1 /*
2 ** 2018-05-25
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This file implements an alternative R-Tree virtual table that
14 ** uses polygons to express the boundaries of 2-dimensional objects.
15 **
16 ** This file is #include-ed onto the end of "rtree.c" so that it has
17 ** access to all of the R-Tree internals.
18 */
19 #include <stdlib.h>
20
21 /* Enable -DGEOPOLY_ENABLE_DEBUG for debugging facilities */
22 #ifdef GEOPOLY_ENABLE_DEBUG
23 static int geo_debug = 0;
24 # define GEODEBUG(X) if(geo_debug)printf X
25 #else
26 # define GEODEBUG(X)
27 #endif
28
29 /* Character class routines */
30 #ifdef sqlite3Isdigit
31 /* Use the SQLite core versions if this routine is part of the
32 ** SQLite amalgamation */
33 # define safe_isdigit(x) sqlite3Isdigit(x)
34 # define safe_isalnum(x) sqlite3Isalnum(x)
35 # define safe_isxdigit(x) sqlite3Isxdigit(x)
36 #else
37 /* Use the standard library for separate compilation */
38 #include <ctype.h> /* amalgamator: keep */
39 # define safe_isdigit(x) isdigit((unsigned char)(x))
40 # define safe_isalnum(x) isalnum((unsigned char)(x))
41 # define safe_isxdigit(x) isxdigit((unsigned char)(x))
42 #endif
43
44 #ifndef JSON_NULL /* The following stuff repeats things found in json1 */
45 /*
46 ** Growing our own isspace() routine this way is twice as fast as
47 ** the library isspace() function.
48 */
49 static const char geopolyIsSpace[] = {
50 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
51 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
52 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
53 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
54 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
55 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
56 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
57 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
58 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
59 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
60 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
61 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
62 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
63 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
64 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
65 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
66 };
67 #define fast_isspace(x) (geopolyIsSpace[(unsigned char)x])
68 #endif /* JSON NULL - back to original code */
69
70 /* Compiler and version */
71 #ifndef GCC_VERSION
72 #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
73 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
74 #else
75 # define GCC_VERSION 0
76 #endif
77 #endif
78 #ifndef MSVC_VERSION
79 #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
80 # define MSVC_VERSION _MSC_VER
81 #else
82 # define MSVC_VERSION 0
83 #endif
84 #endif
85
86 /* Datatype for coordinates
87 */
88 typedef float GeoCoord;
89
90 /*
91 ** Internal representation of a polygon.
92 **
93 ** The polygon consists of a sequence of vertexes. There is a line
94 ** segment between each pair of vertexes, and one final segment from
95 ** the last vertex back to the first. (This differs from the GeoJSON
96 ** standard in which the final vertex is a repeat of the first.)
97 **
98 ** The polygon follows the right-hand rule. The area to the right of
99 ** each segment is "outside" and the area to the left is "inside".
100 **
101 ** The on-disk representation consists of a 4-byte header followed by
102 ** the values. The 4-byte header is:
103 **
104 ** encoding (1 byte) 0=big-endian, 1=little-endian
105 ** nvertex (3 bytes) Number of vertexes as a big-endian integer
106 **
107 ** Enough space is allocated for 4 coordinates, to work around over-zealous
108 ** warnings coming from some compiler (notably, clang). In reality, the size
109 ** of each GeoPoly memory allocate is adjusted as necessary so that the
110 ** GeoPoly.a[] array at the end is the appropriate size.
111 */
112 typedef struct GeoPoly GeoPoly;
113 struct GeoPoly {
114 int nVertex; /* Number of vertexes */
115 unsigned char hdr[4]; /* Header for on-disk representation */
116 GeoCoord a[8]; /* 2*nVertex values. X (longitude) first, then Y */
117 };
118
119 /* The size of a memory allocation needed for a GeoPoly object sufficient
120 ** to hold N coordinate pairs.
121 */
122 #define GEOPOLY_SZ(N) (sizeof(GeoPoly) + sizeof(GeoCoord)*2*((N)-4))
123
124 /* Macros to access coordinates of a GeoPoly.
125 ** We have to use these macros, rather than just say p->a[i] in order
126 ** to silence (incorrect) UBSAN warnings if the array index is too large.
127 */
128 #define GeoX(P,I) (((GeoCoord*)(P)->a)[(I)*2])
129 #define GeoY(P,I) (((GeoCoord*)(P)->a)[(I)*2+1])
130
131
132 /*
133 ** State of a parse of a GeoJSON input.
134 */
135 typedef struct GeoParse GeoParse;
136 struct GeoParse {
137 const unsigned char *z; /* Unparsed input */
138 int nVertex; /* Number of vertexes in a[] */
139 int nAlloc; /* Space allocated to a[] */
140 int nErr; /* Number of errors encountered */
141 GeoCoord *a; /* Array of vertexes. From sqlite3_malloc64() */
142 };
143
144 /* Do a 4-byte byte swap */
geopolySwab32(unsigned char * a)145 static void geopolySwab32(unsigned char *a){
146 unsigned char t = a[0];
147 a[0] = a[3];
148 a[3] = t;
149 t = a[1];
150 a[1] = a[2];
151 a[2] = t;
152 }
153
154 /* Skip whitespace. Return the next non-whitespace character. */
geopolySkipSpace(GeoParse * p)155 static char geopolySkipSpace(GeoParse *p){
156 while( fast_isspace(p->z[0]) ) p->z++;
157 return p->z[0];
158 }
159
160 /* Parse out a number. Write the value into *pVal if pVal!=0.
161 ** return non-zero on success and zero if the next token is not a number.
162 */
geopolyParseNumber(GeoParse * p,GeoCoord * pVal)163 static int geopolyParseNumber(GeoParse *p, GeoCoord *pVal){
164 char c = geopolySkipSpace(p);
165 const unsigned char *z = p->z;
166 int j = 0;
167 int seenDP = 0;
168 int seenE = 0;
169 if( c=='-' ){
170 j = 1;
171 c = z[j];
172 }
173 if( c=='0' && z[j+1]>='0' && z[j+1]<='9' ) return 0;
174 for(;; j++){
175 c = z[j];
176 if( safe_isdigit(c) ) continue;
177 if( c=='.' ){
178 if( z[j-1]=='-' ) return 0;
179 if( seenDP ) return 0;
180 seenDP = 1;
181 continue;
182 }
183 if( c=='e' || c=='E' ){
184 if( z[j-1]<'0' ) return 0;
185 if( seenE ) return -1;
186 seenDP = seenE = 1;
187 c = z[j+1];
188 if( c=='+' || c=='-' ){
189 j++;
190 c = z[j+1];
191 }
192 if( c<'0' || c>'9' ) return 0;
193 continue;
194 }
195 break;
196 }
197 if( z[j-1]<'0' ) return 0;
198 if( pVal ){
199 #ifdef SQLITE_AMALGAMATION
200 /* The sqlite3AtoF() routine is much much faster than atof(), if it
201 ** is available */
202 double r;
203 (void)sqlite3AtoF((const char*)p->z, &r, j, SQLITE_UTF8);
204 *pVal = r;
205 #else
206 *pVal = (GeoCoord)atof((const char*)p->z);
207 #endif
208 }
209 p->z += j;
210 return 1;
211 }
212
213 /*
214 ** If the input is a well-formed JSON array of coordinates with at least
215 ** four coordinates and where each coordinate is itself a two-value array,
216 ** then convert the JSON into a GeoPoly object and return a pointer to
217 ** that object.
218 **
219 ** If any error occurs, return NULL.
220 */
geopolyParseJson(const unsigned char * z,int * pRc)221 static GeoPoly *geopolyParseJson(const unsigned char *z, int *pRc){
222 GeoParse s;
223 int rc = SQLITE_OK;
224 memset(&s, 0, sizeof(s));
225 s.z = z;
226 if( geopolySkipSpace(&s)=='[' ){
227 s.z++;
228 while( geopolySkipSpace(&s)=='[' ){
229 int ii = 0;
230 char c;
231 s.z++;
232 if( s.nVertex>=s.nAlloc ){
233 GeoCoord *aNew;
234 s.nAlloc = s.nAlloc*2 + 16;
235 aNew = sqlite3_realloc64(s.a, s.nAlloc*sizeof(GeoCoord)*2 );
236 if( aNew==0 ){
237 rc = SQLITE_NOMEM;
238 s.nErr++;
239 break;
240 }
241 s.a = aNew;
242 }
243 while( geopolyParseNumber(&s, ii<=1 ? &s.a[s.nVertex*2+ii] : 0) ){
244 ii++;
245 if( ii==2 ) s.nVertex++;
246 c = geopolySkipSpace(&s);
247 s.z++;
248 if( c==',' ) continue;
249 if( c==']' && ii>=2 ) break;
250 s.nErr++;
251 rc = SQLITE_ERROR;
252 goto parse_json_err;
253 }
254 if( geopolySkipSpace(&s)==',' ){
255 s.z++;
256 continue;
257 }
258 break;
259 }
260 if( geopolySkipSpace(&s)==']'
261 && s.nVertex>=4
262 && s.a[0]==s.a[s.nVertex*2-2]
263 && s.a[1]==s.a[s.nVertex*2-1]
264 && (s.z++, geopolySkipSpace(&s)==0)
265 ){
266 GeoPoly *pOut;
267 int x = 1;
268 s.nVertex--; /* Remove the redundant vertex at the end */
269 pOut = sqlite3_malloc64( GEOPOLY_SZ((sqlite3_int64)s.nVertex) );
270 x = 1;
271 if( pOut==0 ) goto parse_json_err;
272 pOut->nVertex = s.nVertex;
273 memcpy(pOut->a, s.a, s.nVertex*2*sizeof(GeoCoord));
274 pOut->hdr[0] = *(unsigned char*)&x;
275 pOut->hdr[1] = (s.nVertex>>16)&0xff;
276 pOut->hdr[2] = (s.nVertex>>8)&0xff;
277 pOut->hdr[3] = s.nVertex&0xff;
278 sqlite3_free(s.a);
279 if( pRc ) *pRc = SQLITE_OK;
280 return pOut;
281 }else{
282 s.nErr++;
283 rc = SQLITE_ERROR;
284 }
285 }
286 parse_json_err:
287 if( pRc ) *pRc = rc;
288 sqlite3_free(s.a);
289 return 0;
290 }
291
292 /*
293 ** Given a function parameter, try to interpret it as a polygon, either
294 ** in the binary format or JSON text. Compute a GeoPoly object and
295 ** return a pointer to that object. Or if the input is not a well-formed
296 ** polygon, put an error message in sqlite3_context and return NULL.
297 */
geopolyFuncParam(sqlite3_context * pCtx,sqlite3_value * pVal,int * pRc)298 static GeoPoly *geopolyFuncParam(
299 sqlite3_context *pCtx, /* Context for error messages */
300 sqlite3_value *pVal, /* The value to decode */
301 int *pRc /* Write error here */
302 ){
303 GeoPoly *p = 0;
304 int nByte;
305 testcase( pCtx==0 );
306 if( sqlite3_value_type(pVal)==SQLITE_BLOB
307 && (nByte = sqlite3_value_bytes(pVal))>=(4+6*sizeof(GeoCoord))
308 ){
309 const unsigned char *a = sqlite3_value_blob(pVal);
310 int nVertex;
311 if( a==0 ){
312 if( pCtx ) sqlite3_result_error_nomem(pCtx);
313 return 0;
314 }
315 nVertex = (a[1]<<16) + (a[2]<<8) + a[3];
316 if( (a[0]==0 || a[0]==1)
317 && (nVertex*2*sizeof(GeoCoord) + 4)==(unsigned int)nByte
318 ){
319 p = sqlite3_malloc64( sizeof(*p) + (nVertex-1)*2*sizeof(GeoCoord) );
320 if( p==0 ){
321 if( pRc ) *pRc = SQLITE_NOMEM;
322 if( pCtx ) sqlite3_result_error_nomem(pCtx);
323 }else{
324 int x = 1;
325 p->nVertex = nVertex;
326 memcpy(p->hdr, a, nByte);
327 if( a[0] != *(unsigned char*)&x ){
328 int ii;
329 for(ii=0; ii<nVertex; ii++){
330 geopolySwab32((unsigned char*)&GeoX(p,ii));
331 geopolySwab32((unsigned char*)&GeoY(p,ii));
332 }
333 p->hdr[0] ^= 1;
334 }
335 }
336 }
337 if( pRc ) *pRc = SQLITE_OK;
338 return p;
339 }else if( sqlite3_value_type(pVal)==SQLITE_TEXT ){
340 const unsigned char *zJson = sqlite3_value_text(pVal);
341 if( zJson==0 ){
342 if( pRc ) *pRc = SQLITE_NOMEM;
343 return 0;
344 }
345 return geopolyParseJson(zJson, pRc);
346 }else{
347 if( pRc ) *pRc = SQLITE_ERROR;
348 return 0;
349 }
350 }
351
352 /*
353 ** Implementation of the geopoly_blob(X) function.
354 **
355 ** If the input is a well-formed Geopoly BLOB or JSON string
356 ** then return the BLOB representation of the polygon. Otherwise
357 ** return NULL.
358 */
geopolyBlobFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)359 static void geopolyBlobFunc(
360 sqlite3_context *context,
361 int argc,
362 sqlite3_value **argv
363 ){
364 GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
365 if( p ){
366 sqlite3_result_blob(context, p->hdr,
367 4+8*p->nVertex, SQLITE_TRANSIENT);
368 sqlite3_free(p);
369 }
370 }
371
372 /*
373 ** SQL function: geopoly_json(X)
374 **
375 ** Interpret X as a polygon and render it as a JSON array
376 ** of coordinates. Or, if X is not a valid polygon, return NULL.
377 */
geopolyJsonFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)378 static void geopolyJsonFunc(
379 sqlite3_context *context,
380 int argc,
381 sqlite3_value **argv
382 ){
383 GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
384 if( p ){
385 sqlite3 *db = sqlite3_context_db_handle(context);
386 sqlite3_str *x = sqlite3_str_new(db);
387 int i;
388 sqlite3_str_append(x, "[", 1);
389 for(i=0; i<p->nVertex; i++){
390 sqlite3_str_appendf(x, "[%!g,%!g],", GeoX(p,i), GeoY(p,i));
391 }
392 sqlite3_str_appendf(x, "[%!g,%!g]]", GeoX(p,0), GeoY(p,0));
393 sqlite3_result_text(context, sqlite3_str_finish(x), -1, sqlite3_free);
394 sqlite3_free(p);
395 }
396 }
397
398 /*
399 ** SQL function: geopoly_svg(X, ....)
400 **
401 ** Interpret X as a polygon and render it as a SVG <polyline>.
402 ** Additional arguments are added as attributes to the <polyline>.
403 */
geopolySvgFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)404 static void geopolySvgFunc(
405 sqlite3_context *context,
406 int argc,
407 sqlite3_value **argv
408 ){
409 GeoPoly *p;
410 if( argc<1 ) return;
411 p = geopolyFuncParam(context, argv[0], 0);
412 if( p ){
413 sqlite3 *db = sqlite3_context_db_handle(context);
414 sqlite3_str *x = sqlite3_str_new(db);
415 int i;
416 char cSep = '\'';
417 sqlite3_str_appendf(x, "<polyline points=");
418 for(i=0; i<p->nVertex; i++){
419 sqlite3_str_appendf(x, "%c%g,%g", cSep, GeoX(p,i), GeoY(p,i));
420 cSep = ' ';
421 }
422 sqlite3_str_appendf(x, " %g,%g'", GeoX(p,0), GeoY(p,0));
423 for(i=1; i<argc; i++){
424 const char *z = (const char*)sqlite3_value_text(argv[i]);
425 if( z && z[0] ){
426 sqlite3_str_appendf(x, " %s", z);
427 }
428 }
429 sqlite3_str_appendf(x, "></polyline>");
430 sqlite3_result_text(context, sqlite3_str_finish(x), -1, sqlite3_free);
431 sqlite3_free(p);
432 }
433 }
434
435 /*
436 ** SQL Function: geopoly_xform(poly, A, B, C, D, E, F)
437 **
438 ** Transform and/or translate a polygon as follows:
439 **
440 ** x1 = A*x0 + B*y0 + E
441 ** y1 = C*x0 + D*y0 + F
442 **
443 ** For a translation:
444 **
445 ** geopoly_xform(poly, 1, 0, 0, 1, x-offset, y-offset)
446 **
447 ** Rotate by R around the point (0,0):
448 **
449 ** geopoly_xform(poly, cos(R), sin(R), -sin(R), cos(R), 0, 0)
450 */
geopolyXformFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)451 static void geopolyXformFunc(
452 sqlite3_context *context,
453 int argc,
454 sqlite3_value **argv
455 ){
456 GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
457 double A = sqlite3_value_double(argv[1]);
458 double B = sqlite3_value_double(argv[2]);
459 double C = sqlite3_value_double(argv[3]);
460 double D = sqlite3_value_double(argv[4]);
461 double E = sqlite3_value_double(argv[5]);
462 double F = sqlite3_value_double(argv[6]);
463 GeoCoord x1, y1, x0, y0;
464 int ii;
465 if( p ){
466 for(ii=0; ii<p->nVertex; ii++){
467 x0 = GeoX(p,ii);
468 y0 = GeoY(p,ii);
469 x1 = (GeoCoord)(A*x0 + B*y0 + E);
470 y1 = (GeoCoord)(C*x0 + D*y0 + F);
471 GeoX(p,ii) = x1;
472 GeoY(p,ii) = y1;
473 }
474 sqlite3_result_blob(context, p->hdr,
475 4+8*p->nVertex, SQLITE_TRANSIENT);
476 sqlite3_free(p);
477 }
478 }
479
480 /*
481 ** Compute the area enclosed by the polygon.
482 **
483 ** This routine can also be used to detect polygons that rotate in
484 ** the wrong direction. Polygons are suppose to be counter-clockwise (CCW).
485 ** This routine returns a negative value for clockwise (CW) polygons.
486 */
geopolyArea(GeoPoly * p)487 static double geopolyArea(GeoPoly *p){
488 double rArea = 0.0;
489 int ii;
490 for(ii=0; ii<p->nVertex-1; ii++){
491 rArea += (GeoX(p,ii) - GeoX(p,ii+1)) /* (x0 - x1) */
492 * (GeoY(p,ii) + GeoY(p,ii+1)) /* (y0 + y1) */
493 * 0.5;
494 }
495 rArea += (GeoX(p,ii) - GeoX(p,0)) /* (xN - x0) */
496 * (GeoY(p,ii) + GeoY(p,0)) /* (yN + y0) */
497 * 0.5;
498 return rArea;
499 }
500
501 /*
502 ** Implementation of the geopoly_area(X) function.
503 **
504 ** If the input is a well-formed Geopoly BLOB then return the area
505 ** enclosed by the polygon. If the polygon circulates clockwise instead
506 ** of counterclockwise (as it should) then return the negative of the
507 ** enclosed area. Otherwise return NULL.
508 */
geopolyAreaFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)509 static void geopolyAreaFunc(
510 sqlite3_context *context,
511 int argc,
512 sqlite3_value **argv
513 ){
514 GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
515 if( p ){
516 sqlite3_result_double(context, geopolyArea(p));
517 sqlite3_free(p);
518 }
519 }
520
521 /*
522 ** Implementation of the geopoly_ccw(X) function.
523 **
524 ** If the rotation of polygon X is clockwise (incorrect) instead of
525 ** counter-clockwise (the correct winding order according to RFC7946)
526 ** then reverse the order of the vertexes in polygon X.
527 **
528 ** In other words, this routine returns a CCW polygon regardless of the
529 ** winding order of its input.
530 **
531 ** Use this routine to sanitize historical inputs that that sometimes
532 ** contain polygons that wind in the wrong direction.
533 */
geopolyCcwFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)534 static void geopolyCcwFunc(
535 sqlite3_context *context,
536 int argc,
537 sqlite3_value **argv
538 ){
539 GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
540 if( p ){
541 if( geopolyArea(p)<0.0 ){
542 int ii, jj;
543 for(ii=1, jj=p->nVertex-1; ii<jj; ii++, jj--){
544 GeoCoord t = GeoX(p,ii);
545 GeoX(p,ii) = GeoX(p,jj);
546 GeoX(p,jj) = t;
547 t = GeoY(p,ii);
548 GeoY(p,ii) = GeoY(p,jj);
549 GeoY(p,jj) = t;
550 }
551 }
552 sqlite3_result_blob(context, p->hdr,
553 4+8*p->nVertex, SQLITE_TRANSIENT);
554 sqlite3_free(p);
555 }
556 }
557
558 #define GEOPOLY_PI 3.1415926535897932385
559
560 /* Fast approximation for sine(X) for X between -0.5*pi and 2*pi
561 */
geopolySine(double r)562 static double geopolySine(double r){
563 assert( r>=-0.5*GEOPOLY_PI && r<=2.0*GEOPOLY_PI );
564 if( r>=1.5*GEOPOLY_PI ){
565 r -= 2.0*GEOPOLY_PI;
566 }
567 if( r>=0.5*GEOPOLY_PI ){
568 return -geopolySine(r-GEOPOLY_PI);
569 }else{
570 double r2 = r*r;
571 double r3 = r2*r;
572 double r5 = r3*r2;
573 return 0.9996949*r - 0.1656700*r3 + 0.0075134*r5;
574 }
575 }
576
577 /*
578 ** Function: geopoly_regular(X,Y,R,N)
579 **
580 ** Construct a simple, convex, regular polygon centered at X, Y
581 ** with circumradius R and with N sides.
582 */
geopolyRegularFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)583 static void geopolyRegularFunc(
584 sqlite3_context *context,
585 int argc,
586 sqlite3_value **argv
587 ){
588 double x = sqlite3_value_double(argv[0]);
589 double y = sqlite3_value_double(argv[1]);
590 double r = sqlite3_value_double(argv[2]);
591 int n = sqlite3_value_int(argv[3]);
592 int i;
593 GeoPoly *p;
594
595 if( n<3 || r<=0.0 ) return;
596 if( n>1000 ) n = 1000;
597 p = sqlite3_malloc64( sizeof(*p) + (n-1)*2*sizeof(GeoCoord) );
598 if( p==0 ){
599 sqlite3_result_error_nomem(context);
600 return;
601 }
602 i = 1;
603 p->hdr[0] = *(unsigned char*)&i;
604 p->hdr[1] = 0;
605 p->hdr[2] = (n>>8)&0xff;
606 p->hdr[3] = n&0xff;
607 for(i=0; i<n; i++){
608 double rAngle = 2.0*GEOPOLY_PI*i/n;
609 GeoX(p,i) = x - r*geopolySine(rAngle-0.5*GEOPOLY_PI);
610 GeoY(p,i) = y + r*geopolySine(rAngle);
611 }
612 sqlite3_result_blob(context, p->hdr, 4+8*n, SQLITE_TRANSIENT);
613 sqlite3_free(p);
614 }
615
616 /*
617 ** If pPoly is a polygon, compute its bounding box. Then:
618 **
619 ** (1) if aCoord!=0 store the bounding box in aCoord, returning NULL
620 ** (2) otherwise, compute a GeoPoly for the bounding box and return the
621 ** new GeoPoly
622 **
623 ** If pPoly is NULL but aCoord is not NULL, then compute a new GeoPoly from
624 ** the bounding box in aCoord and return a pointer to that GeoPoly.
625 */
geopolyBBox(sqlite3_context * context,sqlite3_value * pPoly,RtreeCoord * aCoord,int * pRc)626 static GeoPoly *geopolyBBox(
627 sqlite3_context *context, /* For recording the error */
628 sqlite3_value *pPoly, /* The polygon */
629 RtreeCoord *aCoord, /* Results here */
630 int *pRc /* Error code here */
631 ){
632 GeoPoly *pOut = 0;
633 GeoPoly *p;
634 float mnX, mxX, mnY, mxY;
635 if( pPoly==0 && aCoord!=0 ){
636 p = 0;
637 mnX = aCoord[0].f;
638 mxX = aCoord[1].f;
639 mnY = aCoord[2].f;
640 mxY = aCoord[3].f;
641 goto geopolyBboxFill;
642 }else{
643 p = geopolyFuncParam(context, pPoly, pRc);
644 }
645 if( p ){
646 int ii;
647 mnX = mxX = GeoX(p,0);
648 mnY = mxY = GeoY(p,0);
649 for(ii=1; ii<p->nVertex; ii++){
650 double r = GeoX(p,ii);
651 if( r<mnX ) mnX = (float)r;
652 else if( r>mxX ) mxX = (float)r;
653 r = GeoY(p,ii);
654 if( r<mnY ) mnY = (float)r;
655 else if( r>mxY ) mxY = (float)r;
656 }
657 if( pRc ) *pRc = SQLITE_OK;
658 if( aCoord==0 ){
659 geopolyBboxFill:
660 pOut = sqlite3_realloc64(p, GEOPOLY_SZ(4));
661 if( pOut==0 ){
662 sqlite3_free(p);
663 if( context ) sqlite3_result_error_nomem(context);
664 if( pRc ) *pRc = SQLITE_NOMEM;
665 return 0;
666 }
667 pOut->nVertex = 4;
668 ii = 1;
669 pOut->hdr[0] = *(unsigned char*)ⅈ
670 pOut->hdr[1] = 0;
671 pOut->hdr[2] = 0;
672 pOut->hdr[3] = 4;
673 GeoX(pOut,0) = mnX;
674 GeoY(pOut,0) = mnY;
675 GeoX(pOut,1) = mxX;
676 GeoY(pOut,1) = mnY;
677 GeoX(pOut,2) = mxX;
678 GeoY(pOut,2) = mxY;
679 GeoX(pOut,3) = mnX;
680 GeoY(pOut,3) = mxY;
681 }else{
682 sqlite3_free(p);
683 aCoord[0].f = mnX;
684 aCoord[1].f = mxX;
685 aCoord[2].f = mnY;
686 aCoord[3].f = mxY;
687 }
688 }else if( aCoord ){
689 memset(aCoord, 0, sizeof(RtreeCoord)*4);
690 }
691 return pOut;
692 }
693
694 /*
695 ** Implementation of the geopoly_bbox(X) SQL function.
696 */
geopolyBBoxFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)697 static void geopolyBBoxFunc(
698 sqlite3_context *context,
699 int argc,
700 sqlite3_value **argv
701 ){
702 GeoPoly *p = geopolyBBox(context, argv[0], 0, 0);
703 if( p ){
704 sqlite3_result_blob(context, p->hdr,
705 4+8*p->nVertex, SQLITE_TRANSIENT);
706 sqlite3_free(p);
707 }
708 }
709
710 /*
711 ** State vector for the geopoly_group_bbox() aggregate function.
712 */
713 typedef struct GeoBBox GeoBBox;
714 struct GeoBBox {
715 int isInit;
716 RtreeCoord a[4];
717 };
718
719
720 /*
721 ** Implementation of the geopoly_group_bbox(X) aggregate SQL function.
722 */
geopolyBBoxStep(sqlite3_context * context,int argc,sqlite3_value ** argv)723 static void geopolyBBoxStep(
724 sqlite3_context *context,
725 int argc,
726 sqlite3_value **argv
727 ){
728 RtreeCoord a[4];
729 int rc = SQLITE_OK;
730 (void)geopolyBBox(context, argv[0], a, &rc);
731 if( rc==SQLITE_OK ){
732 GeoBBox *pBBox;
733 pBBox = (GeoBBox*)sqlite3_aggregate_context(context, sizeof(*pBBox));
734 if( pBBox==0 ) return;
735 if( pBBox->isInit==0 ){
736 pBBox->isInit = 1;
737 memcpy(pBBox->a, a, sizeof(RtreeCoord)*4);
738 }else{
739 if( a[0].f < pBBox->a[0].f ) pBBox->a[0] = a[0];
740 if( a[1].f > pBBox->a[1].f ) pBBox->a[1] = a[1];
741 if( a[2].f < pBBox->a[2].f ) pBBox->a[2] = a[2];
742 if( a[3].f > pBBox->a[3].f ) pBBox->a[3] = a[3];
743 }
744 }
745 }
geopolyBBoxFinal(sqlite3_context * context)746 static void geopolyBBoxFinal(
747 sqlite3_context *context
748 ){
749 GeoPoly *p;
750 GeoBBox *pBBox;
751 pBBox = (GeoBBox*)sqlite3_aggregate_context(context, 0);
752 if( pBBox==0 ) return;
753 p = geopolyBBox(context, 0, pBBox->a, 0);
754 if( p ){
755 sqlite3_result_blob(context, p->hdr,
756 4+8*p->nVertex, SQLITE_TRANSIENT);
757 sqlite3_free(p);
758 }
759 }
760
761
762 /*
763 ** Determine if point (x0,y0) is beneath line segment (x1,y1)->(x2,y2).
764 ** Returns:
765 **
766 ** +2 x0,y0 is on the line segement
767 **
768 ** +1 x0,y0 is beneath line segment
769 **
770 ** 0 x0,y0 is not on or beneath the line segment or the line segment
771 ** is vertical and x0,y0 is not on the line segment
772 **
773 ** The left-most coordinate min(x1,x2) is not considered to be part of
774 ** the line segment for the purposes of this analysis.
775 */
pointBeneathLine(double x0,double y0,double x1,double y1,double x2,double y2)776 static int pointBeneathLine(
777 double x0, double y0,
778 double x1, double y1,
779 double x2, double y2
780 ){
781 double y;
782 if( x0==x1 && y0==y1 ) return 2;
783 if( x1<x2 ){
784 if( x0<=x1 || x0>x2 ) return 0;
785 }else if( x1>x2 ){
786 if( x0<=x2 || x0>x1 ) return 0;
787 }else{
788 /* Vertical line segment */
789 if( x0!=x1 ) return 0;
790 if( y0<y1 && y0<y2 ) return 0;
791 if( y0>y1 && y0>y2 ) return 0;
792 return 2;
793 }
794 y = y1 + (y2-y1)*(x0-x1)/(x2-x1);
795 if( y0==y ) return 2;
796 if( y0<y ) return 1;
797 return 0;
798 }
799
800 /*
801 ** SQL function: geopoly_contains_point(P,X,Y)
802 **
803 ** Return +2 if point X,Y is within polygon P.
804 ** Return +1 if point X,Y is on the polygon boundary.
805 ** Return 0 if point X,Y is outside the polygon
806 */
geopolyContainsPointFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)807 static void geopolyContainsPointFunc(
808 sqlite3_context *context,
809 int argc,
810 sqlite3_value **argv
811 ){
812 GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0);
813 double x0 = sqlite3_value_double(argv[1]);
814 double y0 = sqlite3_value_double(argv[2]);
815 int v = 0;
816 int cnt = 0;
817 int ii;
818 if( p1==0 ) return;
819 for(ii=0; ii<p1->nVertex-1; ii++){
820 v = pointBeneathLine(x0,y0,GeoX(p1,ii), GeoY(p1,ii),
821 GeoX(p1,ii+1),GeoY(p1,ii+1));
822 if( v==2 ) break;
823 cnt += v;
824 }
825 if( v!=2 ){
826 v = pointBeneathLine(x0,y0,GeoX(p1,ii), GeoY(p1,ii),
827 GeoX(p1,0), GeoY(p1,0));
828 }
829 if( v==2 ){
830 sqlite3_result_int(context, 1);
831 }else if( ((v+cnt)&1)==0 ){
832 sqlite3_result_int(context, 0);
833 }else{
834 sqlite3_result_int(context, 2);
835 }
836 sqlite3_free(p1);
837 }
838
839 /* Forward declaration */
840 static int geopolyOverlap(GeoPoly *p1, GeoPoly *p2);
841
842 /*
843 ** SQL function: geopoly_within(P1,P2)
844 **
845 ** Return +2 if P1 and P2 are the same polygon
846 ** Return +1 if P2 is contained within P1
847 ** Return 0 if any part of P2 is on the outside of P1
848 **
849 */
geopolyWithinFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)850 static void geopolyWithinFunc(
851 sqlite3_context *context,
852 int argc,
853 sqlite3_value **argv
854 ){
855 GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0);
856 GeoPoly *p2 = geopolyFuncParam(context, argv[1], 0);
857 if( p1 && p2 ){
858 int x = geopolyOverlap(p1, p2);
859 if( x<0 ){
860 sqlite3_result_error_nomem(context);
861 }else{
862 sqlite3_result_int(context, x==2 ? 1 : x==4 ? 2 : 0);
863 }
864 }
865 sqlite3_free(p1);
866 sqlite3_free(p2);
867 }
868
869 /* Objects used by the overlap algorihm. */
870 typedef struct GeoEvent GeoEvent;
871 typedef struct GeoSegment GeoSegment;
872 typedef struct GeoOverlap GeoOverlap;
873 struct GeoEvent {
874 double x; /* X coordinate at which event occurs */
875 int eType; /* 0 for ADD, 1 for REMOVE */
876 GeoSegment *pSeg; /* The segment to be added or removed */
877 GeoEvent *pNext; /* Next event in the sorted list */
878 };
879 struct GeoSegment {
880 double C, B; /* y = C*x + B */
881 double y; /* Current y value */
882 float y0; /* Initial y value */
883 unsigned char side; /* 1 for p1, 2 for p2 */
884 unsigned int idx; /* Which segment within the side */
885 GeoSegment *pNext; /* Next segment in a list sorted by y */
886 };
887 struct GeoOverlap {
888 GeoEvent *aEvent; /* Array of all events */
889 GeoSegment *aSegment; /* Array of all segments */
890 int nEvent; /* Number of events */
891 int nSegment; /* Number of segments */
892 };
893
894 /*
895 ** Add a single segment and its associated events.
896 */
geopolyAddOneSegment(GeoOverlap * p,GeoCoord x0,GeoCoord y0,GeoCoord x1,GeoCoord y1,unsigned char side,unsigned int idx)897 static void geopolyAddOneSegment(
898 GeoOverlap *p,
899 GeoCoord x0,
900 GeoCoord y0,
901 GeoCoord x1,
902 GeoCoord y1,
903 unsigned char side,
904 unsigned int idx
905 ){
906 GeoSegment *pSeg;
907 GeoEvent *pEvent;
908 if( x0==x1 ) return; /* Ignore vertical segments */
909 if( x0>x1 ){
910 GeoCoord t = x0;
911 x0 = x1;
912 x1 = t;
913 t = y0;
914 y0 = y1;
915 y1 = t;
916 }
917 pSeg = p->aSegment + p->nSegment;
918 p->nSegment++;
919 pSeg->C = (y1-y0)/(x1-x0);
920 pSeg->B = y1 - x1*pSeg->C;
921 pSeg->y0 = y0;
922 pSeg->side = side;
923 pSeg->idx = idx;
924 pEvent = p->aEvent + p->nEvent;
925 p->nEvent++;
926 pEvent->x = x0;
927 pEvent->eType = 0;
928 pEvent->pSeg = pSeg;
929 pEvent = p->aEvent + p->nEvent;
930 p->nEvent++;
931 pEvent->x = x1;
932 pEvent->eType = 1;
933 pEvent->pSeg = pSeg;
934 }
935
936
937
938 /*
939 ** Insert all segments and events for polygon pPoly.
940 */
geopolyAddSegments(GeoOverlap * p,GeoPoly * pPoly,unsigned char side)941 static void geopolyAddSegments(
942 GeoOverlap *p, /* Add segments to this Overlap object */
943 GeoPoly *pPoly, /* Take all segments from this polygon */
944 unsigned char side /* The side of pPoly */
945 ){
946 unsigned int i;
947 GeoCoord *x;
948 for(i=0; i<(unsigned)pPoly->nVertex-1; i++){
949 x = &GeoX(pPoly,i);
950 geopolyAddOneSegment(p, x[0], x[1], x[2], x[3], side, i);
951 }
952 x = &GeoX(pPoly,i);
953 geopolyAddOneSegment(p, x[0], x[1], pPoly->a[0], pPoly->a[1], side, i);
954 }
955
956 /*
957 ** Merge two lists of sorted events by X coordinate
958 */
geopolyEventMerge(GeoEvent * pLeft,GeoEvent * pRight)959 static GeoEvent *geopolyEventMerge(GeoEvent *pLeft, GeoEvent *pRight){
960 GeoEvent head, *pLast;
961 head.pNext = 0;
962 pLast = &head;
963 while( pRight && pLeft ){
964 if( pRight->x <= pLeft->x ){
965 pLast->pNext = pRight;
966 pLast = pRight;
967 pRight = pRight->pNext;
968 }else{
969 pLast->pNext = pLeft;
970 pLast = pLeft;
971 pLeft = pLeft->pNext;
972 }
973 }
974 pLast->pNext = pRight ? pRight : pLeft;
975 return head.pNext;
976 }
977
978 /*
979 ** Sort an array of nEvent event objects into a list.
980 */
geopolySortEventsByX(GeoEvent * aEvent,int nEvent)981 static GeoEvent *geopolySortEventsByX(GeoEvent *aEvent, int nEvent){
982 int mx = 0;
983 int i, j;
984 GeoEvent *p;
985 GeoEvent *a[50];
986 for(i=0; i<nEvent; i++){
987 p = &aEvent[i];
988 p->pNext = 0;
989 for(j=0; j<mx && a[j]; j++){
990 p = geopolyEventMerge(a[j], p);
991 a[j] = 0;
992 }
993 a[j] = p;
994 if( j>=mx ) mx = j+1;
995 }
996 p = 0;
997 for(i=0; i<mx; i++){
998 p = geopolyEventMerge(a[i], p);
999 }
1000 return p;
1001 }
1002
1003 /*
1004 ** Merge two lists of sorted segments by Y, and then by C.
1005 */
geopolySegmentMerge(GeoSegment * pLeft,GeoSegment * pRight)1006 static GeoSegment *geopolySegmentMerge(GeoSegment *pLeft, GeoSegment *pRight){
1007 GeoSegment head, *pLast;
1008 head.pNext = 0;
1009 pLast = &head;
1010 while( pRight && pLeft ){
1011 double r = pRight->y - pLeft->y;
1012 if( r==0.0 ) r = pRight->C - pLeft->C;
1013 if( r<0.0 ){
1014 pLast->pNext = pRight;
1015 pLast = pRight;
1016 pRight = pRight->pNext;
1017 }else{
1018 pLast->pNext = pLeft;
1019 pLast = pLeft;
1020 pLeft = pLeft->pNext;
1021 }
1022 }
1023 pLast->pNext = pRight ? pRight : pLeft;
1024 return head.pNext;
1025 }
1026
1027 /*
1028 ** Sort a list of GeoSegments in order of increasing Y and in the event of
1029 ** a tie, increasing C (slope).
1030 */
geopolySortSegmentsByYAndC(GeoSegment * pList)1031 static GeoSegment *geopolySortSegmentsByYAndC(GeoSegment *pList){
1032 int mx = 0;
1033 int i;
1034 GeoSegment *p;
1035 GeoSegment *a[50];
1036 while( pList ){
1037 p = pList;
1038 pList = pList->pNext;
1039 p->pNext = 0;
1040 for(i=0; i<mx && a[i]; i++){
1041 p = geopolySegmentMerge(a[i], p);
1042 a[i] = 0;
1043 }
1044 a[i] = p;
1045 if( i>=mx ) mx = i+1;
1046 }
1047 p = 0;
1048 for(i=0; i<mx; i++){
1049 p = geopolySegmentMerge(a[i], p);
1050 }
1051 return p;
1052 }
1053
1054 /*
1055 ** Determine the overlap between two polygons
1056 */
geopolyOverlap(GeoPoly * p1,GeoPoly * p2)1057 static int geopolyOverlap(GeoPoly *p1, GeoPoly *p2){
1058 sqlite3_int64 nVertex = p1->nVertex + p2->nVertex + 2;
1059 GeoOverlap *p;
1060 sqlite3_int64 nByte;
1061 GeoEvent *pThisEvent;
1062 double rX;
1063 int rc = 0;
1064 int needSort = 0;
1065 GeoSegment *pActive = 0;
1066 GeoSegment *pSeg;
1067 unsigned char aOverlap[4];
1068
1069 nByte = sizeof(GeoEvent)*nVertex*2
1070 + sizeof(GeoSegment)*nVertex
1071 + sizeof(GeoOverlap);
1072 p = sqlite3_malloc64( nByte );
1073 if( p==0 ) return -1;
1074 p->aEvent = (GeoEvent*)&p[1];
1075 p->aSegment = (GeoSegment*)&p->aEvent[nVertex*2];
1076 p->nEvent = p->nSegment = 0;
1077 geopolyAddSegments(p, p1, 1);
1078 geopolyAddSegments(p, p2, 2);
1079 pThisEvent = geopolySortEventsByX(p->aEvent, p->nEvent);
1080 rX = pThisEvent && pThisEvent->x==0.0 ? -1.0 : 0.0;
1081 memset(aOverlap, 0, sizeof(aOverlap));
1082 while( pThisEvent ){
1083 if( pThisEvent->x!=rX ){
1084 GeoSegment *pPrev = 0;
1085 int iMask = 0;
1086 GEODEBUG(("Distinct X: %g\n", pThisEvent->x));
1087 rX = pThisEvent->x;
1088 if( needSort ){
1089 GEODEBUG(("SORT\n"));
1090 pActive = geopolySortSegmentsByYAndC(pActive);
1091 needSort = 0;
1092 }
1093 for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){
1094 if( pPrev ){
1095 if( pPrev->y!=pSeg->y ){
1096 GEODEBUG(("MASK: %d\n", iMask));
1097 aOverlap[iMask] = 1;
1098 }
1099 }
1100 iMask ^= pSeg->side;
1101 pPrev = pSeg;
1102 }
1103 pPrev = 0;
1104 for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){
1105 double y = pSeg->C*rX + pSeg->B;
1106 GEODEBUG(("Segment %d.%d %g->%g\n", pSeg->side, pSeg->idx, pSeg->y, y));
1107 pSeg->y = y;
1108 if( pPrev ){
1109 if( pPrev->y>pSeg->y && pPrev->side!=pSeg->side ){
1110 rc = 1;
1111 GEODEBUG(("Crossing: %d.%d and %d.%d\n",
1112 pPrev->side, pPrev->idx,
1113 pSeg->side, pSeg->idx));
1114 goto geopolyOverlapDone;
1115 }else if( pPrev->y!=pSeg->y ){
1116 GEODEBUG(("MASK: %d\n", iMask));
1117 aOverlap[iMask] = 1;
1118 }
1119 }
1120 iMask ^= pSeg->side;
1121 pPrev = pSeg;
1122 }
1123 }
1124 GEODEBUG(("%s %d.%d C=%g B=%g\n",
1125 pThisEvent->eType ? "RM " : "ADD",
1126 pThisEvent->pSeg->side, pThisEvent->pSeg->idx,
1127 pThisEvent->pSeg->C,
1128 pThisEvent->pSeg->B));
1129 if( pThisEvent->eType==0 ){
1130 /* Add a segment */
1131 pSeg = pThisEvent->pSeg;
1132 pSeg->y = pSeg->y0;
1133 pSeg->pNext = pActive;
1134 pActive = pSeg;
1135 needSort = 1;
1136 }else{
1137 /* Remove a segment */
1138 if( pActive==pThisEvent->pSeg ){
1139 pActive = ALWAYS(pActive) ? pActive->pNext : 0;
1140 }else{
1141 for(pSeg=pActive; pSeg; pSeg=pSeg->pNext){
1142 if( pSeg->pNext==pThisEvent->pSeg ){
1143 pSeg->pNext = ALWAYS(pSeg->pNext) ? pSeg->pNext->pNext : 0;
1144 break;
1145 }
1146 }
1147 }
1148 }
1149 pThisEvent = pThisEvent->pNext;
1150 }
1151 if( aOverlap[3]==0 ){
1152 rc = 0;
1153 }else if( aOverlap[1]!=0 && aOverlap[2]==0 ){
1154 rc = 3;
1155 }else if( aOverlap[1]==0 && aOverlap[2]!=0 ){
1156 rc = 2;
1157 }else if( aOverlap[1]==0 && aOverlap[2]==0 ){
1158 rc = 4;
1159 }else{
1160 rc = 1;
1161 }
1162
1163 geopolyOverlapDone:
1164 sqlite3_free(p);
1165 return rc;
1166 }
1167
1168 /*
1169 ** SQL function: geopoly_overlap(P1,P2)
1170 **
1171 ** Determine whether or not P1 and P2 overlap. Return value:
1172 **
1173 ** 0 The two polygons are disjoint
1174 ** 1 They overlap
1175 ** 2 P1 is completely contained within P2
1176 ** 3 P2 is completely contained within P1
1177 ** 4 P1 and P2 are the same polygon
1178 ** NULL Either P1 or P2 or both are not valid polygons
1179 */
geopolyOverlapFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)1180 static void geopolyOverlapFunc(
1181 sqlite3_context *context,
1182 int argc,
1183 sqlite3_value **argv
1184 ){
1185 GeoPoly *p1 = geopolyFuncParam(context, argv[0], 0);
1186 GeoPoly *p2 = geopolyFuncParam(context, argv[1], 0);
1187 if( p1 && p2 ){
1188 int x = geopolyOverlap(p1, p2);
1189 if( x<0 ){
1190 sqlite3_result_error_nomem(context);
1191 }else{
1192 sqlite3_result_int(context, x);
1193 }
1194 }
1195 sqlite3_free(p1);
1196 sqlite3_free(p2);
1197 }
1198
1199 /*
1200 ** Enable or disable debugging output
1201 */
geopolyDebugFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)1202 static void geopolyDebugFunc(
1203 sqlite3_context *context,
1204 int argc,
1205 sqlite3_value **argv
1206 ){
1207 #ifdef GEOPOLY_ENABLE_DEBUG
1208 geo_debug = sqlite3_value_int(argv[0]);
1209 #endif
1210 }
1211
1212 /*
1213 ** This function is the implementation of both the xConnect and xCreate
1214 ** methods of the geopoly virtual table.
1215 **
1216 ** argv[0] -> module name
1217 ** argv[1] -> database name
1218 ** argv[2] -> table name
1219 ** argv[...] -> column names...
1220 */
geopolyInit(sqlite3 * db,void * pAux,int argc,const char * const * argv,sqlite3_vtab ** ppVtab,char ** pzErr,int isCreate)1221 static int geopolyInit(
1222 sqlite3 *db, /* Database connection */
1223 void *pAux, /* One of the RTREE_COORD_* constants */
1224 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
1225 sqlite3_vtab **ppVtab, /* OUT: New virtual table */
1226 char **pzErr, /* OUT: Error message, if any */
1227 int isCreate /* True for xCreate, false for xConnect */
1228 ){
1229 int rc = SQLITE_OK;
1230 Rtree *pRtree;
1231 sqlite3_int64 nDb; /* Length of string argv[1] */
1232 sqlite3_int64 nName; /* Length of string argv[2] */
1233 sqlite3_str *pSql;
1234 char *zSql;
1235 int ii;
1236
1237 sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
1238
1239 /* Allocate the sqlite3_vtab structure */
1240 nDb = strlen(argv[1]);
1241 nName = strlen(argv[2]);
1242 pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName+2);
1243 if( !pRtree ){
1244 return SQLITE_NOMEM;
1245 }
1246 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
1247 pRtree->nBusy = 1;
1248 pRtree->base.pModule = &rtreeModule;
1249 pRtree->zDb = (char *)&pRtree[1];
1250 pRtree->zName = &pRtree->zDb[nDb+1];
1251 pRtree->eCoordType = RTREE_COORD_REAL32;
1252 pRtree->nDim = 2;
1253 pRtree->nDim2 = 4;
1254 memcpy(pRtree->zDb, argv[1], nDb);
1255 memcpy(pRtree->zName, argv[2], nName);
1256
1257
1258 /* Create/Connect to the underlying relational database schema. If
1259 ** that is successful, call sqlite3_declare_vtab() to configure
1260 ** the r-tree table schema.
1261 */
1262 pSql = sqlite3_str_new(db);
1263 sqlite3_str_appendf(pSql, "CREATE TABLE x(_shape");
1264 pRtree->nAux = 1; /* Add one for _shape */
1265 pRtree->nAuxNotNull = 1; /* The _shape column is always not-null */
1266 for(ii=3; ii<argc; ii++){
1267 pRtree->nAux++;
1268 sqlite3_str_appendf(pSql, ",%s", argv[ii]);
1269 }
1270 sqlite3_str_appendf(pSql, ");");
1271 zSql = sqlite3_str_finish(pSql);
1272 if( !zSql ){
1273 rc = SQLITE_NOMEM;
1274 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
1275 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
1276 }
1277 sqlite3_free(zSql);
1278 if( rc ) goto geopolyInit_fail;
1279 pRtree->nBytesPerCell = 8 + pRtree->nDim2*4;
1280
1281 /* Figure out the node size to use. */
1282 rc = getNodeSize(db, pRtree, isCreate, pzErr);
1283 if( rc ) goto geopolyInit_fail;
1284 rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate);
1285 if( rc ){
1286 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
1287 goto geopolyInit_fail;
1288 }
1289
1290 *ppVtab = (sqlite3_vtab *)pRtree;
1291 return SQLITE_OK;
1292
1293 geopolyInit_fail:
1294 if( rc==SQLITE_OK ) rc = SQLITE_ERROR;
1295 assert( *ppVtab==0 );
1296 assert( pRtree->nBusy==1 );
1297 rtreeRelease(pRtree);
1298 return rc;
1299 }
1300
1301
1302 /*
1303 ** GEOPOLY virtual table module xCreate method.
1304 */
geopolyCreate(sqlite3 * db,void * pAux,int argc,const char * const * argv,sqlite3_vtab ** ppVtab,char ** pzErr)1305 static int geopolyCreate(
1306 sqlite3 *db,
1307 void *pAux,
1308 int argc, const char *const*argv,
1309 sqlite3_vtab **ppVtab,
1310 char **pzErr
1311 ){
1312 return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
1313 }
1314
1315 /*
1316 ** GEOPOLY virtual table module xConnect method.
1317 */
geopolyConnect(sqlite3 * db,void * pAux,int argc,const char * const * argv,sqlite3_vtab ** ppVtab,char ** pzErr)1318 static int geopolyConnect(
1319 sqlite3 *db,
1320 void *pAux,
1321 int argc, const char *const*argv,
1322 sqlite3_vtab **ppVtab,
1323 char **pzErr
1324 ){
1325 return geopolyInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
1326 }
1327
1328
1329 /*
1330 ** GEOPOLY virtual table module xFilter method.
1331 **
1332 ** Query plans:
1333 **
1334 ** 1 rowid lookup
1335 ** 2 search for objects overlapping the same bounding box
1336 ** that contains polygon argv[0]
1337 ** 3 search for objects overlapping the same bounding box
1338 ** that contains polygon argv[0]
1339 ** 4 full table scan
1340 */
geopolyFilter(sqlite3_vtab_cursor * pVtabCursor,int idxNum,const char * idxStr,int argc,sqlite3_value ** argv)1341 static int geopolyFilter(
1342 sqlite3_vtab_cursor *pVtabCursor, /* The cursor to initialize */
1343 int idxNum, /* Query plan */
1344 const char *idxStr, /* Not Used */
1345 int argc, sqlite3_value **argv /* Parameters to the query plan */
1346 ){
1347 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
1348 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
1349 RtreeNode *pRoot = 0;
1350 int rc = SQLITE_OK;
1351 int iCell = 0;
1352
1353 rtreeReference(pRtree);
1354
1355 /* Reset the cursor to the same state as rtreeOpen() leaves it in. */
1356 resetCursor(pCsr);
1357
1358 pCsr->iStrategy = idxNum;
1359 if( idxNum==1 ){
1360 /* Special case - lookup by rowid. */
1361 RtreeNode *pLeaf; /* Leaf on which the required cell resides */
1362 RtreeSearchPoint *p; /* Search point for the leaf */
1363 i64 iRowid = sqlite3_value_int64(argv[0]);
1364 i64 iNode = 0;
1365 rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode);
1366 if( rc==SQLITE_OK && pLeaf!=0 ){
1367 p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0);
1368 assert( p!=0 ); /* Always returns pCsr->sPoint */
1369 pCsr->aNode[0] = pLeaf;
1370 p->id = iNode;
1371 p->eWithin = PARTLY_WITHIN;
1372 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
1373 p->iCell = (u8)iCell;
1374 RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:");
1375 }else{
1376 pCsr->atEOF = 1;
1377 }
1378 }else{
1379 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
1380 ** with the configured constraints.
1381 */
1382 rc = nodeAcquire(pRtree, 1, 0, &pRoot);
1383 if( rc==SQLITE_OK && idxNum<=3 ){
1384 RtreeCoord bbox[4];
1385 RtreeConstraint *p;
1386 assert( argc==1 );
1387 assert( argv[0]!=0 );
1388 geopolyBBox(0, argv[0], bbox, &rc);
1389 if( rc ){
1390 goto geopoly_filter_end;
1391 }
1392 pCsr->aConstraint = p = sqlite3_malloc(sizeof(RtreeConstraint)*4);
1393 pCsr->nConstraint = 4;
1394 if( p==0 ){
1395 rc = SQLITE_NOMEM;
1396 }else{
1397 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*4);
1398 memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1));
1399 if( idxNum==2 ){
1400 /* Overlap query */
1401 p->op = 'B';
1402 p->iCoord = 0;
1403 p->u.rValue = bbox[1].f;
1404 p++;
1405 p->op = 'D';
1406 p->iCoord = 1;
1407 p->u.rValue = bbox[0].f;
1408 p++;
1409 p->op = 'B';
1410 p->iCoord = 2;
1411 p->u.rValue = bbox[3].f;
1412 p++;
1413 p->op = 'D';
1414 p->iCoord = 3;
1415 p->u.rValue = bbox[2].f;
1416 }else{
1417 /* Within query */
1418 p->op = 'D';
1419 p->iCoord = 0;
1420 p->u.rValue = bbox[0].f;
1421 p++;
1422 p->op = 'B';
1423 p->iCoord = 1;
1424 p->u.rValue = bbox[1].f;
1425 p++;
1426 p->op = 'D';
1427 p->iCoord = 2;
1428 p->u.rValue = bbox[2].f;
1429 p++;
1430 p->op = 'B';
1431 p->iCoord = 3;
1432 p->u.rValue = bbox[3].f;
1433 }
1434 }
1435 }
1436 if( rc==SQLITE_OK ){
1437 RtreeSearchPoint *pNew;
1438 pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1));
1439 if( pNew==0 ){
1440 rc = SQLITE_NOMEM;
1441 goto geopoly_filter_end;
1442 }
1443 pNew->id = 1;
1444 pNew->iCell = 0;
1445 pNew->eWithin = PARTLY_WITHIN;
1446 assert( pCsr->bPoint==1 );
1447 pCsr->aNode[0] = pRoot;
1448 pRoot = 0;
1449 RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:");
1450 rc = rtreeStepToLeaf(pCsr);
1451 }
1452 }
1453
1454 geopoly_filter_end:
1455 nodeRelease(pRtree, pRoot);
1456 rtreeRelease(pRtree);
1457 return rc;
1458 }
1459
1460 /*
1461 ** Rtree virtual table module xBestIndex method. There are three
1462 ** table scan strategies to choose from (in order from most to
1463 ** least desirable):
1464 **
1465 ** idxNum idxStr Strategy
1466 ** ------------------------------------------------
1467 ** 1 "rowid" Direct lookup by rowid.
1468 ** 2 "rtree" R-tree overlap query using geopoly_overlap()
1469 ** 3 "rtree" R-tree within query using geopoly_within()
1470 ** 4 "fullscan" full-table scan.
1471 ** ------------------------------------------------
1472 */
geopolyBestIndex(sqlite3_vtab * tab,sqlite3_index_info * pIdxInfo)1473 static int geopolyBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
1474 int ii;
1475 int iRowidTerm = -1;
1476 int iFuncTerm = -1;
1477 int idxNum = 0;
1478
1479 for(ii=0; ii<pIdxInfo->nConstraint; ii++){
1480 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
1481 if( !p->usable ) continue;
1482 if( p->iColumn<0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
1483 iRowidTerm = ii;
1484 break;
1485 }
1486 if( p->iColumn==0 && p->op>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
1487 /* p->op==SQLITE_INDEX_CONSTRAINT_FUNCTION for geopoly_overlap()
1488 ** p->op==(SQLITE_INDEX_CONTRAINT_FUNCTION+1) for geopoly_within().
1489 ** See geopolyFindFunction() */
1490 iFuncTerm = ii;
1491 idxNum = p->op - SQLITE_INDEX_CONSTRAINT_FUNCTION + 2;
1492 }
1493 }
1494
1495 if( iRowidTerm>=0 ){
1496 pIdxInfo->idxNum = 1;
1497 pIdxInfo->idxStr = "rowid";
1498 pIdxInfo->aConstraintUsage[iRowidTerm].argvIndex = 1;
1499 pIdxInfo->aConstraintUsage[iRowidTerm].omit = 1;
1500 pIdxInfo->estimatedCost = 30.0;
1501 pIdxInfo->estimatedRows = 1;
1502 pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE;
1503 return SQLITE_OK;
1504 }
1505 if( iFuncTerm>=0 ){
1506 pIdxInfo->idxNum = idxNum;
1507 pIdxInfo->idxStr = "rtree";
1508 pIdxInfo->aConstraintUsage[iFuncTerm].argvIndex = 1;
1509 pIdxInfo->aConstraintUsage[iFuncTerm].omit = 0;
1510 pIdxInfo->estimatedCost = 300.0;
1511 pIdxInfo->estimatedRows = 10;
1512 return SQLITE_OK;
1513 }
1514 pIdxInfo->idxNum = 4;
1515 pIdxInfo->idxStr = "fullscan";
1516 pIdxInfo->estimatedCost = 3000000.0;
1517 pIdxInfo->estimatedRows = 100000;
1518 return SQLITE_OK;
1519 }
1520
1521
1522 /*
1523 ** GEOPOLY virtual table module xColumn method.
1524 */
geopolyColumn(sqlite3_vtab_cursor * cur,sqlite3_context * ctx,int i)1525 static int geopolyColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
1526 Rtree *pRtree = (Rtree *)cur->pVtab;
1527 RtreeCursor *pCsr = (RtreeCursor *)cur;
1528 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
1529 int rc = SQLITE_OK;
1530 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
1531
1532 if( rc ) return rc;
1533 if( p==0 ) return SQLITE_OK;
1534 if( i==0 && sqlite3_vtab_nochange(ctx) ) return SQLITE_OK;
1535 if( i<=pRtree->nAux ){
1536 if( !pCsr->bAuxValid ){
1537 if( pCsr->pReadAux==0 ){
1538 rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0,
1539 &pCsr->pReadAux, 0);
1540 if( rc ) return rc;
1541 }
1542 sqlite3_bind_int64(pCsr->pReadAux, 1,
1543 nodeGetRowid(pRtree, pNode, p->iCell));
1544 rc = sqlite3_step(pCsr->pReadAux);
1545 if( rc==SQLITE_ROW ){
1546 pCsr->bAuxValid = 1;
1547 }else{
1548 sqlite3_reset(pCsr->pReadAux);
1549 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
1550 return rc;
1551 }
1552 }
1553 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pReadAux, i+2));
1554 }
1555 return SQLITE_OK;
1556 }
1557
1558
1559 /*
1560 ** The xUpdate method for GEOPOLY module virtual tables.
1561 **
1562 ** For DELETE:
1563 **
1564 ** argv[0] = the rowid to be deleted
1565 **
1566 ** For INSERT:
1567 **
1568 ** argv[0] = SQL NULL
1569 ** argv[1] = rowid to insert, or an SQL NULL to select automatically
1570 ** argv[2] = _shape column
1571 ** argv[3] = first application-defined column....
1572 **
1573 ** For UPDATE:
1574 **
1575 ** argv[0] = rowid to modify. Never NULL
1576 ** argv[1] = rowid after the change. Never NULL
1577 ** argv[2] = new value for _shape
1578 ** argv[3] = new value for first application-defined column....
1579 */
geopolyUpdate(sqlite3_vtab * pVtab,int nData,sqlite3_value ** aData,sqlite_int64 * pRowid)1580 static int geopolyUpdate(
1581 sqlite3_vtab *pVtab,
1582 int nData,
1583 sqlite3_value **aData,
1584 sqlite_int64 *pRowid
1585 ){
1586 Rtree *pRtree = (Rtree *)pVtab;
1587 int rc = SQLITE_OK;
1588 RtreeCell cell; /* New cell to insert if nData>1 */
1589 i64 oldRowid; /* The old rowid */
1590 int oldRowidValid; /* True if oldRowid is valid */
1591 i64 newRowid; /* The new rowid */
1592 int newRowidValid; /* True if newRowid is valid */
1593 int coordChange = 0; /* Change in coordinates */
1594
1595 if( pRtree->nNodeRef ){
1596 /* Unable to write to the btree while another cursor is reading from it,
1597 ** since the write might do a rebalance which would disrupt the read
1598 ** cursor. */
1599 return SQLITE_LOCKED_VTAB;
1600 }
1601 rtreeReference(pRtree);
1602 assert(nData>=1);
1603
1604 oldRowidValid = sqlite3_value_type(aData[0])!=SQLITE_NULL;;
1605 oldRowid = oldRowidValid ? sqlite3_value_int64(aData[0]) : 0;
1606 newRowidValid = nData>1 && sqlite3_value_type(aData[1])!=SQLITE_NULL;
1607 newRowid = newRowidValid ? sqlite3_value_int64(aData[1]) : 0;
1608 cell.iRowid = newRowid;
1609
1610 if( nData>1 /* not a DELETE */
1611 && (!oldRowidValid /* INSERT */
1612 || !sqlite3_value_nochange(aData[2]) /* UPDATE _shape */
1613 || oldRowid!=newRowid) /* Rowid change */
1614 ){
1615 assert( aData[2]!=0 );
1616 geopolyBBox(0, aData[2], cell.aCoord, &rc);
1617 if( rc ){
1618 if( rc==SQLITE_ERROR ){
1619 pVtab->zErrMsg =
1620 sqlite3_mprintf("_shape does not contain a valid polygon");
1621 }
1622 goto geopoly_update_end;
1623 }
1624 coordChange = 1;
1625
1626 /* If a rowid value was supplied, check if it is already present in
1627 ** the table. If so, the constraint has failed. */
1628 if( newRowidValid && (!oldRowidValid || oldRowid!=newRowid) ){
1629 int steprc;
1630 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
1631 steprc = sqlite3_step(pRtree->pReadRowid);
1632 rc = sqlite3_reset(pRtree->pReadRowid);
1633 if( SQLITE_ROW==steprc ){
1634 if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
1635 rc = rtreeDeleteRowid(pRtree, cell.iRowid);
1636 }else{
1637 rc = rtreeConstraintError(pRtree, 0);
1638 }
1639 }
1640 }
1641 }
1642
1643 /* If aData[0] is not an SQL NULL value, it is the rowid of a
1644 ** record to delete from the r-tree table. The following block does
1645 ** just that.
1646 */
1647 if( rc==SQLITE_OK && (nData==1 || (coordChange && oldRowidValid)) ){
1648 rc = rtreeDeleteRowid(pRtree, oldRowid);
1649 }
1650
1651 /* If the aData[] array contains more than one element, elements
1652 ** (aData[2]..aData[argc-1]) contain a new record to insert into
1653 ** the r-tree structure.
1654 */
1655 if( rc==SQLITE_OK && nData>1 && coordChange ){
1656 /* Insert the new record into the r-tree */
1657 RtreeNode *pLeaf = 0;
1658 if( !newRowidValid ){
1659 rc = rtreeNewRowid(pRtree, &cell.iRowid);
1660 }
1661 *pRowid = cell.iRowid;
1662 if( rc==SQLITE_OK ){
1663 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
1664 }
1665 if( rc==SQLITE_OK ){
1666 int rc2;
1667 pRtree->iReinsertHeight = -1;
1668 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
1669 rc2 = nodeRelease(pRtree, pLeaf);
1670 if( rc==SQLITE_OK ){
1671 rc = rc2;
1672 }
1673 }
1674 }
1675
1676 /* Change the data */
1677 if( rc==SQLITE_OK && nData>1 ){
1678 sqlite3_stmt *pUp = pRtree->pWriteAux;
1679 int jj;
1680 int nChange = 0;
1681 sqlite3_bind_int64(pUp, 1, cell.iRowid);
1682 assert( pRtree->nAux>=1 );
1683 if( sqlite3_value_nochange(aData[2]) ){
1684 sqlite3_bind_null(pUp, 2);
1685 }else{
1686 GeoPoly *p = 0;
1687 if( sqlite3_value_type(aData[2])==SQLITE_TEXT
1688 && (p = geopolyFuncParam(0, aData[2], &rc))!=0
1689 && rc==SQLITE_OK
1690 ){
1691 sqlite3_bind_blob(pUp, 2, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT);
1692 }else{
1693 sqlite3_bind_value(pUp, 2, aData[2]);
1694 }
1695 sqlite3_free(p);
1696 nChange = 1;
1697 }
1698 for(jj=1; jj<nData-2; jj++){
1699 nChange++;
1700 sqlite3_bind_value(pUp, jj+2, aData[jj+2]);
1701 }
1702 if( nChange ){
1703 sqlite3_step(pUp);
1704 rc = sqlite3_reset(pUp);
1705 }
1706 }
1707
1708 geopoly_update_end:
1709 rtreeRelease(pRtree);
1710 return rc;
1711 }
1712
1713 /*
1714 ** Report that geopoly_overlap() is an overloaded function suitable
1715 ** for use in xBestIndex.
1716 */
geopolyFindFunction(sqlite3_vtab * pVtab,int nArg,const char * zName,void (** pxFunc)(sqlite3_context *,int,sqlite3_value **),void ** ppArg)1717 static int geopolyFindFunction(
1718 sqlite3_vtab *pVtab,
1719 int nArg,
1720 const char *zName,
1721 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
1722 void **ppArg
1723 ){
1724 if( sqlite3_stricmp(zName, "geopoly_overlap")==0 ){
1725 *pxFunc = geopolyOverlapFunc;
1726 *ppArg = 0;
1727 return SQLITE_INDEX_CONSTRAINT_FUNCTION;
1728 }
1729 if( sqlite3_stricmp(zName, "geopoly_within")==0 ){
1730 *pxFunc = geopolyWithinFunc;
1731 *ppArg = 0;
1732 return SQLITE_INDEX_CONSTRAINT_FUNCTION+1;
1733 }
1734 return 0;
1735 }
1736
1737
1738 static sqlite3_module geopolyModule = {
1739 3, /* iVersion */
1740 geopolyCreate, /* xCreate - create a table */
1741 geopolyConnect, /* xConnect - connect to an existing table */
1742 geopolyBestIndex, /* xBestIndex - Determine search strategy */
1743 rtreeDisconnect, /* xDisconnect - Disconnect from a table */
1744 rtreeDestroy, /* xDestroy - Drop a table */
1745 rtreeOpen, /* xOpen - open a cursor */
1746 rtreeClose, /* xClose - close a cursor */
1747 geopolyFilter, /* xFilter - configure scan constraints */
1748 rtreeNext, /* xNext - advance a cursor */
1749 rtreeEof, /* xEof */
1750 geopolyColumn, /* xColumn - read data */
1751 rtreeRowid, /* xRowid - read data */
1752 geopolyUpdate, /* xUpdate - write data */
1753 rtreeBeginTransaction, /* xBegin - begin transaction */
1754 rtreeEndTransaction, /* xSync - sync transaction */
1755 rtreeEndTransaction, /* xCommit - commit transaction */
1756 rtreeEndTransaction, /* xRollback - rollback transaction */
1757 geopolyFindFunction, /* xFindFunction - function overloading */
1758 rtreeRename, /* xRename - rename the table */
1759 rtreeSavepoint, /* xSavepoint */
1760 0, /* xRelease */
1761 0, /* xRollbackTo */
1762 rtreeShadowName /* xShadowName */
1763 };
1764
sqlite3_geopoly_init(sqlite3 * db)1765 static int sqlite3_geopoly_init(sqlite3 *db){
1766 int rc = SQLITE_OK;
1767 static const struct {
1768 void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
1769 signed char nArg;
1770 unsigned char bPure;
1771 const char *zName;
1772 } aFunc[] = {
1773 { geopolyAreaFunc, 1, 1, "geopoly_area" },
1774 { geopolyBlobFunc, 1, 1, "geopoly_blob" },
1775 { geopolyJsonFunc, 1, 1, "geopoly_json" },
1776 { geopolySvgFunc, -1, 1, "geopoly_svg" },
1777 { geopolyWithinFunc, 2, 1, "geopoly_within" },
1778 { geopolyContainsPointFunc, 3, 1, "geopoly_contains_point" },
1779 { geopolyOverlapFunc, 2, 1, "geopoly_overlap" },
1780 { geopolyDebugFunc, 1, 0, "geopoly_debug" },
1781 { geopolyBBoxFunc, 1, 1, "geopoly_bbox" },
1782 { geopolyXformFunc, 7, 1, "geopoly_xform" },
1783 { geopolyRegularFunc, 4, 1, "geopoly_regular" },
1784 { geopolyCcwFunc, 1, 1, "geopoly_ccw" },
1785 };
1786 static const struct {
1787 void (*xStep)(sqlite3_context*,int,sqlite3_value**);
1788 void (*xFinal)(sqlite3_context*);
1789 const char *zName;
1790 } aAgg[] = {
1791 { geopolyBBoxStep, geopolyBBoxFinal, "geopoly_group_bbox" },
1792 };
1793 int i;
1794 for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
1795 int enc;
1796 if( aFunc[i].bPure ){
1797 enc = SQLITE_UTF8|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS;
1798 }else{
1799 enc = SQLITE_UTF8|SQLITE_DIRECTONLY;
1800 }
1801 rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg,
1802 enc, 0,
1803 aFunc[i].xFunc, 0, 0);
1804 }
1805 for(i=0; i<sizeof(aAgg)/sizeof(aAgg[0]) && rc==SQLITE_OK; i++){
1806 rc = sqlite3_create_function(db, aAgg[i].zName, 1,
1807 SQLITE_UTF8|SQLITE_DETERMINISTIC|SQLITE_INNOCUOUS, 0,
1808 0, aAgg[i].xStep, aAgg[i].xFinal);
1809 }
1810 if( rc==SQLITE_OK ){
1811 rc = sqlite3_create_module_v2(db, "geopoly", &geopolyModule, 0, 0);
1812 }
1813 return rc;
1814 }
1815