1 /* 2 ** 2015-06-06 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. 14 ** 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the 16 ** size of where.c and make it easier to edit. This file contains the routines 17 ** that actually generate the bulk of the WHERE loop code. The original where.c 18 ** file retains the code that does query planning and analysis. 19 */ 20 #include "sqliteInt.h" 21 #include "whereInt.h" 22 23 #ifndef SQLITE_OMIT_EXPLAIN 24 25 /* 26 ** Return the name of the i-th column of the pIdx index. 27 */ 28 static const char *explainIndexColumnName(Index *pIdx, int i){ 29 i = pIdx->aiColumn[i]; 30 if( i==XN_EXPR ) return "<expr>"; 31 if( i==XN_ROWID ) return "rowid"; 32 return pIdx->pTable->aCol[i].zCnName; 33 } 34 35 /* 36 ** This routine is a helper for explainIndexRange() below 37 ** 38 ** pStr holds the text of an expression that we are building up one term 39 ** at a time. This routine adds a new term to the end of the expression. 40 ** Terms are separated by AND so add the "AND" text for second and subsequent 41 ** terms only. 42 */ 43 static void explainAppendTerm( 44 StrAccum *pStr, /* The text expression being built */ 45 Index *pIdx, /* Index to read column names from */ 46 int nTerm, /* Number of terms */ 47 int iTerm, /* Zero-based index of first term. */ 48 int bAnd, /* Non-zero to append " AND " */ 49 const char *zOp /* Name of the operator */ 50 ){ 51 int i; 52 53 assert( nTerm>=1 ); 54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5); 55 56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 57 for(i=0; i<nTerm; i++){ 58 if( i ) sqlite3_str_append(pStr, ",", 1); 59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i)); 60 } 61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 62 63 sqlite3_str_append(pStr, zOp, 1); 64 65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1); 66 for(i=0; i<nTerm; i++){ 67 if( i ) sqlite3_str_append(pStr, ",", 1); 68 sqlite3_str_append(pStr, "?", 1); 69 } 70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1); 71 } 72 73 /* 74 ** Argument pLevel describes a strategy for scanning table pTab. This 75 ** function appends text to pStr that describes the subset of table 76 ** rows scanned by the strategy in the form of an SQL expression. 77 ** 78 ** For example, if the query: 79 ** 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; 81 ** 82 ** is run and there is an index on (a, b), then this function returns a 83 ** string similar to: 84 ** 85 ** "a=? AND b>?" 86 */ 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ 88 Index *pIndex = pLoop->u.btree.pIndex; 89 u16 nEq = pLoop->u.btree.nEq; 90 u16 nSkip = pLoop->nSkip; 91 int i, j; 92 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 94 sqlite3_str_append(pStr, " (", 2); 95 for(i=0; i<nEq; i++){ 96 const char *z = explainIndexColumnName(pIndex, i); 97 if( i ) sqlite3_str_append(pStr, " AND ", 5); 98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); 99 } 100 101 j = i; 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); 104 i = 1; 105 } 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); 108 } 109 sqlite3_str_append(pStr, ")", 1); 110 } 111 112 /* 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 116 ** is added to the output to describe the table scan strategy in pLevel. 117 ** 118 ** If an OP_Explain opcode is added to the VM, its address is returned. 119 ** Otherwise, if no OP_Explain is coded, zero is returned. 120 */ 121 int sqlite3WhereExplainOneScan( 122 Parse *pParse, /* Parse context */ 123 SrcList *pTabList, /* Table list this loop refers to */ 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 126 ){ 127 int ret = 0; 128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 129 if( sqlite3ParseToplevel(pParse)->explain==2 ) 130 #endif 131 { 132 SrcItem *pItem = &pTabList->a[pLevel->iFrom]; 133 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 134 sqlite3 *db = pParse->db; /* Database handle */ 135 int isSearch; /* True for a SEARCH. False for SCAN. */ 136 WhereLoop *pLoop; /* The controlling WhereLoop object */ 137 u32 flags; /* Flags that describe this loop */ 138 char *zMsg; /* Text to add to EQP output */ 139 StrAccum str; /* EQP output string */ 140 char zBuf[100]; /* Initial space for EQP output string */ 141 142 pLoop = pLevel->pWLoop; 143 flags = pLoop->wsFlags; 144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; 145 146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 149 150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 151 str.printfFlags = SQLITE_PRINTF_INTERNAL; 152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem); 153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 154 const char *zFmt = 0; 155 Index *pIdx; 156 157 assert( pLoop->u.btree.pIndex!=0 ); 158 pIdx = pLoop->u.btree.pIndex; 159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 161 if( isSearch ){ 162 zFmt = "PRIMARY KEY"; 163 } 164 }else if( flags & WHERE_PARTIALIDX ){ 165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 166 }else if( flags & WHERE_AUTO_INDEX ){ 167 zFmt = "AUTOMATIC COVERING INDEX"; 168 }else if( flags & WHERE_IDX_ONLY ){ 169 zFmt = "COVERING INDEX %s"; 170 }else{ 171 zFmt = "INDEX %s"; 172 } 173 if( zFmt ){ 174 sqlite3_str_append(&str, " USING ", 7); 175 sqlite3_str_appendf(&str, zFmt, pIdx->zName); 176 explainIndexRange(&str, pLoop); 177 } 178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 179 char cRangeOp; 180 #if 0 /* Better output, but breaks many tests */ 181 const Table *pTab = pItem->pTab; 182 const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName: 183 "rowid"; 184 #else 185 const char *zRowid = "rowid"; 186 #endif 187 sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid); 188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 189 cRangeOp = '='; 190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 191 sqlite3_str_appendf(&str, ">? AND %s", zRowid); 192 cRangeOp = '<'; 193 }else if( flags&WHERE_BTM_LIMIT ){ 194 cRangeOp = '>'; 195 }else{ 196 assert( flags&WHERE_TOP_LIMIT); 197 cRangeOp = '<'; 198 } 199 sqlite3_str_appendf(&str, "%c?)", cRangeOp); 200 } 201 #ifndef SQLITE_OMIT_VIRTUALTABLE 202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s", 204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 205 } 206 #endif 207 if( pItem->fg.jointype & JT_LEFT ){ 208 sqlite3_str_appendf(&str, " LEFT-JOIN"); 209 } 210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 211 if( pLoop->nOut>=10 ){ 212 sqlite3_str_appendf(&str, " (~%llu rows)", 213 sqlite3LogEstToInt(pLoop->nOut)); 214 }else{ 215 sqlite3_str_append(&str, " (~1 row)", 9); 216 } 217 #endif 218 zMsg = sqlite3StrAccumFinish(&str); 219 sqlite3ExplainBreakpoint("",zMsg); 220 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 221 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 222 } 223 return ret; 224 } 225 226 /* 227 ** Add a single OP_Explain opcode that describes a Bloom filter. 228 ** 229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or 230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not 231 ** required and this routine is a no-op. 232 ** 233 ** If an OP_Explain opcode is added to the VM, its address is returned. 234 ** Otherwise, if no OP_Explain is coded, zero is returned. 235 */ 236 int sqlite3WhereExplainBloomFilter( 237 const Parse *pParse, /* Parse context */ 238 const WhereInfo *pWInfo, /* WHERE clause */ 239 const WhereLevel *pLevel /* Bloom filter on this level */ 240 ){ 241 int ret = 0; 242 SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 243 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 244 sqlite3 *db = pParse->db; /* Database handle */ 245 char *zMsg; /* Text to add to EQP output */ 246 int i; /* Loop counter */ 247 WhereLoop *pLoop; /* The where loop */ 248 StrAccum str; /* EQP output string */ 249 char zBuf[100]; /* Initial space for EQP output string */ 250 251 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 252 str.printfFlags = SQLITE_PRINTF_INTERNAL; 253 sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem); 254 pLoop = pLevel->pWLoop; 255 if( pLoop->wsFlags & WHERE_IPK ){ 256 const Table *pTab = pItem->pTab; 257 if( pTab->iPKey>=0 ){ 258 sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName); 259 }else{ 260 sqlite3_str_appendf(&str, "rowid=?"); 261 } 262 }else{ 263 for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){ 264 const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i); 265 if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5); 266 sqlite3_str_appendf(&str, "%s=?", z); 267 } 268 } 269 sqlite3_str_append(&str, ")", 1); 270 zMsg = sqlite3StrAccumFinish(&str); 271 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v), 272 pParse->addrExplain, 0, zMsg,P4_DYNAMIC); 273 return ret; 274 } 275 #endif /* SQLITE_OMIT_EXPLAIN */ 276 277 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 278 /* 279 ** Configure the VM passed as the first argument with an 280 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 281 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 282 ** clause that the scan reads data from. 283 ** 284 ** If argument addrExplain is not 0, it must be the address of an 285 ** OP_Explain instruction that describes the same loop. 286 */ 287 void sqlite3WhereAddScanStatus( 288 Vdbe *v, /* Vdbe to add scanstatus entry to */ 289 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 290 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 291 int addrExplain /* Address of OP_Explain (or 0) */ 292 ){ 293 const char *zObj = 0; 294 WhereLoop *pLoop = pLvl->pWLoop; 295 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 296 zObj = pLoop->u.btree.pIndex->zName; 297 }else{ 298 zObj = pSrclist->a[pLvl->iFrom].zName; 299 } 300 sqlite3VdbeScanStatus( 301 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 302 ); 303 } 304 #endif 305 306 307 /* 308 ** Disable a term in the WHERE clause. Except, do not disable the term 309 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 310 ** or USING clause of that join. 311 ** 312 ** Consider the term t2.z='ok' in the following queries: 313 ** 314 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 315 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 316 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 317 ** 318 ** The t2.z='ok' is disabled in the in (2) because it originates 319 ** in the ON clause. The term is disabled in (3) because it is not part 320 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 321 ** 322 ** Disabling a term causes that term to not be tested in the inner loop 323 ** of the join. Disabling is an optimization. When terms are satisfied 324 ** by indices, we disable them to prevent redundant tests in the inner 325 ** loop. We would get the correct results if nothing were ever disabled, 326 ** but joins might run a little slower. The trick is to disable as much 327 ** as we can without disabling too much. If we disabled in (1), we'd get 328 ** the wrong answer. See ticket #813. 329 ** 330 ** If all the children of a term are disabled, then that term is also 331 ** automatically disabled. In this way, terms get disabled if derived 332 ** virtual terms are tested first. For example: 333 ** 334 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 335 ** \___________/ \______/ \_____/ 336 ** parent child1 child2 337 ** 338 ** Only the parent term was in the original WHERE clause. The child1 339 ** and child2 terms were added by the LIKE optimization. If both of 340 ** the virtual child terms are valid, then testing of the parent can be 341 ** skipped. 342 ** 343 ** Usually the parent term is marked as TERM_CODED. But if the parent 344 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 345 ** The TERM_LIKECOND marking indicates that the term should be coded inside 346 ** a conditional such that is only evaluated on the second pass of a 347 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 348 */ 349 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 350 int nLoop = 0; 351 assert( pTerm!=0 ); 352 while( (pTerm->wtFlags & TERM_CODED)==0 353 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON)) 354 && (pLevel->notReady & pTerm->prereqAll)==0 355 ){ 356 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 357 pTerm->wtFlags |= TERM_LIKECOND; 358 }else{ 359 pTerm->wtFlags |= TERM_CODED; 360 } 361 #ifdef WHERETRACE_ENABLED 362 if( sqlite3WhereTrace & 0x20000 ){ 363 sqlite3DebugPrintf("DISABLE-"); 364 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a))); 365 } 366 #endif 367 if( pTerm->iParent<0 ) break; 368 pTerm = &pTerm->pWC->a[pTerm->iParent]; 369 assert( pTerm!=0 ); 370 pTerm->nChild--; 371 if( pTerm->nChild!=0 ) break; 372 nLoop++; 373 } 374 } 375 376 /* 377 ** Code an OP_Affinity opcode to apply the column affinity string zAff 378 ** to the n registers starting at base. 379 ** 380 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which 381 ** are no-ops) at the beginning and end of zAff are ignored. If all entries 382 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated. 383 ** 384 ** This routine makes its own copy of zAff so that the caller is free 385 ** to modify zAff after this routine returns. 386 */ 387 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 388 Vdbe *v = pParse->pVdbe; 389 if( zAff==0 ){ 390 assert( pParse->db->mallocFailed ); 391 return; 392 } 393 assert( v!=0 ); 394 395 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE 396 ** entries at the beginning and end of the affinity string. 397 */ 398 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB ); 399 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){ 400 n--; 401 base++; 402 zAff++; 403 } 404 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){ 405 n--; 406 } 407 408 /* Code the OP_Affinity opcode if there is anything left to do. */ 409 if( n>0 ){ 410 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); 411 } 412 } 413 414 /* 415 ** Expression pRight, which is the RHS of a comparison operation, is 416 ** either a vector of n elements or, if n==1, a scalar expression. 417 ** Before the comparison operation, affinity zAff is to be applied 418 ** to the pRight values. This function modifies characters within the 419 ** affinity string to SQLITE_AFF_BLOB if either: 420 ** 421 ** * the comparison will be performed with no affinity, or 422 ** * the affinity change in zAff is guaranteed not to change the value. 423 */ 424 static void updateRangeAffinityStr( 425 Expr *pRight, /* RHS of comparison */ 426 int n, /* Number of vector elements in comparison */ 427 char *zAff /* Affinity string to modify */ 428 ){ 429 int i; 430 for(i=0; i<n; i++){ 431 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); 432 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB 433 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) 434 ){ 435 zAff[i] = SQLITE_AFF_BLOB; 436 } 437 } 438 } 439 440 441 /* 442 ** pX is an expression of the form: (vector) IN (SELECT ...) 443 ** In other words, it is a vector IN operator with a SELECT clause on the 444 ** LHS. But not all terms in the vector are indexable and the terms might 445 ** not be in the correct order for indexing. 446 ** 447 ** This routine makes a copy of the input pX expression and then adjusts 448 ** the vector on the LHS with corresponding changes to the SELECT so that 449 ** the vector contains only index terms and those terms are in the correct 450 ** order. The modified IN expression is returned. The caller is responsible 451 ** for deleting the returned expression. 452 ** 453 ** Example: 454 ** 455 ** CREATE TABLE t1(a,b,c,d,e,f); 456 ** CREATE INDEX t1x1 ON t1(e,c); 457 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) 458 ** \_______________________________________/ 459 ** The pX expression 460 ** 461 ** Since only columns e and c can be used with the index, in that order, 462 ** the modified IN expression that is returned will be: 463 ** 464 ** (e,c) IN (SELECT z,x FROM t2) 465 ** 466 ** The reduced pX is different from the original (obviously) and thus is 467 ** only used for indexing, to improve performance. The original unaltered 468 ** IN expression must also be run on each output row for correctness. 469 */ 470 static Expr *removeUnindexableInClauseTerms( 471 Parse *pParse, /* The parsing context */ 472 int iEq, /* Look at loop terms starting here */ 473 WhereLoop *pLoop, /* The current loop */ 474 Expr *pX /* The IN expression to be reduced */ 475 ){ 476 sqlite3 *db = pParse->db; 477 Expr *pNew; 478 pNew = sqlite3ExprDup(db, pX, 0); 479 if( db->mallocFailed==0 ){ 480 ExprList *pOrigRhs; /* Original unmodified RHS */ 481 ExprList *pOrigLhs; /* Original unmodified LHS */ 482 ExprList *pRhs = 0; /* New RHS after modifications */ 483 ExprList *pLhs = 0; /* New LHS after mods */ 484 int i; /* Loop counter */ 485 Select *pSelect; /* Pointer to the SELECT on the RHS */ 486 487 assert( ExprUseXSelect(pNew) ); 488 pOrigRhs = pNew->x.pSelect->pEList; 489 assert( pNew->pLeft!=0 ); 490 assert( ExprUseXList(pNew->pLeft) ); 491 pOrigLhs = pNew->pLeft->x.pList; 492 for(i=iEq; i<pLoop->nLTerm; i++){ 493 if( pLoop->aLTerm[i]->pExpr==pX ){ 494 int iField; 495 assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 ); 496 iField = pLoop->aLTerm[i]->u.x.iField - 1; 497 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ 498 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); 499 pOrigRhs->a[iField].pExpr = 0; 500 assert( pOrigLhs->a[iField].pExpr!=0 ); 501 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); 502 pOrigLhs->a[iField].pExpr = 0; 503 } 504 } 505 sqlite3ExprListDelete(db, pOrigRhs); 506 sqlite3ExprListDelete(db, pOrigLhs); 507 pNew->pLeft->x.pList = pLhs; 508 pNew->x.pSelect->pEList = pRhs; 509 if( pLhs && pLhs->nExpr==1 ){ 510 /* Take care here not to generate a TK_VECTOR containing only a 511 ** single value. Since the parser never creates such a vector, some 512 ** of the subroutines do not handle this case. */ 513 Expr *p = pLhs->a[0].pExpr; 514 pLhs->a[0].pExpr = 0; 515 sqlite3ExprDelete(db, pNew->pLeft); 516 pNew->pLeft = p; 517 } 518 pSelect = pNew->x.pSelect; 519 if( pSelect->pOrderBy ){ 520 /* If the SELECT statement has an ORDER BY clause, zero the 521 ** iOrderByCol variables. These are set to non-zero when an 522 ** ORDER BY term exactly matches one of the terms of the 523 ** result-set. Since the result-set of the SELECT statement may 524 ** have been modified or reordered, these variables are no longer 525 ** set correctly. Since setting them is just an optimization, 526 ** it's easiest just to zero them here. */ 527 ExprList *pOrderBy = pSelect->pOrderBy; 528 for(i=0; i<pOrderBy->nExpr; i++){ 529 pOrderBy->a[i].u.x.iOrderByCol = 0; 530 } 531 } 532 533 #if 0 534 printf("For indexing, change the IN expr:\n"); 535 sqlite3TreeViewExpr(0, pX, 0); 536 printf("Into:\n"); 537 sqlite3TreeViewExpr(0, pNew, 0); 538 #endif 539 } 540 return pNew; 541 } 542 543 544 /* 545 ** Generate code for a single equality term of the WHERE clause. An equality 546 ** term can be either X=expr or X IN (...). pTerm is the term to be 547 ** coded. 548 ** 549 ** The current value for the constraint is left in a register, the index 550 ** of which is returned. An attempt is made store the result in iTarget but 551 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the 552 ** constraint is a TK_EQ or TK_IS, then the current value might be left in 553 ** some other register and it is the caller's responsibility to compensate. 554 ** 555 ** For a constraint of the form X=expr, the expression is evaluated in 556 ** straight-line code. For constraints of the form X IN (...) 557 ** this routine sets up a loop that will iterate over all values of X. 558 */ 559 static int codeEqualityTerm( 560 Parse *pParse, /* The parsing context */ 561 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 562 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 563 int iEq, /* Index of the equality term within this level */ 564 int bRev, /* True for reverse-order IN operations */ 565 int iTarget /* Attempt to leave results in this register */ 566 ){ 567 Expr *pX = pTerm->pExpr; 568 Vdbe *v = pParse->pVdbe; 569 int iReg; /* Register holding results */ 570 571 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); 572 assert( iTarget>0 ); 573 if( pX->op==TK_EQ || pX->op==TK_IS ){ 574 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 575 }else if( pX->op==TK_ISNULL ){ 576 iReg = iTarget; 577 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 578 #ifndef SQLITE_OMIT_SUBQUERY 579 }else{ 580 int eType = IN_INDEX_NOOP; 581 int iTab; 582 struct InLoop *pIn; 583 WhereLoop *pLoop = pLevel->pWLoop; 584 int i; 585 int nEq = 0; 586 int *aiMap = 0; 587 588 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 589 && pLoop->u.btree.pIndex!=0 590 && pLoop->u.btree.pIndex->aSortOrder[iEq] 591 ){ 592 testcase( iEq==0 ); 593 testcase( bRev ); 594 bRev = !bRev; 595 } 596 assert( pX->op==TK_IN ); 597 iReg = iTarget; 598 599 for(i=0; i<iEq; i++){ 600 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ 601 disableTerm(pLevel, pTerm); 602 return iTarget; 603 } 604 } 605 for(i=iEq;i<pLoop->nLTerm; i++){ 606 assert( pLoop->aLTerm[i]!=0 ); 607 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; 608 } 609 610 iTab = 0; 611 if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){ 612 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab); 613 }else{ 614 Expr *pExpr = pTerm->pExpr; 615 if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){ 616 sqlite3 *db = pParse->db; 617 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); 618 if( !db->mallocFailed ){ 619 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); 620 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab); 621 pExpr->iTable = iTab; 622 } 623 sqlite3ExprDelete(db, pX); 624 }else{ 625 int n = sqlite3ExprVectorSize(pX->pLeft); 626 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*MAX(nEq,n)); 627 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab); 628 } 629 pX = pExpr; 630 } 631 632 if( eType==IN_INDEX_INDEX_DESC ){ 633 testcase( bRev ); 634 bRev = !bRev; 635 } 636 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 637 VdbeCoverageIf(v, bRev); 638 VdbeCoverageIf(v, !bRev); 639 640 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 641 pLoop->wsFlags |= WHERE_IN_ABLE; 642 if( pLevel->u.in.nIn==0 ){ 643 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 644 } 645 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){ 646 pLoop->wsFlags |= WHERE_IN_EARLYOUT; 647 } 648 649 i = pLevel->u.in.nIn; 650 pLevel->u.in.nIn += nEq; 651 pLevel->u.in.aInLoop = 652 sqlite3WhereRealloc(pTerm->pWC->pWInfo, 653 pLevel->u.in.aInLoop, 654 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 655 pIn = pLevel->u.in.aInLoop; 656 if( pIn ){ 657 int iMap = 0; /* Index in aiMap[] */ 658 pIn += i; 659 for(i=iEq;i<pLoop->nLTerm; i++){ 660 if( pLoop->aLTerm[i]->pExpr==pX ){ 661 int iOut = iReg + i - iEq; 662 if( eType==IN_INDEX_ROWID ){ 663 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); 664 }else{ 665 int iCol = aiMap ? aiMap[iMap++] : 0; 666 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); 667 } 668 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); 669 if( i==iEq ){ 670 pIn->iCur = iTab; 671 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next; 672 if( iEq>0 ){ 673 pIn->iBase = iReg - i; 674 pIn->nPrefix = i; 675 }else{ 676 pIn->nPrefix = 0; 677 } 678 }else{ 679 pIn->eEndLoopOp = OP_Noop; 680 } 681 pIn++; 682 } 683 } 684 testcase( iEq>0 685 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 686 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ); 687 if( iEq>0 688 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0 689 ){ 690 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq); 691 } 692 }else{ 693 pLevel->u.in.nIn = 0; 694 } 695 sqlite3DbFree(pParse->db, aiMap); 696 #endif 697 } 698 699 /* As an optimization, try to disable the WHERE clause term that is 700 ** driving the index as it will always be true. The correct answer is 701 ** obtained regardless, but we might get the answer with fewer CPU cycles 702 ** by omitting the term. 703 ** 704 ** But do not disable the term unless we are certain that the term is 705 ** not a transitive constraint. For an example of where that does not 706 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04) 707 */ 708 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0 709 || (pTerm->eOperator & WO_EQUIV)==0 710 ){ 711 disableTerm(pLevel, pTerm); 712 } 713 714 return iReg; 715 } 716 717 /* 718 ** Generate code that will evaluate all == and IN constraints for an 719 ** index scan. 720 ** 721 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 722 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 723 ** The index has as many as three equality constraints, but in this 724 ** example, the third "c" value is an inequality. So only two 725 ** constraints are coded. This routine will generate code to evaluate 726 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 727 ** in consecutive registers and the index of the first register is returned. 728 ** 729 ** In the example above nEq==2. But this subroutine works for any value 730 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 731 ** The only thing it does is allocate the pLevel->iMem memory cell and 732 ** compute the affinity string. 733 ** 734 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 735 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 736 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 737 ** occurs after the nEq quality constraints. 738 ** 739 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 740 ** the index of the first memory cell in that range. The code that 741 ** calls this routine will use that memory range to store keys for 742 ** start and termination conditions of the loop. 743 ** key value of the loop. If one or more IN operators appear, then 744 ** this routine allocates an additional nEq memory cells for internal 745 ** use. 746 ** 747 ** Before returning, *pzAff is set to point to a buffer containing a 748 ** copy of the column affinity string of the index allocated using 749 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 750 ** with equality constraints that use BLOB or NONE affinity are set to 751 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: 752 ** 753 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 754 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 755 ** 756 ** In the example above, the index on t1(a) has TEXT affinity. But since 757 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, 758 ** no conversion should be attempted before using a t2.b value as part of 759 ** a key to search the index. Hence the first byte in the returned affinity 760 ** string in this example would be set to SQLITE_AFF_BLOB. 761 */ 762 static int codeAllEqualityTerms( 763 Parse *pParse, /* Parsing context */ 764 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 765 int bRev, /* Reverse the order of IN operators */ 766 int nExtraReg, /* Number of extra registers to allocate */ 767 char **pzAff /* OUT: Set to point to affinity string */ 768 ){ 769 u16 nEq; /* The number of == or IN constraints to code */ 770 u16 nSkip; /* Number of left-most columns to skip */ 771 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 772 Index *pIdx; /* The index being used for this loop */ 773 WhereTerm *pTerm; /* A single constraint term */ 774 WhereLoop *pLoop; /* The WhereLoop object */ 775 int j; /* Loop counter */ 776 int regBase; /* Base register */ 777 int nReg; /* Number of registers to allocate */ 778 char *zAff; /* Affinity string to return */ 779 780 /* This module is only called on query plans that use an index. */ 781 pLoop = pLevel->pWLoop; 782 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 783 nEq = pLoop->u.btree.nEq; 784 nSkip = pLoop->nSkip; 785 pIdx = pLoop->u.btree.pIndex; 786 assert( pIdx!=0 ); 787 788 /* Figure out how many memory cells we will need then allocate them. 789 */ 790 regBase = pParse->nMem + 1; 791 nReg = pLoop->u.btree.nEq + nExtraReg; 792 pParse->nMem += nReg; 793 794 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); 795 assert( zAff!=0 || pParse->db->mallocFailed ); 796 797 if( nSkip ){ 798 int iIdxCur = pLevel->iIdxCur; 799 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1); 800 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 801 VdbeCoverageIf(v, bRev==0); 802 VdbeCoverageIf(v, bRev!=0); 803 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 804 j = sqlite3VdbeAddOp0(v, OP_Goto); 805 assert( pLevel->addrSkip==0 ); 806 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 807 iIdxCur, 0, regBase, nSkip); 808 VdbeCoverageIf(v, bRev==0); 809 VdbeCoverageIf(v, bRev!=0); 810 sqlite3VdbeJumpHere(v, j); 811 for(j=0; j<nSkip; j++){ 812 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 813 testcase( pIdx->aiColumn[j]==XN_EXPR ); 814 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); 815 } 816 } 817 818 /* Evaluate the equality constraints 819 */ 820 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 821 for(j=nSkip; j<nEq; j++){ 822 int r1; 823 pTerm = pLoop->aLTerm[j]; 824 assert( pTerm!=0 ); 825 /* The following testcase is true for indices with redundant columns. 826 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 827 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 828 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 829 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 830 if( r1!=regBase+j ){ 831 if( nReg==1 ){ 832 sqlite3ReleaseTempReg(pParse, regBase); 833 regBase = r1; 834 }else{ 835 sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j); 836 } 837 } 838 } 839 for(j=nSkip; j<nEq; j++){ 840 pTerm = pLoop->aLTerm[j]; 841 if( pTerm->eOperator & WO_IN ){ 842 if( pTerm->pExpr->flags & EP_xIsSelect ){ 843 /* No affinity ever needs to be (or should be) applied to a value 844 ** from the RHS of an "? IN (SELECT ...)" expression. The 845 ** sqlite3FindInIndex() routine has already ensured that the 846 ** affinity of the comparison has been applied to the value. */ 847 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; 848 } 849 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ 850 Expr *pRight = pTerm->pExpr->pRight; 851 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ 852 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 853 VdbeCoverage(v); 854 } 855 if( pParse->nErr==0 ){ 856 assert( pParse->db->mallocFailed==0 ); 857 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ 858 zAff[j] = SQLITE_AFF_BLOB; 859 } 860 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 861 zAff[j] = SQLITE_AFF_BLOB; 862 } 863 } 864 } 865 } 866 *pzAff = zAff; 867 return regBase; 868 } 869 870 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 871 /* 872 ** If the most recently coded instruction is a constant range constraint 873 ** (a string literal) that originated from the LIKE optimization, then 874 ** set P3 and P5 on the OP_String opcode so that the string will be cast 875 ** to a BLOB at appropriate times. 876 ** 877 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 878 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 879 ** scan loop run twice, once for strings and a second time for BLOBs. 880 ** The OP_String opcodes on the second pass convert the upper and lower 881 ** bound string constants to blobs. This routine makes the necessary changes 882 ** to the OP_String opcodes for that to happen. 883 ** 884 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then 885 ** only the one pass through the string space is required, so this routine 886 ** becomes a no-op. 887 */ 888 static void whereLikeOptimizationStringFixup( 889 Vdbe *v, /* prepared statement under construction */ 890 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 891 WhereTerm *pTerm /* The upper or lower bound just coded */ 892 ){ 893 if( pTerm->wtFlags & TERM_LIKEOPT ){ 894 VdbeOp *pOp; 895 assert( pLevel->iLikeRepCntr>0 ); 896 pOp = sqlite3VdbeGetLastOp(v); 897 assert( pOp!=0 ); 898 assert( pOp->opcode==OP_String8 899 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 900 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ 901 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ 902 } 903 } 904 #else 905 # define whereLikeOptimizationStringFixup(A,B,C) 906 #endif 907 908 #ifdef SQLITE_ENABLE_CURSOR_HINTS 909 /* 910 ** Information is passed from codeCursorHint() down to individual nodes of 911 ** the expression tree (by sqlite3WalkExpr()) using an instance of this 912 ** structure. 913 */ 914 struct CCurHint { 915 int iTabCur; /* Cursor for the main table */ 916 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ 917 Index *pIdx; /* The index used to access the table */ 918 }; 919 920 /* 921 ** This function is called for every node of an expression that is a candidate 922 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference 923 ** the table CCurHint.iTabCur, verify that the same column can be 924 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. 925 */ 926 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ 927 struct CCurHint *pHint = pWalker->u.pCCurHint; 928 assert( pHint->pIdx!=0 ); 929 if( pExpr->op==TK_COLUMN 930 && pExpr->iTable==pHint->iTabCur 931 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0 932 ){ 933 pWalker->eCode = 1; 934 } 935 return WRC_Continue; 936 } 937 938 /* 939 ** Test whether or not expression pExpr, which was part of a WHERE clause, 940 ** should be included in the cursor-hint for a table that is on the rhs 941 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the 942 ** expression is not suitable. 943 ** 944 ** An expression is unsuitable if it might evaluate to non NULL even if 945 ** a TK_COLUMN node that does affect the value of the expression is set 946 ** to NULL. For example: 947 ** 948 ** col IS NULL 949 ** col IS NOT NULL 950 ** coalesce(col, 1) 951 ** CASE WHEN col THEN 0 ELSE 1 END 952 */ 953 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ 954 if( pExpr->op==TK_IS 955 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT 956 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE 957 ){ 958 pWalker->eCode = 1; 959 }else if( pExpr->op==TK_FUNCTION ){ 960 int d1; 961 char d2[4]; 962 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ 963 pWalker->eCode = 1; 964 } 965 } 966 967 return WRC_Continue; 968 } 969 970 971 /* 972 ** This function is called on every node of an expression tree used as an 973 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN 974 ** that accesses any table other than the one identified by 975 ** CCurHint.iTabCur, then do the following: 976 ** 977 ** 1) allocate a register and code an OP_Column instruction to read 978 ** the specified column into the new register, and 979 ** 980 ** 2) transform the expression node to a TK_REGISTER node that reads 981 ** from the newly populated register. 982 ** 983 ** Also, if the node is a TK_COLUMN that does access the table idenified 984 ** by pCCurHint.iTabCur, and an index is being used (which we will 985 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into 986 ** an access of the index rather than the original table. 987 */ 988 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ 989 int rc = WRC_Continue; 990 struct CCurHint *pHint = pWalker->u.pCCurHint; 991 if( pExpr->op==TK_COLUMN ){ 992 if( pExpr->iTable!=pHint->iTabCur ){ 993 int reg = ++pWalker->pParse->nMem; /* Register for column value */ 994 sqlite3ExprCode(pWalker->pParse, pExpr, reg); 995 pExpr->op = TK_REGISTER; 996 pExpr->iTable = reg; 997 }else if( pHint->pIdx!=0 ){ 998 pExpr->iTable = pHint->iIdxCur; 999 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn); 1000 assert( pExpr->iColumn>=0 ); 1001 } 1002 }else if( pExpr->op==TK_AGG_FUNCTION ){ 1003 /* An aggregate function in the WHERE clause of a query means this must 1004 ** be a correlated sub-query, and expression pExpr is an aggregate from 1005 ** the parent context. Do not walk the function arguments in this case. 1006 ** 1007 ** todo: It should be possible to replace this node with a TK_REGISTER 1008 ** expression, as the result of the expression must be stored in a 1009 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ 1010 rc = WRC_Prune; 1011 } 1012 return rc; 1013 } 1014 1015 /* 1016 ** Insert an OP_CursorHint instruction if it is appropriate to do so. 1017 */ 1018 static void codeCursorHint( 1019 SrcItem *pTabItem, /* FROM clause item */ 1020 WhereInfo *pWInfo, /* The where clause */ 1021 WhereLevel *pLevel, /* Which loop to provide hints for */ 1022 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ 1023 ){ 1024 Parse *pParse = pWInfo->pParse; 1025 sqlite3 *db = pParse->db; 1026 Vdbe *v = pParse->pVdbe; 1027 Expr *pExpr = 0; 1028 WhereLoop *pLoop = pLevel->pWLoop; 1029 int iCur; 1030 WhereClause *pWC; 1031 WhereTerm *pTerm; 1032 int i, j; 1033 struct CCurHint sHint; 1034 Walker sWalker; 1035 1036 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; 1037 iCur = pLevel->iTabCur; 1038 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); 1039 sHint.iTabCur = iCur; 1040 sHint.iIdxCur = pLevel->iIdxCur; 1041 sHint.pIdx = pLoop->u.btree.pIndex; 1042 memset(&sWalker, 0, sizeof(sWalker)); 1043 sWalker.pParse = pParse; 1044 sWalker.u.pCCurHint = &sHint; 1045 pWC = &pWInfo->sWC; 1046 for(i=0; i<pWC->nBase; i++){ 1047 pTerm = &pWC->a[i]; 1048 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1049 if( pTerm->prereqAll & pLevel->notReady ) continue; 1050 1051 /* Any terms specified as part of the ON(...) clause for any LEFT 1052 ** JOIN for which the current table is not the rhs are omitted 1053 ** from the cursor-hint. 1054 ** 1055 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms 1056 ** that were specified as part of the WHERE clause must be excluded. 1057 ** This is to address the following: 1058 ** 1059 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; 1060 ** 1061 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its 1062 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is 1063 ** pushed down to the cursor, this row is filtered out, causing 1064 ** SQLite to synthesize a row of NULL values. Which does match the 1065 ** WHERE clause, and so the query returns a row. Which is incorrect. 1066 ** 1067 ** For the same reason, WHERE terms such as: 1068 ** 1069 ** WHERE 1 = (t2.c IS NULL) 1070 ** 1071 ** are also excluded. See codeCursorHintIsOrFunction() for details. 1072 */ 1073 if( pTabItem->fg.jointype & JT_LEFT ){ 1074 Expr *pExpr = pTerm->pExpr; 1075 if( !ExprHasProperty(pExpr, EP_OuterON) 1076 || pExpr->w.iJoin!=pTabItem->iCursor 1077 ){ 1078 sWalker.eCode = 0; 1079 sWalker.xExprCallback = codeCursorHintIsOrFunction; 1080 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1081 if( sWalker.eCode ) continue; 1082 } 1083 }else{ 1084 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue; 1085 } 1086 1087 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize 1088 ** the cursor. These terms are not needed as hints for a pure range 1089 ** scan (that has no == terms) so omit them. */ 1090 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ 1091 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} 1092 if( j<pLoop->nLTerm ) continue; 1093 } 1094 1095 /* No subqueries or non-deterministic functions allowed */ 1096 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; 1097 1098 /* For an index scan, make sure referenced columns are actually in 1099 ** the index. */ 1100 if( sHint.pIdx!=0 ){ 1101 sWalker.eCode = 0; 1102 sWalker.xExprCallback = codeCursorHintCheckExpr; 1103 sqlite3WalkExpr(&sWalker, pTerm->pExpr); 1104 if( sWalker.eCode ) continue; 1105 } 1106 1107 /* If we survive all prior tests, that means this term is worth hinting */ 1108 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); 1109 } 1110 if( pExpr!=0 ){ 1111 sWalker.xExprCallback = codeCursorHintFixExpr; 1112 sqlite3WalkExpr(&sWalker, pExpr); 1113 sqlite3VdbeAddOp4(v, OP_CursorHint, 1114 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, 1115 (const char*)pExpr, P4_EXPR); 1116 } 1117 } 1118 #else 1119 # define codeCursorHint(A,B,C,D) /* No-op */ 1120 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 1121 1122 /* 1123 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains 1124 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This 1125 ** function generates code to do a deferred seek of cursor iCur to the 1126 ** rowid stored in register iRowid. 1127 ** 1128 ** Normally, this is just: 1129 ** 1130 ** OP_DeferredSeek $iCur $iRowid 1131 ** 1132 ** Which causes a seek on $iCur to the row with rowid $iRowid. 1133 ** 1134 ** However, if the scan currently being coded is a branch of an OR-loop and 1135 ** the statement currently being coded is a SELECT, then additional information 1136 ** is added that might allow OP_Column to omit the seek and instead do its 1137 ** lookup on the index, thus avoiding an expensive seek operation. To 1138 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur 1139 ** and P4 is set to an array of integers containing one entry for each column 1140 ** in the table. For each table column, if the column is the i'th 1141 ** column of the index, then the corresponding array entry is set to (i+1). 1142 ** If the column does not appear in the index at all, the array entry is set 1143 ** to 0. The OP_Column opcode can check this array to see if the column it 1144 ** wants is in the index and if it is, it will substitute the index cursor 1145 ** and column number and continue with those new values, rather than seeking 1146 ** the table cursor. 1147 */ 1148 static void codeDeferredSeek( 1149 WhereInfo *pWInfo, /* Where clause context */ 1150 Index *pIdx, /* Index scan is using */ 1151 int iCur, /* Cursor for IPK b-tree */ 1152 int iIdxCur /* Index cursor */ 1153 ){ 1154 Parse *pParse = pWInfo->pParse; /* Parse context */ 1155 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ 1156 1157 assert( iIdxCur>0 ); 1158 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); 1159 1160 pWInfo->bDeferredSeek = 1; 1161 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); 1162 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) 1163 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) 1164 ){ 1165 int i; 1166 Table *pTab = pIdx->pTable; 1167 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1)); 1168 if( ai ){ 1169 ai[0] = pTab->nCol; 1170 for(i=0; i<pIdx->nColumn-1; i++){ 1171 int x1, x2; 1172 assert( pIdx->aiColumn[i]<pTab->nCol ); 1173 x1 = pIdx->aiColumn[i]; 1174 x2 = sqlite3TableColumnToStorage(pTab, x1); 1175 testcase( x1!=x2 ); 1176 if( x1>=0 ) ai[x2+1] = i+1; 1177 } 1178 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); 1179 } 1180 } 1181 } 1182 1183 /* 1184 ** If the expression passed as the second argument is a vector, generate 1185 ** code to write the first nReg elements of the vector into an array 1186 ** of registers starting with iReg. 1187 ** 1188 ** If the expression is not a vector, then nReg must be passed 1. In 1189 ** this case, generate code to evaluate the expression and leave the 1190 ** result in register iReg. 1191 */ 1192 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ 1193 assert( nReg>0 ); 1194 if( p && sqlite3ExprIsVector(p) ){ 1195 #ifndef SQLITE_OMIT_SUBQUERY 1196 if( ExprUseXSelect(p) ){ 1197 Vdbe *v = pParse->pVdbe; 1198 int iSelect; 1199 assert( p->op==TK_SELECT ); 1200 iSelect = sqlite3CodeSubselect(pParse, p); 1201 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); 1202 }else 1203 #endif 1204 { 1205 int i; 1206 const ExprList *pList; 1207 assert( ExprUseXList(p) ); 1208 pList = p->x.pList; 1209 assert( nReg<=pList->nExpr ); 1210 for(i=0; i<nReg; i++){ 1211 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); 1212 } 1213 } 1214 }else{ 1215 assert( nReg==1 || pParse->nErr ); 1216 sqlite3ExprCode(pParse, p, iReg); 1217 } 1218 } 1219 1220 /* 1221 ** The pTruth expression is always true because it is the WHERE clause 1222 ** a partial index that is driving a query loop. Look through all of the 1223 ** WHERE clause terms on the query, and if any of those terms must be 1224 ** true because pTruth is true, then mark those WHERE clause terms as 1225 ** coded. 1226 */ 1227 static void whereApplyPartialIndexConstraints( 1228 Expr *pTruth, 1229 int iTabCur, 1230 WhereClause *pWC 1231 ){ 1232 int i; 1233 WhereTerm *pTerm; 1234 while( pTruth->op==TK_AND ){ 1235 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC); 1236 pTruth = pTruth->pRight; 1237 } 1238 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1239 Expr *pExpr; 1240 if( pTerm->wtFlags & TERM_CODED ) continue; 1241 pExpr = pTerm->pExpr; 1242 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){ 1243 pTerm->wtFlags |= TERM_CODED; 1244 } 1245 } 1246 } 1247 1248 /* 1249 ** This routine is called right after An OP_Filter has been generated and 1250 ** before the corresponding index search has been performed. This routine 1251 ** checks to see if there are additional Bloom filters in inner loops that 1252 ** can be checked prior to doing the index lookup. If there are available 1253 ** inner-loop Bloom filters, then evaluate those filters now, before the 1254 ** index lookup. The idea is that a Bloom filter check is way faster than 1255 ** an index lookup, and the Bloom filter might return false, meaning that 1256 ** the index lookup can be skipped. 1257 ** 1258 ** We know that an inner loop uses a Bloom filter because it has the 1259 ** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked, 1260 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter 1261 ** from being checked a second time when the inner loop is evaluated. 1262 */ 1263 static SQLITE_NOINLINE void filterPullDown( 1264 Parse *pParse, /* Parsing context */ 1265 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1266 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1267 int addrNxt, /* Jump here to bypass inner loops */ 1268 Bitmask notReady /* Loops that are not ready */ 1269 ){ 1270 while( ++iLevel < pWInfo->nLevel ){ 1271 WhereLevel *pLevel = &pWInfo->a[iLevel]; 1272 WhereLoop *pLoop = pLevel->pWLoop; 1273 if( pLevel->regFilter==0 ) continue; 1274 if( pLevel->pWLoop->nSkip ) continue; 1275 /* ,--- Because sqlite3ConstructBloomFilter() has will not have set 1276 ** vvvvv--' pLevel->regFilter if this were true. */ 1277 if( NEVER(pLoop->prereq & notReady) ) continue; 1278 assert( pLevel->addrBrk==0 ); 1279 pLevel->addrBrk = addrNxt; 1280 if( pLoop->wsFlags & WHERE_IPK ){ 1281 WhereTerm *pTerm = pLoop->aLTerm[0]; 1282 int regRowid; 1283 assert( pTerm!=0 ); 1284 assert( pTerm->pExpr!=0 ); 1285 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1286 regRowid = sqlite3GetTempReg(pParse); 1287 regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid); 1288 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MustBeInt, regRowid, addrNxt); 1289 VdbeCoverage(pParse->pVdbe); 1290 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1291 addrNxt, regRowid, 1); 1292 VdbeCoverage(pParse->pVdbe); 1293 }else{ 1294 u16 nEq = pLoop->u.btree.nEq; 1295 int r1; 1296 char *zStartAff; 1297 1298 assert( pLoop->wsFlags & WHERE_INDEXED ); 1299 assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 ); 1300 r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff); 1301 codeApplyAffinity(pParse, r1, nEq, zStartAff); 1302 sqlite3DbFree(pParse->db, zStartAff); 1303 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter, 1304 addrNxt, r1, nEq); 1305 VdbeCoverage(pParse->pVdbe); 1306 } 1307 pLevel->regFilter = 0; 1308 pLevel->addrBrk = 0; 1309 } 1310 } 1311 1312 /* 1313 ** Generate code for the start of the iLevel-th loop in the WHERE clause 1314 ** implementation described by pWInfo. 1315 */ 1316 Bitmask sqlite3WhereCodeOneLoopStart( 1317 Parse *pParse, /* Parsing context */ 1318 Vdbe *v, /* Prepared statement under construction */ 1319 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 1320 int iLevel, /* Which level of pWInfo->a[] should be coded */ 1321 WhereLevel *pLevel, /* The current level pointer */ 1322 Bitmask notReady /* Which tables are currently available */ 1323 ){ 1324 int j, k; /* Loop counters */ 1325 int iCur; /* The VDBE cursor for the table */ 1326 int addrNxt; /* Where to jump to continue with the next IN case */ 1327 int bRev; /* True if we need to scan in reverse order */ 1328 WhereLoop *pLoop; /* The WhereLoop object being coded */ 1329 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 1330 WhereTerm *pTerm; /* A WHERE clause term */ 1331 sqlite3 *db; /* Database connection */ 1332 SrcItem *pTabItem; /* FROM clause term being coded */ 1333 int addrBrk; /* Jump here to break out of the loop */ 1334 int addrHalt; /* addrBrk for the outermost loop */ 1335 int addrCont; /* Jump here to continue with next cycle */ 1336 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 1337 int iReleaseReg = 0; /* Temp register to free before returning */ 1338 Index *pIdx = 0; /* Index used by loop (if any) */ 1339 int iLoop; /* Iteration of constraint generator loop */ 1340 1341 pWC = &pWInfo->sWC; 1342 db = pParse->db; 1343 pLoop = pLevel->pWLoop; 1344 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1345 iCur = pTabItem->iCursor; 1346 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 1347 bRev = (pWInfo->revMask>>iLevel)&1; 1348 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 1349 #if WHERETRACE_ENABLED /* 0x20800 */ 1350 if( sqlite3WhereTrace & 0x800 ){ 1351 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n", 1352 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom); 1353 sqlite3WhereLoopPrint(pLoop, pWC); 1354 } 1355 if( sqlite3WhereTrace & 0x20000 ){ 1356 if( iLevel==0 ){ 1357 sqlite3DebugPrintf("WHERE clause being coded:\n"); 1358 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0); 1359 } 1360 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n"); 1361 sqlite3WhereClausePrint(pWC); 1362 } 1363 #endif 1364 1365 /* Create labels for the "break" and "continue" instructions 1366 ** for the current loop. Jump to addrBrk to break out of a loop. 1367 ** Jump to cont to go immediately to the next iteration of the 1368 ** loop. 1369 ** 1370 ** When there is an IN operator, we also have a "addrNxt" label that 1371 ** means to continue with the next IN value combination. When 1372 ** there are no IN operators in the constraints, the "addrNxt" label 1373 ** is the same as "addrBrk". 1374 */ 1375 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse); 1376 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse); 1377 1378 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1379 ** initialize a memory cell that records if this table matches any 1380 ** row of the left table of the join. 1381 */ 1382 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN)) 1383 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0 1384 ); 1385 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ 1386 pLevel->iLeftJoin = ++pParse->nMem; 1387 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 1388 VdbeComment((v, "init LEFT JOIN no-match flag")); 1389 } 1390 1391 /* Compute a safe address to jump to if we discover that the table for 1392 ** this loop is empty and can never contribute content. */ 1393 for(j=iLevel; j>0; j--){ 1394 if( pWInfo->a[j].iLeftJoin ) break; 1395 if( pWInfo->a[j].pRJ ) break; 1396 } 1397 addrHalt = pWInfo->a[j].addrBrk; 1398 1399 /* Special case of a FROM clause subquery implemented as a co-routine */ 1400 if( pTabItem->fg.viaCoroutine ){ 1401 int regYield = pTabItem->regReturn; 1402 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 1403 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 1404 VdbeCoverage(v); 1405 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 1406 pLevel->op = OP_Goto; 1407 }else 1408 1409 #ifndef SQLITE_OMIT_VIRTUALTABLE 1410 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 1411 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 1412 ** to access the data. 1413 */ 1414 int iReg; /* P3 Value for OP_VFilter */ 1415 int addrNotFound; 1416 int nConstraint = pLoop->nLTerm; 1417 1418 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 1419 addrNotFound = pLevel->addrBrk; 1420 for(j=0; j<nConstraint; j++){ 1421 int iTarget = iReg+j+2; 1422 pTerm = pLoop->aLTerm[j]; 1423 if( NEVER(pTerm==0) ) continue; 1424 if( pTerm->eOperator & WO_IN ){ 1425 if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){ 1426 int iTab = pParse->nTab++; 1427 int iCache = ++pParse->nMem; 1428 sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab); 1429 sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache); 1430 }else{ 1431 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 1432 addrNotFound = pLevel->addrNxt; 1433 } 1434 }else{ 1435 Expr *pRight = pTerm->pExpr->pRight; 1436 codeExprOrVector(pParse, pRight, iTarget, 1); 1437 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET 1438 && pLoop->u.vtab.bOmitOffset 1439 ){ 1440 assert( pTerm->eOperator==WO_AUX ); 1441 assert( pWInfo->pSelect!=0 ); 1442 assert( pWInfo->pSelect->iOffset>0 ); 1443 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pSelect->iOffset); 1444 VdbeComment((v,"Zero OFFSET counter")); 1445 } 1446 } 1447 } 1448 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 1449 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 1450 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 1451 pLoop->u.vtab.idxStr, 1452 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); 1453 VdbeCoverage(v); 1454 pLoop->u.vtab.needFree = 0; 1455 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed 1456 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */ 1457 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0; 1458 pLevel->p1 = iCur; 1459 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; 1460 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1461 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 1462 1463 for(j=0; j<nConstraint; j++){ 1464 pTerm = pLoop->aLTerm[j]; 1465 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ 1466 disableTerm(pLevel, pTerm); 1467 continue; 1468 } 1469 if( (pTerm->eOperator & WO_IN)!=0 1470 && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0 1471 && !db->mallocFailed 1472 ){ 1473 Expr *pCompare; /* The comparison operator */ 1474 Expr *pRight; /* RHS of the comparison */ 1475 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ 1476 int iIn; /* IN loop corresponding to the j-th constraint */ 1477 1478 /* Reload the constraint value into reg[iReg+j+2]. The same value 1479 ** was loaded into the same register prior to the OP_VFilter, but 1480 ** the xFilter implementation might have changed the datatype or 1481 ** encoding of the value in the register, so it *must* be reloaded. 1482 */ 1483 for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){ 1484 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop); 1485 if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2) 1486 || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2) 1487 ){ 1488 testcase( pOp->opcode==OP_Rowid ); 1489 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); 1490 break; 1491 } 1492 } 1493 1494 /* Generate code that will continue to the next row if 1495 ** the IN constraint is not satisfied 1496 */ 1497 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); 1498 if( !db->mallocFailed ){ 1499 int iFld = pTerm->u.x.iField; 1500 Expr *pLeft = pTerm->pExpr->pLeft; 1501 assert( pLeft!=0 ); 1502 if( iFld>0 ){ 1503 assert( pLeft->op==TK_VECTOR ); 1504 assert( ExprUseXList(pLeft) ); 1505 assert( iFld<=pLeft->x.pList->nExpr ); 1506 pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr; 1507 }else{ 1508 pCompare->pLeft = pLeft; 1509 } 1510 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); 1511 if( pRight ){ 1512 pRight->iTable = iReg+j+2; 1513 sqlite3ExprIfFalse( 1514 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL 1515 ); 1516 } 1517 pCompare->pLeft = 0; 1518 } 1519 sqlite3ExprDelete(db, pCompare); 1520 } 1521 } 1522 1523 /* These registers need to be preserved in case there is an IN operator 1524 ** loop. So we could deallocate the registers here (and potentially 1525 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems 1526 ** simpler and safer to simply not reuse the registers. 1527 ** 1528 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 1529 */ 1530 }else 1531 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1532 1533 if( (pLoop->wsFlags & WHERE_IPK)!=0 1534 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 1535 ){ 1536 /* Case 2: We can directly reference a single row using an 1537 ** equality comparison against the ROWID field. Or 1538 ** we reference multiple rows using a "rowid IN (...)" 1539 ** construct. 1540 */ 1541 assert( pLoop->u.btree.nEq==1 ); 1542 pTerm = pLoop->aLTerm[0]; 1543 assert( pTerm!=0 ); 1544 assert( pTerm->pExpr!=0 ); 1545 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 1546 iReleaseReg = ++pParse->nMem; 1547 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 1548 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 1549 addrNxt = pLevel->addrNxt; 1550 if( pLevel->regFilter ){ 1551 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); 1552 VdbeCoverage(v); 1553 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 1554 iRowidReg, 1); 1555 VdbeCoverage(v); 1556 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 1557 } 1558 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); 1559 VdbeCoverage(v); 1560 pLevel->op = OP_Noop; 1561 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 1562 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 1563 ){ 1564 /* Case 3: We have an inequality comparison against the ROWID field. 1565 */ 1566 int testOp = OP_Noop; 1567 int start; 1568 int memEndValue = 0; 1569 WhereTerm *pStart, *pEnd; 1570 1571 j = 0; 1572 pStart = pEnd = 0; 1573 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 1574 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 1575 assert( pStart!=0 || pEnd!=0 ); 1576 if( bRev ){ 1577 pTerm = pStart; 1578 pStart = pEnd; 1579 pEnd = pTerm; 1580 } 1581 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); 1582 if( pStart ){ 1583 Expr *pX; /* The expression that defines the start bound */ 1584 int r1, rTemp; /* Registers for holding the start boundary */ 1585 int op; /* Cursor seek operation */ 1586 1587 /* The following constant maps TK_xx codes into corresponding 1588 ** seek opcodes. It depends on a particular ordering of TK_xx 1589 */ 1590 const u8 aMoveOp[] = { 1591 /* TK_GT */ OP_SeekGT, 1592 /* TK_LE */ OP_SeekLE, 1593 /* TK_LT */ OP_SeekLT, 1594 /* TK_GE */ OP_SeekGE 1595 }; 1596 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 1597 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 1598 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 1599 1600 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 1601 testcase( pStart->wtFlags & TERM_VIRTUAL ); 1602 pX = pStart->pExpr; 1603 assert( pX!=0 ); 1604 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 1605 if( sqlite3ExprIsVector(pX->pRight) ){ 1606 r1 = rTemp = sqlite3GetTempReg(pParse); 1607 codeExprOrVector(pParse, pX->pRight, r1, 1); 1608 testcase( pX->op==TK_GT ); 1609 testcase( pX->op==TK_GE ); 1610 testcase( pX->op==TK_LT ); 1611 testcase( pX->op==TK_LE ); 1612 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1]; 1613 assert( pX->op!=TK_GT || op==OP_SeekGE ); 1614 assert( pX->op!=TK_GE || op==OP_SeekGE ); 1615 assert( pX->op!=TK_LT || op==OP_SeekLE ); 1616 assert( pX->op!=TK_LE || op==OP_SeekLE ); 1617 }else{ 1618 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 1619 disableTerm(pLevel, pStart); 1620 op = aMoveOp[(pX->op - TK_GT)]; 1621 } 1622 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); 1623 VdbeComment((v, "pk")); 1624 VdbeCoverageIf(v, pX->op==TK_GT); 1625 VdbeCoverageIf(v, pX->op==TK_LE); 1626 VdbeCoverageIf(v, pX->op==TK_LT); 1627 VdbeCoverageIf(v, pX->op==TK_GE); 1628 sqlite3ReleaseTempReg(pParse, rTemp); 1629 }else{ 1630 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt); 1631 VdbeCoverageIf(v, bRev==0); 1632 VdbeCoverageIf(v, bRev!=0); 1633 } 1634 if( pEnd ){ 1635 Expr *pX; 1636 pX = pEnd->pExpr; 1637 assert( pX!=0 ); 1638 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 1639 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 1640 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 1641 memEndValue = ++pParse->nMem; 1642 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); 1643 if( 0==sqlite3ExprIsVector(pX->pRight) 1644 && (pX->op==TK_LT || pX->op==TK_GT) 1645 ){ 1646 testOp = bRev ? OP_Le : OP_Ge; 1647 }else{ 1648 testOp = bRev ? OP_Lt : OP_Gt; 1649 } 1650 if( 0==sqlite3ExprIsVector(pX->pRight) ){ 1651 disableTerm(pLevel, pEnd); 1652 } 1653 } 1654 start = sqlite3VdbeCurrentAddr(v); 1655 pLevel->op = bRev ? OP_Prev : OP_Next; 1656 pLevel->p1 = iCur; 1657 pLevel->p2 = start; 1658 assert( pLevel->p5==0 ); 1659 if( testOp!=OP_Noop ){ 1660 iRowidReg = ++pParse->nMem; 1661 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 1662 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 1663 VdbeCoverageIf(v, testOp==OP_Le); 1664 VdbeCoverageIf(v, testOp==OP_Lt); 1665 VdbeCoverageIf(v, testOp==OP_Ge); 1666 VdbeCoverageIf(v, testOp==OP_Gt); 1667 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 1668 } 1669 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 1670 /* Case 4: A scan using an index. 1671 ** 1672 ** The WHERE clause may contain zero or more equality 1673 ** terms ("==" or "IN" operators) that refer to the N 1674 ** left-most columns of the index. It may also contain 1675 ** inequality constraints (>, <, >= or <=) on the indexed 1676 ** column that immediately follows the N equalities. Only 1677 ** the right-most column can be an inequality - the rest must 1678 ** use the "==" and "IN" operators. For example, if the 1679 ** index is on (x,y,z), then the following clauses are all 1680 ** optimized: 1681 ** 1682 ** x=5 1683 ** x=5 AND y=10 1684 ** x=5 AND y<10 1685 ** x=5 AND y>5 AND y<10 1686 ** x=5 AND y=5 AND z<=10 1687 ** 1688 ** The z<10 term of the following cannot be used, only 1689 ** the x=5 term: 1690 ** 1691 ** x=5 AND z<10 1692 ** 1693 ** N may be zero if there are inequality constraints. 1694 ** If there are no inequality constraints, then N is at 1695 ** least one. 1696 ** 1697 ** This case is also used when there are no WHERE clause 1698 ** constraints but an index is selected anyway, in order 1699 ** to force the output order to conform to an ORDER BY. 1700 */ 1701 static const u8 aStartOp[] = { 1702 0, 1703 0, 1704 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 1705 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 1706 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 1707 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 1708 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 1709 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 1710 }; 1711 static const u8 aEndOp[] = { 1712 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 1713 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 1714 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 1715 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 1716 }; 1717 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 1718 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ 1719 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ 1720 int regBase; /* Base register holding constraint values */ 1721 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 1722 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 1723 int startEq; /* True if range start uses ==, >= or <= */ 1724 int endEq; /* True if range end uses ==, >= or <= */ 1725 int start_constraints; /* Start of range is constrained */ 1726 int nConstraint; /* Number of constraint terms */ 1727 int iIdxCur; /* The VDBE cursor for the index */ 1728 int nExtraReg = 0; /* Number of extra registers needed */ 1729 int op; /* Instruction opcode */ 1730 char *zStartAff; /* Affinity for start of range constraint */ 1731 char *zEndAff = 0; /* Affinity for end of range constraint */ 1732 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 1733 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 1734 int omitTable; /* True if we use the index only */ 1735 int regBignull = 0; /* big-null flag register */ 1736 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */ 1737 1738 pIdx = pLoop->u.btree.pIndex; 1739 iIdxCur = pLevel->iIdxCur; 1740 assert( nEq>=pLoop->nSkip ); 1741 1742 /* Find any inequality constraint terms for the start and end 1743 ** of the range. 1744 */ 1745 j = nEq; 1746 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 1747 pRangeStart = pLoop->aLTerm[j++]; 1748 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); 1749 /* Like optimization range constraints always occur in pairs */ 1750 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 1751 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 1752 } 1753 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 1754 pRangeEnd = pLoop->aLTerm[j++]; 1755 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); 1756 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1757 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 1758 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 1759 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 1760 pLevel->iLikeRepCntr = (u32)++pParse->nMem; 1761 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); 1762 VdbeComment((v, "LIKE loop counter")); 1763 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 1764 /* iLikeRepCntr actually stores 2x the counter register number. The 1765 ** bottom bit indicates whether the search order is ASC or DESC. */ 1766 testcase( bRev ); 1767 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 1768 assert( (bRev & ~1)==0 ); 1769 pLevel->iLikeRepCntr <<=1; 1770 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); 1771 } 1772 #endif 1773 if( pRangeStart==0 ){ 1774 j = pIdx->aiColumn[nEq]; 1775 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ 1776 bSeekPastNull = 1; 1777 } 1778 } 1779 } 1780 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 1781 1782 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses 1783 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS 1784 ** FIRST). In both cases separate ordered scans are made of those 1785 ** index entries for which the column is null and for those for which 1786 ** it is not. For an ASC sort, the non-NULL entries are scanned first. 1787 ** For DESC, NULL entries are scanned first. 1788 */ 1789 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0 1790 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0 1791 ){ 1792 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 ); 1793 assert( pRangeEnd==0 && pRangeStart==0 ); 1794 testcase( pLoop->nSkip>0 ); 1795 nExtraReg = 1; 1796 bSeekPastNull = 1; 1797 pLevel->regBignull = regBignull = ++pParse->nMem; 1798 if( pLevel->iLeftJoin ){ 1799 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull); 1800 } 1801 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse); 1802 } 1803 1804 /* If we are doing a reverse order scan on an ascending index, or 1805 ** a forward order scan on a descending index, interchange the 1806 ** start and end terms (pRangeStart and pRangeEnd). 1807 */ 1808 if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){ 1809 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 1810 SWAP(u8, bSeekPastNull, bStopAtNull); 1811 SWAP(u8, nBtm, nTop); 1812 } 1813 1814 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){ 1815 /* In case OP_SeekScan is used, ensure that the index cursor does not 1816 ** point to a valid row for the first iteration of this loop. */ 1817 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 1818 } 1819 1820 /* Generate code to evaluate all constraint terms using == or IN 1821 ** and store the values of those terms in an array of registers 1822 ** starting at regBase. 1823 */ 1824 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); 1825 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 1826 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 1827 if( zStartAff && nTop ){ 1828 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); 1829 } 1830 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt); 1831 1832 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 1833 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 1834 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 1835 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 1836 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 1837 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 1838 start_constraints = pRangeStart || nEq>0; 1839 1840 /* Seek the index cursor to the start of the range. */ 1841 nConstraint = nEq; 1842 if( pRangeStart ){ 1843 Expr *pRight = pRangeStart->pExpr->pRight; 1844 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); 1845 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 1846 if( (pRangeStart->wtFlags & TERM_VNULL)==0 1847 && sqlite3ExprCanBeNull(pRight) 1848 ){ 1849 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1850 VdbeCoverage(v); 1851 } 1852 if( zStartAff ){ 1853 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); 1854 } 1855 nConstraint += nBtm; 1856 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 1857 if( sqlite3ExprIsVector(pRight)==0 ){ 1858 disableTerm(pLevel, pRangeStart); 1859 }else{ 1860 startEq = 1; 1861 } 1862 bSeekPastNull = 0; 1863 }else if( bSeekPastNull ){ 1864 startEq = 0; 1865 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1866 start_constraints = 1; 1867 nConstraint++; 1868 }else if( regBignull ){ 1869 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1870 start_constraints = 1; 1871 nConstraint++; 1872 } 1873 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 1874 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ 1875 /* The skip-scan logic inside the call to codeAllEqualityConstraints() 1876 ** above has already left the cursor sitting on the correct row, 1877 ** so no further seeking is needed */ 1878 }else{ 1879 if( regBignull ){ 1880 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull); 1881 VdbeComment((v, "NULL-scan pass ctr")); 1882 } 1883 if( pLevel->regFilter ){ 1884 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt, 1885 regBase, nEq); 1886 VdbeCoverage(v); 1887 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady); 1888 } 1889 1890 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 1891 assert( op!=0 ); 1892 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){ 1893 assert( regBignull==0 ); 1894 /* TUNING: The OP_SeekScan opcode seeks to reduce the number 1895 ** of expensive seek operations by replacing a single seek with 1896 ** 1 or more step operations. The question is, how many steps 1897 ** should we try before giving up and going with a seek. The cost 1898 ** of a seek is proportional to the logarithm of the of the number 1899 ** of entries in the tree, so basing the number of steps to try 1900 ** on the estimated number of rows in the btree seems like a good 1901 ** guess. */ 1902 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan, 1903 (pIdx->aiRowLogEst[0]+9)/10); 1904 if( pRangeStart ){ 1905 sqlite3VdbeChangeP5(v, 1); 1906 sqlite3VdbeChangeP2(v, addrSeekScan, sqlite3VdbeCurrentAddr(v)+1); 1907 addrSeekScan = 0; 1908 } 1909 VdbeCoverage(v); 1910 } 1911 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 1912 VdbeCoverage(v); 1913 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1914 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1915 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 1916 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1917 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1918 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 1919 1920 assert( bSeekPastNull==0 || bStopAtNull==0 ); 1921 if( regBignull ){ 1922 assert( bSeekPastNull==1 || bStopAtNull==1 ); 1923 assert( bSeekPastNull==!bStopAtNull ); 1924 assert( bStopAtNull==startEq ); 1925 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2); 1926 op = aStartOp[(nConstraint>1)*4 + 2 + bRev]; 1927 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 1928 nConstraint-startEq); 1929 VdbeCoverage(v); 1930 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 1931 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 1932 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 1933 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 1934 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE); 1935 } 1936 } 1937 1938 /* Load the value for the inequality constraint at the end of the 1939 ** range (if any). 1940 */ 1941 nConstraint = nEq; 1942 assert( pLevel->p2==0 ); 1943 if( pRangeEnd ){ 1944 Expr *pRight = pRangeEnd->pExpr->pRight; 1945 if( addrSeekScan ){ 1946 /* For a seek-scan that has a range on the lowest term of the index, 1947 ** we have to make the top of the loop be code that sets the end 1948 ** condition of the range. Otherwise, the OP_SeekScan might jump 1949 ** over that initialization, leaving the range-end value set to the 1950 ** range-start value, resulting in a wrong answer. 1951 ** See ticket 5981a8c041a3c2f3 (2021-11-02). 1952 */ 1953 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1954 } 1955 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); 1956 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 1957 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 1958 && sqlite3ExprCanBeNull(pRight) 1959 ){ 1960 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 1961 VdbeCoverage(v); 1962 } 1963 if( zEndAff ){ 1964 updateRangeAffinityStr(pRight, nTop, zEndAff); 1965 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); 1966 }else{ 1967 assert( pParse->db->mallocFailed ); 1968 } 1969 nConstraint += nTop; 1970 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 1971 1972 if( sqlite3ExprIsVector(pRight)==0 ){ 1973 disableTerm(pLevel, pRangeEnd); 1974 }else{ 1975 endEq = 1; 1976 } 1977 }else if( bStopAtNull ){ 1978 if( regBignull==0 ){ 1979 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 1980 endEq = 0; 1981 } 1982 nConstraint++; 1983 } 1984 if( zStartAff ) sqlite3DbNNFreeNN(db, zStartAff); 1985 if( zEndAff ) sqlite3DbNNFreeNN(db, zEndAff); 1986 1987 /* Top of the loop body */ 1988 if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v); 1989 1990 /* Check if the index cursor is past the end of the range. */ 1991 if( nConstraint ){ 1992 if( regBignull ){ 1993 /* Except, skip the end-of-range check while doing the NULL-scan */ 1994 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3); 1995 VdbeComment((v, "If NULL-scan 2nd pass")); 1996 VdbeCoverage(v); 1997 } 1998 op = aEndOp[bRev*2 + endEq]; 1999 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 2000 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2001 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2002 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2003 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2004 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan); 2005 } 2006 if( regBignull ){ 2007 /* During a NULL-scan, check to see if we have reached the end of 2008 ** the NULLs */ 2009 assert( bSeekPastNull==!bStopAtNull ); 2010 assert( bSeekPastNull+bStopAtNull==1 ); 2011 assert( nConstraint+bSeekPastNull>0 ); 2012 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2); 2013 VdbeComment((v, "If NULL-scan 1st pass")); 2014 VdbeCoverage(v); 2015 op = aEndOp[bRev*2 + bSeekPastNull]; 2016 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, 2017 nConstraint+bSeekPastNull); 2018 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 2019 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 2020 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 2021 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 2022 } 2023 2024 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){ 2025 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq); 2026 } 2027 2028 /* Seek the table cursor, if required */ 2029 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 2030 && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0; 2031 if( omitTable ){ 2032 /* pIdx is a covering index. No need to access the main table. */ 2033 }else if( HasRowid(pIdx->pTable) ){ 2034 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); 2035 }else if( iCur!=iIdxCur ){ 2036 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 2037 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 2038 for(j=0; j<pPk->nKeyCol; j++){ 2039 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 2040 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 2041 } 2042 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 2043 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 2044 } 2045 2046 if( pLevel->iLeftJoin==0 ){ 2047 /* If a partial index is driving the loop, try to eliminate WHERE clause 2048 ** terms from the query that must be true due to the WHERE clause of 2049 ** the partial index. 2050 ** 2051 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work 2052 ** for a LEFT JOIN. 2053 */ 2054 if( pIdx->pPartIdxWhere ){ 2055 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC); 2056 } 2057 }else{ 2058 testcase( pIdx->pPartIdxWhere ); 2059 /* The following assert() is not a requirement, merely an observation: 2060 ** The OR-optimization doesn't work for the right hand table of 2061 ** a LEFT JOIN: */ 2062 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ); 2063 } 2064 2065 /* Record the instruction used to terminate the loop. */ 2066 if( pLoop->wsFlags & WHERE_ONEROW ){ 2067 pLevel->op = OP_Noop; 2068 }else if( bRev ){ 2069 pLevel->op = OP_Prev; 2070 }else{ 2071 pLevel->op = OP_Next; 2072 } 2073 pLevel->p1 = iIdxCur; 2074 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 2075 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 2076 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2077 }else{ 2078 assert( pLevel->p5==0 ); 2079 } 2080 if( omitTable ) pIdx = 0; 2081 }else 2082 2083 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2084 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 2085 /* Case 5: Two or more separately indexed terms connected by OR 2086 ** 2087 ** Example: 2088 ** 2089 ** CREATE TABLE t1(a,b,c,d); 2090 ** CREATE INDEX i1 ON t1(a); 2091 ** CREATE INDEX i2 ON t1(b); 2092 ** CREATE INDEX i3 ON t1(c); 2093 ** 2094 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2095 ** 2096 ** In the example, there are three indexed terms connected by OR. 2097 ** The top of the loop looks like this: 2098 ** 2099 ** Null 1 # Zero the rowset in reg 1 2100 ** 2101 ** Then, for each indexed term, the following. The arguments to 2102 ** RowSetTest are such that the rowid of the current row is inserted 2103 ** into the RowSet. If it is already present, control skips the 2104 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2105 ** 2106 ** sqlite3WhereBegin(<term>) 2107 ** RowSetTest # Insert rowid into rowset 2108 ** Gosub 2 A 2109 ** sqlite3WhereEnd() 2110 ** 2111 ** Following the above, code to terminate the loop. Label A, the target 2112 ** of the Gosub above, jumps to the instruction right after the Goto. 2113 ** 2114 ** Null 1 # Zero the rowset in reg 1 2115 ** Goto B # The loop is finished. 2116 ** 2117 ** A: <loop body> # Return data, whatever. 2118 ** 2119 ** Return 2 # Jump back to the Gosub 2120 ** 2121 ** B: <after the loop> 2122 ** 2123 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 2124 ** use an ephemeral index instead of a RowSet to record the primary 2125 ** keys of the rows we have already seen. 2126 ** 2127 */ 2128 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2129 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 2130 Index *pCov = 0; /* Potential covering index (or NULL) */ 2131 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 2132 2133 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2134 int regRowset = 0; /* Register for RowSet object */ 2135 int regRowid = 0; /* Register holding rowid */ 2136 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */ 2137 int iRetInit; /* Address of regReturn init */ 2138 int untestedTerms = 0; /* Some terms not completely tested */ 2139 int ii; /* Loop counter */ 2140 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 2141 Table *pTab = pTabItem->pTab; 2142 2143 pTerm = pLoop->aLTerm[0]; 2144 assert( pTerm!=0 ); 2145 assert( pTerm->eOperator & WO_OR ); 2146 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2147 pOrWc = &pTerm->u.pOrInfo->wc; 2148 pLevel->op = OP_Return; 2149 pLevel->p1 = regReturn; 2150 2151 /* Set up a new SrcList in pOrTab containing the table being scanned 2152 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 2153 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 2154 */ 2155 if( pWInfo->nLevel>1 ){ 2156 int nNotReady; /* The number of notReady tables */ 2157 SrcItem *origSrc; /* Original list of tables */ 2158 nNotReady = pWInfo->nLevel - iLevel - 1; 2159 pOrTab = sqlite3DbMallocRawNN(db, 2160 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 2161 if( pOrTab==0 ) return notReady; 2162 pOrTab->nAlloc = (u8)(nNotReady + 1); 2163 pOrTab->nSrc = pOrTab->nAlloc; 2164 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 2165 origSrc = pWInfo->pTabList->a; 2166 for(k=1; k<=nNotReady; k++){ 2167 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 2168 } 2169 }else{ 2170 pOrTab = pWInfo->pTabList; 2171 } 2172 2173 /* Initialize the rowset register to contain NULL. An SQL NULL is 2174 ** equivalent to an empty rowset. Or, create an ephemeral index 2175 ** capable of holding primary keys in the case of a WITHOUT ROWID. 2176 ** 2177 ** Also initialize regReturn to contain the address of the instruction 2178 ** immediately following the OP_Return at the bottom of the loop. This 2179 ** is required in a few obscure LEFT JOIN cases where control jumps 2180 ** over the top of the loop into the body of it. In this case the 2181 ** correct response for the end-of-loop code (the OP_Return) is to 2182 ** fall through to the next instruction, just as an OP_Next does if 2183 ** called on an uninitialized cursor. 2184 */ 2185 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2186 if( HasRowid(pTab) ){ 2187 regRowset = ++pParse->nMem; 2188 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2189 }else{ 2190 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2191 regRowset = pParse->nTab++; 2192 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 2193 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 2194 } 2195 regRowid = ++pParse->nMem; 2196 } 2197 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2198 2199 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 2200 ** Then for every term xN, evaluate as the subexpression: xN AND y 2201 ** That way, terms in y that are factored into the disjunction will 2202 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 2203 ** 2204 ** Actually, each subexpression is converted to "xN AND w" where w is 2205 ** the "interesting" terms of z - terms that did not originate in the 2206 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 2207 ** indices. 2208 ** 2209 ** This optimization also only applies if the (x1 OR x2 OR ...) term 2210 ** is not contained in the ON clause of a LEFT JOIN. 2211 ** See ticket http://www.sqlite.org/src/info/f2369304e4 2212 ** 2213 ** 2022-02-04: Do not push down slices of a row-value comparison. 2214 ** In other words, "w" or "y" may not be a slice of a vector. Otherwise, 2215 ** the initialization of the right-hand operand of the vector comparison 2216 ** might not occur, or might occur only in an OR branch that is not 2217 ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1. 2218 ** 2219 ** 2022-03-03: Do not push down expressions that involve subqueries. 2220 ** The subquery might get coded as a subroutine. Any table-references 2221 ** in the subquery might be resolved to index-references for the index on 2222 ** the OR branch in which the subroutine is coded. But if the subroutine 2223 ** is invoked from a different OR branch that uses a different index, such 2224 ** index-references will not work. tag-20220303a 2225 ** https://sqlite.org/forum/forumpost/36937b197273d403 2226 */ 2227 if( pWC->nTerm>1 ){ 2228 int iTerm; 2229 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 2230 Expr *pExpr = pWC->a[iTerm].pExpr; 2231 if( &pWC->a[iTerm] == pTerm ) continue; 2232 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); 2233 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); 2234 testcase( pWC->a[iTerm].wtFlags & TERM_SLICE ); 2235 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){ 2236 continue; 2237 } 2238 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 2239 if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */ 2240 pExpr = sqlite3ExprDup(db, pExpr, 0); 2241 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr); 2242 } 2243 if( pAndExpr ){ 2244 /* The extra 0x10000 bit on the opcode is masked off and does not 2245 ** become part of the new Expr.op. However, it does make the 2246 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this 2247 ** prevents sqlite3PExpr() from applying the AND short-circuit 2248 ** optimization, which we do not want here. */ 2249 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr); 2250 } 2251 } 2252 2253 /* Run a separate WHERE clause for each term of the OR clause. After 2254 ** eliminating duplicates from other WHERE clauses, the action for each 2255 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 2256 */ 2257 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR")); 2258 for(ii=0; ii<pOrWc->nTerm; ii++){ 2259 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2260 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 2261 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2262 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 2263 Expr *pDelete; /* Local copy of OR clause term */ 2264 int jmp1 = 0; /* Address of jump operation */ 2265 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0 2266 && !ExprHasProperty(pOrExpr, EP_OuterON) 2267 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */ 2268 pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0); 2269 if( db->mallocFailed ){ 2270 sqlite3ExprDelete(db, pDelete); 2271 continue; 2272 } 2273 if( pAndExpr ){ 2274 pAndExpr->pLeft = pOrExpr; 2275 pOrExpr = pAndExpr; 2276 } 2277 /* Loop through table entries that match term pOrTerm. */ 2278 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1)); 2279 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 2280 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0, 2281 WHERE_OR_SUBCLAUSE, iCovCur); 2282 assert( pSubWInfo || pParse->nErr ); 2283 if( pSubWInfo ){ 2284 WhereLoop *pSubLoop; 2285 int addrExplain = sqlite3WhereExplainOneScan( 2286 pParse, pOrTab, &pSubWInfo->a[0], 0 2287 ); 2288 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 2289 2290 /* This is the sub-WHERE clause body. First skip over 2291 ** duplicate rows from prior sub-WHERE clauses, and record the 2292 ** rowid (or PRIMARY KEY) for the current row so that the same 2293 ** row will be skipped in subsequent sub-WHERE clauses. 2294 */ 2295 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2296 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2297 if( HasRowid(pTab) ){ 2298 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid); 2299 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, 2300 regRowid, iSet); 2301 VdbeCoverage(v); 2302 }else{ 2303 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2304 int nPk = pPk->nKeyCol; 2305 int iPk; 2306 int r; 2307 2308 /* Read the PK into an array of temp registers. */ 2309 r = sqlite3GetTempRange(pParse, nPk); 2310 for(iPk=0; iPk<nPk; iPk++){ 2311 int iCol = pPk->aiColumn[iPk]; 2312 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2313 } 2314 2315 /* Check if the temp table already contains this key. If so, 2316 ** the row has already been included in the result set and 2317 ** can be ignored (by jumping past the Gosub below). Otherwise, 2318 ** insert the key into the temp table and proceed with processing 2319 ** the row. 2320 ** 2321 ** Use some of the same optimizations as OP_RowSetTest: If iSet 2322 ** is zero, assume that the key cannot already be present in 2323 ** the temp table. And if iSet is -1, assume that there is no 2324 ** need to insert the key into the temp table, as it will never 2325 ** be tested for. */ 2326 if( iSet ){ 2327 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 2328 VdbeCoverage(v); 2329 } 2330 if( iSet>=0 ){ 2331 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 2332 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, 2333 r, nPk); 2334 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2335 } 2336 2337 /* Release the array of temp registers */ 2338 sqlite3ReleaseTempRange(pParse, r, nPk); 2339 } 2340 } 2341 2342 /* Invoke the main loop body as a subroutine */ 2343 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2344 2345 /* Jump here (skipping the main loop body subroutine) if the 2346 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 2347 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); 2348 2349 /* The pSubWInfo->untestedTerms flag means that this OR term 2350 ** contained one or more AND term from a notReady table. The 2351 ** terms from the notReady table could not be tested and will 2352 ** need to be tested later. 2353 */ 2354 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 2355 2356 /* If all of the OR-connected terms are optimized using the same 2357 ** index, and the index is opened using the same cursor number 2358 ** by each call to sqlite3WhereBegin() made by this loop, it may 2359 ** be possible to use that index as a covering index. 2360 ** 2361 ** If the call to sqlite3WhereBegin() above resulted in a scan that 2362 ** uses an index, and this is either the first OR-connected term 2363 ** processed or the index is the same as that used by all previous 2364 ** terms, set pCov to the candidate covering index. Otherwise, set 2365 ** pCov to NULL to indicate that no candidate covering index will 2366 ** be available. 2367 */ 2368 pSubLoop = pSubWInfo->a[0].pWLoop; 2369 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2370 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 2371 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 2372 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 2373 ){ 2374 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 2375 pCov = pSubLoop->u.btree.pIndex; 2376 }else{ 2377 pCov = 0; 2378 } 2379 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){ 2380 pWInfo->bDeferredSeek = 1; 2381 } 2382 2383 /* Finish the loop through table entries that match term pOrTerm. */ 2384 sqlite3WhereEnd(pSubWInfo); 2385 ExplainQueryPlanPop(pParse); 2386 } 2387 sqlite3ExprDelete(db, pDelete); 2388 } 2389 } 2390 ExplainQueryPlanPop(pParse); 2391 assert( pLevel->pWLoop==pLoop ); 2392 assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 ); 2393 assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 ); 2394 pLevel->u.pCoveringIdx = pCov; 2395 if( pCov ) pLevel->iIdxCur = iCovCur; 2396 if( pAndExpr ){ 2397 pAndExpr->pLeft = 0; 2398 sqlite3ExprDelete(db, pAndExpr); 2399 } 2400 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2401 sqlite3VdbeGoto(v, pLevel->addrBrk); 2402 sqlite3VdbeResolveLabel(v, iLoopBody); 2403 2404 /* Set the P2 operand of the OP_Return opcode that will end the current 2405 ** loop to point to this spot, which is the top of the next containing 2406 ** loop. The byte-code formatter will use that P2 value as a hint to 2407 ** indent everything in between the this point and the final OP_Return. 2408 ** See tag-20220407a in vdbe.c and shell.c */ 2409 assert( pLevel->op==OP_Return ); 2410 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2411 2412 if( pWInfo->nLevel>1 ){ sqlite3DbFreeNN(db, pOrTab); } 2413 if( !untestedTerms ) disableTerm(pLevel, pTerm); 2414 }else 2415 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2416 2417 { 2418 /* Case 6: There is no usable index. We must do a complete 2419 ** scan of the entire table. 2420 */ 2421 static const u8 aStep[] = { OP_Next, OP_Prev }; 2422 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2423 assert( bRev==0 || bRev==1 ); 2424 if( pTabItem->fg.isRecursive ){ 2425 /* Tables marked isRecursive have only a single row that is stored in 2426 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 2427 pLevel->op = OP_Noop; 2428 }else{ 2429 codeCursorHint(pTabItem, pWInfo, pLevel, 0); 2430 pLevel->op = aStep[bRev]; 2431 pLevel->p1 = iCur; 2432 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt); 2433 VdbeCoverageIf(v, bRev==0); 2434 VdbeCoverageIf(v, bRev!=0); 2435 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2436 } 2437 } 2438 2439 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2440 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 2441 #endif 2442 2443 /* Insert code to test every subexpression that can be completely 2444 ** computed using the current set of tables. 2445 ** 2446 ** This loop may run between one and three times, depending on the 2447 ** constraints to be generated. The value of stack variable iLoop 2448 ** determines the constraints coded by each iteration, as follows: 2449 ** 2450 ** iLoop==1: Code only expressions that are entirely covered by pIdx. 2451 ** iLoop==2: Code remaining expressions that do not contain correlated 2452 ** sub-queries. 2453 ** iLoop==3: Code all remaining expressions. 2454 ** 2455 ** An effort is made to skip unnecessary iterations of the loop. 2456 */ 2457 iLoop = (pIdx ? 1 : 2); 2458 do{ 2459 int iNext = 0; /* Next value for iLoop */ 2460 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2461 Expr *pE; 2462 int skipLikeAddr = 0; 2463 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2464 testcase( pTerm->wtFlags & TERM_CODED ); 2465 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2466 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2467 testcase( pWInfo->untestedTerms==0 2468 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); 2469 pWInfo->untestedTerms = 1; 2470 continue; 2471 } 2472 pE = pTerm->pExpr; 2473 assert( pE!=0 ); 2474 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){ 2475 if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){ 2476 /* Defer processing WHERE clause constraints until after outer 2477 ** join processing. tag-20220513a */ 2478 continue; 2479 }else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT 2480 && !ExprHasProperty(pE,EP_OuterON) ){ 2481 continue; 2482 }else{ 2483 Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin); 2484 if( m & pLevel->notReady ){ 2485 /* An ON clause that is not ripe */ 2486 continue; 2487 } 2488 } 2489 } 2490 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){ 2491 iNext = 2; 2492 continue; 2493 } 2494 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){ 2495 if( iNext==0 ) iNext = 3; 2496 continue; 2497 } 2498 2499 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){ 2500 /* If the TERM_LIKECOND flag is set, that means that the range search 2501 ** is sufficient to guarantee that the LIKE operator is true, so we 2502 ** can skip the call to the like(A,B) function. But this only works 2503 ** for strings. So do not skip the call to the function on the pass 2504 ** that compares BLOBs. */ 2505 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS 2506 continue; 2507 #else 2508 u32 x = pLevel->iLikeRepCntr; 2509 if( x>0 ){ 2510 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1)); 2511 VdbeCoverageIf(v, (x&1)==1); 2512 VdbeCoverageIf(v, (x&1)==0); 2513 } 2514 #endif 2515 } 2516 #ifdef WHERETRACE_ENABLED /* 0xffff */ 2517 if( sqlite3WhereTrace ){ 2518 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d", 2519 pWC->nTerm-j, pTerm, iLoop)); 2520 } 2521 if( sqlite3WhereTrace & 0x800 ){ 2522 sqlite3DebugPrintf("Coding auxiliary constraint:\n"); 2523 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2524 } 2525 #endif 2526 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2527 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 2528 pTerm->wtFlags |= TERM_CODED; 2529 } 2530 iLoop = iNext; 2531 }while( iLoop>0 ); 2532 2533 /* Insert code to test for implied constraints based on transitivity 2534 ** of the "==" operator. 2535 ** 2536 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 2537 ** and we are coding the t1 loop and the t2 loop has not yet coded, 2538 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 2539 ** the implied "t1.a=123" constraint. 2540 */ 2541 for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){ 2542 Expr *pE, sEAlt; 2543 WhereTerm *pAlt; 2544 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2545 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; 2546 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; 2547 if( pTerm->leftCursor!=iCur ) continue; 2548 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue; 2549 pE = pTerm->pExpr; 2550 #ifdef WHERETRACE_ENABLED /* 0x800 */ 2551 if( sqlite3WhereTrace & 0x800 ){ 2552 sqlite3DebugPrintf("Coding transitive constraint:\n"); 2553 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j); 2554 } 2555 #endif 2556 assert( !ExprHasProperty(pE, EP_OuterON) ); 2557 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 2558 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2559 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady, 2560 WO_EQ|WO_IN|WO_IS, 0); 2561 if( pAlt==0 ) continue; 2562 if( pAlt->wtFlags & (TERM_CODED) ) continue; 2563 if( (pAlt->eOperator & WO_IN) 2564 && ExprUseXSelect(pAlt->pExpr) 2565 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1) 2566 ){ 2567 continue; 2568 } 2569 testcase( pAlt->eOperator & WO_EQ ); 2570 testcase( pAlt->eOperator & WO_IS ); 2571 testcase( pAlt->eOperator & WO_IN ); 2572 VdbeModuleComment((v, "begin transitive constraint")); 2573 sEAlt = *pAlt->pExpr; 2574 sEAlt.pLeft = pE->pLeft; 2575 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); 2576 pAlt->wtFlags |= TERM_CODED; 2577 } 2578 2579 /* For a RIGHT OUTER JOIN, record the fact that the current row has 2580 ** been matched at least once. 2581 */ 2582 if( pLevel->pRJ ){ 2583 Table *pTab; 2584 int nPk; 2585 int r; 2586 int jmp1 = 0; 2587 WhereRightJoin *pRJ = pLevel->pRJ; 2588 2589 /* pTab is the right-hand table of the RIGHT JOIN. Generate code that 2590 ** will record that the current row of that table has been matched at 2591 ** least once. This is accomplished by storing the PK for the row in 2592 ** both the iMatch index and the regBloom Bloom filter. 2593 */ 2594 pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab; 2595 if( HasRowid(pTab) ){ 2596 r = sqlite3GetTempRange(pParse, 2); 2597 sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1); 2598 nPk = 1; 2599 }else{ 2600 int iPk; 2601 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2602 nPk = pPk->nKeyCol; 2603 r = sqlite3GetTempRange(pParse, nPk+1); 2604 for(iPk=0; iPk<nPk; iPk++){ 2605 int iCol = pPk->aiColumn[iPk]; 2606 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk); 2607 } 2608 } 2609 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk); 2610 VdbeCoverage(v); 2611 VdbeComment((v, "match against %s", pTab->zName)); 2612 sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r); 2613 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk); 2614 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk); 2615 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2616 sqlite3VdbeJumpHere(v, jmp1); 2617 sqlite3ReleaseTempRange(pParse, r, nPk+1); 2618 } 2619 2620 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2621 ** at least one row of the right table has matched the left table. 2622 */ 2623 if( pLevel->iLeftJoin ){ 2624 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2625 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2626 VdbeComment((v, "record LEFT JOIN hit")); 2627 if( pLevel->pRJ==0 ){ 2628 goto code_outer_join_constraints; /* WHERE clause constraints */ 2629 } 2630 } 2631 2632 if( pLevel->pRJ ){ 2633 /* Create a subroutine used to process all interior loops and code 2634 ** of the RIGHT JOIN. During normal operation, the subroutine will 2635 ** be in-line with the rest of the code. But at the end, a separate 2636 ** loop will run that invokes this subroutine for unmatched rows 2637 ** of pTab, with all tables to left begin set to NULL. 2638 */ 2639 WhereRightJoin *pRJ = pLevel->pRJ; 2640 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn); 2641 pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v); 2642 assert( pParse->withinRJSubrtn < 255 ); 2643 pParse->withinRJSubrtn++; 2644 2645 /* WHERE clause constraints must be deferred until after outer join 2646 ** row elimination has completed, since WHERE clause constraints apply 2647 ** to the results of the OUTER JOIN. The following loop generates the 2648 ** appropriate WHERE clause constraint checks. tag-20220513a. 2649 */ 2650 code_outer_join_constraints: 2651 for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){ 2652 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2653 testcase( pTerm->wtFlags & TERM_CODED ); 2654 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2655 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 2656 assert( pWInfo->untestedTerms ); 2657 continue; 2658 } 2659 if( pTabItem->fg.jointype & JT_LTORJ ) continue; 2660 assert( pTerm->pExpr ); 2661 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2662 pTerm->wtFlags |= TERM_CODED; 2663 } 2664 } 2665 2666 #if WHERETRACE_ENABLED /* 0x20800 */ 2667 if( sqlite3WhereTrace & 0x20000 ){ 2668 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n", 2669 iLevel); 2670 sqlite3WhereClausePrint(pWC); 2671 } 2672 if( sqlite3WhereTrace & 0x800 ){ 2673 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n", 2674 iLevel, (u64)pLevel->notReady); 2675 } 2676 #endif 2677 return pLevel->notReady; 2678 } 2679 2680 /* 2681 ** Generate the code for the loop that finds all non-matched terms 2682 ** for a RIGHT JOIN. 2683 */ 2684 SQLITE_NOINLINE void sqlite3WhereRightJoinLoop( 2685 WhereInfo *pWInfo, 2686 int iLevel, 2687 WhereLevel *pLevel 2688 ){ 2689 Parse *pParse = pWInfo->pParse; 2690 Vdbe *v = pParse->pVdbe; 2691 WhereRightJoin *pRJ = pLevel->pRJ; 2692 Expr *pSubWhere = 0; 2693 WhereClause *pWC = &pWInfo->sWC; 2694 WhereInfo *pSubWInfo; 2695 WhereLoop *pLoop = pLevel->pWLoop; 2696 SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 2697 SrcList sFrom; 2698 Bitmask mAll = 0; 2699 int k; 2700 2701 ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName)); 2702 sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn, 2703 pRJ->regReturn); 2704 for(k=0; k<iLevel; k++){ 2705 int iIdxCur; 2706 mAll |= pWInfo->a[k].pWLoop->maskSelf; 2707 sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur); 2708 iIdxCur = pWInfo->a[k].iIdxCur; 2709 if( iIdxCur ){ 2710 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur); 2711 } 2712 } 2713 if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){ 2714 mAll |= pLoop->maskSelf; 2715 for(k=0; k<pWC->nTerm; k++){ 2716 WhereTerm *pTerm = &pWC->a[k]; 2717 if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0 2718 && pTerm->eOperator!=WO_ROWVAL 2719 ){ 2720 break; 2721 } 2722 if( pTerm->prereqAll & ~mAll ) continue; 2723 if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue; 2724 pSubWhere = sqlite3ExprAnd(pParse, pSubWhere, 2725 sqlite3ExprDup(pParse->db, pTerm->pExpr, 0)); 2726 } 2727 } 2728 sFrom.nSrc = 1; 2729 sFrom.nAlloc = 1; 2730 memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem)); 2731 sFrom.a[0].fg.jointype = 0; 2732 assert( pParse->withinRJSubrtn < 100 ); 2733 pParse->withinRJSubrtn++; 2734 pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0, 2735 WHERE_RIGHT_JOIN, 0); 2736 if( pSubWInfo ){ 2737 int iCur = pLevel->iTabCur; 2738 int r = ++pParse->nMem; 2739 int nPk; 2740 int jmp; 2741 int addrCont = sqlite3WhereContinueLabel(pSubWInfo); 2742 Table *pTab = pTabItem->pTab; 2743 if( HasRowid(pTab) ){ 2744 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r); 2745 nPk = 1; 2746 }else{ 2747 int iPk; 2748 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 2749 nPk = pPk->nKeyCol; 2750 pParse->nMem += nPk - 1; 2751 for(iPk=0; iPk<nPk; iPk++){ 2752 int iCol = pPk->aiColumn[iPk]; 2753 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk); 2754 } 2755 } 2756 jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk); 2757 VdbeCoverage(v); 2758 sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk); 2759 VdbeCoverage(v); 2760 sqlite3VdbeJumpHere(v, jmp); 2761 sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn); 2762 sqlite3WhereEnd(pSubWInfo); 2763 } 2764 sqlite3ExprDelete(pParse->db, pSubWhere); 2765 ExplainQueryPlanPop(pParse); 2766 assert( pParse->withinRJSubrtn>0 ); 2767 pParse->withinRJSubrtn--; 2768 } 2769