1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to manipulate "Mem" structure. A "Mem" 14 ** stores a single value in the VDBE. Mem is an opaque structure visible 15 ** only within the VDBE. Interface routines refer to a Mem using the 16 ** name sqlite_value 17 */ 18 #include "sqliteInt.h" 19 #include "vdbeInt.h" 20 21 /* True if X is a power of two. 0 is considered a power of two here. 22 ** In other words, return true if X has at most one bit set. 23 */ 24 #define ISPOWEROF2(X) (((X)&((X)-1))==0) 25 26 #ifdef SQLITE_DEBUG 27 /* 28 ** Check invariants on a Mem object. 29 ** 30 ** This routine is intended for use inside of assert() statements, like 31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); 32 */ 33 int sqlite3VdbeCheckMemInvariants(Mem *p){ 34 /* If MEM_Dyn is set then Mem.xDel!=0. 35 ** Mem.xDel might not be initialized if MEM_Dyn is clear. 36 */ 37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); 38 39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we 40 ** ensure that if Mem.szMalloc>0 then it is safe to do 41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. 42 ** That saves a few cycles in inner loops. */ 43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); 44 45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ 46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); 47 48 if( p->flags & MEM_Null ){ 49 /* Cannot be both MEM_Null and some other type */ 50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); 51 52 /* If MEM_Null is set, then either the value is a pure NULL (the usual 53 ** case) or it is a pointer set using sqlite3_bind_pointer() or 54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be 55 ** set. 56 */ 57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ 58 /* This is a pointer type. There may be a flag to indicate what to 59 ** do with the pointer. */ 60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); 63 64 /* No other bits set */ 65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind 66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); 67 }else{ 68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, 69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ 70 } 71 }else{ 72 /* The MEM_Cleared bit is only allowed on NULLs */ 73 assert( (p->flags & MEM_Cleared)==0 ); 74 } 75 76 /* The szMalloc field holds the correct memory allocation size */ 77 assert( p->szMalloc==0 78 || (p->flags==MEM_Undefined 79 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc)) 80 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc)); 81 82 /* If p holds a string or blob, the Mem.z must point to exactly 83 ** one of the following: 84 ** 85 ** (1) Memory in Mem.zMalloc and managed by the Mem object 86 ** (2) Memory to be freed using Mem.xDel 87 ** (3) An ephemeral string or blob 88 ** (4) A static string or blob 89 */ 90 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ 91 assert( 92 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + 93 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + 94 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + 95 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 96 ); 97 } 98 return 1; 99 } 100 #endif 101 102 /* 103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal 104 ** into a buffer. 105 */ 106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ 107 StrAccum acc; 108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); 109 assert( sz>22 ); 110 if( p->flags & MEM_Int ){ 111 #if GCC_VERSION>=7000000 112 /* Work-around for GCC bug 113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */ 114 i64 x; 115 assert( (p->flags&MEM_Int)*2==sizeof(x) ); 116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2); 117 sqlite3Int64ToText(x, zBuf); 118 #else 119 sqlite3Int64ToText(p->u.i, zBuf); 120 #endif 121 }else{ 122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); 123 sqlite3_str_appendf(&acc, "%!.15g", 124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r); 125 assert( acc.zText==zBuf && acc.mxAlloc<=0 ); 126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ 127 } 128 } 129 130 #ifdef SQLITE_DEBUG 131 /* 132 ** Validity checks on pMem. pMem holds a string. 133 ** 134 ** (1) Check that string value of pMem agrees with its integer or real value. 135 ** (2) Check that the string is correctly zero terminated 136 ** 137 ** A single int or real value always converts to the same strings. But 138 ** many different strings can be converted into the same int or real. 139 ** If a table contains a numeric value and an index is based on the 140 ** corresponding string value, then it is important that the string be 141 ** derived from the numeric value, not the other way around, to ensure 142 ** that the index and table are consistent. See ticket 143 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for 144 ** an example. 145 ** 146 ** This routine looks at pMem to verify that if it has both a numeric 147 ** representation and a string representation then the string rep has 148 ** been derived from the numeric and not the other way around. It returns 149 ** true if everything is ok and false if there is a problem. 150 ** 151 ** This routine is for use inside of assert() statements only. 152 */ 153 int sqlite3VdbeMemValidStrRep(Mem *p){ 154 char zBuf[100]; 155 char *z; 156 int i, j, incr; 157 if( (p->flags & MEM_Str)==0 ) return 1; 158 if( p->flags & MEM_Term ){ 159 /* Insure that the string is properly zero-terminated. Pay particular 160 ** attention to the case where p->n is odd */ 161 if( p->szMalloc>0 && p->z==p->zMalloc ){ 162 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); 163 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); 164 } 165 assert( p->z[p->n]==0 ); 166 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); 167 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); 168 } 169 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; 170 vdbeMemRenderNum(sizeof(zBuf), zBuf, p); 171 z = p->z; 172 i = j = 0; 173 incr = 1; 174 if( p->enc!=SQLITE_UTF8 ){ 175 incr = 2; 176 if( p->enc==SQLITE_UTF16BE ) z++; 177 } 178 while( zBuf[j] ){ 179 if( zBuf[j++]!=z[i] ) return 0; 180 i += incr; 181 } 182 return 1; 183 } 184 #endif /* SQLITE_DEBUG */ 185 186 /* 187 ** If pMem is an object with a valid string representation, this routine 188 ** ensures the internal encoding for the string representation is 189 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. 190 ** 191 ** If pMem is not a string object, or the encoding of the string 192 ** representation is already stored using the requested encoding, then this 193 ** routine is a no-op. 194 ** 195 ** SQLITE_OK is returned if the conversion is successful (or not required). 196 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion 197 ** between formats. 198 */ 199 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ 200 #ifndef SQLITE_OMIT_UTF16 201 int rc; 202 #endif 203 assert( pMem!=0 ); 204 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 205 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE 206 || desiredEnc==SQLITE_UTF16BE ); 207 if( !(pMem->flags&MEM_Str) ){ 208 pMem->enc = desiredEnc; 209 return SQLITE_OK; 210 } 211 if( pMem->enc==desiredEnc ){ 212 return SQLITE_OK; 213 } 214 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 215 #ifdef SQLITE_OMIT_UTF16 216 return SQLITE_ERROR; 217 #else 218 219 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, 220 ** then the encoding of the value may not have changed. 221 */ 222 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); 223 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); 224 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); 225 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); 226 return rc; 227 #endif 228 } 229 230 /* 231 ** Make sure pMem->z points to a writable allocation of at least n bytes. 232 ** 233 ** If the bPreserve argument is true, then copy of the content of 234 ** pMem->z into the new allocation. pMem must be either a string or 235 ** blob if bPreserve is true. If bPreserve is false, any prior content 236 ** in pMem->z is discarded. 237 */ 238 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ 239 assert( sqlite3VdbeCheckMemInvariants(pMem) ); 240 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 241 testcase( pMem->db==0 ); 242 243 /* If the bPreserve flag is set to true, then the memory cell must already 244 ** contain a valid string or blob value. */ 245 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); 246 testcase( bPreserve && pMem->z==0 ); 247 248 assert( pMem->szMalloc==0 249 || (pMem->flags==MEM_Undefined 250 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc)) 251 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc)); 252 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ 253 if( pMem->db ){ 254 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); 255 }else{ 256 pMem->zMalloc = sqlite3Realloc(pMem->z, n); 257 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); 258 pMem->z = pMem->zMalloc; 259 } 260 bPreserve = 0; 261 }else{ 262 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 263 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); 264 } 265 if( pMem->zMalloc==0 ){ 266 sqlite3VdbeMemSetNull(pMem); 267 pMem->z = 0; 268 pMem->szMalloc = 0; 269 return SQLITE_NOMEM_BKPT; 270 }else{ 271 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 272 } 273 274 if( bPreserve && pMem->z ){ 275 assert( pMem->z!=pMem->zMalloc ); 276 memcpy(pMem->zMalloc, pMem->z, pMem->n); 277 } 278 if( (pMem->flags&MEM_Dyn)!=0 ){ 279 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); 280 pMem->xDel((void *)(pMem->z)); 281 } 282 283 pMem->z = pMem->zMalloc; 284 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); 285 return SQLITE_OK; 286 } 287 288 /* 289 ** Change the pMem->zMalloc allocation to be at least szNew bytes. 290 ** If pMem->zMalloc already meets or exceeds the requested size, this 291 ** routine is a no-op. 292 ** 293 ** Any prior string or blob content in the pMem object may be discarded. 294 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str 295 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, 296 ** and MEM_Null values are preserved. 297 ** 298 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) 299 ** if unable to complete the resizing. 300 */ 301 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ 302 assert( CORRUPT_DB || szNew>0 ); 303 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); 304 if( pMem->szMalloc<szNew ){ 305 return sqlite3VdbeMemGrow(pMem, szNew, 0); 306 } 307 assert( (pMem->flags & MEM_Dyn)==0 ); 308 pMem->z = pMem->zMalloc; 309 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); 310 return SQLITE_OK; 311 } 312 313 /* 314 ** It is already known that pMem contains an unterminated string. 315 ** Add the zero terminator. 316 ** 317 ** Three bytes of zero are added. In this way, there is guaranteed 318 ** to be a double-zero byte at an even byte boundary in order to 319 ** terminate a UTF16 string, even if the initial size of the buffer 320 ** is an odd number of bytes. 321 */ 322 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ 323 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ 324 return SQLITE_NOMEM_BKPT; 325 } 326 pMem->z[pMem->n] = 0; 327 pMem->z[pMem->n+1] = 0; 328 pMem->z[pMem->n+2] = 0; 329 pMem->flags |= MEM_Term; 330 return SQLITE_OK; 331 } 332 333 /* 334 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in 335 ** MEM.zMalloc, where it can be safely written. 336 ** 337 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. 338 */ 339 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ 340 assert( pMem!=0 ); 341 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 342 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 343 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ 344 if( ExpandBlob(pMem) ) return SQLITE_NOMEM; 345 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ 346 int rc = vdbeMemAddTerminator(pMem); 347 if( rc ) return rc; 348 } 349 } 350 pMem->flags &= ~MEM_Ephem; 351 #ifdef SQLITE_DEBUG 352 pMem->pScopyFrom = 0; 353 #endif 354 355 return SQLITE_OK; 356 } 357 358 /* 359 ** If the given Mem* has a zero-filled tail, turn it into an ordinary 360 ** blob stored in dynamically allocated space. 361 */ 362 #ifndef SQLITE_OMIT_INCRBLOB 363 int sqlite3VdbeMemExpandBlob(Mem *pMem){ 364 int nByte; 365 assert( pMem!=0 ); 366 assert( pMem->flags & MEM_Zero ); 367 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); 368 testcase( sqlite3_value_nochange(pMem) ); 369 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 370 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 371 372 /* Set nByte to the number of bytes required to store the expanded blob. */ 373 nByte = pMem->n + pMem->u.nZero; 374 if( nByte<=0 ){ 375 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; 376 nByte = 1; 377 } 378 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ 379 return SQLITE_NOMEM_BKPT; 380 } 381 assert( pMem->z!=0 ); 382 assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte ); 383 384 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); 385 pMem->n += pMem->u.nZero; 386 pMem->flags &= ~(MEM_Zero|MEM_Term); 387 return SQLITE_OK; 388 } 389 #endif 390 391 /* 392 ** Make sure the given Mem is \u0000 terminated. 393 */ 394 int sqlite3VdbeMemNulTerminate(Mem *pMem){ 395 assert( pMem!=0 ); 396 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 397 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); 398 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); 399 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ 400 return SQLITE_OK; /* Nothing to do */ 401 }else{ 402 return vdbeMemAddTerminator(pMem); 403 } 404 } 405 406 /* 407 ** Add MEM_Str to the set of representations for the given Mem. This 408 ** routine is only called if pMem is a number of some kind, not a NULL 409 ** or a BLOB. 410 ** 411 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated 412 ** if bForce is true but are retained if bForce is false. 413 ** 414 ** A MEM_Null value will never be passed to this function. This function is 415 ** used for converting values to text for returning to the user (i.e. via 416 ** sqlite3_value_text()), or for ensuring that values to be used as btree 417 ** keys are strings. In the former case a NULL pointer is returned the 418 ** user and the latter is an internal programming error. 419 */ 420 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ 421 const int nByte = 32; 422 423 assert( pMem!=0 ); 424 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 425 assert( !(pMem->flags&MEM_Zero) ); 426 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); 427 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); 428 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 429 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 430 431 432 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 433 pMem->enc = 0; 434 return SQLITE_NOMEM_BKPT; 435 } 436 437 vdbeMemRenderNum(nByte, pMem->z, pMem); 438 assert( pMem->z!=0 ); 439 pMem->n = sqlite3Strlen30NN(pMem->z); 440 pMem->enc = SQLITE_UTF8; 441 pMem->flags |= MEM_Str|MEM_Term; 442 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 443 sqlite3VdbeChangeEncoding(pMem, enc); 444 return SQLITE_OK; 445 } 446 447 /* 448 ** Memory cell pMem contains the context of an aggregate function. 449 ** This routine calls the finalize method for that function. The 450 ** result of the aggregate is stored back into pMem. 451 ** 452 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK 453 ** otherwise. 454 */ 455 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ 456 sqlite3_context ctx; 457 Mem t; 458 assert( pFunc!=0 ); 459 assert( pMem!=0 ); 460 assert( pMem->db!=0 ); 461 assert( pFunc->xFinalize!=0 ); 462 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); 463 assert( sqlite3_mutex_held(pMem->db->mutex) ); 464 memset(&ctx, 0, sizeof(ctx)); 465 memset(&t, 0, sizeof(t)); 466 t.flags = MEM_Null; 467 t.db = pMem->db; 468 ctx.pOut = &t; 469 ctx.pMem = pMem; 470 ctx.pFunc = pFunc; 471 ctx.enc = ENC(t.db); 472 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ 473 assert( (pMem->flags & MEM_Dyn)==0 ); 474 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 475 memcpy(pMem, &t, sizeof(t)); 476 return ctx.isError; 477 } 478 479 /* 480 ** Memory cell pAccum contains the context of an aggregate function. 481 ** This routine calls the xValue method for that function and stores 482 ** the results in memory cell pMem. 483 ** 484 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK 485 ** otherwise. 486 */ 487 #ifndef SQLITE_OMIT_WINDOWFUNC 488 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ 489 sqlite3_context ctx; 490 assert( pFunc!=0 ); 491 assert( pFunc->xValue!=0 ); 492 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); 493 assert( pAccum->db!=0 ); 494 assert( sqlite3_mutex_held(pAccum->db->mutex) ); 495 memset(&ctx, 0, sizeof(ctx)); 496 sqlite3VdbeMemSetNull(pOut); 497 ctx.pOut = pOut; 498 ctx.pMem = pAccum; 499 ctx.pFunc = pFunc; 500 ctx.enc = ENC(pAccum->db); 501 pFunc->xValue(&ctx); 502 return ctx.isError; 503 } 504 #endif /* SQLITE_OMIT_WINDOWFUNC */ 505 506 /* 507 ** If the memory cell contains a value that must be freed by 508 ** invoking the external callback in Mem.xDel, then this routine 509 ** will free that value. It also sets Mem.flags to MEM_Null. 510 ** 511 ** This is a helper routine for sqlite3VdbeMemSetNull() and 512 ** for sqlite3VdbeMemRelease(). Use those other routines as the 513 ** entry point for releasing Mem resources. 514 */ 515 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ 516 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); 517 assert( VdbeMemDynamic(p) ); 518 if( p->flags&MEM_Agg ){ 519 sqlite3VdbeMemFinalize(p, p->u.pDef); 520 assert( (p->flags & MEM_Agg)==0 ); 521 testcase( p->flags & MEM_Dyn ); 522 } 523 if( p->flags&MEM_Dyn ){ 524 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); 525 p->xDel((void *)p->z); 526 } 527 p->flags = MEM_Null; 528 } 529 530 /* 531 ** Release memory held by the Mem p, both external memory cleared 532 ** by p->xDel and memory in p->zMalloc. 533 ** 534 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in 535 ** the unusual case where there really is memory in p that needs 536 ** to be freed. 537 */ 538 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ 539 if( VdbeMemDynamic(p) ){ 540 vdbeMemClearExternAndSetNull(p); 541 } 542 if( p->szMalloc ){ 543 sqlite3DbFreeNN(p->db, p->zMalloc); 544 p->szMalloc = 0; 545 } 546 p->z = 0; 547 } 548 549 /* 550 ** Release any memory resources held by the Mem. Both the memory that is 551 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. 552 ** 553 ** Use this routine prior to clean up prior to abandoning a Mem, or to 554 ** reset a Mem back to its minimum memory utilization. 555 ** 556 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space 557 ** prior to inserting new content into the Mem. 558 */ 559 void sqlite3VdbeMemRelease(Mem *p){ 560 assert( sqlite3VdbeCheckMemInvariants(p) ); 561 if( VdbeMemDynamic(p) || p->szMalloc ){ 562 vdbeMemClear(p); 563 } 564 } 565 566 /* Like sqlite3VdbeMemRelease() but faster for cases where we 567 ** know in advance that the Mem is not MEM_Dyn or MEM_Agg. 568 */ 569 void sqlite3VdbeMemReleaseMalloc(Mem *p){ 570 assert( !VdbeMemDynamic(p) ); 571 if( p->szMalloc ) vdbeMemClear(p); 572 } 573 574 /* 575 ** Convert a 64-bit IEEE double into a 64-bit signed integer. 576 ** If the double is out of range of a 64-bit signed integer then 577 ** return the closest available 64-bit signed integer. 578 */ 579 static SQLITE_NOINLINE i64 doubleToInt64(double r){ 580 #ifdef SQLITE_OMIT_FLOATING_POINT 581 /* When floating-point is omitted, double and int64 are the same thing */ 582 return r; 583 #else 584 /* 585 ** Many compilers we encounter do not define constants for the 586 ** minimum and maximum 64-bit integers, or they define them 587 ** inconsistently. And many do not understand the "LL" notation. 588 ** So we define our own static constants here using nothing 589 ** larger than a 32-bit integer constant. 590 */ 591 static const i64 maxInt = LARGEST_INT64; 592 static const i64 minInt = SMALLEST_INT64; 593 594 if( r<=(double)minInt ){ 595 return minInt; 596 }else if( r>=(double)maxInt ){ 597 return maxInt; 598 }else{ 599 return (i64)r; 600 } 601 #endif 602 } 603 604 /* 605 ** Return some kind of integer value which is the best we can do 606 ** at representing the value that *pMem describes as an integer. 607 ** If pMem is an integer, then the value is exact. If pMem is 608 ** a floating-point then the value returned is the integer part. 609 ** If pMem is a string or blob, then we make an attempt to convert 610 ** it into an integer and return that. If pMem represents an 611 ** an SQL-NULL value, return 0. 612 ** 613 ** If pMem represents a string value, its encoding might be changed. 614 */ 615 static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){ 616 i64 value = 0; 617 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); 618 return value; 619 } 620 i64 sqlite3VdbeIntValue(const Mem *pMem){ 621 int flags; 622 assert( pMem!=0 ); 623 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 624 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 625 flags = pMem->flags; 626 if( flags & (MEM_Int|MEM_IntReal) ){ 627 testcase( flags & MEM_IntReal ); 628 return pMem->u.i; 629 }else if( flags & MEM_Real ){ 630 return doubleToInt64(pMem->u.r); 631 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ 632 return memIntValue(pMem); 633 }else{ 634 return 0; 635 } 636 } 637 638 /* 639 ** Return the best representation of pMem that we can get into a 640 ** double. If pMem is already a double or an integer, return its 641 ** value. If it is a string or blob, try to convert it to a double. 642 ** If it is a NULL, return 0.0. 643 */ 644 static SQLITE_NOINLINE double memRealValue(Mem *pMem){ 645 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 646 double val = (double)0; 647 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); 648 return val; 649 } 650 double sqlite3VdbeRealValue(Mem *pMem){ 651 assert( pMem!=0 ); 652 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 653 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 654 if( pMem->flags & MEM_Real ){ 655 return pMem->u.r; 656 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 657 testcase( pMem->flags & MEM_IntReal ); 658 return (double)pMem->u.i; 659 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ 660 return memRealValue(pMem); 661 }else{ 662 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 663 return (double)0; 664 } 665 } 666 667 /* 668 ** Return 1 if pMem represents true, and return 0 if pMem represents false. 669 ** Return the value ifNull if pMem is NULL. 670 */ 671 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ 672 testcase( pMem->flags & MEM_IntReal ); 673 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; 674 if( pMem->flags & MEM_Null ) return ifNull; 675 return sqlite3VdbeRealValue(pMem)!=0.0; 676 } 677 678 /* 679 ** The MEM structure is already a MEM_Real. Try to also make it a 680 ** MEM_Int if we can. 681 */ 682 void sqlite3VdbeIntegerAffinity(Mem *pMem){ 683 i64 ix; 684 assert( pMem!=0 ); 685 assert( pMem->flags & MEM_Real ); 686 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 687 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 688 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 689 690 ix = doubleToInt64(pMem->u.r); 691 692 /* Only mark the value as an integer if 693 ** 694 ** (1) the round-trip conversion real->int->real is a no-op, and 695 ** (2) The integer is neither the largest nor the smallest 696 ** possible integer (ticket #3922) 697 ** 698 ** The second and third terms in the following conditional enforces 699 ** the second condition under the assumption that addition overflow causes 700 ** values to wrap around. 701 */ 702 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ 703 pMem->u.i = ix; 704 MemSetTypeFlag(pMem, MEM_Int); 705 } 706 } 707 708 /* 709 ** Convert pMem to type integer. Invalidate any prior representations. 710 */ 711 int sqlite3VdbeMemIntegerify(Mem *pMem){ 712 assert( pMem!=0 ); 713 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 714 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 715 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 716 717 pMem->u.i = sqlite3VdbeIntValue(pMem); 718 MemSetTypeFlag(pMem, MEM_Int); 719 return SQLITE_OK; 720 } 721 722 /* 723 ** Convert pMem so that it is of type MEM_Real. 724 ** Invalidate any prior representations. 725 */ 726 int sqlite3VdbeMemRealify(Mem *pMem){ 727 assert( pMem!=0 ); 728 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 729 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 730 731 pMem->u.r = sqlite3VdbeRealValue(pMem); 732 MemSetTypeFlag(pMem, MEM_Real); 733 return SQLITE_OK; 734 } 735 736 /* Compare a floating point value to an integer. Return true if the two 737 ** values are the same within the precision of the floating point value. 738 ** 739 ** This function assumes that i was obtained by assignment from r1. 740 ** 741 ** For some versions of GCC on 32-bit machines, if you do the more obvious 742 ** comparison of "r1==(double)i" you sometimes get an answer of false even 743 ** though the r1 and (double)i values are bit-for-bit the same. 744 */ 745 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ 746 double r2 = (double)i; 747 return r1==0.0 748 || (memcmp(&r1, &r2, sizeof(r1))==0 749 && i >= -2251799813685248LL && i < 2251799813685248LL); 750 } 751 752 /* Convert a floating point value to its closest integer. Do so in 753 ** a way that avoids 'outside the range of representable values' warnings 754 ** from UBSAN. 755 */ 756 i64 sqlite3RealToI64(double r){ 757 if( r<=(double)SMALLEST_INT64 ) return SMALLEST_INT64; 758 if( r>=(double)LARGEST_INT64) return LARGEST_INT64; 759 return (i64)r; 760 } 761 762 /* 763 ** Convert pMem so that it has type MEM_Real or MEM_Int. 764 ** Invalidate any prior representations. 765 ** 766 ** Every effort is made to force the conversion, even if the input 767 ** is a string that does not look completely like a number. Convert 768 ** as much of the string as we can and ignore the rest. 769 */ 770 int sqlite3VdbeMemNumerify(Mem *pMem){ 771 assert( pMem!=0 ); 772 testcase( pMem->flags & MEM_Int ); 773 testcase( pMem->flags & MEM_Real ); 774 testcase( pMem->flags & MEM_IntReal ); 775 testcase( pMem->flags & MEM_Null ); 776 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ 777 int rc; 778 sqlite3_int64 ix; 779 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); 780 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 781 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 782 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) 783 || sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r))) 784 ){ 785 pMem->u.i = ix; 786 MemSetTypeFlag(pMem, MEM_Int); 787 }else{ 788 MemSetTypeFlag(pMem, MEM_Real); 789 } 790 } 791 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); 792 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); 793 return SQLITE_OK; 794 } 795 796 /* 797 ** Cast the datatype of the value in pMem according to the affinity 798 ** "aff". Casting is different from applying affinity in that a cast 799 ** is forced. In other words, the value is converted into the desired 800 ** affinity even if that results in loss of data. This routine is 801 ** used (for example) to implement the SQL "cast()" operator. 802 */ 803 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ 804 if( pMem->flags & MEM_Null ) return SQLITE_OK; 805 switch( aff ){ 806 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ 807 if( (pMem->flags & MEM_Blob)==0 ){ 808 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 809 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 810 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); 811 }else{ 812 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); 813 } 814 break; 815 } 816 case SQLITE_AFF_NUMERIC: { 817 sqlite3VdbeMemNumerify(pMem); 818 break; 819 } 820 case SQLITE_AFF_INTEGER: { 821 sqlite3VdbeMemIntegerify(pMem); 822 break; 823 } 824 case SQLITE_AFF_REAL: { 825 sqlite3VdbeMemRealify(pMem); 826 break; 827 } 828 default: { 829 assert( aff==SQLITE_AFF_TEXT ); 830 assert( MEM_Str==(MEM_Blob>>3) ); 831 pMem->flags |= (pMem->flags&MEM_Blob)>>3; 832 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); 833 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); 834 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); 835 if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1; 836 return sqlite3VdbeChangeEncoding(pMem, encoding); 837 } 838 } 839 return SQLITE_OK; 840 } 841 842 /* 843 ** Initialize bulk memory to be a consistent Mem object. 844 ** 845 ** The minimum amount of initialization feasible is performed. 846 */ 847 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ 848 assert( (flags & ~MEM_TypeMask)==0 ); 849 pMem->flags = flags; 850 pMem->db = db; 851 pMem->szMalloc = 0; 852 } 853 854 855 /* 856 ** Delete any previous value and set the value stored in *pMem to NULL. 857 ** 858 ** This routine calls the Mem.xDel destructor to dispose of values that 859 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. 860 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this 861 ** routine to invoke the destructor and deallocates Mem.zMalloc. 862 ** 863 ** Use this routine to reset the Mem prior to insert a new value. 864 ** 865 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. 866 */ 867 void sqlite3VdbeMemSetNull(Mem *pMem){ 868 if( VdbeMemDynamic(pMem) ){ 869 vdbeMemClearExternAndSetNull(pMem); 870 }else{ 871 pMem->flags = MEM_Null; 872 } 873 } 874 void sqlite3ValueSetNull(sqlite3_value *p){ 875 sqlite3VdbeMemSetNull((Mem*)p); 876 } 877 878 /* 879 ** Delete any previous value and set the value to be a BLOB of length 880 ** n containing all zeros. 881 */ 882 #ifndef SQLITE_OMIT_INCRBLOB 883 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 884 sqlite3VdbeMemRelease(pMem); 885 pMem->flags = MEM_Blob|MEM_Zero; 886 pMem->n = 0; 887 if( n<0 ) n = 0; 888 pMem->u.nZero = n; 889 pMem->enc = SQLITE_UTF8; 890 pMem->z = 0; 891 } 892 #else 893 int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ 894 int nByte = n>0?n:1; 895 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 896 return SQLITE_NOMEM_BKPT; 897 } 898 assert( pMem->z!=0 ); 899 assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte ); 900 memset(pMem->z, 0, nByte); 901 pMem->n = n>0?n:0; 902 pMem->flags = MEM_Blob; 903 pMem->enc = SQLITE_UTF8; 904 return SQLITE_OK; 905 } 906 #endif 907 908 /* 909 ** The pMem is known to contain content that needs to be destroyed prior 910 ** to a value change. So invoke the destructor, then set the value to 911 ** a 64-bit integer. 912 */ 913 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ 914 sqlite3VdbeMemSetNull(pMem); 915 pMem->u.i = val; 916 pMem->flags = MEM_Int; 917 } 918 919 /* 920 ** Delete any previous value and set the value stored in *pMem to val, 921 ** manifest type INTEGER. 922 */ 923 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ 924 if( VdbeMemDynamic(pMem) ){ 925 vdbeReleaseAndSetInt64(pMem, val); 926 }else{ 927 pMem->u.i = val; 928 pMem->flags = MEM_Int; 929 } 930 } 931 932 /* A no-op destructor */ 933 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } 934 935 /* 936 ** Set the value stored in *pMem should already be a NULL. 937 ** Also store a pointer to go with it. 938 */ 939 void sqlite3VdbeMemSetPointer( 940 Mem *pMem, 941 void *pPtr, 942 const char *zPType, 943 void (*xDestructor)(void*) 944 ){ 945 assert( pMem->flags==MEM_Null ); 946 vdbeMemClear(pMem); 947 pMem->u.zPType = zPType ? zPType : ""; 948 pMem->z = pPtr; 949 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; 950 pMem->eSubtype = 'p'; 951 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; 952 } 953 954 #ifndef SQLITE_OMIT_FLOATING_POINT 955 /* 956 ** Delete any previous value and set the value stored in *pMem to val, 957 ** manifest type REAL. 958 */ 959 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ 960 sqlite3VdbeMemSetNull(pMem); 961 if( !sqlite3IsNaN(val) ){ 962 pMem->u.r = val; 963 pMem->flags = MEM_Real; 964 } 965 } 966 #endif 967 968 #ifdef SQLITE_DEBUG 969 /* 970 ** Return true if the Mem holds a RowSet object. This routine is intended 971 ** for use inside of assert() statements. 972 */ 973 int sqlite3VdbeMemIsRowSet(const Mem *pMem){ 974 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) 975 && pMem->xDel==sqlite3RowSetDelete; 976 } 977 #endif 978 979 /* 980 ** Delete any previous value and set the value of pMem to be an 981 ** empty boolean index. 982 ** 983 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation 984 ** error occurs. 985 */ 986 int sqlite3VdbeMemSetRowSet(Mem *pMem){ 987 sqlite3 *db = pMem->db; 988 RowSet *p; 989 assert( db!=0 ); 990 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 991 sqlite3VdbeMemRelease(pMem); 992 p = sqlite3RowSetInit(db); 993 if( p==0 ) return SQLITE_NOMEM; 994 pMem->z = (char*)p; 995 pMem->flags = MEM_Blob|MEM_Dyn; 996 pMem->xDel = sqlite3RowSetDelete; 997 return SQLITE_OK; 998 } 999 1000 /* 1001 ** Return true if the Mem object contains a TEXT or BLOB that is 1002 ** too large - whose size exceeds SQLITE_MAX_LENGTH. 1003 */ 1004 int sqlite3VdbeMemTooBig(Mem *p){ 1005 assert( p->db!=0 ); 1006 if( p->flags & (MEM_Str|MEM_Blob) ){ 1007 int n = p->n; 1008 if( p->flags & MEM_Zero ){ 1009 n += p->u.nZero; 1010 } 1011 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; 1012 } 1013 return 0; 1014 } 1015 1016 #ifdef SQLITE_DEBUG 1017 /* 1018 ** This routine prepares a memory cell for modification by breaking 1019 ** its link to a shallow copy and by marking any current shallow 1020 ** copies of this cell as invalid. 1021 ** 1022 ** This is used for testing and debugging only - to help ensure that shallow 1023 ** copies (created by OP_SCopy) are not misused. 1024 */ 1025 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ 1026 int i; 1027 Mem *pX; 1028 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){ 1029 if( pX->pScopyFrom==pMem ){ 1030 u16 mFlags; 1031 if( pVdbe->db->flags & SQLITE_VdbeTrace ){ 1032 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", 1033 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); 1034 } 1035 /* If pX is marked as a shallow copy of pMem, then try to verify that 1036 ** no significant changes have been made to pX since the OP_SCopy. 1037 ** A significant change would indicated a missed call to this 1038 ** function for pX. Minor changes, such as adding or removing a 1039 ** dual type, are allowed, as long as the underlying value is the 1040 ** same. */ 1041 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; 1042 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); 1043 1044 /* pMem is the register that is changing. But also mark pX as 1045 ** undefined so that we can quickly detect the shallow-copy error */ 1046 pX->flags = MEM_Undefined; 1047 pX->pScopyFrom = 0; 1048 } 1049 } 1050 pMem->pScopyFrom = 0; 1051 } 1052 #endif /* SQLITE_DEBUG */ 1053 1054 /* 1055 ** Make an shallow copy of pFrom into pTo. Prior contents of 1056 ** pTo are freed. The pFrom->z field is not duplicated. If 1057 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z 1058 ** and flags gets srcType (either MEM_Ephem or MEM_Static). 1059 */ 1060 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ 1061 vdbeMemClearExternAndSetNull(pTo); 1062 assert( !VdbeMemDynamic(pTo) ); 1063 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); 1064 } 1065 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ 1066 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1067 assert( pTo->db==pFrom->db ); 1068 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } 1069 memcpy(pTo, pFrom, MEMCELLSIZE); 1070 if( (pFrom->flags&MEM_Static)==0 ){ 1071 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); 1072 assert( srcType==MEM_Ephem || srcType==MEM_Static ); 1073 pTo->flags |= srcType; 1074 } 1075 } 1076 1077 /* 1078 ** Make a full copy of pFrom into pTo. Prior contents of pTo are 1079 ** freed before the copy is made. 1080 */ 1081 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ 1082 int rc = SQLITE_OK; 1083 1084 assert( !sqlite3VdbeMemIsRowSet(pFrom) ); 1085 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); 1086 memcpy(pTo, pFrom, MEMCELLSIZE); 1087 pTo->flags &= ~MEM_Dyn; 1088 if( pTo->flags&(MEM_Str|MEM_Blob) ){ 1089 if( 0==(pFrom->flags&MEM_Static) ){ 1090 pTo->flags |= MEM_Ephem; 1091 rc = sqlite3VdbeMemMakeWriteable(pTo); 1092 } 1093 } 1094 1095 return rc; 1096 } 1097 1098 /* 1099 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is 1100 ** freed. If pFrom contains ephemeral data, a copy is made. 1101 ** 1102 ** pFrom contains an SQL NULL when this routine returns. 1103 */ 1104 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ 1105 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); 1106 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); 1107 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); 1108 1109 sqlite3VdbeMemRelease(pTo); 1110 memcpy(pTo, pFrom, sizeof(Mem)); 1111 pFrom->flags = MEM_Null; 1112 pFrom->szMalloc = 0; 1113 } 1114 1115 /* 1116 ** Change the value of a Mem to be a string or a BLOB. 1117 ** 1118 ** The memory management strategy depends on the value of the xDel 1119 ** parameter. If the value passed is SQLITE_TRANSIENT, then the 1120 ** string is copied into a (possibly existing) buffer managed by the 1121 ** Mem structure. Otherwise, any existing buffer is freed and the 1122 ** pointer copied. 1123 ** 1124 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH 1125 ** size limit) then no memory allocation occurs. If the string can be 1126 ** stored without allocating memory, then it is. If a memory allocation 1127 ** is required to store the string, then value of pMem is unchanged. In 1128 ** either case, SQLITE_TOOBIG is returned. 1129 ** 1130 ** The "enc" parameter is the text encoding for the string, or zero 1131 ** to store a blob. 1132 ** 1133 ** If n is negative, then the string consists of all bytes up to but 1134 ** excluding the first zero character. The n parameter must be 1135 ** non-negative for blobs. 1136 */ 1137 int sqlite3VdbeMemSetStr( 1138 Mem *pMem, /* Memory cell to set to string value */ 1139 const char *z, /* String pointer */ 1140 i64 n, /* Bytes in string, or negative */ 1141 u8 enc, /* Encoding of z. 0 for BLOBs */ 1142 void (*xDel)(void*) /* Destructor function */ 1143 ){ 1144 i64 nByte = n; /* New value for pMem->n */ 1145 int iLimit; /* Maximum allowed string or blob size */ 1146 u16 flags; /* New value for pMem->flags */ 1147 1148 assert( pMem!=0 ); 1149 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); 1150 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1151 assert( enc!=0 || n>=0 ); 1152 1153 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ 1154 if( !z ){ 1155 sqlite3VdbeMemSetNull(pMem); 1156 return SQLITE_OK; 1157 } 1158 1159 if( pMem->db ){ 1160 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; 1161 }else{ 1162 iLimit = SQLITE_MAX_LENGTH; 1163 } 1164 if( nByte<0 ){ 1165 assert( enc!=0 ); 1166 if( enc==SQLITE_UTF8 ){ 1167 nByte = strlen(z); 1168 }else{ 1169 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} 1170 } 1171 flags= MEM_Str|MEM_Term; 1172 }else if( enc==0 ){ 1173 flags = MEM_Blob; 1174 enc = SQLITE_UTF8; 1175 }else{ 1176 flags = MEM_Str; 1177 } 1178 if( nByte>iLimit ){ 1179 if( xDel && xDel!=SQLITE_TRANSIENT ){ 1180 if( xDel==SQLITE_DYNAMIC ){ 1181 sqlite3DbFree(pMem->db, (void*)z); 1182 }else{ 1183 xDel((void*)z); 1184 } 1185 } 1186 sqlite3VdbeMemSetNull(pMem); 1187 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); 1188 } 1189 1190 /* The following block sets the new values of Mem.z and Mem.xDel. It 1191 ** also sets a flag in local variable "flags" to indicate the memory 1192 ** management (one of MEM_Dyn or MEM_Static). 1193 */ 1194 if( xDel==SQLITE_TRANSIENT ){ 1195 i64 nAlloc = nByte; 1196 if( flags&MEM_Term ){ 1197 nAlloc += (enc==SQLITE_UTF8?1:2); 1198 } 1199 testcase( nAlloc==0 ); 1200 testcase( nAlloc==31 ); 1201 testcase( nAlloc==32 ); 1202 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ 1203 return SQLITE_NOMEM_BKPT; 1204 } 1205 memcpy(pMem->z, z, nAlloc); 1206 }else{ 1207 sqlite3VdbeMemRelease(pMem); 1208 pMem->z = (char *)z; 1209 if( xDel==SQLITE_DYNAMIC ){ 1210 pMem->zMalloc = pMem->z; 1211 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); 1212 }else{ 1213 pMem->xDel = xDel; 1214 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); 1215 } 1216 } 1217 1218 pMem->n = (int)(nByte & 0x7fffffff); 1219 pMem->flags = flags; 1220 pMem->enc = enc; 1221 1222 #ifndef SQLITE_OMIT_UTF16 1223 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ 1224 return SQLITE_NOMEM_BKPT; 1225 } 1226 #endif 1227 1228 1229 return SQLITE_OK; 1230 } 1231 1232 /* 1233 ** Move data out of a btree key or data field and into a Mem structure. 1234 ** The data is payload from the entry that pCur is currently pointing 1235 ** to. offset and amt determine what portion of the data or key to retrieve. 1236 ** The result is written into the pMem element. 1237 ** 1238 ** The pMem object must have been initialized. This routine will use 1239 ** pMem->zMalloc to hold the content from the btree, if possible. New 1240 ** pMem->zMalloc space will be allocated if necessary. The calling routine 1241 ** is responsible for making sure that the pMem object is eventually 1242 ** destroyed. 1243 ** 1244 ** If this routine fails for any reason (malloc returns NULL or unable 1245 ** to read from the disk) then the pMem is left in an inconsistent state. 1246 */ 1247 int sqlite3VdbeMemFromBtree( 1248 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1249 u32 offset, /* Offset from the start of data to return bytes from. */ 1250 u32 amt, /* Number of bytes to return. */ 1251 Mem *pMem /* OUT: Return data in this Mem structure. */ 1252 ){ 1253 int rc; 1254 pMem->flags = MEM_Null; 1255 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ 1256 return SQLITE_CORRUPT_BKPT; 1257 } 1258 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ 1259 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); 1260 if( rc==SQLITE_OK ){ 1261 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ 1262 pMem->flags = MEM_Blob; 1263 pMem->n = (int)amt; 1264 }else{ 1265 sqlite3VdbeMemRelease(pMem); 1266 } 1267 } 1268 return rc; 1269 } 1270 int sqlite3VdbeMemFromBtreeZeroOffset( 1271 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ 1272 u32 amt, /* Number of bytes to return. */ 1273 Mem *pMem /* OUT: Return data in this Mem structure. */ 1274 ){ 1275 u32 available = 0; /* Number of bytes available on the local btree page */ 1276 int rc = SQLITE_OK; /* Return code */ 1277 1278 assert( sqlite3BtreeCursorIsValid(pCur) ); 1279 assert( !VdbeMemDynamic(pMem) ); 1280 1281 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 1282 ** that both the BtShared and database handle mutexes are held. */ 1283 assert( !sqlite3VdbeMemIsRowSet(pMem) ); 1284 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); 1285 assert( pMem->z!=0 ); 1286 1287 if( amt<=available ){ 1288 pMem->flags = MEM_Blob|MEM_Ephem; 1289 pMem->n = (int)amt; 1290 }else{ 1291 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); 1292 } 1293 1294 return rc; 1295 } 1296 1297 /* 1298 ** The pVal argument is known to be a value other than NULL. 1299 ** Convert it into a string with encoding enc and return a pointer 1300 ** to a zero-terminated version of that string. 1301 */ 1302 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ 1303 assert( pVal!=0 ); 1304 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1305 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1306 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1307 assert( (pVal->flags & (MEM_Null))==0 ); 1308 if( pVal->flags & (MEM_Blob|MEM_Str) ){ 1309 if( ExpandBlob(pVal) ) return 0; 1310 pVal->flags |= MEM_Str; 1311 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ 1312 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); 1313 } 1314 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ 1315 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); 1316 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ 1317 return 0; 1318 } 1319 } 1320 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ 1321 }else{ 1322 sqlite3VdbeMemStringify(pVal, enc, 0); 1323 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); 1324 } 1325 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 1326 || pVal->db->mallocFailed ); 1327 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ 1328 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1329 return pVal->z; 1330 }else{ 1331 return 0; 1332 } 1333 } 1334 1335 /* This function is only available internally, it is not part of the 1336 ** external API. It works in a similar way to sqlite3_value_text(), 1337 ** except the data returned is in the encoding specified by the second 1338 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or 1339 ** SQLITE_UTF8. 1340 ** 1341 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. 1342 ** If that is the case, then the result must be aligned on an even byte 1343 ** boundary. 1344 */ 1345 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ 1346 if( !pVal ) return 0; 1347 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); 1348 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); 1349 assert( !sqlite3VdbeMemIsRowSet(pVal) ); 1350 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ 1351 assert( sqlite3VdbeMemValidStrRep(pVal) ); 1352 return pVal->z; 1353 } 1354 if( pVal->flags&MEM_Null ){ 1355 return 0; 1356 } 1357 return valueToText(pVal, enc); 1358 } 1359 1360 /* 1361 ** Create a new sqlite3_value object. 1362 */ 1363 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ 1364 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); 1365 if( p ){ 1366 p->flags = MEM_Null; 1367 p->db = db; 1368 } 1369 return p; 1370 } 1371 1372 /* 1373 ** Context object passed by sqlite3Stat4ProbeSetValue() through to 1374 ** valueNew(). See comments above valueNew() for details. 1375 */ 1376 struct ValueNewStat4Ctx { 1377 Parse *pParse; 1378 Index *pIdx; 1379 UnpackedRecord **ppRec; 1380 int iVal; 1381 }; 1382 1383 /* 1384 ** Allocate and return a pointer to a new sqlite3_value object. If 1385 ** the second argument to this function is NULL, the object is allocated 1386 ** by calling sqlite3ValueNew(). 1387 ** 1388 ** Otherwise, if the second argument is non-zero, then this function is 1389 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not 1390 ** already been allocated, allocate the UnpackedRecord structure that 1391 ** that function will return to its caller here. Then return a pointer to 1392 ** an sqlite3_value within the UnpackedRecord.a[] array. 1393 */ 1394 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ 1395 #ifdef SQLITE_ENABLE_STAT4 1396 if( p ){ 1397 UnpackedRecord *pRec = p->ppRec[0]; 1398 1399 if( pRec==0 ){ 1400 Index *pIdx = p->pIdx; /* Index being probed */ 1401 int nByte; /* Bytes of space to allocate */ 1402 int i; /* Counter variable */ 1403 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ 1404 1405 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); 1406 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); 1407 if( pRec ){ 1408 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); 1409 if( pRec->pKeyInfo ){ 1410 assert( pRec->pKeyInfo->nAllField==nCol ); 1411 assert( pRec->pKeyInfo->enc==ENC(db) ); 1412 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); 1413 for(i=0; i<nCol; i++){ 1414 pRec->aMem[i].flags = MEM_Null; 1415 pRec->aMem[i].db = db; 1416 } 1417 }else{ 1418 sqlite3DbFreeNN(db, pRec); 1419 pRec = 0; 1420 } 1421 } 1422 if( pRec==0 ) return 0; 1423 p->ppRec[0] = pRec; 1424 } 1425 1426 pRec->nField = p->iVal+1; 1427 return &pRec->aMem[p->iVal]; 1428 } 1429 #else 1430 UNUSED_PARAMETER(p); 1431 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1432 return sqlite3ValueNew(db); 1433 } 1434 1435 /* 1436 ** The expression object indicated by the second argument is guaranteed 1437 ** to be a scalar SQL function. If 1438 ** 1439 ** * all function arguments are SQL literals, 1440 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and 1441 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, 1442 ** 1443 ** then this routine attempts to invoke the SQL function. Assuming no 1444 ** error occurs, output parameter (*ppVal) is set to point to a value 1445 ** object containing the result before returning SQLITE_OK. 1446 ** 1447 ** Affinity aff is applied to the result of the function before returning. 1448 ** If the result is a text value, the sqlite3_value object uses encoding 1449 ** enc. 1450 ** 1451 ** If the conditions above are not met, this function returns SQLITE_OK 1452 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to 1453 ** NULL and an SQLite error code returned. 1454 */ 1455 #ifdef SQLITE_ENABLE_STAT4 1456 static int valueFromFunction( 1457 sqlite3 *db, /* The database connection */ 1458 const Expr *p, /* The expression to evaluate */ 1459 u8 enc, /* Encoding to use */ 1460 u8 aff, /* Affinity to use */ 1461 sqlite3_value **ppVal, /* Write the new value here */ 1462 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1463 ){ 1464 sqlite3_context ctx; /* Context object for function invocation */ 1465 sqlite3_value **apVal = 0; /* Function arguments */ 1466 int nVal = 0; /* Size of apVal[] array */ 1467 FuncDef *pFunc = 0; /* Function definition */ 1468 sqlite3_value *pVal = 0; /* New value */ 1469 int rc = SQLITE_OK; /* Return code */ 1470 ExprList *pList = 0; /* Function arguments */ 1471 int i; /* Iterator variable */ 1472 1473 assert( pCtx!=0 ); 1474 assert( (p->flags & EP_TokenOnly)==0 ); 1475 assert( ExprUseXList(p) ); 1476 pList = p->x.pList; 1477 if( pList ) nVal = pList->nExpr; 1478 assert( !ExprHasProperty(p, EP_IntValue) ); 1479 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); 1480 assert( pFunc ); 1481 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 1482 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 1483 ){ 1484 return SQLITE_OK; 1485 } 1486 1487 if( pList ){ 1488 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); 1489 if( apVal==0 ){ 1490 rc = SQLITE_NOMEM_BKPT; 1491 goto value_from_function_out; 1492 } 1493 for(i=0; i<nVal; i++){ 1494 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); 1495 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; 1496 } 1497 } 1498 1499 pVal = valueNew(db, pCtx); 1500 if( pVal==0 ){ 1501 rc = SQLITE_NOMEM_BKPT; 1502 goto value_from_function_out; 1503 } 1504 1505 testcase( pCtx->pParse->rc==SQLITE_ERROR ); 1506 testcase( pCtx->pParse->rc==SQLITE_OK ); 1507 memset(&ctx, 0, sizeof(ctx)); 1508 ctx.pOut = pVal; 1509 ctx.pFunc = pFunc; 1510 ctx.enc = ENC(db); 1511 pFunc->xSFunc(&ctx, nVal, apVal); 1512 if( ctx.isError ){ 1513 rc = ctx.isError; 1514 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); 1515 }else{ 1516 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); 1517 assert( rc==SQLITE_OK ); 1518 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1519 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ 1520 rc = SQLITE_TOOBIG; 1521 pCtx->pParse->nErr++; 1522 } 1523 } 1524 pCtx->pParse->rc = rc; 1525 1526 value_from_function_out: 1527 if( rc!=SQLITE_OK ){ 1528 pVal = 0; 1529 } 1530 if( apVal ){ 1531 for(i=0; i<nVal; i++){ 1532 sqlite3ValueFree(apVal[i]); 1533 } 1534 sqlite3DbFreeNN(db, apVal); 1535 } 1536 1537 *ppVal = pVal; 1538 return rc; 1539 } 1540 #else 1541 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK 1542 #endif /* defined(SQLITE_ENABLE_STAT4) */ 1543 1544 /* 1545 ** Extract a value from the supplied expression in the manner described 1546 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object 1547 ** using valueNew(). 1548 ** 1549 ** If pCtx is NULL and an error occurs after the sqlite3_value object 1550 ** has been allocated, it is freed before returning. Or, if pCtx is not 1551 ** NULL, it is assumed that the caller will free any allocated object 1552 ** in all cases. 1553 */ 1554 static int valueFromExpr( 1555 sqlite3 *db, /* The database connection */ 1556 const Expr *pExpr, /* The expression to evaluate */ 1557 u8 enc, /* Encoding to use */ 1558 u8 affinity, /* Affinity to use */ 1559 sqlite3_value **ppVal, /* Write the new value here */ 1560 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ 1561 ){ 1562 int op; 1563 char *zVal = 0; 1564 sqlite3_value *pVal = 0; 1565 int negInt = 1; 1566 const char *zNeg = ""; 1567 int rc = SQLITE_OK; 1568 1569 assert( pExpr!=0 ); 1570 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; 1571 if( op==TK_REGISTER ) op = pExpr->op2; 1572 1573 /* Compressed expressions only appear when parsing the DEFAULT clause 1574 ** on a table column definition, and hence only when pCtx==0. This 1575 ** check ensures that an EP_TokenOnly expression is never passed down 1576 ** into valueFromFunction(). */ 1577 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); 1578 1579 if( op==TK_CAST ){ 1580 u8 aff; 1581 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1582 aff = sqlite3AffinityType(pExpr->u.zToken,0); 1583 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); 1584 testcase( rc!=SQLITE_OK ); 1585 if( *ppVal ){ 1586 sqlite3VdbeMemCast(*ppVal, aff, enc); 1587 sqlite3ValueApplyAffinity(*ppVal, affinity, enc); 1588 } 1589 return rc; 1590 } 1591 1592 /* Handle negative integers in a single step. This is needed in the 1593 ** case when the value is -9223372036854775808. 1594 */ 1595 if( op==TK_UMINUS 1596 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ 1597 pExpr = pExpr->pLeft; 1598 op = pExpr->op; 1599 negInt = -1; 1600 zNeg = "-"; 1601 } 1602 1603 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ 1604 pVal = valueNew(db, pCtx); 1605 if( pVal==0 ) goto no_mem; 1606 if( ExprHasProperty(pExpr, EP_IntValue) ){ 1607 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); 1608 }else{ 1609 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); 1610 if( zVal==0 ) goto no_mem; 1611 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); 1612 } 1613 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ 1614 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); 1615 }else{ 1616 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); 1617 } 1618 assert( (pVal->flags & MEM_IntReal)==0 ); 1619 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ 1620 testcase( pVal->flags & MEM_Int ); 1621 testcase( pVal->flags & MEM_Real ); 1622 pVal->flags &= ~MEM_Str; 1623 } 1624 if( enc!=SQLITE_UTF8 ){ 1625 rc = sqlite3VdbeChangeEncoding(pVal, enc); 1626 } 1627 }else if( op==TK_UMINUS ) { 1628 /* This branch happens for multiple negative signs. Ex: -(-5) */ 1629 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) 1630 && pVal!=0 1631 ){ 1632 sqlite3VdbeMemNumerify(pVal); 1633 if( pVal->flags & MEM_Real ){ 1634 pVal->u.r = -pVal->u.r; 1635 }else if( pVal->u.i==SMALLEST_INT64 ){ 1636 #ifndef SQLITE_OMIT_FLOATING_POINT 1637 pVal->u.r = -(double)SMALLEST_INT64; 1638 #else 1639 pVal->u.r = LARGEST_INT64; 1640 #endif 1641 MemSetTypeFlag(pVal, MEM_Real); 1642 }else{ 1643 pVal->u.i = -pVal->u.i; 1644 } 1645 sqlite3ValueApplyAffinity(pVal, affinity, enc); 1646 } 1647 }else if( op==TK_NULL ){ 1648 pVal = valueNew(db, pCtx); 1649 if( pVal==0 ) goto no_mem; 1650 sqlite3VdbeMemSetNull(pVal); 1651 } 1652 #ifndef SQLITE_OMIT_BLOB_LITERAL 1653 else if( op==TK_BLOB ){ 1654 int nVal; 1655 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1656 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 1657 assert( pExpr->u.zToken[1]=='\'' ); 1658 pVal = valueNew(db, pCtx); 1659 if( !pVal ) goto no_mem; 1660 zVal = &pExpr->u.zToken[2]; 1661 nVal = sqlite3Strlen30(zVal)-1; 1662 assert( zVal[nVal]=='\'' ); 1663 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 1664 0, SQLITE_DYNAMIC); 1665 } 1666 #endif 1667 #ifdef SQLITE_ENABLE_STAT4 1668 else if( op==TK_FUNCTION && pCtx!=0 ){ 1669 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); 1670 } 1671 #endif 1672 else if( op==TK_TRUEFALSE ){ 1673 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1674 pVal = valueNew(db, pCtx); 1675 if( pVal ){ 1676 pVal->flags = MEM_Int; 1677 pVal->u.i = pExpr->u.zToken[4]==0; 1678 } 1679 } 1680 1681 *ppVal = pVal; 1682 return rc; 1683 1684 no_mem: 1685 #ifdef SQLITE_ENABLE_STAT4 1686 if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) ) 1687 #endif 1688 sqlite3OomFault(db); 1689 sqlite3DbFree(db, zVal); 1690 assert( *ppVal==0 ); 1691 #ifdef SQLITE_ENABLE_STAT4 1692 if( pCtx==0 ) sqlite3ValueFree(pVal); 1693 #else 1694 assert( pCtx==0 ); sqlite3ValueFree(pVal); 1695 #endif 1696 return SQLITE_NOMEM_BKPT; 1697 } 1698 1699 /* 1700 ** Create a new sqlite3_value object, containing the value of pExpr. 1701 ** 1702 ** This only works for very simple expressions that consist of one constant 1703 ** token (i.e. "5", "5.1", "'a string'"). If the expression can 1704 ** be converted directly into a value, then the value is allocated and 1705 ** a pointer written to *ppVal. The caller is responsible for deallocating 1706 ** the value by passing it to sqlite3ValueFree() later on. If the expression 1707 ** cannot be converted to a value, then *ppVal is set to NULL. 1708 */ 1709 int sqlite3ValueFromExpr( 1710 sqlite3 *db, /* The database connection */ 1711 const Expr *pExpr, /* The expression to evaluate */ 1712 u8 enc, /* Encoding to use */ 1713 u8 affinity, /* Affinity to use */ 1714 sqlite3_value **ppVal /* Write the new value here */ 1715 ){ 1716 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; 1717 } 1718 1719 #ifdef SQLITE_ENABLE_STAT4 1720 /* 1721 ** Attempt to extract a value from pExpr and use it to construct *ppVal. 1722 ** 1723 ** If pAlloc is not NULL, then an UnpackedRecord object is created for 1724 ** pAlloc if one does not exist and the new value is added to the 1725 ** UnpackedRecord object. 1726 ** 1727 ** A value is extracted in the following cases: 1728 ** 1729 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1730 ** 1731 ** * The expression is a bound variable, and this is a reprepare, or 1732 ** 1733 ** * The expression is a literal value. 1734 ** 1735 ** On success, *ppVal is made to point to the extracted value. The caller 1736 ** is responsible for ensuring that the value is eventually freed. 1737 */ 1738 static int stat4ValueFromExpr( 1739 Parse *pParse, /* Parse context */ 1740 Expr *pExpr, /* The expression to extract a value from */ 1741 u8 affinity, /* Affinity to use */ 1742 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ 1743 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1744 ){ 1745 int rc = SQLITE_OK; 1746 sqlite3_value *pVal = 0; 1747 sqlite3 *db = pParse->db; 1748 1749 /* Skip over any TK_COLLATE nodes */ 1750 pExpr = sqlite3ExprSkipCollate(pExpr); 1751 1752 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); 1753 if( !pExpr ){ 1754 pVal = valueNew(db, pAlloc); 1755 if( pVal ){ 1756 sqlite3VdbeMemSetNull((Mem*)pVal); 1757 } 1758 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ 1759 Vdbe *v; 1760 int iBindVar = pExpr->iColumn; 1761 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); 1762 if( (v = pParse->pReprepare)!=0 ){ 1763 pVal = valueNew(db, pAlloc); 1764 if( pVal ){ 1765 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); 1766 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); 1767 pVal->db = pParse->db; 1768 } 1769 } 1770 }else{ 1771 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); 1772 } 1773 1774 assert( pVal==0 || pVal->db==db ); 1775 *ppVal = pVal; 1776 return rc; 1777 } 1778 1779 /* 1780 ** This function is used to allocate and populate UnpackedRecord 1781 ** structures intended to be compared against sample index keys stored 1782 ** in the sqlite_stat4 table. 1783 ** 1784 ** A single call to this function populates zero or more fields of the 1785 ** record starting with field iVal (fields are numbered from left to 1786 ** right starting with 0). A single field is populated if: 1787 ** 1788 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, 1789 ** 1790 ** * The expression is a bound variable, and this is a reprepare, or 1791 ** 1792 ** * The sqlite3ValueFromExpr() function is able to extract a value 1793 ** from the expression (i.e. the expression is a literal value). 1794 ** 1795 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the 1796 ** vector components that match either of the two latter criteria listed 1797 ** above. 1798 ** 1799 ** Before any value is appended to the record, the affinity of the 1800 ** corresponding column within index pIdx is applied to it. Before 1801 ** this function returns, output parameter *pnExtract is set to the 1802 ** number of values appended to the record. 1803 ** 1804 ** When this function is called, *ppRec must either point to an object 1805 ** allocated by an earlier call to this function, or must be NULL. If it 1806 ** is NULL and a value can be successfully extracted, a new UnpackedRecord 1807 ** is allocated (and *ppRec set to point to it) before returning. 1808 ** 1809 ** Unless an error is encountered, SQLITE_OK is returned. It is not an 1810 ** error if a value cannot be extracted from pExpr. If an error does 1811 ** occur, an SQLite error code is returned. 1812 */ 1813 int sqlite3Stat4ProbeSetValue( 1814 Parse *pParse, /* Parse context */ 1815 Index *pIdx, /* Index being probed */ 1816 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ 1817 Expr *pExpr, /* The expression to extract a value from */ 1818 int nElem, /* Maximum number of values to append */ 1819 int iVal, /* Array element to populate */ 1820 int *pnExtract /* OUT: Values appended to the record */ 1821 ){ 1822 int rc = SQLITE_OK; 1823 int nExtract = 0; 1824 1825 if( pExpr==0 || pExpr->op!=TK_SELECT ){ 1826 int i; 1827 struct ValueNewStat4Ctx alloc; 1828 1829 alloc.pParse = pParse; 1830 alloc.pIdx = pIdx; 1831 alloc.ppRec = ppRec; 1832 1833 for(i=0; i<nElem; i++){ 1834 sqlite3_value *pVal = 0; 1835 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); 1836 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); 1837 alloc.iVal = iVal+i; 1838 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); 1839 if( !pVal ) break; 1840 nExtract++; 1841 } 1842 } 1843 1844 *pnExtract = nExtract; 1845 return rc; 1846 } 1847 1848 /* 1849 ** Attempt to extract a value from expression pExpr using the methods 1850 ** as described for sqlite3Stat4ProbeSetValue() above. 1851 ** 1852 ** If successful, set *ppVal to point to a new value object and return 1853 ** SQLITE_OK. If no value can be extracted, but no other error occurs 1854 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error 1855 ** does occur, return an SQLite error code. The final value of *ppVal 1856 ** is undefined in this case. 1857 */ 1858 int sqlite3Stat4ValueFromExpr( 1859 Parse *pParse, /* Parse context */ 1860 Expr *pExpr, /* The expression to extract a value from */ 1861 u8 affinity, /* Affinity to use */ 1862 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ 1863 ){ 1864 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); 1865 } 1866 1867 /* 1868 ** Extract the iCol-th column from the nRec-byte record in pRec. Write 1869 ** the column value into *ppVal. If *ppVal is initially NULL then a new 1870 ** sqlite3_value object is allocated. 1871 ** 1872 ** If *ppVal is initially NULL then the caller is responsible for 1873 ** ensuring that the value written into *ppVal is eventually freed. 1874 */ 1875 int sqlite3Stat4Column( 1876 sqlite3 *db, /* Database handle */ 1877 const void *pRec, /* Pointer to buffer containing record */ 1878 int nRec, /* Size of buffer pRec in bytes */ 1879 int iCol, /* Column to extract */ 1880 sqlite3_value **ppVal /* OUT: Extracted value */ 1881 ){ 1882 u32 t = 0; /* a column type code */ 1883 int nHdr; /* Size of the header in the record */ 1884 int iHdr; /* Next unread header byte */ 1885 int iField; /* Next unread data byte */ 1886 int szField = 0; /* Size of the current data field */ 1887 int i; /* Column index */ 1888 u8 *a = (u8*)pRec; /* Typecast byte array */ 1889 Mem *pMem = *ppVal; /* Write result into this Mem object */ 1890 1891 assert( iCol>0 ); 1892 iHdr = getVarint32(a, nHdr); 1893 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; 1894 iField = nHdr; 1895 for(i=0; i<=iCol; i++){ 1896 iHdr += getVarint32(&a[iHdr], t); 1897 testcase( iHdr==nHdr ); 1898 testcase( iHdr==nHdr+1 ); 1899 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; 1900 szField = sqlite3VdbeSerialTypeLen(t); 1901 iField += szField; 1902 } 1903 testcase( iField==nRec ); 1904 testcase( iField==nRec+1 ); 1905 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; 1906 if( pMem==0 ){ 1907 pMem = *ppVal = sqlite3ValueNew(db); 1908 if( pMem==0 ) return SQLITE_NOMEM_BKPT; 1909 } 1910 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); 1911 pMem->enc = ENC(db); 1912 return SQLITE_OK; 1913 } 1914 1915 /* 1916 ** Unless it is NULL, the argument must be an UnpackedRecord object returned 1917 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes 1918 ** the object. 1919 */ 1920 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ 1921 if( pRec ){ 1922 int i; 1923 int nCol = pRec->pKeyInfo->nAllField; 1924 Mem *aMem = pRec->aMem; 1925 sqlite3 *db = aMem[0].db; 1926 for(i=0; i<nCol; i++){ 1927 sqlite3VdbeMemRelease(&aMem[i]); 1928 } 1929 sqlite3KeyInfoUnref(pRec->pKeyInfo); 1930 sqlite3DbFreeNN(db, pRec); 1931 } 1932 } 1933 #endif /* ifdef SQLITE_ENABLE_STAT4 */ 1934 1935 /* 1936 ** Change the string value of an sqlite3_value object 1937 */ 1938 void sqlite3ValueSetStr( 1939 sqlite3_value *v, /* Value to be set */ 1940 int n, /* Length of string z */ 1941 const void *z, /* Text of the new string */ 1942 u8 enc, /* Encoding to use */ 1943 void (*xDel)(void*) /* Destructor for the string */ 1944 ){ 1945 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); 1946 } 1947 1948 /* 1949 ** Free an sqlite3_value object 1950 */ 1951 void sqlite3ValueFree(sqlite3_value *v){ 1952 if( !v ) return; 1953 sqlite3VdbeMemRelease((Mem *)v); 1954 sqlite3DbFreeNN(((Mem*)v)->db, v); 1955 } 1956 1957 /* 1958 ** The sqlite3ValueBytes() routine returns the number of bytes in the 1959 ** sqlite3_value object assuming that it uses the encoding "enc". 1960 ** The valueBytes() routine is a helper function. 1961 */ 1962 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ 1963 return valueToText(pVal, enc)!=0 ? pVal->n : 0; 1964 } 1965 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ 1966 Mem *p = (Mem*)pVal; 1967 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); 1968 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ 1969 return p->n; 1970 } 1971 if( (p->flags & MEM_Str)!=0 && enc!=SQLITE_UTF8 && pVal->enc!=SQLITE_UTF8 ){ 1972 return p->n; 1973 } 1974 if( (p->flags & MEM_Blob)!=0 ){ 1975 if( p->flags & MEM_Zero ){ 1976 return p->n + p->u.nZero; 1977 }else{ 1978 return p->n; 1979 } 1980 } 1981 if( p->flags & MEM_Null ) return 0; 1982 return valueBytes(pVal, enc); 1983 } 1984