xref: /sqlite-3.40.0/src/os_unix.c (revision dfe4e6bb)
1 /*
2 ** 2004 May 22
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This file contains the VFS implementation for unix-like operating systems
14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
15 **
16 ** There are actually several different VFS implementations in this file.
17 ** The differences are in the way that file locking is done.  The default
18 ** implementation uses Posix Advisory Locks.  Alternative implementations
19 ** use flock(), dot-files, various proprietary locking schemas, or simply
20 ** skip locking all together.
21 **
22 ** This source file is organized into divisions where the logic for various
23 ** subfunctions is contained within the appropriate division.  PLEASE
24 ** KEEP THE STRUCTURE OF THIS FILE INTACT.  New code should be placed
25 ** in the correct division and should be clearly labeled.
26 **
27 ** The layout of divisions is as follows:
28 **
29 **   *  General-purpose declarations and utility functions.
30 **   *  Unique file ID logic used by VxWorks.
31 **   *  Various locking primitive implementations (all except proxy locking):
32 **      + for Posix Advisory Locks
33 **      + for no-op locks
34 **      + for dot-file locks
35 **      + for flock() locking
36 **      + for named semaphore locks (VxWorks only)
37 **      + for AFP filesystem locks (MacOSX only)
38 **   *  sqlite3_file methods not associated with locking.
39 **   *  Definitions of sqlite3_io_methods objects for all locking
40 **      methods plus "finder" functions for each locking method.
41 **   *  sqlite3_vfs method implementations.
42 **   *  Locking primitives for the proxy uber-locking-method. (MacOSX only)
43 **   *  Definitions of sqlite3_vfs objects for all locking methods
44 **      plus implementations of sqlite3_os_init() and sqlite3_os_end().
45 */
46 #include "sqliteInt.h"
47 #if SQLITE_OS_UNIX              /* This file is used on unix only */
48 
49 /*
50 ** There are various methods for file locking used for concurrency
51 ** control:
52 **
53 **   1. POSIX locking (the default),
54 **   2. No locking,
55 **   3. Dot-file locking,
56 **   4. flock() locking,
57 **   5. AFP locking (OSX only),
58 **   6. Named POSIX semaphores (VXWorks only),
59 **   7. proxy locking. (OSX only)
60 **
61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
62 ** is defined to 1.  The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
63 ** selection of the appropriate locking style based on the filesystem
64 ** where the database is located.
65 */
66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
67 #  if defined(__APPLE__)
68 #    define SQLITE_ENABLE_LOCKING_STYLE 1
69 #  else
70 #    define SQLITE_ENABLE_LOCKING_STYLE 0
71 #  endif
72 #endif
73 
74 /* Use pread() and pwrite() if they are available */
75 #if defined(__APPLE__)
76 # define HAVE_PREAD 1
77 # define HAVE_PWRITE 1
78 #endif
79 #if defined(HAVE_PREAD64) && defined(HAVE_PWRITE64)
80 # undef USE_PREAD
81 # define USE_PREAD64 1
82 #elif defined(HAVE_PREAD) && defined(HAVE_PWRITE)
83 # undef USE_PREAD64
84 # define USE_PREAD 1
85 #endif
86 
87 /*
88 ** standard include files.
89 */
90 #include <sys/types.h>
91 #include <sys/stat.h>
92 #include <fcntl.h>
93 #include <unistd.h>
94 #include <time.h>
95 #include <sys/time.h>
96 #include <errno.h>
97 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
98 # include <sys/mman.h>
99 #endif
100 
101 #if SQLITE_ENABLE_LOCKING_STYLE
102 # include <sys/ioctl.h>
103 # include <sys/file.h>
104 # include <sys/param.h>
105 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
106 
107 #if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \
108                            (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000))
109 #  if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \
110        && (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0))
111 #    define HAVE_GETHOSTUUID 1
112 #  else
113 #    warning "gethostuuid() is disabled."
114 #  endif
115 #endif
116 
117 
118 #if OS_VXWORKS
119 # include <sys/ioctl.h>
120 # include <semaphore.h>
121 # include <limits.h>
122 #endif /* OS_VXWORKS */
123 
124 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
125 # include <sys/mount.h>
126 #endif
127 
128 #ifdef HAVE_UTIME
129 # include <utime.h>
130 #endif
131 
132 /*
133 ** Allowed values of unixFile.fsFlags
134 */
135 #define SQLITE_FSFLAGS_IS_MSDOS     0x1
136 
137 /*
138 ** If we are to be thread-safe, include the pthreads header and define
139 ** the SQLITE_UNIX_THREADS macro.
140 */
141 #if SQLITE_THREADSAFE
142 # include <pthread.h>
143 # define SQLITE_UNIX_THREADS 1
144 #endif
145 
146 /*
147 ** Default permissions when creating a new file
148 */
149 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
150 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
151 #endif
152 
153 /*
154 ** Default permissions when creating auto proxy dir
155 */
156 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
157 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
158 #endif
159 
160 /*
161 ** Maximum supported path-length.
162 */
163 #define MAX_PATHNAME 512
164 
165 /*
166 ** Maximum supported symbolic links
167 */
168 #define SQLITE_MAX_SYMLINKS 100
169 
170 /* Always cast the getpid() return type for compatibility with
171 ** kernel modules in VxWorks. */
172 #define osGetpid(X) (pid_t)getpid()
173 
174 /*
175 ** Only set the lastErrno if the error code is a real error and not
176 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
177 */
178 #define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))
179 
180 /* Forward references */
181 typedef struct unixShm unixShm;               /* Connection shared memory */
182 typedef struct unixShmNode unixShmNode;       /* Shared memory instance */
183 typedef struct unixInodeInfo unixInodeInfo;   /* An i-node */
184 typedef struct UnixUnusedFd UnixUnusedFd;     /* An unused file descriptor */
185 
186 /*
187 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
188 ** cannot be closed immediately. In these cases, instances of the following
189 ** structure are used to store the file descriptor while waiting for an
190 ** opportunity to either close or reuse it.
191 */
192 struct UnixUnusedFd {
193   int fd;                   /* File descriptor to close */
194   int flags;                /* Flags this file descriptor was opened with */
195   UnixUnusedFd *pNext;      /* Next unused file descriptor on same file */
196 };
197 
198 /*
199 ** The unixFile structure is subclass of sqlite3_file specific to the unix
200 ** VFS implementations.
201 */
202 typedef struct unixFile unixFile;
203 struct unixFile {
204   sqlite3_io_methods const *pMethod;  /* Always the first entry */
205   sqlite3_vfs *pVfs;                  /* The VFS that created this unixFile */
206   unixInodeInfo *pInode;              /* Info about locks on this inode */
207   int h;                              /* The file descriptor */
208   unsigned char eFileLock;            /* The type of lock held on this fd */
209   unsigned short int ctrlFlags;       /* Behavioral bits.  UNIXFILE_* flags */
210   int lastErrno;                      /* The unix errno from last I/O error */
211   void *lockingContext;               /* Locking style specific state */
212   UnixUnusedFd *pUnused;              /* Pre-allocated UnixUnusedFd */
213   const char *zPath;                  /* Name of the file */
214   unixShm *pShm;                      /* Shared memory segment information */
215   int szChunk;                        /* Configured by FCNTL_CHUNK_SIZE */
216 #if SQLITE_MAX_MMAP_SIZE>0
217   int nFetchOut;                      /* Number of outstanding xFetch refs */
218   sqlite3_int64 mmapSize;             /* Usable size of mapping at pMapRegion */
219   sqlite3_int64 mmapSizeActual;       /* Actual size of mapping at pMapRegion */
220   sqlite3_int64 mmapSizeMax;          /* Configured FCNTL_MMAP_SIZE value */
221   void *pMapRegion;                   /* Memory mapped region */
222 #endif
223 #ifdef __QNXNTO__
224   int sectorSize;                     /* Device sector size */
225   int deviceCharacteristics;          /* Precomputed device characteristics */
226 #endif
227 #if SQLITE_ENABLE_LOCKING_STYLE
228   int openFlags;                      /* The flags specified at open() */
229 #endif
230 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
231   unsigned fsFlags;                   /* cached details from statfs() */
232 #endif
233 #if OS_VXWORKS
234   struct vxworksFileId *pId;          /* Unique file ID */
235 #endif
236 #ifdef SQLITE_DEBUG
237   /* The next group of variables are used to track whether or not the
238   ** transaction counter in bytes 24-27 of database files are updated
239   ** whenever any part of the database changes.  An assertion fault will
240   ** occur if a file is updated without also updating the transaction
241   ** counter.  This test is made to avoid new problems similar to the
242   ** one described by ticket #3584.
243   */
244   unsigned char transCntrChng;   /* True if the transaction counter changed */
245   unsigned char dbUpdate;        /* True if any part of database file changed */
246   unsigned char inNormalWrite;   /* True if in a normal write operation */
247 
248 #endif
249 
250 #ifdef SQLITE_TEST
251   /* In test mode, increase the size of this structure a bit so that
252   ** it is larger than the struct CrashFile defined in test6.c.
253   */
254   char aPadding[32];
255 #endif
256 };
257 
258 /* This variable holds the process id (pid) from when the xRandomness()
259 ** method was called.  If xOpen() is called from a different process id,
260 ** indicating that a fork() has occurred, the PRNG will be reset.
261 */
262 static pid_t randomnessPid = 0;
263 
264 /*
265 ** Allowed values for the unixFile.ctrlFlags bitmask:
266 */
267 #define UNIXFILE_EXCL        0x01     /* Connections from one process only */
268 #define UNIXFILE_RDONLY      0x02     /* Connection is read only */
269 #define UNIXFILE_PERSIST_WAL 0x04     /* Persistent WAL mode */
270 #ifndef SQLITE_DISABLE_DIRSYNC
271 # define UNIXFILE_DIRSYNC    0x08     /* Directory sync needed */
272 #else
273 # define UNIXFILE_DIRSYNC    0x00
274 #endif
275 #define UNIXFILE_PSOW        0x10     /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
276 #define UNIXFILE_DELETE      0x20     /* Delete on close */
277 #define UNIXFILE_URI         0x40     /* Filename might have query parameters */
278 #define UNIXFILE_NOLOCK      0x80     /* Do no file locking */
279 
280 /*
281 ** Include code that is common to all os_*.c files
282 */
283 #include "os_common.h"
284 
285 /*
286 ** Define various macros that are missing from some systems.
287 */
288 #ifndef O_LARGEFILE
289 # define O_LARGEFILE 0
290 #endif
291 #ifdef SQLITE_DISABLE_LFS
292 # undef O_LARGEFILE
293 # define O_LARGEFILE 0
294 #endif
295 #ifndef O_NOFOLLOW
296 # define O_NOFOLLOW 0
297 #endif
298 #ifndef O_BINARY
299 # define O_BINARY 0
300 #endif
301 
302 /*
303 ** The threadid macro resolves to the thread-id or to 0.  Used for
304 ** testing and debugging only.
305 */
306 #if SQLITE_THREADSAFE
307 #define threadid pthread_self()
308 #else
309 #define threadid 0
310 #endif
311 
312 /*
313 ** HAVE_MREMAP defaults to true on Linux and false everywhere else.
314 */
315 #if !defined(HAVE_MREMAP)
316 # if defined(__linux__) && defined(_GNU_SOURCE)
317 #  define HAVE_MREMAP 1
318 # else
319 #  define HAVE_MREMAP 0
320 # endif
321 #endif
322 
323 /*
324 ** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek()
325 ** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined.
326 */
327 #ifdef __ANDROID__
328 # define lseek lseek64
329 #endif
330 
331 /*
332 ** Different Unix systems declare open() in different ways.  Same use
333 ** open(const char*,int,mode_t).  Others use open(const char*,int,...).
334 ** The difference is important when using a pointer to the function.
335 **
336 ** The safest way to deal with the problem is to always use this wrapper
337 ** which always has the same well-defined interface.
338 */
339 static int posixOpen(const char *zFile, int flags, int mode){
340   return open(zFile, flags, mode);
341 }
342 
343 /* Forward reference */
344 static int openDirectory(const char*, int*);
345 static int unixGetpagesize(void);
346 
347 /*
348 ** Many system calls are accessed through pointer-to-functions so that
349 ** they may be overridden at runtime to facilitate fault injection during
350 ** testing and sandboxing.  The following array holds the names and pointers
351 ** to all overrideable system calls.
352 */
353 static struct unix_syscall {
354   const char *zName;            /* Name of the system call */
355   sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
356   sqlite3_syscall_ptr pDefault; /* Default value */
357 } aSyscall[] = {
358   { "open",         (sqlite3_syscall_ptr)posixOpen,  0  },
359 #define osOpen      ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
360 
361   { "close",        (sqlite3_syscall_ptr)close,      0  },
362 #define osClose     ((int(*)(int))aSyscall[1].pCurrent)
363 
364   { "access",       (sqlite3_syscall_ptr)access,     0  },
365 #define osAccess    ((int(*)(const char*,int))aSyscall[2].pCurrent)
366 
367   { "getcwd",       (sqlite3_syscall_ptr)getcwd,     0  },
368 #define osGetcwd    ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
369 
370   { "stat",         (sqlite3_syscall_ptr)stat,       0  },
371 #define osStat      ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
372 
373 /*
374 ** The DJGPP compiler environment looks mostly like Unix, but it
375 ** lacks the fcntl() system call.  So redefine fcntl() to be something
376 ** that always succeeds.  This means that locking does not occur under
377 ** DJGPP.  But it is DOS - what did you expect?
378 */
379 #ifdef __DJGPP__
380   { "fstat",        0,                 0  },
381 #define osFstat(a,b,c)    0
382 #else
383   { "fstat",        (sqlite3_syscall_ptr)fstat,      0  },
384 #define osFstat     ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
385 #endif
386 
387   { "ftruncate",    (sqlite3_syscall_ptr)ftruncate,  0  },
388 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
389 
390   { "fcntl",        (sqlite3_syscall_ptr)fcntl,      0  },
391 #define osFcntl     ((int(*)(int,int,...))aSyscall[7].pCurrent)
392 
393   { "read",         (sqlite3_syscall_ptr)read,       0  },
394 #define osRead      ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
395 
396 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
397   { "pread",        (sqlite3_syscall_ptr)pread,      0  },
398 #else
399   { "pread",        (sqlite3_syscall_ptr)0,          0  },
400 #endif
401 #define osPread     ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
402 
403 #if defined(USE_PREAD64)
404   { "pread64",      (sqlite3_syscall_ptr)pread64,    0  },
405 #else
406   { "pread64",      (sqlite3_syscall_ptr)0,          0  },
407 #endif
408 #define osPread64 ((ssize_t(*)(int,void*,size_t,off64_t))aSyscall[10].pCurrent)
409 
410   { "write",        (sqlite3_syscall_ptr)write,      0  },
411 #define osWrite     ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
412 
413 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
414   { "pwrite",       (sqlite3_syscall_ptr)pwrite,     0  },
415 #else
416   { "pwrite",       (sqlite3_syscall_ptr)0,          0  },
417 #endif
418 #define osPwrite    ((ssize_t(*)(int,const void*,size_t,off_t))\
419                     aSyscall[12].pCurrent)
420 
421 #if defined(USE_PREAD64)
422   { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
423 #else
424   { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
425 #endif
426 #define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off64_t))\
427                     aSyscall[13].pCurrent)
428 
429   { "fchmod",       (sqlite3_syscall_ptr)fchmod,          0  },
430 #define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)
431 
432 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
433   { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
434 #else
435   { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
436 #endif
437 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
438 
439   { "unlink",       (sqlite3_syscall_ptr)unlink,           0 },
440 #define osUnlink    ((int(*)(const char*))aSyscall[16].pCurrent)
441 
442   { "openDirectory",    (sqlite3_syscall_ptr)openDirectory,      0 },
443 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
444 
445   { "mkdir",        (sqlite3_syscall_ptr)mkdir,           0 },
446 #define osMkdir     ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
447 
448   { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
449 #define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)
450 
451 #if defined(HAVE_FCHOWN)
452   { "fchown",       (sqlite3_syscall_ptr)fchown,          0 },
453 #else
454   { "fchown",       (sqlite3_syscall_ptr)0,               0 },
455 #endif
456 #define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)
457 
458   { "geteuid",      (sqlite3_syscall_ptr)geteuid,         0 },
459 #define osGeteuid   ((uid_t(*)(void))aSyscall[21].pCurrent)
460 
461 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
462   { "mmap",         (sqlite3_syscall_ptr)mmap,            0 },
463 #else
464   { "mmap",         (sqlite3_syscall_ptr)0,               0 },
465 #endif
466 #define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)
467 
468 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
469   { "munmap",       (sqlite3_syscall_ptr)munmap,          0 },
470 #else
471   { "munmap",       (sqlite3_syscall_ptr)0,               0 },
472 #endif
473 #define osMunmap ((void*(*)(void*,size_t))aSyscall[23].pCurrent)
474 
475 #if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
476   { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
477 #else
478   { "mremap",       (sqlite3_syscall_ptr)0,               0 },
479 #endif
480 #define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)
481 
482 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
483   { "getpagesize",  (sqlite3_syscall_ptr)unixGetpagesize, 0 },
484 #else
485   { "getpagesize",  (sqlite3_syscall_ptr)0,               0 },
486 #endif
487 #define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)
488 
489 #if defined(HAVE_READLINK)
490   { "readlink",     (sqlite3_syscall_ptr)readlink,        0 },
491 #else
492   { "readlink",     (sqlite3_syscall_ptr)0,               0 },
493 #endif
494 #define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)
495 
496 #if defined(HAVE_LSTAT)
497   { "lstat",         (sqlite3_syscall_ptr)lstat,          0 },
498 #else
499   { "lstat",         (sqlite3_syscall_ptr)0,              0 },
500 #endif
501 #define osLstat      ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent)
502 
503 }; /* End of the overrideable system calls */
504 
505 
506 /*
507 ** On some systems, calls to fchown() will trigger a message in a security
508 ** log if they come from non-root processes.  So avoid calling fchown() if
509 ** we are not running as root.
510 */
511 static int robustFchown(int fd, uid_t uid, gid_t gid){
512 #if defined(HAVE_FCHOWN)
513   return osGeteuid() ? 0 : osFchown(fd,uid,gid);
514 #else
515   return 0;
516 #endif
517 }
518 
519 /*
520 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
521 ** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
522 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
523 ** system call named zName.
524 */
525 static int unixSetSystemCall(
526   sqlite3_vfs *pNotUsed,        /* The VFS pointer.  Not used */
527   const char *zName,            /* Name of system call to override */
528   sqlite3_syscall_ptr pNewFunc  /* Pointer to new system call value */
529 ){
530   unsigned int i;
531   int rc = SQLITE_NOTFOUND;
532 
533   UNUSED_PARAMETER(pNotUsed);
534   if( zName==0 ){
535     /* If no zName is given, restore all system calls to their default
536     ** settings and return NULL
537     */
538     rc = SQLITE_OK;
539     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
540       if( aSyscall[i].pDefault ){
541         aSyscall[i].pCurrent = aSyscall[i].pDefault;
542       }
543     }
544   }else{
545     /* If zName is specified, operate on only the one system call
546     ** specified.
547     */
548     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
549       if( strcmp(zName, aSyscall[i].zName)==0 ){
550         if( aSyscall[i].pDefault==0 ){
551           aSyscall[i].pDefault = aSyscall[i].pCurrent;
552         }
553         rc = SQLITE_OK;
554         if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
555         aSyscall[i].pCurrent = pNewFunc;
556         break;
557       }
558     }
559   }
560   return rc;
561 }
562 
563 /*
564 ** Return the value of a system call.  Return NULL if zName is not a
565 ** recognized system call name.  NULL is also returned if the system call
566 ** is currently undefined.
567 */
568 static sqlite3_syscall_ptr unixGetSystemCall(
569   sqlite3_vfs *pNotUsed,
570   const char *zName
571 ){
572   unsigned int i;
573 
574   UNUSED_PARAMETER(pNotUsed);
575   for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
576     if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
577   }
578   return 0;
579 }
580 
581 /*
582 ** Return the name of the first system call after zName.  If zName==NULL
583 ** then return the name of the first system call.  Return NULL if zName
584 ** is the last system call or if zName is not the name of a valid
585 ** system call.
586 */
587 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
588   int i = -1;
589 
590   UNUSED_PARAMETER(p);
591   if( zName ){
592     for(i=0; i<ArraySize(aSyscall)-1; i++){
593       if( strcmp(zName, aSyscall[i].zName)==0 ) break;
594     }
595   }
596   for(i++; i<ArraySize(aSyscall); i++){
597     if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
598   }
599   return 0;
600 }
601 
602 /*
603 ** Do not accept any file descriptor less than this value, in order to avoid
604 ** opening database file using file descriptors that are commonly used for
605 ** standard input, output, and error.
606 */
607 #ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR
608 # define SQLITE_MINIMUM_FILE_DESCRIPTOR 3
609 #endif
610 
611 /*
612 ** Invoke open().  Do so multiple times, until it either succeeds or
613 ** fails for some reason other than EINTR.
614 **
615 ** If the file creation mode "m" is 0 then set it to the default for
616 ** SQLite.  The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
617 ** 0644) as modified by the system umask.  If m is not 0, then
618 ** make the file creation mode be exactly m ignoring the umask.
619 **
620 ** The m parameter will be non-zero only when creating -wal, -journal,
621 ** and -shm files.  We want those files to have *exactly* the same
622 ** permissions as their original database, unadulterated by the umask.
623 ** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
624 ** transaction crashes and leaves behind hot journals, then any
625 ** process that is able to write to the database will also be able to
626 ** recover the hot journals.
627 */
628 static int robust_open(const char *z, int f, mode_t m){
629   int fd;
630   mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;
631   while(1){
632 #if defined(O_CLOEXEC)
633     fd = osOpen(z,f|O_CLOEXEC,m2);
634 #else
635     fd = osOpen(z,f,m2);
636 #endif
637     if( fd<0 ){
638       if( errno==EINTR ) continue;
639       break;
640     }
641     if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break;
642     osClose(fd);
643     sqlite3_log(SQLITE_WARNING,
644                 "attempt to open \"%s\" as file descriptor %d", z, fd);
645     fd = -1;
646     if( osOpen("/dev/null", f, m)<0 ) break;
647   }
648   if( fd>=0 ){
649     if( m!=0 ){
650       struct stat statbuf;
651       if( osFstat(fd, &statbuf)==0
652        && statbuf.st_size==0
653        && (statbuf.st_mode&0777)!=m
654       ){
655         osFchmod(fd, m);
656       }
657     }
658 #if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
659     osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
660 #endif
661   }
662   return fd;
663 }
664 
665 /*
666 ** Helper functions to obtain and relinquish the global mutex. The
667 ** global mutex is used to protect the unixInodeInfo and
668 ** vxworksFileId objects used by this file, all of which may be
669 ** shared by multiple threads.
670 **
671 ** Function unixMutexHeld() is used to assert() that the global mutex
672 ** is held when required. This function is only used as part of assert()
673 ** statements. e.g.
674 **
675 **   unixEnterMutex()
676 **     assert( unixMutexHeld() );
677 **   unixEnterLeave()
678 */
679 static void unixEnterMutex(void){
680   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1));
681 }
682 static void unixLeaveMutex(void){
683   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1));
684 }
685 #ifdef SQLITE_DEBUG
686 static int unixMutexHeld(void) {
687   return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1));
688 }
689 #endif
690 
691 
692 #ifdef SQLITE_HAVE_OS_TRACE
693 /*
694 ** Helper function for printing out trace information from debugging
695 ** binaries. This returns the string representation of the supplied
696 ** integer lock-type.
697 */
698 static const char *azFileLock(int eFileLock){
699   switch( eFileLock ){
700     case NO_LOCK: return "NONE";
701     case SHARED_LOCK: return "SHARED";
702     case RESERVED_LOCK: return "RESERVED";
703     case PENDING_LOCK: return "PENDING";
704     case EXCLUSIVE_LOCK: return "EXCLUSIVE";
705   }
706   return "ERROR";
707 }
708 #endif
709 
710 #ifdef SQLITE_LOCK_TRACE
711 /*
712 ** Print out information about all locking operations.
713 **
714 ** This routine is used for troubleshooting locks on multithreaded
715 ** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
716 ** command-line option on the compiler.  This code is normally
717 ** turned off.
718 */
719 static int lockTrace(int fd, int op, struct flock *p){
720   char *zOpName, *zType;
721   int s;
722   int savedErrno;
723   if( op==F_GETLK ){
724     zOpName = "GETLK";
725   }else if( op==F_SETLK ){
726     zOpName = "SETLK";
727   }else{
728     s = osFcntl(fd, op, p);
729     sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
730     return s;
731   }
732   if( p->l_type==F_RDLCK ){
733     zType = "RDLCK";
734   }else if( p->l_type==F_WRLCK ){
735     zType = "WRLCK";
736   }else if( p->l_type==F_UNLCK ){
737     zType = "UNLCK";
738   }else{
739     assert( 0 );
740   }
741   assert( p->l_whence==SEEK_SET );
742   s = osFcntl(fd, op, p);
743   savedErrno = errno;
744   sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
745      threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
746      (int)p->l_pid, s);
747   if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
748     struct flock l2;
749     l2 = *p;
750     osFcntl(fd, F_GETLK, &l2);
751     if( l2.l_type==F_RDLCK ){
752       zType = "RDLCK";
753     }else if( l2.l_type==F_WRLCK ){
754       zType = "WRLCK";
755     }else if( l2.l_type==F_UNLCK ){
756       zType = "UNLCK";
757     }else{
758       assert( 0 );
759     }
760     sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
761        zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
762   }
763   errno = savedErrno;
764   return s;
765 }
766 #undef osFcntl
767 #define osFcntl lockTrace
768 #endif /* SQLITE_LOCK_TRACE */
769 
770 /*
771 ** Retry ftruncate() calls that fail due to EINTR
772 **
773 ** All calls to ftruncate() within this file should be made through
774 ** this wrapper.  On the Android platform, bypassing the logic below
775 ** could lead to a corrupt database.
776 */
777 static int robust_ftruncate(int h, sqlite3_int64 sz){
778   int rc;
779 #ifdef __ANDROID__
780   /* On Android, ftruncate() always uses 32-bit offsets, even if
781   ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to
782   ** truncate a file to any size larger than 2GiB. Silently ignore any
783   ** such attempts.  */
784   if( sz>(sqlite3_int64)0x7FFFFFFF ){
785     rc = SQLITE_OK;
786   }else
787 #endif
788   do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
789   return rc;
790 }
791 
792 /*
793 ** This routine translates a standard POSIX errno code into something
794 ** useful to the clients of the sqlite3 functions.  Specifically, it is
795 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
796 ** and a variety of "please close the file descriptor NOW" errors into
797 ** SQLITE_IOERR
798 **
799 ** Errors during initialization of locks, or file system support for locks,
800 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
801 */
802 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
803   assert( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
804           (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
805           (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
806           (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) );
807   switch (posixError) {
808   case EACCES:
809   case EAGAIN:
810   case ETIMEDOUT:
811   case EBUSY:
812   case EINTR:
813   case ENOLCK:
814     /* random NFS retry error, unless during file system support
815      * introspection, in which it actually means what it says */
816     return SQLITE_BUSY;
817 
818   case EPERM:
819     return SQLITE_PERM;
820 
821   default:
822     return sqliteIOErr;
823   }
824 }
825 
826 
827 /******************************************************************************
828 ****************** Begin Unique File ID Utility Used By VxWorks ***************
829 **
830 ** On most versions of unix, we can get a unique ID for a file by concatenating
831 ** the device number and the inode number.  But this does not work on VxWorks.
832 ** On VxWorks, a unique file id must be based on the canonical filename.
833 **
834 ** A pointer to an instance of the following structure can be used as a
835 ** unique file ID in VxWorks.  Each instance of this structure contains
836 ** a copy of the canonical filename.  There is also a reference count.
837 ** The structure is reclaimed when the number of pointers to it drops to
838 ** zero.
839 **
840 ** There are never very many files open at one time and lookups are not
841 ** a performance-critical path, so it is sufficient to put these
842 ** structures on a linked list.
843 */
844 struct vxworksFileId {
845   struct vxworksFileId *pNext;  /* Next in a list of them all */
846   int nRef;                     /* Number of references to this one */
847   int nName;                    /* Length of the zCanonicalName[] string */
848   char *zCanonicalName;         /* Canonical filename */
849 };
850 
851 #if OS_VXWORKS
852 /*
853 ** All unique filenames are held on a linked list headed by this
854 ** variable:
855 */
856 static struct vxworksFileId *vxworksFileList = 0;
857 
858 /*
859 ** Simplify a filename into its canonical form
860 ** by making the following changes:
861 **
862 **  * removing any trailing and duplicate /
863 **  * convert /./ into just /
864 **  * convert /A/../ where A is any simple name into just /
865 **
866 ** Changes are made in-place.  Return the new name length.
867 **
868 ** The original filename is in z[0..n-1].  Return the number of
869 ** characters in the simplified name.
870 */
871 static int vxworksSimplifyName(char *z, int n){
872   int i, j;
873   while( n>1 && z[n-1]=='/' ){ n--; }
874   for(i=j=0; i<n; i++){
875     if( z[i]=='/' ){
876       if( z[i+1]=='/' ) continue;
877       if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
878         i += 1;
879         continue;
880       }
881       if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
882         while( j>0 && z[j-1]!='/' ){ j--; }
883         if( j>0 ){ j--; }
884         i += 2;
885         continue;
886       }
887     }
888     z[j++] = z[i];
889   }
890   z[j] = 0;
891   return j;
892 }
893 
894 /*
895 ** Find a unique file ID for the given absolute pathname.  Return
896 ** a pointer to the vxworksFileId object.  This pointer is the unique
897 ** file ID.
898 **
899 ** The nRef field of the vxworksFileId object is incremented before
900 ** the object is returned.  A new vxworksFileId object is created
901 ** and added to the global list if necessary.
902 **
903 ** If a memory allocation error occurs, return NULL.
904 */
905 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
906   struct vxworksFileId *pNew;         /* search key and new file ID */
907   struct vxworksFileId *pCandidate;   /* For looping over existing file IDs */
908   int n;                              /* Length of zAbsoluteName string */
909 
910   assert( zAbsoluteName[0]=='/' );
911   n = (int)strlen(zAbsoluteName);
912   pNew = sqlite3_malloc64( sizeof(*pNew) + (n+1) );
913   if( pNew==0 ) return 0;
914   pNew->zCanonicalName = (char*)&pNew[1];
915   memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
916   n = vxworksSimplifyName(pNew->zCanonicalName, n);
917 
918   /* Search for an existing entry that matching the canonical name.
919   ** If found, increment the reference count and return a pointer to
920   ** the existing file ID.
921   */
922   unixEnterMutex();
923   for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
924     if( pCandidate->nName==n
925      && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
926     ){
927        sqlite3_free(pNew);
928        pCandidate->nRef++;
929        unixLeaveMutex();
930        return pCandidate;
931     }
932   }
933 
934   /* No match was found.  We will make a new file ID */
935   pNew->nRef = 1;
936   pNew->nName = n;
937   pNew->pNext = vxworksFileList;
938   vxworksFileList = pNew;
939   unixLeaveMutex();
940   return pNew;
941 }
942 
943 /*
944 ** Decrement the reference count on a vxworksFileId object.  Free
945 ** the object when the reference count reaches zero.
946 */
947 static void vxworksReleaseFileId(struct vxworksFileId *pId){
948   unixEnterMutex();
949   assert( pId->nRef>0 );
950   pId->nRef--;
951   if( pId->nRef==0 ){
952     struct vxworksFileId **pp;
953     for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
954     assert( *pp==pId );
955     *pp = pId->pNext;
956     sqlite3_free(pId);
957   }
958   unixLeaveMutex();
959 }
960 #endif /* OS_VXWORKS */
961 /*************** End of Unique File ID Utility Used By VxWorks ****************
962 ******************************************************************************/
963 
964 
965 /******************************************************************************
966 *************************** Posix Advisory Locking ****************************
967 **
968 ** POSIX advisory locks are broken by design.  ANSI STD 1003.1 (1996)
969 ** section 6.5.2.2 lines 483 through 490 specify that when a process
970 ** sets or clears a lock, that operation overrides any prior locks set
971 ** by the same process.  It does not explicitly say so, but this implies
972 ** that it overrides locks set by the same process using a different
973 ** file descriptor.  Consider this test case:
974 **
975 **       int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
976 **       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
977 **
978 ** Suppose ./file1 and ./file2 are really the same file (because
979 ** one is a hard or symbolic link to the other) then if you set
980 ** an exclusive lock on fd1, then try to get an exclusive lock
981 ** on fd2, it works.  I would have expected the second lock to
982 ** fail since there was already a lock on the file due to fd1.
983 ** But not so.  Since both locks came from the same process, the
984 ** second overrides the first, even though they were on different
985 ** file descriptors opened on different file names.
986 **
987 ** This means that we cannot use POSIX locks to synchronize file access
988 ** among competing threads of the same process.  POSIX locks will work fine
989 ** to synchronize access for threads in separate processes, but not
990 ** threads within the same process.
991 **
992 ** To work around the problem, SQLite has to manage file locks internally
993 ** on its own.  Whenever a new database is opened, we have to find the
994 ** specific inode of the database file (the inode is determined by the
995 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
996 ** and check for locks already existing on that inode.  When locks are
997 ** created or removed, we have to look at our own internal record of the
998 ** locks to see if another thread has previously set a lock on that same
999 ** inode.
1000 **
1001 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
1002 ** For VxWorks, we have to use the alternative unique ID system based on
1003 ** canonical filename and implemented in the previous division.)
1004 **
1005 ** The sqlite3_file structure for POSIX is no longer just an integer file
1006 ** descriptor.  It is now a structure that holds the integer file
1007 ** descriptor and a pointer to a structure that describes the internal
1008 ** locks on the corresponding inode.  There is one locking structure
1009 ** per inode, so if the same inode is opened twice, both unixFile structures
1010 ** point to the same locking structure.  The locking structure keeps
1011 ** a reference count (so we will know when to delete it) and a "cnt"
1012 ** field that tells us its internal lock status.  cnt==0 means the
1013 ** file is unlocked.  cnt==-1 means the file has an exclusive lock.
1014 ** cnt>0 means there are cnt shared locks on the file.
1015 **
1016 ** Any attempt to lock or unlock a file first checks the locking
1017 ** structure.  The fcntl() system call is only invoked to set a
1018 ** POSIX lock if the internal lock structure transitions between
1019 ** a locked and an unlocked state.
1020 **
1021 ** But wait:  there are yet more problems with POSIX advisory locks.
1022 **
1023 ** If you close a file descriptor that points to a file that has locks,
1024 ** all locks on that file that are owned by the current process are
1025 ** released.  To work around this problem, each unixInodeInfo object
1026 ** maintains a count of the number of pending locks on tha inode.
1027 ** When an attempt is made to close an unixFile, if there are
1028 ** other unixFile open on the same inode that are holding locks, the call
1029 ** to close() the file descriptor is deferred until all of the locks clear.
1030 ** The unixInodeInfo structure keeps a list of file descriptors that need to
1031 ** be closed and that list is walked (and cleared) when the last lock
1032 ** clears.
1033 **
1034 ** Yet another problem:  LinuxThreads do not play well with posix locks.
1035 **
1036 ** Many older versions of linux use the LinuxThreads library which is
1037 ** not posix compliant.  Under LinuxThreads, a lock created by thread
1038 ** A cannot be modified or overridden by a different thread B.
1039 ** Only thread A can modify the lock.  Locking behavior is correct
1040 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
1041 ** on linux - with NPTL a lock created by thread A can override locks
1042 ** in thread B.  But there is no way to know at compile-time which
1043 ** threading library is being used.  So there is no way to know at
1044 ** compile-time whether or not thread A can override locks on thread B.
1045 ** One has to do a run-time check to discover the behavior of the
1046 ** current process.
1047 **
1048 ** SQLite used to support LinuxThreads.  But support for LinuxThreads
1049 ** was dropped beginning with version 3.7.0.  SQLite will still work with
1050 ** LinuxThreads provided that (1) there is no more than one connection
1051 ** per database file in the same process and (2) database connections
1052 ** do not move across threads.
1053 */
1054 
1055 /*
1056 ** An instance of the following structure serves as the key used
1057 ** to locate a particular unixInodeInfo object.
1058 */
1059 struct unixFileId {
1060   dev_t dev;                  /* Device number */
1061 #if OS_VXWORKS
1062   struct vxworksFileId *pId;  /* Unique file ID for vxworks. */
1063 #else
1064   ino_t ino;                  /* Inode number */
1065 #endif
1066 };
1067 
1068 /*
1069 ** An instance of the following structure is allocated for each open
1070 ** inode.  Or, on LinuxThreads, there is one of these structures for
1071 ** each inode opened by each thread.
1072 **
1073 ** A single inode can have multiple file descriptors, so each unixFile
1074 ** structure contains a pointer to an instance of this object and this
1075 ** object keeps a count of the number of unixFile pointing to it.
1076 */
1077 struct unixInodeInfo {
1078   struct unixFileId fileId;       /* The lookup key */
1079   int nShared;                    /* Number of SHARED locks held */
1080   unsigned char eFileLock;        /* One of SHARED_LOCK, RESERVED_LOCK etc. */
1081   unsigned char bProcessLock;     /* An exclusive process lock is held */
1082   int nRef;                       /* Number of pointers to this structure */
1083   unixShmNode *pShmNode;          /* Shared memory associated with this inode */
1084   int nLock;                      /* Number of outstanding file locks */
1085   UnixUnusedFd *pUnused;          /* Unused file descriptors to close */
1086   unixInodeInfo *pNext;           /* List of all unixInodeInfo objects */
1087   unixInodeInfo *pPrev;           /*    .... doubly linked */
1088 #if SQLITE_ENABLE_LOCKING_STYLE
1089   unsigned long long sharedByte;  /* for AFP simulated shared lock */
1090 #endif
1091 #if OS_VXWORKS
1092   sem_t *pSem;                    /* Named POSIX semaphore */
1093   char aSemName[MAX_PATHNAME+2];  /* Name of that semaphore */
1094 #endif
1095 };
1096 
1097 /*
1098 ** A lists of all unixInodeInfo objects.
1099 */
1100 static unixInodeInfo *inodeList = 0;
1101 
1102 /*
1103 **
1104 ** This function - unixLogErrorAtLine(), is only ever called via the macro
1105 ** unixLogError().
1106 **
1107 ** It is invoked after an error occurs in an OS function and errno has been
1108 ** set. It logs a message using sqlite3_log() containing the current value of
1109 ** errno and, if possible, the human-readable equivalent from strerror() or
1110 ** strerror_r().
1111 **
1112 ** The first argument passed to the macro should be the error code that
1113 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
1114 ** The two subsequent arguments should be the name of the OS function that
1115 ** failed (e.g. "unlink", "open") and the associated file-system path,
1116 ** if any.
1117 */
1118 #define unixLogError(a,b,c)     unixLogErrorAtLine(a,b,c,__LINE__)
1119 static int unixLogErrorAtLine(
1120   int errcode,                    /* SQLite error code */
1121   const char *zFunc,              /* Name of OS function that failed */
1122   const char *zPath,              /* File path associated with error */
1123   int iLine                       /* Source line number where error occurred */
1124 ){
1125   char *zErr;                     /* Message from strerror() or equivalent */
1126   int iErrno = errno;             /* Saved syscall error number */
1127 
1128   /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
1129   ** the strerror() function to obtain the human-readable error message
1130   ** equivalent to errno. Otherwise, use strerror_r().
1131   */
1132 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
1133   char aErr[80];
1134   memset(aErr, 0, sizeof(aErr));
1135   zErr = aErr;
1136 
1137   /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
1138   ** assume that the system provides the GNU version of strerror_r() that
1139   ** returns a pointer to a buffer containing the error message. That pointer
1140   ** may point to aErr[], or it may point to some static storage somewhere.
1141   ** Otherwise, assume that the system provides the POSIX version of
1142   ** strerror_r(), which always writes an error message into aErr[].
1143   **
1144   ** If the code incorrectly assumes that it is the POSIX version that is
1145   ** available, the error message will often be an empty string. Not a
1146   ** huge problem. Incorrectly concluding that the GNU version is available
1147   ** could lead to a segfault though.
1148   */
1149 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
1150   zErr =
1151 # endif
1152   strerror_r(iErrno, aErr, sizeof(aErr)-1);
1153 
1154 #elif SQLITE_THREADSAFE
1155   /* This is a threadsafe build, but strerror_r() is not available. */
1156   zErr = "";
1157 #else
1158   /* Non-threadsafe build, use strerror(). */
1159   zErr = strerror(iErrno);
1160 #endif
1161 
1162   if( zPath==0 ) zPath = "";
1163   sqlite3_log(errcode,
1164       "os_unix.c:%d: (%d) %s(%s) - %s",
1165       iLine, iErrno, zFunc, zPath, zErr
1166   );
1167 
1168   return errcode;
1169 }
1170 
1171 /*
1172 ** Close a file descriptor.
1173 **
1174 ** We assume that close() almost always works, since it is only in a
1175 ** very sick application or on a very sick platform that it might fail.
1176 ** If it does fail, simply leak the file descriptor, but do log the
1177 ** error.
1178 **
1179 ** Note that it is not safe to retry close() after EINTR since the
1180 ** file descriptor might have already been reused by another thread.
1181 ** So we don't even try to recover from an EINTR.  Just log the error
1182 ** and move on.
1183 */
1184 static void robust_close(unixFile *pFile, int h, int lineno){
1185   if( osClose(h) ){
1186     unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
1187                        pFile ? pFile->zPath : 0, lineno);
1188   }
1189 }
1190 
1191 /*
1192 ** Set the pFile->lastErrno.  Do this in a subroutine as that provides
1193 ** a convenient place to set a breakpoint.
1194 */
1195 static void storeLastErrno(unixFile *pFile, int error){
1196   pFile->lastErrno = error;
1197 }
1198 
1199 /*
1200 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
1201 */
1202 static void closePendingFds(unixFile *pFile){
1203   unixInodeInfo *pInode = pFile->pInode;
1204   UnixUnusedFd *p;
1205   UnixUnusedFd *pNext;
1206   for(p=pInode->pUnused; p; p=pNext){
1207     pNext = p->pNext;
1208     robust_close(pFile, p->fd, __LINE__);
1209     sqlite3_free(p);
1210   }
1211   pInode->pUnused = 0;
1212 }
1213 
1214 /*
1215 ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
1216 **
1217 ** The mutex entered using the unixEnterMutex() function must be held
1218 ** when this function is called.
1219 */
1220 static void releaseInodeInfo(unixFile *pFile){
1221   unixInodeInfo *pInode = pFile->pInode;
1222   assert( unixMutexHeld() );
1223   if( ALWAYS(pInode) ){
1224     pInode->nRef--;
1225     if( pInode->nRef==0 ){
1226       assert( pInode->pShmNode==0 );
1227       closePendingFds(pFile);
1228       if( pInode->pPrev ){
1229         assert( pInode->pPrev->pNext==pInode );
1230         pInode->pPrev->pNext = pInode->pNext;
1231       }else{
1232         assert( inodeList==pInode );
1233         inodeList = pInode->pNext;
1234       }
1235       if( pInode->pNext ){
1236         assert( pInode->pNext->pPrev==pInode );
1237         pInode->pNext->pPrev = pInode->pPrev;
1238       }
1239       sqlite3_free(pInode);
1240     }
1241   }
1242 }
1243 
1244 /*
1245 ** Given a file descriptor, locate the unixInodeInfo object that
1246 ** describes that file descriptor.  Create a new one if necessary.  The
1247 ** return value might be uninitialized if an error occurs.
1248 **
1249 ** The mutex entered using the unixEnterMutex() function must be held
1250 ** when this function is called.
1251 **
1252 ** Return an appropriate error code.
1253 */
1254 static int findInodeInfo(
1255   unixFile *pFile,               /* Unix file with file desc used in the key */
1256   unixInodeInfo **ppInode        /* Return the unixInodeInfo object here */
1257 ){
1258   int rc;                        /* System call return code */
1259   int fd;                        /* The file descriptor for pFile */
1260   struct unixFileId fileId;      /* Lookup key for the unixInodeInfo */
1261   struct stat statbuf;           /* Low-level file information */
1262   unixInodeInfo *pInode = 0;     /* Candidate unixInodeInfo object */
1263 
1264   assert( unixMutexHeld() );
1265 
1266   /* Get low-level information about the file that we can used to
1267   ** create a unique name for the file.
1268   */
1269   fd = pFile->h;
1270   rc = osFstat(fd, &statbuf);
1271   if( rc!=0 ){
1272     storeLastErrno(pFile, errno);
1273 #if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS)
1274     if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
1275 #endif
1276     return SQLITE_IOERR;
1277   }
1278 
1279 #ifdef __APPLE__
1280   /* On OS X on an msdos filesystem, the inode number is reported
1281   ** incorrectly for zero-size files.  See ticket #3260.  To work
1282   ** around this problem (we consider it a bug in OS X, not SQLite)
1283   ** we always increase the file size to 1 by writing a single byte
1284   ** prior to accessing the inode number.  The one byte written is
1285   ** an ASCII 'S' character which also happens to be the first byte
1286   ** in the header of every SQLite database.  In this way, if there
1287   ** is a race condition such that another thread has already populated
1288   ** the first page of the database, no damage is done.
1289   */
1290   if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
1291     do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
1292     if( rc!=1 ){
1293       storeLastErrno(pFile, errno);
1294       return SQLITE_IOERR;
1295     }
1296     rc = osFstat(fd, &statbuf);
1297     if( rc!=0 ){
1298       storeLastErrno(pFile, errno);
1299       return SQLITE_IOERR;
1300     }
1301   }
1302 #endif
1303 
1304   memset(&fileId, 0, sizeof(fileId));
1305   fileId.dev = statbuf.st_dev;
1306 #if OS_VXWORKS
1307   fileId.pId = pFile->pId;
1308 #else
1309   fileId.ino = statbuf.st_ino;
1310 #endif
1311   pInode = inodeList;
1312   while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
1313     pInode = pInode->pNext;
1314   }
1315   if( pInode==0 ){
1316     pInode = sqlite3_malloc64( sizeof(*pInode) );
1317     if( pInode==0 ){
1318       return SQLITE_NOMEM_BKPT;
1319     }
1320     memset(pInode, 0, sizeof(*pInode));
1321     memcpy(&pInode->fileId, &fileId, sizeof(fileId));
1322     pInode->nRef = 1;
1323     pInode->pNext = inodeList;
1324     pInode->pPrev = 0;
1325     if( inodeList ) inodeList->pPrev = pInode;
1326     inodeList = pInode;
1327   }else{
1328     pInode->nRef++;
1329   }
1330   *ppInode = pInode;
1331   return SQLITE_OK;
1332 }
1333 
1334 /*
1335 ** Return TRUE if pFile has been renamed or unlinked since it was first opened.
1336 */
1337 static int fileHasMoved(unixFile *pFile){
1338 #if OS_VXWORKS
1339   return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId;
1340 #else
1341   struct stat buf;
1342   return pFile->pInode!=0 &&
1343       (osStat(pFile->zPath, &buf)!=0 || buf.st_ino!=pFile->pInode->fileId.ino);
1344 #endif
1345 }
1346 
1347 
1348 /*
1349 ** Check a unixFile that is a database.  Verify the following:
1350 **
1351 ** (1) There is exactly one hard link on the file
1352 ** (2) The file is not a symbolic link
1353 ** (3) The file has not been renamed or unlinked
1354 **
1355 ** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right.
1356 */
1357 static void verifyDbFile(unixFile *pFile){
1358   struct stat buf;
1359   int rc;
1360 
1361   /* These verifications occurs for the main database only */
1362   if( pFile->ctrlFlags & UNIXFILE_NOLOCK ) return;
1363 
1364   rc = osFstat(pFile->h, &buf);
1365   if( rc!=0 ){
1366     sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath);
1367     return;
1368   }
1369   if( buf.st_nlink==0 ){
1370     sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath);
1371     return;
1372   }
1373   if( buf.st_nlink>1 ){
1374     sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath);
1375     return;
1376   }
1377   if( fileHasMoved(pFile) ){
1378     sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath);
1379     return;
1380   }
1381 }
1382 
1383 
1384 /*
1385 ** This routine checks if there is a RESERVED lock held on the specified
1386 ** file by this or any other process. If such a lock is held, set *pResOut
1387 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
1388 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1389 */
1390 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
1391   int rc = SQLITE_OK;
1392   int reserved = 0;
1393   unixFile *pFile = (unixFile*)id;
1394 
1395   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1396 
1397   assert( pFile );
1398   assert( pFile->eFileLock<=SHARED_LOCK );
1399   unixEnterMutex(); /* Because pFile->pInode is shared across threads */
1400 
1401   /* Check if a thread in this process holds such a lock */
1402   if( pFile->pInode->eFileLock>SHARED_LOCK ){
1403     reserved = 1;
1404   }
1405 
1406   /* Otherwise see if some other process holds it.
1407   */
1408 #ifndef __DJGPP__
1409   if( !reserved && !pFile->pInode->bProcessLock ){
1410     struct flock lock;
1411     lock.l_whence = SEEK_SET;
1412     lock.l_start = RESERVED_BYTE;
1413     lock.l_len = 1;
1414     lock.l_type = F_WRLCK;
1415     if( osFcntl(pFile->h, F_GETLK, &lock) ){
1416       rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
1417       storeLastErrno(pFile, errno);
1418     } else if( lock.l_type!=F_UNLCK ){
1419       reserved = 1;
1420     }
1421   }
1422 #endif
1423 
1424   unixLeaveMutex();
1425   OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
1426 
1427   *pResOut = reserved;
1428   return rc;
1429 }
1430 
1431 /*
1432 ** Attempt to set a system-lock on the file pFile.  The lock is
1433 ** described by pLock.
1434 **
1435 ** If the pFile was opened read/write from unix-excl, then the only lock
1436 ** ever obtained is an exclusive lock, and it is obtained exactly once
1437 ** the first time any lock is attempted.  All subsequent system locking
1438 ** operations become no-ops.  Locking operations still happen internally,
1439 ** in order to coordinate access between separate database connections
1440 ** within this process, but all of that is handled in memory and the
1441 ** operating system does not participate.
1442 **
1443 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
1444 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
1445 ** and is read-only.
1446 **
1447 ** Zero is returned if the call completes successfully, or -1 if a call
1448 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
1449 */
1450 static int unixFileLock(unixFile *pFile, struct flock *pLock){
1451   int rc;
1452   unixInodeInfo *pInode = pFile->pInode;
1453   assert( unixMutexHeld() );
1454   assert( pInode!=0 );
1455   if( (pFile->ctrlFlags & (UNIXFILE_EXCL|UNIXFILE_RDONLY))==UNIXFILE_EXCL ){
1456     if( pInode->bProcessLock==0 ){
1457       struct flock lock;
1458       assert( pInode->nLock==0 );
1459       lock.l_whence = SEEK_SET;
1460       lock.l_start = SHARED_FIRST;
1461       lock.l_len = SHARED_SIZE;
1462       lock.l_type = F_WRLCK;
1463       rc = osFcntl(pFile->h, F_SETLK, &lock);
1464       if( rc<0 ) return rc;
1465       pInode->bProcessLock = 1;
1466       pInode->nLock++;
1467     }else{
1468       rc = 0;
1469     }
1470   }else{
1471     rc = osFcntl(pFile->h, F_SETLK, pLock);
1472   }
1473   return rc;
1474 }
1475 
1476 /*
1477 ** Lock the file with the lock specified by parameter eFileLock - one
1478 ** of the following:
1479 **
1480 **     (1) SHARED_LOCK
1481 **     (2) RESERVED_LOCK
1482 **     (3) PENDING_LOCK
1483 **     (4) EXCLUSIVE_LOCK
1484 **
1485 ** Sometimes when requesting one lock state, additional lock states
1486 ** are inserted in between.  The locking might fail on one of the later
1487 ** transitions leaving the lock state different from what it started but
1488 ** still short of its goal.  The following chart shows the allowed
1489 ** transitions and the inserted intermediate states:
1490 **
1491 **    UNLOCKED -> SHARED
1492 **    SHARED -> RESERVED
1493 **    SHARED -> (PENDING) -> EXCLUSIVE
1494 **    RESERVED -> (PENDING) -> EXCLUSIVE
1495 **    PENDING -> EXCLUSIVE
1496 **
1497 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
1498 ** routine to lower a locking level.
1499 */
1500 static int unixLock(sqlite3_file *id, int eFileLock){
1501   /* The following describes the implementation of the various locks and
1502   ** lock transitions in terms of the POSIX advisory shared and exclusive
1503   ** lock primitives (called read-locks and write-locks below, to avoid
1504   ** confusion with SQLite lock names). The algorithms are complicated
1505   ** slightly in order to be compatible with Windows95 systems simultaneously
1506   ** accessing the same database file, in case that is ever required.
1507   **
1508   ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1509   ** byte', each single bytes at well known offsets, and the 'shared byte
1510   ** range', a range of 510 bytes at a well known offset.
1511   **
1512   ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1513   ** byte'.  If this is successful, 'shared byte range' is read-locked
1514   ** and the lock on the 'pending byte' released.  (Legacy note:  When
1515   ** SQLite was first developed, Windows95 systems were still very common,
1516   ** and Widnows95 lacks a shared-lock capability.  So on Windows95, a
1517   ** single randomly selected by from the 'shared byte range' is locked.
1518   ** Windows95 is now pretty much extinct, but this work-around for the
1519   ** lack of shared-locks on Windows95 lives on, for backwards
1520   ** compatibility.)
1521   **
1522   ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1523   ** A RESERVED lock is implemented by grabbing a write-lock on the
1524   ** 'reserved byte'.
1525   **
1526   ** A process may only obtain a PENDING lock after it has obtained a
1527   ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1528   ** on the 'pending byte'. This ensures that no new SHARED locks can be
1529   ** obtained, but existing SHARED locks are allowed to persist. A process
1530   ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1531   ** This property is used by the algorithm for rolling back a journal file
1532   ** after a crash.
1533   **
1534   ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1535   ** implemented by obtaining a write-lock on the entire 'shared byte
1536   ** range'. Since all other locks require a read-lock on one of the bytes
1537   ** within this range, this ensures that no other locks are held on the
1538   ** database.
1539   */
1540   int rc = SQLITE_OK;
1541   unixFile *pFile = (unixFile*)id;
1542   unixInodeInfo *pInode;
1543   struct flock lock;
1544   int tErrno = 0;
1545 
1546   assert( pFile );
1547   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
1548       azFileLock(eFileLock), azFileLock(pFile->eFileLock),
1549       azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared,
1550       osGetpid(0)));
1551 
1552   /* If there is already a lock of this type or more restrictive on the
1553   ** unixFile, do nothing. Don't use the end_lock: exit path, as
1554   ** unixEnterMutex() hasn't been called yet.
1555   */
1556   if( pFile->eFileLock>=eFileLock ){
1557     OSTRACE(("LOCK    %d %s ok (already held) (unix)\n", pFile->h,
1558             azFileLock(eFileLock)));
1559     return SQLITE_OK;
1560   }
1561 
1562   /* Make sure the locking sequence is correct.
1563   **  (1) We never move from unlocked to anything higher than shared lock.
1564   **  (2) SQLite never explicitly requests a pendig lock.
1565   **  (3) A shared lock is always held when a reserve lock is requested.
1566   */
1567   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
1568   assert( eFileLock!=PENDING_LOCK );
1569   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
1570 
1571   /* This mutex is needed because pFile->pInode is shared across threads
1572   */
1573   unixEnterMutex();
1574   pInode = pFile->pInode;
1575 
1576   /* If some thread using this PID has a lock via a different unixFile*
1577   ** handle that precludes the requested lock, return BUSY.
1578   */
1579   if( (pFile->eFileLock!=pInode->eFileLock &&
1580           (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
1581   ){
1582     rc = SQLITE_BUSY;
1583     goto end_lock;
1584   }
1585 
1586   /* If a SHARED lock is requested, and some thread using this PID already
1587   ** has a SHARED or RESERVED lock, then increment reference counts and
1588   ** return SQLITE_OK.
1589   */
1590   if( eFileLock==SHARED_LOCK &&
1591       (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
1592     assert( eFileLock==SHARED_LOCK );
1593     assert( pFile->eFileLock==0 );
1594     assert( pInode->nShared>0 );
1595     pFile->eFileLock = SHARED_LOCK;
1596     pInode->nShared++;
1597     pInode->nLock++;
1598     goto end_lock;
1599   }
1600 
1601 
1602   /* A PENDING lock is needed before acquiring a SHARED lock and before
1603   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
1604   ** be released.
1605   */
1606   lock.l_len = 1L;
1607   lock.l_whence = SEEK_SET;
1608   if( eFileLock==SHARED_LOCK
1609       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
1610   ){
1611     lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
1612     lock.l_start = PENDING_BYTE;
1613     if( unixFileLock(pFile, &lock) ){
1614       tErrno = errno;
1615       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1616       if( rc!=SQLITE_BUSY ){
1617         storeLastErrno(pFile, tErrno);
1618       }
1619       goto end_lock;
1620     }
1621   }
1622 
1623 
1624   /* If control gets to this point, then actually go ahead and make
1625   ** operating system calls for the specified lock.
1626   */
1627   if( eFileLock==SHARED_LOCK ){
1628     assert( pInode->nShared==0 );
1629     assert( pInode->eFileLock==0 );
1630     assert( rc==SQLITE_OK );
1631 
1632     /* Now get the read-lock */
1633     lock.l_start = SHARED_FIRST;
1634     lock.l_len = SHARED_SIZE;
1635     if( unixFileLock(pFile, &lock) ){
1636       tErrno = errno;
1637       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1638     }
1639 
1640     /* Drop the temporary PENDING lock */
1641     lock.l_start = PENDING_BYTE;
1642     lock.l_len = 1L;
1643     lock.l_type = F_UNLCK;
1644     if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
1645       /* This could happen with a network mount */
1646       tErrno = errno;
1647       rc = SQLITE_IOERR_UNLOCK;
1648     }
1649 
1650     if( rc ){
1651       if( rc!=SQLITE_BUSY ){
1652         storeLastErrno(pFile, tErrno);
1653       }
1654       goto end_lock;
1655     }else{
1656       pFile->eFileLock = SHARED_LOCK;
1657       pInode->nLock++;
1658       pInode->nShared = 1;
1659     }
1660   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
1661     /* We are trying for an exclusive lock but another thread in this
1662     ** same process is still holding a shared lock. */
1663     rc = SQLITE_BUSY;
1664   }else{
1665     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
1666     ** assumed that there is a SHARED or greater lock on the file
1667     ** already.
1668     */
1669     assert( 0!=pFile->eFileLock );
1670     lock.l_type = F_WRLCK;
1671 
1672     assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
1673     if( eFileLock==RESERVED_LOCK ){
1674       lock.l_start = RESERVED_BYTE;
1675       lock.l_len = 1L;
1676     }else{
1677       lock.l_start = SHARED_FIRST;
1678       lock.l_len = SHARED_SIZE;
1679     }
1680 
1681     if( unixFileLock(pFile, &lock) ){
1682       tErrno = errno;
1683       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1684       if( rc!=SQLITE_BUSY ){
1685         storeLastErrno(pFile, tErrno);
1686       }
1687     }
1688   }
1689 
1690 
1691 #ifdef SQLITE_DEBUG
1692   /* Set up the transaction-counter change checking flags when
1693   ** transitioning from a SHARED to a RESERVED lock.  The change
1694   ** from SHARED to RESERVED marks the beginning of a normal
1695   ** write operation (not a hot journal rollback).
1696   */
1697   if( rc==SQLITE_OK
1698    && pFile->eFileLock<=SHARED_LOCK
1699    && eFileLock==RESERVED_LOCK
1700   ){
1701     pFile->transCntrChng = 0;
1702     pFile->dbUpdate = 0;
1703     pFile->inNormalWrite = 1;
1704   }
1705 #endif
1706 
1707 
1708   if( rc==SQLITE_OK ){
1709     pFile->eFileLock = eFileLock;
1710     pInode->eFileLock = eFileLock;
1711   }else if( eFileLock==EXCLUSIVE_LOCK ){
1712     pFile->eFileLock = PENDING_LOCK;
1713     pInode->eFileLock = PENDING_LOCK;
1714   }
1715 
1716 end_lock:
1717   unixLeaveMutex();
1718   OSTRACE(("LOCK    %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
1719       rc==SQLITE_OK ? "ok" : "failed"));
1720   return rc;
1721 }
1722 
1723 /*
1724 ** Add the file descriptor used by file handle pFile to the corresponding
1725 ** pUnused list.
1726 */
1727 static void setPendingFd(unixFile *pFile){
1728   unixInodeInfo *pInode = pFile->pInode;
1729   UnixUnusedFd *p = pFile->pUnused;
1730   p->pNext = pInode->pUnused;
1731   pInode->pUnused = p;
1732   pFile->h = -1;
1733   pFile->pUnused = 0;
1734 }
1735 
1736 /*
1737 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
1738 ** must be either NO_LOCK or SHARED_LOCK.
1739 **
1740 ** If the locking level of the file descriptor is already at or below
1741 ** the requested locking level, this routine is a no-op.
1742 **
1743 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
1744 ** the byte range is divided into 2 parts and the first part is unlocked then
1745 ** set to a read lock, then the other part is simply unlocked.  This works
1746 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
1747 ** remove the write lock on a region when a read lock is set.
1748 */
1749 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
1750   unixFile *pFile = (unixFile*)id;
1751   unixInodeInfo *pInode;
1752   struct flock lock;
1753   int rc = SQLITE_OK;
1754 
1755   assert( pFile );
1756   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
1757       pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
1758       osGetpid(0)));
1759 
1760   assert( eFileLock<=SHARED_LOCK );
1761   if( pFile->eFileLock<=eFileLock ){
1762     return SQLITE_OK;
1763   }
1764   unixEnterMutex();
1765   pInode = pFile->pInode;
1766   assert( pInode->nShared!=0 );
1767   if( pFile->eFileLock>SHARED_LOCK ){
1768     assert( pInode->eFileLock==pFile->eFileLock );
1769 
1770 #ifdef SQLITE_DEBUG
1771     /* When reducing a lock such that other processes can start
1772     ** reading the database file again, make sure that the
1773     ** transaction counter was updated if any part of the database
1774     ** file changed.  If the transaction counter is not updated,
1775     ** other connections to the same file might not realize that
1776     ** the file has changed and hence might not know to flush their
1777     ** cache.  The use of a stale cache can lead to database corruption.
1778     */
1779     pFile->inNormalWrite = 0;
1780 #endif
1781 
1782     /* downgrading to a shared lock on NFS involves clearing the write lock
1783     ** before establishing the readlock - to avoid a race condition we downgrade
1784     ** the lock in 2 blocks, so that part of the range will be covered by a
1785     ** write lock until the rest is covered by a read lock:
1786     **  1:   [WWWWW]
1787     **  2:   [....W]
1788     **  3:   [RRRRW]
1789     **  4:   [RRRR.]
1790     */
1791     if( eFileLock==SHARED_LOCK ){
1792 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
1793       (void)handleNFSUnlock;
1794       assert( handleNFSUnlock==0 );
1795 #endif
1796 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
1797       if( handleNFSUnlock ){
1798         int tErrno;               /* Error code from system call errors */
1799         off_t divSize = SHARED_SIZE - 1;
1800 
1801         lock.l_type = F_UNLCK;
1802         lock.l_whence = SEEK_SET;
1803         lock.l_start = SHARED_FIRST;
1804         lock.l_len = divSize;
1805         if( unixFileLock(pFile, &lock)==(-1) ){
1806           tErrno = errno;
1807           rc = SQLITE_IOERR_UNLOCK;
1808           storeLastErrno(pFile, tErrno);
1809           goto end_unlock;
1810         }
1811         lock.l_type = F_RDLCK;
1812         lock.l_whence = SEEK_SET;
1813         lock.l_start = SHARED_FIRST;
1814         lock.l_len = divSize;
1815         if( unixFileLock(pFile, &lock)==(-1) ){
1816           tErrno = errno;
1817           rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
1818           if( IS_LOCK_ERROR(rc) ){
1819             storeLastErrno(pFile, tErrno);
1820           }
1821           goto end_unlock;
1822         }
1823         lock.l_type = F_UNLCK;
1824         lock.l_whence = SEEK_SET;
1825         lock.l_start = SHARED_FIRST+divSize;
1826         lock.l_len = SHARED_SIZE-divSize;
1827         if( unixFileLock(pFile, &lock)==(-1) ){
1828           tErrno = errno;
1829           rc = SQLITE_IOERR_UNLOCK;
1830           storeLastErrno(pFile, tErrno);
1831           goto end_unlock;
1832         }
1833       }else
1834 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
1835       {
1836         lock.l_type = F_RDLCK;
1837         lock.l_whence = SEEK_SET;
1838         lock.l_start = SHARED_FIRST;
1839         lock.l_len = SHARED_SIZE;
1840         if( unixFileLock(pFile, &lock) ){
1841           /* In theory, the call to unixFileLock() cannot fail because another
1842           ** process is holding an incompatible lock. If it does, this
1843           ** indicates that the other process is not following the locking
1844           ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
1845           ** SQLITE_BUSY would confuse the upper layer (in practice it causes
1846           ** an assert to fail). */
1847           rc = SQLITE_IOERR_RDLOCK;
1848           storeLastErrno(pFile, errno);
1849           goto end_unlock;
1850         }
1851       }
1852     }
1853     lock.l_type = F_UNLCK;
1854     lock.l_whence = SEEK_SET;
1855     lock.l_start = PENDING_BYTE;
1856     lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
1857     if( unixFileLock(pFile, &lock)==0 ){
1858       pInode->eFileLock = SHARED_LOCK;
1859     }else{
1860       rc = SQLITE_IOERR_UNLOCK;
1861       storeLastErrno(pFile, errno);
1862       goto end_unlock;
1863     }
1864   }
1865   if( eFileLock==NO_LOCK ){
1866     /* Decrement the shared lock counter.  Release the lock using an
1867     ** OS call only when all threads in this same process have released
1868     ** the lock.
1869     */
1870     pInode->nShared--;
1871     if( pInode->nShared==0 ){
1872       lock.l_type = F_UNLCK;
1873       lock.l_whence = SEEK_SET;
1874       lock.l_start = lock.l_len = 0L;
1875       if( unixFileLock(pFile, &lock)==0 ){
1876         pInode->eFileLock = NO_LOCK;
1877       }else{
1878         rc = SQLITE_IOERR_UNLOCK;
1879         storeLastErrno(pFile, errno);
1880         pInode->eFileLock = NO_LOCK;
1881         pFile->eFileLock = NO_LOCK;
1882       }
1883     }
1884 
1885     /* Decrement the count of locks against this same file.  When the
1886     ** count reaches zero, close any other file descriptors whose close
1887     ** was deferred because of outstanding locks.
1888     */
1889     pInode->nLock--;
1890     assert( pInode->nLock>=0 );
1891     if( pInode->nLock==0 ){
1892       closePendingFds(pFile);
1893     }
1894   }
1895 
1896 end_unlock:
1897   unixLeaveMutex();
1898   if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
1899   return rc;
1900 }
1901 
1902 /*
1903 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
1904 ** must be either NO_LOCK or SHARED_LOCK.
1905 **
1906 ** If the locking level of the file descriptor is already at or below
1907 ** the requested locking level, this routine is a no-op.
1908 */
1909 static int unixUnlock(sqlite3_file *id, int eFileLock){
1910 #if SQLITE_MAX_MMAP_SIZE>0
1911   assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 );
1912 #endif
1913   return posixUnlock(id, eFileLock, 0);
1914 }
1915 
1916 #if SQLITE_MAX_MMAP_SIZE>0
1917 static int unixMapfile(unixFile *pFd, i64 nByte);
1918 static void unixUnmapfile(unixFile *pFd);
1919 #endif
1920 
1921 /*
1922 ** This function performs the parts of the "close file" operation
1923 ** common to all locking schemes. It closes the directory and file
1924 ** handles, if they are valid, and sets all fields of the unixFile
1925 ** structure to 0.
1926 **
1927 ** It is *not* necessary to hold the mutex when this routine is called,
1928 ** even on VxWorks.  A mutex will be acquired on VxWorks by the
1929 ** vxworksReleaseFileId() routine.
1930 */
1931 static int closeUnixFile(sqlite3_file *id){
1932   unixFile *pFile = (unixFile*)id;
1933 #if SQLITE_MAX_MMAP_SIZE>0
1934   unixUnmapfile(pFile);
1935 #endif
1936   if( pFile->h>=0 ){
1937     robust_close(pFile, pFile->h, __LINE__);
1938     pFile->h = -1;
1939   }
1940 #if OS_VXWORKS
1941   if( pFile->pId ){
1942     if( pFile->ctrlFlags & UNIXFILE_DELETE ){
1943       osUnlink(pFile->pId->zCanonicalName);
1944     }
1945     vxworksReleaseFileId(pFile->pId);
1946     pFile->pId = 0;
1947   }
1948 #endif
1949 #ifdef SQLITE_UNLINK_AFTER_CLOSE
1950   if( pFile->ctrlFlags & UNIXFILE_DELETE ){
1951     osUnlink(pFile->zPath);
1952     sqlite3_free(*(char**)&pFile->zPath);
1953     pFile->zPath = 0;
1954   }
1955 #endif
1956   OSTRACE(("CLOSE   %-3d\n", pFile->h));
1957   OpenCounter(-1);
1958   sqlite3_free(pFile->pUnused);
1959   memset(pFile, 0, sizeof(unixFile));
1960   return SQLITE_OK;
1961 }
1962 
1963 /*
1964 ** Close a file.
1965 */
1966 static int unixClose(sqlite3_file *id){
1967   int rc = SQLITE_OK;
1968   unixFile *pFile = (unixFile *)id;
1969   verifyDbFile(pFile);
1970   unixUnlock(id, NO_LOCK);
1971   unixEnterMutex();
1972 
1973   /* unixFile.pInode is always valid here. Otherwise, a different close
1974   ** routine (e.g. nolockClose()) would be called instead.
1975   */
1976   assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
1977   if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
1978     /* If there are outstanding locks, do not actually close the file just
1979     ** yet because that would clear those locks.  Instead, add the file
1980     ** descriptor to pInode->pUnused list.  It will be automatically closed
1981     ** when the last lock is cleared.
1982     */
1983     setPendingFd(pFile);
1984   }
1985   releaseInodeInfo(pFile);
1986   rc = closeUnixFile(id);
1987   unixLeaveMutex();
1988   return rc;
1989 }
1990 
1991 /************** End of the posix advisory lock implementation *****************
1992 ******************************************************************************/
1993 
1994 /******************************************************************************
1995 ****************************** No-op Locking **********************************
1996 **
1997 ** Of the various locking implementations available, this is by far the
1998 ** simplest:  locking is ignored.  No attempt is made to lock the database
1999 ** file for reading or writing.
2000 **
2001 ** This locking mode is appropriate for use on read-only databases
2002 ** (ex: databases that are burned into CD-ROM, for example.)  It can
2003 ** also be used if the application employs some external mechanism to
2004 ** prevent simultaneous access of the same database by two or more
2005 ** database connections.  But there is a serious risk of database
2006 ** corruption if this locking mode is used in situations where multiple
2007 ** database connections are accessing the same database file at the same
2008 ** time and one or more of those connections are writing.
2009 */
2010 
2011 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
2012   UNUSED_PARAMETER(NotUsed);
2013   *pResOut = 0;
2014   return SQLITE_OK;
2015 }
2016 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
2017   UNUSED_PARAMETER2(NotUsed, NotUsed2);
2018   return SQLITE_OK;
2019 }
2020 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
2021   UNUSED_PARAMETER2(NotUsed, NotUsed2);
2022   return SQLITE_OK;
2023 }
2024 
2025 /*
2026 ** Close the file.
2027 */
2028 static int nolockClose(sqlite3_file *id) {
2029   return closeUnixFile(id);
2030 }
2031 
2032 /******************* End of the no-op lock implementation *********************
2033 ******************************************************************************/
2034 
2035 /******************************************************************************
2036 ************************* Begin dot-file Locking ******************************
2037 **
2038 ** The dotfile locking implementation uses the existence of separate lock
2039 ** files (really a directory) to control access to the database.  This works
2040 ** on just about every filesystem imaginable.  But there are serious downsides:
2041 **
2042 **    (1)  There is zero concurrency.  A single reader blocks all other
2043 **         connections from reading or writing the database.
2044 **
2045 **    (2)  An application crash or power loss can leave stale lock files
2046 **         sitting around that need to be cleared manually.
2047 **
2048 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
2049 ** other locking strategy is available.
2050 **
2051 ** Dotfile locking works by creating a subdirectory in the same directory as
2052 ** the database and with the same name but with a ".lock" extension added.
2053 ** The existence of a lock directory implies an EXCLUSIVE lock.  All other
2054 ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
2055 */
2056 
2057 /*
2058 ** The file suffix added to the data base filename in order to create the
2059 ** lock directory.
2060 */
2061 #define DOTLOCK_SUFFIX ".lock"
2062 
2063 /*
2064 ** This routine checks if there is a RESERVED lock held on the specified
2065 ** file by this or any other process. If such a lock is held, set *pResOut
2066 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
2067 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2068 **
2069 ** In dotfile locking, either a lock exists or it does not.  So in this
2070 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
2071 ** is held on the file and false if the file is unlocked.
2072 */
2073 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
2074   int rc = SQLITE_OK;
2075   int reserved = 0;
2076   unixFile *pFile = (unixFile*)id;
2077 
2078   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2079 
2080   assert( pFile );
2081   reserved = osAccess((const char*)pFile->lockingContext, 0)==0;
2082   OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
2083   *pResOut = reserved;
2084   return rc;
2085 }
2086 
2087 /*
2088 ** Lock the file with the lock specified by parameter eFileLock - one
2089 ** of the following:
2090 **
2091 **     (1) SHARED_LOCK
2092 **     (2) RESERVED_LOCK
2093 **     (3) PENDING_LOCK
2094 **     (4) EXCLUSIVE_LOCK
2095 **
2096 ** Sometimes when requesting one lock state, additional lock states
2097 ** are inserted in between.  The locking might fail on one of the later
2098 ** transitions leaving the lock state different from what it started but
2099 ** still short of its goal.  The following chart shows the allowed
2100 ** transitions and the inserted intermediate states:
2101 **
2102 **    UNLOCKED -> SHARED
2103 **    SHARED -> RESERVED
2104 **    SHARED -> (PENDING) -> EXCLUSIVE
2105 **    RESERVED -> (PENDING) -> EXCLUSIVE
2106 **    PENDING -> EXCLUSIVE
2107 **
2108 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2109 ** routine to lower a locking level.
2110 **
2111 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
2112 ** But we track the other locking levels internally.
2113 */
2114 static int dotlockLock(sqlite3_file *id, int eFileLock) {
2115   unixFile *pFile = (unixFile*)id;
2116   char *zLockFile = (char *)pFile->lockingContext;
2117   int rc = SQLITE_OK;
2118 
2119 
2120   /* If we have any lock, then the lock file already exists.  All we have
2121   ** to do is adjust our internal record of the lock level.
2122   */
2123   if( pFile->eFileLock > NO_LOCK ){
2124     pFile->eFileLock = eFileLock;
2125     /* Always update the timestamp on the old file */
2126 #ifdef HAVE_UTIME
2127     utime(zLockFile, NULL);
2128 #else
2129     utimes(zLockFile, NULL);
2130 #endif
2131     return SQLITE_OK;
2132   }
2133 
2134   /* grab an exclusive lock */
2135   rc = osMkdir(zLockFile, 0777);
2136   if( rc<0 ){
2137     /* failed to open/create the lock directory */
2138     int tErrno = errno;
2139     if( EEXIST == tErrno ){
2140       rc = SQLITE_BUSY;
2141     } else {
2142       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2143       if( rc!=SQLITE_BUSY ){
2144         storeLastErrno(pFile, tErrno);
2145       }
2146     }
2147     return rc;
2148   }
2149 
2150   /* got it, set the type and return ok */
2151   pFile->eFileLock = eFileLock;
2152   return rc;
2153 }
2154 
2155 /*
2156 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2157 ** must be either NO_LOCK or SHARED_LOCK.
2158 **
2159 ** If the locking level of the file descriptor is already at or below
2160 ** the requested locking level, this routine is a no-op.
2161 **
2162 ** When the locking level reaches NO_LOCK, delete the lock file.
2163 */
2164 static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
2165   unixFile *pFile = (unixFile*)id;
2166   char *zLockFile = (char *)pFile->lockingContext;
2167   int rc;
2168 
2169   assert( pFile );
2170   OSTRACE(("UNLOCK  %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
2171            pFile->eFileLock, osGetpid(0)));
2172   assert( eFileLock<=SHARED_LOCK );
2173 
2174   /* no-op if possible */
2175   if( pFile->eFileLock==eFileLock ){
2176     return SQLITE_OK;
2177   }
2178 
2179   /* To downgrade to shared, simply update our internal notion of the
2180   ** lock state.  No need to mess with the file on disk.
2181   */
2182   if( eFileLock==SHARED_LOCK ){
2183     pFile->eFileLock = SHARED_LOCK;
2184     return SQLITE_OK;
2185   }
2186 
2187   /* To fully unlock the database, delete the lock file */
2188   assert( eFileLock==NO_LOCK );
2189   rc = osRmdir(zLockFile);
2190   if( rc<0 ){
2191     int tErrno = errno;
2192     if( tErrno==ENOENT ){
2193       rc = SQLITE_OK;
2194     }else{
2195       rc = SQLITE_IOERR_UNLOCK;
2196       storeLastErrno(pFile, tErrno);
2197     }
2198     return rc;
2199   }
2200   pFile->eFileLock = NO_LOCK;
2201   return SQLITE_OK;
2202 }
2203 
2204 /*
2205 ** Close a file.  Make sure the lock has been released before closing.
2206 */
2207 static int dotlockClose(sqlite3_file *id) {
2208   unixFile *pFile = (unixFile*)id;
2209   assert( id!=0 );
2210   dotlockUnlock(id, NO_LOCK);
2211   sqlite3_free(pFile->lockingContext);
2212   return closeUnixFile(id);
2213 }
2214 /****************** End of the dot-file lock implementation *******************
2215 ******************************************************************************/
2216 
2217 /******************************************************************************
2218 ************************** Begin flock Locking ********************************
2219 **
2220 ** Use the flock() system call to do file locking.
2221 **
2222 ** flock() locking is like dot-file locking in that the various
2223 ** fine-grain locking levels supported by SQLite are collapsed into
2224 ** a single exclusive lock.  In other words, SHARED, RESERVED, and
2225 ** PENDING locks are the same thing as an EXCLUSIVE lock.  SQLite
2226 ** still works when you do this, but concurrency is reduced since
2227 ** only a single process can be reading the database at a time.
2228 **
2229 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off
2230 */
2231 #if SQLITE_ENABLE_LOCKING_STYLE
2232 
2233 /*
2234 ** Retry flock() calls that fail with EINTR
2235 */
2236 #ifdef EINTR
2237 static int robust_flock(int fd, int op){
2238   int rc;
2239   do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
2240   return rc;
2241 }
2242 #else
2243 # define robust_flock(a,b) flock(a,b)
2244 #endif
2245 
2246 
2247 /*
2248 ** This routine checks if there is a RESERVED lock held on the specified
2249 ** file by this or any other process. If such a lock is held, set *pResOut
2250 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
2251 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2252 */
2253 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
2254   int rc = SQLITE_OK;
2255   int reserved = 0;
2256   unixFile *pFile = (unixFile*)id;
2257 
2258   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2259 
2260   assert( pFile );
2261 
2262   /* Check if a thread in this process holds such a lock */
2263   if( pFile->eFileLock>SHARED_LOCK ){
2264     reserved = 1;
2265   }
2266 
2267   /* Otherwise see if some other process holds it. */
2268   if( !reserved ){
2269     /* attempt to get the lock */
2270     int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
2271     if( !lrc ){
2272       /* got the lock, unlock it */
2273       lrc = robust_flock(pFile->h, LOCK_UN);
2274       if ( lrc ) {
2275         int tErrno = errno;
2276         /* unlock failed with an error */
2277         lrc = SQLITE_IOERR_UNLOCK;
2278         storeLastErrno(pFile, tErrno);
2279         rc = lrc;
2280       }
2281     } else {
2282       int tErrno = errno;
2283       reserved = 1;
2284       /* someone else might have it reserved */
2285       lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2286       if( IS_LOCK_ERROR(lrc) ){
2287         storeLastErrno(pFile, tErrno);
2288         rc = lrc;
2289       }
2290     }
2291   }
2292   OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
2293 
2294 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2295   if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2296     rc = SQLITE_OK;
2297     reserved=1;
2298   }
2299 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2300   *pResOut = reserved;
2301   return rc;
2302 }
2303 
2304 /*
2305 ** Lock the file with the lock specified by parameter eFileLock - one
2306 ** of the following:
2307 **
2308 **     (1) SHARED_LOCK
2309 **     (2) RESERVED_LOCK
2310 **     (3) PENDING_LOCK
2311 **     (4) EXCLUSIVE_LOCK
2312 **
2313 ** Sometimes when requesting one lock state, additional lock states
2314 ** are inserted in between.  The locking might fail on one of the later
2315 ** transitions leaving the lock state different from what it started but
2316 ** still short of its goal.  The following chart shows the allowed
2317 ** transitions and the inserted intermediate states:
2318 **
2319 **    UNLOCKED -> SHARED
2320 **    SHARED -> RESERVED
2321 **    SHARED -> (PENDING) -> EXCLUSIVE
2322 **    RESERVED -> (PENDING) -> EXCLUSIVE
2323 **    PENDING -> EXCLUSIVE
2324 **
2325 ** flock() only really support EXCLUSIVE locks.  We track intermediate
2326 ** lock states in the sqlite3_file structure, but all locks SHARED or
2327 ** above are really EXCLUSIVE locks and exclude all other processes from
2328 ** access the file.
2329 **
2330 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2331 ** routine to lower a locking level.
2332 */
2333 static int flockLock(sqlite3_file *id, int eFileLock) {
2334   int rc = SQLITE_OK;
2335   unixFile *pFile = (unixFile*)id;
2336 
2337   assert( pFile );
2338 
2339   /* if we already have a lock, it is exclusive.
2340   ** Just adjust level and punt on outta here. */
2341   if (pFile->eFileLock > NO_LOCK) {
2342     pFile->eFileLock = eFileLock;
2343     return SQLITE_OK;
2344   }
2345 
2346   /* grab an exclusive lock */
2347 
2348   if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
2349     int tErrno = errno;
2350     /* didn't get, must be busy */
2351     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2352     if( IS_LOCK_ERROR(rc) ){
2353       storeLastErrno(pFile, tErrno);
2354     }
2355   } else {
2356     /* got it, set the type and return ok */
2357     pFile->eFileLock = eFileLock;
2358   }
2359   OSTRACE(("LOCK    %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
2360            rc==SQLITE_OK ? "ok" : "failed"));
2361 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2362   if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2363     rc = SQLITE_BUSY;
2364   }
2365 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2366   return rc;
2367 }
2368 
2369 
2370 /*
2371 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2372 ** must be either NO_LOCK or SHARED_LOCK.
2373 **
2374 ** If the locking level of the file descriptor is already at or below
2375 ** the requested locking level, this routine is a no-op.
2376 */
2377 static int flockUnlock(sqlite3_file *id, int eFileLock) {
2378   unixFile *pFile = (unixFile*)id;
2379 
2380   assert( pFile );
2381   OSTRACE(("UNLOCK  %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
2382            pFile->eFileLock, osGetpid(0)));
2383   assert( eFileLock<=SHARED_LOCK );
2384 
2385   /* no-op if possible */
2386   if( pFile->eFileLock==eFileLock ){
2387     return SQLITE_OK;
2388   }
2389 
2390   /* shared can just be set because we always have an exclusive */
2391   if (eFileLock==SHARED_LOCK) {
2392     pFile->eFileLock = eFileLock;
2393     return SQLITE_OK;
2394   }
2395 
2396   /* no, really, unlock. */
2397   if( robust_flock(pFile->h, LOCK_UN) ){
2398 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2399     return SQLITE_OK;
2400 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2401     return SQLITE_IOERR_UNLOCK;
2402   }else{
2403     pFile->eFileLock = NO_LOCK;
2404     return SQLITE_OK;
2405   }
2406 }
2407 
2408 /*
2409 ** Close a file.
2410 */
2411 static int flockClose(sqlite3_file *id) {
2412   assert( id!=0 );
2413   flockUnlock(id, NO_LOCK);
2414   return closeUnixFile(id);
2415 }
2416 
2417 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2418 
2419 /******************* End of the flock lock implementation *********************
2420 ******************************************************************************/
2421 
2422 /******************************************************************************
2423 ************************ Begin Named Semaphore Locking ************************
2424 **
2425 ** Named semaphore locking is only supported on VxWorks.
2426 **
2427 ** Semaphore locking is like dot-lock and flock in that it really only
2428 ** supports EXCLUSIVE locking.  Only a single process can read or write
2429 ** the database file at a time.  This reduces potential concurrency, but
2430 ** makes the lock implementation much easier.
2431 */
2432 #if OS_VXWORKS
2433 
2434 /*
2435 ** This routine checks if there is a RESERVED lock held on the specified
2436 ** file by this or any other process. If such a lock is held, set *pResOut
2437 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
2438 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2439 */
2440 static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) {
2441   int rc = SQLITE_OK;
2442   int reserved = 0;
2443   unixFile *pFile = (unixFile*)id;
2444 
2445   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2446 
2447   assert( pFile );
2448 
2449   /* Check if a thread in this process holds such a lock */
2450   if( pFile->eFileLock>SHARED_LOCK ){
2451     reserved = 1;
2452   }
2453 
2454   /* Otherwise see if some other process holds it. */
2455   if( !reserved ){
2456     sem_t *pSem = pFile->pInode->pSem;
2457 
2458     if( sem_trywait(pSem)==-1 ){
2459       int tErrno = errno;
2460       if( EAGAIN != tErrno ){
2461         rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
2462         storeLastErrno(pFile, tErrno);
2463       } else {
2464         /* someone else has the lock when we are in NO_LOCK */
2465         reserved = (pFile->eFileLock < SHARED_LOCK);
2466       }
2467     }else{
2468       /* we could have it if we want it */
2469       sem_post(pSem);
2470     }
2471   }
2472   OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
2473 
2474   *pResOut = reserved;
2475   return rc;
2476 }
2477 
2478 /*
2479 ** Lock the file with the lock specified by parameter eFileLock - one
2480 ** of the following:
2481 **
2482 **     (1) SHARED_LOCK
2483 **     (2) RESERVED_LOCK
2484 **     (3) PENDING_LOCK
2485 **     (4) EXCLUSIVE_LOCK
2486 **
2487 ** Sometimes when requesting one lock state, additional lock states
2488 ** are inserted in between.  The locking might fail on one of the later
2489 ** transitions leaving the lock state different from what it started but
2490 ** still short of its goal.  The following chart shows the allowed
2491 ** transitions and the inserted intermediate states:
2492 **
2493 **    UNLOCKED -> SHARED
2494 **    SHARED -> RESERVED
2495 **    SHARED -> (PENDING) -> EXCLUSIVE
2496 **    RESERVED -> (PENDING) -> EXCLUSIVE
2497 **    PENDING -> EXCLUSIVE
2498 **
2499 ** Semaphore locks only really support EXCLUSIVE locks.  We track intermediate
2500 ** lock states in the sqlite3_file structure, but all locks SHARED or
2501 ** above are really EXCLUSIVE locks and exclude all other processes from
2502 ** access the file.
2503 **
2504 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2505 ** routine to lower a locking level.
2506 */
2507 static int semXLock(sqlite3_file *id, int eFileLock) {
2508   unixFile *pFile = (unixFile*)id;
2509   sem_t *pSem = pFile->pInode->pSem;
2510   int rc = SQLITE_OK;
2511 
2512   /* if we already have a lock, it is exclusive.
2513   ** Just adjust level and punt on outta here. */
2514   if (pFile->eFileLock > NO_LOCK) {
2515     pFile->eFileLock = eFileLock;
2516     rc = SQLITE_OK;
2517     goto sem_end_lock;
2518   }
2519 
2520   /* lock semaphore now but bail out when already locked. */
2521   if( sem_trywait(pSem)==-1 ){
2522     rc = SQLITE_BUSY;
2523     goto sem_end_lock;
2524   }
2525 
2526   /* got it, set the type and return ok */
2527   pFile->eFileLock = eFileLock;
2528 
2529  sem_end_lock:
2530   return rc;
2531 }
2532 
2533 /*
2534 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2535 ** must be either NO_LOCK or SHARED_LOCK.
2536 **
2537 ** If the locking level of the file descriptor is already at or below
2538 ** the requested locking level, this routine is a no-op.
2539 */
2540 static int semXUnlock(sqlite3_file *id, int eFileLock) {
2541   unixFile *pFile = (unixFile*)id;
2542   sem_t *pSem = pFile->pInode->pSem;
2543 
2544   assert( pFile );
2545   assert( pSem );
2546   OSTRACE(("UNLOCK  %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
2547            pFile->eFileLock, osGetpid(0)));
2548   assert( eFileLock<=SHARED_LOCK );
2549 
2550   /* no-op if possible */
2551   if( pFile->eFileLock==eFileLock ){
2552     return SQLITE_OK;
2553   }
2554 
2555   /* shared can just be set because we always have an exclusive */
2556   if (eFileLock==SHARED_LOCK) {
2557     pFile->eFileLock = eFileLock;
2558     return SQLITE_OK;
2559   }
2560 
2561   /* no, really unlock. */
2562   if ( sem_post(pSem)==-1 ) {
2563     int rc, tErrno = errno;
2564     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2565     if( IS_LOCK_ERROR(rc) ){
2566       storeLastErrno(pFile, tErrno);
2567     }
2568     return rc;
2569   }
2570   pFile->eFileLock = NO_LOCK;
2571   return SQLITE_OK;
2572 }
2573 
2574 /*
2575  ** Close a file.
2576  */
2577 static int semXClose(sqlite3_file *id) {
2578   if( id ){
2579     unixFile *pFile = (unixFile*)id;
2580     semXUnlock(id, NO_LOCK);
2581     assert( pFile );
2582     unixEnterMutex();
2583     releaseInodeInfo(pFile);
2584     unixLeaveMutex();
2585     closeUnixFile(id);
2586   }
2587   return SQLITE_OK;
2588 }
2589 
2590 #endif /* OS_VXWORKS */
2591 /*
2592 ** Named semaphore locking is only available on VxWorks.
2593 **
2594 *************** End of the named semaphore lock implementation ****************
2595 ******************************************************************************/
2596 
2597 
2598 /******************************************************************************
2599 *************************** Begin AFP Locking *********************************
2600 **
2601 ** AFP is the Apple Filing Protocol.  AFP is a network filesystem found
2602 ** on Apple Macintosh computers - both OS9 and OSX.
2603 **
2604 ** Third-party implementations of AFP are available.  But this code here
2605 ** only works on OSX.
2606 */
2607 
2608 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2609 /*
2610 ** The afpLockingContext structure contains all afp lock specific state
2611 */
2612 typedef struct afpLockingContext afpLockingContext;
2613 struct afpLockingContext {
2614   int reserved;
2615   const char *dbPath;             /* Name of the open file */
2616 };
2617 
2618 struct ByteRangeLockPB2
2619 {
2620   unsigned long long offset;        /* offset to first byte to lock */
2621   unsigned long long length;        /* nbr of bytes to lock */
2622   unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
2623   unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
2624   unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
2625   int fd;                           /* file desc to assoc this lock with */
2626 };
2627 
2628 #define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
2629 
2630 /*
2631 ** This is a utility for setting or clearing a bit-range lock on an
2632 ** AFP filesystem.
2633 **
2634 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2635 */
2636 static int afpSetLock(
2637   const char *path,              /* Name of the file to be locked or unlocked */
2638   unixFile *pFile,               /* Open file descriptor on path */
2639   unsigned long long offset,     /* First byte to be locked */
2640   unsigned long long length,     /* Number of bytes to lock */
2641   int setLockFlag                /* True to set lock.  False to clear lock */
2642 ){
2643   struct ByteRangeLockPB2 pb;
2644   int err;
2645 
2646   pb.unLockFlag = setLockFlag ? 0 : 1;
2647   pb.startEndFlag = 0;
2648   pb.offset = offset;
2649   pb.length = length;
2650   pb.fd = pFile->h;
2651 
2652   OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
2653     (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
2654     offset, length));
2655   err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
2656   if ( err==-1 ) {
2657     int rc;
2658     int tErrno = errno;
2659     OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2660              path, tErrno, strerror(tErrno)));
2661 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2662     rc = SQLITE_BUSY;
2663 #else
2664     rc = sqliteErrorFromPosixError(tErrno,
2665                     setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
2666 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
2667     if( IS_LOCK_ERROR(rc) ){
2668       storeLastErrno(pFile, tErrno);
2669     }
2670     return rc;
2671   } else {
2672     return SQLITE_OK;
2673   }
2674 }
2675 
2676 /*
2677 ** This routine checks if there is a RESERVED lock held on the specified
2678 ** file by this or any other process. If such a lock is held, set *pResOut
2679 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
2680 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2681 */
2682 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
2683   int rc = SQLITE_OK;
2684   int reserved = 0;
2685   unixFile *pFile = (unixFile*)id;
2686   afpLockingContext *context;
2687 
2688   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2689 
2690   assert( pFile );
2691   context = (afpLockingContext *) pFile->lockingContext;
2692   if( context->reserved ){
2693     *pResOut = 1;
2694     return SQLITE_OK;
2695   }
2696   unixEnterMutex(); /* Because pFile->pInode is shared across threads */
2697 
2698   /* Check if a thread in this process holds such a lock */
2699   if( pFile->pInode->eFileLock>SHARED_LOCK ){
2700     reserved = 1;
2701   }
2702 
2703   /* Otherwise see if some other process holds it.
2704    */
2705   if( !reserved ){
2706     /* lock the RESERVED byte */
2707     int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2708     if( SQLITE_OK==lrc ){
2709       /* if we succeeded in taking the reserved lock, unlock it to restore
2710       ** the original state */
2711       lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2712     } else {
2713       /* if we failed to get the lock then someone else must have it */
2714       reserved = 1;
2715     }
2716     if( IS_LOCK_ERROR(lrc) ){
2717       rc=lrc;
2718     }
2719   }
2720 
2721   unixLeaveMutex();
2722   OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
2723 
2724   *pResOut = reserved;
2725   return rc;
2726 }
2727 
2728 /*
2729 ** Lock the file with the lock specified by parameter eFileLock - one
2730 ** of the following:
2731 **
2732 **     (1) SHARED_LOCK
2733 **     (2) RESERVED_LOCK
2734 **     (3) PENDING_LOCK
2735 **     (4) EXCLUSIVE_LOCK
2736 **
2737 ** Sometimes when requesting one lock state, additional lock states
2738 ** are inserted in between.  The locking might fail on one of the later
2739 ** transitions leaving the lock state different from what it started but
2740 ** still short of its goal.  The following chart shows the allowed
2741 ** transitions and the inserted intermediate states:
2742 **
2743 **    UNLOCKED -> SHARED
2744 **    SHARED -> RESERVED
2745 **    SHARED -> (PENDING) -> EXCLUSIVE
2746 **    RESERVED -> (PENDING) -> EXCLUSIVE
2747 **    PENDING -> EXCLUSIVE
2748 **
2749 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2750 ** routine to lower a locking level.
2751 */
2752 static int afpLock(sqlite3_file *id, int eFileLock){
2753   int rc = SQLITE_OK;
2754   unixFile *pFile = (unixFile*)id;
2755   unixInodeInfo *pInode = pFile->pInode;
2756   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2757 
2758   assert( pFile );
2759   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
2760            azFileLock(eFileLock), azFileLock(pFile->eFileLock),
2761            azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0)));
2762 
2763   /* If there is already a lock of this type or more restrictive on the
2764   ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
2765   ** unixEnterMutex() hasn't been called yet.
2766   */
2767   if( pFile->eFileLock>=eFileLock ){
2768     OSTRACE(("LOCK    %d %s ok (already held) (afp)\n", pFile->h,
2769            azFileLock(eFileLock)));
2770     return SQLITE_OK;
2771   }
2772 
2773   /* Make sure the locking sequence is correct
2774   **  (1) We never move from unlocked to anything higher than shared lock.
2775   **  (2) SQLite never explicitly requests a pendig lock.
2776   **  (3) A shared lock is always held when a reserve lock is requested.
2777   */
2778   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
2779   assert( eFileLock!=PENDING_LOCK );
2780   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
2781 
2782   /* This mutex is needed because pFile->pInode is shared across threads
2783   */
2784   unixEnterMutex();
2785   pInode = pFile->pInode;
2786 
2787   /* If some thread using this PID has a lock via a different unixFile*
2788   ** handle that precludes the requested lock, return BUSY.
2789   */
2790   if( (pFile->eFileLock!=pInode->eFileLock &&
2791        (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
2792      ){
2793     rc = SQLITE_BUSY;
2794     goto afp_end_lock;
2795   }
2796 
2797   /* If a SHARED lock is requested, and some thread using this PID already
2798   ** has a SHARED or RESERVED lock, then increment reference counts and
2799   ** return SQLITE_OK.
2800   */
2801   if( eFileLock==SHARED_LOCK &&
2802      (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
2803     assert( eFileLock==SHARED_LOCK );
2804     assert( pFile->eFileLock==0 );
2805     assert( pInode->nShared>0 );
2806     pFile->eFileLock = SHARED_LOCK;
2807     pInode->nShared++;
2808     pInode->nLock++;
2809     goto afp_end_lock;
2810   }
2811 
2812   /* A PENDING lock is needed before acquiring a SHARED lock and before
2813   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
2814   ** be released.
2815   */
2816   if( eFileLock==SHARED_LOCK
2817       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
2818   ){
2819     int failed;
2820     failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
2821     if (failed) {
2822       rc = failed;
2823       goto afp_end_lock;
2824     }
2825   }
2826 
2827   /* If control gets to this point, then actually go ahead and make
2828   ** operating system calls for the specified lock.
2829   */
2830   if( eFileLock==SHARED_LOCK ){
2831     int lrc1, lrc2, lrc1Errno = 0;
2832     long lk, mask;
2833 
2834     assert( pInode->nShared==0 );
2835     assert( pInode->eFileLock==0 );
2836 
2837     mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
2838     /* Now get the read-lock SHARED_LOCK */
2839     /* note that the quality of the randomness doesn't matter that much */
2840     lk = random();
2841     pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
2842     lrc1 = afpSetLock(context->dbPath, pFile,
2843           SHARED_FIRST+pInode->sharedByte, 1, 1);
2844     if( IS_LOCK_ERROR(lrc1) ){
2845       lrc1Errno = pFile->lastErrno;
2846     }
2847     /* Drop the temporary PENDING lock */
2848     lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2849 
2850     if( IS_LOCK_ERROR(lrc1) ) {
2851       storeLastErrno(pFile, lrc1Errno);
2852       rc = lrc1;
2853       goto afp_end_lock;
2854     } else if( IS_LOCK_ERROR(lrc2) ){
2855       rc = lrc2;
2856       goto afp_end_lock;
2857     } else if( lrc1 != SQLITE_OK ) {
2858       rc = lrc1;
2859     } else {
2860       pFile->eFileLock = SHARED_LOCK;
2861       pInode->nLock++;
2862       pInode->nShared = 1;
2863     }
2864   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
2865     /* We are trying for an exclusive lock but another thread in this
2866      ** same process is still holding a shared lock. */
2867     rc = SQLITE_BUSY;
2868   }else{
2869     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
2870     ** assumed that there is a SHARED or greater lock on the file
2871     ** already.
2872     */
2873     int failed = 0;
2874     assert( 0!=pFile->eFileLock );
2875     if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
2876         /* Acquire a RESERVED lock */
2877         failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2878       if( !failed ){
2879         context->reserved = 1;
2880       }
2881     }
2882     if (!failed && eFileLock == EXCLUSIVE_LOCK) {
2883       /* Acquire an EXCLUSIVE lock */
2884 
2885       /* Remove the shared lock before trying the range.  we'll need to
2886       ** reestablish the shared lock if we can't get the  afpUnlock
2887       */
2888       if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
2889                          pInode->sharedByte, 1, 0)) ){
2890         int failed2 = SQLITE_OK;
2891         /* now attemmpt to get the exclusive lock range */
2892         failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
2893                                SHARED_SIZE, 1);
2894         if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
2895                        SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
2896           /* Can't reestablish the shared lock.  Sqlite can't deal, this is
2897           ** a critical I/O error
2898           */
2899           rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 :
2900                SQLITE_IOERR_LOCK;
2901           goto afp_end_lock;
2902         }
2903       }else{
2904         rc = failed;
2905       }
2906     }
2907     if( failed ){
2908       rc = failed;
2909     }
2910   }
2911 
2912   if( rc==SQLITE_OK ){
2913     pFile->eFileLock = eFileLock;
2914     pInode->eFileLock = eFileLock;
2915   }else if( eFileLock==EXCLUSIVE_LOCK ){
2916     pFile->eFileLock = PENDING_LOCK;
2917     pInode->eFileLock = PENDING_LOCK;
2918   }
2919 
2920 afp_end_lock:
2921   unixLeaveMutex();
2922   OSTRACE(("LOCK    %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
2923          rc==SQLITE_OK ? "ok" : "failed"));
2924   return rc;
2925 }
2926 
2927 /*
2928 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2929 ** must be either NO_LOCK or SHARED_LOCK.
2930 **
2931 ** If the locking level of the file descriptor is already at or below
2932 ** the requested locking level, this routine is a no-op.
2933 */
2934 static int afpUnlock(sqlite3_file *id, int eFileLock) {
2935   int rc = SQLITE_OK;
2936   unixFile *pFile = (unixFile*)id;
2937   unixInodeInfo *pInode;
2938   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2939   int skipShared = 0;
2940 #ifdef SQLITE_TEST
2941   int h = pFile->h;
2942 #endif
2943 
2944   assert( pFile );
2945   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
2946            pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
2947            osGetpid(0)));
2948 
2949   assert( eFileLock<=SHARED_LOCK );
2950   if( pFile->eFileLock<=eFileLock ){
2951     return SQLITE_OK;
2952   }
2953   unixEnterMutex();
2954   pInode = pFile->pInode;
2955   assert( pInode->nShared!=0 );
2956   if( pFile->eFileLock>SHARED_LOCK ){
2957     assert( pInode->eFileLock==pFile->eFileLock );
2958     SimulateIOErrorBenign(1);
2959     SimulateIOError( h=(-1) )
2960     SimulateIOErrorBenign(0);
2961 
2962 #ifdef SQLITE_DEBUG
2963     /* When reducing a lock such that other processes can start
2964     ** reading the database file again, make sure that the
2965     ** transaction counter was updated if any part of the database
2966     ** file changed.  If the transaction counter is not updated,
2967     ** other connections to the same file might not realize that
2968     ** the file has changed and hence might not know to flush their
2969     ** cache.  The use of a stale cache can lead to database corruption.
2970     */
2971     assert( pFile->inNormalWrite==0
2972            || pFile->dbUpdate==0
2973            || pFile->transCntrChng==1 );
2974     pFile->inNormalWrite = 0;
2975 #endif
2976 
2977     if( pFile->eFileLock==EXCLUSIVE_LOCK ){
2978       rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
2979       if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
2980         /* only re-establish the shared lock if necessary */
2981         int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2982         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
2983       } else {
2984         skipShared = 1;
2985       }
2986     }
2987     if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
2988       rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2989     }
2990     if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
2991       rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2992       if( !rc ){
2993         context->reserved = 0;
2994       }
2995     }
2996     if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
2997       pInode->eFileLock = SHARED_LOCK;
2998     }
2999   }
3000   if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
3001 
3002     /* Decrement the shared lock counter.  Release the lock using an
3003     ** OS call only when all threads in this same process have released
3004     ** the lock.
3005     */
3006     unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
3007     pInode->nShared--;
3008     if( pInode->nShared==0 ){
3009       SimulateIOErrorBenign(1);
3010       SimulateIOError( h=(-1) )
3011       SimulateIOErrorBenign(0);
3012       if( !skipShared ){
3013         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
3014       }
3015       if( !rc ){
3016         pInode->eFileLock = NO_LOCK;
3017         pFile->eFileLock = NO_LOCK;
3018       }
3019     }
3020     if( rc==SQLITE_OK ){
3021       pInode->nLock--;
3022       assert( pInode->nLock>=0 );
3023       if( pInode->nLock==0 ){
3024         closePendingFds(pFile);
3025       }
3026     }
3027   }
3028 
3029   unixLeaveMutex();
3030   if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
3031   return rc;
3032 }
3033 
3034 /*
3035 ** Close a file & cleanup AFP specific locking context
3036 */
3037 static int afpClose(sqlite3_file *id) {
3038   int rc = SQLITE_OK;
3039   unixFile *pFile = (unixFile*)id;
3040   assert( id!=0 );
3041   afpUnlock(id, NO_LOCK);
3042   unixEnterMutex();
3043   if( pFile->pInode && pFile->pInode->nLock ){
3044     /* If there are outstanding locks, do not actually close the file just
3045     ** yet because that would clear those locks.  Instead, add the file
3046     ** descriptor to pInode->aPending.  It will be automatically closed when
3047     ** the last lock is cleared.
3048     */
3049     setPendingFd(pFile);
3050   }
3051   releaseInodeInfo(pFile);
3052   sqlite3_free(pFile->lockingContext);
3053   rc = closeUnixFile(id);
3054   unixLeaveMutex();
3055   return rc;
3056 }
3057 
3058 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
3059 /*
3060 ** The code above is the AFP lock implementation.  The code is specific
3061 ** to MacOSX and does not work on other unix platforms.  No alternative
3062 ** is available.  If you don't compile for a mac, then the "unix-afp"
3063 ** VFS is not available.
3064 **
3065 ********************* End of the AFP lock implementation **********************
3066 ******************************************************************************/
3067 
3068 /******************************************************************************
3069 *************************** Begin NFS Locking ********************************/
3070 
3071 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
3072 /*
3073  ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
3074  ** must be either NO_LOCK or SHARED_LOCK.
3075  **
3076  ** If the locking level of the file descriptor is already at or below
3077  ** the requested locking level, this routine is a no-op.
3078  */
3079 static int nfsUnlock(sqlite3_file *id, int eFileLock){
3080   return posixUnlock(id, eFileLock, 1);
3081 }
3082 
3083 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
3084 /*
3085 ** The code above is the NFS lock implementation.  The code is specific
3086 ** to MacOSX and does not work on other unix platforms.  No alternative
3087 ** is available.
3088 **
3089 ********************* End of the NFS lock implementation **********************
3090 ******************************************************************************/
3091 
3092 /******************************************************************************
3093 **************** Non-locking sqlite3_file methods *****************************
3094 **
3095 ** The next division contains implementations for all methods of the
3096 ** sqlite3_file object other than the locking methods.  The locking
3097 ** methods were defined in divisions above (one locking method per
3098 ** division).  Those methods that are common to all locking modes
3099 ** are gather together into this division.
3100 */
3101 
3102 /*
3103 ** Seek to the offset passed as the second argument, then read cnt
3104 ** bytes into pBuf. Return the number of bytes actually read.
3105 **
3106 ** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
3107 ** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
3108 ** one system to another.  Since SQLite does not define USE_PREAD
3109 ** in any form by default, we will not attempt to define _XOPEN_SOURCE.
3110 ** See tickets #2741 and #2681.
3111 **
3112 ** To avoid stomping the errno value on a failed read the lastErrno value
3113 ** is set before returning.
3114 */
3115 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
3116   int got;
3117   int prior = 0;
3118 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
3119   i64 newOffset;
3120 #endif
3121   TIMER_START;
3122   assert( cnt==(cnt&0x1ffff) );
3123   assert( id->h>2 );
3124   do{
3125 #if defined(USE_PREAD)
3126     got = osPread(id->h, pBuf, cnt, offset);
3127     SimulateIOError( got = -1 );
3128 #elif defined(USE_PREAD64)
3129     got = osPread64(id->h, pBuf, cnt, offset);
3130     SimulateIOError( got = -1 );
3131 #else
3132     newOffset = lseek(id->h, offset, SEEK_SET);
3133     SimulateIOError( newOffset = -1 );
3134     if( newOffset<0 ){
3135       storeLastErrno((unixFile*)id, errno);
3136       return -1;
3137     }
3138     got = osRead(id->h, pBuf, cnt);
3139 #endif
3140     if( got==cnt ) break;
3141     if( got<0 ){
3142       if( errno==EINTR ){ got = 1; continue; }
3143       prior = 0;
3144       storeLastErrno((unixFile*)id,  errno);
3145       break;
3146     }else if( got>0 ){
3147       cnt -= got;
3148       offset += got;
3149       prior += got;
3150       pBuf = (void*)(got + (char*)pBuf);
3151     }
3152   }while( got>0 );
3153   TIMER_END;
3154   OSTRACE(("READ    %-3d %5d %7lld %llu\n",
3155             id->h, got+prior, offset-prior, TIMER_ELAPSED));
3156   return got+prior;
3157 }
3158 
3159 /*
3160 ** Read data from a file into a buffer.  Return SQLITE_OK if all
3161 ** bytes were read successfully and SQLITE_IOERR if anything goes
3162 ** wrong.
3163 */
3164 static int unixRead(
3165   sqlite3_file *id,
3166   void *pBuf,
3167   int amt,
3168   sqlite3_int64 offset
3169 ){
3170   unixFile *pFile = (unixFile *)id;
3171   int got;
3172   assert( id );
3173   assert( offset>=0 );
3174   assert( amt>0 );
3175 
3176   /* If this is a database file (not a journal, master-journal or temp
3177   ** file), the bytes in the locking range should never be read or written. */
3178 #if 0
3179   assert( pFile->pUnused==0
3180        || offset>=PENDING_BYTE+512
3181        || offset+amt<=PENDING_BYTE
3182   );
3183 #endif
3184 
3185 #if SQLITE_MAX_MMAP_SIZE>0
3186   /* Deal with as much of this read request as possible by transfering
3187   ** data from the memory mapping using memcpy().  */
3188   if( offset<pFile->mmapSize ){
3189     if( offset+amt <= pFile->mmapSize ){
3190       memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
3191       return SQLITE_OK;
3192     }else{
3193       int nCopy = pFile->mmapSize - offset;
3194       memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
3195       pBuf = &((u8 *)pBuf)[nCopy];
3196       amt -= nCopy;
3197       offset += nCopy;
3198     }
3199   }
3200 #endif
3201 
3202   got = seekAndRead(pFile, offset, pBuf, amt);
3203   if( got==amt ){
3204     return SQLITE_OK;
3205   }else if( got<0 ){
3206     /* lastErrno set by seekAndRead */
3207     return SQLITE_IOERR_READ;
3208   }else{
3209     storeLastErrno(pFile, 0);   /* not a system error */
3210     /* Unread parts of the buffer must be zero-filled */
3211     memset(&((char*)pBuf)[got], 0, amt-got);
3212     return SQLITE_IOERR_SHORT_READ;
3213   }
3214 }
3215 
3216 /*
3217 ** Attempt to seek the file-descriptor passed as the first argument to
3218 ** absolute offset iOff, then attempt to write nBuf bytes of data from
3219 ** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise,
3220 ** return the actual number of bytes written (which may be less than
3221 ** nBuf).
3222 */
3223 static int seekAndWriteFd(
3224   int fd,                         /* File descriptor to write to */
3225   i64 iOff,                       /* File offset to begin writing at */
3226   const void *pBuf,               /* Copy data from this buffer to the file */
3227   int nBuf,                       /* Size of buffer pBuf in bytes */
3228   int *piErrno                    /* OUT: Error number if error occurs */
3229 ){
3230   int rc = 0;                     /* Value returned by system call */
3231 
3232   assert( nBuf==(nBuf&0x1ffff) );
3233   assert( fd>2 );
3234   assert( piErrno!=0 );
3235   nBuf &= 0x1ffff;
3236   TIMER_START;
3237 
3238 #if defined(USE_PREAD)
3239   do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
3240 #elif defined(USE_PREAD64)
3241   do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
3242 #else
3243   do{
3244     i64 iSeek = lseek(fd, iOff, SEEK_SET);
3245     SimulateIOError( iSeek = -1 );
3246     if( iSeek<0 ){
3247       rc = -1;
3248       break;
3249     }
3250     rc = osWrite(fd, pBuf, nBuf);
3251   }while( rc<0 && errno==EINTR );
3252 #endif
3253 
3254   TIMER_END;
3255   OSTRACE(("WRITE   %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED));
3256 
3257   if( rc<0 ) *piErrno = errno;
3258   return rc;
3259 }
3260 
3261 
3262 /*
3263 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
3264 ** Return the number of bytes actually read.  Update the offset.
3265 **
3266 ** To avoid stomping the errno value on a failed write the lastErrno value
3267 ** is set before returning.
3268 */
3269 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
3270   return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno);
3271 }
3272 
3273 
3274 /*
3275 ** Write data from a buffer into a file.  Return SQLITE_OK on success
3276 ** or some other error code on failure.
3277 */
3278 static int unixWrite(
3279   sqlite3_file *id,
3280   const void *pBuf,
3281   int amt,
3282   sqlite3_int64 offset
3283 ){
3284   unixFile *pFile = (unixFile*)id;
3285   int wrote = 0;
3286   assert( id );
3287   assert( amt>0 );
3288 
3289   /* If this is a database file (not a journal, master-journal or temp
3290   ** file), the bytes in the locking range should never be read or written. */
3291 #if 0
3292   assert( pFile->pUnused==0
3293        || offset>=PENDING_BYTE+512
3294        || offset+amt<=PENDING_BYTE
3295   );
3296 #endif
3297 
3298 #ifdef SQLITE_DEBUG
3299   /* If we are doing a normal write to a database file (as opposed to
3300   ** doing a hot-journal rollback or a write to some file other than a
3301   ** normal database file) then record the fact that the database
3302   ** has changed.  If the transaction counter is modified, record that
3303   ** fact too.
3304   */
3305   if( pFile->inNormalWrite ){
3306     pFile->dbUpdate = 1;  /* The database has been modified */
3307     if( offset<=24 && offset+amt>=27 ){
3308       int rc;
3309       char oldCntr[4];
3310       SimulateIOErrorBenign(1);
3311       rc = seekAndRead(pFile, 24, oldCntr, 4);
3312       SimulateIOErrorBenign(0);
3313       if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
3314         pFile->transCntrChng = 1;  /* The transaction counter has changed */
3315       }
3316     }
3317   }
3318 #endif
3319 
3320 #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
3321   /* Deal with as much of this write request as possible by transfering
3322   ** data from the memory mapping using memcpy().  */
3323   if( offset<pFile->mmapSize ){
3324     if( offset+amt <= pFile->mmapSize ){
3325       memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
3326       return SQLITE_OK;
3327     }else{
3328       int nCopy = pFile->mmapSize - offset;
3329       memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
3330       pBuf = &((u8 *)pBuf)[nCopy];
3331       amt -= nCopy;
3332       offset += nCopy;
3333     }
3334   }
3335 #endif
3336 
3337   while( (wrote = seekAndWrite(pFile, offset, pBuf, amt))<amt && wrote>0 ){
3338     amt -= wrote;
3339     offset += wrote;
3340     pBuf = &((char*)pBuf)[wrote];
3341   }
3342   SimulateIOError(( wrote=(-1), amt=1 ));
3343   SimulateDiskfullError(( wrote=0, amt=1 ));
3344 
3345   if( amt>wrote ){
3346     if( wrote<0 && pFile->lastErrno!=ENOSPC ){
3347       /* lastErrno set by seekAndWrite */
3348       return SQLITE_IOERR_WRITE;
3349     }else{
3350       storeLastErrno(pFile, 0); /* not a system error */
3351       return SQLITE_FULL;
3352     }
3353   }
3354 
3355   return SQLITE_OK;
3356 }
3357 
3358 #ifdef SQLITE_TEST
3359 /*
3360 ** Count the number of fullsyncs and normal syncs.  This is used to test
3361 ** that syncs and fullsyncs are occurring at the right times.
3362 */
3363 int sqlite3_sync_count = 0;
3364 int sqlite3_fullsync_count = 0;
3365 #endif
3366 
3367 /*
3368 ** We do not trust systems to provide a working fdatasync().  Some do.
3369 ** Others do no.  To be safe, we will stick with the (slightly slower)
3370 ** fsync(). If you know that your system does support fdatasync() correctly,
3371 ** then simply compile with -Dfdatasync=fdatasync or -DHAVE_FDATASYNC
3372 */
3373 #if !defined(fdatasync) && !HAVE_FDATASYNC
3374 # define fdatasync fsync
3375 #endif
3376 
3377 /*
3378 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
3379 ** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
3380 ** only available on Mac OS X.  But that could change.
3381 */
3382 #ifdef F_FULLFSYNC
3383 # define HAVE_FULLFSYNC 1
3384 #else
3385 # define HAVE_FULLFSYNC 0
3386 #endif
3387 
3388 
3389 /*
3390 ** The fsync() system call does not work as advertised on many
3391 ** unix systems.  The following procedure is an attempt to make
3392 ** it work better.
3393 **
3394 ** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
3395 ** for testing when we want to run through the test suite quickly.
3396 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
3397 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
3398 ** or power failure will likely corrupt the database file.
3399 **
3400 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
3401 ** The idea behind dataOnly is that it should only write the file content
3402 ** to disk, not the inode.  We only set dataOnly if the file size is
3403 ** unchanged since the file size is part of the inode.  However,
3404 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
3405 ** file size has changed.  The only real difference between fdatasync()
3406 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
3407 ** inode if the mtime or owner or other inode attributes have changed.
3408 ** We only care about the file size, not the other file attributes, so
3409 ** as far as SQLite is concerned, an fdatasync() is always adequate.
3410 ** So, we always use fdatasync() if it is available, regardless of
3411 ** the value of the dataOnly flag.
3412 */
3413 static int full_fsync(int fd, int fullSync, int dataOnly){
3414   int rc;
3415 
3416   /* The following "ifdef/elif/else/" block has the same structure as
3417   ** the one below. It is replicated here solely to avoid cluttering
3418   ** up the real code with the UNUSED_PARAMETER() macros.
3419   */
3420 #ifdef SQLITE_NO_SYNC
3421   UNUSED_PARAMETER(fd);
3422   UNUSED_PARAMETER(fullSync);
3423   UNUSED_PARAMETER(dataOnly);
3424 #elif HAVE_FULLFSYNC
3425   UNUSED_PARAMETER(dataOnly);
3426 #else
3427   UNUSED_PARAMETER(fullSync);
3428   UNUSED_PARAMETER(dataOnly);
3429 #endif
3430 
3431   /* Record the number of times that we do a normal fsync() and
3432   ** FULLSYNC.  This is used during testing to verify that this procedure
3433   ** gets called with the correct arguments.
3434   */
3435 #ifdef SQLITE_TEST
3436   if( fullSync ) sqlite3_fullsync_count++;
3437   sqlite3_sync_count++;
3438 #endif
3439 
3440   /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3441   ** no-op.  But go ahead and call fstat() to validate the file
3442   ** descriptor as we need a method to provoke a failure during
3443   ** coverate testing.
3444   */
3445 #ifdef SQLITE_NO_SYNC
3446   {
3447     struct stat buf;
3448     rc = osFstat(fd, &buf);
3449   }
3450 #elif HAVE_FULLFSYNC
3451   if( fullSync ){
3452     rc = osFcntl(fd, F_FULLFSYNC, 0);
3453   }else{
3454     rc = 1;
3455   }
3456   /* If the FULLFSYNC failed, fall back to attempting an fsync().
3457   ** It shouldn't be possible for fullfsync to fail on the local
3458   ** file system (on OSX), so failure indicates that FULLFSYNC
3459   ** isn't supported for this file system. So, attempt an fsync
3460   ** and (for now) ignore the overhead of a superfluous fcntl call.
3461   ** It'd be better to detect fullfsync support once and avoid
3462   ** the fcntl call every time sync is called.
3463   */
3464   if( rc ) rc = fsync(fd);
3465 
3466 #elif defined(__APPLE__)
3467   /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
3468   ** so currently we default to the macro that redefines fdatasync to fsync
3469   */
3470   rc = fsync(fd);
3471 #else
3472   rc = fdatasync(fd);
3473 #if OS_VXWORKS
3474   if( rc==-1 && errno==ENOTSUP ){
3475     rc = fsync(fd);
3476   }
3477 #endif /* OS_VXWORKS */
3478 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3479 
3480   if( OS_VXWORKS && rc!= -1 ){
3481     rc = 0;
3482   }
3483   return rc;
3484 }
3485 
3486 /*
3487 ** Open a file descriptor to the directory containing file zFilename.
3488 ** If successful, *pFd is set to the opened file descriptor and
3489 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3490 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3491 ** value.
3492 **
3493 ** The directory file descriptor is used for only one thing - to
3494 ** fsync() a directory to make sure file creation and deletion events
3495 ** are flushed to disk.  Such fsyncs are not needed on newer
3496 ** journaling filesystems, but are required on older filesystems.
3497 **
3498 ** This routine can be overridden using the xSetSysCall interface.
3499 ** The ability to override this routine was added in support of the
3500 ** chromium sandbox.  Opening a directory is a security risk (we are
3501 ** told) so making it overrideable allows the chromium sandbox to
3502 ** replace this routine with a harmless no-op.  To make this routine
3503 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
3504 ** *pFd set to a negative number.
3505 **
3506 ** If SQLITE_OK is returned, the caller is responsible for closing
3507 ** the file descriptor *pFd using close().
3508 */
3509 static int openDirectory(const char *zFilename, int *pFd){
3510   int ii;
3511   int fd = -1;
3512   char zDirname[MAX_PATHNAME+1];
3513 
3514   sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
3515   for(ii=(int)strlen(zDirname); ii>0 && zDirname[ii]!='/'; ii--);
3516   if( ii>0 ){
3517     zDirname[ii] = '\0';
3518   }else{
3519     if( zDirname[0]!='/' ) zDirname[0] = '.';
3520     zDirname[1] = 0;
3521   }
3522   fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
3523   if( fd>=0 ){
3524     OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
3525   }
3526   *pFd = fd;
3527   if( fd>=0 ) return SQLITE_OK;
3528   return unixLogError(SQLITE_CANTOPEN_BKPT, "openDirectory", zDirname);
3529 }
3530 
3531 /*
3532 ** Make sure all writes to a particular file are committed to disk.
3533 **
3534 ** If dataOnly==0 then both the file itself and its metadata (file
3535 ** size, access time, etc) are synced.  If dataOnly!=0 then only the
3536 ** file data is synced.
3537 **
3538 ** Under Unix, also make sure that the directory entry for the file
3539 ** has been created by fsync-ing the directory that contains the file.
3540 ** If we do not do this and we encounter a power failure, the directory
3541 ** entry for the journal might not exist after we reboot.  The next
3542 ** SQLite to access the file will not know that the journal exists (because
3543 ** the directory entry for the journal was never created) and the transaction
3544 ** will not roll back - possibly leading to database corruption.
3545 */
3546 static int unixSync(sqlite3_file *id, int flags){
3547   int rc;
3548   unixFile *pFile = (unixFile*)id;
3549 
3550   int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
3551   int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
3552 
3553   /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3554   assert((flags&0x0F)==SQLITE_SYNC_NORMAL
3555       || (flags&0x0F)==SQLITE_SYNC_FULL
3556   );
3557 
3558   /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3559   ** line is to test that doing so does not cause any problems.
3560   */
3561   SimulateDiskfullError( return SQLITE_FULL );
3562 
3563   assert( pFile );
3564   OSTRACE(("SYNC    %-3d\n", pFile->h));
3565   rc = full_fsync(pFile->h, isFullsync, isDataOnly);
3566   SimulateIOError( rc=1 );
3567   if( rc ){
3568     storeLastErrno(pFile, errno);
3569     return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
3570   }
3571 
3572   /* Also fsync the directory containing the file if the DIRSYNC flag
3573   ** is set.  This is a one-time occurrence.  Many systems (examples: AIX)
3574   ** are unable to fsync a directory, so ignore errors on the fsync.
3575   */
3576   if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
3577     int dirfd;
3578     OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
3579             HAVE_FULLFSYNC, isFullsync));
3580     rc = osOpenDirectory(pFile->zPath, &dirfd);
3581     if( rc==SQLITE_OK ){
3582       full_fsync(dirfd, 0, 0);
3583       robust_close(pFile, dirfd, __LINE__);
3584     }else{
3585       assert( rc==SQLITE_CANTOPEN );
3586       rc = SQLITE_OK;
3587     }
3588     pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
3589   }
3590   return rc;
3591 }
3592 
3593 /*
3594 ** Truncate an open file to a specified size
3595 */
3596 static int unixTruncate(sqlite3_file *id, i64 nByte){
3597   unixFile *pFile = (unixFile *)id;
3598   int rc;
3599   assert( pFile );
3600   SimulateIOError( return SQLITE_IOERR_TRUNCATE );
3601 
3602   /* If the user has configured a chunk-size for this file, truncate the
3603   ** file so that it consists of an integer number of chunks (i.e. the
3604   ** actual file size after the operation may be larger than the requested
3605   ** size).
3606   */
3607   if( pFile->szChunk>0 ){
3608     nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
3609   }
3610 
3611   rc = robust_ftruncate(pFile->h, nByte);
3612   if( rc ){
3613     storeLastErrno(pFile, errno);
3614     return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3615   }else{
3616 #ifdef SQLITE_DEBUG
3617     /* If we are doing a normal write to a database file (as opposed to
3618     ** doing a hot-journal rollback or a write to some file other than a
3619     ** normal database file) and we truncate the file to zero length,
3620     ** that effectively updates the change counter.  This might happen
3621     ** when restoring a database using the backup API from a zero-length
3622     ** source.
3623     */
3624     if( pFile->inNormalWrite && nByte==0 ){
3625       pFile->transCntrChng = 1;
3626     }
3627 #endif
3628 
3629 #if SQLITE_MAX_MMAP_SIZE>0
3630     /* If the file was just truncated to a size smaller than the currently
3631     ** mapped region, reduce the effective mapping size as well. SQLite will
3632     ** use read() and write() to access data beyond this point from now on.
3633     */
3634     if( nByte<pFile->mmapSize ){
3635       pFile->mmapSize = nByte;
3636     }
3637 #endif
3638 
3639     return SQLITE_OK;
3640   }
3641 }
3642 
3643 /*
3644 ** Determine the current size of a file in bytes
3645 */
3646 static int unixFileSize(sqlite3_file *id, i64 *pSize){
3647   int rc;
3648   struct stat buf;
3649   assert( id );
3650   rc = osFstat(((unixFile*)id)->h, &buf);
3651   SimulateIOError( rc=1 );
3652   if( rc!=0 ){
3653     storeLastErrno((unixFile*)id, errno);
3654     return SQLITE_IOERR_FSTAT;
3655   }
3656   *pSize = buf.st_size;
3657 
3658   /* When opening a zero-size database, the findInodeInfo() procedure
3659   ** writes a single byte into that file in order to work around a bug
3660   ** in the OS-X msdos filesystem.  In order to avoid problems with upper
3661   ** layers, we need to report this file size as zero even though it is
3662   ** really 1.   Ticket #3260.
3663   */
3664   if( *pSize==1 ) *pSize = 0;
3665 
3666 
3667   return SQLITE_OK;
3668 }
3669 
3670 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3671 /*
3672 ** Handler for proxy-locking file-control verbs.  Defined below in the
3673 ** proxying locking division.
3674 */
3675 static int proxyFileControl(sqlite3_file*,int,void*);
3676 #endif
3677 
3678 /*
3679 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
3680 ** file-control operation.  Enlarge the database to nBytes in size
3681 ** (rounded up to the next chunk-size).  If the database is already
3682 ** nBytes or larger, this routine is a no-op.
3683 */
3684 static int fcntlSizeHint(unixFile *pFile, i64 nByte){
3685   if( pFile->szChunk>0 ){
3686     i64 nSize;                    /* Required file size */
3687     struct stat buf;              /* Used to hold return values of fstat() */
3688 
3689     if( osFstat(pFile->h, &buf) ){
3690       return SQLITE_IOERR_FSTAT;
3691     }
3692 
3693     nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
3694     if( nSize>(i64)buf.st_size ){
3695 
3696 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
3697       /* The code below is handling the return value of osFallocate()
3698       ** correctly. posix_fallocate() is defined to "returns zero on success,
3699       ** or an error number on  failure". See the manpage for details. */
3700       int err;
3701       do{
3702         err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
3703       }while( err==EINTR );
3704       if( err ) return SQLITE_IOERR_WRITE;
3705 #else
3706       /* If the OS does not have posix_fallocate(), fake it. Write a
3707       ** single byte to the last byte in each block that falls entirely
3708       ** within the extended region. Then, if required, a single byte
3709       ** at offset (nSize-1), to set the size of the file correctly.
3710       ** This is a similar technique to that used by glibc on systems
3711       ** that do not have a real fallocate() call.
3712       */
3713       int nBlk = buf.st_blksize;  /* File-system block size */
3714       int nWrite = 0;             /* Number of bytes written by seekAndWrite */
3715       i64 iWrite;                 /* Next offset to write to */
3716 
3717       iWrite = (buf.st_size/nBlk)*nBlk + nBlk - 1;
3718       assert( iWrite>=buf.st_size );
3719       assert( ((iWrite+1)%nBlk)==0 );
3720       for(/*no-op*/; iWrite<nSize+nBlk-1; iWrite+=nBlk ){
3721         if( iWrite>=nSize ) iWrite = nSize - 1;
3722         nWrite = seekAndWrite(pFile, iWrite, "", 1);
3723         if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
3724       }
3725 #endif
3726     }
3727   }
3728 
3729 #if SQLITE_MAX_MMAP_SIZE>0
3730   if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
3731     int rc;
3732     if( pFile->szChunk<=0 ){
3733       if( robust_ftruncate(pFile->h, nByte) ){
3734         storeLastErrno(pFile, errno);
3735         return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3736       }
3737     }
3738 
3739     rc = unixMapfile(pFile, nByte);
3740     return rc;
3741   }
3742 #endif
3743 
3744   return SQLITE_OK;
3745 }
3746 
3747 /*
3748 ** If *pArg is initially negative then this is a query.  Set *pArg to
3749 ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
3750 **
3751 ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
3752 */
3753 static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
3754   if( *pArg<0 ){
3755     *pArg = (pFile->ctrlFlags & mask)!=0;
3756   }else if( (*pArg)==0 ){
3757     pFile->ctrlFlags &= ~mask;
3758   }else{
3759     pFile->ctrlFlags |= mask;
3760   }
3761 }
3762 
3763 /* Forward declaration */
3764 static int unixGetTempname(int nBuf, char *zBuf);
3765 
3766 /*
3767 ** Information and control of an open file handle.
3768 */
3769 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
3770   unixFile *pFile = (unixFile*)id;
3771   switch( op ){
3772     case SQLITE_FCNTL_LOCKSTATE: {
3773       *(int*)pArg = pFile->eFileLock;
3774       return SQLITE_OK;
3775     }
3776     case SQLITE_FCNTL_LAST_ERRNO: {
3777       *(int*)pArg = pFile->lastErrno;
3778       return SQLITE_OK;
3779     }
3780     case SQLITE_FCNTL_CHUNK_SIZE: {
3781       pFile->szChunk = *(int *)pArg;
3782       return SQLITE_OK;
3783     }
3784     case SQLITE_FCNTL_SIZE_HINT: {
3785       int rc;
3786       SimulateIOErrorBenign(1);
3787       rc = fcntlSizeHint(pFile, *(i64 *)pArg);
3788       SimulateIOErrorBenign(0);
3789       return rc;
3790     }
3791     case SQLITE_FCNTL_PERSIST_WAL: {
3792       unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg);
3793       return SQLITE_OK;
3794     }
3795     case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
3796       unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg);
3797       return SQLITE_OK;
3798     }
3799     case SQLITE_FCNTL_VFSNAME: {
3800       *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
3801       return SQLITE_OK;
3802     }
3803     case SQLITE_FCNTL_TEMPFILENAME: {
3804       char *zTFile = sqlite3_malloc64( pFile->pVfs->mxPathname );
3805       if( zTFile ){
3806         unixGetTempname(pFile->pVfs->mxPathname, zTFile);
3807         *(char**)pArg = zTFile;
3808       }
3809       return SQLITE_OK;
3810     }
3811     case SQLITE_FCNTL_HAS_MOVED: {
3812       *(int*)pArg = fileHasMoved(pFile);
3813       return SQLITE_OK;
3814     }
3815 #if SQLITE_MAX_MMAP_SIZE>0
3816     case SQLITE_FCNTL_MMAP_SIZE: {
3817       i64 newLimit = *(i64*)pArg;
3818       int rc = SQLITE_OK;
3819       if( newLimit>sqlite3GlobalConfig.mxMmap ){
3820         newLimit = sqlite3GlobalConfig.mxMmap;
3821       }
3822       *(i64*)pArg = pFile->mmapSizeMax;
3823       if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
3824         pFile->mmapSizeMax = newLimit;
3825         if( pFile->mmapSize>0 ){
3826           unixUnmapfile(pFile);
3827           rc = unixMapfile(pFile, -1);
3828         }
3829       }
3830       return rc;
3831     }
3832 #endif
3833 #ifdef SQLITE_DEBUG
3834     /* The pager calls this method to signal that it has done
3835     ** a rollback and that the database is therefore unchanged and
3836     ** it hence it is OK for the transaction change counter to be
3837     ** unchanged.
3838     */
3839     case SQLITE_FCNTL_DB_UNCHANGED: {
3840       ((unixFile*)id)->dbUpdate = 0;
3841       return SQLITE_OK;
3842     }
3843 #endif
3844 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3845     case SQLITE_FCNTL_SET_LOCKPROXYFILE:
3846     case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
3847       return proxyFileControl(id,op,pArg);
3848     }
3849 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
3850   }
3851   return SQLITE_NOTFOUND;
3852 }
3853 
3854 /*
3855 ** Return the sector size in bytes of the underlying block device for
3856 ** the specified file. This is almost always 512 bytes, but may be
3857 ** larger for some devices.
3858 **
3859 ** SQLite code assumes this function cannot fail. It also assumes that
3860 ** if two files are created in the same file-system directory (i.e.
3861 ** a database and its journal file) that the sector size will be the
3862 ** same for both.
3863 */
3864 #ifndef __QNXNTO__
3865 static int unixSectorSize(sqlite3_file *NotUsed){
3866   UNUSED_PARAMETER(NotUsed);
3867   return SQLITE_DEFAULT_SECTOR_SIZE;
3868 }
3869 #endif
3870 
3871 /*
3872 ** The following version of unixSectorSize() is optimized for QNX.
3873 */
3874 #ifdef __QNXNTO__
3875 #include <sys/dcmd_blk.h>
3876 #include <sys/statvfs.h>
3877 static int unixSectorSize(sqlite3_file *id){
3878   unixFile *pFile = (unixFile*)id;
3879   if( pFile->sectorSize == 0 ){
3880     struct statvfs fsInfo;
3881 
3882     /* Set defaults for non-supported filesystems */
3883     pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
3884     pFile->deviceCharacteristics = 0;
3885     if( fstatvfs(pFile->h, &fsInfo) == -1 ) {
3886       return pFile->sectorSize;
3887     }
3888 
3889     if( !strcmp(fsInfo.f_basetype, "tmp") ) {
3890       pFile->sectorSize = fsInfo.f_bsize;
3891       pFile->deviceCharacteristics =
3892         SQLITE_IOCAP_ATOMIC4K |       /* All ram filesystem writes are atomic */
3893         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
3894                                       ** the write succeeds */
3895         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
3896                                       ** so it is ordered */
3897         0;
3898     }else if( strstr(fsInfo.f_basetype, "etfs") ){
3899       pFile->sectorSize = fsInfo.f_bsize;
3900       pFile->deviceCharacteristics =
3901         /* etfs cluster size writes are atomic */
3902         (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) |
3903         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
3904                                       ** the write succeeds */
3905         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
3906                                       ** so it is ordered */
3907         0;
3908     }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){
3909       pFile->sectorSize = fsInfo.f_bsize;
3910       pFile->deviceCharacteristics =
3911         SQLITE_IOCAP_ATOMIC |         /* All filesystem writes are atomic */
3912         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
3913                                       ** the write succeeds */
3914         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
3915                                       ** so it is ordered */
3916         0;
3917     }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){
3918       pFile->sectorSize = fsInfo.f_bsize;
3919       pFile->deviceCharacteristics =
3920         /* full bitset of atomics from max sector size and smaller */
3921         ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
3922         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
3923                                       ** so it is ordered */
3924         0;
3925     }else if( strstr(fsInfo.f_basetype, "dos") ){
3926       pFile->sectorSize = fsInfo.f_bsize;
3927       pFile->deviceCharacteristics =
3928         /* full bitset of atomics from max sector size and smaller */
3929         ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
3930         SQLITE_IOCAP_SEQUENTIAL |     /* The ram filesystem has no write behind
3931                                       ** so it is ordered */
3932         0;
3933     }else{
3934       pFile->deviceCharacteristics =
3935         SQLITE_IOCAP_ATOMIC512 |      /* blocks are atomic */
3936         SQLITE_IOCAP_SAFE_APPEND |    /* growing the file does not occur until
3937                                       ** the write succeeds */
3938         0;
3939     }
3940   }
3941   /* Last chance verification.  If the sector size isn't a multiple of 512
3942   ** then it isn't valid.*/
3943   if( pFile->sectorSize % 512 != 0 ){
3944     pFile->deviceCharacteristics = 0;
3945     pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
3946   }
3947   return pFile->sectorSize;
3948 }
3949 #endif /* __QNXNTO__ */
3950 
3951 /*
3952 ** Return the device characteristics for the file.
3953 **
3954 ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
3955 ** However, that choice is controversial since technically the underlying
3956 ** file system does not always provide powersafe overwrites.  (In other
3957 ** words, after a power-loss event, parts of the file that were never
3958 ** written might end up being altered.)  However, non-PSOW behavior is very,
3959 ** very rare.  And asserting PSOW makes a large reduction in the amount
3960 ** of required I/O for journaling, since a lot of padding is eliminated.
3961 **  Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
3962 ** available to turn it off and URI query parameter available to turn it off.
3963 */
3964 static int unixDeviceCharacteristics(sqlite3_file *id){
3965   unixFile *p = (unixFile*)id;
3966   int rc = 0;
3967 #ifdef __QNXNTO__
3968   if( p->sectorSize==0 ) unixSectorSize(id);
3969   rc = p->deviceCharacteristics;
3970 #endif
3971   if( p->ctrlFlags & UNIXFILE_PSOW ){
3972     rc |= SQLITE_IOCAP_POWERSAFE_OVERWRITE;
3973   }
3974   return rc;
3975 }
3976 
3977 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
3978 
3979 /*
3980 ** Return the system page size.
3981 **
3982 ** This function should not be called directly by other code in this file.
3983 ** Instead, it should be called via macro osGetpagesize().
3984 */
3985 static int unixGetpagesize(void){
3986 #if OS_VXWORKS
3987   return 1024;
3988 #elif defined(_BSD_SOURCE)
3989   return getpagesize();
3990 #else
3991   return (int)sysconf(_SC_PAGESIZE);
3992 #endif
3993 }
3994 
3995 #endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */
3996 
3997 #ifndef SQLITE_OMIT_WAL
3998 
3999 /*
4000 ** Object used to represent an shared memory buffer.
4001 **
4002 ** When multiple threads all reference the same wal-index, each thread
4003 ** has its own unixShm object, but they all point to a single instance
4004 ** of this unixShmNode object.  In other words, each wal-index is opened
4005 ** only once per process.
4006 **
4007 ** Each unixShmNode object is connected to a single unixInodeInfo object.
4008 ** We could coalesce this object into unixInodeInfo, but that would mean
4009 ** every open file that does not use shared memory (in other words, most
4010 ** open files) would have to carry around this extra information.  So
4011 ** the unixInodeInfo object contains a pointer to this unixShmNode object
4012 ** and the unixShmNode object is created only when needed.
4013 **
4014 ** unixMutexHeld() must be true when creating or destroying
4015 ** this object or while reading or writing the following fields:
4016 **
4017 **      nRef
4018 **
4019 ** The following fields are read-only after the object is created:
4020 **
4021 **      fid
4022 **      zFilename
4023 **
4024 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
4025 ** unixMutexHeld() is true when reading or writing any other field
4026 ** in this structure.
4027 */
4028 struct unixShmNode {
4029   unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
4030   sqlite3_mutex *mutex;      /* Mutex to access this object */
4031   char *zFilename;           /* Name of the mmapped file */
4032   int h;                     /* Open file descriptor */
4033   int szRegion;              /* Size of shared-memory regions */
4034   u16 nRegion;               /* Size of array apRegion */
4035   u8 isReadonly;             /* True if read-only */
4036   char **apRegion;           /* Array of mapped shared-memory regions */
4037   int nRef;                  /* Number of unixShm objects pointing to this */
4038   unixShm *pFirst;           /* All unixShm objects pointing to this */
4039 #ifdef SQLITE_DEBUG
4040   u8 exclMask;               /* Mask of exclusive locks held */
4041   u8 sharedMask;             /* Mask of shared locks held */
4042   u8 nextShmId;              /* Next available unixShm.id value */
4043 #endif
4044 };
4045 
4046 /*
4047 ** Structure used internally by this VFS to record the state of an
4048 ** open shared memory connection.
4049 **
4050 ** The following fields are initialized when this object is created and
4051 ** are read-only thereafter:
4052 **
4053 **    unixShm.pFile
4054 **    unixShm.id
4055 **
4056 ** All other fields are read/write.  The unixShm.pFile->mutex must be held
4057 ** while accessing any read/write fields.
4058 */
4059 struct unixShm {
4060   unixShmNode *pShmNode;     /* The underlying unixShmNode object */
4061   unixShm *pNext;            /* Next unixShm with the same unixShmNode */
4062   u8 hasMutex;               /* True if holding the unixShmNode mutex */
4063   u8 id;                     /* Id of this connection within its unixShmNode */
4064   u16 sharedMask;            /* Mask of shared locks held */
4065   u16 exclMask;              /* Mask of exclusive locks held */
4066 };
4067 
4068 /*
4069 ** Constants used for locking
4070 */
4071 #define UNIX_SHM_BASE   ((22+SQLITE_SHM_NLOCK)*4)         /* first lock byte */
4072 #define UNIX_SHM_DMS    (UNIX_SHM_BASE+SQLITE_SHM_NLOCK)  /* deadman switch */
4073 
4074 /*
4075 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
4076 **
4077 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
4078 ** otherwise.
4079 */
4080 static int unixShmSystemLock(
4081   unixFile *pFile,       /* Open connection to the WAL file */
4082   int lockType,          /* F_UNLCK, F_RDLCK, or F_WRLCK */
4083   int ofst,              /* First byte of the locking range */
4084   int n                  /* Number of bytes to lock */
4085 ){
4086   unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */
4087   struct flock f;        /* The posix advisory locking structure */
4088   int rc = SQLITE_OK;    /* Result code form fcntl() */
4089 
4090   /* Access to the unixShmNode object is serialized by the caller */
4091   pShmNode = pFile->pInode->pShmNode;
4092   assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );
4093 
4094   /* Shared locks never span more than one byte */
4095   assert( n==1 || lockType!=F_RDLCK );
4096 
4097   /* Locks are within range */
4098   assert( n>=1 && n<=SQLITE_SHM_NLOCK );
4099 
4100   if( pShmNode->h>=0 ){
4101     /* Initialize the locking parameters */
4102     memset(&f, 0, sizeof(f));
4103     f.l_type = lockType;
4104     f.l_whence = SEEK_SET;
4105     f.l_start = ofst;
4106     f.l_len = n;
4107 
4108     rc = osFcntl(pShmNode->h, F_SETLK, &f);
4109     rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
4110   }
4111 
4112   /* Update the global lock state and do debug tracing */
4113 #ifdef SQLITE_DEBUG
4114   { u16 mask;
4115   OSTRACE(("SHM-LOCK "));
4116   mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst);
4117   if( rc==SQLITE_OK ){
4118     if( lockType==F_UNLCK ){
4119       OSTRACE(("unlock %d ok", ofst));
4120       pShmNode->exclMask &= ~mask;
4121       pShmNode->sharedMask &= ~mask;
4122     }else if( lockType==F_RDLCK ){
4123       OSTRACE(("read-lock %d ok", ofst));
4124       pShmNode->exclMask &= ~mask;
4125       pShmNode->sharedMask |= mask;
4126     }else{
4127       assert( lockType==F_WRLCK );
4128       OSTRACE(("write-lock %d ok", ofst));
4129       pShmNode->exclMask |= mask;
4130       pShmNode->sharedMask &= ~mask;
4131     }
4132   }else{
4133     if( lockType==F_UNLCK ){
4134       OSTRACE(("unlock %d failed", ofst));
4135     }else if( lockType==F_RDLCK ){
4136       OSTRACE(("read-lock failed"));
4137     }else{
4138       assert( lockType==F_WRLCK );
4139       OSTRACE(("write-lock %d failed", ofst));
4140     }
4141   }
4142   OSTRACE((" - afterwards %03x,%03x\n",
4143            pShmNode->sharedMask, pShmNode->exclMask));
4144   }
4145 #endif
4146 
4147   return rc;
4148 }
4149 
4150 /*
4151 ** Return the minimum number of 32KB shm regions that should be mapped at
4152 ** a time, assuming that each mapping must be an integer multiple of the
4153 ** current system page-size.
4154 **
4155 ** Usually, this is 1. The exception seems to be systems that are configured
4156 ** to use 64KB pages - in this case each mapping must cover at least two
4157 ** shm regions.
4158 */
4159 static int unixShmRegionPerMap(void){
4160   int shmsz = 32*1024;            /* SHM region size */
4161   int pgsz = osGetpagesize();   /* System page size */
4162   assert( ((pgsz-1)&pgsz)==0 );   /* Page size must be a power of 2 */
4163   if( pgsz<shmsz ) return 1;
4164   return pgsz/shmsz;
4165 }
4166 
4167 /*
4168 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
4169 **
4170 ** This is not a VFS shared-memory method; it is a utility function called
4171 ** by VFS shared-memory methods.
4172 */
4173 static void unixShmPurge(unixFile *pFd){
4174   unixShmNode *p = pFd->pInode->pShmNode;
4175   assert( unixMutexHeld() );
4176   if( p && ALWAYS(p->nRef==0) ){
4177     int nShmPerMap = unixShmRegionPerMap();
4178     int i;
4179     assert( p->pInode==pFd->pInode );
4180     sqlite3_mutex_free(p->mutex);
4181     for(i=0; i<p->nRegion; i+=nShmPerMap){
4182       if( p->h>=0 ){
4183         osMunmap(p->apRegion[i], p->szRegion);
4184       }else{
4185         sqlite3_free(p->apRegion[i]);
4186       }
4187     }
4188     sqlite3_free(p->apRegion);
4189     if( p->h>=0 ){
4190       robust_close(pFd, p->h, __LINE__);
4191       p->h = -1;
4192     }
4193     p->pInode->pShmNode = 0;
4194     sqlite3_free(p);
4195   }
4196 }
4197 
4198 /*
4199 ** Open a shared-memory area associated with open database file pDbFd.
4200 ** This particular implementation uses mmapped files.
4201 **
4202 ** The file used to implement shared-memory is in the same directory
4203 ** as the open database file and has the same name as the open database
4204 ** file with the "-shm" suffix added.  For example, if the database file
4205 ** is "/home/user1/config.db" then the file that is created and mmapped
4206 ** for shared memory will be called "/home/user1/config.db-shm".
4207 **
4208 ** Another approach to is to use files in /dev/shm or /dev/tmp or an
4209 ** some other tmpfs mount. But if a file in a different directory
4210 ** from the database file is used, then differing access permissions
4211 ** or a chroot() might cause two different processes on the same
4212 ** database to end up using different files for shared memory -
4213 ** meaning that their memory would not really be shared - resulting
4214 ** in database corruption.  Nevertheless, this tmpfs file usage
4215 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
4216 ** or the equivalent.  The use of the SQLITE_SHM_DIRECTORY compile-time
4217 ** option results in an incompatible build of SQLite;  builds of SQLite
4218 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
4219 ** same database file at the same time, database corruption will likely
4220 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
4221 ** "unsupported" and may go away in a future SQLite release.
4222 **
4223 ** When opening a new shared-memory file, if no other instances of that
4224 ** file are currently open, in this process or in other processes, then
4225 ** the file must be truncated to zero length or have its header cleared.
4226 **
4227 ** If the original database file (pDbFd) is using the "unix-excl" VFS
4228 ** that means that an exclusive lock is held on the database file and
4229 ** that no other processes are able to read or write the database.  In
4230 ** that case, we do not really need shared memory.  No shared memory
4231 ** file is created.  The shared memory will be simulated with heap memory.
4232 */
4233 static int unixOpenSharedMemory(unixFile *pDbFd){
4234   struct unixShm *p = 0;          /* The connection to be opened */
4235   struct unixShmNode *pShmNode;   /* The underlying mmapped file */
4236   int rc;                         /* Result code */
4237   unixInodeInfo *pInode;          /* The inode of fd */
4238   char *zShmFilename;             /* Name of the file used for SHM */
4239   int nShmFilename;               /* Size of the SHM filename in bytes */
4240 
4241   /* Allocate space for the new unixShm object. */
4242   p = sqlite3_malloc64( sizeof(*p) );
4243   if( p==0 ) return SQLITE_NOMEM_BKPT;
4244   memset(p, 0, sizeof(*p));
4245   assert( pDbFd->pShm==0 );
4246 
4247   /* Check to see if a unixShmNode object already exists. Reuse an existing
4248   ** one if present. Create a new one if necessary.
4249   */
4250   unixEnterMutex();
4251   pInode = pDbFd->pInode;
4252   pShmNode = pInode->pShmNode;
4253   if( pShmNode==0 ){
4254     struct stat sStat;                 /* fstat() info for database file */
4255 #ifndef SQLITE_SHM_DIRECTORY
4256     const char *zBasePath = pDbFd->zPath;
4257 #endif
4258 
4259     /* Call fstat() to figure out the permissions on the database file. If
4260     ** a new *-shm file is created, an attempt will be made to create it
4261     ** with the same permissions.
4262     */
4263     if( osFstat(pDbFd->h, &sStat) ){
4264       rc = SQLITE_IOERR_FSTAT;
4265       goto shm_open_err;
4266     }
4267 
4268 #ifdef SQLITE_SHM_DIRECTORY
4269     nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
4270 #else
4271     nShmFilename = 6 + (int)strlen(zBasePath);
4272 #endif
4273     pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename );
4274     if( pShmNode==0 ){
4275       rc = SQLITE_NOMEM_BKPT;
4276       goto shm_open_err;
4277     }
4278     memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
4279     zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
4280 #ifdef SQLITE_SHM_DIRECTORY
4281     sqlite3_snprintf(nShmFilename, zShmFilename,
4282                      SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
4283                      (u32)sStat.st_ino, (u32)sStat.st_dev);
4284 #else
4285     sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", zBasePath);
4286     sqlite3FileSuffix3(pDbFd->zPath, zShmFilename);
4287 #endif
4288     pShmNode->h = -1;
4289     pDbFd->pInode->pShmNode = pShmNode;
4290     pShmNode->pInode = pDbFd->pInode;
4291     if( sqlite3GlobalConfig.bCoreMutex ){
4292       pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
4293       if( pShmNode->mutex==0 ){
4294         rc = SQLITE_NOMEM_BKPT;
4295         goto shm_open_err;
4296       }
4297     }
4298 
4299     if( pInode->bProcessLock==0 ){
4300       int openFlags = O_RDWR | O_CREAT;
4301       if( sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
4302         openFlags = O_RDONLY;
4303         pShmNode->isReadonly = 1;
4304       }
4305       pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777));
4306       if( pShmNode->h<0 ){
4307         rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
4308         goto shm_open_err;
4309       }
4310 
4311       /* If this process is running as root, make sure that the SHM file
4312       ** is owned by the same user that owns the original database.  Otherwise,
4313       ** the original owner will not be able to connect.
4314       */
4315       robustFchown(pShmNode->h, sStat.st_uid, sStat.st_gid);
4316 
4317       /* Check to see if another process is holding the dead-man switch.
4318       ** If not, truncate the file to zero length.
4319       */
4320       rc = SQLITE_OK;
4321       if( unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
4322         if( robust_ftruncate(pShmNode->h, 0) ){
4323           rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
4324         }
4325       }
4326       if( rc==SQLITE_OK ){
4327         rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1);
4328       }
4329       if( rc ) goto shm_open_err;
4330     }
4331   }
4332 
4333   /* Make the new connection a child of the unixShmNode */
4334   p->pShmNode = pShmNode;
4335 #ifdef SQLITE_DEBUG
4336   p->id = pShmNode->nextShmId++;
4337 #endif
4338   pShmNode->nRef++;
4339   pDbFd->pShm = p;
4340   unixLeaveMutex();
4341 
4342   /* The reference count on pShmNode has already been incremented under
4343   ** the cover of the unixEnterMutex() mutex and the pointer from the
4344   ** new (struct unixShm) object to the pShmNode has been set. All that is
4345   ** left to do is to link the new object into the linked list starting
4346   ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
4347   ** mutex.
4348   */
4349   sqlite3_mutex_enter(pShmNode->mutex);
4350   p->pNext = pShmNode->pFirst;
4351   pShmNode->pFirst = p;
4352   sqlite3_mutex_leave(pShmNode->mutex);
4353   return SQLITE_OK;
4354 
4355   /* Jump here on any error */
4356 shm_open_err:
4357   unixShmPurge(pDbFd);       /* This call frees pShmNode if required */
4358   sqlite3_free(p);
4359   unixLeaveMutex();
4360   return rc;
4361 }
4362 
4363 /*
4364 ** This function is called to obtain a pointer to region iRegion of the
4365 ** shared-memory associated with the database file fd. Shared-memory regions
4366 ** are numbered starting from zero. Each shared-memory region is szRegion
4367 ** bytes in size.
4368 **
4369 ** If an error occurs, an error code is returned and *pp is set to NULL.
4370 **
4371 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
4372 ** region has not been allocated (by any client, including one running in a
4373 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
4374 ** bExtend is non-zero and the requested shared-memory region has not yet
4375 ** been allocated, it is allocated by this function.
4376 **
4377 ** If the shared-memory region has already been allocated or is allocated by
4378 ** this call as described above, then it is mapped into this processes
4379 ** address space (if it is not already), *pp is set to point to the mapped
4380 ** memory and SQLITE_OK returned.
4381 */
4382 static int unixShmMap(
4383   sqlite3_file *fd,               /* Handle open on database file */
4384   int iRegion,                    /* Region to retrieve */
4385   int szRegion,                   /* Size of regions */
4386   int bExtend,                    /* True to extend file if necessary */
4387   void volatile **pp              /* OUT: Mapped memory */
4388 ){
4389   unixFile *pDbFd = (unixFile*)fd;
4390   unixShm *p;
4391   unixShmNode *pShmNode;
4392   int rc = SQLITE_OK;
4393   int nShmPerMap = unixShmRegionPerMap();
4394   int nReqRegion;
4395 
4396   /* If the shared-memory file has not yet been opened, open it now. */
4397   if( pDbFd->pShm==0 ){
4398     rc = unixOpenSharedMemory(pDbFd);
4399     if( rc!=SQLITE_OK ) return rc;
4400   }
4401 
4402   p = pDbFd->pShm;
4403   pShmNode = p->pShmNode;
4404   sqlite3_mutex_enter(pShmNode->mutex);
4405   assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
4406   assert( pShmNode->pInode==pDbFd->pInode );
4407   assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
4408   assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
4409 
4410   /* Minimum number of regions required to be mapped. */
4411   nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap;
4412 
4413   if( pShmNode->nRegion<nReqRegion ){
4414     char **apNew;                      /* New apRegion[] array */
4415     int nByte = nReqRegion*szRegion;   /* Minimum required file size */
4416     struct stat sStat;                 /* Used by fstat() */
4417 
4418     pShmNode->szRegion = szRegion;
4419 
4420     if( pShmNode->h>=0 ){
4421       /* The requested region is not mapped into this processes address space.
4422       ** Check to see if it has been allocated (i.e. if the wal-index file is
4423       ** large enough to contain the requested region).
4424       */
4425       if( osFstat(pShmNode->h, &sStat) ){
4426         rc = SQLITE_IOERR_SHMSIZE;
4427         goto shmpage_out;
4428       }
4429 
4430       if( sStat.st_size<nByte ){
4431         /* The requested memory region does not exist. If bExtend is set to
4432         ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
4433         */
4434         if( !bExtend ){
4435           goto shmpage_out;
4436         }
4437 
4438         /* Alternatively, if bExtend is true, extend the file. Do this by
4439         ** writing a single byte to the end of each (OS) page being
4440         ** allocated or extended. Technically, we need only write to the
4441         ** last page in order to extend the file. But writing to all new
4442         ** pages forces the OS to allocate them immediately, which reduces
4443         ** the chances of SIGBUS while accessing the mapped region later on.
4444         */
4445         else{
4446           static const int pgsz = 4096;
4447           int iPg;
4448 
4449           /* Write to the last byte of each newly allocated or extended page */
4450           assert( (nByte % pgsz)==0 );
4451           for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){
4452             int x = 0;
4453             if( seekAndWriteFd(pShmNode->h, iPg*pgsz + pgsz-1, "", 1, &x)!=1 ){
4454               const char *zFile = pShmNode->zFilename;
4455               rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile);
4456               goto shmpage_out;
4457             }
4458           }
4459         }
4460       }
4461     }
4462 
4463     /* Map the requested memory region into this processes address space. */
4464     apNew = (char **)sqlite3_realloc(
4465         pShmNode->apRegion, nReqRegion*sizeof(char *)
4466     );
4467     if( !apNew ){
4468       rc = SQLITE_IOERR_NOMEM_BKPT;
4469       goto shmpage_out;
4470     }
4471     pShmNode->apRegion = apNew;
4472     while( pShmNode->nRegion<nReqRegion ){
4473       int nMap = szRegion*nShmPerMap;
4474       int i;
4475       void *pMem;
4476       if( pShmNode->h>=0 ){
4477         pMem = osMmap(0, nMap,
4478             pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE,
4479             MAP_SHARED, pShmNode->h, szRegion*(i64)pShmNode->nRegion
4480         );
4481         if( pMem==MAP_FAILED ){
4482           rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
4483           goto shmpage_out;
4484         }
4485       }else{
4486         pMem = sqlite3_malloc64(szRegion);
4487         if( pMem==0 ){
4488           rc = SQLITE_NOMEM_BKPT;
4489           goto shmpage_out;
4490         }
4491         memset(pMem, 0, szRegion);
4492       }
4493 
4494       for(i=0; i<nShmPerMap; i++){
4495         pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i];
4496       }
4497       pShmNode->nRegion += nShmPerMap;
4498     }
4499   }
4500 
4501 shmpage_out:
4502   if( pShmNode->nRegion>iRegion ){
4503     *pp = pShmNode->apRegion[iRegion];
4504   }else{
4505     *pp = 0;
4506   }
4507   if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
4508   sqlite3_mutex_leave(pShmNode->mutex);
4509   return rc;
4510 }
4511 
4512 /*
4513 ** Change the lock state for a shared-memory segment.
4514 **
4515 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
4516 ** different here than in posix.  In xShmLock(), one can go from unlocked
4517 ** to shared and back or from unlocked to exclusive and back.  But one may
4518 ** not go from shared to exclusive or from exclusive to shared.
4519 */
4520 static int unixShmLock(
4521   sqlite3_file *fd,          /* Database file holding the shared memory */
4522   int ofst,                  /* First lock to acquire or release */
4523   int n,                     /* Number of locks to acquire or release */
4524   int flags                  /* What to do with the lock */
4525 ){
4526   unixFile *pDbFd = (unixFile*)fd;      /* Connection holding shared memory */
4527   unixShm *p = pDbFd->pShm;             /* The shared memory being locked */
4528   unixShm *pX;                          /* For looping over all siblings */
4529   unixShmNode *pShmNode = p->pShmNode;  /* The underlying file iNode */
4530   int rc = SQLITE_OK;                   /* Result code */
4531   u16 mask;                             /* Mask of locks to take or release */
4532 
4533   assert( pShmNode==pDbFd->pInode->pShmNode );
4534   assert( pShmNode->pInode==pDbFd->pInode );
4535   assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
4536   assert( n>=1 );
4537   assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
4538        || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
4539        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
4540        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
4541   assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
4542   assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
4543   assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
4544 
4545   mask = (1<<(ofst+n)) - (1<<ofst);
4546   assert( n>1 || mask==(1<<ofst) );
4547   sqlite3_mutex_enter(pShmNode->mutex);
4548   if( flags & SQLITE_SHM_UNLOCK ){
4549     u16 allMask = 0; /* Mask of locks held by siblings */
4550 
4551     /* See if any siblings hold this same lock */
4552     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4553       if( pX==p ) continue;
4554       assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
4555       allMask |= pX->sharedMask;
4556     }
4557 
4558     /* Unlock the system-level locks */
4559     if( (mask & allMask)==0 ){
4560       rc = unixShmSystemLock(pDbFd, F_UNLCK, ofst+UNIX_SHM_BASE, n);
4561     }else{
4562       rc = SQLITE_OK;
4563     }
4564 
4565     /* Undo the local locks */
4566     if( rc==SQLITE_OK ){
4567       p->exclMask &= ~mask;
4568       p->sharedMask &= ~mask;
4569     }
4570   }else if( flags & SQLITE_SHM_SHARED ){
4571     u16 allShared = 0;  /* Union of locks held by connections other than "p" */
4572 
4573     /* Find out which shared locks are already held by sibling connections.
4574     ** If any sibling already holds an exclusive lock, go ahead and return
4575     ** SQLITE_BUSY.
4576     */
4577     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4578       if( (pX->exclMask & mask)!=0 ){
4579         rc = SQLITE_BUSY;
4580         break;
4581       }
4582       allShared |= pX->sharedMask;
4583     }
4584 
4585     /* Get shared locks at the system level, if necessary */
4586     if( rc==SQLITE_OK ){
4587       if( (allShared & mask)==0 ){
4588         rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n);
4589       }else{
4590         rc = SQLITE_OK;
4591       }
4592     }
4593 
4594     /* Get the local shared locks */
4595     if( rc==SQLITE_OK ){
4596       p->sharedMask |= mask;
4597     }
4598   }else{
4599     /* Make sure no sibling connections hold locks that will block this
4600     ** lock.  If any do, return SQLITE_BUSY right away.
4601     */
4602     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4603       if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
4604         rc = SQLITE_BUSY;
4605         break;
4606       }
4607     }
4608 
4609     /* Get the exclusive locks at the system level.  Then if successful
4610     ** also mark the local connection as being locked.
4611     */
4612     if( rc==SQLITE_OK ){
4613       rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n);
4614       if( rc==SQLITE_OK ){
4615         assert( (p->sharedMask & mask)==0 );
4616         p->exclMask |= mask;
4617       }
4618     }
4619   }
4620   sqlite3_mutex_leave(pShmNode->mutex);
4621   OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
4622            p->id, osGetpid(0), p->sharedMask, p->exclMask));
4623   return rc;
4624 }
4625 
4626 /*
4627 ** Implement a memory barrier or memory fence on shared memory.
4628 **
4629 ** All loads and stores begun before the barrier must complete before
4630 ** any load or store begun after the barrier.
4631 */
4632 static void unixShmBarrier(
4633   sqlite3_file *fd                /* Database file holding the shared memory */
4634 ){
4635   UNUSED_PARAMETER(fd);
4636   sqlite3MemoryBarrier();         /* compiler-defined memory barrier */
4637   unixEnterMutex();               /* Also mutex, for redundancy */
4638   unixLeaveMutex();
4639 }
4640 
4641 /*
4642 ** Close a connection to shared-memory.  Delete the underlying
4643 ** storage if deleteFlag is true.
4644 **
4645 ** If there is no shared memory associated with the connection then this
4646 ** routine is a harmless no-op.
4647 */
4648 static int unixShmUnmap(
4649   sqlite3_file *fd,               /* The underlying database file */
4650   int deleteFlag                  /* Delete shared-memory if true */
4651 ){
4652   unixShm *p;                     /* The connection to be closed */
4653   unixShmNode *pShmNode;          /* The underlying shared-memory file */
4654   unixShm **pp;                   /* For looping over sibling connections */
4655   unixFile *pDbFd;                /* The underlying database file */
4656 
4657   pDbFd = (unixFile*)fd;
4658   p = pDbFd->pShm;
4659   if( p==0 ) return SQLITE_OK;
4660   pShmNode = p->pShmNode;
4661 
4662   assert( pShmNode==pDbFd->pInode->pShmNode );
4663   assert( pShmNode->pInode==pDbFd->pInode );
4664 
4665   /* Remove connection p from the set of connections associated
4666   ** with pShmNode */
4667   sqlite3_mutex_enter(pShmNode->mutex);
4668   for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
4669   *pp = p->pNext;
4670 
4671   /* Free the connection p */
4672   sqlite3_free(p);
4673   pDbFd->pShm = 0;
4674   sqlite3_mutex_leave(pShmNode->mutex);
4675 
4676   /* If pShmNode->nRef has reached 0, then close the underlying
4677   ** shared-memory file, too */
4678   unixEnterMutex();
4679   assert( pShmNode->nRef>0 );
4680   pShmNode->nRef--;
4681   if( pShmNode->nRef==0 ){
4682     if( deleteFlag && pShmNode->h>=0 ){
4683       osUnlink(pShmNode->zFilename);
4684     }
4685     unixShmPurge(pDbFd);
4686   }
4687   unixLeaveMutex();
4688 
4689   return SQLITE_OK;
4690 }
4691 
4692 
4693 #else
4694 # define unixShmMap     0
4695 # define unixShmLock    0
4696 # define unixShmBarrier 0
4697 # define unixShmUnmap   0
4698 #endif /* #ifndef SQLITE_OMIT_WAL */
4699 
4700 #if SQLITE_MAX_MMAP_SIZE>0
4701 /*
4702 ** If it is currently memory mapped, unmap file pFd.
4703 */
4704 static void unixUnmapfile(unixFile *pFd){
4705   assert( pFd->nFetchOut==0 );
4706   if( pFd->pMapRegion ){
4707     osMunmap(pFd->pMapRegion, pFd->mmapSizeActual);
4708     pFd->pMapRegion = 0;
4709     pFd->mmapSize = 0;
4710     pFd->mmapSizeActual = 0;
4711   }
4712 }
4713 
4714 /*
4715 ** Attempt to set the size of the memory mapping maintained by file
4716 ** descriptor pFd to nNew bytes. Any existing mapping is discarded.
4717 **
4718 ** If successful, this function sets the following variables:
4719 **
4720 **       unixFile.pMapRegion
4721 **       unixFile.mmapSize
4722 **       unixFile.mmapSizeActual
4723 **
4724 ** If unsuccessful, an error message is logged via sqlite3_log() and
4725 ** the three variables above are zeroed. In this case SQLite should
4726 ** continue accessing the database using the xRead() and xWrite()
4727 ** methods.
4728 */
4729 static void unixRemapfile(
4730   unixFile *pFd,                  /* File descriptor object */
4731   i64 nNew                        /* Required mapping size */
4732 ){
4733   const char *zErr = "mmap";
4734   int h = pFd->h;                      /* File descriptor open on db file */
4735   u8 *pOrig = (u8 *)pFd->pMapRegion;   /* Pointer to current file mapping */
4736   i64 nOrig = pFd->mmapSizeActual;     /* Size of pOrig region in bytes */
4737   u8 *pNew = 0;                        /* Location of new mapping */
4738   int flags = PROT_READ;               /* Flags to pass to mmap() */
4739 
4740   assert( pFd->nFetchOut==0 );
4741   assert( nNew>pFd->mmapSize );
4742   assert( nNew<=pFd->mmapSizeMax );
4743   assert( nNew>0 );
4744   assert( pFd->mmapSizeActual>=pFd->mmapSize );
4745   assert( MAP_FAILED!=0 );
4746 
4747 #ifdef SQLITE_MMAP_READWRITE
4748   if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;
4749 #endif
4750 
4751   if( pOrig ){
4752 #if HAVE_MREMAP
4753     i64 nReuse = pFd->mmapSize;
4754 #else
4755     const int szSyspage = osGetpagesize();
4756     i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));
4757 #endif
4758     u8 *pReq = &pOrig[nReuse];
4759 
4760     /* Unmap any pages of the existing mapping that cannot be reused. */
4761     if( nReuse!=nOrig ){
4762       osMunmap(pReq, nOrig-nReuse);
4763     }
4764 
4765 #if HAVE_MREMAP
4766     pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE);
4767     zErr = "mremap";
4768 #else
4769     pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse);
4770     if( pNew!=MAP_FAILED ){
4771       if( pNew!=pReq ){
4772         osMunmap(pNew, nNew - nReuse);
4773         pNew = 0;
4774       }else{
4775         pNew = pOrig;
4776       }
4777     }
4778 #endif
4779 
4780     /* The attempt to extend the existing mapping failed. Free it. */
4781     if( pNew==MAP_FAILED || pNew==0 ){
4782       osMunmap(pOrig, nReuse);
4783     }
4784   }
4785 
4786   /* If pNew is still NULL, try to create an entirely new mapping. */
4787   if( pNew==0 ){
4788     pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0);
4789   }
4790 
4791   if( pNew==MAP_FAILED ){
4792     pNew = 0;
4793     nNew = 0;
4794     unixLogError(SQLITE_OK, zErr, pFd->zPath);
4795 
4796     /* If the mmap() above failed, assume that all subsequent mmap() calls
4797     ** will probably fail too. Fall back to using xRead/xWrite exclusively
4798     ** in this case.  */
4799     pFd->mmapSizeMax = 0;
4800   }
4801   pFd->pMapRegion = (void *)pNew;
4802   pFd->mmapSize = pFd->mmapSizeActual = nNew;
4803 }
4804 
4805 /*
4806 ** Memory map or remap the file opened by file-descriptor pFd (if the file
4807 ** is already mapped, the existing mapping is replaced by the new). Or, if
4808 ** there already exists a mapping for this file, and there are still
4809 ** outstanding xFetch() references to it, this function is a no-op.
4810 **
4811 ** If parameter nByte is non-negative, then it is the requested size of
4812 ** the mapping to create. Otherwise, if nByte is less than zero, then the
4813 ** requested size is the size of the file on disk. The actual size of the
4814 ** created mapping is either the requested size or the value configured
4815 ** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
4816 **
4817 ** SQLITE_OK is returned if no error occurs (even if the mapping is not
4818 ** recreated as a result of outstanding references) or an SQLite error
4819 ** code otherwise.
4820 */
4821 static int unixMapfile(unixFile *pFd, i64 nMap){
4822   assert( nMap>=0 || pFd->nFetchOut==0 );
4823   assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
4824   if( pFd->nFetchOut>0 ) return SQLITE_OK;
4825 
4826   if( nMap<0 ){
4827     struct stat statbuf;          /* Low-level file information */
4828     if( osFstat(pFd->h, &statbuf) ){
4829       return SQLITE_IOERR_FSTAT;
4830     }
4831     nMap = statbuf.st_size;
4832   }
4833   if( nMap>pFd->mmapSizeMax ){
4834     nMap = pFd->mmapSizeMax;
4835   }
4836 
4837   assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
4838   if( nMap!=pFd->mmapSize ){
4839     unixRemapfile(pFd, nMap);
4840   }
4841 
4842   return SQLITE_OK;
4843 }
4844 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
4845 
4846 /*
4847 ** If possible, return a pointer to a mapping of file fd starting at offset
4848 ** iOff. The mapping must be valid for at least nAmt bytes.
4849 **
4850 ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
4851 ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
4852 ** Finally, if an error does occur, return an SQLite error code. The final
4853 ** value of *pp is undefined in this case.
4854 **
4855 ** If this function does return a pointer, the caller must eventually
4856 ** release the reference by calling unixUnfetch().
4857 */
4858 static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
4859 #if SQLITE_MAX_MMAP_SIZE>0
4860   unixFile *pFd = (unixFile *)fd;   /* The underlying database file */
4861 #endif
4862   *pp = 0;
4863 
4864 #if SQLITE_MAX_MMAP_SIZE>0
4865   if( pFd->mmapSizeMax>0 ){
4866     if( pFd->pMapRegion==0 ){
4867       int rc = unixMapfile(pFd, -1);
4868       if( rc!=SQLITE_OK ) return rc;
4869     }
4870     if( pFd->mmapSize >= iOff+nAmt ){
4871       *pp = &((u8 *)pFd->pMapRegion)[iOff];
4872       pFd->nFetchOut++;
4873     }
4874   }
4875 #endif
4876   return SQLITE_OK;
4877 }
4878 
4879 /*
4880 ** If the third argument is non-NULL, then this function releases a
4881 ** reference obtained by an earlier call to unixFetch(). The second
4882 ** argument passed to this function must be the same as the corresponding
4883 ** argument that was passed to the unixFetch() invocation.
4884 **
4885 ** Or, if the third argument is NULL, then this function is being called
4886 ** to inform the VFS layer that, according to POSIX, any existing mapping
4887 ** may now be invalid and should be unmapped.
4888 */
4889 static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){
4890 #if SQLITE_MAX_MMAP_SIZE>0
4891   unixFile *pFd = (unixFile *)fd;   /* The underlying database file */
4892   UNUSED_PARAMETER(iOff);
4893 
4894   /* If p==0 (unmap the entire file) then there must be no outstanding
4895   ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
4896   ** then there must be at least one outstanding.  */
4897   assert( (p==0)==(pFd->nFetchOut==0) );
4898 
4899   /* If p!=0, it must match the iOff value. */
4900   assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
4901 
4902   if( p ){
4903     pFd->nFetchOut--;
4904   }else{
4905     unixUnmapfile(pFd);
4906   }
4907 
4908   assert( pFd->nFetchOut>=0 );
4909 #else
4910   UNUSED_PARAMETER(fd);
4911   UNUSED_PARAMETER(p);
4912   UNUSED_PARAMETER(iOff);
4913 #endif
4914   return SQLITE_OK;
4915 }
4916 
4917 /*
4918 ** Here ends the implementation of all sqlite3_file methods.
4919 **
4920 ********************** End sqlite3_file Methods *******************************
4921 ******************************************************************************/
4922 
4923 /*
4924 ** This division contains definitions of sqlite3_io_methods objects that
4925 ** implement various file locking strategies.  It also contains definitions
4926 ** of "finder" functions.  A finder-function is used to locate the appropriate
4927 ** sqlite3_io_methods object for a particular database file.  The pAppData
4928 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
4929 ** the correct finder-function for that VFS.
4930 **
4931 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
4932 ** object.  The only interesting finder-function is autolockIoFinder, which
4933 ** looks at the filesystem type and tries to guess the best locking
4934 ** strategy from that.
4935 **
4936 ** For finder-function F, two objects are created:
4937 **
4938 **    (1) The real finder-function named "FImpt()".
4939 **
4940 **    (2) A constant pointer to this function named just "F".
4941 **
4942 **
4943 ** A pointer to the F pointer is used as the pAppData value for VFS
4944 ** objects.  We have to do this instead of letting pAppData point
4945 ** directly at the finder-function since C90 rules prevent a void*
4946 ** from be cast into a function pointer.
4947 **
4948 **
4949 ** Each instance of this macro generates two objects:
4950 **
4951 **   *  A constant sqlite3_io_methods object call METHOD that has locking
4952 **      methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
4953 **
4954 **   *  An I/O method finder function called FINDER that returns a pointer
4955 **      to the METHOD object in the previous bullet.
4956 */
4957 #define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP)     \
4958 static const sqlite3_io_methods METHOD = {                                   \
4959    VERSION,                    /* iVersion */                                \
4960    CLOSE,                      /* xClose */                                  \
4961    unixRead,                   /* xRead */                                   \
4962    unixWrite,                  /* xWrite */                                  \
4963    unixTruncate,               /* xTruncate */                               \
4964    unixSync,                   /* xSync */                                   \
4965    unixFileSize,               /* xFileSize */                               \
4966    LOCK,                       /* xLock */                                   \
4967    UNLOCK,                     /* xUnlock */                                 \
4968    CKLOCK,                     /* xCheckReservedLock */                      \
4969    unixFileControl,            /* xFileControl */                            \
4970    unixSectorSize,             /* xSectorSize */                             \
4971    unixDeviceCharacteristics,  /* xDeviceCapabilities */                     \
4972    SHMMAP,                     /* xShmMap */                                 \
4973    unixShmLock,                /* xShmLock */                                \
4974    unixShmBarrier,             /* xShmBarrier */                             \
4975    unixShmUnmap,               /* xShmUnmap */                               \
4976    unixFetch,                  /* xFetch */                                  \
4977    unixUnfetch,                /* xUnfetch */                                \
4978 };                                                                           \
4979 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){   \
4980   UNUSED_PARAMETER(z); UNUSED_PARAMETER(p);                                  \
4981   return &METHOD;                                                            \
4982 }                                                                            \
4983 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p)    \
4984     = FINDER##Impl;
4985 
4986 /*
4987 ** Here are all of the sqlite3_io_methods objects for each of the
4988 ** locking strategies.  Functions that return pointers to these methods
4989 ** are also created.
4990 */
4991 IOMETHODS(
4992   posixIoFinder,            /* Finder function name */
4993   posixIoMethods,           /* sqlite3_io_methods object name */
4994   3,                        /* shared memory and mmap are enabled */
4995   unixClose,                /* xClose method */
4996   unixLock,                 /* xLock method */
4997   unixUnlock,               /* xUnlock method */
4998   unixCheckReservedLock,    /* xCheckReservedLock method */
4999   unixShmMap                /* xShmMap method */
5000 )
5001 IOMETHODS(
5002   nolockIoFinder,           /* Finder function name */
5003   nolockIoMethods,          /* sqlite3_io_methods object name */
5004   3,                        /* shared memory is disabled */
5005   nolockClose,              /* xClose method */
5006   nolockLock,               /* xLock method */
5007   nolockUnlock,             /* xUnlock method */
5008   nolockCheckReservedLock,  /* xCheckReservedLock method */
5009   0                         /* xShmMap method */
5010 )
5011 IOMETHODS(
5012   dotlockIoFinder,          /* Finder function name */
5013   dotlockIoMethods,         /* sqlite3_io_methods object name */
5014   1,                        /* shared memory is disabled */
5015   dotlockClose,             /* xClose method */
5016   dotlockLock,              /* xLock method */
5017   dotlockUnlock,            /* xUnlock method */
5018   dotlockCheckReservedLock, /* xCheckReservedLock method */
5019   0                         /* xShmMap method */
5020 )
5021 
5022 #if SQLITE_ENABLE_LOCKING_STYLE
5023 IOMETHODS(
5024   flockIoFinder,            /* Finder function name */
5025   flockIoMethods,           /* sqlite3_io_methods object name */
5026   1,                        /* shared memory is disabled */
5027   flockClose,               /* xClose method */
5028   flockLock,                /* xLock method */
5029   flockUnlock,              /* xUnlock method */
5030   flockCheckReservedLock,   /* xCheckReservedLock method */
5031   0                         /* xShmMap method */
5032 )
5033 #endif
5034 
5035 #if OS_VXWORKS
5036 IOMETHODS(
5037   semIoFinder,              /* Finder function name */
5038   semIoMethods,             /* sqlite3_io_methods object name */
5039   1,                        /* shared memory is disabled */
5040   semXClose,                /* xClose method */
5041   semXLock,                 /* xLock method */
5042   semXUnlock,               /* xUnlock method */
5043   semXCheckReservedLock,    /* xCheckReservedLock method */
5044   0                         /* xShmMap method */
5045 )
5046 #endif
5047 
5048 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5049 IOMETHODS(
5050   afpIoFinder,              /* Finder function name */
5051   afpIoMethods,             /* sqlite3_io_methods object name */
5052   1,                        /* shared memory is disabled */
5053   afpClose,                 /* xClose method */
5054   afpLock,                  /* xLock method */
5055   afpUnlock,                /* xUnlock method */
5056   afpCheckReservedLock,     /* xCheckReservedLock method */
5057   0                         /* xShmMap method */
5058 )
5059 #endif
5060 
5061 /*
5062 ** The proxy locking method is a "super-method" in the sense that it
5063 ** opens secondary file descriptors for the conch and lock files and
5064 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
5065 ** secondary files.  For this reason, the division that implements
5066 ** proxy locking is located much further down in the file.  But we need
5067 ** to go ahead and define the sqlite3_io_methods and finder function
5068 ** for proxy locking here.  So we forward declare the I/O methods.
5069 */
5070 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5071 static int proxyClose(sqlite3_file*);
5072 static int proxyLock(sqlite3_file*, int);
5073 static int proxyUnlock(sqlite3_file*, int);
5074 static int proxyCheckReservedLock(sqlite3_file*, int*);
5075 IOMETHODS(
5076   proxyIoFinder,            /* Finder function name */
5077   proxyIoMethods,           /* sqlite3_io_methods object name */
5078   1,                        /* shared memory is disabled */
5079   proxyClose,               /* xClose method */
5080   proxyLock,                /* xLock method */
5081   proxyUnlock,              /* xUnlock method */
5082   proxyCheckReservedLock,   /* xCheckReservedLock method */
5083   0                         /* xShmMap method */
5084 )
5085 #endif
5086 
5087 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
5088 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5089 IOMETHODS(
5090   nfsIoFinder,               /* Finder function name */
5091   nfsIoMethods,              /* sqlite3_io_methods object name */
5092   1,                         /* shared memory is disabled */
5093   unixClose,                 /* xClose method */
5094   unixLock,                  /* xLock method */
5095   nfsUnlock,                 /* xUnlock method */
5096   unixCheckReservedLock,     /* xCheckReservedLock method */
5097   0                          /* xShmMap method */
5098 )
5099 #endif
5100 
5101 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5102 /*
5103 ** This "finder" function attempts to determine the best locking strategy
5104 ** for the database file "filePath".  It then returns the sqlite3_io_methods
5105 ** object that implements that strategy.
5106 **
5107 ** This is for MacOSX only.
5108 */
5109 static const sqlite3_io_methods *autolockIoFinderImpl(
5110   const char *filePath,    /* name of the database file */
5111   unixFile *pNew           /* open file object for the database file */
5112 ){
5113   static const struct Mapping {
5114     const char *zFilesystem;              /* Filesystem type name */
5115     const sqlite3_io_methods *pMethods;   /* Appropriate locking method */
5116   } aMap[] = {
5117     { "hfs",    &posixIoMethods },
5118     { "ufs",    &posixIoMethods },
5119     { "afpfs",  &afpIoMethods },
5120     { "smbfs",  &afpIoMethods },
5121     { "webdav", &nolockIoMethods },
5122     { 0, 0 }
5123   };
5124   int i;
5125   struct statfs fsInfo;
5126   struct flock lockInfo;
5127 
5128   if( !filePath ){
5129     /* If filePath==NULL that means we are dealing with a transient file
5130     ** that does not need to be locked. */
5131     return &nolockIoMethods;
5132   }
5133   if( statfs(filePath, &fsInfo) != -1 ){
5134     if( fsInfo.f_flags & MNT_RDONLY ){
5135       return &nolockIoMethods;
5136     }
5137     for(i=0; aMap[i].zFilesystem; i++){
5138       if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
5139         return aMap[i].pMethods;
5140       }
5141     }
5142   }
5143 
5144   /* Default case. Handles, amongst others, "nfs".
5145   ** Test byte-range lock using fcntl(). If the call succeeds,
5146   ** assume that the file-system supports POSIX style locks.
5147   */
5148   lockInfo.l_len = 1;
5149   lockInfo.l_start = 0;
5150   lockInfo.l_whence = SEEK_SET;
5151   lockInfo.l_type = F_RDLCK;
5152   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
5153     if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
5154       return &nfsIoMethods;
5155     } else {
5156       return &posixIoMethods;
5157     }
5158   }else{
5159     return &dotlockIoMethods;
5160   }
5161 }
5162 static const sqlite3_io_methods
5163   *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
5164 
5165 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
5166 
5167 #if OS_VXWORKS
5168 /*
5169 ** This "finder" function for VxWorks checks to see if posix advisory
5170 ** locking works.  If it does, then that is what is used.  If it does not
5171 ** work, then fallback to named semaphore locking.
5172 */
5173 static const sqlite3_io_methods *vxworksIoFinderImpl(
5174   const char *filePath,    /* name of the database file */
5175   unixFile *pNew           /* the open file object */
5176 ){
5177   struct flock lockInfo;
5178 
5179   if( !filePath ){
5180     /* If filePath==NULL that means we are dealing with a transient file
5181     ** that does not need to be locked. */
5182     return &nolockIoMethods;
5183   }
5184 
5185   /* Test if fcntl() is supported and use POSIX style locks.
5186   ** Otherwise fall back to the named semaphore method.
5187   */
5188   lockInfo.l_len = 1;
5189   lockInfo.l_start = 0;
5190   lockInfo.l_whence = SEEK_SET;
5191   lockInfo.l_type = F_RDLCK;
5192   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
5193     return &posixIoMethods;
5194   }else{
5195     return &semIoMethods;
5196   }
5197 }
5198 static const sqlite3_io_methods
5199   *(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl;
5200 
5201 #endif /* OS_VXWORKS */
5202 
5203 /*
5204 ** An abstract type for a pointer to an IO method finder function:
5205 */
5206 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
5207 
5208 
5209 /****************************************************************************
5210 **************************** sqlite3_vfs methods ****************************
5211 **
5212 ** This division contains the implementation of methods on the
5213 ** sqlite3_vfs object.
5214 */
5215 
5216 /*
5217 ** Initialize the contents of the unixFile structure pointed to by pId.
5218 */
5219 static int fillInUnixFile(
5220   sqlite3_vfs *pVfs,      /* Pointer to vfs object */
5221   int h,                  /* Open file descriptor of file being opened */
5222   sqlite3_file *pId,      /* Write to the unixFile structure here */
5223   const char *zFilename,  /* Name of the file being opened */
5224   int ctrlFlags           /* Zero or more UNIXFILE_* values */
5225 ){
5226   const sqlite3_io_methods *pLockingStyle;
5227   unixFile *pNew = (unixFile *)pId;
5228   int rc = SQLITE_OK;
5229 
5230   assert( pNew->pInode==NULL );
5231 
5232   /* Usually the path zFilename should not be a relative pathname. The
5233   ** exception is when opening the proxy "conch" file in builds that
5234   ** include the special Apple locking styles.
5235   */
5236 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5237   assert( zFilename==0 || zFilename[0]=='/'
5238     || pVfs->pAppData==(void*)&autolockIoFinder );
5239 #else
5240   assert( zFilename==0 || zFilename[0]=='/' );
5241 #endif
5242 
5243   /* No locking occurs in temporary files */
5244   assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );
5245 
5246   OSTRACE(("OPEN    %-3d %s\n", h, zFilename));
5247   pNew->h = h;
5248   pNew->pVfs = pVfs;
5249   pNew->zPath = zFilename;
5250   pNew->ctrlFlags = (u8)ctrlFlags;
5251 #if SQLITE_MAX_MMAP_SIZE>0
5252   pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap;
5253 #endif
5254   if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
5255                            "psow", SQLITE_POWERSAFE_OVERWRITE) ){
5256     pNew->ctrlFlags |= UNIXFILE_PSOW;
5257   }
5258   if( strcmp(pVfs->zName,"unix-excl")==0 ){
5259     pNew->ctrlFlags |= UNIXFILE_EXCL;
5260   }
5261 
5262 #if OS_VXWORKS
5263   pNew->pId = vxworksFindFileId(zFilename);
5264   if( pNew->pId==0 ){
5265     ctrlFlags |= UNIXFILE_NOLOCK;
5266     rc = SQLITE_NOMEM_BKPT;
5267   }
5268 #endif
5269 
5270   if( ctrlFlags & UNIXFILE_NOLOCK ){
5271     pLockingStyle = &nolockIoMethods;
5272   }else{
5273     pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
5274 #if SQLITE_ENABLE_LOCKING_STYLE
5275     /* Cache zFilename in the locking context (AFP and dotlock override) for
5276     ** proxyLock activation is possible (remote proxy is based on db name)
5277     ** zFilename remains valid until file is closed, to support */
5278     pNew->lockingContext = (void*)zFilename;
5279 #endif
5280   }
5281 
5282   if( pLockingStyle == &posixIoMethods
5283 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5284     || pLockingStyle == &nfsIoMethods
5285 #endif
5286   ){
5287     unixEnterMutex();
5288     rc = findInodeInfo(pNew, &pNew->pInode);
5289     if( rc!=SQLITE_OK ){
5290       /* If an error occurred in findInodeInfo(), close the file descriptor
5291       ** immediately, before releasing the mutex. findInodeInfo() may fail
5292       ** in two scenarios:
5293       **
5294       **   (a) A call to fstat() failed.
5295       **   (b) A malloc failed.
5296       **
5297       ** Scenario (b) may only occur if the process is holding no other
5298       ** file descriptors open on the same file. If there were other file
5299       ** descriptors on this file, then no malloc would be required by
5300       ** findInodeInfo(). If this is the case, it is quite safe to close
5301       ** handle h - as it is guaranteed that no posix locks will be released
5302       ** by doing so.
5303       **
5304       ** If scenario (a) caused the error then things are not so safe. The
5305       ** implicit assumption here is that if fstat() fails, things are in
5306       ** such bad shape that dropping a lock or two doesn't matter much.
5307       */
5308       robust_close(pNew, h, __LINE__);
5309       h = -1;
5310     }
5311     unixLeaveMutex();
5312   }
5313 
5314 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
5315   else if( pLockingStyle == &afpIoMethods ){
5316     /* AFP locking uses the file path so it needs to be included in
5317     ** the afpLockingContext.
5318     */
5319     afpLockingContext *pCtx;
5320     pNew->lockingContext = pCtx = sqlite3_malloc64( sizeof(*pCtx) );
5321     if( pCtx==0 ){
5322       rc = SQLITE_NOMEM_BKPT;
5323     }else{
5324       /* NB: zFilename exists and remains valid until the file is closed
5325       ** according to requirement F11141.  So we do not need to make a
5326       ** copy of the filename. */
5327       pCtx->dbPath = zFilename;
5328       pCtx->reserved = 0;
5329       srandomdev();
5330       unixEnterMutex();
5331       rc = findInodeInfo(pNew, &pNew->pInode);
5332       if( rc!=SQLITE_OK ){
5333         sqlite3_free(pNew->lockingContext);
5334         robust_close(pNew, h, __LINE__);
5335         h = -1;
5336       }
5337       unixLeaveMutex();
5338     }
5339   }
5340 #endif
5341 
5342   else if( pLockingStyle == &dotlockIoMethods ){
5343     /* Dotfile locking uses the file path so it needs to be included in
5344     ** the dotlockLockingContext
5345     */
5346     char *zLockFile;
5347     int nFilename;
5348     assert( zFilename!=0 );
5349     nFilename = (int)strlen(zFilename) + 6;
5350     zLockFile = (char *)sqlite3_malloc64(nFilename);
5351     if( zLockFile==0 ){
5352       rc = SQLITE_NOMEM_BKPT;
5353     }else{
5354       sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
5355     }
5356     pNew->lockingContext = zLockFile;
5357   }
5358 
5359 #if OS_VXWORKS
5360   else if( pLockingStyle == &semIoMethods ){
5361     /* Named semaphore locking uses the file path so it needs to be
5362     ** included in the semLockingContext
5363     */
5364     unixEnterMutex();
5365     rc = findInodeInfo(pNew, &pNew->pInode);
5366     if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
5367       char *zSemName = pNew->pInode->aSemName;
5368       int n;
5369       sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
5370                        pNew->pId->zCanonicalName);
5371       for( n=1; zSemName[n]; n++ )
5372         if( zSemName[n]=='/' ) zSemName[n] = '_';
5373       pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
5374       if( pNew->pInode->pSem == SEM_FAILED ){
5375         rc = SQLITE_NOMEM_BKPT;
5376         pNew->pInode->aSemName[0] = '\0';
5377       }
5378     }
5379     unixLeaveMutex();
5380   }
5381 #endif
5382 
5383   storeLastErrno(pNew, 0);
5384 #if OS_VXWORKS
5385   if( rc!=SQLITE_OK ){
5386     if( h>=0 ) robust_close(pNew, h, __LINE__);
5387     h = -1;
5388     osUnlink(zFilename);
5389     pNew->ctrlFlags |= UNIXFILE_DELETE;
5390   }
5391 #endif
5392   if( rc!=SQLITE_OK ){
5393     if( h>=0 ) robust_close(pNew, h, __LINE__);
5394   }else{
5395     pNew->pMethod = pLockingStyle;
5396     OpenCounter(+1);
5397     verifyDbFile(pNew);
5398   }
5399   return rc;
5400 }
5401 
5402 /*
5403 ** Return the name of a directory in which to put temporary files.
5404 ** If no suitable temporary file directory can be found, return NULL.
5405 */
5406 static const char *unixTempFileDir(void){
5407   static const char *azDirs[] = {
5408      0,
5409      0,
5410      "/var/tmp",
5411      "/usr/tmp",
5412      "/tmp",
5413      "."
5414   };
5415   unsigned int i = 0;
5416   struct stat buf;
5417   const char *zDir = sqlite3_temp_directory;
5418 
5419   if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR");
5420   if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
5421   while(1){
5422     if( zDir!=0
5423      && osStat(zDir, &buf)==0
5424      && S_ISDIR(buf.st_mode)
5425      && osAccess(zDir, 03)==0
5426     ){
5427       return zDir;
5428     }
5429     if( i>=sizeof(azDirs)/sizeof(azDirs[0]) ) break;
5430     zDir = azDirs[i++];
5431   }
5432   return 0;
5433 }
5434 
5435 /*
5436 ** Create a temporary file name in zBuf.  zBuf must be allocated
5437 ** by the calling process and must be big enough to hold at least
5438 ** pVfs->mxPathname bytes.
5439 */
5440 static int unixGetTempname(int nBuf, char *zBuf){
5441   const char *zDir;
5442   int iLimit = 0;
5443 
5444   /* It's odd to simulate an io-error here, but really this is just
5445   ** using the io-error infrastructure to test that SQLite handles this
5446   ** function failing.
5447   */
5448   zBuf[0] = 0;
5449   SimulateIOError( return SQLITE_IOERR );
5450 
5451   zDir = unixTempFileDir();
5452   if( zDir==0 ) return SQLITE_IOERR_GETTEMPPATH;
5453   do{
5454     u64 r;
5455     sqlite3_randomness(sizeof(r), &r);
5456     assert( nBuf>2 );
5457     zBuf[nBuf-2] = 0;
5458     sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c",
5459                      zDir, r, 0);
5460     if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ) return SQLITE_ERROR;
5461   }while( osAccess(zBuf,0)==0 );
5462   return SQLITE_OK;
5463 }
5464 
5465 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
5466 /*
5467 ** Routine to transform a unixFile into a proxy-locking unixFile.
5468 ** Implementation in the proxy-lock division, but used by unixOpen()
5469 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
5470 */
5471 static int proxyTransformUnixFile(unixFile*, const char*);
5472 #endif
5473 
5474 /*
5475 ** Search for an unused file descriptor that was opened on the database
5476 ** file (not a journal or master-journal file) identified by pathname
5477 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
5478 ** argument to this function.
5479 **
5480 ** Such a file descriptor may exist if a database connection was closed
5481 ** but the associated file descriptor could not be closed because some
5482 ** other file descriptor open on the same file is holding a file-lock.
5483 ** Refer to comments in the unixClose() function and the lengthy comment
5484 ** describing "Posix Advisory Locking" at the start of this file for
5485 ** further details. Also, ticket #4018.
5486 **
5487 ** If a suitable file descriptor is found, then it is returned. If no
5488 ** such file descriptor is located, -1 is returned.
5489 */
5490 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
5491   UnixUnusedFd *pUnused = 0;
5492 
5493   /* Do not search for an unused file descriptor on vxworks. Not because
5494   ** vxworks would not benefit from the change (it might, we're not sure),
5495   ** but because no way to test it is currently available. It is better
5496   ** not to risk breaking vxworks support for the sake of such an obscure
5497   ** feature.  */
5498 #if !OS_VXWORKS
5499   struct stat sStat;                   /* Results of stat() call */
5500 
5501   /* A stat() call may fail for various reasons. If this happens, it is
5502   ** almost certain that an open() call on the same path will also fail.
5503   ** For this reason, if an error occurs in the stat() call here, it is
5504   ** ignored and -1 is returned. The caller will try to open a new file
5505   ** descriptor on the same path, fail, and return an error to SQLite.
5506   **
5507   ** Even if a subsequent open() call does succeed, the consequences of
5508   ** not searching for a reusable file descriptor are not dire.  */
5509   if( 0==osStat(zPath, &sStat) ){
5510     unixInodeInfo *pInode;
5511 
5512     unixEnterMutex();
5513     pInode = inodeList;
5514     while( pInode && (pInode->fileId.dev!=sStat.st_dev
5515                      || pInode->fileId.ino!=sStat.st_ino) ){
5516        pInode = pInode->pNext;
5517     }
5518     if( pInode ){
5519       UnixUnusedFd **pp;
5520       for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
5521       pUnused = *pp;
5522       if( pUnused ){
5523         *pp = pUnused->pNext;
5524       }
5525     }
5526     unixLeaveMutex();
5527   }
5528 #endif    /* if !OS_VXWORKS */
5529   return pUnused;
5530 }
5531 
5532 /*
5533 ** Find the mode, uid and gid of file zFile.
5534 */
5535 static int getFileMode(
5536   const char *zFile,              /* File name */
5537   mode_t *pMode,                  /* OUT: Permissions of zFile */
5538   uid_t *pUid,                    /* OUT: uid of zFile. */
5539   gid_t *pGid                     /* OUT: gid of zFile. */
5540 ){
5541   struct stat sStat;              /* Output of stat() on database file */
5542   int rc = SQLITE_OK;
5543   if( 0==osStat(zFile, &sStat) ){
5544     *pMode = sStat.st_mode & 0777;
5545     *pUid = sStat.st_uid;
5546     *pGid = sStat.st_gid;
5547   }else{
5548     rc = SQLITE_IOERR_FSTAT;
5549   }
5550   return rc;
5551 }
5552 
5553 /*
5554 ** This function is called by unixOpen() to determine the unix permissions
5555 ** to create new files with. If no error occurs, then SQLITE_OK is returned
5556 ** and a value suitable for passing as the third argument to open(2) is
5557 ** written to *pMode. If an IO error occurs, an SQLite error code is
5558 ** returned and the value of *pMode is not modified.
5559 **
5560 ** In most cases, this routine sets *pMode to 0, which will become
5561 ** an indication to robust_open() to create the file using
5562 ** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask.
5563 ** But if the file being opened is a WAL or regular journal file, then
5564 ** this function queries the file-system for the permissions on the
5565 ** corresponding database file and sets *pMode to this value. Whenever
5566 ** possible, WAL and journal files are created using the same permissions
5567 ** as the associated database file.
5568 **
5569 ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
5570 ** original filename is unavailable.  But 8_3_NAMES is only used for
5571 ** FAT filesystems and permissions do not matter there, so just use
5572 ** the default permissions.
5573 */
5574 static int findCreateFileMode(
5575   const char *zPath,              /* Path of file (possibly) being created */
5576   int flags,                      /* Flags passed as 4th argument to xOpen() */
5577   mode_t *pMode,                  /* OUT: Permissions to open file with */
5578   uid_t *pUid,                    /* OUT: uid to set on the file */
5579   gid_t *pGid                     /* OUT: gid to set on the file */
5580 ){
5581   int rc = SQLITE_OK;             /* Return Code */
5582   *pMode = 0;
5583   *pUid = 0;
5584   *pGid = 0;
5585   if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
5586     char zDb[MAX_PATHNAME+1];     /* Database file path */
5587     int nDb;                      /* Number of valid bytes in zDb */
5588 
5589     /* zPath is a path to a WAL or journal file. The following block derives
5590     ** the path to the associated database file from zPath. This block handles
5591     ** the following naming conventions:
5592     **
5593     **   "<path to db>-journal"
5594     **   "<path to db>-wal"
5595     **   "<path to db>-journalNN"
5596     **   "<path to db>-walNN"
5597     **
5598     ** where NN is a decimal number. The NN naming schemes are
5599     ** used by the test_multiplex.c module.
5600     */
5601     nDb = sqlite3Strlen30(zPath) - 1;
5602     while( zPath[nDb]!='-' ){
5603 #ifndef SQLITE_ENABLE_8_3_NAMES
5604       /* In the normal case (8+3 filenames disabled) the journal filename
5605       ** is guaranteed to contain a '-' character. */
5606       assert( nDb>0 );
5607       assert( sqlite3Isalnum(zPath[nDb]) );
5608 #else
5609       /* If 8+3 names are possible, then the journal file might not contain
5610       ** a '-' character.  So check for that case and return early. */
5611       if( nDb==0 || zPath[nDb]=='.' ) return SQLITE_OK;
5612 #endif
5613       nDb--;
5614     }
5615     memcpy(zDb, zPath, nDb);
5616     zDb[nDb] = '\0';
5617 
5618     rc = getFileMode(zDb, pMode, pUid, pGid);
5619   }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
5620     *pMode = 0600;
5621   }else if( flags & SQLITE_OPEN_URI ){
5622     /* If this is a main database file and the file was opened using a URI
5623     ** filename, check for the "modeof" parameter. If present, interpret
5624     ** its value as a filename and try to copy the mode, uid and gid from
5625     ** that file.  */
5626     const char *z = sqlite3_uri_parameter(zPath, "modeof");
5627     if( z ){
5628       rc = getFileMode(z, pMode, pUid, pGid);
5629     }
5630   }
5631   return rc;
5632 }
5633 
5634 /*
5635 ** Open the file zPath.
5636 **
5637 ** Previously, the SQLite OS layer used three functions in place of this
5638 ** one:
5639 **
5640 **     sqlite3OsOpenReadWrite();
5641 **     sqlite3OsOpenReadOnly();
5642 **     sqlite3OsOpenExclusive();
5643 **
5644 ** These calls correspond to the following combinations of flags:
5645 **
5646 **     ReadWrite() ->     (READWRITE | CREATE)
5647 **     ReadOnly()  ->     (READONLY)
5648 **     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
5649 **
5650 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
5651 ** true, the file was configured to be automatically deleted when the
5652 ** file handle closed. To achieve the same effect using this new
5653 ** interface, add the DELETEONCLOSE flag to those specified above for
5654 ** OpenExclusive().
5655 */
5656 static int unixOpen(
5657   sqlite3_vfs *pVfs,           /* The VFS for which this is the xOpen method */
5658   const char *zPath,           /* Pathname of file to be opened */
5659   sqlite3_file *pFile,         /* The file descriptor to be filled in */
5660   int flags,                   /* Input flags to control the opening */
5661   int *pOutFlags               /* Output flags returned to SQLite core */
5662 ){
5663   unixFile *p = (unixFile *)pFile;
5664   int fd = -1;                   /* File descriptor returned by open() */
5665   int openFlags = 0;             /* Flags to pass to open() */
5666   int eType = flags&0xFFFFFF00;  /* Type of file to open */
5667   int noLock;                    /* True to omit locking primitives */
5668   int rc = SQLITE_OK;            /* Function Return Code */
5669   int ctrlFlags = 0;             /* UNIXFILE_* flags */
5670 
5671   int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
5672   int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
5673   int isCreate     = (flags & SQLITE_OPEN_CREATE);
5674   int isReadonly   = (flags & SQLITE_OPEN_READONLY);
5675   int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
5676 #if SQLITE_ENABLE_LOCKING_STYLE
5677   int isAutoProxy  = (flags & SQLITE_OPEN_AUTOPROXY);
5678 #endif
5679 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
5680   struct statfs fsInfo;
5681 #endif
5682 
5683   /* If creating a master or main-file journal, this function will open
5684   ** a file-descriptor on the directory too. The first time unixSync()
5685   ** is called the directory file descriptor will be fsync()ed and close()d.
5686   */
5687   int syncDir = (isCreate && (
5688         eType==SQLITE_OPEN_MASTER_JOURNAL
5689      || eType==SQLITE_OPEN_MAIN_JOURNAL
5690      || eType==SQLITE_OPEN_WAL
5691   ));
5692 
5693   /* If argument zPath is a NULL pointer, this function is required to open
5694   ** a temporary file. Use this buffer to store the file name in.
5695   */
5696   char zTmpname[MAX_PATHNAME+2];
5697   const char *zName = zPath;
5698 
5699   /* Check the following statements are true:
5700   **
5701   **   (a) Exactly one of the READWRITE and READONLY flags must be set, and
5702   **   (b) if CREATE is set, then READWRITE must also be set, and
5703   **   (c) if EXCLUSIVE is set, then CREATE must also be set.
5704   **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
5705   */
5706   assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
5707   assert(isCreate==0 || isReadWrite);
5708   assert(isExclusive==0 || isCreate);
5709   assert(isDelete==0 || isCreate);
5710 
5711   /* The main DB, main journal, WAL file and master journal are never
5712   ** automatically deleted. Nor are they ever temporary files.  */
5713   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
5714   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
5715   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
5716   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
5717 
5718   /* Assert that the upper layer has set one of the "file-type" flags. */
5719   assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB
5720        || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
5721        || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL
5722        || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
5723   );
5724 
5725   /* Detect a pid change and reset the PRNG.  There is a race condition
5726   ** here such that two or more threads all trying to open databases at
5727   ** the same instant might all reset the PRNG.  But multiple resets
5728   ** are harmless.
5729   */
5730   if( randomnessPid!=osGetpid(0) ){
5731     randomnessPid = osGetpid(0);
5732     sqlite3_randomness(0,0);
5733   }
5734 
5735   memset(p, 0, sizeof(unixFile));
5736 
5737   if( eType==SQLITE_OPEN_MAIN_DB ){
5738     UnixUnusedFd *pUnused;
5739     pUnused = findReusableFd(zName, flags);
5740     if( pUnused ){
5741       fd = pUnused->fd;
5742     }else{
5743       pUnused = sqlite3_malloc64(sizeof(*pUnused));
5744       if( !pUnused ){
5745         return SQLITE_NOMEM_BKPT;
5746       }
5747     }
5748     p->pUnused = pUnused;
5749 
5750     /* Database filenames are double-zero terminated if they are not
5751     ** URIs with parameters.  Hence, they can always be passed into
5752     ** sqlite3_uri_parameter(). */
5753     assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );
5754 
5755   }else if( !zName ){
5756     /* If zName is NULL, the upper layer is requesting a temp file. */
5757     assert(isDelete && !syncDir);
5758     rc = unixGetTempname(pVfs->mxPathname, zTmpname);
5759     if( rc!=SQLITE_OK ){
5760       return rc;
5761     }
5762     zName = zTmpname;
5763 
5764     /* Generated temporary filenames are always double-zero terminated
5765     ** for use by sqlite3_uri_parameter(). */
5766     assert( zName[strlen(zName)+1]==0 );
5767   }
5768 
5769   /* Determine the value of the flags parameter passed to POSIX function
5770   ** open(). These must be calculated even if open() is not called, as
5771   ** they may be stored as part of the file handle and used by the
5772   ** 'conch file' locking functions later on.  */
5773   if( isReadonly )  openFlags |= O_RDONLY;
5774   if( isReadWrite ) openFlags |= O_RDWR;
5775   if( isCreate )    openFlags |= O_CREAT;
5776   if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
5777   openFlags |= (O_LARGEFILE|O_BINARY);
5778 
5779   if( fd<0 ){
5780     mode_t openMode;              /* Permissions to create file with */
5781     uid_t uid;                    /* Userid for the file */
5782     gid_t gid;                    /* Groupid for the file */
5783     rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid);
5784     if( rc!=SQLITE_OK ){
5785       assert( !p->pUnused );
5786       assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
5787       return rc;
5788     }
5789     fd = robust_open(zName, openFlags, openMode);
5790     OSTRACE(("OPENX   %-3d %s 0%o\n", fd, zName, openFlags));
5791     assert( !isExclusive || (openFlags & O_CREAT)!=0 );
5792     if( fd<0 && errno!=EISDIR && isReadWrite ){
5793       /* Failed to open the file for read/write access. Try read-only. */
5794       flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
5795       openFlags &= ~(O_RDWR|O_CREAT);
5796       flags |= SQLITE_OPEN_READONLY;
5797       openFlags |= O_RDONLY;
5798       isReadonly = 1;
5799       fd = robust_open(zName, openFlags, openMode);
5800     }
5801     if( fd<0 ){
5802       rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
5803       goto open_finished;
5804     }
5805 
5806     /* If this process is running as root and if creating a new rollback
5807     ** journal or WAL file, set the ownership of the journal or WAL to be
5808     ** the same as the original database.
5809     */
5810     if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
5811       robustFchown(fd, uid, gid);
5812     }
5813   }
5814   assert( fd>=0 );
5815   if( pOutFlags ){
5816     *pOutFlags = flags;
5817   }
5818 
5819   if( p->pUnused ){
5820     p->pUnused->fd = fd;
5821     p->pUnused->flags = flags;
5822   }
5823 
5824   if( isDelete ){
5825 #if OS_VXWORKS
5826     zPath = zName;
5827 #elif defined(SQLITE_UNLINK_AFTER_CLOSE)
5828     zPath = sqlite3_mprintf("%s", zName);
5829     if( zPath==0 ){
5830       robust_close(p, fd, __LINE__);
5831       return SQLITE_NOMEM_BKPT;
5832     }
5833 #else
5834     osUnlink(zName);
5835 #endif
5836   }
5837 #if SQLITE_ENABLE_LOCKING_STYLE
5838   else{
5839     p->openFlags = openFlags;
5840   }
5841 #endif
5842 
5843 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
5844   if( fstatfs(fd, &fsInfo) == -1 ){
5845     storeLastErrno(p, errno);
5846     robust_close(p, fd, __LINE__);
5847     return SQLITE_IOERR_ACCESS;
5848   }
5849   if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
5850     ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
5851   }
5852   if (0 == strncmp("exfat", fsInfo.f_fstypename, 5)) {
5853     ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
5854   }
5855 #endif
5856 
5857   /* Set up appropriate ctrlFlags */
5858   if( isDelete )                ctrlFlags |= UNIXFILE_DELETE;
5859   if( isReadonly )              ctrlFlags |= UNIXFILE_RDONLY;
5860   noLock = eType!=SQLITE_OPEN_MAIN_DB;
5861   if( noLock )                  ctrlFlags |= UNIXFILE_NOLOCK;
5862   if( syncDir )                 ctrlFlags |= UNIXFILE_DIRSYNC;
5863   if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI;
5864 
5865 #if SQLITE_ENABLE_LOCKING_STYLE
5866 #if SQLITE_PREFER_PROXY_LOCKING
5867   isAutoProxy = 1;
5868 #endif
5869   if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
5870     char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
5871     int useProxy = 0;
5872 
5873     /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
5874     ** never use proxy, NULL means use proxy for non-local files only.  */
5875     if( envforce!=NULL ){
5876       useProxy = atoi(envforce)>0;
5877     }else{
5878       useProxy = !(fsInfo.f_flags&MNT_LOCAL);
5879     }
5880     if( useProxy ){
5881       rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
5882       if( rc==SQLITE_OK ){
5883         rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
5884         if( rc!=SQLITE_OK ){
5885           /* Use unixClose to clean up the resources added in fillInUnixFile
5886           ** and clear all the structure's references.  Specifically,
5887           ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
5888           */
5889           unixClose(pFile);
5890           return rc;
5891         }
5892       }
5893       goto open_finished;
5894     }
5895   }
5896 #endif
5897 
5898   rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
5899 
5900 open_finished:
5901   if( rc!=SQLITE_OK ){
5902     sqlite3_free(p->pUnused);
5903   }
5904   return rc;
5905 }
5906 
5907 
5908 /*
5909 ** Delete the file at zPath. If the dirSync argument is true, fsync()
5910 ** the directory after deleting the file.
5911 */
5912 static int unixDelete(
5913   sqlite3_vfs *NotUsed,     /* VFS containing this as the xDelete method */
5914   const char *zPath,        /* Name of file to be deleted */
5915   int dirSync               /* If true, fsync() directory after deleting file */
5916 ){
5917   int rc = SQLITE_OK;
5918   UNUSED_PARAMETER(NotUsed);
5919   SimulateIOError(return SQLITE_IOERR_DELETE);
5920   if( osUnlink(zPath)==(-1) ){
5921     if( errno==ENOENT
5922 #if OS_VXWORKS
5923         || osAccess(zPath,0)!=0
5924 #endif
5925     ){
5926       rc = SQLITE_IOERR_DELETE_NOENT;
5927     }else{
5928       rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
5929     }
5930     return rc;
5931   }
5932 #ifndef SQLITE_DISABLE_DIRSYNC
5933   if( (dirSync & 1)!=0 ){
5934     int fd;
5935     rc = osOpenDirectory(zPath, &fd);
5936     if( rc==SQLITE_OK ){
5937       if( full_fsync(fd,0,0) ){
5938         rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
5939       }
5940       robust_close(0, fd, __LINE__);
5941     }else{
5942       assert( rc==SQLITE_CANTOPEN );
5943       rc = SQLITE_OK;
5944     }
5945   }
5946 #endif
5947   return rc;
5948 }
5949 
5950 /*
5951 ** Test the existence of or access permissions of file zPath. The
5952 ** test performed depends on the value of flags:
5953 **
5954 **     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
5955 **     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
5956 **     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
5957 **
5958 ** Otherwise return 0.
5959 */
5960 static int unixAccess(
5961   sqlite3_vfs *NotUsed,   /* The VFS containing this xAccess method */
5962   const char *zPath,      /* Path of the file to examine */
5963   int flags,              /* What do we want to learn about the zPath file? */
5964   int *pResOut            /* Write result boolean here */
5965 ){
5966   UNUSED_PARAMETER(NotUsed);
5967   SimulateIOError( return SQLITE_IOERR_ACCESS; );
5968   assert( pResOut!=0 );
5969 
5970   /* The spec says there are three possible values for flags.  But only
5971   ** two of them are actually used */
5972   assert( flags==SQLITE_ACCESS_EXISTS || flags==SQLITE_ACCESS_READWRITE );
5973 
5974   if( flags==SQLITE_ACCESS_EXISTS ){
5975     struct stat buf;
5976     *pResOut = (0==osStat(zPath, &buf) && buf.st_size>0);
5977   }else{
5978     *pResOut = osAccess(zPath, W_OK|R_OK)==0;
5979   }
5980   return SQLITE_OK;
5981 }
5982 
5983 /*
5984 **
5985 */
5986 static int mkFullPathname(
5987   const char *zPath,              /* Input path */
5988   char *zOut,                     /* Output buffer */
5989   int nOut                        /* Allocated size of buffer zOut */
5990 ){
5991   int nPath = sqlite3Strlen30(zPath);
5992   int iOff = 0;
5993   if( zPath[0]!='/' ){
5994     if( osGetcwd(zOut, nOut-2)==0 ){
5995       return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
5996     }
5997     iOff = sqlite3Strlen30(zOut);
5998     zOut[iOff++] = '/';
5999   }
6000   if( (iOff+nPath+1)>nOut ){
6001     /* SQLite assumes that xFullPathname() nul-terminates the output buffer
6002     ** even if it returns an error.  */
6003     zOut[iOff] = '\0';
6004     return SQLITE_CANTOPEN_BKPT;
6005   }
6006   sqlite3_snprintf(nOut-iOff, &zOut[iOff], "%s", zPath);
6007   return SQLITE_OK;
6008 }
6009 
6010 /*
6011 ** Turn a relative pathname into a full pathname. The relative path
6012 ** is stored as a nul-terminated string in the buffer pointed to by
6013 ** zPath.
6014 **
6015 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
6016 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
6017 ** this buffer before returning.
6018 */
6019 static int unixFullPathname(
6020   sqlite3_vfs *pVfs,            /* Pointer to vfs object */
6021   const char *zPath,            /* Possibly relative input path */
6022   int nOut,                     /* Size of output buffer in bytes */
6023   char *zOut                    /* Output buffer */
6024 ){
6025 #if !defined(HAVE_READLINK) || !defined(HAVE_LSTAT)
6026   return mkFullPathname(zPath, zOut, nOut);
6027 #else
6028   int rc = SQLITE_OK;
6029   int nByte;
6030   int nLink = 1;                /* Number of symbolic links followed so far */
6031   const char *zIn = zPath;      /* Input path for each iteration of loop */
6032   char *zDel = 0;
6033 
6034   assert( pVfs->mxPathname==MAX_PATHNAME );
6035   UNUSED_PARAMETER(pVfs);
6036 
6037   /* It's odd to simulate an io-error here, but really this is just
6038   ** using the io-error infrastructure to test that SQLite handles this
6039   ** function failing. This function could fail if, for example, the
6040   ** current working directory has been unlinked.
6041   */
6042   SimulateIOError( return SQLITE_ERROR );
6043 
6044   do {
6045 
6046     /* Call stat() on path zIn. Set bLink to true if the path is a symbolic
6047     ** link, or false otherwise.  */
6048     int bLink = 0;
6049     struct stat buf;
6050     if( osLstat(zIn, &buf)!=0 ){
6051       if( errno!=ENOENT ){
6052         rc = unixLogError(SQLITE_CANTOPEN_BKPT, "lstat", zIn);
6053       }
6054     }else{
6055       bLink = S_ISLNK(buf.st_mode);
6056     }
6057 
6058     if( bLink ){
6059       if( zDel==0 ){
6060         zDel = sqlite3_malloc(nOut);
6061         if( zDel==0 ) rc = SQLITE_NOMEM_BKPT;
6062       }else if( ++nLink>SQLITE_MAX_SYMLINKS ){
6063         rc = SQLITE_CANTOPEN_BKPT;
6064       }
6065 
6066       if( rc==SQLITE_OK ){
6067         nByte = osReadlink(zIn, zDel, nOut-1);
6068         if( nByte<0 ){
6069           rc = unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zIn);
6070         }else{
6071           if( zDel[0]!='/' ){
6072             int n;
6073             for(n = sqlite3Strlen30(zIn); n>0 && zIn[n-1]!='/'; n--);
6074             if( nByte+n+1>nOut ){
6075               rc = SQLITE_CANTOPEN_BKPT;
6076             }else{
6077               memmove(&zDel[n], zDel, nByte+1);
6078               memcpy(zDel, zIn, n);
6079               nByte += n;
6080             }
6081           }
6082           zDel[nByte] = '\0';
6083         }
6084       }
6085 
6086       zIn = zDel;
6087     }
6088 
6089     assert( rc!=SQLITE_OK || zIn!=zOut || zIn[0]=='/' );
6090     if( rc==SQLITE_OK && zIn!=zOut ){
6091       rc = mkFullPathname(zIn, zOut, nOut);
6092     }
6093     if( bLink==0 ) break;
6094     zIn = zOut;
6095   }while( rc==SQLITE_OK );
6096 
6097   sqlite3_free(zDel);
6098   return rc;
6099 #endif   /* HAVE_READLINK && HAVE_LSTAT */
6100 }
6101 
6102 
6103 #ifndef SQLITE_OMIT_LOAD_EXTENSION
6104 /*
6105 ** Interfaces for opening a shared library, finding entry points
6106 ** within the shared library, and closing the shared library.
6107 */
6108 #include <dlfcn.h>
6109 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
6110   UNUSED_PARAMETER(NotUsed);
6111   return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
6112 }
6113 
6114 /*
6115 ** SQLite calls this function immediately after a call to unixDlSym() or
6116 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
6117 ** message is available, it is written to zBufOut. If no error message
6118 ** is available, zBufOut is left unmodified and SQLite uses a default
6119 ** error message.
6120 */
6121 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
6122   const char *zErr;
6123   UNUSED_PARAMETER(NotUsed);
6124   unixEnterMutex();
6125   zErr = dlerror();
6126   if( zErr ){
6127     sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
6128   }
6129   unixLeaveMutex();
6130 }
6131 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
6132   /*
6133   ** GCC with -pedantic-errors says that C90 does not allow a void* to be
6134   ** cast into a pointer to a function.  And yet the library dlsym() routine
6135   ** returns a void* which is really a pointer to a function.  So how do we
6136   ** use dlsym() with -pedantic-errors?
6137   **
6138   ** Variable x below is defined to be a pointer to a function taking
6139   ** parameters void* and const char* and returning a pointer to a function.
6140   ** We initialize x by assigning it a pointer to the dlsym() function.
6141   ** (That assignment requires a cast.)  Then we call the function that
6142   ** x points to.
6143   **
6144   ** This work-around is unlikely to work correctly on any system where
6145   ** you really cannot cast a function pointer into void*.  But then, on the
6146   ** other hand, dlsym() will not work on such a system either, so we have
6147   ** not really lost anything.
6148   */
6149   void (*(*x)(void*,const char*))(void);
6150   UNUSED_PARAMETER(NotUsed);
6151   x = (void(*(*)(void*,const char*))(void))dlsym;
6152   return (*x)(p, zSym);
6153 }
6154 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
6155   UNUSED_PARAMETER(NotUsed);
6156   dlclose(pHandle);
6157 }
6158 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
6159   #define unixDlOpen  0
6160   #define unixDlError 0
6161   #define unixDlSym   0
6162   #define unixDlClose 0
6163 #endif
6164 
6165 /*
6166 ** Write nBuf bytes of random data to the supplied buffer zBuf.
6167 */
6168 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
6169   UNUSED_PARAMETER(NotUsed);
6170   assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
6171 
6172   /* We have to initialize zBuf to prevent valgrind from reporting
6173   ** errors.  The reports issued by valgrind are incorrect - we would
6174   ** prefer that the randomness be increased by making use of the
6175   ** uninitialized space in zBuf - but valgrind errors tend to worry
6176   ** some users.  Rather than argue, it seems easier just to initialize
6177   ** the whole array and silence valgrind, even if that means less randomness
6178   ** in the random seed.
6179   **
6180   ** When testing, initializing zBuf[] to zero is all we do.  That means
6181   ** that we always use the same random number sequence.  This makes the
6182   ** tests repeatable.
6183   */
6184   memset(zBuf, 0, nBuf);
6185   randomnessPid = osGetpid(0);
6186 #if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS)
6187   {
6188     int fd, got;
6189     fd = robust_open("/dev/urandom", O_RDONLY, 0);
6190     if( fd<0 ){
6191       time_t t;
6192       time(&t);
6193       memcpy(zBuf, &t, sizeof(t));
6194       memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid));
6195       assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf );
6196       nBuf = sizeof(t) + sizeof(randomnessPid);
6197     }else{
6198       do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR );
6199       robust_close(0, fd, __LINE__);
6200     }
6201   }
6202 #endif
6203   return nBuf;
6204 }
6205 
6206 
6207 /*
6208 ** Sleep for a little while.  Return the amount of time slept.
6209 ** The argument is the number of microseconds we want to sleep.
6210 ** The return value is the number of microseconds of sleep actually
6211 ** requested from the underlying operating system, a number which
6212 ** might be greater than or equal to the argument, but not less
6213 ** than the argument.
6214 */
6215 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
6216 #if OS_VXWORKS
6217   struct timespec sp;
6218 
6219   sp.tv_sec = microseconds / 1000000;
6220   sp.tv_nsec = (microseconds % 1000000) * 1000;
6221   nanosleep(&sp, NULL);
6222   UNUSED_PARAMETER(NotUsed);
6223   return microseconds;
6224 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
6225   usleep(microseconds);
6226   UNUSED_PARAMETER(NotUsed);
6227   return microseconds;
6228 #else
6229   int seconds = (microseconds+999999)/1000000;
6230   sleep(seconds);
6231   UNUSED_PARAMETER(NotUsed);
6232   return seconds*1000000;
6233 #endif
6234 }
6235 
6236 /*
6237 ** The following variable, if set to a non-zero value, is interpreted as
6238 ** the number of seconds since 1970 and is used to set the result of
6239 ** sqlite3OsCurrentTime() during testing.
6240 */
6241 #ifdef SQLITE_TEST
6242 int sqlite3_current_time = 0;  /* Fake system time in seconds since 1970. */
6243 #endif
6244 
6245 /*
6246 ** Find the current time (in Universal Coordinated Time).  Write into *piNow
6247 ** the current time and date as a Julian Day number times 86_400_000.  In
6248 ** other words, write into *piNow the number of milliseconds since the Julian
6249 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
6250 ** proleptic Gregorian calendar.
6251 **
6252 ** On success, return SQLITE_OK.  Return SQLITE_ERROR if the time and date
6253 ** cannot be found.
6254 */
6255 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
6256   static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
6257   int rc = SQLITE_OK;
6258 #if defined(NO_GETTOD)
6259   time_t t;
6260   time(&t);
6261   *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
6262 #elif OS_VXWORKS
6263   struct timespec sNow;
6264   clock_gettime(CLOCK_REALTIME, &sNow);
6265   *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
6266 #else
6267   struct timeval sNow;
6268   (void)gettimeofday(&sNow, 0);  /* Cannot fail given valid arguments */
6269   *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
6270 #endif
6271 
6272 #ifdef SQLITE_TEST
6273   if( sqlite3_current_time ){
6274     *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
6275   }
6276 #endif
6277   UNUSED_PARAMETER(NotUsed);
6278   return rc;
6279 }
6280 
6281 #ifndef SQLITE_OMIT_DEPRECATED
6282 /*
6283 ** Find the current time (in Universal Coordinated Time).  Write the
6284 ** current time and date as a Julian Day number into *prNow and
6285 ** return 0.  Return 1 if the time and date cannot be found.
6286 */
6287 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
6288   sqlite3_int64 i = 0;
6289   int rc;
6290   UNUSED_PARAMETER(NotUsed);
6291   rc = unixCurrentTimeInt64(0, &i);
6292   *prNow = i/86400000.0;
6293   return rc;
6294 }
6295 #else
6296 # define unixCurrentTime 0
6297 #endif
6298 
6299 /*
6300 ** The xGetLastError() method is designed to return a better
6301 ** low-level error message when operating-system problems come up
6302 ** during SQLite operation.  Only the integer return code is currently
6303 ** used.
6304 */
6305 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
6306   UNUSED_PARAMETER(NotUsed);
6307   UNUSED_PARAMETER(NotUsed2);
6308   UNUSED_PARAMETER(NotUsed3);
6309   return errno;
6310 }
6311 
6312 
6313 /*
6314 ************************ End of sqlite3_vfs methods ***************************
6315 ******************************************************************************/
6316 
6317 /******************************************************************************
6318 ************************** Begin Proxy Locking ********************************
6319 **
6320 ** Proxy locking is a "uber-locking-method" in this sense:  It uses the
6321 ** other locking methods on secondary lock files.  Proxy locking is a
6322 ** meta-layer over top of the primitive locking implemented above.  For
6323 ** this reason, the division that implements of proxy locking is deferred
6324 ** until late in the file (here) after all of the other I/O methods have
6325 ** been defined - so that the primitive locking methods are available
6326 ** as services to help with the implementation of proxy locking.
6327 **
6328 ****
6329 **
6330 ** The default locking schemes in SQLite use byte-range locks on the
6331 ** database file to coordinate safe, concurrent access by multiple readers
6332 ** and writers [http://sqlite.org/lockingv3.html].  The five file locking
6333 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
6334 ** as POSIX read & write locks over fixed set of locations (via fsctl),
6335 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
6336 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
6337 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
6338 ** address in the shared range is taken for a SHARED lock, the entire
6339 ** shared range is taken for an EXCLUSIVE lock):
6340 **
6341 **      PENDING_BYTE        0x40000000
6342 **      RESERVED_BYTE       0x40000001
6343 **      SHARED_RANGE        0x40000002 -> 0x40000200
6344 **
6345 ** This works well on the local file system, but shows a nearly 100x
6346 ** slowdown in read performance on AFP because the AFP client disables
6347 ** the read cache when byte-range locks are present.  Enabling the read
6348 ** cache exposes a cache coherency problem that is present on all OS X
6349 ** supported network file systems.  NFS and AFP both observe the
6350 ** close-to-open semantics for ensuring cache coherency
6351 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
6352 ** address the requirements for concurrent database access by multiple
6353 ** readers and writers
6354 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
6355 **
6356 ** To address the performance and cache coherency issues, proxy file locking
6357 ** changes the way database access is controlled by limiting access to a
6358 ** single host at a time and moving file locks off of the database file
6359 ** and onto a proxy file on the local file system.
6360 **
6361 **
6362 ** Using proxy locks
6363 ** -----------------
6364 **
6365 ** C APIs
6366 **
6367 **  sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE,
6368 **                       <proxy_path> | ":auto:");
6369 **  sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE,
6370 **                       &<proxy_path>);
6371 **
6372 **
6373 ** SQL pragmas
6374 **
6375 **  PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
6376 **  PRAGMA [database.]lock_proxy_file
6377 **
6378 ** Specifying ":auto:" means that if there is a conch file with a matching
6379 ** host ID in it, the proxy path in the conch file will be used, otherwise
6380 ** a proxy path based on the user's temp dir
6381 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
6382 ** actual proxy file name is generated from the name and path of the
6383 ** database file.  For example:
6384 **
6385 **       For database path "/Users/me/foo.db"
6386 **       The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
6387 **
6388 ** Once a lock proxy is configured for a database connection, it can not
6389 ** be removed, however it may be switched to a different proxy path via
6390 ** the above APIs (assuming the conch file is not being held by another
6391 ** connection or process).
6392 **
6393 **
6394 ** How proxy locking works
6395 ** -----------------------
6396 **
6397 ** Proxy file locking relies primarily on two new supporting files:
6398 **
6399 **   *  conch file to limit access to the database file to a single host
6400 **      at a time
6401 **
6402 **   *  proxy file to act as a proxy for the advisory locks normally
6403 **      taken on the database
6404 **
6405 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
6406 ** by taking an sqlite-style shared lock on the conch file, reading the
6407 ** contents and comparing the host's unique host ID (see below) and lock
6408 ** proxy path against the values stored in the conch.  The conch file is
6409 ** stored in the same directory as the database file and the file name
6410 ** is patterned after the database file name as ".<databasename>-conch".
6411 ** If the conch file does not exist, or its contents do not match the
6412 ** host ID and/or proxy path, then the lock is escalated to an exclusive
6413 ** lock and the conch file contents is updated with the host ID and proxy
6414 ** path and the lock is downgraded to a shared lock again.  If the conch
6415 ** is held by another process (with a shared lock), the exclusive lock
6416 ** will fail and SQLITE_BUSY is returned.
6417 **
6418 ** The proxy file - a single-byte file used for all advisory file locks
6419 ** normally taken on the database file.   This allows for safe sharing
6420 ** of the database file for multiple readers and writers on the same
6421 ** host (the conch ensures that they all use the same local lock file).
6422 **
6423 ** Requesting the lock proxy does not immediately take the conch, it is
6424 ** only taken when the first request to lock database file is made.
6425 ** This matches the semantics of the traditional locking behavior, where
6426 ** opening a connection to a database file does not take a lock on it.
6427 ** The shared lock and an open file descriptor are maintained until
6428 ** the connection to the database is closed.
6429 **
6430 ** The proxy file and the lock file are never deleted so they only need
6431 ** to be created the first time they are used.
6432 **
6433 ** Configuration options
6434 ** ---------------------
6435 **
6436 **  SQLITE_PREFER_PROXY_LOCKING
6437 **
6438 **       Database files accessed on non-local file systems are
6439 **       automatically configured for proxy locking, lock files are
6440 **       named automatically using the same logic as
6441 **       PRAGMA lock_proxy_file=":auto:"
6442 **
6443 **  SQLITE_PROXY_DEBUG
6444 **
6445 **       Enables the logging of error messages during host id file
6446 **       retrieval and creation
6447 **
6448 **  LOCKPROXYDIR
6449 **
6450 **       Overrides the default directory used for lock proxy files that
6451 **       are named automatically via the ":auto:" setting
6452 **
6453 **  SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
6454 **
6455 **       Permissions to use when creating a directory for storing the
6456 **       lock proxy files, only used when LOCKPROXYDIR is not set.
6457 **
6458 **
6459 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
6460 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
6461 ** force proxy locking to be used for every database file opened, and 0
6462 ** will force automatic proxy locking to be disabled for all database
6463 ** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or
6464 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
6465 */
6466 
6467 /*
6468 ** Proxy locking is only available on MacOSX
6469 */
6470 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
6471 
6472 /*
6473 ** The proxyLockingContext has the path and file structures for the remote
6474 ** and local proxy files in it
6475 */
6476 typedef struct proxyLockingContext proxyLockingContext;
6477 struct proxyLockingContext {
6478   unixFile *conchFile;         /* Open conch file */
6479   char *conchFilePath;         /* Name of the conch file */
6480   unixFile *lockProxy;         /* Open proxy lock file */
6481   char *lockProxyPath;         /* Name of the proxy lock file */
6482   char *dbPath;                /* Name of the open file */
6483   int conchHeld;               /* 1 if the conch is held, -1 if lockless */
6484   int nFails;                  /* Number of conch taking failures */
6485   void *oldLockingContext;     /* Original lockingcontext to restore on close */
6486   sqlite3_io_methods const *pOldMethod;     /* Original I/O methods for close */
6487 };
6488 
6489 /*
6490 ** The proxy lock file path for the database at dbPath is written into lPath,
6491 ** which must point to valid, writable memory large enough for a maxLen length
6492 ** file path.
6493 */
6494 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
6495   int len;
6496   int dbLen;
6497   int i;
6498 
6499 #ifdef LOCKPROXYDIR
6500   len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
6501 #else
6502 # ifdef _CS_DARWIN_USER_TEMP_DIR
6503   {
6504     if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
6505       OSTRACE(("GETLOCKPATH  failed %s errno=%d pid=%d\n",
6506                lPath, errno, osGetpid(0)));
6507       return SQLITE_IOERR_LOCK;
6508     }
6509     len = strlcat(lPath, "sqliteplocks", maxLen);
6510   }
6511 # else
6512   len = strlcpy(lPath, "/tmp/", maxLen);
6513 # endif
6514 #endif
6515 
6516   if( lPath[len-1]!='/' ){
6517     len = strlcat(lPath, "/", maxLen);
6518   }
6519 
6520   /* transform the db path to a unique cache name */
6521   dbLen = (int)strlen(dbPath);
6522   for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
6523     char c = dbPath[i];
6524     lPath[i+len] = (c=='/')?'_':c;
6525   }
6526   lPath[i+len]='\0';
6527   strlcat(lPath, ":auto:", maxLen);
6528   OSTRACE(("GETLOCKPATH  proxy lock path=%s pid=%d\n", lPath, osGetpid(0)));
6529   return SQLITE_OK;
6530 }
6531 
6532 /*
6533  ** Creates the lock file and any missing directories in lockPath
6534  */
6535 static int proxyCreateLockPath(const char *lockPath){
6536   int i, len;
6537   char buf[MAXPATHLEN];
6538   int start = 0;
6539 
6540   assert(lockPath!=NULL);
6541   /* try to create all the intermediate directories */
6542   len = (int)strlen(lockPath);
6543   buf[0] = lockPath[0];
6544   for( i=1; i<len; i++ ){
6545     if( lockPath[i] == '/' && (i - start > 0) ){
6546       /* only mkdir if leaf dir != "." or "/" or ".." */
6547       if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
6548          || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
6549         buf[i]='\0';
6550         if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
6551           int err=errno;
6552           if( err!=EEXIST ) {
6553             OSTRACE(("CREATELOCKPATH  FAILED creating %s, "
6554                      "'%s' proxy lock path=%s pid=%d\n",
6555                      buf, strerror(err), lockPath, osGetpid(0)));
6556             return err;
6557           }
6558         }
6559       }
6560       start=i+1;
6561     }
6562     buf[i] = lockPath[i];
6563   }
6564   OSTRACE(("CREATELOCKPATH  proxy lock path=%s pid=%d\n",lockPath,osGetpid(0)));
6565   return 0;
6566 }
6567 
6568 /*
6569 ** Create a new VFS file descriptor (stored in memory obtained from
6570 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
6571 **
6572 ** The caller is responsible not only for closing the file descriptor
6573 ** but also for freeing the memory associated with the file descriptor.
6574 */
6575 static int proxyCreateUnixFile(
6576     const char *path,        /* path for the new unixFile */
6577     unixFile **ppFile,       /* unixFile created and returned by ref */
6578     int islockfile           /* if non zero missing dirs will be created */
6579 ) {
6580   int fd = -1;
6581   unixFile *pNew;
6582   int rc = SQLITE_OK;
6583   int openFlags = O_RDWR | O_CREAT;
6584   sqlite3_vfs dummyVfs;
6585   int terrno = 0;
6586   UnixUnusedFd *pUnused = NULL;
6587 
6588   /* 1. first try to open/create the file
6589   ** 2. if that fails, and this is a lock file (not-conch), try creating
6590   ** the parent directories and then try again.
6591   ** 3. if that fails, try to open the file read-only
6592   ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
6593   */
6594   pUnused = findReusableFd(path, openFlags);
6595   if( pUnused ){
6596     fd = pUnused->fd;
6597   }else{
6598     pUnused = sqlite3_malloc64(sizeof(*pUnused));
6599     if( !pUnused ){
6600       return SQLITE_NOMEM_BKPT;
6601     }
6602   }
6603   if( fd<0 ){
6604     fd = robust_open(path, openFlags, 0);
6605     terrno = errno;
6606     if( fd<0 && errno==ENOENT && islockfile ){
6607       if( proxyCreateLockPath(path) == SQLITE_OK ){
6608         fd = robust_open(path, openFlags, 0);
6609       }
6610     }
6611   }
6612   if( fd<0 ){
6613     openFlags = O_RDONLY;
6614     fd = robust_open(path, openFlags, 0);
6615     terrno = errno;
6616   }
6617   if( fd<0 ){
6618     if( islockfile ){
6619       return SQLITE_BUSY;
6620     }
6621     switch (terrno) {
6622       case EACCES:
6623         return SQLITE_PERM;
6624       case EIO:
6625         return SQLITE_IOERR_LOCK; /* even though it is the conch */
6626       default:
6627         return SQLITE_CANTOPEN_BKPT;
6628     }
6629   }
6630 
6631   pNew = (unixFile *)sqlite3_malloc64(sizeof(*pNew));
6632   if( pNew==NULL ){
6633     rc = SQLITE_NOMEM_BKPT;
6634     goto end_create_proxy;
6635   }
6636   memset(pNew, 0, sizeof(unixFile));
6637   pNew->openFlags = openFlags;
6638   memset(&dummyVfs, 0, sizeof(dummyVfs));
6639   dummyVfs.pAppData = (void*)&autolockIoFinder;
6640   dummyVfs.zName = "dummy";
6641   pUnused->fd = fd;
6642   pUnused->flags = openFlags;
6643   pNew->pUnused = pUnused;
6644 
6645   rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0);
6646   if( rc==SQLITE_OK ){
6647     *ppFile = pNew;
6648     return SQLITE_OK;
6649   }
6650 end_create_proxy:
6651   robust_close(pNew, fd, __LINE__);
6652   sqlite3_free(pNew);
6653   sqlite3_free(pUnused);
6654   return rc;
6655 }
6656 
6657 #ifdef SQLITE_TEST
6658 /* simulate multiple hosts by creating unique hostid file paths */
6659 int sqlite3_hostid_num = 0;
6660 #endif
6661 
6662 #define PROXY_HOSTIDLEN    16  /* conch file host id length */
6663 
6664 #ifdef HAVE_GETHOSTUUID
6665 /* Not always defined in the headers as it ought to be */
6666 extern int gethostuuid(uuid_t id, const struct timespec *wait);
6667 #endif
6668 
6669 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
6670 ** bytes of writable memory.
6671 */
6672 static int proxyGetHostID(unsigned char *pHostID, int *pError){
6673   assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
6674   memset(pHostID, 0, PROXY_HOSTIDLEN);
6675 #ifdef HAVE_GETHOSTUUID
6676   {
6677     struct timespec timeout = {1, 0}; /* 1 sec timeout */
6678     if( gethostuuid(pHostID, &timeout) ){
6679       int err = errno;
6680       if( pError ){
6681         *pError = err;
6682       }
6683       return SQLITE_IOERR;
6684     }
6685   }
6686 #else
6687   UNUSED_PARAMETER(pError);
6688 #endif
6689 #ifdef SQLITE_TEST
6690   /* simulate multiple hosts by creating unique hostid file paths */
6691   if( sqlite3_hostid_num != 0){
6692     pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
6693   }
6694 #endif
6695 
6696   return SQLITE_OK;
6697 }
6698 
6699 /* The conch file contains the header, host id and lock file path
6700  */
6701 #define PROXY_CONCHVERSION 2   /* 1-byte header, 16-byte host id, path */
6702 #define PROXY_HEADERLEN    1   /* conch file header length */
6703 #define PROXY_PATHINDEX    (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
6704 #define PROXY_MAXCONCHLEN  (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
6705 
6706 /*
6707 ** Takes an open conch file, copies the contents to a new path and then moves
6708 ** it back.  The newly created file's file descriptor is assigned to the
6709 ** conch file structure and finally the original conch file descriptor is
6710 ** closed.  Returns zero if successful.
6711 */
6712 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
6713   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6714   unixFile *conchFile = pCtx->conchFile;
6715   char tPath[MAXPATHLEN];
6716   char buf[PROXY_MAXCONCHLEN];
6717   char *cPath = pCtx->conchFilePath;
6718   size_t readLen = 0;
6719   size_t pathLen = 0;
6720   char errmsg[64] = "";
6721   int fd = -1;
6722   int rc = -1;
6723   UNUSED_PARAMETER(myHostID);
6724 
6725   /* create a new path by replace the trailing '-conch' with '-break' */
6726   pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
6727   if( pathLen>MAXPATHLEN || pathLen<6 ||
6728      (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
6729     sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
6730     goto end_breaklock;
6731   }
6732   /* read the conch content */
6733   readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
6734   if( readLen<PROXY_PATHINDEX ){
6735     sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
6736     goto end_breaklock;
6737   }
6738   /* write it out to the temporary break file */
6739   fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL), 0);
6740   if( fd<0 ){
6741     sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
6742     goto end_breaklock;
6743   }
6744   if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
6745     sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
6746     goto end_breaklock;
6747   }
6748   if( rename(tPath, cPath) ){
6749     sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
6750     goto end_breaklock;
6751   }
6752   rc = 0;
6753   fprintf(stderr, "broke stale lock on %s\n", cPath);
6754   robust_close(pFile, conchFile->h, __LINE__);
6755   conchFile->h = fd;
6756   conchFile->openFlags = O_RDWR | O_CREAT;
6757 
6758 end_breaklock:
6759   if( rc ){
6760     if( fd>=0 ){
6761       osUnlink(tPath);
6762       robust_close(pFile, fd, __LINE__);
6763     }
6764     fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
6765   }
6766   return rc;
6767 }
6768 
6769 /* Take the requested lock on the conch file and break a stale lock if the
6770 ** host id matches.
6771 */
6772 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
6773   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6774   unixFile *conchFile = pCtx->conchFile;
6775   int rc = SQLITE_OK;
6776   int nTries = 0;
6777   struct timespec conchModTime;
6778 
6779   memset(&conchModTime, 0, sizeof(conchModTime));
6780   do {
6781     rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
6782     nTries ++;
6783     if( rc==SQLITE_BUSY ){
6784       /* If the lock failed (busy):
6785        * 1st try: get the mod time of the conch, wait 0.5s and try again.
6786        * 2nd try: fail if the mod time changed or host id is different, wait
6787        *           10 sec and try again
6788        * 3rd try: break the lock unless the mod time has changed.
6789        */
6790       struct stat buf;
6791       if( osFstat(conchFile->h, &buf) ){
6792         storeLastErrno(pFile, errno);
6793         return SQLITE_IOERR_LOCK;
6794       }
6795 
6796       if( nTries==1 ){
6797         conchModTime = buf.st_mtimespec;
6798         usleep(500000); /* wait 0.5 sec and try the lock again*/
6799         continue;
6800       }
6801 
6802       assert( nTries>1 );
6803       if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
6804          conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
6805         return SQLITE_BUSY;
6806       }
6807 
6808       if( nTries==2 ){
6809         char tBuf[PROXY_MAXCONCHLEN];
6810         int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
6811         if( len<0 ){
6812           storeLastErrno(pFile, errno);
6813           return SQLITE_IOERR_LOCK;
6814         }
6815         if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
6816           /* don't break the lock if the host id doesn't match */
6817           if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
6818             return SQLITE_BUSY;
6819           }
6820         }else{
6821           /* don't break the lock on short read or a version mismatch */
6822           return SQLITE_BUSY;
6823         }
6824         usleep(10000000); /* wait 10 sec and try the lock again */
6825         continue;
6826       }
6827 
6828       assert( nTries==3 );
6829       if( 0==proxyBreakConchLock(pFile, myHostID) ){
6830         rc = SQLITE_OK;
6831         if( lockType==EXCLUSIVE_LOCK ){
6832           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
6833         }
6834         if( !rc ){
6835           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
6836         }
6837       }
6838     }
6839   } while( rc==SQLITE_BUSY && nTries<3 );
6840 
6841   return rc;
6842 }
6843 
6844 /* Takes the conch by taking a shared lock and read the contents conch, if
6845 ** lockPath is non-NULL, the host ID and lock file path must match.  A NULL
6846 ** lockPath means that the lockPath in the conch file will be used if the
6847 ** host IDs match, or a new lock path will be generated automatically
6848 ** and written to the conch file.
6849 */
6850 static int proxyTakeConch(unixFile *pFile){
6851   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6852 
6853   if( pCtx->conchHeld!=0 ){
6854     return SQLITE_OK;
6855   }else{
6856     unixFile *conchFile = pCtx->conchFile;
6857     uuid_t myHostID;
6858     int pError = 0;
6859     char readBuf[PROXY_MAXCONCHLEN];
6860     char lockPath[MAXPATHLEN];
6861     char *tempLockPath = NULL;
6862     int rc = SQLITE_OK;
6863     int createConch = 0;
6864     int hostIdMatch = 0;
6865     int readLen = 0;
6866     int tryOldLockPath = 0;
6867     int forceNewLockPath = 0;
6868 
6869     OSTRACE(("TAKECONCH  %d for %s pid=%d\n", conchFile->h,
6870              (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
6871              osGetpid(0)));
6872 
6873     rc = proxyGetHostID(myHostID, &pError);
6874     if( (rc&0xff)==SQLITE_IOERR ){
6875       storeLastErrno(pFile, pError);
6876       goto end_takeconch;
6877     }
6878     rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
6879     if( rc!=SQLITE_OK ){
6880       goto end_takeconch;
6881     }
6882     /* read the existing conch file */
6883     readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
6884     if( readLen<0 ){
6885       /* I/O error: lastErrno set by seekAndRead */
6886       storeLastErrno(pFile, conchFile->lastErrno);
6887       rc = SQLITE_IOERR_READ;
6888       goto end_takeconch;
6889     }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
6890              readBuf[0]!=(char)PROXY_CONCHVERSION ){
6891       /* a short read or version format mismatch means we need to create a new
6892       ** conch file.
6893       */
6894       createConch = 1;
6895     }
6896     /* if the host id matches and the lock path already exists in the conch
6897     ** we'll try to use the path there, if we can't open that path, we'll
6898     ** retry with a new auto-generated path
6899     */
6900     do { /* in case we need to try again for an :auto: named lock file */
6901 
6902       if( !createConch && !forceNewLockPath ){
6903         hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
6904                                   PROXY_HOSTIDLEN);
6905         /* if the conch has data compare the contents */
6906         if( !pCtx->lockProxyPath ){
6907           /* for auto-named local lock file, just check the host ID and we'll
6908            ** use the local lock file path that's already in there
6909            */
6910           if( hostIdMatch ){
6911             size_t pathLen = (readLen - PROXY_PATHINDEX);
6912 
6913             if( pathLen>=MAXPATHLEN ){
6914               pathLen=MAXPATHLEN-1;
6915             }
6916             memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
6917             lockPath[pathLen] = 0;
6918             tempLockPath = lockPath;
6919             tryOldLockPath = 1;
6920             /* create a copy of the lock path if the conch is taken */
6921             goto end_takeconch;
6922           }
6923         }else if( hostIdMatch
6924                && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
6925                            readLen-PROXY_PATHINDEX)
6926         ){
6927           /* conch host and lock path match */
6928           goto end_takeconch;
6929         }
6930       }
6931 
6932       /* if the conch isn't writable and doesn't match, we can't take it */
6933       if( (conchFile->openFlags&O_RDWR) == 0 ){
6934         rc = SQLITE_BUSY;
6935         goto end_takeconch;
6936       }
6937 
6938       /* either the conch didn't match or we need to create a new one */
6939       if( !pCtx->lockProxyPath ){
6940         proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
6941         tempLockPath = lockPath;
6942         /* create a copy of the lock path _only_ if the conch is taken */
6943       }
6944 
6945       /* update conch with host and path (this will fail if other process
6946       ** has a shared lock already), if the host id matches, use the big
6947       ** stick.
6948       */
6949       futimes(conchFile->h, NULL);
6950       if( hostIdMatch && !createConch ){
6951         if( conchFile->pInode && conchFile->pInode->nShared>1 ){
6952           /* We are trying for an exclusive lock but another thread in this
6953            ** same process is still holding a shared lock. */
6954           rc = SQLITE_BUSY;
6955         } else {
6956           rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
6957         }
6958       }else{
6959         rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
6960       }
6961       if( rc==SQLITE_OK ){
6962         char writeBuffer[PROXY_MAXCONCHLEN];
6963         int writeSize = 0;
6964 
6965         writeBuffer[0] = (char)PROXY_CONCHVERSION;
6966         memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
6967         if( pCtx->lockProxyPath!=NULL ){
6968           strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath,
6969                   MAXPATHLEN);
6970         }else{
6971           strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
6972         }
6973         writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
6974         robust_ftruncate(conchFile->h, writeSize);
6975         rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
6976         full_fsync(conchFile->h,0,0);
6977         /* If we created a new conch file (not just updated the contents of a
6978          ** valid conch file), try to match the permissions of the database
6979          */
6980         if( rc==SQLITE_OK && createConch ){
6981           struct stat buf;
6982           int err = osFstat(pFile->h, &buf);
6983           if( err==0 ){
6984             mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
6985                                         S_IROTH|S_IWOTH);
6986             /* try to match the database file R/W permissions, ignore failure */
6987 #ifndef SQLITE_PROXY_DEBUG
6988             osFchmod(conchFile->h, cmode);
6989 #else
6990             do{
6991               rc = osFchmod(conchFile->h, cmode);
6992             }while( rc==(-1) && errno==EINTR );
6993             if( rc!=0 ){
6994               int code = errno;
6995               fprintf(stderr, "fchmod %o FAILED with %d %s\n",
6996                       cmode, code, strerror(code));
6997             } else {
6998               fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
6999             }
7000           }else{
7001             int code = errno;
7002             fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
7003                     err, code, strerror(code));
7004 #endif
7005           }
7006         }
7007       }
7008       conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
7009 
7010     end_takeconch:
7011       OSTRACE(("TRANSPROXY: CLOSE  %d\n", pFile->h));
7012       if( rc==SQLITE_OK && pFile->openFlags ){
7013         int fd;
7014         if( pFile->h>=0 ){
7015           robust_close(pFile, pFile->h, __LINE__);
7016         }
7017         pFile->h = -1;
7018         fd = robust_open(pCtx->dbPath, pFile->openFlags, 0);
7019         OSTRACE(("TRANSPROXY: OPEN  %d\n", fd));
7020         if( fd>=0 ){
7021           pFile->h = fd;
7022         }else{
7023           rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
7024            during locking */
7025         }
7026       }
7027       if( rc==SQLITE_OK && !pCtx->lockProxy ){
7028         char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
7029         rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
7030         if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
7031           /* we couldn't create the proxy lock file with the old lock file path
7032            ** so try again via auto-naming
7033            */
7034           forceNewLockPath = 1;
7035           tryOldLockPath = 0;
7036           continue; /* go back to the do {} while start point, try again */
7037         }
7038       }
7039       if( rc==SQLITE_OK ){
7040         /* Need to make a copy of path if we extracted the value
7041          ** from the conch file or the path was allocated on the stack
7042          */
7043         if( tempLockPath ){
7044           pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
7045           if( !pCtx->lockProxyPath ){
7046             rc = SQLITE_NOMEM_BKPT;
7047           }
7048         }
7049       }
7050       if( rc==SQLITE_OK ){
7051         pCtx->conchHeld = 1;
7052 
7053         if( pCtx->lockProxy->pMethod == &afpIoMethods ){
7054           afpLockingContext *afpCtx;
7055           afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
7056           afpCtx->dbPath = pCtx->lockProxyPath;
7057         }
7058       } else {
7059         conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
7060       }
7061       OSTRACE(("TAKECONCH  %d %s\n", conchFile->h,
7062                rc==SQLITE_OK?"ok":"failed"));
7063       return rc;
7064     } while (1); /* in case we need to retry the :auto: lock file -
7065                  ** we should never get here except via the 'continue' call. */
7066   }
7067 }
7068 
7069 /*
7070 ** If pFile holds a lock on a conch file, then release that lock.
7071 */
7072 static int proxyReleaseConch(unixFile *pFile){
7073   int rc = SQLITE_OK;         /* Subroutine return code */
7074   proxyLockingContext *pCtx;  /* The locking context for the proxy lock */
7075   unixFile *conchFile;        /* Name of the conch file */
7076 
7077   pCtx = (proxyLockingContext *)pFile->lockingContext;
7078   conchFile = pCtx->conchFile;
7079   OSTRACE(("RELEASECONCH  %d for %s pid=%d\n", conchFile->h,
7080            (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
7081            osGetpid(0)));
7082   if( pCtx->conchHeld>0 ){
7083     rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
7084   }
7085   pCtx->conchHeld = 0;
7086   OSTRACE(("RELEASECONCH  %d %s\n", conchFile->h,
7087            (rc==SQLITE_OK ? "ok" : "failed")));
7088   return rc;
7089 }
7090 
7091 /*
7092 ** Given the name of a database file, compute the name of its conch file.
7093 ** Store the conch filename in memory obtained from sqlite3_malloc64().
7094 ** Make *pConchPath point to the new name.  Return SQLITE_OK on success
7095 ** or SQLITE_NOMEM if unable to obtain memory.
7096 **
7097 ** The caller is responsible for ensuring that the allocated memory
7098 ** space is eventually freed.
7099 **
7100 ** *pConchPath is set to NULL if a memory allocation error occurs.
7101 */
7102 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
7103   int i;                        /* Loop counter */
7104   int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
7105   char *conchPath;              /* buffer in which to construct conch name */
7106 
7107   /* Allocate space for the conch filename and initialize the name to
7108   ** the name of the original database file. */
7109   *pConchPath = conchPath = (char *)sqlite3_malloc64(len + 8);
7110   if( conchPath==0 ){
7111     return SQLITE_NOMEM_BKPT;
7112   }
7113   memcpy(conchPath, dbPath, len+1);
7114 
7115   /* now insert a "." before the last / character */
7116   for( i=(len-1); i>=0; i-- ){
7117     if( conchPath[i]=='/' ){
7118       i++;
7119       break;
7120     }
7121   }
7122   conchPath[i]='.';
7123   while ( i<len ){
7124     conchPath[i+1]=dbPath[i];
7125     i++;
7126   }
7127 
7128   /* append the "-conch" suffix to the file */
7129   memcpy(&conchPath[i+1], "-conch", 7);
7130   assert( (int)strlen(conchPath) == len+7 );
7131 
7132   return SQLITE_OK;
7133 }
7134 
7135 
7136 /* Takes a fully configured proxy locking-style unix file and switches
7137 ** the local lock file path
7138 */
7139 static int switchLockProxyPath(unixFile *pFile, const char *path) {
7140   proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
7141   char *oldPath = pCtx->lockProxyPath;
7142   int rc = SQLITE_OK;
7143 
7144   if( pFile->eFileLock!=NO_LOCK ){
7145     return SQLITE_BUSY;
7146   }
7147 
7148   /* nothing to do if the path is NULL, :auto: or matches the existing path */
7149   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
7150     (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
7151     return SQLITE_OK;
7152   }else{
7153     unixFile *lockProxy = pCtx->lockProxy;
7154     pCtx->lockProxy=NULL;
7155     pCtx->conchHeld = 0;
7156     if( lockProxy!=NULL ){
7157       rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
7158       if( rc ) return rc;
7159       sqlite3_free(lockProxy);
7160     }
7161     sqlite3_free(oldPath);
7162     pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
7163   }
7164 
7165   return rc;
7166 }
7167 
7168 /*
7169 ** pFile is a file that has been opened by a prior xOpen call.  dbPath
7170 ** is a string buffer at least MAXPATHLEN+1 characters in size.
7171 **
7172 ** This routine find the filename associated with pFile and writes it
7173 ** int dbPath.
7174 */
7175 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
7176 #if defined(__APPLE__)
7177   if( pFile->pMethod == &afpIoMethods ){
7178     /* afp style keeps a reference to the db path in the filePath field
7179     ** of the struct */
7180     assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
7181     strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath,
7182             MAXPATHLEN);
7183   } else
7184 #endif
7185   if( pFile->pMethod == &dotlockIoMethods ){
7186     /* dot lock style uses the locking context to store the dot lock
7187     ** file path */
7188     int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
7189     memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
7190   }else{
7191     /* all other styles use the locking context to store the db file path */
7192     assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
7193     strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
7194   }
7195   return SQLITE_OK;
7196 }
7197 
7198 /*
7199 ** Takes an already filled in unix file and alters it so all file locking
7200 ** will be performed on the local proxy lock file.  The following fields
7201 ** are preserved in the locking context so that they can be restored and
7202 ** the unix structure properly cleaned up at close time:
7203 **  ->lockingContext
7204 **  ->pMethod
7205 */
7206 static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
7207   proxyLockingContext *pCtx;
7208   char dbPath[MAXPATHLEN+1];       /* Name of the database file */
7209   char *lockPath=NULL;
7210   int rc = SQLITE_OK;
7211 
7212   if( pFile->eFileLock!=NO_LOCK ){
7213     return SQLITE_BUSY;
7214   }
7215   proxyGetDbPathForUnixFile(pFile, dbPath);
7216   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
7217     lockPath=NULL;
7218   }else{
7219     lockPath=(char *)path;
7220   }
7221 
7222   OSTRACE(("TRANSPROXY  %d for %s pid=%d\n", pFile->h,
7223            (lockPath ? lockPath : ":auto:"), osGetpid(0)));
7224 
7225   pCtx = sqlite3_malloc64( sizeof(*pCtx) );
7226   if( pCtx==0 ){
7227     return SQLITE_NOMEM_BKPT;
7228   }
7229   memset(pCtx, 0, sizeof(*pCtx));
7230 
7231   rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
7232   if( rc==SQLITE_OK ){
7233     rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
7234     if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
7235       /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
7236       ** (c) the file system is read-only, then enable no-locking access.
7237       ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
7238       ** that openFlags will have only one of O_RDONLY or O_RDWR.
7239       */
7240       struct statfs fsInfo;
7241       struct stat conchInfo;
7242       int goLockless = 0;
7243 
7244       if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
7245         int err = errno;
7246         if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
7247           goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
7248         }
7249       }
7250       if( goLockless ){
7251         pCtx->conchHeld = -1; /* read only FS/ lockless */
7252         rc = SQLITE_OK;
7253       }
7254     }
7255   }
7256   if( rc==SQLITE_OK && lockPath ){
7257     pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
7258   }
7259 
7260   if( rc==SQLITE_OK ){
7261     pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
7262     if( pCtx->dbPath==NULL ){
7263       rc = SQLITE_NOMEM_BKPT;
7264     }
7265   }
7266   if( rc==SQLITE_OK ){
7267     /* all memory is allocated, proxys are created and assigned,
7268     ** switch the locking context and pMethod then return.
7269     */
7270     pCtx->oldLockingContext = pFile->lockingContext;
7271     pFile->lockingContext = pCtx;
7272     pCtx->pOldMethod = pFile->pMethod;
7273     pFile->pMethod = &proxyIoMethods;
7274   }else{
7275     if( pCtx->conchFile ){
7276       pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
7277       sqlite3_free(pCtx->conchFile);
7278     }
7279     sqlite3DbFree(0, pCtx->lockProxyPath);
7280     sqlite3_free(pCtx->conchFilePath);
7281     sqlite3_free(pCtx);
7282   }
7283   OSTRACE(("TRANSPROXY  %d %s\n", pFile->h,
7284            (rc==SQLITE_OK ? "ok" : "failed")));
7285   return rc;
7286 }
7287 
7288 
7289 /*
7290 ** This routine handles sqlite3_file_control() calls that are specific
7291 ** to proxy locking.
7292 */
7293 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
7294   switch( op ){
7295     case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
7296       unixFile *pFile = (unixFile*)id;
7297       if( pFile->pMethod == &proxyIoMethods ){
7298         proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
7299         proxyTakeConch(pFile);
7300         if( pCtx->lockProxyPath ){
7301           *(const char **)pArg = pCtx->lockProxyPath;
7302         }else{
7303           *(const char **)pArg = ":auto: (not held)";
7304         }
7305       } else {
7306         *(const char **)pArg = NULL;
7307       }
7308       return SQLITE_OK;
7309     }
7310     case SQLITE_FCNTL_SET_LOCKPROXYFILE: {
7311       unixFile *pFile = (unixFile*)id;
7312       int rc = SQLITE_OK;
7313       int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
7314       if( pArg==NULL || (const char *)pArg==0 ){
7315         if( isProxyStyle ){
7316           /* turn off proxy locking - not supported.  If support is added for
7317           ** switching proxy locking mode off then it will need to fail if
7318           ** the journal mode is WAL mode.
7319           */
7320           rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
7321         }else{
7322           /* turn off proxy locking - already off - NOOP */
7323           rc = SQLITE_OK;
7324         }
7325       }else{
7326         const char *proxyPath = (const char *)pArg;
7327         if( isProxyStyle ){
7328           proxyLockingContext *pCtx =
7329             (proxyLockingContext*)pFile->lockingContext;
7330           if( !strcmp(pArg, ":auto:")
7331            || (pCtx->lockProxyPath &&
7332                !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
7333           ){
7334             rc = SQLITE_OK;
7335           }else{
7336             rc = switchLockProxyPath(pFile, proxyPath);
7337           }
7338         }else{
7339           /* turn on proxy file locking */
7340           rc = proxyTransformUnixFile(pFile, proxyPath);
7341         }
7342       }
7343       return rc;
7344     }
7345     default: {
7346       assert( 0 );  /* The call assures that only valid opcodes are sent */
7347     }
7348   }
7349   /*NOTREACHED*/
7350   return SQLITE_ERROR;
7351 }
7352 
7353 /*
7354 ** Within this division (the proxying locking implementation) the procedures
7355 ** above this point are all utilities.  The lock-related methods of the
7356 ** proxy-locking sqlite3_io_method object follow.
7357 */
7358 
7359 
7360 /*
7361 ** This routine checks if there is a RESERVED lock held on the specified
7362 ** file by this or any other process. If such a lock is held, set *pResOut
7363 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
7364 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
7365 */
7366 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
7367   unixFile *pFile = (unixFile*)id;
7368   int rc = proxyTakeConch(pFile);
7369   if( rc==SQLITE_OK ){
7370     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7371     if( pCtx->conchHeld>0 ){
7372       unixFile *proxy = pCtx->lockProxy;
7373       return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
7374     }else{ /* conchHeld < 0 is lockless */
7375       pResOut=0;
7376     }
7377   }
7378   return rc;
7379 }
7380 
7381 /*
7382 ** Lock the file with the lock specified by parameter eFileLock - one
7383 ** of the following:
7384 **
7385 **     (1) SHARED_LOCK
7386 **     (2) RESERVED_LOCK
7387 **     (3) PENDING_LOCK
7388 **     (4) EXCLUSIVE_LOCK
7389 **
7390 ** Sometimes when requesting one lock state, additional lock states
7391 ** are inserted in between.  The locking might fail on one of the later
7392 ** transitions leaving the lock state different from what it started but
7393 ** still short of its goal.  The following chart shows the allowed
7394 ** transitions and the inserted intermediate states:
7395 **
7396 **    UNLOCKED -> SHARED
7397 **    SHARED -> RESERVED
7398 **    SHARED -> (PENDING) -> EXCLUSIVE
7399 **    RESERVED -> (PENDING) -> EXCLUSIVE
7400 **    PENDING -> EXCLUSIVE
7401 **
7402 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
7403 ** routine to lower a locking level.
7404 */
7405 static int proxyLock(sqlite3_file *id, int eFileLock) {
7406   unixFile *pFile = (unixFile*)id;
7407   int rc = proxyTakeConch(pFile);
7408   if( rc==SQLITE_OK ){
7409     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7410     if( pCtx->conchHeld>0 ){
7411       unixFile *proxy = pCtx->lockProxy;
7412       rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
7413       pFile->eFileLock = proxy->eFileLock;
7414     }else{
7415       /* conchHeld < 0 is lockless */
7416     }
7417   }
7418   return rc;
7419 }
7420 
7421 
7422 /*
7423 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
7424 ** must be either NO_LOCK or SHARED_LOCK.
7425 **
7426 ** If the locking level of the file descriptor is already at or below
7427 ** the requested locking level, this routine is a no-op.
7428 */
7429 static int proxyUnlock(sqlite3_file *id, int eFileLock) {
7430   unixFile *pFile = (unixFile*)id;
7431   int rc = proxyTakeConch(pFile);
7432   if( rc==SQLITE_OK ){
7433     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7434     if( pCtx->conchHeld>0 ){
7435       unixFile *proxy = pCtx->lockProxy;
7436       rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
7437       pFile->eFileLock = proxy->eFileLock;
7438     }else{
7439       /* conchHeld < 0 is lockless */
7440     }
7441   }
7442   return rc;
7443 }
7444 
7445 /*
7446 ** Close a file that uses proxy locks.
7447 */
7448 static int proxyClose(sqlite3_file *id) {
7449   if( ALWAYS(id) ){
7450     unixFile *pFile = (unixFile*)id;
7451     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
7452     unixFile *lockProxy = pCtx->lockProxy;
7453     unixFile *conchFile = pCtx->conchFile;
7454     int rc = SQLITE_OK;
7455 
7456     if( lockProxy ){
7457       rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
7458       if( rc ) return rc;
7459       rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
7460       if( rc ) return rc;
7461       sqlite3_free(lockProxy);
7462       pCtx->lockProxy = 0;
7463     }
7464     if( conchFile ){
7465       if( pCtx->conchHeld ){
7466         rc = proxyReleaseConch(pFile);
7467         if( rc ) return rc;
7468       }
7469       rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
7470       if( rc ) return rc;
7471       sqlite3_free(conchFile);
7472     }
7473     sqlite3DbFree(0, pCtx->lockProxyPath);
7474     sqlite3_free(pCtx->conchFilePath);
7475     sqlite3DbFree(0, pCtx->dbPath);
7476     /* restore the original locking context and pMethod then close it */
7477     pFile->lockingContext = pCtx->oldLockingContext;
7478     pFile->pMethod = pCtx->pOldMethod;
7479     sqlite3_free(pCtx);
7480     return pFile->pMethod->xClose(id);
7481   }
7482   return SQLITE_OK;
7483 }
7484 
7485 
7486 
7487 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
7488 /*
7489 ** The proxy locking style is intended for use with AFP filesystems.
7490 ** And since AFP is only supported on MacOSX, the proxy locking is also
7491 ** restricted to MacOSX.
7492 **
7493 **
7494 ******************* End of the proxy lock implementation **********************
7495 ******************************************************************************/
7496 
7497 /*
7498 ** Initialize the operating system interface.
7499 **
7500 ** This routine registers all VFS implementations for unix-like operating
7501 ** systems.  This routine, and the sqlite3_os_end() routine that follows,
7502 ** should be the only routines in this file that are visible from other
7503 ** files.
7504 **
7505 ** This routine is called once during SQLite initialization and by a
7506 ** single thread.  The memory allocation and mutex subsystems have not
7507 ** necessarily been initialized when this routine is called, and so they
7508 ** should not be used.
7509 */
7510 int sqlite3_os_init(void){
7511   /*
7512   ** The following macro defines an initializer for an sqlite3_vfs object.
7513   ** The name of the VFS is NAME.  The pAppData is a pointer to a pointer
7514   ** to the "finder" function.  (pAppData is a pointer to a pointer because
7515   ** silly C90 rules prohibit a void* from being cast to a function pointer
7516   ** and so we have to go through the intermediate pointer to avoid problems
7517   ** when compiling with -pedantic-errors on GCC.)
7518   **
7519   ** The FINDER parameter to this macro is the name of the pointer to the
7520   ** finder-function.  The finder-function returns a pointer to the
7521   ** sqlite_io_methods object that implements the desired locking
7522   ** behaviors.  See the division above that contains the IOMETHODS
7523   ** macro for addition information on finder-functions.
7524   **
7525   ** Most finders simply return a pointer to a fixed sqlite3_io_methods
7526   ** object.  But the "autolockIoFinder" available on MacOSX does a little
7527   ** more than that; it looks at the filesystem type that hosts the
7528   ** database file and tries to choose an locking method appropriate for
7529   ** that filesystem time.
7530   */
7531   #define UNIXVFS(VFSNAME, FINDER) {                        \
7532     3,                    /* iVersion */                    \
7533     sizeof(unixFile),     /* szOsFile */                    \
7534     MAX_PATHNAME,         /* mxPathname */                  \
7535     0,                    /* pNext */                       \
7536     VFSNAME,              /* zName */                       \
7537     (void*)&FINDER,       /* pAppData */                    \
7538     unixOpen,             /* xOpen */                       \
7539     unixDelete,           /* xDelete */                     \
7540     unixAccess,           /* xAccess */                     \
7541     unixFullPathname,     /* xFullPathname */               \
7542     unixDlOpen,           /* xDlOpen */                     \
7543     unixDlError,          /* xDlError */                    \
7544     unixDlSym,            /* xDlSym */                      \
7545     unixDlClose,          /* xDlClose */                    \
7546     unixRandomness,       /* xRandomness */                 \
7547     unixSleep,            /* xSleep */                      \
7548     unixCurrentTime,      /* xCurrentTime */                \
7549     unixGetLastError,     /* xGetLastError */               \
7550     unixCurrentTimeInt64, /* xCurrentTimeInt64 */           \
7551     unixSetSystemCall,    /* xSetSystemCall */              \
7552     unixGetSystemCall,    /* xGetSystemCall */              \
7553     unixNextSystemCall,   /* xNextSystemCall */             \
7554   }
7555 
7556   /*
7557   ** All default VFSes for unix are contained in the following array.
7558   **
7559   ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
7560   ** by the SQLite core when the VFS is registered.  So the following
7561   ** array cannot be const.
7562   */
7563   static sqlite3_vfs aVfs[] = {
7564 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
7565     UNIXVFS("unix",          autolockIoFinder ),
7566 #elif OS_VXWORKS
7567     UNIXVFS("unix",          vxworksIoFinder ),
7568 #else
7569     UNIXVFS("unix",          posixIoFinder ),
7570 #endif
7571     UNIXVFS("unix-none",     nolockIoFinder ),
7572     UNIXVFS("unix-dotfile",  dotlockIoFinder ),
7573     UNIXVFS("unix-excl",     posixIoFinder ),
7574 #if OS_VXWORKS
7575     UNIXVFS("unix-namedsem", semIoFinder ),
7576 #endif
7577 #if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS
7578     UNIXVFS("unix-posix",    posixIoFinder ),
7579 #endif
7580 #if SQLITE_ENABLE_LOCKING_STYLE
7581     UNIXVFS("unix-flock",    flockIoFinder ),
7582 #endif
7583 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
7584     UNIXVFS("unix-afp",      afpIoFinder ),
7585     UNIXVFS("unix-nfs",      nfsIoFinder ),
7586     UNIXVFS("unix-proxy",    proxyIoFinder ),
7587 #endif
7588   };
7589   unsigned int i;          /* Loop counter */
7590 
7591   /* Double-check that the aSyscall[] array has been constructed
7592   ** correctly.  See ticket [bb3a86e890c8e96ab] */
7593   assert( ArraySize(aSyscall)==28 );
7594 
7595   /* Register all VFSes defined in the aVfs[] array */
7596   for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
7597     sqlite3_vfs_register(&aVfs[i], i==0);
7598   }
7599   return SQLITE_OK;
7600 }
7601 
7602 /*
7603 ** Shutdown the operating system interface.
7604 **
7605 ** Some operating systems might need to do some cleanup in this routine,
7606 ** to release dynamically allocated objects.  But not on unix.
7607 ** This routine is a no-op for unix.
7608 */
7609 int sqlite3_os_end(void){
7610   return SQLITE_OK;
7611 }
7612 
7613 #endif /* SQLITE_OS_UNIX */
7614