even if open() is not called, as
6202   ** they may be stored as part of the file handle and used by the
6203   ** 'conch file' locking functions later on.  */
6204   if( isReadonly )  openFlags |= O_RDONLY;
6205   if( isReadWrite ) openFlags |= O_RDWR;
6206   if( isCreate )    openFlags |= O_CREAT;
6207   if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
6208   openFlags |= (O_LARGEFILE|O_BINARY|O_NOFOLLOW);
6209 
6210   if( fd<0 ){
6211     mode_t openMode;              /* Permissions to create file with */
6212     uid_t uid;                    /* Userid for the file */
6213     gid_t gid;                    /* Groupid for the file */
6214     rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid);
6215     if( rc!=SQLITE_OK ){
6216       assert( !p->pPreallocatedUnused );
6217       assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
6218       return rc;
6219     }
6220     fd = robust_open(zName, openFlags, openMode);
6221     OSTRACE(("OPENX   %-3d %s 0%o\n", fd, zName, openFlags));
6222     assert( !isExclusive || (openFlags & O_CREAT)!=0 );
6223     if( fd<0 ){
6224       if( isNewJrnl && errno==EACCES && osAccess(zName, F_OK) ){
6225         /* If unable to create a journal because the directory is not
6226         ** writable, change the error code to indicate that. */
6227         rc = SQLITE_READONLY_DIRECTORY;
6228       }else if( errno!=EISDIR && isReadWrite ){
6229         /* Failed to open the file for read/write access. Try read-only. */
6230         flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
6231         openFlags &= ~(O_RDWR|O_CREAT);
6232         flags |= SQLITE_OPEN_READONLY;
6233         openFlags |= O_RDONLY;
6234         isReadonly = 1;
6235         fd = robust_open(zName, openFlags, openMode);
6236       }
6237     }
6238     if( fd<0 ){
6239       int rc2 = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
6240       if( rc==SQLITE_OK ) rc = rc2;
6241       goto open_finished;
6242     }
6243 
6244     /* The owner of the rollback journal or WAL file should always be the
6245     ** same as the owner of the database file.  Try to ensure that this is
6246     ** the case.  The chown() system call will be a no-op if the current
6247     ** process lacks root privileges, be we should at least try.  Without
6248     ** this step, if a root process opens a database file, it can leave
6249     ** behinds a journal/WAL that is owned by root and hence make the
6250     ** database inaccessible to unprivileged processes.
6251     **
6252     ** If openMode==0, then that means uid and gid are not set correctly
6253     ** (probably because SQLite is configured to use 8+3 filename mode) and
6254     ** in that case we do not want to attempt the chown().
6255     */
6256     if( openMode && (flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL))!=0 ){
6257       robustFchown(fd, uid, gid);
6258     }
6259   }
6260   assert( fd>=0 );
6261   if( pOutFlags ){
6262     *pOutFlags = flags;
6263   }
6264 
6265   if( p->pPreallocatedUnused ){
6266     p->pPreallocatedUnused->fd = fd;
6267     p->pPreallocatedUnused->flags =
6268                           flags & (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE);
6269   }
6270 
6271   if( isDelete ){
6272 #if OS_VXWORKS
6273     zPath = zName;
6274 #elif defined(SQLITE_UNLINK_AFTER_CLOSE)
6275     zPath = sqlite3_mprintf("%s", zName);
6276     if( zPath==0 ){
6277       robust_close(p, fd, __LINE__);
6278       return SQLITE_NOMEM_BKPT;
6279     }
6280 #else
6281     osUnlink(zName);
6282 #endif
6283   }
6284 #if SQLITE_ENABLE_LOCKING_STYLE
6285   else{
6286     p->openFlags = openFlags;
6287   }
6288 #endif
6289 
6290 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
6291   if( fstatfs(fd, &fsInfo) == -1 ){
6292     storeLastErrno(p, errno);
6293     robust_close(p, fd, __LINE__);
6294     return SQLITE_IOERR_ACCESS;
6295   }
6296   if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
6297     ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
6298   }
6299   if (0 == strncmp("exfat", fsInfo.f_fstypename, 5)) {
6300     ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
6301   }
6302 #endif
6303 
6304   /* Set up appropriate ctrlFlags */
6305   if( isDelete )                ctrlFlags |= UNIXFILE_DELETE;
6306   if( isReadonly )              ctrlFlags |= UNIXFILE_RDONLY;
6307   noLock = eType!=SQLITE_OPEN_MAIN_DB;
6308   if( noLock )                  ctrlFlags |= UNIXFILE_NOLOCK;
6309   if( isNewJrnl )               ctrlFlags |= UNIXFILE_DIRSYNC;
6310   if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI;
6311 
6312 #if SQLITE_ENABLE_LOCKING_STYLE
6313 #if SQLITE_PREFER_PROXY_LOCKING
6314   isAutoProxy = 1;
6315 #endif
6316   if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
6317     char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
6318     int useProxy = 0;
6319 
6320     /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
6321     ** never use proxy, NULL means use proxy for non-local files only.  */
6322     if( envforce!=NULL ){
6323       useProxy = atoi(envforce)>0;
6324     }else{
6325       useProxy = !(fsInfo.f_flags&MNT_LOCAL);
6326     }
6327     if( useProxy ){
6328       rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
6329       if( rc==SQLITE_OK ){
6330         rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
6331         if( rc!=SQLITE_OK ){
6332           /* Use unixClose to clean up the resources added in fillInUnixFile
6333           ** and clear all the structure's references.  Specifically,
6334           ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
6335           */
6336           unixClose(pFile);
6337           return rc;
6338         }
6339       }
6340       goto open_finished;
6341     }
6342   }
6343 #endif
6344 
6345   assert( zPath==0 || zPath[0]=='/'
6346       || eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL
6347   );
6348   rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
6349 
6350 open_finished:
6351   if( rc!=SQLITE_OK ){
6352     sqlite3_free(p->pPreallocatedUnused);
6353   }
6354   return rc;
6355 }
6356 
6357 
6358 /*
6359 ** Delete the file at zPath. If the dirSync argument is true, fsync()
6360 ** the directory after deleting the file.
6361 */
unixDelete(sqlite3_vfs * NotUsed,const char * zPath,int dirSync)6362 static int unixDelete(
6363   sqlite3_vfs *NotUsed,     /* VFS containing this as the xDelete method */
6364   const char *zPath,        /* Name of file to be deleted */
6365   int dirSync               /* If true, fsync() directory after deleting file */
6366 ){
6367   int rc = SQLITE_OK;
6368   UNUSED_PARAMETER(NotUsed);
6369   SimulateIOError(return SQLITE_IOERR_DELETE);
6370   if( osUnlink(zPath)==(-1) ){
6371     if( errno==ENOENT
6372 #if OS_VXWORKS
6373         || osAccess(zPath,0)!=0
6374 #endif
6375     ){
6376       rc = SQLITE_IOERR_DELETE_NOENT;
6377     }else{
6378       rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
6379     }
6380     return rc;
6381   }
6382 #ifndef SQLITE_DISABLE_DIRSYNC
6383   if( (dirSync & 1)!=0 ){
6384     int fd;
6385     rc = osOpenDirectory(zPath, &fd);
6386     if( rc==SQLITE_OK ){
6387       if( full_fsync(fd,0,0) ){
6388         rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
6389       }
6390       robust_close(0, fd, __LINE__);
6391     }else{
6392       assert( rc==SQLITE_CANTOPEN );
6393       rc = SQLITE_OK;
6394     }
6395   }
6396 #endif
6397   return rc;
6398 }
6399 
6400 /*
6401 ** Test the existence of or access permissions of file zPath. The
6402 ** test performed depends on the value of flags:
6403 **
6404 **     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
6405 **     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
6406 **     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
6407 **
6408 ** Otherwise return 0.
6409 */
unixAccess(sqlite3_vfs * NotUsed,const char * zPath,int flags,int * pResOut)6410 static int unixAccess(
6411   sqlite3_vfs *NotUsed,   /* The VFS containing this xAccess method */
6412   const char *zPath,      /* Path of the file to examine */
6413   int flags,              /* What do we want to learn about the zPath file? */
6414   int *pResOut            /* Write result boolean here */
6415 ){
6416   UNUSED_PARAMETER(NotUsed);
6417   SimulateIOError( return SQLITE_IOERR_ACCESS; );
6418   assert( pResOut!=0 );
6419 
6420   /* The spec says there are three possible values for flags.  But only
6421   ** two of them are actually used */
6422   assert( flags==SQLITE_ACCESS_EXISTS || flags==SQLITE_ACCESS_READWRITE );
6423 
6424   if( flags==SQLITE_ACCESS_EXISTS ){
6425     struct stat buf;
6426     *pResOut = 0==osStat(zPath, &buf) &&
6427                 (!S_ISREG(buf.st_mode) || buf.st_size>0);
6428   }else{
6429     *pResOut = osAccess(zPath, W_OK|R_OK)==0;
6430   }
6431   return SQLITE_OK;
6432 }
6433 
6434 /*
6435 ** A pathname under construction
6436 */
6437 typedef struct DbPath DbPath;
6438 struct DbPath {
6439   int rc;           /* Non-zero following any error */
6440   int nSymlink;     /* Number of symlinks resolved */
6441   char *zOut;       /* Write the pathname here */
6442   int nOut;         /* Bytes of space available to zOut[] */
6443   int nUsed;        /* Bytes of zOut[] currently being used */
6444 };
6445 
6446 /* Forward reference */
6447 static void appendAllPathElements(DbPath*,const char*);
6448 
6449 /*
6450 ** Append a single path element to the DbPath under construction
6451 */
appendOnePathElement(DbPath * pPath,const char * zName,int nName)6452 static void appendOnePathElement(
6453   DbPath *pPath,       /* Path under construction, to which to append zName */
6454   const char *zName,   /* Name to append to pPath.  Not zero-terminated */
6455   int nName            /* Number of significant bytes in zName */
6456 ){
6457   assert( nName>0 );
6458   assert( zName!=0 );
6459   if( zName[0]=='.' ){
6460     if( nName==1 ) return;
6461     if( zName[1]=='.' && nName==2 ){
6462       if( pPath->nUsed<=1 ){
6463         pPath->rc = SQLITE_ERROR;
6464         return;
6465       }
6466       assert( pPath->zOut[0]=='/' );
6467       while( pPath->zOut[--pPath->nUsed]!='/' ){}
6468       return;
6469     }
6470   }
6471   if( pPath->nUsed + nName + 2 >= pPath->nOut ){
6472     pPath->rc = SQLITE_ERROR;
6473     return;
6474   }
6475   pPath->zOut[pPath->nUsed++] = '/';
6476   memcpy(&pPath->zOut[pPath->nUsed], zName, nName);
6477   pPath->nUsed += nName;
6478 #if defined(HAVE_READLINK) && defined(HAVE_LSTAT)
6479   if( pPath->rc==SQLITE_OK ){
6480     const char *zIn;
6481     struct stat buf;
6482     pPath->zOut[pPath->nUsed] = 0;
6483     zIn = pPath->zOut;
6484     if( osLstat(zIn, &buf)!=0 ){
6485       if( errno!=ENOENT ){
6486         pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "lstat", zIn);
6487       }
6488     }else if( S_ISLNK(buf.st_mode) ){
6489       ssize_t got;
6490       char zLnk[SQLITE_MAX_PATHLEN+2];
6491       if( pPath->nSymlink++ > SQLITE_MAX_SYMLINK ){
6492         pPath->rc = SQLITE_CANTOPEN_BKPT;
6493         return;
6494       }
6495       got = osReadlink(zIn, zLnk, sizeof(zLnk)-2);
6496       if( got<=0 || got>=(ssize_t)sizeof(zLnk)-2 ){
6497         pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zIn);
6498         return;
6499       }
6500       zLnk[got] = 0;
6501       if( zLnk[0]=='/' ){
6502         pPath->nUsed = 0;
6503       }else{
6504         pPath->nUsed -= nName + 1;
6505       }
6506       appendAllPathElements(pPath, zLnk);
6507     }
6508   }
6509 #endif
6510 }
6511 
6512 /*
6513 ** Append all path elements in zPath to the DbPath under construction.
6514 */
appendAllPathElements(DbPath * pPath,const char * zPath)6515 static void appendAllPathElements(
6516   DbPath *pPath,       /* Path under construction, to which to append zName */
6517   const char *zPath    /* Path to append to pPath.  Is zero-terminated */
6518 ){
6519   int i = 0;
6520   int j = 0;
6521   do{
6522     while( zPath[i] && zPath[i]!='/' ){ i++; }
6523     if( i>j ){
6524       appendOnePathElement(pPath, &zPath[j], i-j);
6525     }
6526     j = i+1;
6527   }while( zPath[i++] );
6528 }
6529 
6530 /*
6531 ** Turn a relative pathname into a full pathname. The relative path
6532 ** is stored as a nul-terminated string in the buffer pointed to by
6533 ** zPath.
6534 **
6535 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
6536 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
6537 ** this buffer before returning.
6538 */
unixFullPathname(sqlite3_vfs * pVfs,const char * zPath,int nOut,char * zOut)6539 static int unixFullPathname(
6540   sqlite3_vfs *pVfs,            /* Pointer to vfs object */
6541   const char *zPath,            /* Possibly relative input path */
6542   int nOut,                     /* Size of output buffer in bytes */
6543   char *zOut                    /* Output buffer */
6544 ){
6545   DbPath path;
6546   UNUSED_PARAMETER(pVfs);
6547   path.rc = 0;
6548   path.nUsed = 0;
6549   path.nSymlink = 0;
6550   path.nOut = nOut;
6551   path.zOut = zOut;
6552   if( zPath[0]!='/' ){
6553     char zPwd[SQLITE_MAX_PATHLEN+2];
6554     if( osGetcwd(zPwd, sizeof(zPwd)-2)==0 ){
6555       return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
6556     }
6557     appendAllPathElements(&path, zPwd);
6558   }
6559   appendAllPathElements(&path, zPath);
6560   zOut[path.nUsed] = 0;
6561   if( path.rc || path.nUsed<2 ) return SQLITE_CANTOPEN_BKPT;
6562   if( path.nSymlink ) return SQLITE_OK_SYMLINK;
6563   return SQLITE_OK;
6564 }
6565 
6566 #ifndef SQLITE_OMIT_LOAD_EXTENSION
6567 /*
6568 ** Interfaces for opening a shared library, finding entry points
6569 ** within the shared library, and closing the shared library.
6570 */
6571 #include <dlfcn.h>
unixDlOpen(sqlite3_vfs * NotUsed,const char * zFilename)6572 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
6573   UNUSED_PARAMETER(NotUsed);
6574   return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
6575 }
6576 
6577 /*
6578 ** SQLite calls this function immediately after a call to unixDlSym() or
6579 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
6580 ** message is available, it is written to zBufOut. If no error message
6581 ** is available, zBufOut is left unmodified and SQLite uses a default
6582 ** error message.
6583 */
unixDlError(sqlite3_vfs * NotUsed,int nBuf,char * zBufOut)6584 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
6585   const char *zErr;
6586   UNUSED_PARAMETER(NotUsed);
6587   unixEnterMutex();
6588   zErr = dlerror();
6589   if( zErr ){
6590     sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
6591   }
6592   unixLeaveMutex();
6593 }
unixDlSym(sqlite3_vfs * NotUsed,void * p,const char * zSym)6594 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
6595   /*
6596   ** GCC with -pedantic-errors says that C90 does not allow a void* to be
6597   ** cast into a pointer to a function.  And yet the library dlsym() routine
6598   ** returns a void* which is really a pointer to a function.  So how do we
6599   ** use dlsym() with -pedantic-errors?
6600   **
6601   ** Variable x below is defined to be a pointer to a function taking
6602   ** parameters void* and const char* and returning a pointer to a function.
6603   ** We initialize x by assigning it a pointer to the dlsym() function.
6604   ** (That assignment requires a cast.)  Then we call the function that
6605   ** x points to.
6606   **
6607   ** This work-around is unlikely to work correctly on any system where
6608   ** you really cannot cast a function pointer into void*.  But then, on the
6609   ** other hand, dlsym() will not work on such a system either, so we have
6610   ** not really lost anything.
6611   */
6612   void (*(*x)(void*,const char*))(void);
6613   UNUSED_PARAMETER(NotUsed);
6614   x = (void(*(*)(void*,const char*))(void))dlsym;
6615   return (*x)(p, zSym);
6616 }
unixDlClose(sqlite3_vfs * NotUsed,void * pHandle)6617 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
6618   UNUSED_PARAMETER(NotUsed);
6619   dlclose(pHandle);
6620 }
6621 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
6622   #define unixDlOpen  0
6623   #define unixDlError 0
6624   #define unixDlSym   0
6625   #define unixDlClose 0
6626 #endif
6627 
6628 /*
6629 ** Write nBuf bytes of random data to the supplied buffer zBuf.
6630 */
unixRandomness(sqlite3_vfs * NotUsed,int nBuf,char * zBuf)6631 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
6632   UNUSED_PARAMETER(NotUsed);
6633   assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
6634 
6635   /* We have to initialize zBuf to prevent valgrind from reporting
6636   ** errors.  The reports issued by valgrind are incorrect - we would
6637   ** prefer that the randomness be increased by making use of the
6638   ** uninitialized space in zBuf - but valgrind errors tend to worry
6639   ** some users.  Rather than argue, it seems easier just to initialize
6640   ** the whole array and silence valgrind, even if that means less randomness
6641   ** in the random seed.
6642   **
6643   ** When testing, initializing zBuf[] to zero is all we do.  That means
6644   ** that we always use the same random number sequence.  This makes the
6645   ** tests repeatable.
6646   */
6647   memset(zBuf, 0, nBuf);
6648   randomnessPid = osGetpid(0);
6649 #if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS)
6650   {
6651     int fd, got;
6652     fd = robust_open("/dev/urandom", O_RDONLY, 0);
6653     if( fd<0 ){
6654       time_t t;
6655       time(&t);
6656       memcpy(zBuf, &t, sizeof(t));
6657       memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid));
6658       assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf );
6659       nBuf = sizeof(t) + sizeof(randomnessPid);
6660     }else{
6661       do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR );
6662       robust_close(0, fd, __LINE__);
6663     }
6664   }
6665 #endif
6666   return nBuf;
6667 }
6668 
6669 
6670 /*
6671 ** Sleep for a little while.  Return the amount of time slept.
6672 ** The argument is the number of microseconds we want to sleep.
6673 ** The return value is the number of microseconds of sleep actually
6674 ** requested from the underlying operating system, a number which
6675 ** might be greater than or equal to the argument, but not less
6676 ** than the argument.
6677 */
unixSleep(sqlite3_vfs * NotUsed,int microseconds)6678 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
6679 #if OS_VXWORKS
6680   struct timespec sp;
6681 
6682   sp.tv_sec = microseconds / 1000000;
6683   sp.tv_nsec = (microseconds % 1000000) * 1000;
6684   nanosleep(&sp, NULL);
6685   UNUSED_PARAMETER(NotUsed);
6686   return microseconds;
6687 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
6688   if( microseconds>=1000000 ) sleep(microseconds/1000000);
6689   if( microseconds%1000000 ) usleep(microseconds%1000000);
6690   UNUSED_PARAMETER(NotUsed);
6691   return microseconds;
6692 #else
6693   int seconds = (microseconds+999999)/1000000;
6694   sleep(seconds);
6695   UNUSED_PARAMETER(NotUsed);
6696   return seconds*1000000;
6697 #endif
6698 }
6699 
6700 /*
6701 ** The following variable, if set to a non-zero value, is interpreted as
6702 ** the number of seconds since 1970 and is used to set the result of
6703 ** sqlite3OsCurrentTime() during testing.
6704 */
6705 #ifdef SQLITE_TEST
6706 int sqlite3_current_time = 0;  /* Fake system time in seconds since 1970. */
6707 #endif
6708 
6709 /*
6710 ** Find the current time (in Universal Coordinated Time).  Write into *piNow
6711 ** the current time and date as a Julian Day number times 86_400_000.  In
6712 ** other words, write into *piNow the number of milliseconds since the Julian
6713 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
6714 ** proleptic Gregorian calendar.
6715 **
6716 ** On success, return SQLITE_OK.  Return SQLITE_ERROR if the time and date
6717 ** cannot be found.
6718 */
unixCurrentTimeInt64(sqlite3_vfs * NotUsed,sqlite3_int64 * piNow)6719 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
6720   static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
6721   int rc = SQLITE_OK;
6722 #if defined(NO_GETTOD)
6723   time_t t;
6724   time(&t);
6725   *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
6726 #elif OS_VXWORKS
6727   struct timespec sNow;
6728   clock_gettime(CLOCK_REALTIME, &sNow);
6729   *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
6730 #else
6731   struct timeval sNow;
6732   (void)gettimeofday(&sNow, 0);  /* Cannot fail given valid arguments */
6733   *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
6734 #endif
6735 
6736 #ifdef SQLITE_TEST
6737   if( sqlite3_current_time ){
6738     *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
6739   }
6740 #endif
6741   UNUSED_PARAMETER(NotUsed);
6742   return rc;
6743 }
6744 
6745 #ifndef SQLITE_OMIT_DEPRECATED
6746 /*
6747 ** Find the current time (in Universal Coordinated Time).  Write the
6748 ** current time and date as a Julian Day number into *prNow and
6749 ** return 0.  Return 1 if the time and date cannot be found.
6750 */
unixCurrentTime(sqlite3_vfs * NotUsed,double * prNow)6751 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
6752   sqlite3_int64 i = 0;
6753   int rc;
6754   UNUSED_PARAMETER(NotUsed);
6755   rc = unixCurrentTimeInt64(0, &i);
6756   *prNow = i/86400000.0;
6757   return rc;
6758 }
6759 #else
6760 # define unixCurrentTime 0
6761 #endif
6762 
6763 /*
6764 ** The xGetLastError() method is designed to return a better
6765 ** low-level error message when operating-system problems come up
6766 ** during SQLite operation.  Only the integer return code is currently
6767 ** used.
6768 */
unixGetLastError(sqlite3_vfs * NotUsed,int NotUsed2,char * NotUsed3)6769 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
6770   UNUSED_PARAMETER(NotUsed);
6771   UNUSED_PARAMETER(NotUsed2);
6772   UNUSED_PARAMETER(NotUsed3);
6773   return errno;
6774 }
6775 
6776 
6777 /*
6778 ************************ End of sqlite3_vfs methods ***************************
6779 ******************************************************************************/
6780 
6781 /******************************************************************************
6782 ************************** Begin Proxy Locking ********************************
6783 **
6784 ** Proxy locking is a "uber-locking-method" in this sense:  It uses the
6785 ** other locking methods on secondary lock files.  Proxy locking is a
6786 ** meta-layer over top of the primitive locking implemented above.  For
6787 ** this reason, the division that implements of proxy locking is deferred
6788 ** until late in the file (here) after all of the other I/O methods have
6789 ** been defined - so that the primitive locking methods are available
6790 ** as services to help with the implementation of proxy locking.
6791 **
6792 ****
6793 **
6794 ** The default locking schemes in SQLite use byte-range locks on the
6795 ** database file to coordinate safe, concurrent access by multiple readers
6796 ** and writers [http://sqlite.org/lockingv3.html].  The five file locking
6797 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
6798 ** as POSIX read & write locks over fixed set of locations (via fsctl),
6799 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
6800 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
6801 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
6802 ** address in the shared range is taken for a SHARED lock, the entire
6803 ** shared range is taken for an EXCLUSIVE lock):
6804 **
6805 **      PENDING_BYTE        0x40000000
6806 **      RESERVED_BYTE       0x40000001
6807 **      SHARED_RANGE        0x40000002 -> 0x40000200
6808 **
6809 ** This works well on the local file system, but shows a nearly 100x
6810 ** slowdown in read performance on AFP because the AFP client disables
6811 ** the read cache when byte-range locks are present.  Enabling the read
6812 ** cache exposes a cache coherency problem that is present on all OS X
6813 ** supported network file systems.  NFS and AFP both observe the
6814 ** close-to-open semantics for ensuring cache coherency
6815 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
6816 ** address the requirements for concurrent database access by multiple
6817 ** readers and writers
6818 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
6819 **
6820 ** To address the performance and cache coherency issues, proxy file locking
6821 ** changes the way database access is controlled by limiting access to a
6822 ** single host at a time and moving file locks off of the database file
6823 ** and onto a proxy file on the local file system.
6824 **
6825 **
6826 ** Using proxy locks
6827 ** -----------------
6828 **
6829 ** C APIs
6830 **
6831 **  sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE,
6832 **                       <proxy_path> | ":auto:");
6833 **  sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE,
6834 **                       &<proxy_path>);
6835 **
6836 **
6837 ** SQL pragmas
6838 **
6839 **  PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
6840 **  PRAGMA [database.]lock_proxy_file
6841 **
6842 ** Specifying ":auto:" means that if there is a conch file with a matching
6843 ** host ID in it, the proxy path in the conch file will be used, otherwise
6844 ** a proxy path based on the user's temp dir
6845 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
6846 ** actual proxy file name is generated from the name and path of the
6847 ** database file.  For example:
6848 **
6849 **       For database path "/Users/me/foo.db"
6850 **       The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
6851 **
6852 ** Once a lock proxy is configured for a database connection, it can not
6853 ** be removed, however it may be switched to a different proxy path via
6854 ** the above APIs (assuming the conch file is not being held by another
6855 ** connection or process).
6856 **
6857 **
6858 ** How proxy locking works
6859 ** -----------------------
6860 **
6861 ** Proxy file locking relies primarily on two new supporting files:
6862 **
6863 **   *  conch file to limit access to the database file to a single host
6864 **      at a time
6865 **
6866 **   *  proxy file to act as a proxy for the advisory locks normally
6867 **      taken on the database
6868 **
6869 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
6870 ** by taking an sqlite-style shared lock on the conch file, reading the
6871 ** contents and comparing the host's unique host ID (see below) and lock
6872 ** proxy path against the values stored in the conch.  The conch file is
6873 ** stored in the same directory as the database file and the file name
6874 ** is patterned after the database file name as ".<databasename>-conch".
6875 ** If the conch file does not exist, or its contents do not match the
6876 ** host ID and/or proxy path, then the lock is escalated to an exclusive
6877 ** lock and the conch file contents is updated with the host ID and proxy
6878 ** path and the lock is downgraded to a shared lock again.  If the conch
6879 ** is held by another process (with a shared lock), the exclusive lock
6880 ** will fail and SQLITE_BUSY is returned.
6881 **
6882 ** The proxy file - a single-byte file used for all advisory file locks
6883 ** normally taken on the database file.   This allows for safe sharing
6884 ** of the database file for multiple readers and writers on the same
6885 ** host (the conch ensures that they all use the same local lock file).
6886 **
6887 ** Requesting the lock proxy does not immediately take the conch, it is
6888 ** only taken when the first request to lock database file is made.
6889 ** This matches the semantics of the traditional locking behavior, where
6890 ** opening a connection to a database file does not take a lock on it.
6891 ** The shared lock and an open file descriptor are maintained until
6892 ** the connection to the database is closed.
6893 **
6894 ** The proxy file and the lock file are never deleted so they only need
6895 ** to be created the first time they are used.
6896 **
6897 ** Configuration options
6898 ** ---------------------
6899 **
6900 **  SQLITE_PREFER_PROXY_LOCKING
6901 **
6902 **       Database files accessed on non-local file systems are
6903 **       automatically configured for proxy locking, lock files are
6904 **       named automatically using the same logic as
6905 **       PRAGMA lock_proxy_file=":auto:"
6906 **
6907 **  SQLITE_PROXY_DEBUG
6908 **
6909 **       Enables the logging of error messages during host id file
6910 **       retrieval and creation
6911 **
6912 **  LOCKPROXYDIR
6913 **
6914 **       Overrides the default directory used for lock proxy files that
6915 **       are named automatically via the ":auto:" setting
6916 **
6917 **  SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
6918 **
6919 **       Permissions to use when creating a directory for storing the
6920 **       lock proxy files, only used when LOCKPROXYDIR is not set.
6921 **
6922 **
6923 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
6924 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
6925 ** force proxy locking to be used for every database file opened, and 0
6926 ** will force automatic proxy locking to be disabled for all database
6927 ** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or
6928 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
6929 */
6930 
6931 /*
6932 ** Proxy locking is only available on MacOSX
6933 */
6934 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
6935 
6936 /*
6937 ** The proxyLockingContext has the path and file structures for the remote
6938 ** and local proxy files in it
6939 */
6940 typedef struct proxyLockingContext proxyLockingContext;
6941 struct proxyLockingContext {
6942   unixFile *conchFile;         /* Open conch file */
6943   char *conchFilePath;         /* Name of the conch file */
6944   unixFile *lockProxy;         /* Open proxy lock file */
6945   char *lockProxyPath;         /* Name of the proxy lock file */
6946   char *dbPath;                /* Name of the open file */
6947   int conchHeld;               /* 1 if the conch is held, -1 if lockless */
6948   int nFails;                  /* Number of conch taking failures */
6949   void *oldLockingContext;     /* Original lockingcontext to restore on close */
6950   sqlite3_io_methods const *pOldMethod;     /* Original I/O methods for close */
6951 };
6952 
6953 /*
6954 ** The proxy lock file path for the database at dbPath is written into lPath,
6955 ** which must point to valid, writable memory large enough for a maxLen length
6956 ** file path.
6957 */
proxyGetLockPath(const char * dbPath,char * lPath,size_t maxLen)6958 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
6959   int len;
6960   int dbLen;
6961   int i;
6962 
6963 #ifdef LOCKPROXYDIR
6964   len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
6965 #else
6966 # ifdef _CS_DARWIN_USER_TEMP_DIR
6967   {
6968     if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
6969       OSTRACE(("GETLOCKPATH  failed %s errno=%d pid=%d\n",
6970                lPath, errno, osGetpid(0)));
6971       return SQLITE_IOERR_LOCK;
6972     }
6973     len = strlcat(lPath, "sqliteplocks", maxLen);
6974   }
6975 # else
6976   len = strlcpy(lPath, "/tmp/", maxLen);
6977 # endif
6978 #endif
6979 
6980   if( lPath[len-1]!='/' ){
6981     len = strlcat(lPath, "/", maxLen);
6982   }
6983 
6984   /* transform the db path to a unique cache name */
6985   dbLen = (int)strlen(dbPath);
6986   for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
6987     char c = dbPath[i];
6988     lPath[i+len] = (c=='/')?'_':c;
6989   }
6990   lPath[i+len]='\0';
6991   strlcat(lPath, ":auto:", maxLen);
6992   OSTRACE(("GETLOCKPATH  proxy lock path=%s pid=%d\n", lPath, osGetpid(0)));
6993   return SQLITE_OK;
6994 }
6995 
6996 /*
6997  ** Creates the lock file and any missing directories in lockPath
6998  */
proxyCreateLockPath(const char * lockPath)6999 static int proxyCreateLockPath(const char *lockPath){
7000   int i, len;
7001   char buf[MAXPATHLEN];
7002   int start = 0;
7003 
7004   assert(lockPath!=NULL);
7005   /* try to create all the intermediate directories */
7006   len = (int)strlen(lockPath);
7007   buf[0] = lockPath[0];
7008   for( i=1; i<len; i++ ){
7009     if( lockPath[i] == '/' && (i - start > 0) ){
7010       /* only mkdir if leaf dir != "." or "/" or ".." */
7011       if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
7012          || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
7013         buf[i]='\0';
7014         if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
7015           int err=errno;
7016           if( err!=EEXIST ) {
7017             OSTRACE(("CREATELOCKPATH  FAILED creating %s, "
7018                      "'%s' proxy lock path=%s pid=%d\n",
7019                      buf, strerror(err), lockPath, osGetpid(0)));
7020             return err;
7021           }
7022         }
7023       }
7024       start=i+1;
7025     }
7026     buf[i] = lockPath[i];
7027   }
7028   OSTRACE(("CREATELOCKPATH  proxy lock path=%s pid=%d\n",lockPath,osGetpid(0)));
7029   return 0;
7030 }
7031 
7032 /*
7033 ** Create a new VFS file descriptor (stored in memory obtained from
7034 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
7035 **
7036 ** The caller is responsible not only for closing the file descriptor
7037 ** but also for freeing the memory associated with the file descriptor.
7038 */
proxyCreateUnixFile(const char * path,unixFile ** ppFile,int islockfile)7039 static int proxyCreateUnixFile(
7040     const char *path,        /* path for the new unixFile */
7041     unixFile **ppFile,       /* unixFile created and returned by ref */
7042     int islockfile           /* if non zero missing dirs will be created */
7043 ) {
7044   int fd = -1;
7045   unixFile *pNew;
7046   int rc = SQLITE_OK;
7047   int openFlags = O_RDWR | O_CREAT | O_NOFOLLOW;
7048   sqlite3_vfs dummyVfs;
7049   int terrno = 0;
7050   UnixUnusedFd *pUnused = NULL;
7051 
7052   /* 1. first try to open/create the file
7053   ** 2. if that fails, and this is a lock file (not-conch), try creating
7054   ** the parent directories and then try again.
7055   ** 3. if that fails, try to open the file read-only
7056   ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
7057   */
7058   pUnused = findReusableFd(path, openFlags);
7059   if( pUnused ){
7060     fd = pUnused->fd;
7061   }else{
7062     pUnused = sqlite3_malloc64(sizeof(*pUnused));
7063     if( !pUnused ){
7064       return SQLITE_NOMEM_BKPT;
7065     }
7066   }
7067   if( fd<0 ){
7068     fd = robust_open(path, openFlags, 0);
7069     terrno = errno;
7070     if( fd<0 && errno==ENOENT && islockfile ){
7071       if( proxyCreateLockPath(path) == SQLITE_OK ){
7072         fd = robust_open(path, openFlags, 0);
7073       }
7074     }
7075   }
7076   if( fd<0 ){
7077     openFlags = O_RDONLY | O_NOFOLLOW;
7078     fd = robust_open(path, openFlags, 0);
7079     terrno = errno;
7080   }
7081   if( fd<0 ){
7082     if( islockfile ){
7083       return SQLITE_BUSY;
7084     }
7085     switch (terrno) {
7086       case EACCES:
7087         return SQLITE_PERM;
7088       case EIO:
7089         return SQLITE_IOERR_LOCK; /* even though it is the conch */
7090       default:
7091         return SQLITE_CANTOPEN_BKPT;
7092     }
7093   }
7094 
7095   pNew = (unixFile *)sqlite3_malloc64(sizeof(*pNew));
7096   if( pNew==NULL ){
7097     rc = SQLITE_NOMEM_BKPT;
7098     goto end_create_proxy;
7099   }
7100   memset(pNew, 0, sizeof(unixFile));
7101   pNew->openFlags = openFlags;
7102   memset(&dummyVfs, 0, sizeof(dummyVfs));
7103   dummyVfs.pAppData = (void*)&autolockIoFinder;
7104   dummyVfs.zName = "dummy";
7105   pUnused->fd = fd;
7106   pUnused->flags = openFlags;
7107   pNew->pPreallocatedUnused = pUnused;
7108 
7109   rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0);
7110   if( rc==SQLITE_OK ){
7111     *ppFile = pNew;
7112     return SQLITE_OK;
7113   }
7114 end_create_proxy:
7115   robust_close(pNew, fd, __LINE__);
7116   sqlite3_free(pNew);
7117   sqlite3_free(pUnused);
7118   return rc;
7119 }
7120 
7121 #ifdef SQLITE_TEST
7122 /* simulate multiple hosts by creating unique hostid file paths */
7123 int sqlite3_hostid_num = 0;
7124 #endif
7125 
7126 #define PROXY_HOSTIDLEN    16  /* conch file host id length */
7127 
7128 #if HAVE_GETHOSTUUID
7129 /* Not always defined in the headers as it ought to be */
7130 extern int gethostuuid(uuid_t id, const struct timespec *wait);
7131 #endif
7132 
7133 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
7134 ** bytes of writable memory.
7135 */
proxyGetHostID(unsigned char * pHostID,int * pError)7136 static int proxyGetHostID(unsigned char *pHostID, int *pError){
7137   assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
7138   memset(pHostID, 0, PROXY_HOSTIDLEN);
7139 #if HAVE_GETHOSTUUID
7140   {
7141     struct timespec timeout = {1, 0}; /* 1 sec timeout */
7142     if( gethostuuid(pHostID, &timeout) ){
7143       int err = errno;
7144       if( pError ){
7145         *pError = err;
7146       }
7147       return SQLITE_IOERR;
7148     }
7149   }
7150 #else
7151   UNUSED_PARAMETER(pError);
7152 #endif
7153 #ifdef SQLITE_TEST
7154   /* simulate multiple hosts by creating unique hostid file paths */
7155   if( sqlite3_hostid_num != 0){
7156     pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
7157   }
7158 #endif
7159 
7160   return SQLITE_OK;
7161 }
7162 
7163 /* The conch file contains the header, host id and lock file path
7164  */
7165 #define PROXY_CONCHVERSION 2   /* 1-byte header, 16-byte host id, path */
7166 #define PROXY_HEADERLEN    1   /* conch file header length */
7167 #define PROXY_PATHINDEX    (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
7168 #define PROXY_MAXCONCHLEN  (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
7169 
7170 /*
7171 ** Takes an open conch file, copies the contents to a new path and then moves
7172 ** it back.  The newly created file's file descriptor is assigned to the
7173 ** conch file structure and finally the original conch file descriptor is
7174 ** closed.  Returns zero if successful.
7175 */
proxyBreakConchLock(unixFile * pFile,uuid_t myHostID)7176 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
7177   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7178   unixFile *conchFile = pCtx->conchFile;
7179   char tPath[MAXPATHLEN];
7180   char buf[PROXY_MAXCONCHLEN];
7181   char *cPath = pCtx->conchFilePath;
7182   size_t readLen = 0;
7183   size_t pathLen = 0;
7184   char errmsg[64] = "";
7185   int fd = -1;
7186   int rc = -1;
7187   UNUSED_PARAMETER(myHostID);
7188 
7189   /* create a new path by replace the trailing '-conch' with '-break' */
7190   pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
7191   if( pathLen>MAXPATHLEN || pathLen<6 ||
7192      (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
7193     sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
7194     goto end_breaklock;
7195   }
7196   /* read the conch content */
7197   readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
7198   if( readLen<PROXY_PATHINDEX ){
7199     sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
7200     goto end_breaklock;
7201   }
7202   /* write it out to the temporary break file */
7203   fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW), 0);
7204   if( fd<0 ){
7205     sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
7206     goto end_breaklock;
7207   }
7208   if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
7209     sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
7210     goto end_breaklock;
7211   }
7212   if( rename(tPath, cPath) ){
7213     sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
7214     goto end_breaklock;
7215   }
7216   rc = 0;
7217   fprintf(stderr, "broke stale lock on %s\n", cPath);
7218   robust_close(pFile, conchFile->h, __LINE__);
7219   conchFile->h = fd;
7220   conchFile->openFlags = O_RDWR | O_CREAT;
7221 
7222 end_breaklock:
7223   if( rc ){
7224     if( fd>=0 ){
7225       osUnlink(tPath);
7226       robust_close(pFile, fd, __LINE__);
7227     }
7228     fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
7229   }
7230   return rc;
7231 }
7232 
7233 /* Take the requested lock on the conch file and break a stale lock if the
7234 ** host id matches.
7235 */
proxyConchLock(unixFile * pFile,uuid_t myHostID,int lockType)7236 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
7237   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7238   unixFile *conchFile = pCtx->conchFile;
7239   int rc = SQLITE_OK;
7240   int nTries = 0;
7241   struct timespec conchModTime;
7242 
7243   memset(&conchModTime, 0, sizeof(conchModTime));
7244   do {
7245     rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
7246     nTries ++;
7247     if( rc==SQLITE_BUSY ){
7248       /* If the lock failed (busy):
7249        * 1st try: get the mod time of the conch, wait 0.5s and try again.
7250        * 2nd try: fail if the mod time changed or host id is different, wait
7251        *           10 sec and try again
7252        * 3rd try: break the lock unless the mod time has changed.
7253        */
7254       struct stat buf;
7255       if( osFstat(conchFile->h, &buf) ){
7256         storeLastErrno(pFile, errno);
7257         return SQLITE_IOERR_LOCK;
7258       }
7259 
7260       if( nTries==1 ){
7261         conchModTime = buf.st_mtimespec;
7262         unixSleep(0,500000); /* wait 0.5 sec and try the lock again*/
7263         continue;
7264       }
7265 
7266       assert( nTries>1 );
7267       if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
7268          conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
7269         return SQLITE_BUSY;
7270       }
7271 
7272       if( nTries==2 ){
7273         char tBuf[PROXY_MAXCONCHLEN];
7274         int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
7275         if( len<0 ){
7276           storeLastErrno(pFile, errno);
7277           return SQLITE_IOERR_LOCK;
7278         }
7279         if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
7280           /* don't break the lock if the host id doesn't match */
7281           if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
7282             return SQLITE_BUSY;
7283           }
7284         }else{
7285           /* don't break the lock on short read or a version mismatch */
7286           return SQLITE_BUSY;
7287         }
7288         unixSleep(0,10000000); /* wait 10 sec and try the lock again */
7289         continue;
7290       }
7291 
7292       assert( nTries==3 );
7293       if( 0==proxyBreakConchLock(pFile, myHostID) ){
7294         rc = SQLITE_OK;
7295         if( lockType==EXCLUSIVE_LOCK ){
7296           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
7297         }
7298         if( !rc ){
7299           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
7300         }
7301       }
7302     }
7303   } while( rc==SQLITE_BUSY && nTries<3 );
7304 
7305   return rc;
7306 }
7307 
7308 /* Takes the conch by taking a shared lock and read the contents conch, if
7309 ** lockPath is non-NULL, the host ID and lock file path must match.  A NULL
7310 ** lockPath means that the lockPath in the conch file will be used if the
7311 ** host IDs match, or a new lock path will be generated automatically
7312 ** and written to the conch file.
7313 */
proxyTakeConch(unixFile * pFile)7314 static int proxyTakeConch(unixFile *pFile){
7315   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7316 
7317   if( pCtx->conchHeld!=0 ){
7318     return SQLITE_OK;
7319   }else{
7320     unixFile *conchFile = pCtx->conchFile;
7321     uuid_t myHostID;
7322     int pError = 0;
7323     char readBuf[PROXY_MAXCONCHLEN];
7324     char lockPath[MAXPATHLEN];
7325     char *tempLockPath = NULL;
7326     int rc = SQLITE_OK;
7327     int createConch = 0;
7328     int hostIdMatch = 0;
7329     int readLen = 0;
7330     int tryOldLockPath = 0;
7331     int forceNewLockPath = 0;
7332 
7333     OSTRACE(("TAKECONCH  %d for %s pid=%d\n", conchFile->h,
7334              (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
7335              osGetpid(0)));
7336 
7337     rc = proxyGetHostID(myHostID, &pError);
7338     if( (rc&0xff)==SQLITE_IOERR ){
7339       storeLastErrno(pFile, pError);
7340       goto end_takeconch;
7341     }
7342     rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
7343     if( rc!=SQLITE_OK ){
7344       goto end_takeconch;
7345     }
7346     /* read the existing conch file */
7347     readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
7348     if( readLen<0 ){
7349       /* I/O error: lastErrno set by seekAndRead */
7350       storeLastErrno(pFile, conchFile->lastErrno);
7351       rc = SQLITE_IOERR_READ;
7352       goto end_takeconch;
7353     }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
7354              readBuf[0]!=(char)PROXY_CONCHVERSION ){
7355       /* a short read or version format mismatch means we need to create a new
7356       ** conch file.
7357       */
7358       createConch = 1;
7359     }
7360     /* if the host id matches and the lock path already exists in the conch
7361     ** we'll try to use the path there, if we can't open that path, we'll
7362     ** retry with a new auto-generated path
7363     */
7364     do { /* in case we need to try again for an :auto: named lock file */
7365 
7366       if( !createConch && !forceNewLockPath ){
7367         hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
7368                                   PROXY_HOSTIDLEN);
7369         /* if the conch has data compare the contents */
7370         if( !pCtx->lockProxyPath ){
7371           /* for auto-named local lock file, just check the host ID and we'll
7372            ** use the local lock file path that's already in there
7373            */
7374           if( hostIdMatch ){
7375             size_t pathLen = (readLen - PROXY_PATHINDEX);
7376 
7377             if( pathLen>=MAXPATHLEN ){
7378               pathLen=MAXPATHLEN-1;
7379             }
7380             memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
7381             lockPath[pathLen] = 0;
7382             tempLockPath = lockPath;
7383             tryOldLockPath = 1;
7384             /* create a copy of the lock path if the conch is taken */
7385             goto end_takeconch;
7386           }
7387         }else if( hostIdMatch
7388                && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
7389                            readLen-PROXY_PATHINDEX)
7390         ){
7391           /* conch host and lock path match */
7392           goto end_takeconch;
7393         }
7394       }
7395 
7396       /* if the conch isn't writable and doesn't match, we can't take it */
7397       if( (conchFile->openFlags&O_RDWR) == 0 ){
7398         rc = SQLITE_BUSY;
7399         goto end_takeconch;
7400       }
7401 
7402       /* either the conch didn't match or we need to create a new one */
7403       if( !pCtx->lockProxyPath ){
7404         proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
7405         tempLockPath = lockPath;
7406         /* create a copy of the lock path _only_ if the conch is taken */
7407       }
7408 
7409       /* update conch with host and path (this will fail if other process
7410       ** has a shared lock already), if the host id matches, use the big
7411       ** stick.
7412       */
7413       futimes(conchFile->h, NULL);
7414       if( hostIdMatch && !createConch ){
7415         if( conchFile->pInode && conchFile->pInode->nShared>1 ){
7416           /* We are trying for an exclusive lock but another thread in this
7417            ** same process is still holding a shared lock. */
7418           rc = SQLITE_BUSY;
7419         } else {
7420           rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
7421         }
7422       }else{
7423         rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
7424       }
7425       if( rc==SQLITE_OK ){
7426         char writeBuffer[PROXY_MAXCONCHLEN];
7427         int writeSize = 0;
7428 
7429         writeBuffer[0] = (char)PROXY_CONCHVERSION;
7430         memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
7431         if( pCtx->lockProxyPath!=NULL ){
7432           strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath,
7433                   MAXPATHLEN);
7434         }else{
7435           strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
7436         }
7437         writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
7438         robust_ftruncate(conchFile->h, writeSize);
7439         rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
7440         full_fsync(conchFile->h,0,0);
7441         /* If we created a new conch file (not just updated the contents of a
7442          ** valid conch file), try to match the permissions of the database
7443          */
7444         if( rc==SQLITE_OK && createConch ){
7445           struct stat buf;
7446           int err = osFstat(pFile->h, &buf);
7447           if( err==0 ){
7448             mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
7449                                         S_IROTH|S_IWOTH);
7450             /* try to match the database file R/W permissions, ignore failure */
7451 #ifndef SQLITE_PROXY_DEBUG
7452             osFchmod(conchFile->h, cmode);
7453 #else
7454             do{
7455               rc = osFchmod(conchFile->h, cmode);
7456             }while( rc==(-1) && errno==EINTR );
7457             if( rc!=0 ){
7458               int code = errno;
7459               fprintf(stderr, "fchmod %o FAILED with %d %s\n",
7460                       cmode, code, strerror(code));
7461             } else {
7462               fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
7463             }
7464           }else{
7465             int code = errno;
7466             fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
7467                     err, code, strerror(code));
7468 #endif
7469           }
7470         }
7471       }
7472       conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
7473 
7474     end_takeconch:
7475       OSTRACE(("TRANSPROXY: CLOSE  %d\n", pFile->h));
7476       if( rc==SQLITE_OK && pFile->openFlags ){
7477         int fd;
7478         if( pFile->h>=0 ){
7479           robust_close(pFile, pFile->h, __LINE__);
7480         }
7481         pFile->h = -1;
7482         fd = robust_open(pCtx->dbPath, pFile->openFlags, 0);
7483         OSTRACE(("TRANSPROXY: OPEN  %d\n", fd));
7484         if( fd>=0 ){
7485           pFile->h = fd;
7486         }else{
7487           rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
7488            during locking */
7489         }
7490       }
7491       if( rc==SQLITE_OK && !pCtx->lockProxy ){
7492         char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
7493         rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
7494         if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
7495           /* we couldn't create the proxy lock file with the old lock file path
7496            ** so try again via auto-naming
7497            */
7498           forceNewLockPath = 1;
7499           tryOldLockPath = 0;
7500           continue; /* go back to the do {} while start point, try again */
7501         }
7502       }
7503       if( rc==SQLITE_OK ){
7504         /* Need to make a copy of path if we extracted the value
7505          ** from the conch file or the path was allocated on the stack
7506          */
7507         if( tempLockPath ){
7508           pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
7509           if( !pCtx->lockProxyPath ){
7510             rc = SQLITE_NOMEM_BKPT;
7511           }
7512         }
7513       }
7514       if( rc==SQLITE_OK ){
7515         pCtx->conchHeld = 1;
7516 
7517         if( pCtx->lockProxy->pMethod == &afpIoMethods ){
7518           afpLockingContext *afpCtx;
7519           afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
7520           afpCtx->dbPath = pCtx->lockProxyPath;
7521         }
7522       } else {
7523         conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
7524       }
7525       OSTRACE(("TAKECONCH  %d %s\n", conchFile->h,
7526                rc==SQLITE_OK?"ok":"failed"));
7527       return rc;
7528     } while (1); /* in case we need to retry the :auto: lock file -
7529                  ** we should never get here except via the 'continue' call. */
7530   }
7531 }
7532 
7533 /*
7534 ** If pFile holds a lock on a conch file, then release that lock.
7535 */
proxyReleaseConch(unixFile * pFile)7536 static int proxyReleaseConch(unixFile *pFile){
7537   int rc = SQLITE_OK;         /* Subroutine return code */
7538   proxyLockingContext *pCtx;  /* The locking context for the proxy lock */
7539   unixFile *conchFile;        /* Name of the conch file */
7540 
7541   pCtx = (proxyLockingContext *)pFile->lockingContext;
7542   conchFile = pCtx->conchFile;
7543   OSTRACE(("RELEASECONCH  %d for %s pid=%d\n", conchFile->h,
7544            (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
7545            osGetpid(0)));
7546   if( pCtx->conchHeld>0 ){
7547     rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
7548   }
7549   pCtx->conchHeld = 0;
7550   OSTRACE(("RELEASECONCH  %d %s\n", conchFile->h,
7551            (rc==SQLITE_OK ? "ok" : "failed")));
7552   return rc;
7553 }
7554 
7555 /*
7556 ** Given the name of a database file, compute the name of its conch file.
7557 ** Store the conch filename in memory obtained from sqlite3_malloc64().
7558 ** Make *pConchPath point to the new name.  Return SQLITE_OK on success
7559 ** or SQLITE_NOMEM if unable to obtain memory.
7560 **
7561 ** The caller is responsible for ensuring that the allocated memory
7562 ** space is eventually freed.
7563 **
7564 ** *pConchPath is set to NULL if a memory allocation error occurs.
7565 */
proxyCreateConchPathname(char * dbPath,char ** pConchPath)7566 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
7567   int i;                        /* Loop counter */
7568   int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
7569   char *conchPath;              /* buffer in which to construct conch name */
7570 
7571   /* Allocate space for the conch filename and initialize the name to
7572   ** the name of the original database file. */
7573   *pConchPath = conchPath = (char *)sqlite3_malloc64(len + 8);
7574   if( conchPath==0 ){
7575     return SQLITE_NOMEM_BKPT;
7576   }
7577   memcpy(conchPath, dbPath, len+1);
7578 
7579   /* now insert a "." before the last / character */
7580   for( i=(len-1); i>=0; i-- ){
7581     if( conchPath[i]=='/' ){
7582       i++;
7583       break;
7584     }
7585   }
7586   conchPath[i]='.';
7587   while ( i<len ){
7588     conchPath[i+1]=dbPath[i];
7589     i++;
7590   }
7591 
7592   /* append the "-conch" suffix to the file */
7593   memcpy(&conchPath[i+1], "-conch", 7);
7594   assert( (int)strlen(conchPath) == len+7 );
7595 
7596   return SQLITE_OK;
7597 }
7598 
7599 
7600 /* Takes a fully configured proxy locking-style unix file and switches
7601 ** the local lock file path
7602 */
switchLockProxyPath(unixFile * pFile,const char * path)7603 static int switchLockProxyPath(unixFile *pFile, const char *path) {
7604   proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
7605   char *oldPath = pCtx->lockProxyPath;
7606   int rc = SQLITE_OK;
7607 
7608   if( pFile->eFileLock!=NO_LOCK ){
7609     return SQLITE_BUSY;
7610   }
7611 
7612   /* nothing to do if the path is NULL, :auto: or matches the existing path */
7613   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
7614     (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
7615     return SQLITE_OK;
7616   }else{
7617     unixFile *lockProxy = pCtx->lockProxy;
7618     pCtx->lockProxy=NULL;
7619     pCtx->conchHeld = 0;
7620     if( lockProxy!=NULL ){
7621       rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
7622       if( rc ) return rc;
7623       sqlite3_free(lockProxy);
7624     }
7625     sqlite3_free(oldPath);
7626     pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
7627   }
7628 
7629   return rc;
7630 }
7631 
7632 /*
7633 ** pFile is a file that has been opened by a prior xOpen call.  dbPath
7634 ** is a string buffer at least MAXPATHLEN+1 characters in size.
7635 **
7636 ** This routine find the filename associated with pFile and writes it
7637 ** int dbPath.
7638 */
proxyGetDbPathForUnixFile(unixFile * pFile,char * dbPath)7639 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
7640 #if defined(__APPLE__)
7641   if( pFile->pMethod == &afpIoMethods ){
7642     /* afp style keeps a reference to the db path in the filePath field
7643     ** of the struct */
7644     assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
7645     strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath,
7646             MAXPATHLEN);
7647   } else
7648 #endif
7649   if( pFile->pMethod == &dotlockIoMethods ){
7650     /* dot lock style uses the locking context to store the dot lock
7651     ** file path */
7652     int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
7653     memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
7654   }else{
7655     /* all other styles use the locking context to store the db file path */
7656     assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
7657     strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
7658   }
7659   return SQLITE_OK;
7660 }
7661 
7662 /*
7663 ** Takes an already filled in unix file and alters it so all file locking
7664 ** will be performed on the local proxy lock file.  The following fields
7665 ** are preserved in the locking context so that they can be restored and
7666 ** the unix structure properly cleaned up at close time:
7667 **  ->lockingContext
7668 **  ->pMethod
7669 */
proxyTransformUnixFile(unixFile * pFile,const char * path)7670 static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
7671   proxyLockingContext *pCtx;
7672   char dbPath[MAXPATHLEN+1];       /* Name of the database file */
7673   char *lockPath=NULL;
7674   int rc = SQLITE_OK;
7675 
7676   if( pFile->eFileLock!=NO_LOCK ){
7677     return SQLITE_BUSY;
7678   }
7679   proxyGetDbPathForUnixFile(pFile, dbPath);
7680   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
7681     lockPath=NULL;
7682   }else{
7683     lockPath=(char *)path;
7684   }
7685 
7686   OSTRACE(("TRANSPROXY  %d for %s pid=%d\n", pFile->h,
7687            (lockPath ? lockPath : ":auto:"), osGetpid(0)));
7688 
7689   pCtx = sqlite3_malloc64( sizeof(*pCtx) );
7690   if( pCtx==0 ){
7691     return SQLITE_NOMEM_BKPT;
7692   }
7693   memset(pCtx, 0, sizeof(*pCtx));
7694 
7695   rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
7696   if( rc==SQLITE_OK ){
7697     rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
7698     if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
7699       /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
7700       ** (c) the file system is read-only, then enable no-locking access.
7701       ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
7702       ** that openFlags will have only one of O_RDONLY or O_RDWR.
7703       */
7704       struct statfs fsInfo;
7705       struct stat conchInfo;
7706       int goLockless = 0;
7707 
7708       if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
7709         int err = errno;
7710         if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
7711           goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
7712         }
7713       }
7714       if( goLockless ){
7715         pCtx->conchHeld = -1; /* read only FS/ lockless */
7716         rc = SQLITE_OK;
7717       }
7718     }
7719   }
7720   if( rc==SQLITE_OK && lockPath ){
7721     pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
7722   }
7723 
7724   if( rc==SQLITE_OK ){
7725     pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
7726     if( pCtx->dbPath==NULL ){
7727       rc = SQLITE_NOMEM_BKPT;
7728     }
7729   }
7730   if( rc==SQLITE_OK ){
7731     /* all memory is allocated, proxys are created and assigned,
7732     ** switch the locking context and pMethod then return.
7733     */
7734     pCtx->oldLockingContext = pFile->lockingContext;
7735     pFile->lockingContext = pCtx;
7736     pCtx->pOldMethod = pFile->pMethod;
7737     pFile->pMethod = &proxyIoMethods;
7738   }else{
7739     if( pCtx->conchFile ){
7740       pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
7741       sqlite3_free(pCtx->conchFile);
7742     }
7743     sqlite3DbFree(0, pCtx->lockProxyPath);
7744     sqlite3_free(pCtx->conchFilePath);
7745     sqlite3_free(pCtx);
7746   }
7747   OSTRACE(("TRANSPROXY  %d %s\n", pFile->h,
7748            (rc==SQLITE_OK ? "ok" : "failed")));
7749   return rc;
7750 }
7751 
7752 
7753 /*
7754 ** This routine handles sqlite3_file_control() calls that are specific
7755 ** to proxy locking.
7756 */
proxyFileControl(sqlite3_file * id,int op,void * pArg)7757 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
7758   switch( op ){
7759     case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
7760       unixFile *pFile = (unixFile*)id;
7761       if( pFile->pMethod == &proxyIoMethods ){
7762         proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
7763         proxyTakeConch(pFile);
7764         if( pCtx->lockProxyPath ){
7765           *(const char **)pArg = pCtx->lockProxyPath;
7766         }else{
7767           *(const char **)pArg = ":auto: (not held)";
7768         }
7769       } else {
7770         *(const char **)pArg = NULL;
7771       }
7772       return SQLITE_OK;
7773     }
7774     case SQLITE_FCNTL_SET_LOCKPROXYFILE: {
7775       unixFile *pFile = (unixFile*)id;
7776       int rc = SQLITE_OK;
7777       int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
7778       if( pArg==NULL || (const char *)pArg==0 ){
7779         if( isProxyStyle ){
7780           /* turn off proxy locking - not supported.  If support is added for
7781           ** switching proxy locking mode off then it will need to fail if
7782           ** the journal mode is WAL mode.
7783           */
7784           rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
7785         }else{
7786           /* turn off proxy locking - already off - NOOP */
7787           rc = SQLITE_OK;
7788         }
7789       }else{
7790         const char *proxyPath = (const char *)pArg;
7791         if( isProxyStyle ){
7792           proxyLockingContext *pCtx =
7793             (proxyLockingContext*)pFile->lockingContext;
7794           if( !strcmp(pArg, ":auto:")
7795            || (pCtx->lockProxyPath &&
7796                !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
7797           ){
7798             rc = SQLITE_OK;
7799           }else{
7800             rc = switchLockProxyPath(pFile, proxyPath);
7801           }
7802         }else{
7803           /* turn on proxy file locking */
7804           rc = proxyTransformUnixFile(pFile, proxyPath);
7805         }
7806       }
7807       return rc;
7808     }
7809     default: {
7810       assert( 0 );  /* The call assures that only valid opcodes are sent */
7811     }
7812   }
7813   /*NOTREACHED*/ assert(0);
7814   return SQLITE_ERROR;
7815 }
7816 
7817 /*
7818 ** Within this division (the proxying locking implementation) the procedures
7819 ** above this point are all utilities.  The lock-related methods of the
7820 ** proxy-locking sqlite3_io_method object follow.
7821 */
7822 
7823 
7824 /*
7825 ** This routine checks if there is a RESERVED lock held on the specified
7826 ** file by this or any other process. If such a lock is held, set *pResOut
7827 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
7828 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
7829 */
proxyCheckReservedLock(sqlite3_file * id,int * pResOut)7830 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
7831   unixFile *pFile = (unixFile*)id;
7832   int rc = proxyTakeConch(pFile);
7833   if( rc==SQLITE_OK ){
7834     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7835     if( pCtx->conchHeld>0 ){
7836       unixFile *proxy = pCtx->lockProxy;
7837       return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
7838     }else{ /* conchHeld < 0 is lockless */
7839       pResOut=0;
7840     }
7841   }
7842   return rc;
7843 }
7844 
7845 /*
7846 ** Lock the file with the lock specified by parameter eFileLock - one
7847 ** of the following:
7848 **
7849 **     (1) SHARED_LOCK
7850 **     (2) RESERVED_LOCK
7851 **     (3) PENDING_LOCK
7852 **     (4) EXCLUSIVE_LOCK
7853 **
7854 ** Sometimes when requesting one lock state, additional lock states
7855 ** are inserted in between.  The locking might fail on one of the later
7856 ** transitions leaving the lock state different from what it started but
7857 ** still short of its goal.  The following chart shows the allowed
7858 ** transitions and the inserted intermediate states:
7859 **
7860 **    UNLOCKED -> SHARED
7861 **    SHARED -> RESERVED
7862 **    SHARED -> (PENDING) -> EXCLUSIVE
7863 **    RESERVED -> (PENDING) -> EXCLUSIVE
7864 **    PENDING -> EXCLUSIVE
7865 **
7866 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
7867 ** routine to lower a locking level.
7868 */
proxyLock(sqlite3_file * id,int eFileLock)7869 static int proxyLock(sqlite3_file *id, int eFileLock) {
7870   unixFile *pFile = (unixFile*)id;
7871   int rc = proxyTakeConch(pFile);
7872   if( rc==SQLITE_OK ){
7873     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7874     if( pCtx->conchHeld>0 ){
7875       unixFile *proxy = pCtx->lockProxy;
7876       rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
7877       pFile->eFileLock = proxy->eFileLock;
7878     }else{
7879       /* conchHeld < 0 is lockless */
7880     }
7881   }
7882   return rc;
7883 }
7884 
7885 
7886 /*
7887 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
7888 ** must be either NO_LOCK or SHARED_LOCK.
7889 **
7890 ** If the locking level of the file descriptor is already at or below
7891 ** the requested locking level, this routine is a no-op.
7892 */
proxyUnlock(sqlite3_file * id,int eFileLock)7893 static int proxyUnlock(sqlite3_file *id, int eFileLock) {
7894   unixFile *pFile = (unixFile*)id;
7895   int rc = proxyTakeConch(pFile);
7896   if( rc==SQLITE_OK ){
7897     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7898     if( pCtx->conchHeld>0 ){
7899       unixFile *proxy = pCtx->lockProxy;
7900       rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
7901       pFile->eFileLock = proxy->eFileLock;
7902     }else{
7903       /* conchHeld < 0 is lockless */
7904     }
7905   }
7906   return rc;
7907 }
7908 
7909 /*
7910 ** Close a file that uses proxy locks.
7911 */
proxyClose(sqlite3_file * id)7912 static int proxyClose(sqlite3_file *id) {
7913   if( ALWAYS(id) ){
7914     unixFile *pFile = (unixFile*)id;
7915     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7916     unixFile *lockProxy = pCtx->lockProxy;
7917     unixFile *conchFile = pCtx->conchFile;
7918     int rc = SQLITE_OK;
7919 
7920     if( lockProxy ){
7921       rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
7922       if( rc ) return rc;
7923       rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
7924       if( rc ) return rc;
7925       sqlite3_free(lockProxy);
7926       pCtx->lockProxy = 0;
7927     }
7928     if( conchFile ){
7929       if( pCtx->conchHeld ){
7930         rc = proxyReleaseConch(pFile);
7931         if( rc ) return rc;
7932       }
7933       rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
7934       if( rc ) return rc;
7935       sqlite3_free(conchFile);
7936     }
7937     sqlite3DbFree(0, pCtx->lockProxyPath);
7938     sqlite3_free(pCtx->conchFilePath);
7939     sqlite3DbFree(0, pCtx->dbPath);
7940     /* restore the original locking context and pMethod then close it */
7941     pFile->lockingContext = pCtx->oldLockingContext;
7942     pFile->pMethod = pCtx->pOldMethod;
7943     sqlite3_free(pCtx);
7944     return pFile->pMethod->xClose(id);
7945   }
7946   return SQLITE_OK;
7947 }
7948 
7949 
7950 
7951 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
7952 /*
7953 ** The proxy locking style is intended for use with AFP filesystems.
7954 ** And since AFP is only supported on MacOSX, the proxy locking is also
7955 ** restricted to MacOSX.
7956 **
7957 **
7958 ******************* End of the proxy lock implementation **********************
7959 ******************************************************************************/
7960 
7961 /*
7962 ** Initialize the operating system interface.
7963 **
7964 ** This routine registers all VFS implementations for unix-like operating
7965 ** systems.  This routine, and the sqlite3_os_end() routine that follows,
7966 ** should be the only routines in this file that are visible from other
7967 ** files.
7968 **
7969 ** This routine is called once during SQLite initialization and by a
7970 ** single thread.  The memory allocation and mutex subsystems have not
7971 ** necessarily been initialized when this routine is called, and so they
7972 ** should not be used.
7973 */
sqlite3_os_init(void)7974 int sqlite3_os_init(void){
7975   /*
7976   ** The following macro defines an initializer for an sqlite3_vfs object.
7977   ** The name of the VFS is NAME.  The pAppData is a pointer to a pointer
7978   ** to the "finder" function.  (pAppData is a pointer to a pointer because
7979   ** silly C90 rules prohibit a void* from being cast to a function pointer
7980   ** and so we have to go through the intermediate pointer to avoid problems
7981   ** when compiling with -pedantic-errors on GCC.)
7982   **
7983   ** The FINDER parameter to this macro is the name of the pointer to the
7984   ** finder-function.  The finder-function returns a pointer to the
7985   ** sqlite_io_methods object that implements the desired locking
7986   ** behaviors.  See the division above that contains the IOMETHODS
7987   ** macro for addition information on finder-functions.
7988   **
7989   ** Most finders simply return a pointer to a fixed sqlite3_io_methods
7990   ** object.  But the "autolockIoFinder" available on MacOSX does a little
7991   ** more than that; it looks at the filesystem type that hosts the
7992   ** database file and tries to choose an locking method appropriate for
7993   ** that filesystem time.
7994   */
7995   #define UNIXVFS(VFSNAME, FINDER) {                        \
7996     3,                    /* iVersion */                    \
7997     sizeof(unixFile),     /* szOsFile */                    \
7998     MAX_PATHNAME,         /* mxPathname */                  \
7999     0,                    /* pNext */                       \
8000     VFSNAME,              /* zName */                       \
8001     (void*)&FINDER,       /* pAppData */                    \
8002     unixOpen,             /* xOpen */                       \
8003     unixDelete,           /* xDelete */                     \
8004     unixAccess,           /* xAccess */                     \
8005     unixFullPathname,     /* xFullPathname */               \
8006     unixDlOpen,           /* xDlOpen */                     \
8007     unixDlError,          /* xDlError */                    \
8008     unixDlSym,            /* xDlSym */                      \
8009     unixDlClose,          /* xDlClose */                    \
8010     unixRandomness,       /* xRandomness */                 \
8011     unixSleep,            /* xSleep */                      \
8012     unixCurrentTime,      /* xCurrentTime */                \
8013     unixGetLastError,     /* xGetLastError */               \
8014     unixCurrentTimeInt64, /* xCurrentTimeInt64 */           \
8015     unixSetSystemCall,    /* xSetSystemCall */              \
8016     unixGetSystemCall,    /* xGetSystemCall */              \
8017     unixNextSystemCall,   /* xNextSystemCall */             \
8018   }
8019 
8020   /*
8021   ** All default VFSes for unix are contained in the following array.
8022   **
8023   ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
8024   ** by the SQLite core when the VFS is registered.  So the following
8025   ** array cannot be const.
8026   */
8027   static sqlite3_vfs aVfs[] = {
8028 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
8029     UNIXVFS("unix",          autolockIoFinder ),
8030 #elif OS_VXWORKS
8031     UNIXVFS("unix",          vxworksIoFinder ),
8032 #else
8033     UNIXVFS("unix",          posixIoFinder ),
8034 #endif
8035     UNIXVFS("unix-none",     nolockIoFinder ),
8036     UNIXVFS("unix-dotfile",  dotlockIoFinder ),
8037     UNIXVFS("unix-excl",     posixIoFinder ),
8038 #if OS_VXWORKS
8039     UNIXVFS("unix-namedsem", semIoFinder ),
8040 #endif
8041 #if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS
8042     UNIXVFS("unix-posix",    posixIoFinder ),
8043 #endif
8044 #if SQLITE_ENABLE_LOCKING_STYLE
8045     UNIXVFS("unix-flock",    flockIoFinder ),
8046 #endif
8047 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
8048     UNIXVFS("unix-afp",      afpIoFinder ),
8049     UNIXVFS("unix-nfs",      nfsIoFinder ),
8050     UNIXVFS("unix-proxy",    proxyIoFinder ),
8051 #endif
8052   };
8053   unsigned int i;          /* Loop counter */
8054 
8055   /* Double-check that the aSyscall[] array has been constructed
8056   ** correctly.  See ticket [bb3a86e890c8e96ab] */
8057   assert( ArraySize(aSyscall)==29 );
8058 
8059   /* Register all VFSes defined in the aVfs[] array */
8060   for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
8061 #ifdef SQLITE_DEFAULT_UNIX_VFS
8062     sqlite3_vfs_register(&aVfs[i],
8063            0==strcmp(aVfs[i].zName,SQLITE_DEFAULT_UNIX_VFS));
8064 #else
8065     sqlite3_vfs_register(&aVfs[i], i==0);
8066 #endif
8067   }
8068 #ifdef SQLITE_OS_KV_OPTIONAL
8069   sqlite3KvvfsInit();
8070 #endif
8071   unixBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
8072 
8073 #ifndef SQLITE_OMIT_WAL
8074   /* Validate lock assumptions */
8075   assert( SQLITE_SHM_NLOCK==8 );  /* Number of available locks */
8076   assert( UNIX_SHM_BASE==120  );  /* Start of locking area */
8077   /* Locks:
8078   **    WRITE       UNIX_SHM_BASE      120
8079   **    CKPT        UNIX_SHM_BASE+1    121
8080   **    RECOVER     UNIX_SHM_BASE+2    122
8081   **    READ-0      UNIX_SHM_BASE+3    123
8082   **    READ-1      UNIX_SHM_BASE+4    124
8083   **    READ-2      UNIX_SHM_BASE+5    125
8084   **    READ-3      UNIX_SHM_BASE+6    126
8085   **    READ-4      UNIX_SHM_BASE+7    127
8086   **    DMS         UNIX_SHM_BASE+8    128
8087   */
8088   assert( UNIX_SHM_DMS==128   );  /* Byte offset of the deadman-switch */
8089 #endif
8090 
8091   /* Initialize temp file dir array. */
8092   unixTempFileInit();
8093 
8094   return SQLITE_OK;
8095 }
8096 
8097 /*
8098 ** Shutdown the operating system interface.
8099 **
8100 ** Some operating systems might need to do some cleanup in this routine,
8101 ** to release dynamically allocated objects.  But not on unix.
8102 ** This routine is a no-op for unix.
8103 */
sqlite3_os_end(void)8104 int sqlite3_os_end(void){
8105   unixBigLock = 0;
8106   return SQLITE_OK;
8107 }
8108 
8109 #endif /* SQLITE_OS_UNIX */
8110