1 /* 2 ** 2003 September 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used for creating, destroying, and populating 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 14 */ 15 #include "sqliteInt.h" 16 #include "vdbeInt.h" 17 18 /* Forward references */ 19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 20 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 21 22 /* 23 ** Create a new virtual database engine. 24 */ 25 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 26 sqlite3 *db = pParse->db; 27 Vdbe *p; 28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 29 if( p==0 ) return 0; 30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 31 p->db = db; 32 if( db->pVdbe ){ 33 db->pVdbe->ppVPrev = &p->pVNext; 34 } 35 p->pVNext = db->pVdbe; 36 p->ppVPrev = &db->pVdbe; 37 db->pVdbe = p; 38 assert( p->eVdbeState==VDBE_INIT_STATE ); 39 p->pParse = pParse; 40 pParse->pVdbe = p; 41 assert( pParse->aLabel==0 ); 42 assert( pParse->nLabel==0 ); 43 assert( p->nOpAlloc==0 ); 44 assert( pParse->szOpAlloc==0 ); 45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 46 return p; 47 } 48 49 /* 50 ** Return the Parse object that owns a Vdbe object. 51 */ 52 Parse *sqlite3VdbeParser(Vdbe *p){ 53 return p->pParse; 54 } 55 56 /* 57 ** Change the error string stored in Vdbe.zErrMsg 58 */ 59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 60 va_list ap; 61 sqlite3DbFree(p->db, p->zErrMsg); 62 va_start(ap, zFormat); 63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 64 va_end(ap); 65 } 66 67 /* 68 ** Remember the SQL string for a prepared statement. 69 */ 70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 71 if( p==0 ) return; 72 p->prepFlags = prepFlags; 73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 74 p->expmask = 0; 75 } 76 assert( p->zSql==0 ); 77 p->zSql = sqlite3DbStrNDup(p->db, z, n); 78 } 79 80 #ifdef SQLITE_ENABLE_NORMALIZE 81 /* 82 ** Add a new element to the Vdbe->pDblStr list. 83 */ 84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 85 if( p ){ 86 int n = sqlite3Strlen30(z); 87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 88 sizeof(*pStr)+n+1-sizeof(pStr->z)); 89 if( pStr ){ 90 pStr->pNextStr = p->pDblStr; 91 p->pDblStr = pStr; 92 memcpy(pStr->z, z, n+1); 93 } 94 } 95 } 96 #endif 97 98 #ifdef SQLITE_ENABLE_NORMALIZE 99 /* 100 ** zId of length nId is a double-quoted identifier. Check to see if 101 ** that identifier is really used as a string literal. 102 */ 103 int sqlite3VdbeUsesDoubleQuotedString( 104 Vdbe *pVdbe, /* The prepared statement */ 105 const char *zId /* The double-quoted identifier, already dequoted */ 106 ){ 107 DblquoteStr *pStr; 108 assert( zId!=0 ); 109 if( pVdbe->pDblStr==0 ) return 0; 110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 111 if( strcmp(zId, pStr->z)==0 ) return 1; 112 } 113 return 0; 114 } 115 #endif 116 117 /* 118 ** Swap byte-code between two VDBE structures. 119 ** 120 ** This happens after pB was previously run and returned 121 ** SQLITE_SCHEMA. The statement was then reprepared in pA. 122 ** This routine transfers the new bytecode in pA over to pB 123 ** so that pB can be run again. The old pB byte code is 124 ** moved back to pA so that it will be cleaned up when pA is 125 ** finalized. 126 */ 127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 128 Vdbe tmp, *pTmp, **ppTmp; 129 char *zTmp; 130 assert( pA->db==pB->db ); 131 tmp = *pA; 132 *pA = *pB; 133 *pB = tmp; 134 pTmp = pA->pVNext; 135 pA->pVNext = pB->pVNext; 136 pB->pVNext = pTmp; 137 ppTmp = pA->ppVPrev; 138 pA->ppVPrev = pB->ppVPrev; 139 pB->ppVPrev = ppTmp; 140 zTmp = pA->zSql; 141 pA->zSql = pB->zSql; 142 pB->zSql = zTmp; 143 #ifdef SQLITE_ENABLE_NORMALIZE 144 zTmp = pA->zNormSql; 145 pA->zNormSql = pB->zNormSql; 146 pB->zNormSql = zTmp; 147 #endif 148 pB->expmask = pA->expmask; 149 pB->prepFlags = pA->prepFlags; 150 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 151 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 152 } 153 154 /* 155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 156 ** than its current size. nOp is guaranteed to be less than or equal 157 ** to 1024/sizeof(Op). 158 ** 159 ** If an out-of-memory error occurs while resizing the array, return 160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 161 ** unchanged (this is so that any opcodes already allocated can be 162 ** correctly deallocated along with the rest of the Vdbe). 163 */ 164 static int growOpArray(Vdbe *v, int nOp){ 165 VdbeOp *pNew; 166 Parse *p = v->pParse; 167 168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 169 ** more frequent reallocs and hence provide more opportunities for 170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 172 ** by the minimum* amount required until the size reaches 512. Normal 173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 174 ** size of the op array or add 1KB of space, whichever is smaller. */ 175 #ifdef SQLITE_TEST_REALLOC_STRESS 176 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 177 : (sqlite3_int64)v->nOpAlloc+nOp); 178 #else 179 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 180 : (sqlite3_int64)(1024/sizeof(Op))); 181 UNUSED_PARAMETER(nOp); 182 #endif 183 184 /* Ensure that the size of a VDBE does not grow too large */ 185 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 186 sqlite3OomFault(p->db); 187 return SQLITE_NOMEM; 188 } 189 190 assert( nOp<=(int)(1024/sizeof(Op)) ); 191 assert( nNew>=(v->nOpAlloc+nOp) ); 192 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 193 if( pNew ){ 194 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 195 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 196 v->aOp = pNew; 197 } 198 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 199 } 200 201 #ifdef SQLITE_DEBUG 202 /* This routine is just a convenient place to set a breakpoint that will 203 ** fire after each opcode is inserted and displayed using 204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 205 ** pOp are available to make the breakpoint conditional. 206 ** 207 ** Other useful labels for breakpoints include: 208 ** test_trace_breakpoint(pc,pOp) 209 ** sqlite3CorruptError(lineno) 210 ** sqlite3MisuseError(lineno) 211 ** sqlite3CantopenError(lineno) 212 */ 213 static void test_addop_breakpoint(int pc, Op *pOp){ 214 static int n = 0; 215 n++; 216 } 217 #endif 218 219 /* 220 ** Add a new instruction to the list of instructions current in the 221 ** VDBE. Return the address of the new instruction. 222 ** 223 ** Parameters: 224 ** 225 ** p Pointer to the VDBE 226 ** 227 ** op The opcode for this instruction 228 ** 229 ** p1, p2, p3 Operands 230 ** 231 ** Use the sqlite3VdbeResolveLabel() function to fix an address and 232 ** the sqlite3VdbeChangeP4() function to change the value of the P4 233 ** operand. 234 */ 235 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 236 assert( p->nOpAlloc<=p->nOp ); 237 if( growOpArray(p, 1) ) return 1; 238 assert( p->nOpAlloc>p->nOp ); 239 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 240 } 241 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 242 int i; 243 VdbeOp *pOp; 244 245 i = p->nOp; 246 assert( p->eVdbeState==VDBE_INIT_STATE ); 247 assert( op>=0 && op<0xff ); 248 if( p->nOpAlloc<=i ){ 249 return growOp3(p, op, p1, p2, p3); 250 } 251 assert( p->aOp!=0 ); 252 p->nOp++; 253 pOp = &p->aOp[i]; 254 assert( pOp!=0 ); 255 pOp->opcode = (u8)op; 256 pOp->p5 = 0; 257 pOp->p1 = p1; 258 pOp->p2 = p2; 259 pOp->p3 = p3; 260 pOp->p4.p = 0; 261 pOp->p4type = P4_NOTUSED; 262 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 263 pOp->zComment = 0; 264 #endif 265 #ifdef SQLITE_DEBUG 266 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 267 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 268 test_addop_breakpoint(i, &p->aOp[i]); 269 } 270 #endif 271 #ifdef VDBE_PROFILE 272 pOp->cycles = 0; 273 pOp->cnt = 0; 274 #endif 275 #ifdef SQLITE_VDBE_COVERAGE 276 pOp->iSrcLine = 0; 277 #endif 278 return i; 279 } 280 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 281 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 282 } 283 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 284 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 285 } 286 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 287 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 288 } 289 290 /* Generate code for an unconditional jump to instruction iDest 291 */ 292 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 293 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 294 } 295 296 /* Generate code to cause the string zStr to be loaded into 297 ** register iDest 298 */ 299 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 300 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 301 } 302 303 /* 304 ** Generate code that initializes multiple registers to string or integer 305 ** constants. The registers begin with iDest and increase consecutively. 306 ** One register is initialized for each characgter in zTypes[]. For each 307 ** "s" character in zTypes[], the register is a string if the argument is 308 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 309 ** in zTypes[], the register is initialized to an integer. 310 ** 311 ** If the input string does not end with "X" then an OP_ResultRow instruction 312 ** is generated for the values inserted. 313 */ 314 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 315 va_list ap; 316 int i; 317 char c; 318 va_start(ap, zTypes); 319 for(i=0; (c = zTypes[i])!=0; i++){ 320 if( c=='s' ){ 321 const char *z = va_arg(ap, const char*); 322 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 323 }else if( c=='i' ){ 324 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 325 }else{ 326 goto skip_op_resultrow; 327 } 328 } 329 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 330 skip_op_resultrow: 331 va_end(ap); 332 } 333 334 /* 335 ** Add an opcode that includes the p4 value as a pointer. 336 */ 337 int sqlite3VdbeAddOp4( 338 Vdbe *p, /* Add the opcode to this VM */ 339 int op, /* The new opcode */ 340 int p1, /* The P1 operand */ 341 int p2, /* The P2 operand */ 342 int p3, /* The P3 operand */ 343 const char *zP4, /* The P4 operand */ 344 int p4type /* P4 operand type */ 345 ){ 346 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 347 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 348 return addr; 349 } 350 351 /* 352 ** Add an OP_Function or OP_PureFunc opcode. 353 ** 354 ** The eCallCtx argument is information (typically taken from Expr.op2) 355 ** that describes the calling context of the function. 0 means a general 356 ** function call. NC_IsCheck means called by a check constraint, 357 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 358 ** means in the WHERE clause of a partial index. NC_GenCol means called 359 ** while computing a generated column value. 0 is the usual case. 360 */ 361 int sqlite3VdbeAddFunctionCall( 362 Parse *pParse, /* Parsing context */ 363 int p1, /* Constant argument mask */ 364 int p2, /* First argument register */ 365 int p3, /* Register into which results are written */ 366 int nArg, /* Number of argument */ 367 const FuncDef *pFunc, /* The function to be invoked */ 368 int eCallCtx /* Calling context */ 369 ){ 370 Vdbe *v = pParse->pVdbe; 371 int nByte; 372 int addr; 373 sqlite3_context *pCtx; 374 assert( v ); 375 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 376 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 377 if( pCtx==0 ){ 378 assert( pParse->db->mallocFailed ); 379 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 380 return 0; 381 } 382 pCtx->pOut = 0; 383 pCtx->pFunc = (FuncDef*)pFunc; 384 pCtx->pVdbe = 0; 385 pCtx->isError = 0; 386 pCtx->argc = nArg; 387 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 388 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 389 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 390 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 391 sqlite3MayAbort(pParse); 392 return addr; 393 } 394 395 /* 396 ** Add an opcode that includes the p4 value with a P4_INT64 or 397 ** P4_REAL type. 398 */ 399 int sqlite3VdbeAddOp4Dup8( 400 Vdbe *p, /* Add the opcode to this VM */ 401 int op, /* The new opcode */ 402 int p1, /* The P1 operand */ 403 int p2, /* The P2 operand */ 404 int p3, /* The P3 operand */ 405 const u8 *zP4, /* The P4 operand */ 406 int p4type /* P4 operand type */ 407 ){ 408 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 409 if( p4copy ) memcpy(p4copy, zP4, 8); 410 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 411 } 412 413 #ifndef SQLITE_OMIT_EXPLAIN 414 /* 415 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 416 ** 0 means "none". 417 */ 418 int sqlite3VdbeExplainParent(Parse *pParse){ 419 VdbeOp *pOp; 420 if( pParse->addrExplain==0 ) return 0; 421 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 422 return pOp->p2; 423 } 424 425 /* 426 ** Set a debugger breakpoint on the following routine in order to 427 ** monitor the EXPLAIN QUERY PLAN code generation. 428 */ 429 #if defined(SQLITE_DEBUG) 430 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 431 (void)z1; 432 (void)z2; 433 } 434 #endif 435 436 /* 437 ** Add a new OP_Explain opcode. 438 ** 439 ** If the bPush flag is true, then make this opcode the parent for 440 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 441 */ 442 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 443 #ifndef SQLITE_DEBUG 444 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 445 ** But omit them (for performance) during production builds */ 446 if( pParse->explain==2 ) 447 #endif 448 { 449 char *zMsg; 450 Vdbe *v; 451 va_list ap; 452 int iThis; 453 va_start(ap, zFmt); 454 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 455 va_end(ap); 456 v = pParse->pVdbe; 457 iThis = v->nOp; 458 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 459 zMsg, P4_DYNAMIC); 460 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z); 461 if( bPush){ 462 pParse->addrExplain = iThis; 463 } 464 } 465 } 466 467 /* 468 ** Pop the EXPLAIN QUERY PLAN stack one level. 469 */ 470 void sqlite3VdbeExplainPop(Parse *pParse){ 471 sqlite3ExplainBreakpoint("POP", 0); 472 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 473 } 474 #endif /* SQLITE_OMIT_EXPLAIN */ 475 476 /* 477 ** Add an OP_ParseSchema opcode. This routine is broken out from 478 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 479 ** as having been used. 480 ** 481 ** The zWhere string must have been obtained from sqlite3_malloc(). 482 ** This routine will take ownership of the allocated memory. 483 */ 484 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ 485 int j; 486 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 487 sqlite3VdbeChangeP5(p, p5); 488 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 489 sqlite3MayAbort(p->pParse); 490 } 491 492 /* 493 ** Add an opcode that includes the p4 value as an integer. 494 */ 495 int sqlite3VdbeAddOp4Int( 496 Vdbe *p, /* Add the opcode to this VM */ 497 int op, /* The new opcode */ 498 int p1, /* The P1 operand */ 499 int p2, /* The P2 operand */ 500 int p3, /* The P3 operand */ 501 int p4 /* The P4 operand as an integer */ 502 ){ 503 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 504 if( p->db->mallocFailed==0 ){ 505 VdbeOp *pOp = &p->aOp[addr]; 506 pOp->p4type = P4_INT32; 507 pOp->p4.i = p4; 508 } 509 return addr; 510 } 511 512 /* Insert the end of a co-routine 513 */ 514 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 515 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 516 517 /* Clear the temporary register cache, thereby ensuring that each 518 ** co-routine has its own independent set of registers, because co-routines 519 ** might expect their registers to be preserved across an OP_Yield, and 520 ** that could cause problems if two or more co-routines are using the same 521 ** temporary register. 522 */ 523 v->pParse->nTempReg = 0; 524 v->pParse->nRangeReg = 0; 525 } 526 527 /* 528 ** Create a new symbolic label for an instruction that has yet to be 529 ** coded. The symbolic label is really just a negative number. The 530 ** label can be used as the P2 value of an operation. Later, when 531 ** the label is resolved to a specific address, the VDBE will scan 532 ** through its operation list and change all values of P2 which match 533 ** the label into the resolved address. 534 ** 535 ** The VDBE knows that a P2 value is a label because labels are 536 ** always negative and P2 values are suppose to be non-negative. 537 ** Hence, a negative P2 value is a label that has yet to be resolved. 538 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 539 ** property. 540 ** 541 ** Variable usage notes: 542 ** 543 ** Parse.aLabel[x] Stores the address that the x-th label resolves 544 ** into. For testing (SQLITE_DEBUG), unresolved 545 ** labels stores -1, but that is not required. 546 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 547 ** Parse.nLabel The *negative* of the number of labels that have 548 ** been issued. The negative is stored because 549 ** that gives a performance improvement over storing 550 ** the equivalent positive value. 551 */ 552 int sqlite3VdbeMakeLabel(Parse *pParse){ 553 return --pParse->nLabel; 554 } 555 556 /* 557 ** Resolve label "x" to be the address of the next instruction to 558 ** be inserted. The parameter "x" must have been obtained from 559 ** a prior call to sqlite3VdbeMakeLabel(). 560 */ 561 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 562 int nNewSize = 10 - p->nLabel; 563 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 564 nNewSize*sizeof(p->aLabel[0])); 565 if( p->aLabel==0 ){ 566 p->nLabelAlloc = 0; 567 }else{ 568 #ifdef SQLITE_DEBUG 569 int i; 570 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 571 #endif 572 p->nLabelAlloc = nNewSize; 573 p->aLabel[j] = v->nOp; 574 } 575 } 576 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 577 Parse *p = v->pParse; 578 int j = ADDR(x); 579 assert( v->eVdbeState==VDBE_INIT_STATE ); 580 assert( j<-p->nLabel ); 581 assert( j>=0 ); 582 #ifdef SQLITE_DEBUG 583 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 584 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 585 } 586 #endif 587 if( p->nLabelAlloc + p->nLabel < 0 ){ 588 resizeResolveLabel(p,v,j); 589 }else{ 590 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 591 p->aLabel[j] = v->nOp; 592 } 593 } 594 595 /* 596 ** Mark the VDBE as one that can only be run one time. 597 */ 598 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 599 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); 600 } 601 602 /* 603 ** Mark the VDBE as one that can be run multiple times. 604 */ 605 void sqlite3VdbeReusable(Vdbe *p){ 606 int i; 607 for(i=1; ALWAYS(i<p->nOp); i++){ 608 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ 609 p->aOp[1].opcode = OP_Noop; 610 break; 611 } 612 } 613 } 614 615 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 616 617 /* 618 ** The following type and function are used to iterate through all opcodes 619 ** in a Vdbe main program and each of the sub-programs (triggers) it may 620 ** invoke directly or indirectly. It should be used as follows: 621 ** 622 ** Op *pOp; 623 ** VdbeOpIter sIter; 624 ** 625 ** memset(&sIter, 0, sizeof(sIter)); 626 ** sIter.v = v; // v is of type Vdbe* 627 ** while( (pOp = opIterNext(&sIter)) ){ 628 ** // Do something with pOp 629 ** } 630 ** sqlite3DbFree(v->db, sIter.apSub); 631 ** 632 */ 633 typedef struct VdbeOpIter VdbeOpIter; 634 struct VdbeOpIter { 635 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 636 SubProgram **apSub; /* Array of subprograms */ 637 int nSub; /* Number of entries in apSub */ 638 int iAddr; /* Address of next instruction to return */ 639 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 640 }; 641 static Op *opIterNext(VdbeOpIter *p){ 642 Vdbe *v = p->v; 643 Op *pRet = 0; 644 Op *aOp; 645 int nOp; 646 647 if( p->iSub<=p->nSub ){ 648 649 if( p->iSub==0 ){ 650 aOp = v->aOp; 651 nOp = v->nOp; 652 }else{ 653 aOp = p->apSub[p->iSub-1]->aOp; 654 nOp = p->apSub[p->iSub-1]->nOp; 655 } 656 assert( p->iAddr<nOp ); 657 658 pRet = &aOp[p->iAddr]; 659 p->iAddr++; 660 if( p->iAddr==nOp ){ 661 p->iSub++; 662 p->iAddr = 0; 663 } 664 665 if( pRet->p4type==P4_SUBPROGRAM ){ 666 int nByte = (p->nSub+1)*sizeof(SubProgram*); 667 int j; 668 for(j=0; j<p->nSub; j++){ 669 if( p->apSub[j]==pRet->p4.pProgram ) break; 670 } 671 if( j==p->nSub ){ 672 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 673 if( !p->apSub ){ 674 pRet = 0; 675 }else{ 676 p->apSub[p->nSub++] = pRet->p4.pProgram; 677 } 678 } 679 } 680 } 681 682 return pRet; 683 } 684 685 /* 686 ** Check if the program stored in the VM associated with pParse may 687 ** throw an ABORT exception (causing the statement, but not entire transaction 688 ** to be rolled back). This condition is true if the main program or any 689 ** sub-programs contains any of the following: 690 ** 691 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 692 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 693 ** * OP_Destroy 694 ** * OP_VUpdate 695 ** * OP_VCreate 696 ** * OP_VRename 697 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 698 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 699 ** (for CREATE TABLE AS SELECT ...) 700 ** 701 ** Then check that the value of Parse.mayAbort is true if an 702 ** ABORT may be thrown, or false otherwise. Return true if it does 703 ** match, or false otherwise. This function is intended to be used as 704 ** part of an assert statement in the compiler. Similar to: 705 ** 706 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 707 */ 708 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 709 int hasAbort = 0; 710 int hasFkCounter = 0; 711 int hasCreateTable = 0; 712 int hasCreateIndex = 0; 713 int hasInitCoroutine = 0; 714 Op *pOp; 715 VdbeOpIter sIter; 716 717 if( v==0 ) return 0; 718 memset(&sIter, 0, sizeof(sIter)); 719 sIter.v = v; 720 721 while( (pOp = opIterNext(&sIter))!=0 ){ 722 int opcode = pOp->opcode; 723 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 724 || opcode==OP_VDestroy 725 || opcode==OP_VCreate 726 || opcode==OP_ParseSchema 727 || opcode==OP_Function || opcode==OP_PureFunc 728 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 729 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 730 ){ 731 hasAbort = 1; 732 break; 733 } 734 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 735 if( mayAbort ){ 736 /* hasCreateIndex may also be set for some DELETE statements that use 737 ** OP_Clear. So this routine may end up returning true in the case 738 ** where a "DELETE FROM tbl" has a statement-journal but does not 739 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 740 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 741 if( opcode==OP_Clear ) hasCreateIndex = 1; 742 } 743 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 744 #ifndef SQLITE_OMIT_FOREIGN_KEY 745 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 746 hasFkCounter = 1; 747 } 748 #endif 749 } 750 sqlite3DbFree(v->db, sIter.apSub); 751 752 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 753 ** If malloc failed, then the while() loop above may not have iterated 754 ** through all opcodes and hasAbort may be set incorrectly. Return 755 ** true for this case to prevent the assert() in the callers frame 756 ** from failing. */ 757 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 758 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 759 ); 760 } 761 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 762 763 #ifdef SQLITE_DEBUG 764 /* 765 ** Increment the nWrite counter in the VDBE if the cursor is not an 766 ** ephemeral cursor, or if the cursor argument is NULL. 767 */ 768 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 769 if( pC==0 770 || (pC->eCurType!=CURTYPE_SORTER 771 && pC->eCurType!=CURTYPE_PSEUDO 772 && !pC->isEphemeral) 773 ){ 774 p->nWrite++; 775 } 776 } 777 #endif 778 779 #ifdef SQLITE_DEBUG 780 /* 781 ** Assert if an Abort at this point in time might result in a corrupt 782 ** database. 783 */ 784 void sqlite3VdbeAssertAbortable(Vdbe *p){ 785 assert( p->nWrite==0 || p->usesStmtJournal ); 786 } 787 #endif 788 789 /* 790 ** This routine is called after all opcodes have been inserted. It loops 791 ** through all the opcodes and fixes up some details. 792 ** 793 ** (1) For each jump instruction with a negative P2 value (a label) 794 ** resolve the P2 value to an actual address. 795 ** 796 ** (2) Compute the maximum number of arguments used by any SQL function 797 ** and store that value in *pMaxFuncArgs. 798 ** 799 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 800 ** indicate what the prepared statement actually does. 801 ** 802 ** (4) (discontinued) 803 ** 804 ** (5) Reclaim the memory allocated for storing labels. 805 ** 806 ** This routine will only function correctly if the mkopcodeh.tcl generator 807 ** script numbers the opcodes correctly. Changes to this routine must be 808 ** coordinated with changes to mkopcodeh.tcl. 809 */ 810 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 811 int nMaxArgs = *pMaxFuncArgs; 812 Op *pOp; 813 Parse *pParse = p->pParse; 814 int *aLabel = pParse->aLabel; 815 p->readOnly = 1; 816 p->bIsReader = 0; 817 pOp = &p->aOp[p->nOp-1]; 818 assert( p->aOp[0].opcode==OP_Init ); 819 while( 1 /* Loop termates when it reaches the OP_Init opcode */ ){ 820 /* Only JUMP opcodes and the short list of special opcodes in the switch 821 ** below need to be considered. The mkopcodeh.tcl generator script groups 822 ** all these opcodes together near the front of the opcode list. Skip 823 ** any opcode that does not need processing by virtual of the fact that 824 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 825 */ 826 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 827 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 828 ** cases from this switch! */ 829 switch( pOp->opcode ){ 830 case OP_Transaction: { 831 if( pOp->p2!=0 ) p->readOnly = 0; 832 /* no break */ deliberate_fall_through 833 } 834 case OP_AutoCommit: 835 case OP_Savepoint: { 836 p->bIsReader = 1; 837 break; 838 } 839 #ifndef SQLITE_OMIT_WAL 840 case OP_Checkpoint: 841 #endif 842 case OP_Vacuum: 843 case OP_JournalMode: { 844 p->readOnly = 0; 845 p->bIsReader = 1; 846 break; 847 } 848 case OP_Init: { 849 assert( pOp->p2>=0 ); 850 goto resolve_p2_values_loop_exit; 851 } 852 #ifndef SQLITE_OMIT_VIRTUALTABLE 853 case OP_VUpdate: { 854 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 855 break; 856 } 857 case OP_VFilter: { 858 int n; 859 assert( (pOp - p->aOp) >= 3 ); 860 assert( pOp[-1].opcode==OP_Integer ); 861 n = pOp[-1].p1; 862 if( n>nMaxArgs ) nMaxArgs = n; 863 /* Fall through into the default case */ 864 /* no break */ deliberate_fall_through 865 } 866 #endif 867 default: { 868 if( pOp->p2<0 ){ 869 /* The mkopcodeh.tcl script has so arranged things that the only 870 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 871 ** have non-negative values for P2. */ 872 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 873 assert( ADDR(pOp->p2)<-pParse->nLabel ); 874 pOp->p2 = aLabel[ADDR(pOp->p2)]; 875 } 876 break; 877 } 878 } 879 /* The mkopcodeh.tcl script has so arranged things that the only 880 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 881 ** have non-negative values for P2. */ 882 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 883 } 884 assert( pOp>p->aOp ); 885 pOp--; 886 } 887 resolve_p2_values_loop_exit: 888 if( aLabel ){ 889 sqlite3DbNNFreeNN(p->db, pParse->aLabel); 890 pParse->aLabel = 0; 891 } 892 pParse->nLabel = 0; 893 *pMaxFuncArgs = nMaxArgs; 894 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 895 } 896 897 #ifdef SQLITE_DEBUG 898 /* 899 ** Check to see if a subroutine contains a jump to a location outside of 900 ** the subroutine. If a jump outside the subroutine is detected, add code 901 ** that will cause the program to halt with an error message. 902 ** 903 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to 904 ** locations within the subroutine are acceptable. iRetReg is a register 905 ** that contains the return address. Jumps to outside the range of iFirst 906 ** through iLast are also acceptable as long as the jump destination is 907 ** an OP_Return to iReturnAddr. 908 ** 909 ** A jump to an unresolved label means that the jump destination will be 910 ** beyond the current address. That is normally a jump to an early 911 ** termination and is consider acceptable. 912 ** 913 ** This routine only runs during debug builds. The purpose is (of course) 914 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode 915 ** is generated rather than an assert() or other error, so that ".eqp full" 916 ** will still work to show the original bytecode, to aid in debugging. 917 */ 918 void sqlite3VdbeNoJumpsOutsideSubrtn( 919 Vdbe *v, /* The byte-code program under construction */ 920 int iFirst, /* First opcode of the subroutine */ 921 int iLast, /* Last opcode of the subroutine */ 922 int iRetReg /* Subroutine return address register */ 923 ){ 924 VdbeOp *pOp; 925 Parse *pParse; 926 int i; 927 sqlite3_str *pErr = 0; 928 assert( v!=0 ); 929 pParse = v->pParse; 930 assert( pParse!=0 ); 931 if( pParse->nErr ) return; 932 assert( iLast>=iFirst ); 933 assert( iLast<v->nOp ); 934 pOp = &v->aOp[iFirst]; 935 for(i=iFirst; i<=iLast; i++, pOp++){ 936 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ 937 int iDest = pOp->p2; /* Jump destination */ 938 if( iDest==0 ) continue; 939 if( pOp->opcode==OP_Gosub ) continue; 940 if( iDest<0 ){ 941 int j = ADDR(iDest); 942 assert( j>=0 ); 943 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ 944 continue; 945 } 946 iDest = pParse->aLabel[j]; 947 } 948 if( iDest<iFirst || iDest>iLast ){ 949 int j = iDest; 950 for(; j<v->nOp; j++){ 951 VdbeOp *pX = &v->aOp[j]; 952 if( pX->opcode==OP_Return ){ 953 if( pX->p1==iRetReg ) break; 954 continue; 955 } 956 if( pX->opcode==OP_Noop ) continue; 957 if( pX->opcode==OP_Explain ) continue; 958 if( pErr==0 ){ 959 pErr = sqlite3_str_new(0); 960 }else{ 961 sqlite3_str_appendchar(pErr, 1, '\n'); 962 } 963 sqlite3_str_appendf(pErr, 964 "Opcode at %d jumps to %d which is outside the " 965 "subroutine at %d..%d", 966 i, iDest, iFirst, iLast); 967 break; 968 } 969 } 970 } 971 } 972 if( pErr ){ 973 char *zErr = sqlite3_str_finish(pErr); 974 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); 975 sqlite3_free(zErr); 976 sqlite3MayAbort(pParse); 977 } 978 } 979 #endif /* SQLITE_DEBUG */ 980 981 /* 982 ** Return the address of the next instruction to be inserted. 983 */ 984 int sqlite3VdbeCurrentAddr(Vdbe *p){ 985 assert( p->eVdbeState==VDBE_INIT_STATE ); 986 return p->nOp; 987 } 988 989 /* 990 ** Verify that at least N opcode slots are available in p without 991 ** having to malloc for more space (except when compiled using 992 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 993 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 994 ** fail due to a OOM fault and hence that the return value from 995 ** sqlite3VdbeAddOpList() will always be non-NULL. 996 */ 997 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 998 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 999 assert( p->nOp + N <= p->nOpAlloc ); 1000 } 1001 #endif 1002 1003 /* 1004 ** Verify that the VM passed as the only argument does not contain 1005 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 1006 ** by code in pragma.c to ensure that the implementation of certain 1007 ** pragmas comports with the flags specified in the mkpragmatab.tcl 1008 ** script. 1009 */ 1010 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 1011 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 1012 int i; 1013 for(i=0; i<p->nOp; i++){ 1014 assert( p->aOp[i].opcode!=OP_ResultRow ); 1015 } 1016 } 1017 #endif 1018 1019 /* 1020 ** Generate code (a single OP_Abortable opcode) that will 1021 ** verify that the VDBE program can safely call Abort in the current 1022 ** context. 1023 */ 1024 #if defined(SQLITE_DEBUG) 1025 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 1026 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 1027 } 1028 #endif 1029 1030 /* 1031 ** This function returns a pointer to the array of opcodes associated with 1032 ** the Vdbe passed as the first argument. It is the callers responsibility 1033 ** to arrange for the returned array to be eventually freed using the 1034 ** vdbeFreeOpArray() function. 1035 ** 1036 ** Before returning, *pnOp is set to the number of entries in the returned 1037 ** array. Also, *pnMaxArg is set to the larger of its current value and 1038 ** the number of entries in the Vdbe.apArg[] array required to execute the 1039 ** returned program. 1040 */ 1041 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 1042 VdbeOp *aOp = p->aOp; 1043 assert( aOp && !p->db->mallocFailed ); 1044 1045 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 1046 assert( DbMaskAllZero(p->btreeMask) ); 1047 1048 resolveP2Values(p, pnMaxArg); 1049 *pnOp = p->nOp; 1050 p->aOp = 0; 1051 return aOp; 1052 } 1053 1054 /* 1055 ** Add a whole list of operations to the operation stack. Return a 1056 ** pointer to the first operation inserted. 1057 ** 1058 ** Non-zero P2 arguments to jump instructions are automatically adjusted 1059 ** so that the jump target is relative to the first operation inserted. 1060 */ 1061 VdbeOp *sqlite3VdbeAddOpList( 1062 Vdbe *p, /* Add opcodes to the prepared statement */ 1063 int nOp, /* Number of opcodes to add */ 1064 VdbeOpList const *aOp, /* The opcodes to be added */ 1065 int iLineno /* Source-file line number of first opcode */ 1066 ){ 1067 int i; 1068 VdbeOp *pOut, *pFirst; 1069 assert( nOp>0 ); 1070 assert( p->eVdbeState==VDBE_INIT_STATE ); 1071 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 1072 return 0; 1073 } 1074 pFirst = pOut = &p->aOp[p->nOp]; 1075 for(i=0; i<nOp; i++, aOp++, pOut++){ 1076 pOut->opcode = aOp->opcode; 1077 pOut->p1 = aOp->p1; 1078 pOut->p2 = aOp->p2; 1079 assert( aOp->p2>=0 ); 1080 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 1081 pOut->p2 += p->nOp; 1082 } 1083 pOut->p3 = aOp->p3; 1084 pOut->p4type = P4_NOTUSED; 1085 pOut->p4.p = 0; 1086 pOut->p5 = 0; 1087 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1088 pOut->zComment = 0; 1089 #endif 1090 #ifdef SQLITE_VDBE_COVERAGE 1091 pOut->iSrcLine = iLineno+i; 1092 #else 1093 (void)iLineno; 1094 #endif 1095 #ifdef SQLITE_DEBUG 1096 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 1097 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 1098 } 1099 #endif 1100 } 1101 p->nOp += nOp; 1102 return pFirst; 1103 } 1104 1105 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 1106 /* 1107 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 1108 */ 1109 void sqlite3VdbeScanStatus( 1110 Vdbe *p, /* VM to add scanstatus() to */ 1111 int addrExplain, /* Address of OP_Explain (or 0) */ 1112 int addrLoop, /* Address of loop counter */ 1113 int addrVisit, /* Address of rows visited counter */ 1114 LogEst nEst, /* Estimated number of output rows */ 1115 const char *zName /* Name of table or index being scanned */ 1116 ){ 1117 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 1118 ScanStatus *aNew; 1119 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 1120 if( aNew ){ 1121 ScanStatus *pNew = &aNew[p->nScan++]; 1122 pNew->addrExplain = addrExplain; 1123 pNew->addrLoop = addrLoop; 1124 pNew->addrVisit = addrVisit; 1125 pNew->nEst = nEst; 1126 pNew->zName = sqlite3DbStrDup(p->db, zName); 1127 p->aScan = aNew; 1128 } 1129 } 1130 #endif 1131 1132 1133 /* 1134 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 1135 ** for a specific instruction. 1136 */ 1137 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 1138 assert( addr>=0 ); 1139 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 1140 } 1141 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 1142 assert( addr>=0 ); 1143 sqlite3VdbeGetOp(p,addr)->p1 = val; 1144 } 1145 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 1146 assert( addr>=0 || p->db->mallocFailed ); 1147 sqlite3VdbeGetOp(p,addr)->p2 = val; 1148 } 1149 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 1150 assert( addr>=0 ); 1151 sqlite3VdbeGetOp(p,addr)->p3 = val; 1152 } 1153 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 1154 assert( p->nOp>0 || p->db->mallocFailed ); 1155 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 1156 } 1157 1158 /* 1159 ** If the previous opcode is an OP_Column that delivers results 1160 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that 1161 ** opcode. 1162 */ 1163 void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){ 1164 VdbeOp *pOp = sqlite3VdbeGetLastOp(p); 1165 if( pOp->p3==iDest && pOp->opcode==OP_Column ){ 1166 pOp->p5 |= OPFLAG_TYPEOFARG; 1167 } 1168 } 1169 1170 /* 1171 ** Change the P2 operand of instruction addr so that it points to 1172 ** the address of the next instruction to be coded. 1173 */ 1174 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 1175 sqlite3VdbeChangeP2(p, addr, p->nOp); 1176 } 1177 1178 /* 1179 ** Change the P2 operand of the jump instruction at addr so that 1180 ** the jump lands on the next opcode. Or if the jump instruction was 1181 ** the previous opcode (and is thus a no-op) then simply back up 1182 ** the next instruction counter by one slot so that the jump is 1183 ** overwritten by the next inserted opcode. 1184 ** 1185 ** This routine is an optimization of sqlite3VdbeJumpHere() that 1186 ** strives to omit useless byte-code like this: 1187 ** 1188 ** 7 Once 0 8 0 1189 ** 8 ... 1190 */ 1191 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 1192 if( addr==p->nOp-1 ){ 1193 assert( p->aOp[addr].opcode==OP_Once 1194 || p->aOp[addr].opcode==OP_If 1195 || p->aOp[addr].opcode==OP_FkIfZero ); 1196 assert( p->aOp[addr].p4type==0 ); 1197 #ifdef SQLITE_VDBE_COVERAGE 1198 sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 1199 #endif 1200 p->nOp--; 1201 }else{ 1202 sqlite3VdbeChangeP2(p, addr, p->nOp); 1203 } 1204 } 1205 1206 1207 /* 1208 ** If the input FuncDef structure is ephemeral, then free it. If 1209 ** the FuncDef is not ephermal, then do nothing. 1210 */ 1211 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 1212 assert( db!=0 ); 1213 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 1214 sqlite3DbNNFreeNN(db, pDef); 1215 } 1216 } 1217 1218 /* 1219 ** Delete a P4 value if necessary. 1220 */ 1221 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 1222 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 1223 sqlite3DbNNFreeNN(db, p); 1224 } 1225 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 1226 assert( db!=0 ); 1227 freeEphemeralFunction(db, p->pFunc); 1228 sqlite3DbNNFreeNN(db, p); 1229 } 1230 static void freeP4(sqlite3 *db, int p4type, void *p4){ 1231 assert( db ); 1232 switch( p4type ){ 1233 case P4_FUNCCTX: { 1234 freeP4FuncCtx(db, (sqlite3_context*)p4); 1235 break; 1236 } 1237 case P4_REAL: 1238 case P4_INT64: 1239 case P4_DYNAMIC: 1240 case P4_INTARRAY: { 1241 if( p4 ) sqlite3DbNNFreeNN(db, p4); 1242 break; 1243 } 1244 case P4_KEYINFO: { 1245 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 1246 break; 1247 } 1248 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1249 case P4_EXPR: { 1250 sqlite3ExprDelete(db, (Expr*)p4); 1251 break; 1252 } 1253 #endif 1254 case P4_FUNCDEF: { 1255 freeEphemeralFunction(db, (FuncDef*)p4); 1256 break; 1257 } 1258 case P4_MEM: { 1259 if( db->pnBytesFreed==0 ){ 1260 sqlite3ValueFree((sqlite3_value*)p4); 1261 }else{ 1262 freeP4Mem(db, (Mem*)p4); 1263 } 1264 break; 1265 } 1266 case P4_VTAB : { 1267 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 1268 break; 1269 } 1270 } 1271 } 1272 1273 /* 1274 ** Free the space allocated for aOp and any p4 values allocated for the 1275 ** opcodes contained within. If aOp is not NULL it is assumed to contain 1276 ** nOp entries. 1277 */ 1278 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 1279 assert( nOp>=0 ); 1280 assert( db!=0 ); 1281 if( aOp ){ 1282 Op *pOp = &aOp[nOp-1]; 1283 while(1){ /* Exit via break */ 1284 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 1285 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1286 sqlite3DbFree(db, pOp->zComment); 1287 #endif 1288 if( pOp==aOp ) break; 1289 pOp--; 1290 } 1291 sqlite3DbNNFreeNN(db, aOp); 1292 } 1293 } 1294 1295 /* 1296 ** Link the SubProgram object passed as the second argument into the linked 1297 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 1298 ** objects when the VM is no longer required. 1299 */ 1300 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 1301 p->pNext = pVdbe->pProgram; 1302 pVdbe->pProgram = p; 1303 } 1304 1305 /* 1306 ** Return true if the given Vdbe has any SubPrograms. 1307 */ 1308 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 1309 return pVdbe->pProgram!=0; 1310 } 1311 1312 /* 1313 ** Change the opcode at addr into OP_Noop 1314 */ 1315 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 1316 VdbeOp *pOp; 1317 if( p->db->mallocFailed ) return 0; 1318 assert( addr>=0 && addr<p->nOp ); 1319 pOp = &p->aOp[addr]; 1320 freeP4(p->db, pOp->p4type, pOp->p4.p); 1321 pOp->p4type = P4_NOTUSED; 1322 pOp->p4.z = 0; 1323 pOp->opcode = OP_Noop; 1324 return 1; 1325 } 1326 1327 /* 1328 ** If the last opcode is "op" and it is not a jump destination, 1329 ** then remove it. Return true if and only if an opcode was removed. 1330 */ 1331 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 1332 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 1333 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 1334 }else{ 1335 return 0; 1336 } 1337 } 1338 1339 #ifdef SQLITE_DEBUG 1340 /* 1341 ** Generate an OP_ReleaseReg opcode to indicate that a range of 1342 ** registers, except any identified by mask, are no longer in use. 1343 */ 1344 void sqlite3VdbeReleaseRegisters( 1345 Parse *pParse, /* Parsing context */ 1346 int iFirst, /* Index of first register to be released */ 1347 int N, /* Number of registers to release */ 1348 u32 mask, /* Mask of registers to NOT release */ 1349 int bUndefine /* If true, mark registers as undefined */ 1350 ){ 1351 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; 1352 assert( pParse->pVdbe ); 1353 assert( iFirst>=1 ); 1354 assert( iFirst+N-1<=pParse->nMem ); 1355 if( N<=31 && mask!=0 ){ 1356 while( N>0 && (mask&1)!=0 ){ 1357 mask >>= 1; 1358 iFirst++; 1359 N--; 1360 } 1361 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 1362 mask &= ~MASKBIT32(N-1); 1363 N--; 1364 } 1365 } 1366 if( N>0 ){ 1367 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 1368 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 1369 } 1370 } 1371 #endif /* SQLITE_DEBUG */ 1372 1373 1374 /* 1375 ** Change the value of the P4 operand for a specific instruction. 1376 ** This routine is useful when a large program is loaded from a 1377 ** static array using sqlite3VdbeAddOpList but we want to make a 1378 ** few minor changes to the program. 1379 ** 1380 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 1381 ** the string is made into memory obtained from sqlite3_malloc(). 1382 ** A value of n==0 means copy bytes of zP4 up to and including the 1383 ** first null byte. If n>0 then copy n+1 bytes of zP4. 1384 ** 1385 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 1386 ** to a string or structure that is guaranteed to exist for the lifetime of 1387 ** the Vdbe. In these cases we can just copy the pointer. 1388 ** 1389 ** If addr<0 then change P4 on the most recently inserted instruction. 1390 */ 1391 static void SQLITE_NOINLINE vdbeChangeP4Full( 1392 Vdbe *p, 1393 Op *pOp, 1394 const char *zP4, 1395 int n 1396 ){ 1397 if( pOp->p4type ){ 1398 freeP4(p->db, pOp->p4type, pOp->p4.p); 1399 pOp->p4type = 0; 1400 pOp->p4.p = 0; 1401 } 1402 if( n<0 ){ 1403 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 1404 }else{ 1405 if( n==0 ) n = sqlite3Strlen30(zP4); 1406 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 1407 pOp->p4type = P4_DYNAMIC; 1408 } 1409 } 1410 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 1411 Op *pOp; 1412 sqlite3 *db; 1413 assert( p!=0 ); 1414 db = p->db; 1415 assert( p->eVdbeState==VDBE_INIT_STATE ); 1416 assert( p->aOp!=0 || db->mallocFailed ); 1417 if( db->mallocFailed ){ 1418 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 1419 return; 1420 } 1421 assert( p->nOp>0 ); 1422 assert( addr<p->nOp ); 1423 if( addr<0 ){ 1424 addr = p->nOp - 1; 1425 } 1426 pOp = &p->aOp[addr]; 1427 if( n>=0 || pOp->p4type ){ 1428 vdbeChangeP4Full(p, pOp, zP4, n); 1429 return; 1430 } 1431 if( n==P4_INT32 ){ 1432 /* Note: this cast is safe, because the origin data point was an int 1433 ** that was cast to a (const char *). */ 1434 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 1435 pOp->p4type = P4_INT32; 1436 }else if( zP4!=0 ){ 1437 assert( n<0 ); 1438 pOp->p4.p = (void*)zP4; 1439 pOp->p4type = (signed char)n; 1440 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 1441 } 1442 } 1443 1444 /* 1445 ** Change the P4 operand of the most recently coded instruction 1446 ** to the value defined by the arguments. This is a high-speed 1447 ** version of sqlite3VdbeChangeP4(). 1448 ** 1449 ** The P4 operand must not have been previously defined. And the new 1450 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 1451 ** those cases. 1452 */ 1453 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 1454 VdbeOp *pOp; 1455 assert( n!=P4_INT32 && n!=P4_VTAB ); 1456 assert( n<=0 ); 1457 if( p->db->mallocFailed ){ 1458 freeP4(p->db, n, pP4); 1459 }else{ 1460 assert( pP4!=0 ); 1461 assert( p->nOp>0 ); 1462 pOp = &p->aOp[p->nOp-1]; 1463 assert( pOp->p4type==P4_NOTUSED ); 1464 pOp->p4type = n; 1465 pOp->p4.p = pP4; 1466 } 1467 } 1468 1469 /* 1470 ** Set the P4 on the most recently added opcode to the KeyInfo for the 1471 ** index given. 1472 */ 1473 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 1474 Vdbe *v = pParse->pVdbe; 1475 KeyInfo *pKeyInfo; 1476 assert( v!=0 ); 1477 assert( pIdx!=0 ); 1478 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 1479 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 1480 } 1481 1482 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1483 /* 1484 ** Change the comment on the most recently coded instruction. Or 1485 ** insert a No-op and add the comment to that new instruction. This 1486 ** makes the code easier to read during debugging. None of this happens 1487 ** in a production build. 1488 */ 1489 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 1490 assert( p->nOp>0 || p->aOp==0 ); 1491 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); 1492 if( p->nOp ){ 1493 assert( p->aOp ); 1494 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 1495 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 1496 } 1497 } 1498 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 1499 va_list ap; 1500 if( p ){ 1501 va_start(ap, zFormat); 1502 vdbeVComment(p, zFormat, ap); 1503 va_end(ap); 1504 } 1505 } 1506 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 1507 va_list ap; 1508 if( p ){ 1509 sqlite3VdbeAddOp0(p, OP_Noop); 1510 va_start(ap, zFormat); 1511 vdbeVComment(p, zFormat, ap); 1512 va_end(ap); 1513 } 1514 } 1515 #endif /* NDEBUG */ 1516 1517 #ifdef SQLITE_VDBE_COVERAGE 1518 /* 1519 ** Set the value if the iSrcLine field for the previously coded instruction. 1520 */ 1521 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 1522 sqlite3VdbeGetLastOp(v)->iSrcLine = iLine; 1523 } 1524 #endif /* SQLITE_VDBE_COVERAGE */ 1525 1526 /* 1527 ** Return the opcode for a given address. The address must be non-negative. 1528 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode. 1529 ** 1530 ** If a memory allocation error has occurred prior to the calling of this 1531 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 1532 ** is readable but not writable, though it is cast to a writable value. 1533 ** The return of a dummy opcode allows the call to continue functioning 1534 ** after an OOM fault without having to check to see if the return from 1535 ** this routine is a valid pointer. But because the dummy.opcode is 0, 1536 ** dummy will never be written to. This is verified by code inspection and 1537 ** by running with Valgrind. 1538 */ 1539 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 1540 /* C89 specifies that the constant "dummy" will be initialized to all 1541 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 1542 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 1543 assert( p->eVdbeState==VDBE_INIT_STATE ); 1544 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 1545 if( p->db->mallocFailed ){ 1546 return (VdbeOp*)&dummy; 1547 }else{ 1548 return &p->aOp[addr]; 1549 } 1550 } 1551 1552 /* Return the most recently added opcode 1553 */ 1554 VdbeOp * sqlite3VdbeGetLastOp(Vdbe *p){ 1555 return sqlite3VdbeGetOp(p, p->nOp - 1); 1556 } 1557 1558 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 1559 /* 1560 ** Return an integer value for one of the parameters to the opcode pOp 1561 ** determined by character c. 1562 */ 1563 static int translateP(char c, const Op *pOp){ 1564 if( c=='1' ) return pOp->p1; 1565 if( c=='2' ) return pOp->p2; 1566 if( c=='3' ) return pOp->p3; 1567 if( c=='4' ) return pOp->p4.i; 1568 return pOp->p5; 1569 } 1570 1571 /* 1572 ** Compute a string for the "comment" field of a VDBE opcode listing. 1573 ** 1574 ** The Synopsis: field in comments in the vdbe.c source file gets converted 1575 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 1576 ** absence of other comments, this synopsis becomes the comment on the opcode. 1577 ** Some translation occurs: 1578 ** 1579 ** "PX" -> "r[X]" 1580 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 1581 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 1582 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 1583 */ 1584 char *sqlite3VdbeDisplayComment( 1585 sqlite3 *db, /* Optional - Oom error reporting only */ 1586 const Op *pOp, /* The opcode to be commented */ 1587 const char *zP4 /* Previously obtained value for P4 */ 1588 ){ 1589 const char *zOpName; 1590 const char *zSynopsis; 1591 int nOpName; 1592 int ii; 1593 char zAlt[50]; 1594 StrAccum x; 1595 1596 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1597 zOpName = sqlite3OpcodeName(pOp->opcode); 1598 nOpName = sqlite3Strlen30(zOpName); 1599 if( zOpName[nOpName+1] ){ 1600 int seenCom = 0; 1601 char c; 1602 zSynopsis = zOpName + nOpName + 1; 1603 if( strncmp(zSynopsis,"IF ",3)==0 ){ 1604 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 1605 zSynopsis = zAlt; 1606 } 1607 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 1608 if( c=='P' ){ 1609 c = zSynopsis[++ii]; 1610 if( c=='4' ){ 1611 sqlite3_str_appendall(&x, zP4); 1612 }else if( c=='X' ){ 1613 if( pOp->zComment && pOp->zComment[0] ){ 1614 sqlite3_str_appendall(&x, pOp->zComment); 1615 seenCom = 1; 1616 break; 1617 } 1618 }else{ 1619 int v1 = translateP(c, pOp); 1620 int v2; 1621 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 1622 ii += 3; 1623 v2 = translateP(zSynopsis[ii], pOp); 1624 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 1625 ii += 2; 1626 v2++; 1627 } 1628 if( v2<2 ){ 1629 sqlite3_str_appendf(&x, "%d", v1); 1630 }else{ 1631 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 1632 } 1633 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 1634 sqlite3_context *pCtx = pOp->p4.pCtx; 1635 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 1636 sqlite3_str_appendf(&x, "%d", v1); 1637 }else if( pCtx->argc>1 ){ 1638 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 1639 }else if( x.accError==0 ){ 1640 assert( x.nChar>2 ); 1641 x.nChar -= 2; 1642 ii++; 1643 } 1644 ii += 3; 1645 }else{ 1646 sqlite3_str_appendf(&x, "%d", v1); 1647 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 1648 ii += 4; 1649 } 1650 } 1651 } 1652 }else{ 1653 sqlite3_str_appendchar(&x, 1, c); 1654 } 1655 } 1656 if( !seenCom && pOp->zComment ){ 1657 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 1658 } 1659 }else if( pOp->zComment ){ 1660 sqlite3_str_appendall(&x, pOp->zComment); 1661 } 1662 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 1663 sqlite3OomFault(db); 1664 } 1665 return sqlite3StrAccumFinish(&x); 1666 } 1667 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 1668 1669 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 1670 /* 1671 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 1672 ** that can be displayed in the P4 column of EXPLAIN output. 1673 */ 1674 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 1675 const char *zOp = 0; 1676 switch( pExpr->op ){ 1677 case TK_STRING: 1678 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1679 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 1680 break; 1681 case TK_INTEGER: 1682 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 1683 break; 1684 case TK_NULL: 1685 sqlite3_str_appendf(p, "NULL"); 1686 break; 1687 case TK_REGISTER: { 1688 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 1689 break; 1690 } 1691 case TK_COLUMN: { 1692 if( pExpr->iColumn<0 ){ 1693 sqlite3_str_appendf(p, "rowid"); 1694 }else{ 1695 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 1696 } 1697 break; 1698 } 1699 case TK_LT: zOp = "LT"; break; 1700 case TK_LE: zOp = "LE"; break; 1701 case TK_GT: zOp = "GT"; break; 1702 case TK_GE: zOp = "GE"; break; 1703 case TK_NE: zOp = "NE"; break; 1704 case TK_EQ: zOp = "EQ"; break; 1705 case TK_IS: zOp = "IS"; break; 1706 case TK_ISNOT: zOp = "ISNOT"; break; 1707 case TK_AND: zOp = "AND"; break; 1708 case TK_OR: zOp = "OR"; break; 1709 case TK_PLUS: zOp = "ADD"; break; 1710 case TK_STAR: zOp = "MUL"; break; 1711 case TK_MINUS: zOp = "SUB"; break; 1712 case TK_REM: zOp = "REM"; break; 1713 case TK_BITAND: zOp = "BITAND"; break; 1714 case TK_BITOR: zOp = "BITOR"; break; 1715 case TK_SLASH: zOp = "DIV"; break; 1716 case TK_LSHIFT: zOp = "LSHIFT"; break; 1717 case TK_RSHIFT: zOp = "RSHIFT"; break; 1718 case TK_CONCAT: zOp = "CONCAT"; break; 1719 case TK_UMINUS: zOp = "MINUS"; break; 1720 case TK_UPLUS: zOp = "PLUS"; break; 1721 case TK_BITNOT: zOp = "BITNOT"; break; 1722 case TK_NOT: zOp = "NOT"; break; 1723 case TK_ISNULL: zOp = "ISNULL"; break; 1724 case TK_NOTNULL: zOp = "NOTNULL"; break; 1725 1726 default: 1727 sqlite3_str_appendf(p, "%s", "expr"); 1728 break; 1729 } 1730 1731 if( zOp ){ 1732 sqlite3_str_appendf(p, "%s(", zOp); 1733 displayP4Expr(p, pExpr->pLeft); 1734 if( pExpr->pRight ){ 1735 sqlite3_str_append(p, ",", 1); 1736 displayP4Expr(p, pExpr->pRight); 1737 } 1738 sqlite3_str_append(p, ")", 1); 1739 } 1740 } 1741 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 1742 1743 1744 #if VDBE_DISPLAY_P4 1745 /* 1746 ** Compute a string that describes the P4 parameter for an opcode. 1747 ** Use zTemp for any required temporary buffer space. 1748 */ 1749 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 1750 char *zP4 = 0; 1751 StrAccum x; 1752 1753 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 1754 switch( pOp->p4type ){ 1755 case P4_KEYINFO: { 1756 int j; 1757 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 1758 assert( pKeyInfo->aSortFlags!=0 ); 1759 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 1760 for(j=0; j<pKeyInfo->nKeyField; j++){ 1761 CollSeq *pColl = pKeyInfo->aColl[j]; 1762 const char *zColl = pColl ? pColl->zName : ""; 1763 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 1764 sqlite3_str_appendf(&x, ",%s%s%s", 1765 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 1766 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 1767 zColl); 1768 } 1769 sqlite3_str_append(&x, ")", 1); 1770 break; 1771 } 1772 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1773 case P4_EXPR: { 1774 displayP4Expr(&x, pOp->p4.pExpr); 1775 break; 1776 } 1777 #endif 1778 case P4_COLLSEQ: { 1779 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 1780 CollSeq *pColl = pOp->p4.pColl; 1781 assert( pColl->enc<4 ); 1782 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 1783 encnames[pColl->enc]); 1784 break; 1785 } 1786 case P4_FUNCDEF: { 1787 FuncDef *pDef = pOp->p4.pFunc; 1788 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1789 break; 1790 } 1791 case P4_FUNCCTX: { 1792 FuncDef *pDef = pOp->p4.pCtx->pFunc; 1793 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 1794 break; 1795 } 1796 case P4_INT64: { 1797 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 1798 break; 1799 } 1800 case P4_INT32: { 1801 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 1802 break; 1803 } 1804 case P4_REAL: { 1805 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 1806 break; 1807 } 1808 case P4_MEM: { 1809 Mem *pMem = pOp->p4.pMem; 1810 if( pMem->flags & MEM_Str ){ 1811 zP4 = pMem->z; 1812 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 1813 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 1814 }else if( pMem->flags & MEM_Real ){ 1815 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 1816 }else if( pMem->flags & MEM_Null ){ 1817 zP4 = "NULL"; 1818 }else{ 1819 assert( pMem->flags & MEM_Blob ); 1820 zP4 = "(blob)"; 1821 } 1822 break; 1823 } 1824 #ifndef SQLITE_OMIT_VIRTUALTABLE 1825 case P4_VTAB: { 1826 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 1827 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 1828 break; 1829 } 1830 #endif 1831 case P4_INTARRAY: { 1832 u32 i; 1833 u32 *ai = pOp->p4.ai; 1834 u32 n = ai[0]; /* The first element of an INTARRAY is always the 1835 ** count of the number of elements to follow */ 1836 for(i=1; i<=n; i++){ 1837 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); 1838 } 1839 sqlite3_str_append(&x, "]", 1); 1840 break; 1841 } 1842 case P4_SUBPROGRAM: { 1843 zP4 = "program"; 1844 break; 1845 } 1846 case P4_TABLE: { 1847 zP4 = pOp->p4.pTab->zName; 1848 break; 1849 } 1850 default: { 1851 zP4 = pOp->p4.z; 1852 } 1853 } 1854 if( zP4 ) sqlite3_str_appendall(&x, zP4); 1855 if( (x.accError & SQLITE_NOMEM)!=0 ){ 1856 sqlite3OomFault(db); 1857 } 1858 return sqlite3StrAccumFinish(&x); 1859 } 1860 #endif /* VDBE_DISPLAY_P4 */ 1861 1862 /* 1863 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 1864 ** 1865 ** The prepared statements need to know in advance the complete set of 1866 ** attached databases that will be use. A mask of these databases 1867 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 1868 ** p->btreeMask of databases that will require a lock. 1869 */ 1870 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 1871 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 1872 assert( i<(int)sizeof(p->btreeMask)*8 ); 1873 DbMaskSet(p->btreeMask, i); 1874 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 1875 DbMaskSet(p->lockMask, i); 1876 } 1877 } 1878 1879 #if !defined(SQLITE_OMIT_SHARED_CACHE) 1880 /* 1881 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 1882 ** this routine obtains the mutex associated with each BtShared structure 1883 ** that may be accessed by the VM passed as an argument. In doing so it also 1884 ** sets the BtShared.db member of each of the BtShared structures, ensuring 1885 ** that the correct busy-handler callback is invoked if required. 1886 ** 1887 ** If SQLite is not threadsafe but does support shared-cache mode, then 1888 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 1889 ** of all of BtShared structures accessible via the database handle 1890 ** associated with the VM. 1891 ** 1892 ** If SQLite is not threadsafe and does not support shared-cache mode, this 1893 ** function is a no-op. 1894 ** 1895 ** The p->btreeMask field is a bitmask of all btrees that the prepared 1896 ** statement p will ever use. Let N be the number of bits in p->btreeMask 1897 ** corresponding to btrees that use shared cache. Then the runtime of 1898 ** this routine is N*N. But as N is rarely more than 1, this should not 1899 ** be a problem. 1900 */ 1901 void sqlite3VdbeEnter(Vdbe *p){ 1902 int i; 1903 sqlite3 *db; 1904 Db *aDb; 1905 int nDb; 1906 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1907 db = p->db; 1908 aDb = db->aDb; 1909 nDb = db->nDb; 1910 for(i=0; i<nDb; i++){ 1911 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1912 sqlite3BtreeEnter(aDb[i].pBt); 1913 } 1914 } 1915 } 1916 #endif 1917 1918 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 1919 /* 1920 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 1921 */ 1922 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 1923 int i; 1924 sqlite3 *db; 1925 Db *aDb; 1926 int nDb; 1927 db = p->db; 1928 aDb = db->aDb; 1929 nDb = db->nDb; 1930 for(i=0; i<nDb; i++){ 1931 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 1932 sqlite3BtreeLeave(aDb[i].pBt); 1933 } 1934 } 1935 } 1936 void sqlite3VdbeLeave(Vdbe *p){ 1937 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 1938 vdbeLeave(p); 1939 } 1940 #endif 1941 1942 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 1943 /* 1944 ** Print a single opcode. This routine is used for debugging only. 1945 */ 1946 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 1947 char *zP4; 1948 char *zCom; 1949 sqlite3 dummyDb; 1950 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 1951 if( pOut==0 ) pOut = stdout; 1952 sqlite3BeginBenignMalloc(); 1953 dummyDb.mallocFailed = 1; 1954 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 1955 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1956 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 1957 #else 1958 zCom = 0; 1959 #endif 1960 /* NB: The sqlite3OpcodeName() function is implemented by code created 1961 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 1962 ** information from the vdbe.c source text */ 1963 fprintf(pOut, zFormat1, pc, 1964 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 1965 zP4 ? zP4 : "", pOp->p5, 1966 zCom ? zCom : "" 1967 ); 1968 fflush(pOut); 1969 sqlite3_free(zP4); 1970 sqlite3_free(zCom); 1971 sqlite3EndBenignMalloc(); 1972 } 1973 #endif 1974 1975 /* 1976 ** Initialize an array of N Mem element. 1977 ** 1978 ** This is a high-runner, so only those fields that really do need to 1979 ** be initialized are set. The Mem structure is organized so that 1980 ** the fields that get initialized are nearby and hopefully on the same 1981 ** cache line. 1982 ** 1983 ** Mem.flags = flags 1984 ** Mem.db = db 1985 ** Mem.szMalloc = 0 1986 ** 1987 ** All other fields of Mem can safely remain uninitialized for now. They 1988 ** will be initialized before use. 1989 */ 1990 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 1991 if( N>0 ){ 1992 do{ 1993 p->flags = flags; 1994 p->db = db; 1995 p->szMalloc = 0; 1996 #ifdef SQLITE_DEBUG 1997 p->pScopyFrom = 0; 1998 #endif 1999 p++; 2000 }while( (--N)>0 ); 2001 } 2002 } 2003 2004 /* 2005 ** Release auxiliary memory held in an array of N Mem elements. 2006 ** 2007 ** After this routine returns, all Mem elements in the array will still 2008 ** be valid. Those Mem elements that were not holding auxiliary resources 2009 ** will be unchanged. Mem elements which had something freed will be 2010 ** set to MEM_Undefined. 2011 */ 2012 static void releaseMemArray(Mem *p, int N){ 2013 if( p && N ){ 2014 Mem *pEnd = &p[N]; 2015 sqlite3 *db = p->db; 2016 if( db->pnBytesFreed ){ 2017 do{ 2018 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 2019 }while( (++p)<pEnd ); 2020 return; 2021 } 2022 do{ 2023 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 2024 assert( sqlite3VdbeCheckMemInvariants(p) ); 2025 2026 /* This block is really an inlined version of sqlite3VdbeMemRelease() 2027 ** that takes advantage of the fact that the memory cell value is 2028 ** being set to NULL after releasing any dynamic resources. 2029 ** 2030 ** The justification for duplicating code is that according to 2031 ** callgrind, this causes a certain test case to hit the CPU 4.7 2032 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 2033 ** sqlite3MemRelease() were called from here. With -O2, this jumps 2034 ** to 6.6 percent. The test case is inserting 1000 rows into a table 2035 ** with no indexes using a single prepared INSERT statement, bind() 2036 ** and reset(). Inserts are grouped into a transaction. 2037 */ 2038 testcase( p->flags & MEM_Agg ); 2039 testcase( p->flags & MEM_Dyn ); 2040 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 2041 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); 2042 sqlite3VdbeMemRelease(p); 2043 p->flags = MEM_Undefined; 2044 }else if( p->szMalloc ){ 2045 sqlite3DbNNFreeNN(db, p->zMalloc); 2046 p->szMalloc = 0; 2047 p->flags = MEM_Undefined; 2048 } 2049 #ifdef SQLITE_DEBUG 2050 else{ 2051 p->flags = MEM_Undefined; 2052 } 2053 #endif 2054 }while( (++p)<pEnd ); 2055 } 2056 } 2057 2058 #ifdef SQLITE_DEBUG 2059 /* 2060 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 2061 ** and false if something is wrong. 2062 ** 2063 ** This routine is intended for use inside of assert() statements only. 2064 */ 2065 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 2066 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 2067 return 1; 2068 } 2069 #endif 2070 2071 2072 /* 2073 ** This is a destructor on a Mem object (which is really an sqlite3_value) 2074 ** that deletes the Frame object that is attached to it as a blob. 2075 ** 2076 ** This routine does not delete the Frame right away. It merely adds the 2077 ** frame to a list of frames to be deleted when the Vdbe halts. 2078 */ 2079 void sqlite3VdbeFrameMemDel(void *pArg){ 2080 VdbeFrame *pFrame = (VdbeFrame*)pArg; 2081 assert( sqlite3VdbeFrameIsValid(pFrame) ); 2082 pFrame->pParent = pFrame->v->pDelFrame; 2083 pFrame->v->pDelFrame = pFrame; 2084 } 2085 2086 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 2087 /* 2088 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 2089 ** QUERY PLAN output. 2090 ** 2091 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 2092 ** more opcodes to be displayed. 2093 */ 2094 int sqlite3VdbeNextOpcode( 2095 Vdbe *p, /* The statement being explained */ 2096 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 2097 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 2098 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 2099 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 2100 Op **paOp /* OUT: Write the opcode array here */ 2101 ){ 2102 int nRow; /* Stop when row count reaches this */ 2103 int nSub = 0; /* Number of sub-vdbes seen so far */ 2104 SubProgram **apSub = 0; /* Array of sub-vdbes */ 2105 int i; /* Next instruction address */ 2106 int rc = SQLITE_OK; /* Result code */ 2107 Op *aOp = 0; /* Opcode array */ 2108 int iPc; /* Rowid. Copy of value in *piPc */ 2109 2110 /* When the number of output rows reaches nRow, that means the 2111 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 2112 ** nRow is the sum of the number of rows in the main program, plus 2113 ** the sum of the number of rows in all trigger subprograms encountered 2114 ** so far. The nRow value will increase as new trigger subprograms are 2115 ** encountered, but p->pc will eventually catch up to nRow. 2116 */ 2117 nRow = p->nOp; 2118 if( pSub!=0 ){ 2119 if( pSub->flags&MEM_Blob ){ 2120 /* pSub is initiallly NULL. It is initialized to a BLOB by 2121 ** the P4_SUBPROGRAM processing logic below */ 2122 nSub = pSub->n/sizeof(Vdbe*); 2123 apSub = (SubProgram **)pSub->z; 2124 } 2125 for(i=0; i<nSub; i++){ 2126 nRow += apSub[i]->nOp; 2127 } 2128 } 2129 iPc = *piPc; 2130 while(1){ /* Loop exits via break */ 2131 i = iPc++; 2132 if( i>=nRow ){ 2133 p->rc = SQLITE_OK; 2134 rc = SQLITE_DONE; 2135 break; 2136 } 2137 if( i<p->nOp ){ 2138 /* The rowid is small enough that we are still in the 2139 ** main program. */ 2140 aOp = p->aOp; 2141 }else{ 2142 /* We are currently listing subprograms. Figure out which one and 2143 ** pick up the appropriate opcode. */ 2144 int j; 2145 i -= p->nOp; 2146 assert( apSub!=0 ); 2147 assert( nSub>0 ); 2148 for(j=0; i>=apSub[j]->nOp; j++){ 2149 i -= apSub[j]->nOp; 2150 assert( i<apSub[j]->nOp || j+1<nSub ); 2151 } 2152 aOp = apSub[j]->aOp; 2153 } 2154 2155 /* When an OP_Program opcode is encounter (the only opcode that has 2156 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 2157 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 2158 ** has not already been seen. 2159 */ 2160 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 2161 int nByte = (nSub+1)*sizeof(SubProgram*); 2162 int j; 2163 for(j=0; j<nSub; j++){ 2164 if( apSub[j]==aOp[i].p4.pProgram ) break; 2165 } 2166 if( j==nSub ){ 2167 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 2168 if( p->rc!=SQLITE_OK ){ 2169 rc = SQLITE_ERROR; 2170 break; 2171 } 2172 apSub = (SubProgram **)pSub->z; 2173 apSub[nSub++] = aOp[i].p4.pProgram; 2174 MemSetTypeFlag(pSub, MEM_Blob); 2175 pSub->n = nSub*sizeof(SubProgram*); 2176 nRow += aOp[i].p4.pProgram->nOp; 2177 } 2178 } 2179 if( eMode==0 ) break; 2180 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 2181 if( eMode==2 ){ 2182 Op *pOp = aOp + i; 2183 if( pOp->opcode==OP_OpenRead ) break; 2184 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 2185 if( pOp->opcode==OP_ReopenIdx ) break; 2186 }else 2187 #endif 2188 { 2189 assert( eMode==1 ); 2190 if( aOp[i].opcode==OP_Explain ) break; 2191 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 2192 } 2193 } 2194 *piPc = iPc; 2195 *piAddr = i; 2196 *paOp = aOp; 2197 return rc; 2198 } 2199 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 2200 2201 2202 /* 2203 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 2204 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 2205 */ 2206 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 2207 int i; 2208 Mem *aMem = VdbeFrameMem(p); 2209 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 2210 assert( sqlite3VdbeFrameIsValid(p) ); 2211 for(i=0; i<p->nChildCsr; i++){ 2212 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); 2213 } 2214 releaseMemArray(aMem, p->nChildMem); 2215 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 2216 sqlite3DbFree(p->v->db, p); 2217 } 2218 2219 #ifndef SQLITE_OMIT_EXPLAIN 2220 /* 2221 ** Give a listing of the program in the virtual machine. 2222 ** 2223 ** The interface is the same as sqlite3VdbeExec(). But instead of 2224 ** running the code, it invokes the callback once for each instruction. 2225 ** This feature is used to implement "EXPLAIN". 2226 ** 2227 ** When p->explain==1, each instruction is listed. When 2228 ** p->explain==2, only OP_Explain instructions are listed and these 2229 ** are shown in a different format. p->explain==2 is used to implement 2230 ** EXPLAIN QUERY PLAN. 2231 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 2232 ** are also shown, so that the boundaries between the main program and 2233 ** each trigger are clear. 2234 ** 2235 ** When p->explain==1, first the main program is listed, then each of 2236 ** the trigger subprograms are listed one by one. 2237 */ 2238 int sqlite3VdbeList( 2239 Vdbe *p /* The VDBE */ 2240 ){ 2241 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 2242 sqlite3 *db = p->db; /* The database connection */ 2243 int i; /* Loop counter */ 2244 int rc = SQLITE_OK; /* Return code */ 2245 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 2246 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 2247 Op *aOp; /* Array of opcodes */ 2248 Op *pOp; /* Current opcode */ 2249 2250 assert( p->explain ); 2251 assert( p->eVdbeState==VDBE_RUN_STATE ); 2252 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 2253 2254 /* Even though this opcode does not use dynamic strings for 2255 ** the result, result columns may become dynamic if the user calls 2256 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 2257 */ 2258 releaseMemArray(pMem, 8); 2259 p->pResultSet = 0; 2260 2261 if( p->rc==SQLITE_NOMEM ){ 2262 /* This happens if a malloc() inside a call to sqlite3_column_text() or 2263 ** sqlite3_column_text16() failed. */ 2264 sqlite3OomFault(db); 2265 return SQLITE_ERROR; 2266 } 2267 2268 if( bListSubprogs ){ 2269 /* The first 8 memory cells are used for the result set. So we will 2270 ** commandeer the 9th cell to use as storage for an array of pointers 2271 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 2272 ** cells. */ 2273 assert( p->nMem>9 ); 2274 pSub = &p->aMem[9]; 2275 }else{ 2276 pSub = 0; 2277 } 2278 2279 /* Figure out which opcode is next to display */ 2280 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 2281 2282 if( rc==SQLITE_OK ){ 2283 pOp = aOp + i; 2284 if( AtomicLoad(&db->u1.isInterrupted) ){ 2285 p->rc = SQLITE_INTERRUPT; 2286 rc = SQLITE_ERROR; 2287 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 2288 }else{ 2289 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 2290 if( p->explain==2 ){ 2291 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 2292 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 2293 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 2294 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 2295 p->nResColumn = 4; 2296 }else{ 2297 sqlite3VdbeMemSetInt64(pMem+0, i); 2298 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 2299 -1, SQLITE_UTF8, SQLITE_STATIC); 2300 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 2301 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 2302 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 2303 /* pMem+5 for p4 is done last */ 2304 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 2305 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2306 { 2307 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 2308 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 2309 } 2310 #else 2311 sqlite3VdbeMemSetNull(pMem+7); 2312 #endif 2313 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 2314 p->nResColumn = 8; 2315 } 2316 p->pResultSet = pMem; 2317 if( db->mallocFailed ){ 2318 p->rc = SQLITE_NOMEM; 2319 rc = SQLITE_ERROR; 2320 }else{ 2321 p->rc = SQLITE_OK; 2322 rc = SQLITE_ROW; 2323 } 2324 } 2325 } 2326 return rc; 2327 } 2328 #endif /* SQLITE_OMIT_EXPLAIN */ 2329 2330 #ifdef SQLITE_DEBUG 2331 /* 2332 ** Print the SQL that was used to generate a VDBE program. 2333 */ 2334 void sqlite3VdbePrintSql(Vdbe *p){ 2335 const char *z = 0; 2336 if( p->zSql ){ 2337 z = p->zSql; 2338 }else if( p->nOp>=1 ){ 2339 const VdbeOp *pOp = &p->aOp[0]; 2340 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2341 z = pOp->p4.z; 2342 while( sqlite3Isspace(*z) ) z++; 2343 } 2344 } 2345 if( z ) printf("SQL: [%s]\n", z); 2346 } 2347 #endif 2348 2349 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 2350 /* 2351 ** Print an IOTRACE message showing SQL content. 2352 */ 2353 void sqlite3VdbeIOTraceSql(Vdbe *p){ 2354 int nOp = p->nOp; 2355 VdbeOp *pOp; 2356 if( sqlite3IoTrace==0 ) return; 2357 if( nOp<1 ) return; 2358 pOp = &p->aOp[0]; 2359 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 2360 int i, j; 2361 char z[1000]; 2362 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 2363 for(i=0; sqlite3Isspace(z[i]); i++){} 2364 for(j=0; z[i]; i++){ 2365 if( sqlite3Isspace(z[i]) ){ 2366 if( z[i-1]!=' ' ){ 2367 z[j++] = ' '; 2368 } 2369 }else{ 2370 z[j++] = z[i]; 2371 } 2372 } 2373 z[j] = 0; 2374 sqlite3IoTrace("SQL %s\n", z); 2375 } 2376 } 2377 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 2378 2379 /* An instance of this object describes bulk memory available for use 2380 ** by subcomponents of a prepared statement. Space is allocated out 2381 ** of a ReusableSpace object by the allocSpace() routine below. 2382 */ 2383 struct ReusableSpace { 2384 u8 *pSpace; /* Available memory */ 2385 sqlite3_int64 nFree; /* Bytes of available memory */ 2386 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 2387 }; 2388 2389 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 2390 ** from the ReusableSpace object. Return a pointer to the allocated 2391 ** memory on success. If insufficient memory is available in the 2392 ** ReusableSpace object, increase the ReusableSpace.nNeeded 2393 ** value by the amount needed and return NULL. 2394 ** 2395 ** If pBuf is not initially NULL, that means that the memory has already 2396 ** been allocated by a prior call to this routine, so just return a copy 2397 ** of pBuf and leave ReusableSpace unchanged. 2398 ** 2399 ** This allocator is employed to repurpose unused slots at the end of the 2400 ** opcode array of prepared state for other memory needs of the prepared 2401 ** statement. 2402 */ 2403 static void *allocSpace( 2404 struct ReusableSpace *p, /* Bulk memory available for allocation */ 2405 void *pBuf, /* Pointer to a prior allocation */ 2406 sqlite3_int64 nByte /* Bytes of memory needed. */ 2407 ){ 2408 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 2409 if( pBuf==0 ){ 2410 nByte = ROUND8P(nByte); 2411 if( nByte <= p->nFree ){ 2412 p->nFree -= nByte; 2413 pBuf = &p->pSpace[p->nFree]; 2414 }else{ 2415 p->nNeeded += nByte; 2416 } 2417 } 2418 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 2419 return pBuf; 2420 } 2421 2422 /* 2423 ** Rewind the VDBE back to the beginning in preparation for 2424 ** running it. 2425 */ 2426 void sqlite3VdbeRewind(Vdbe *p){ 2427 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 2428 int i; 2429 #endif 2430 assert( p!=0 ); 2431 assert( p->eVdbeState==VDBE_INIT_STATE 2432 || p->eVdbeState==VDBE_READY_STATE 2433 || p->eVdbeState==VDBE_HALT_STATE ); 2434 2435 /* There should be at least one opcode. 2436 */ 2437 assert( p->nOp>0 ); 2438 2439 p->eVdbeState = VDBE_READY_STATE; 2440 2441 #ifdef SQLITE_DEBUG 2442 for(i=0; i<p->nMem; i++){ 2443 assert( p->aMem[i].db==p->db ); 2444 } 2445 #endif 2446 p->pc = -1; 2447 p->rc = SQLITE_OK; 2448 p->errorAction = OE_Abort; 2449 p->nChange = 0; 2450 p->cacheCtr = 1; 2451 p->minWriteFileFormat = 255; 2452 p->iStatement = 0; 2453 p->nFkConstraint = 0; 2454 #ifdef VDBE_PROFILE 2455 for(i=0; i<p->nOp; i++){ 2456 p->aOp[i].cnt = 0; 2457 p->aOp[i].cycles = 0; 2458 } 2459 #endif 2460 } 2461 2462 /* 2463 ** Prepare a virtual machine for execution for the first time after 2464 ** creating the virtual machine. This involves things such 2465 ** as allocating registers and initializing the program counter. 2466 ** After the VDBE has be prepped, it can be executed by one or more 2467 ** calls to sqlite3VdbeExec(). 2468 ** 2469 ** This function may be called exactly once on each virtual machine. 2470 ** After this routine is called the VM has been "packaged" and is ready 2471 ** to run. After this routine is called, further calls to 2472 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 2473 ** the Vdbe from the Parse object that helped generate it so that the 2474 ** the Vdbe becomes an independent entity and the Parse object can be 2475 ** destroyed. 2476 ** 2477 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 2478 ** to its initial state after it has been run. 2479 */ 2480 void sqlite3VdbeMakeReady( 2481 Vdbe *p, /* The VDBE */ 2482 Parse *pParse /* Parsing context */ 2483 ){ 2484 sqlite3 *db; /* The database connection */ 2485 int nVar; /* Number of parameters */ 2486 int nMem; /* Number of VM memory registers */ 2487 int nCursor; /* Number of cursors required */ 2488 int nArg; /* Number of arguments in subprograms */ 2489 int n; /* Loop counter */ 2490 struct ReusableSpace x; /* Reusable bulk memory */ 2491 2492 assert( p!=0 ); 2493 assert( p->nOp>0 ); 2494 assert( pParse!=0 ); 2495 assert( p->eVdbeState==VDBE_INIT_STATE ); 2496 assert( pParse==p->pParse ); 2497 p->pVList = pParse->pVList; 2498 pParse->pVList = 0; 2499 db = p->db; 2500 assert( db->mallocFailed==0 ); 2501 nVar = pParse->nVar; 2502 nMem = pParse->nMem; 2503 nCursor = pParse->nTab; 2504 nArg = pParse->nMaxArg; 2505 2506 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 2507 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 2508 ** space at the end of aMem[] for cursors 1 and greater. 2509 ** See also: allocateCursor(). 2510 */ 2511 nMem += nCursor; 2512 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 2513 2514 /* Figure out how much reusable memory is available at the end of the 2515 ** opcode array. This extra memory will be reallocated for other elements 2516 ** of the prepared statement. 2517 */ 2518 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 2519 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 2520 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 2521 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 2522 assert( x.nFree>=0 ); 2523 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 2524 2525 resolveP2Values(p, &nArg); 2526 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 2527 if( pParse->explain ){ 2528 static const char * const azColName[] = { 2529 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", 2530 "id", "parent", "notused", "detail" 2531 }; 2532 int iFirst, mx, i; 2533 if( nMem<10 ) nMem = 10; 2534 p->explain = pParse->explain; 2535 if( pParse->explain==2 ){ 2536 sqlite3VdbeSetNumCols(p, 4); 2537 iFirst = 8; 2538 mx = 12; 2539 }else{ 2540 sqlite3VdbeSetNumCols(p, 8); 2541 iFirst = 0; 2542 mx = 8; 2543 } 2544 for(i=iFirst; i<mx; i++){ 2545 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME, 2546 azColName[i], SQLITE_STATIC); 2547 } 2548 } 2549 p->expired = 0; 2550 2551 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 2552 ** passes. On the first pass, we try to reuse unused memory at the 2553 ** end of the opcode array. If we are unable to satisfy all memory 2554 ** requirements by reusing the opcode array tail, then the second 2555 ** pass will fill in the remainder using a fresh memory allocation. 2556 ** 2557 ** This two-pass approach that reuses as much memory as possible from 2558 ** the leftover memory at the end of the opcode array. This can significantly 2559 ** reduce the amount of memory held by a prepared statement. 2560 */ 2561 x.nNeeded = 0; 2562 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 2563 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 2564 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 2565 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 2566 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2567 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64)); 2568 #endif 2569 if( x.nNeeded ){ 2570 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 2571 x.nFree = x.nNeeded; 2572 if( !db->mallocFailed ){ 2573 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 2574 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 2575 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 2576 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 2577 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2578 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); 2579 #endif 2580 } 2581 } 2582 2583 if( db->mallocFailed ){ 2584 p->nVar = 0; 2585 p->nCursor = 0; 2586 p->nMem = 0; 2587 }else{ 2588 p->nCursor = nCursor; 2589 p->nVar = (ynVar)nVar; 2590 initMemArray(p->aVar, nVar, db, MEM_Null); 2591 p->nMem = nMem; 2592 initMemArray(p->aMem, nMem, db, MEM_Undefined); 2593 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 2594 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2595 memset(p->anExec, 0, p->nOp*sizeof(i64)); 2596 #endif 2597 } 2598 sqlite3VdbeRewind(p); 2599 } 2600 2601 /* 2602 ** Close a VDBE cursor and release all the resources that cursor 2603 ** happens to hold. 2604 */ 2605 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 2606 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); 2607 } 2608 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ 2609 switch( pCx->eCurType ){ 2610 case CURTYPE_SORTER: { 2611 sqlite3VdbeSorterClose(p->db, pCx); 2612 break; 2613 } 2614 case CURTYPE_BTREE: { 2615 assert( pCx->uc.pCursor!=0 ); 2616 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 2617 break; 2618 } 2619 #ifndef SQLITE_OMIT_VIRTUALTABLE 2620 case CURTYPE_VTAB: { 2621 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 2622 const sqlite3_module *pModule = pVCur->pVtab->pModule; 2623 assert( pVCur->pVtab->nRef>0 ); 2624 pVCur->pVtab->nRef--; 2625 pModule->xClose(pVCur); 2626 break; 2627 } 2628 #endif 2629 } 2630 } 2631 2632 /* 2633 ** Close all cursors in the current frame. 2634 */ 2635 static void closeCursorsInFrame(Vdbe *p){ 2636 int i; 2637 for(i=0; i<p->nCursor; i++){ 2638 VdbeCursor *pC = p->apCsr[i]; 2639 if( pC ){ 2640 sqlite3VdbeFreeCursorNN(p, pC); 2641 p->apCsr[i] = 0; 2642 } 2643 } 2644 } 2645 2646 /* 2647 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 2648 ** is used, for example, when a trigger sub-program is halted to restore 2649 ** control to the main program. 2650 */ 2651 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 2652 Vdbe *v = pFrame->v; 2653 closeCursorsInFrame(v); 2654 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2655 v->anExec = pFrame->anExec; 2656 #endif 2657 v->aOp = pFrame->aOp; 2658 v->nOp = pFrame->nOp; 2659 v->aMem = pFrame->aMem; 2660 v->nMem = pFrame->nMem; 2661 v->apCsr = pFrame->apCsr; 2662 v->nCursor = pFrame->nCursor; 2663 v->db->lastRowid = pFrame->lastRowid; 2664 v->nChange = pFrame->nChange; 2665 v->db->nChange = pFrame->nDbChange; 2666 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 2667 v->pAuxData = pFrame->pAuxData; 2668 pFrame->pAuxData = 0; 2669 return pFrame->pc; 2670 } 2671 2672 /* 2673 ** Close all cursors. 2674 ** 2675 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 2676 ** cell array. This is necessary as the memory cell array may contain 2677 ** pointers to VdbeFrame objects, which may in turn contain pointers to 2678 ** open cursors. 2679 */ 2680 static void closeAllCursors(Vdbe *p){ 2681 if( p->pFrame ){ 2682 VdbeFrame *pFrame; 2683 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 2684 sqlite3VdbeFrameRestore(pFrame); 2685 p->pFrame = 0; 2686 p->nFrame = 0; 2687 } 2688 assert( p->nFrame==0 ); 2689 closeCursorsInFrame(p); 2690 releaseMemArray(p->aMem, p->nMem); 2691 while( p->pDelFrame ){ 2692 VdbeFrame *pDel = p->pDelFrame; 2693 p->pDelFrame = pDel->pParent; 2694 sqlite3VdbeFrameDelete(pDel); 2695 } 2696 2697 /* Delete any auxdata allocations made by the VM */ 2698 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 2699 assert( p->pAuxData==0 ); 2700 } 2701 2702 /* 2703 ** Set the number of result columns that will be returned by this SQL 2704 ** statement. This is now set at compile time, rather than during 2705 ** execution of the vdbe program so that sqlite3_column_count() can 2706 ** be called on an SQL statement before sqlite3_step(). 2707 */ 2708 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 2709 int n; 2710 sqlite3 *db = p->db; 2711 2712 if( p->nResColumn ){ 2713 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 2714 sqlite3DbFree(db, p->aColName); 2715 } 2716 n = nResColumn*COLNAME_N; 2717 p->nResColumn = (u16)nResColumn; 2718 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 2719 if( p->aColName==0 ) return; 2720 initMemArray(p->aColName, n, db, MEM_Null); 2721 } 2722 2723 /* 2724 ** Set the name of the idx'th column to be returned by the SQL statement. 2725 ** zName must be a pointer to a nul terminated string. 2726 ** 2727 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 2728 ** 2729 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 2730 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 2731 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 2732 */ 2733 int sqlite3VdbeSetColName( 2734 Vdbe *p, /* Vdbe being configured */ 2735 int idx, /* Index of column zName applies to */ 2736 int var, /* One of the COLNAME_* constants */ 2737 const char *zName, /* Pointer to buffer containing name */ 2738 void (*xDel)(void*) /* Memory management strategy for zName */ 2739 ){ 2740 int rc; 2741 Mem *pColName; 2742 assert( idx<p->nResColumn ); 2743 assert( var<COLNAME_N ); 2744 if( p->db->mallocFailed ){ 2745 assert( !zName || xDel!=SQLITE_DYNAMIC ); 2746 return SQLITE_NOMEM_BKPT; 2747 } 2748 assert( p->aColName!=0 ); 2749 pColName = &(p->aColName[idx+var*p->nResColumn]); 2750 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 2751 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 2752 return rc; 2753 } 2754 2755 /* 2756 ** A read or write transaction may or may not be active on database handle 2757 ** db. If a transaction is active, commit it. If there is a 2758 ** write-transaction spanning more than one database file, this routine 2759 ** takes care of the super-journal trickery. 2760 */ 2761 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 2762 int i; 2763 int nTrans = 0; /* Number of databases with an active write-transaction 2764 ** that are candidates for a two-phase commit using a 2765 ** super-journal */ 2766 int rc = SQLITE_OK; 2767 int needXcommit = 0; 2768 2769 #ifdef SQLITE_OMIT_VIRTUALTABLE 2770 /* With this option, sqlite3VtabSync() is defined to be simply 2771 ** SQLITE_OK so p is not used. 2772 */ 2773 UNUSED_PARAMETER(p); 2774 #endif 2775 2776 /* Before doing anything else, call the xSync() callback for any 2777 ** virtual module tables written in this transaction. This has to 2778 ** be done before determining whether a super-journal file is 2779 ** required, as an xSync() callback may add an attached database 2780 ** to the transaction. 2781 */ 2782 rc = sqlite3VtabSync(db, p); 2783 2784 /* This loop determines (a) if the commit hook should be invoked and 2785 ** (b) how many database files have open write transactions, not 2786 ** including the temp database. (b) is important because if more than 2787 ** one database file has an open write transaction, a super-journal 2788 ** file is required for an atomic commit. 2789 */ 2790 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2791 Btree *pBt = db->aDb[i].pBt; 2792 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2793 /* Whether or not a database might need a super-journal depends upon 2794 ** its journal mode (among other things). This matrix determines which 2795 ** journal modes use a super-journal and which do not */ 2796 static const u8 aMJNeeded[] = { 2797 /* DELETE */ 1, 2798 /* PERSIST */ 1, 2799 /* OFF */ 0, 2800 /* TRUNCATE */ 1, 2801 /* MEMORY */ 0, 2802 /* WAL */ 0 2803 }; 2804 Pager *pPager; /* Pager associated with pBt */ 2805 needXcommit = 1; 2806 sqlite3BtreeEnter(pBt); 2807 pPager = sqlite3BtreePager(pBt); 2808 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 2809 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 2810 && sqlite3PagerIsMemdb(pPager)==0 2811 ){ 2812 assert( i!=1 ); 2813 nTrans++; 2814 } 2815 rc = sqlite3PagerExclusiveLock(pPager); 2816 sqlite3BtreeLeave(pBt); 2817 } 2818 } 2819 if( rc!=SQLITE_OK ){ 2820 return rc; 2821 } 2822 2823 /* If there are any write-transactions at all, invoke the commit hook */ 2824 if( needXcommit && db->xCommitCallback ){ 2825 rc = db->xCommitCallback(db->pCommitArg); 2826 if( rc ){ 2827 return SQLITE_CONSTRAINT_COMMITHOOK; 2828 } 2829 } 2830 2831 /* The simple case - no more than one database file (not counting the 2832 ** TEMP database) has a transaction active. There is no need for the 2833 ** super-journal. 2834 ** 2835 ** If the return value of sqlite3BtreeGetFilename() is a zero length 2836 ** string, it means the main database is :memory: or a temp file. In 2837 ** that case we do not support atomic multi-file commits, so use the 2838 ** simple case then too. 2839 */ 2840 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 2841 || nTrans<=1 2842 ){ 2843 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2844 Btree *pBt = db->aDb[i].pBt; 2845 if( pBt ){ 2846 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 2847 } 2848 } 2849 2850 /* Do the commit only if all databases successfully complete phase 1. 2851 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 2852 ** IO error while deleting or truncating a journal file. It is unlikely, 2853 ** but could happen. In this case abandon processing and return the error. 2854 */ 2855 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2856 Btree *pBt = db->aDb[i].pBt; 2857 if( pBt ){ 2858 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 2859 } 2860 } 2861 if( rc==SQLITE_OK ){ 2862 sqlite3VtabCommit(db); 2863 } 2864 } 2865 2866 /* The complex case - There is a multi-file write-transaction active. 2867 ** This requires a super-journal file to ensure the transaction is 2868 ** committed atomically. 2869 */ 2870 #ifndef SQLITE_OMIT_DISKIO 2871 else{ 2872 sqlite3_vfs *pVfs = db->pVfs; 2873 char *zSuper = 0; /* File-name for the super-journal */ 2874 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 2875 sqlite3_file *pSuperJrnl = 0; 2876 i64 offset = 0; 2877 int res; 2878 int retryCount = 0; 2879 int nMainFile; 2880 2881 /* Select a super-journal file name */ 2882 nMainFile = sqlite3Strlen30(zMainFile); 2883 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 2884 if( zSuper==0 ) return SQLITE_NOMEM_BKPT; 2885 zSuper += 4; 2886 do { 2887 u32 iRandom; 2888 if( retryCount ){ 2889 if( retryCount>100 ){ 2890 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); 2891 sqlite3OsDelete(pVfs, zSuper, 0); 2892 break; 2893 }else if( retryCount==1 ){ 2894 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); 2895 } 2896 } 2897 retryCount++; 2898 sqlite3_randomness(sizeof(iRandom), &iRandom); 2899 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", 2900 (iRandom>>8)&0xffffff, iRandom&0xff); 2901 /* The antipenultimate character of the super-journal name must 2902 ** be "9" to avoid name collisions when using 8+3 filenames. */ 2903 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); 2904 sqlite3FileSuffix3(zMainFile, zSuper); 2905 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 2906 }while( rc==SQLITE_OK && res ); 2907 if( rc==SQLITE_OK ){ 2908 /* Open the super-journal. */ 2909 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 2910 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 2911 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 2912 ); 2913 } 2914 if( rc!=SQLITE_OK ){ 2915 sqlite3DbFree(db, zSuper-4); 2916 return rc; 2917 } 2918 2919 /* Write the name of each database file in the transaction into the new 2920 ** super-journal file. If an error occurs at this point close 2921 ** and delete the super-journal file. All the individual journal files 2922 ** still have 'null' as the super-journal pointer, so they will roll 2923 ** back independently if a failure occurs. 2924 */ 2925 for(i=0; i<db->nDb; i++){ 2926 Btree *pBt = db->aDb[i].pBt; 2927 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 2928 char const *zFile = sqlite3BtreeGetJournalname(pBt); 2929 if( zFile==0 ){ 2930 continue; /* Ignore TEMP and :memory: databases */ 2931 } 2932 assert( zFile[0]!=0 ); 2933 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); 2934 offset += sqlite3Strlen30(zFile)+1; 2935 if( rc!=SQLITE_OK ){ 2936 sqlite3OsCloseFree(pSuperJrnl); 2937 sqlite3OsDelete(pVfs, zSuper, 0); 2938 sqlite3DbFree(db, zSuper-4); 2939 return rc; 2940 } 2941 } 2942 } 2943 2944 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device 2945 ** flag is set this is not required. 2946 */ 2947 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) 2948 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) 2949 ){ 2950 sqlite3OsCloseFree(pSuperJrnl); 2951 sqlite3OsDelete(pVfs, zSuper, 0); 2952 sqlite3DbFree(db, zSuper-4); 2953 return rc; 2954 } 2955 2956 /* Sync all the db files involved in the transaction. The same call 2957 ** sets the super-journal pointer in each individual journal. If 2958 ** an error occurs here, do not delete the super-journal file. 2959 ** 2960 ** If the error occurs during the first call to 2961 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 2962 ** super-journal file will be orphaned. But we cannot delete it, 2963 ** in case the super-journal file name was written into the journal 2964 ** file before the failure occurred. 2965 */ 2966 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 2967 Btree *pBt = db->aDb[i].pBt; 2968 if( pBt ){ 2969 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); 2970 } 2971 } 2972 sqlite3OsCloseFree(pSuperJrnl); 2973 assert( rc!=SQLITE_BUSY ); 2974 if( rc!=SQLITE_OK ){ 2975 sqlite3DbFree(db, zSuper-4); 2976 return rc; 2977 } 2978 2979 /* Delete the super-journal file. This commits the transaction. After 2980 ** doing this the directory is synced again before any individual 2981 ** transaction files are deleted. 2982 */ 2983 rc = sqlite3OsDelete(pVfs, zSuper, 1); 2984 sqlite3DbFree(db, zSuper-4); 2985 zSuper = 0; 2986 if( rc ){ 2987 return rc; 2988 } 2989 2990 /* All files and directories have already been synced, so the following 2991 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 2992 ** deleting or truncating journals. If something goes wrong while 2993 ** this is happening we don't really care. The integrity of the 2994 ** transaction is already guaranteed, but some stray 'cold' journals 2995 ** may be lying around. Returning an error code won't help matters. 2996 */ 2997 disable_simulated_io_errors(); 2998 sqlite3BeginBenignMalloc(); 2999 for(i=0; i<db->nDb; i++){ 3000 Btree *pBt = db->aDb[i].pBt; 3001 if( pBt ){ 3002 sqlite3BtreeCommitPhaseTwo(pBt, 1); 3003 } 3004 } 3005 sqlite3EndBenignMalloc(); 3006 enable_simulated_io_errors(); 3007 3008 sqlite3VtabCommit(db); 3009 } 3010 #endif 3011 3012 return rc; 3013 } 3014 3015 /* 3016 ** This routine checks that the sqlite3.nVdbeActive count variable 3017 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 3018 ** currently active. An assertion fails if the two counts do not match. 3019 ** This is an internal self-check only - it is not an essential processing 3020 ** step. 3021 ** 3022 ** This is a no-op if NDEBUG is defined. 3023 */ 3024 #ifndef NDEBUG 3025 static void checkActiveVdbeCnt(sqlite3 *db){ 3026 Vdbe *p; 3027 int cnt = 0; 3028 int nWrite = 0; 3029 int nRead = 0; 3030 p = db->pVdbe; 3031 while( p ){ 3032 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 3033 cnt++; 3034 if( p->readOnly==0 ) nWrite++; 3035 if( p->bIsReader ) nRead++; 3036 } 3037 p = p->pVNext; 3038 } 3039 assert( cnt==db->nVdbeActive ); 3040 assert( nWrite==db->nVdbeWrite ); 3041 assert( nRead==db->nVdbeRead ); 3042 } 3043 #else 3044 #define checkActiveVdbeCnt(x) 3045 #endif 3046 3047 /* 3048 ** If the Vdbe passed as the first argument opened a statement-transaction, 3049 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 3050 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 3051 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 3052 ** statement transaction is committed. 3053 ** 3054 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 3055 ** Otherwise SQLITE_OK. 3056 */ 3057 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 3058 sqlite3 *const db = p->db; 3059 int rc = SQLITE_OK; 3060 int i; 3061 const int iSavepoint = p->iStatement-1; 3062 3063 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 3064 assert( db->nStatement>0 ); 3065 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 3066 3067 for(i=0; i<db->nDb; i++){ 3068 int rc2 = SQLITE_OK; 3069 Btree *pBt = db->aDb[i].pBt; 3070 if( pBt ){ 3071 if( eOp==SAVEPOINT_ROLLBACK ){ 3072 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 3073 } 3074 if( rc2==SQLITE_OK ){ 3075 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 3076 } 3077 if( rc==SQLITE_OK ){ 3078 rc = rc2; 3079 } 3080 } 3081 } 3082 db->nStatement--; 3083 p->iStatement = 0; 3084 3085 if( rc==SQLITE_OK ){ 3086 if( eOp==SAVEPOINT_ROLLBACK ){ 3087 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 3088 } 3089 if( rc==SQLITE_OK ){ 3090 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 3091 } 3092 } 3093 3094 /* If the statement transaction is being rolled back, also restore the 3095 ** database handles deferred constraint counter to the value it had when 3096 ** the statement transaction was opened. */ 3097 if( eOp==SAVEPOINT_ROLLBACK ){ 3098 db->nDeferredCons = p->nStmtDefCons; 3099 db->nDeferredImmCons = p->nStmtDefImmCons; 3100 } 3101 return rc; 3102 } 3103 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 3104 if( p->db->nStatement && p->iStatement ){ 3105 return vdbeCloseStatement(p, eOp); 3106 } 3107 return SQLITE_OK; 3108 } 3109 3110 3111 /* 3112 ** This function is called when a transaction opened by the database 3113 ** handle associated with the VM passed as an argument is about to be 3114 ** committed. If there are outstanding deferred foreign key constraint 3115 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 3116 ** 3117 ** If there are outstanding FK violations and this function returns 3118 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 3119 ** and write an error message to it. Then return SQLITE_ERROR. 3120 */ 3121 #ifndef SQLITE_OMIT_FOREIGN_KEY 3122 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 3123 sqlite3 *db = p->db; 3124 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 3125 || (!deferred && p->nFkConstraint>0) 3126 ){ 3127 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3128 p->errorAction = OE_Abort; 3129 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 3130 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; 3131 return SQLITE_CONSTRAINT_FOREIGNKEY; 3132 } 3133 return SQLITE_OK; 3134 } 3135 #endif 3136 3137 /* 3138 ** This routine is called the when a VDBE tries to halt. If the VDBE 3139 ** has made changes and is in autocommit mode, then commit those 3140 ** changes. If a rollback is needed, then do the rollback. 3141 ** 3142 ** This routine is the only way to move the sqlite3eOpenState of a VM from 3143 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to 3144 ** call this on a VM that is in the SQLITE_STATE_HALT state. 3145 ** 3146 ** Return an error code. If the commit could not complete because of 3147 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 3148 ** means the close did not happen and needs to be repeated. 3149 */ 3150 int sqlite3VdbeHalt(Vdbe *p){ 3151 int rc; /* Used to store transient return codes */ 3152 sqlite3 *db = p->db; 3153 3154 /* This function contains the logic that determines if a statement or 3155 ** transaction will be committed or rolled back as a result of the 3156 ** execution of this virtual machine. 3157 ** 3158 ** If any of the following errors occur: 3159 ** 3160 ** SQLITE_NOMEM 3161 ** SQLITE_IOERR 3162 ** SQLITE_FULL 3163 ** SQLITE_INTERRUPT 3164 ** 3165 ** Then the internal cache might have been left in an inconsistent 3166 ** state. We need to rollback the statement transaction, if there is 3167 ** one, or the complete transaction if there is no statement transaction. 3168 */ 3169 3170 assert( p->eVdbeState==VDBE_RUN_STATE ); 3171 if( db->mallocFailed ){ 3172 p->rc = SQLITE_NOMEM_BKPT; 3173 } 3174 closeAllCursors(p); 3175 checkActiveVdbeCnt(db); 3176 3177 /* No commit or rollback needed if the program never started or if the 3178 ** SQL statement does not read or write a database file. */ 3179 if( p->bIsReader ){ 3180 int mrc; /* Primary error code from p->rc */ 3181 int eStatementOp = 0; 3182 int isSpecialError; /* Set to true if a 'special' error */ 3183 3184 /* Lock all btrees used by the statement */ 3185 sqlite3VdbeEnter(p); 3186 3187 /* Check for one of the special errors */ 3188 if( p->rc ){ 3189 mrc = p->rc & 0xff; 3190 isSpecialError = mrc==SQLITE_NOMEM 3191 || mrc==SQLITE_IOERR 3192 || mrc==SQLITE_INTERRUPT 3193 || mrc==SQLITE_FULL; 3194 }else{ 3195 mrc = isSpecialError = 0; 3196 } 3197 if( isSpecialError ){ 3198 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 3199 ** no rollback is necessary. Otherwise, at least a savepoint 3200 ** transaction must be rolled back to restore the database to a 3201 ** consistent state. 3202 ** 3203 ** Even if the statement is read-only, it is important to perform 3204 ** a statement or transaction rollback operation. If the error 3205 ** occurred while writing to the journal, sub-journal or database 3206 ** file as part of an effort to free up cache space (see function 3207 ** pagerStress() in pager.c), the rollback is required to restore 3208 ** the pager to a consistent state. 3209 */ 3210 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 3211 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 3212 eStatementOp = SAVEPOINT_ROLLBACK; 3213 }else{ 3214 /* We are forced to roll back the active transaction. Before doing 3215 ** so, abort any other statements this handle currently has active. 3216 */ 3217 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3218 sqlite3CloseSavepoints(db); 3219 db->autoCommit = 1; 3220 p->nChange = 0; 3221 } 3222 } 3223 } 3224 3225 /* Check for immediate foreign key violations. */ 3226 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3227 sqlite3VdbeCheckFk(p, 0); 3228 } 3229 3230 /* If the auto-commit flag is set and this is the only active writer 3231 ** VM, then we do either a commit or rollback of the current transaction. 3232 ** 3233 ** Note: This block also runs if one of the special errors handled 3234 ** above has occurred. 3235 */ 3236 if( !sqlite3VtabInSync(db) 3237 && db->autoCommit 3238 && db->nVdbeWrite==(p->readOnly==0) 3239 ){ 3240 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 3241 rc = sqlite3VdbeCheckFk(p, 1); 3242 if( rc!=SQLITE_OK ){ 3243 if( NEVER(p->readOnly) ){ 3244 sqlite3VdbeLeave(p); 3245 return SQLITE_ERROR; 3246 } 3247 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 3248 }else if( db->flags & SQLITE_CorruptRdOnly ){ 3249 rc = SQLITE_CORRUPT; 3250 db->flags &= ~SQLITE_CorruptRdOnly; 3251 }else{ 3252 /* The auto-commit flag is true, the vdbe program was successful 3253 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 3254 ** key constraints to hold up the transaction. This means a commit 3255 ** is required. */ 3256 rc = vdbeCommit(db, p); 3257 } 3258 if( rc==SQLITE_BUSY && p->readOnly ){ 3259 sqlite3VdbeLeave(p); 3260 return SQLITE_BUSY; 3261 }else if( rc!=SQLITE_OK ){ 3262 p->rc = rc; 3263 sqlite3RollbackAll(db, SQLITE_OK); 3264 p->nChange = 0; 3265 }else{ 3266 db->nDeferredCons = 0; 3267 db->nDeferredImmCons = 0; 3268 db->flags &= ~(u64)SQLITE_DeferFKs; 3269 sqlite3CommitInternalChanges(db); 3270 } 3271 }else{ 3272 sqlite3RollbackAll(db, SQLITE_OK); 3273 p->nChange = 0; 3274 } 3275 db->nStatement = 0; 3276 }else if( eStatementOp==0 ){ 3277 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 3278 eStatementOp = SAVEPOINT_RELEASE; 3279 }else if( p->errorAction==OE_Abort ){ 3280 eStatementOp = SAVEPOINT_ROLLBACK; 3281 }else{ 3282 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3283 sqlite3CloseSavepoints(db); 3284 db->autoCommit = 1; 3285 p->nChange = 0; 3286 } 3287 } 3288 3289 /* If eStatementOp is non-zero, then a statement transaction needs to 3290 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 3291 ** do so. If this operation returns an error, and the current statement 3292 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 3293 ** current statement error code. 3294 */ 3295 if( eStatementOp ){ 3296 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 3297 if( rc ){ 3298 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 3299 p->rc = rc; 3300 sqlite3DbFree(db, p->zErrMsg); 3301 p->zErrMsg = 0; 3302 } 3303 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3304 sqlite3CloseSavepoints(db); 3305 db->autoCommit = 1; 3306 p->nChange = 0; 3307 } 3308 } 3309 3310 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 3311 ** has been rolled back, update the database connection change-counter. 3312 */ 3313 if( p->changeCntOn ){ 3314 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 3315 sqlite3VdbeSetChanges(db, p->nChange); 3316 }else{ 3317 sqlite3VdbeSetChanges(db, 0); 3318 } 3319 p->nChange = 0; 3320 } 3321 3322 /* Release the locks */ 3323 sqlite3VdbeLeave(p); 3324 } 3325 3326 /* We have successfully halted and closed the VM. Record this fact. */ 3327 db->nVdbeActive--; 3328 if( !p->readOnly ) db->nVdbeWrite--; 3329 if( p->bIsReader ) db->nVdbeRead--; 3330 assert( db->nVdbeActive>=db->nVdbeRead ); 3331 assert( db->nVdbeRead>=db->nVdbeWrite ); 3332 assert( db->nVdbeWrite>=0 ); 3333 p->eVdbeState = VDBE_HALT_STATE; 3334 checkActiveVdbeCnt(db); 3335 if( db->mallocFailed ){ 3336 p->rc = SQLITE_NOMEM_BKPT; 3337 } 3338 3339 /* If the auto-commit flag is set to true, then any locks that were held 3340 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 3341 ** to invoke any required unlock-notify callbacks. 3342 */ 3343 if( db->autoCommit ){ 3344 sqlite3ConnectionUnlocked(db); 3345 } 3346 3347 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 3348 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 3349 } 3350 3351 3352 /* 3353 ** Each VDBE holds the result of the most recent sqlite3_step() call 3354 ** in p->rc. This routine sets that result back to SQLITE_OK. 3355 */ 3356 void sqlite3VdbeResetStepResult(Vdbe *p){ 3357 p->rc = SQLITE_OK; 3358 } 3359 3360 /* 3361 ** Copy the error code and error message belonging to the VDBE passed 3362 ** as the first argument to its database handle (so that they will be 3363 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 3364 ** 3365 ** This function does not clear the VDBE error code or message, just 3366 ** copies them to the database handle. 3367 */ 3368 int sqlite3VdbeTransferError(Vdbe *p){ 3369 sqlite3 *db = p->db; 3370 int rc = p->rc; 3371 if( p->zErrMsg ){ 3372 db->bBenignMalloc++; 3373 sqlite3BeginBenignMalloc(); 3374 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 3375 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 3376 sqlite3EndBenignMalloc(); 3377 db->bBenignMalloc--; 3378 }else if( db->pErr ){ 3379 sqlite3ValueSetNull(db->pErr); 3380 } 3381 db->errCode = rc; 3382 db->errByteOffset = -1; 3383 return rc; 3384 } 3385 3386 #ifdef SQLITE_ENABLE_SQLLOG 3387 /* 3388 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 3389 ** invoke it. 3390 */ 3391 static void vdbeInvokeSqllog(Vdbe *v){ 3392 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 3393 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 3394 assert( v->db->init.busy==0 ); 3395 if( zExpanded ){ 3396 sqlite3GlobalConfig.xSqllog( 3397 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 3398 ); 3399 sqlite3DbFree(v->db, zExpanded); 3400 } 3401 } 3402 } 3403 #else 3404 # define vdbeInvokeSqllog(x) 3405 #endif 3406 3407 /* 3408 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 3409 ** Write any error messages into *pzErrMsg. Return the result code. 3410 ** 3411 ** After this routine is run, the VDBE should be ready to be executed 3412 ** again. 3413 ** 3414 ** To look at it another way, this routine resets the state of the 3415 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to 3416 ** VDBE_READY_STATE. 3417 */ 3418 int sqlite3VdbeReset(Vdbe *p){ 3419 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 3420 int i; 3421 #endif 3422 3423 sqlite3 *db; 3424 db = p->db; 3425 3426 /* If the VM did not run to completion or if it encountered an 3427 ** error, then it might not have been halted properly. So halt 3428 ** it now. 3429 */ 3430 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 3431 3432 /* If the VDBE has been run even partially, then transfer the error code 3433 ** and error message from the VDBE into the main database structure. But 3434 ** if the VDBE has just been set to run but has not actually executed any 3435 ** instructions yet, leave the main database error information unchanged. 3436 */ 3437 if( p->pc>=0 ){ 3438 vdbeInvokeSqllog(p); 3439 if( db->pErr || p->zErrMsg ){ 3440 sqlite3VdbeTransferError(p); 3441 }else{ 3442 db->errCode = p->rc; 3443 } 3444 } 3445 3446 /* Reset register contents and reclaim error message memory. 3447 */ 3448 #ifdef SQLITE_DEBUG 3449 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 3450 ** Vdbe.aMem[] arrays have already been cleaned up. */ 3451 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 3452 if( p->aMem ){ 3453 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 3454 } 3455 #endif 3456 if( p->zErrMsg ){ 3457 sqlite3DbFree(db, p->zErrMsg); 3458 p->zErrMsg = 0; 3459 } 3460 p->pResultSet = 0; 3461 #ifdef SQLITE_DEBUG 3462 p->nWrite = 0; 3463 #endif 3464 3465 /* Save profiling information from this VDBE run. 3466 */ 3467 #ifdef VDBE_PROFILE 3468 { 3469 FILE *out = fopen("vdbe_profile.out", "a"); 3470 if( out ){ 3471 fprintf(out, "---- "); 3472 for(i=0; i<p->nOp; i++){ 3473 fprintf(out, "%02x", p->aOp[i].opcode); 3474 } 3475 fprintf(out, "\n"); 3476 if( p->zSql ){ 3477 char c, pc = 0; 3478 fprintf(out, "-- "); 3479 for(i=0; (c = p->zSql[i])!=0; i++){ 3480 if( pc=='\n' ) fprintf(out, "-- "); 3481 putc(c, out); 3482 pc = c; 3483 } 3484 if( pc!='\n' ) fprintf(out, "\n"); 3485 } 3486 for(i=0; i<p->nOp; i++){ 3487 char zHdr[100]; 3488 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 3489 p->aOp[i].cnt, 3490 p->aOp[i].cycles, 3491 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 3492 ); 3493 fprintf(out, "%s", zHdr); 3494 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 3495 } 3496 fclose(out); 3497 } 3498 } 3499 #endif 3500 return p->rc & db->errMask; 3501 } 3502 3503 /* 3504 ** Clean up and delete a VDBE after execution. Return an integer which is 3505 ** the result code. Write any error message text into *pzErrMsg. 3506 */ 3507 int sqlite3VdbeFinalize(Vdbe *p){ 3508 int rc = SQLITE_OK; 3509 assert( VDBE_RUN_STATE>VDBE_READY_STATE ); 3510 assert( VDBE_HALT_STATE>VDBE_READY_STATE ); 3511 assert( VDBE_INIT_STATE<VDBE_READY_STATE ); 3512 if( p->eVdbeState>=VDBE_READY_STATE ){ 3513 rc = sqlite3VdbeReset(p); 3514 assert( (rc & p->db->errMask)==rc ); 3515 } 3516 sqlite3VdbeDelete(p); 3517 return rc; 3518 } 3519 3520 /* 3521 ** If parameter iOp is less than zero, then invoke the destructor for 3522 ** all auxiliary data pointers currently cached by the VM passed as 3523 ** the first argument. 3524 ** 3525 ** Or, if iOp is greater than or equal to zero, then the destructor is 3526 ** only invoked for those auxiliary data pointers created by the user 3527 ** function invoked by the OP_Function opcode at instruction iOp of 3528 ** VM pVdbe, and only then if: 3529 ** 3530 ** * the associated function parameter is the 32nd or later (counting 3531 ** from left to right), or 3532 ** 3533 ** * the corresponding bit in argument mask is clear (where the first 3534 ** function parameter corresponds to bit 0 etc.). 3535 */ 3536 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 3537 while( *pp ){ 3538 AuxData *pAux = *pp; 3539 if( (iOp<0) 3540 || (pAux->iAuxOp==iOp 3541 && pAux->iAuxArg>=0 3542 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 3543 ){ 3544 testcase( pAux->iAuxArg==31 ); 3545 if( pAux->xDeleteAux ){ 3546 pAux->xDeleteAux(pAux->pAux); 3547 } 3548 *pp = pAux->pNextAux; 3549 sqlite3DbFree(db, pAux); 3550 }else{ 3551 pp= &pAux->pNextAux; 3552 } 3553 } 3554 } 3555 3556 /* 3557 ** Free all memory associated with the Vdbe passed as the second argument, 3558 ** except for object itself, which is preserved. 3559 ** 3560 ** The difference between this function and sqlite3VdbeDelete() is that 3561 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 3562 ** the database connection and frees the object itself. 3563 */ 3564 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 3565 SubProgram *pSub, *pNext; 3566 assert( db!=0 ); 3567 assert( p->db==0 || p->db==db ); 3568 if( p->aColName ){ 3569 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); 3570 sqlite3DbNNFreeNN(db, p->aColName); 3571 } 3572 for(pSub=p->pProgram; pSub; pSub=pNext){ 3573 pNext = pSub->pNext; 3574 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 3575 sqlite3DbFree(db, pSub); 3576 } 3577 if( p->eVdbeState!=VDBE_INIT_STATE ){ 3578 releaseMemArray(p->aVar, p->nVar); 3579 if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList); 3580 if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree); 3581 } 3582 vdbeFreeOpArray(db, p->aOp, p->nOp); 3583 if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql); 3584 #ifdef SQLITE_ENABLE_NORMALIZE 3585 sqlite3DbFree(db, p->zNormSql); 3586 { 3587 DblquoteStr *pThis, *pNext; 3588 for(pThis=p->pDblStr; pThis; pThis=pNext){ 3589 pNext = pThis->pNextStr; 3590 sqlite3DbFree(db, pThis); 3591 } 3592 } 3593 #endif 3594 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3595 { 3596 int i; 3597 for(i=0; i<p->nScan; i++){ 3598 sqlite3DbFree(db, p->aScan[i].zName); 3599 } 3600 sqlite3DbFree(db, p->aScan); 3601 } 3602 #endif 3603 } 3604 3605 /* 3606 ** Delete an entire VDBE. 3607 */ 3608 void sqlite3VdbeDelete(Vdbe *p){ 3609 sqlite3 *db; 3610 3611 assert( p!=0 ); 3612 db = p->db; 3613 assert( db!=0 ); 3614 assert( sqlite3_mutex_held(db->mutex) ); 3615 sqlite3VdbeClearObject(db, p); 3616 if( db->pnBytesFreed==0 ){ 3617 assert( p->ppVPrev!=0 ); 3618 *p->ppVPrev = p->pVNext; 3619 if( p->pVNext ){ 3620 p->pVNext->ppVPrev = p->ppVPrev; 3621 } 3622 } 3623 sqlite3DbNNFreeNN(db, p); 3624 } 3625 3626 /* 3627 ** The cursor "p" has a pending seek operation that has not yet been 3628 ** carried out. Seek the cursor now. If an error occurs, return 3629 ** the appropriate error code. 3630 */ 3631 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 3632 int res, rc; 3633 #ifdef SQLITE_TEST 3634 extern int sqlite3_search_count; 3635 #endif 3636 assert( p->deferredMoveto ); 3637 assert( p->isTable ); 3638 assert( p->eCurType==CURTYPE_BTREE ); 3639 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); 3640 if( rc ) return rc; 3641 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 3642 #ifdef SQLITE_TEST 3643 sqlite3_search_count++; 3644 #endif 3645 p->deferredMoveto = 0; 3646 p->cacheStatus = CACHE_STALE; 3647 return SQLITE_OK; 3648 } 3649 3650 /* 3651 ** Something has moved cursor "p" out of place. Maybe the row it was 3652 ** pointed to was deleted out from under it. Or maybe the btree was 3653 ** rebalanced. Whatever the cause, try to restore "p" to the place it 3654 ** is supposed to be pointing. If the row was deleted out from under the 3655 ** cursor, set the cursor to point to a NULL row. 3656 */ 3657 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ 3658 int isDifferentRow, rc; 3659 assert( p->eCurType==CURTYPE_BTREE ); 3660 assert( p->uc.pCursor!=0 ); 3661 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 3662 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 3663 p->cacheStatus = CACHE_STALE; 3664 if( isDifferentRow ) p->nullRow = 1; 3665 return rc; 3666 } 3667 3668 /* 3669 ** Check to ensure that the cursor is valid. Restore the cursor 3670 ** if need be. Return any I/O error from the restore operation. 3671 */ 3672 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 3673 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); 3674 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 3675 return sqlite3VdbeHandleMovedCursor(p); 3676 } 3677 return SQLITE_OK; 3678 } 3679 3680 /* 3681 ** The following functions: 3682 ** 3683 ** sqlite3VdbeSerialType() 3684 ** sqlite3VdbeSerialTypeLen() 3685 ** sqlite3VdbeSerialLen() 3686 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 3687 ** sqlite3VdbeSerialGet() 3688 ** 3689 ** encapsulate the code that serializes values for storage in SQLite 3690 ** data and index records. Each serialized value consists of a 3691 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 3692 ** integer, stored as a varint. 3693 ** 3694 ** In an SQLite index record, the serial type is stored directly before 3695 ** the blob of data that it corresponds to. In a table record, all serial 3696 ** types are stored at the start of the record, and the blobs of data at 3697 ** the end. Hence these functions allow the caller to handle the 3698 ** serial-type and data blob separately. 3699 ** 3700 ** The following table describes the various storage classes for data: 3701 ** 3702 ** serial type bytes of data type 3703 ** -------------- --------------- --------------- 3704 ** 0 0 NULL 3705 ** 1 1 signed integer 3706 ** 2 2 signed integer 3707 ** 3 3 signed integer 3708 ** 4 4 signed integer 3709 ** 5 6 signed integer 3710 ** 6 8 signed integer 3711 ** 7 8 IEEE float 3712 ** 8 0 Integer constant 0 3713 ** 9 0 Integer constant 1 3714 ** 10,11 reserved for expansion 3715 ** N>=12 and even (N-12)/2 BLOB 3716 ** N>=13 and odd (N-13)/2 text 3717 ** 3718 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 3719 ** of SQLite will not understand those serial types. 3720 */ 3721 3722 #if 0 /* Inlined into the OP_MakeRecord opcode */ 3723 /* 3724 ** Return the serial-type for the value stored in pMem. 3725 ** 3726 ** This routine might convert a large MEM_IntReal value into MEM_Real. 3727 ** 3728 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 3729 ** opcode in the byte-code engine. But by moving this routine in-line, we 3730 ** can omit some redundant tests and make that opcode a lot faster. So 3731 ** this routine is now only used by the STAT3 logic and STAT3 support has 3732 ** ended. The code is kept here for historical reference only. 3733 */ 3734 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 3735 int flags = pMem->flags; 3736 u32 n; 3737 3738 assert( pLen!=0 ); 3739 if( flags&MEM_Null ){ 3740 *pLen = 0; 3741 return 0; 3742 } 3743 if( flags&(MEM_Int|MEM_IntReal) ){ 3744 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3745 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 3746 i64 i = pMem->u.i; 3747 u64 u; 3748 testcase( flags & MEM_Int ); 3749 testcase( flags & MEM_IntReal ); 3750 if( i<0 ){ 3751 u = ~i; 3752 }else{ 3753 u = i; 3754 } 3755 if( u<=127 ){ 3756 if( (i&1)==i && file_format>=4 ){ 3757 *pLen = 0; 3758 return 8+(u32)u; 3759 }else{ 3760 *pLen = 1; 3761 return 1; 3762 } 3763 } 3764 if( u<=32767 ){ *pLen = 2; return 2; } 3765 if( u<=8388607 ){ *pLen = 3; return 3; } 3766 if( u<=2147483647 ){ *pLen = 4; return 4; } 3767 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 3768 *pLen = 8; 3769 if( flags&MEM_IntReal ){ 3770 /* If the value is IntReal and is going to take up 8 bytes to store 3771 ** as an integer, then we might as well make it an 8-byte floating 3772 ** point value */ 3773 pMem->u.r = (double)pMem->u.i; 3774 pMem->flags &= ~MEM_IntReal; 3775 pMem->flags |= MEM_Real; 3776 return 7; 3777 } 3778 return 6; 3779 } 3780 if( flags&MEM_Real ){ 3781 *pLen = 8; 3782 return 7; 3783 } 3784 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 3785 assert( pMem->n>=0 ); 3786 n = (u32)pMem->n; 3787 if( flags & MEM_Zero ){ 3788 n += pMem->u.nZero; 3789 } 3790 *pLen = n; 3791 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 3792 } 3793 #endif /* inlined into OP_MakeRecord */ 3794 3795 /* 3796 ** The sizes for serial types less than 128 3797 */ 3798 const u8 sqlite3SmallTypeSizes[128] = { 3799 /* 0 1 2 3 4 5 6 7 8 9 */ 3800 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 3801 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3802 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 3803 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 3804 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 3805 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 3806 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 3807 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 3808 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 3809 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 3810 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 3811 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 3812 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 3813 }; 3814 3815 /* 3816 ** Return the length of the data corresponding to the supplied serial-type. 3817 */ 3818 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 3819 if( serial_type>=128 ){ 3820 return (serial_type-12)/2; 3821 }else{ 3822 assert( serial_type<12 3823 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 3824 return sqlite3SmallTypeSizes[serial_type]; 3825 } 3826 } 3827 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 3828 assert( serial_type<128 ); 3829 return sqlite3SmallTypeSizes[serial_type]; 3830 } 3831 3832 /* 3833 ** If we are on an architecture with mixed-endian floating 3834 ** points (ex: ARM7) then swap the lower 4 bytes with the 3835 ** upper 4 bytes. Return the result. 3836 ** 3837 ** For most architectures, this is a no-op. 3838 ** 3839 ** (later): It is reported to me that the mixed-endian problem 3840 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 3841 ** that early versions of GCC stored the two words of a 64-bit 3842 ** float in the wrong order. And that error has been propagated 3843 ** ever since. The blame is not necessarily with GCC, though. 3844 ** GCC might have just copying the problem from a prior compiler. 3845 ** I am also told that newer versions of GCC that follow a different 3846 ** ABI get the byte order right. 3847 ** 3848 ** Developers using SQLite on an ARM7 should compile and run their 3849 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 3850 ** enabled, some asserts below will ensure that the byte order of 3851 ** floating point values is correct. 3852 ** 3853 ** (2007-08-30) Frank van Vugt has studied this problem closely 3854 ** and has send his findings to the SQLite developers. Frank 3855 ** writes that some Linux kernels offer floating point hardware 3856 ** emulation that uses only 32-bit mantissas instead of a full 3857 ** 48-bits as required by the IEEE standard. (This is the 3858 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 3859 ** byte swapping becomes very complicated. To avoid problems, 3860 ** the necessary byte swapping is carried out using a 64-bit integer 3861 ** rather than a 64-bit float. Frank assures us that the code here 3862 ** works for him. We, the developers, have no way to independently 3863 ** verify this, but Frank seems to know what he is talking about 3864 ** so we trust him. 3865 */ 3866 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 3867 u64 sqlite3FloatSwap(u64 in){ 3868 union { 3869 u64 r; 3870 u32 i[2]; 3871 } u; 3872 u32 t; 3873 3874 u.r = in; 3875 t = u.i[0]; 3876 u.i[0] = u.i[1]; 3877 u.i[1] = t; 3878 return u.r; 3879 } 3880 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ 3881 3882 3883 /* Input "x" is a sequence of unsigned characters that represent a 3884 ** big-endian integer. Return the equivalent native integer 3885 */ 3886 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 3887 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 3888 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 3889 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3890 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 3891 3892 /* 3893 ** Deserialize the data blob pointed to by buf as serial type serial_type 3894 ** and store the result in pMem. 3895 ** 3896 ** This function is implemented as two separate routines for performance. 3897 ** The few cases that require local variables are broken out into a separate 3898 ** routine so that in most cases the overhead of moving the stack pointer 3899 ** is avoided. 3900 */ 3901 static void serialGet( 3902 const unsigned char *buf, /* Buffer to deserialize from */ 3903 u32 serial_type, /* Serial type to deserialize */ 3904 Mem *pMem /* Memory cell to write value into */ 3905 ){ 3906 u64 x = FOUR_BYTE_UINT(buf); 3907 u32 y = FOUR_BYTE_UINT(buf+4); 3908 x = (x<<32) + y; 3909 if( serial_type==6 ){ 3910 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 3911 ** twos-complement integer. */ 3912 pMem->u.i = *(i64*)&x; 3913 pMem->flags = MEM_Int; 3914 testcase( pMem->u.i<0 ); 3915 }else{ 3916 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 3917 ** floating point number. */ 3918 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 3919 /* Verify that integers and floating point values use the same 3920 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 3921 ** defined that 64-bit floating point values really are mixed 3922 ** endian. 3923 */ 3924 static const u64 t1 = ((u64)0x3ff00000)<<32; 3925 static const double r1 = 1.0; 3926 u64 t2 = t1; 3927 swapMixedEndianFloat(t2); 3928 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 3929 #endif 3930 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 3931 swapMixedEndianFloat(x); 3932 memcpy(&pMem->u.r, &x, sizeof(x)); 3933 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 3934 } 3935 } 3936 void sqlite3VdbeSerialGet( 3937 const unsigned char *buf, /* Buffer to deserialize from */ 3938 u32 serial_type, /* Serial type to deserialize */ 3939 Mem *pMem /* Memory cell to write value into */ 3940 ){ 3941 switch( serial_type ){ 3942 case 10: { /* Internal use only: NULL with virtual table 3943 ** UPDATE no-change flag set */ 3944 pMem->flags = MEM_Null|MEM_Zero; 3945 pMem->n = 0; 3946 pMem->u.nZero = 0; 3947 return; 3948 } 3949 case 11: /* Reserved for future use */ 3950 case 0: { /* Null */ 3951 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 3952 pMem->flags = MEM_Null; 3953 return; 3954 } 3955 case 1: { 3956 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 3957 ** integer. */ 3958 pMem->u.i = ONE_BYTE_INT(buf); 3959 pMem->flags = MEM_Int; 3960 testcase( pMem->u.i<0 ); 3961 return; 3962 } 3963 case 2: { /* 2-byte signed integer */ 3964 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 3965 ** twos-complement integer. */ 3966 pMem->u.i = TWO_BYTE_INT(buf); 3967 pMem->flags = MEM_Int; 3968 testcase( pMem->u.i<0 ); 3969 return; 3970 } 3971 case 3: { /* 3-byte signed integer */ 3972 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 3973 ** twos-complement integer. */ 3974 pMem->u.i = THREE_BYTE_INT(buf); 3975 pMem->flags = MEM_Int; 3976 testcase( pMem->u.i<0 ); 3977 return; 3978 } 3979 case 4: { /* 4-byte signed integer */ 3980 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 3981 ** twos-complement integer. */ 3982 pMem->u.i = FOUR_BYTE_INT(buf); 3983 #ifdef __HP_cc 3984 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 3985 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 3986 #endif 3987 pMem->flags = MEM_Int; 3988 testcase( pMem->u.i<0 ); 3989 return; 3990 } 3991 case 5: { /* 6-byte signed integer */ 3992 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 3993 ** twos-complement integer. */ 3994 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 3995 pMem->flags = MEM_Int; 3996 testcase( pMem->u.i<0 ); 3997 return; 3998 } 3999 case 6: /* 8-byte signed integer */ 4000 case 7: { /* IEEE floating point */ 4001 /* These use local variables, so do them in a separate routine 4002 ** to avoid having to move the frame pointer in the common case */ 4003 serialGet(buf,serial_type,pMem); 4004 return; 4005 } 4006 case 8: /* Integer 0 */ 4007 case 9: { /* Integer 1 */ 4008 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 4009 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 4010 pMem->u.i = serial_type-8; 4011 pMem->flags = MEM_Int; 4012 return; 4013 } 4014 default: { 4015 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 4016 ** length. 4017 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 4018 ** (N-13)/2 bytes in length. */ 4019 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 4020 pMem->z = (char *)buf; 4021 pMem->n = (serial_type-12)/2; 4022 pMem->flags = aFlag[serial_type&1]; 4023 return; 4024 } 4025 } 4026 return; 4027 } 4028 /* 4029 ** This routine is used to allocate sufficient space for an UnpackedRecord 4030 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 4031 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 4032 ** 4033 ** The space is either allocated using sqlite3DbMallocRaw() or from within 4034 ** the unaligned buffer passed via the second and third arguments (presumably 4035 ** stack space). If the former, then *ppFree is set to a pointer that should 4036 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 4037 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 4038 ** before returning. 4039 ** 4040 ** If an OOM error occurs, NULL is returned. 4041 */ 4042 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 4043 KeyInfo *pKeyInfo /* Description of the record */ 4044 ){ 4045 UnpackedRecord *p; /* Unpacked record to return */ 4046 int nByte; /* Number of bytes required for *p */ 4047 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 4048 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 4049 if( !p ) return 0; 4050 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; 4051 assert( pKeyInfo->aSortFlags!=0 ); 4052 p->pKeyInfo = pKeyInfo; 4053 p->nField = pKeyInfo->nKeyField + 1; 4054 return p; 4055 } 4056 4057 /* 4058 ** Given the nKey-byte encoding of a record in pKey[], populate the 4059 ** UnpackedRecord structure indicated by the fourth argument with the 4060 ** contents of the decoded record. 4061 */ 4062 void sqlite3VdbeRecordUnpack( 4063 KeyInfo *pKeyInfo, /* Information about the record format */ 4064 int nKey, /* Size of the binary record */ 4065 const void *pKey, /* The binary record */ 4066 UnpackedRecord *p /* Populate this structure before returning. */ 4067 ){ 4068 const unsigned char *aKey = (const unsigned char *)pKey; 4069 u32 d; 4070 u32 idx; /* Offset in aKey[] to read from */ 4071 u16 u; /* Unsigned loop counter */ 4072 u32 szHdr; 4073 Mem *pMem = p->aMem; 4074 4075 p->default_rc = 0; 4076 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 4077 idx = getVarint32(aKey, szHdr); 4078 d = szHdr; 4079 u = 0; 4080 while( idx<szHdr && d<=(u32)nKey ){ 4081 u32 serial_type; 4082 4083 idx += getVarint32(&aKey[idx], serial_type); 4084 pMem->enc = pKeyInfo->enc; 4085 pMem->db = pKeyInfo->db; 4086 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 4087 pMem->szMalloc = 0; 4088 pMem->z = 0; 4089 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 4090 d += sqlite3VdbeSerialTypeLen(serial_type); 4091 pMem++; 4092 if( (++u)>=p->nField ) break; 4093 } 4094 if( d>(u32)nKey && u ){ 4095 assert( CORRUPT_DB ); 4096 /* In a corrupt record entry, the last pMem might have been set up using 4097 ** uninitialized memory. Overwrite its value with NULL, to prevent 4098 ** warnings from MSAN. */ 4099 sqlite3VdbeMemSetNull(pMem-1); 4100 } 4101 assert( u<=pKeyInfo->nKeyField + 1 ); 4102 p->nField = u; 4103 } 4104 4105 #ifdef SQLITE_DEBUG 4106 /* 4107 ** This function compares two index or table record keys in the same way 4108 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 4109 ** this function deserializes and compares values using the 4110 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 4111 ** in assert() statements to ensure that the optimized code in 4112 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 4113 ** 4114 ** Return true if the result of comparison is equivalent to desiredResult. 4115 ** Return false if there is a disagreement. 4116 */ 4117 static int vdbeRecordCompareDebug( 4118 int nKey1, const void *pKey1, /* Left key */ 4119 const UnpackedRecord *pPKey2, /* Right key */ 4120 int desiredResult /* Correct answer */ 4121 ){ 4122 u32 d1; /* Offset into aKey[] of next data element */ 4123 u32 idx1; /* Offset into aKey[] of next header element */ 4124 u32 szHdr1; /* Number of bytes in header */ 4125 int i = 0; 4126 int rc = 0; 4127 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4128 KeyInfo *pKeyInfo; 4129 Mem mem1; 4130 4131 pKeyInfo = pPKey2->pKeyInfo; 4132 if( pKeyInfo->db==0 ) return 1; 4133 mem1.enc = pKeyInfo->enc; 4134 mem1.db = pKeyInfo->db; 4135 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 4136 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4137 4138 /* Compilers may complain that mem1.u.i is potentially uninitialized. 4139 ** We could initialize it, as shown here, to silence those complaints. 4140 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 4141 ** the unnecessary initialization has a measurable negative performance 4142 ** impact, since this routine is a very high runner. And so, we choose 4143 ** to ignore the compiler warnings and leave this variable uninitialized. 4144 */ 4145 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 4146 4147 idx1 = getVarint32(aKey1, szHdr1); 4148 if( szHdr1>98307 ) return SQLITE_CORRUPT; 4149 d1 = szHdr1; 4150 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 4151 assert( pKeyInfo->aSortFlags!=0 ); 4152 assert( pKeyInfo->nKeyField>0 ); 4153 assert( idx1<=szHdr1 || CORRUPT_DB ); 4154 do{ 4155 u32 serial_type1; 4156 4157 /* Read the serial types for the next element in each key. */ 4158 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 4159 4160 /* Verify that there is enough key space remaining to avoid 4161 ** a buffer overread. The "d1+serial_type1+2" subexpression will 4162 ** always be greater than or equal to the amount of required key space. 4163 ** Use that approximation to avoid the more expensive call to 4164 ** sqlite3VdbeSerialTypeLen() in the common case. 4165 */ 4166 if( d1+(u64)serial_type1+2>(u64)nKey1 4167 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 4168 ){ 4169 break; 4170 } 4171 4172 /* Extract the values to be compared. 4173 */ 4174 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 4175 d1 += sqlite3VdbeSerialTypeLen(serial_type1); 4176 4177 /* Do the comparison 4178 */ 4179 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 4180 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 4181 if( rc!=0 ){ 4182 assert( mem1.szMalloc==0 ); /* See comment below */ 4183 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 4184 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 4185 ){ 4186 rc = -rc; 4187 } 4188 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 4189 rc = -rc; /* Invert the result for DESC sort order. */ 4190 } 4191 goto debugCompareEnd; 4192 } 4193 i++; 4194 }while( idx1<szHdr1 && i<pPKey2->nField ); 4195 4196 /* No memory allocation is ever used on mem1. Prove this using 4197 ** the following assert(). If the assert() fails, it indicates a 4198 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 4199 */ 4200 assert( mem1.szMalloc==0 ); 4201 4202 /* rc==0 here means that one of the keys ran out of fields and 4203 ** all the fields up to that point were equal. Return the default_rc 4204 ** value. */ 4205 rc = pPKey2->default_rc; 4206 4207 debugCompareEnd: 4208 if( desiredResult==0 && rc==0 ) return 1; 4209 if( desiredResult<0 && rc<0 ) return 1; 4210 if( desiredResult>0 && rc>0 ) return 1; 4211 if( CORRUPT_DB ) return 1; 4212 if( pKeyInfo->db->mallocFailed ) return 1; 4213 return 0; 4214 } 4215 #endif 4216 4217 #ifdef SQLITE_DEBUG 4218 /* 4219 ** Count the number of fields (a.k.a. columns) in the record given by 4220 ** pKey,nKey. The verify that this count is less than or equal to the 4221 ** limit given by pKeyInfo->nAllField. 4222 ** 4223 ** If this constraint is not satisfied, it means that the high-speed 4224 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 4225 ** not work correctly. If this assert() ever fires, it probably means 4226 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 4227 ** incorrectly. 4228 */ 4229 static void vdbeAssertFieldCountWithinLimits( 4230 int nKey, const void *pKey, /* The record to verify */ 4231 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 4232 ){ 4233 int nField = 0; 4234 u32 szHdr; 4235 u32 idx; 4236 u32 notUsed; 4237 const unsigned char *aKey = (const unsigned char*)pKey; 4238 4239 if( CORRUPT_DB ) return; 4240 idx = getVarint32(aKey, szHdr); 4241 assert( nKey>=0 ); 4242 assert( szHdr<=(u32)nKey ); 4243 while( idx<szHdr ){ 4244 idx += getVarint32(aKey+idx, notUsed); 4245 nField++; 4246 } 4247 assert( nField <= pKeyInfo->nAllField ); 4248 } 4249 #else 4250 # define vdbeAssertFieldCountWithinLimits(A,B,C) 4251 #endif 4252 4253 /* 4254 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 4255 ** using the collation sequence pColl. As usual, return a negative , zero 4256 ** or positive value if *pMem1 is less than, equal to or greater than 4257 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 4258 */ 4259 static int vdbeCompareMemString( 4260 const Mem *pMem1, 4261 const Mem *pMem2, 4262 const CollSeq *pColl, 4263 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 4264 ){ 4265 if( pMem1->enc==pColl->enc ){ 4266 /* The strings are already in the correct encoding. Call the 4267 ** comparison function directly */ 4268 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 4269 }else{ 4270 int rc; 4271 const void *v1, *v2; 4272 Mem c1; 4273 Mem c2; 4274 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 4275 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 4276 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 4277 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 4278 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 4279 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 4280 if( (v1==0 || v2==0) ){ 4281 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 4282 rc = 0; 4283 }else{ 4284 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 4285 } 4286 sqlite3VdbeMemReleaseMalloc(&c1); 4287 sqlite3VdbeMemReleaseMalloc(&c2); 4288 return rc; 4289 } 4290 } 4291 4292 /* 4293 ** The input pBlob is guaranteed to be a Blob that is not marked 4294 ** with MEM_Zero. Return true if it could be a zero-blob. 4295 */ 4296 static int isAllZero(const char *z, int n){ 4297 int i; 4298 for(i=0; i<n; i++){ 4299 if( z[i] ) return 0; 4300 } 4301 return 1; 4302 } 4303 4304 /* 4305 ** Compare two blobs. Return negative, zero, or positive if the first 4306 ** is less than, equal to, or greater than the second, respectively. 4307 ** If one blob is a prefix of the other, then the shorter is the lessor. 4308 */ 4309 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 4310 int c; 4311 int n1 = pB1->n; 4312 int n2 = pB2->n; 4313 4314 /* It is possible to have a Blob value that has some non-zero content 4315 ** followed by zero content. But that only comes up for Blobs formed 4316 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 4317 ** sqlite3MemCompare(). */ 4318 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 4319 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 4320 4321 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 4322 if( pB1->flags & pB2->flags & MEM_Zero ){ 4323 return pB1->u.nZero - pB2->u.nZero; 4324 }else if( pB1->flags & MEM_Zero ){ 4325 if( !isAllZero(pB2->z, pB2->n) ) return -1; 4326 return pB1->u.nZero - n2; 4327 }else{ 4328 if( !isAllZero(pB1->z, pB1->n) ) return +1; 4329 return n1 - pB2->u.nZero; 4330 } 4331 } 4332 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 4333 if( c ) return c; 4334 return n1 - n2; 4335 } 4336 4337 /* 4338 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 4339 ** number. Return negative, zero, or positive if the first (i64) is less than, 4340 ** equal to, or greater than the second (double). 4341 */ 4342 int sqlite3IntFloatCompare(i64 i, double r){ 4343 if( sizeof(LONGDOUBLE_TYPE)>8 ){ 4344 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 4345 testcase( x<r ); 4346 testcase( x>r ); 4347 testcase( x==r ); 4348 if( x<r ) return -1; 4349 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */ 4350 return 0; /*NO_TEST*/ /* work around bugs in gcov */ 4351 }else{ 4352 i64 y; 4353 double s; 4354 if( r<-9223372036854775808.0 ) return +1; 4355 if( r>=9223372036854775808.0 ) return -1; 4356 y = (i64)r; 4357 if( i<y ) return -1; 4358 if( i>y ) return +1; 4359 s = (double)i; 4360 if( s<r ) return -1; 4361 if( s>r ) return +1; 4362 return 0; 4363 } 4364 } 4365 4366 /* 4367 ** Compare the values contained by the two memory cells, returning 4368 ** negative, zero or positive if pMem1 is less than, equal to, or greater 4369 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 4370 ** and reals) sorted numerically, followed by text ordered by the collating 4371 ** sequence pColl and finally blob's ordered by memcmp(). 4372 ** 4373 ** Two NULL values are considered equal by this function. 4374 */ 4375 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 4376 int f1, f2; 4377 int combined_flags; 4378 4379 f1 = pMem1->flags; 4380 f2 = pMem2->flags; 4381 combined_flags = f1|f2; 4382 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 4383 4384 /* If one value is NULL, it is less than the other. If both values 4385 ** are NULL, return 0. 4386 */ 4387 if( combined_flags&MEM_Null ){ 4388 return (f2&MEM_Null) - (f1&MEM_Null); 4389 } 4390 4391 /* At least one of the two values is a number 4392 */ 4393 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 4394 testcase( combined_flags & MEM_Int ); 4395 testcase( combined_flags & MEM_Real ); 4396 testcase( combined_flags & MEM_IntReal ); 4397 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 4398 testcase( f1 & f2 & MEM_Int ); 4399 testcase( f1 & f2 & MEM_IntReal ); 4400 if( pMem1->u.i < pMem2->u.i ) return -1; 4401 if( pMem1->u.i > pMem2->u.i ) return +1; 4402 return 0; 4403 } 4404 if( (f1 & f2 & MEM_Real)!=0 ){ 4405 if( pMem1->u.r < pMem2->u.r ) return -1; 4406 if( pMem1->u.r > pMem2->u.r ) return +1; 4407 return 0; 4408 } 4409 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 4410 testcase( f1 & MEM_Int ); 4411 testcase( f1 & MEM_IntReal ); 4412 if( (f2&MEM_Real)!=0 ){ 4413 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 4414 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4415 if( pMem1->u.i < pMem2->u.i ) return -1; 4416 if( pMem1->u.i > pMem2->u.i ) return +1; 4417 return 0; 4418 }else{ 4419 return -1; 4420 } 4421 } 4422 if( (f1&MEM_Real)!=0 ){ 4423 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 4424 testcase( f2 & MEM_Int ); 4425 testcase( f2 & MEM_IntReal ); 4426 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 4427 }else{ 4428 return -1; 4429 } 4430 } 4431 return +1; 4432 } 4433 4434 /* If one value is a string and the other is a blob, the string is less. 4435 ** If both are strings, compare using the collating functions. 4436 */ 4437 if( combined_flags&MEM_Str ){ 4438 if( (f1 & MEM_Str)==0 ){ 4439 return 1; 4440 } 4441 if( (f2 & MEM_Str)==0 ){ 4442 return -1; 4443 } 4444 4445 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 4446 assert( pMem1->enc==SQLITE_UTF8 || 4447 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 4448 4449 /* The collation sequence must be defined at this point, even if 4450 ** the user deletes the collation sequence after the vdbe program is 4451 ** compiled (this was not always the case). 4452 */ 4453 assert( !pColl || pColl->xCmp ); 4454 4455 if( pColl ){ 4456 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 4457 } 4458 /* If a NULL pointer was passed as the collate function, fall through 4459 ** to the blob case and use memcmp(). */ 4460 } 4461 4462 /* Both values must be blobs. Compare using memcmp(). */ 4463 return sqlite3BlobCompare(pMem1, pMem2); 4464 } 4465 4466 4467 /* 4468 ** The first argument passed to this function is a serial-type that 4469 ** corresponds to an integer - all values between 1 and 9 inclusive 4470 ** except 7. The second points to a buffer containing an integer value 4471 ** serialized according to serial_type. This function deserializes 4472 ** and returns the value. 4473 */ 4474 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 4475 u32 y; 4476 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 4477 switch( serial_type ){ 4478 case 0: 4479 case 1: 4480 testcase( aKey[0]&0x80 ); 4481 return ONE_BYTE_INT(aKey); 4482 case 2: 4483 testcase( aKey[0]&0x80 ); 4484 return TWO_BYTE_INT(aKey); 4485 case 3: 4486 testcase( aKey[0]&0x80 ); 4487 return THREE_BYTE_INT(aKey); 4488 case 4: { 4489 testcase( aKey[0]&0x80 ); 4490 y = FOUR_BYTE_UINT(aKey); 4491 return (i64)*(int*)&y; 4492 } 4493 case 5: { 4494 testcase( aKey[0]&0x80 ); 4495 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4496 } 4497 case 6: { 4498 u64 x = FOUR_BYTE_UINT(aKey); 4499 testcase( aKey[0]&0x80 ); 4500 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4501 return (i64)*(i64*)&x; 4502 } 4503 } 4504 4505 return (serial_type - 8); 4506 } 4507 4508 /* 4509 ** This function compares the two table rows or index records 4510 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 4511 ** or positive integer if key1 is less than, equal to or 4512 ** greater than key2. The {nKey1, pKey1} key must be a blob 4513 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 4514 ** key must be a parsed key such as obtained from 4515 ** sqlite3VdbeParseRecord. 4516 ** 4517 ** If argument bSkip is non-zero, it is assumed that the caller has already 4518 ** determined that the first fields of the keys are equal. 4519 ** 4520 ** Key1 and Key2 do not have to contain the same number of fields. If all 4521 ** fields that appear in both keys are equal, then pPKey2->default_rc is 4522 ** returned. 4523 ** 4524 ** If database corruption is discovered, set pPKey2->errCode to 4525 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 4526 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 4527 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 4528 */ 4529 int sqlite3VdbeRecordCompareWithSkip( 4530 int nKey1, const void *pKey1, /* Left key */ 4531 UnpackedRecord *pPKey2, /* Right key */ 4532 int bSkip /* If true, skip the first field */ 4533 ){ 4534 u32 d1; /* Offset into aKey[] of next data element */ 4535 int i; /* Index of next field to compare */ 4536 u32 szHdr1; /* Size of record header in bytes */ 4537 u32 idx1; /* Offset of first type in header */ 4538 int rc = 0; /* Return value */ 4539 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 4540 KeyInfo *pKeyInfo; 4541 const unsigned char *aKey1 = (const unsigned char *)pKey1; 4542 Mem mem1; 4543 4544 /* If bSkip is true, then the caller has already determined that the first 4545 ** two elements in the keys are equal. Fix the various stack variables so 4546 ** that this routine begins comparing at the second field. */ 4547 if( bSkip ){ 4548 u32 s1 = aKey1[1]; 4549 if( s1<0x80 ){ 4550 idx1 = 2; 4551 }else{ 4552 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); 4553 } 4554 szHdr1 = aKey1[0]; 4555 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 4556 i = 1; 4557 pRhs++; 4558 }else{ 4559 if( (szHdr1 = aKey1[0])<0x80 ){ 4560 idx1 = 1; 4561 }else{ 4562 idx1 = sqlite3GetVarint32(aKey1, &szHdr1); 4563 } 4564 d1 = szHdr1; 4565 i = 0; 4566 } 4567 if( d1>(unsigned)nKey1 ){ 4568 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4569 return 0; /* Corruption */ 4570 } 4571 4572 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 4573 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 4574 || CORRUPT_DB ); 4575 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 4576 assert( pPKey2->pKeyInfo->nKeyField>0 ); 4577 assert( idx1<=szHdr1 || CORRUPT_DB ); 4578 while( 1 /*exit-by-break*/ ){ 4579 u32 serial_type; 4580 4581 /* RHS is an integer */ 4582 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 4583 testcase( pRhs->flags & MEM_Int ); 4584 testcase( pRhs->flags & MEM_IntReal ); 4585 serial_type = aKey1[idx1]; 4586 testcase( serial_type==12 ); 4587 if( serial_type>=10 ){ 4588 rc = serial_type==10 ? -1 : +1; 4589 }else if( serial_type==0 ){ 4590 rc = -1; 4591 }else if( serial_type==7 ){ 4592 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4593 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 4594 }else{ 4595 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 4596 i64 rhs = pRhs->u.i; 4597 if( lhs<rhs ){ 4598 rc = -1; 4599 }else if( lhs>rhs ){ 4600 rc = +1; 4601 } 4602 } 4603 } 4604 4605 /* RHS is real */ 4606 else if( pRhs->flags & MEM_Real ){ 4607 serial_type = aKey1[idx1]; 4608 if( serial_type>=10 ){ 4609 /* Serial types 12 or greater are strings and blobs (greater than 4610 ** numbers). Types 10 and 11 are currently "reserved for future 4611 ** use", so it doesn't really matter what the results of comparing 4612 ** them to numberic values are. */ 4613 rc = serial_type==10 ? -1 : +1; 4614 }else if( serial_type==0 ){ 4615 rc = -1; 4616 }else{ 4617 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 4618 if( serial_type==7 ){ 4619 if( mem1.u.r<pRhs->u.r ){ 4620 rc = -1; 4621 }else if( mem1.u.r>pRhs->u.r ){ 4622 rc = +1; 4623 } 4624 }else{ 4625 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 4626 } 4627 } 4628 } 4629 4630 /* RHS is a string */ 4631 else if( pRhs->flags & MEM_Str ){ 4632 getVarint32NR(&aKey1[idx1], serial_type); 4633 testcase( serial_type==12 ); 4634 if( serial_type<12 ){ 4635 rc = -1; 4636 }else if( !(serial_type & 0x01) ){ 4637 rc = +1; 4638 }else{ 4639 mem1.n = (serial_type - 12) / 2; 4640 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 4641 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 4642 if( (d1+mem1.n) > (unsigned)nKey1 4643 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 4644 ){ 4645 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4646 return 0; /* Corruption */ 4647 }else if( pKeyInfo->aColl[i] ){ 4648 mem1.enc = pKeyInfo->enc; 4649 mem1.db = pKeyInfo->db; 4650 mem1.flags = MEM_Str; 4651 mem1.z = (char*)&aKey1[d1]; 4652 rc = vdbeCompareMemString( 4653 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 4654 ); 4655 }else{ 4656 int nCmp = MIN(mem1.n, pRhs->n); 4657 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4658 if( rc==0 ) rc = mem1.n - pRhs->n; 4659 } 4660 } 4661 } 4662 4663 /* RHS is a blob */ 4664 else if( pRhs->flags & MEM_Blob ){ 4665 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 4666 getVarint32NR(&aKey1[idx1], serial_type); 4667 testcase( serial_type==12 ); 4668 if( serial_type<12 || (serial_type & 0x01) ){ 4669 rc = -1; 4670 }else{ 4671 int nStr = (serial_type - 12) / 2; 4672 testcase( (d1+nStr)==(unsigned)nKey1 ); 4673 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 4674 if( (d1+nStr) > (unsigned)nKey1 ){ 4675 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4676 return 0; /* Corruption */ 4677 }else if( pRhs->flags & MEM_Zero ){ 4678 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 4679 rc = 1; 4680 }else{ 4681 rc = nStr - pRhs->u.nZero; 4682 } 4683 }else{ 4684 int nCmp = MIN(nStr, pRhs->n); 4685 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 4686 if( rc==0 ) rc = nStr - pRhs->n; 4687 } 4688 } 4689 } 4690 4691 /* RHS is null */ 4692 else{ 4693 serial_type = aKey1[idx1]; 4694 rc = (serial_type!=0 && serial_type!=10); 4695 } 4696 4697 if( rc!=0 ){ 4698 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 4699 if( sortFlags ){ 4700 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 4701 || ((sortFlags & KEYINFO_ORDER_DESC) 4702 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 4703 ){ 4704 rc = -rc; 4705 } 4706 } 4707 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 4708 assert( mem1.szMalloc==0 ); /* See comment below */ 4709 return rc; 4710 } 4711 4712 i++; 4713 if( i==pPKey2->nField ) break; 4714 pRhs++; 4715 d1 += sqlite3VdbeSerialTypeLen(serial_type); 4716 if( d1>(unsigned)nKey1 ) break; 4717 idx1 += sqlite3VarintLen(serial_type); 4718 if( idx1>=(unsigned)szHdr1 ){ 4719 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4720 return 0; /* Corrupt index */ 4721 } 4722 } 4723 4724 /* No memory allocation is ever used on mem1. Prove this using 4725 ** the following assert(). If the assert() fails, it indicates a 4726 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 4727 assert( mem1.szMalloc==0 ); 4728 4729 /* rc==0 here means that one or both of the keys ran out of fields and 4730 ** all the fields up to that point were equal. Return the default_rc 4731 ** value. */ 4732 assert( CORRUPT_DB 4733 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 4734 || pPKey2->pKeyInfo->db->mallocFailed 4735 ); 4736 pPKey2->eqSeen = 1; 4737 return pPKey2->default_rc; 4738 } 4739 int sqlite3VdbeRecordCompare( 4740 int nKey1, const void *pKey1, /* Left key */ 4741 UnpackedRecord *pPKey2 /* Right key */ 4742 ){ 4743 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 4744 } 4745 4746 4747 /* 4748 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4749 ** that (a) the first field of pPKey2 is an integer, and (b) the 4750 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 4751 ** byte (i.e. is less than 128). 4752 ** 4753 ** To avoid concerns about buffer overreads, this routine is only used 4754 ** on schemas where the maximum valid header size is 63 bytes or less. 4755 */ 4756 static int vdbeRecordCompareInt( 4757 int nKey1, const void *pKey1, /* Left key */ 4758 UnpackedRecord *pPKey2 /* Right key */ 4759 ){ 4760 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 4761 int serial_type = ((const u8*)pKey1)[1]; 4762 int res; 4763 u32 y; 4764 u64 x; 4765 i64 v; 4766 i64 lhs; 4767 4768 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4769 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 4770 switch( serial_type ){ 4771 case 1: { /* 1-byte signed integer */ 4772 lhs = ONE_BYTE_INT(aKey); 4773 testcase( lhs<0 ); 4774 break; 4775 } 4776 case 2: { /* 2-byte signed integer */ 4777 lhs = TWO_BYTE_INT(aKey); 4778 testcase( lhs<0 ); 4779 break; 4780 } 4781 case 3: { /* 3-byte signed integer */ 4782 lhs = THREE_BYTE_INT(aKey); 4783 testcase( lhs<0 ); 4784 break; 4785 } 4786 case 4: { /* 4-byte signed integer */ 4787 y = FOUR_BYTE_UINT(aKey); 4788 lhs = (i64)*(int*)&y; 4789 testcase( lhs<0 ); 4790 break; 4791 } 4792 case 5: { /* 6-byte signed integer */ 4793 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 4794 testcase( lhs<0 ); 4795 break; 4796 } 4797 case 6: { /* 8-byte signed integer */ 4798 x = FOUR_BYTE_UINT(aKey); 4799 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 4800 lhs = *(i64*)&x; 4801 testcase( lhs<0 ); 4802 break; 4803 } 4804 case 8: 4805 lhs = 0; 4806 break; 4807 case 9: 4808 lhs = 1; 4809 break; 4810 4811 /* This case could be removed without changing the results of running 4812 ** this code. Including it causes gcc to generate a faster switch 4813 ** statement (since the range of switch targets now starts at zero and 4814 ** is contiguous) but does not cause any duplicate code to be generated 4815 ** (as gcc is clever enough to combine the two like cases). Other 4816 ** compilers might be similar. */ 4817 case 0: case 7: 4818 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4819 4820 default: 4821 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 4822 } 4823 4824 assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); 4825 v = pPKey2->u.i; 4826 if( v>lhs ){ 4827 res = pPKey2->r1; 4828 }else if( v<lhs ){ 4829 res = pPKey2->r2; 4830 }else if( pPKey2->nField>1 ){ 4831 /* The first fields of the two keys are equal. Compare the trailing 4832 ** fields. */ 4833 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4834 }else{ 4835 /* The first fields of the two keys are equal and there are no trailing 4836 ** fields. Return pPKey2->default_rc in this case. */ 4837 res = pPKey2->default_rc; 4838 pPKey2->eqSeen = 1; 4839 } 4840 4841 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 4842 return res; 4843 } 4844 4845 /* 4846 ** This function is an optimized version of sqlite3VdbeRecordCompare() 4847 ** that (a) the first field of pPKey2 is a string, that (b) the first field 4848 ** uses the collation sequence BINARY and (c) that the size-of-header varint 4849 ** at the start of (pKey1/nKey1) fits in a single byte. 4850 */ 4851 static int vdbeRecordCompareString( 4852 int nKey1, const void *pKey1, /* Left key */ 4853 UnpackedRecord *pPKey2 /* Right key */ 4854 ){ 4855 const u8 *aKey1 = (const u8*)pKey1; 4856 int serial_type; 4857 int res; 4858 4859 assert( pPKey2->aMem[0].flags & MEM_Str ); 4860 assert( pPKey2->aMem[0].n == pPKey2->n ); 4861 assert( pPKey2->aMem[0].z == pPKey2->u.z ); 4862 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 4863 serial_type = (signed char)(aKey1[1]); 4864 4865 vrcs_restart: 4866 if( serial_type<12 ){ 4867 if( serial_type<0 ){ 4868 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 4869 if( serial_type>=12 ) goto vrcs_restart; 4870 assert( CORRUPT_DB ); 4871 } 4872 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 4873 }else if( !(serial_type & 0x01) ){ 4874 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 4875 }else{ 4876 int nCmp; 4877 int nStr; 4878 int szHdr = aKey1[0]; 4879 4880 nStr = (serial_type-12) / 2; 4881 if( (szHdr + nStr) > nKey1 ){ 4882 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 4883 return 0; /* Corruption */ 4884 } 4885 nCmp = MIN( pPKey2->n, nStr ); 4886 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); 4887 4888 if( res>0 ){ 4889 res = pPKey2->r2; 4890 }else if( res<0 ){ 4891 res = pPKey2->r1; 4892 }else{ 4893 res = nStr - pPKey2->n; 4894 if( res==0 ){ 4895 if( pPKey2->nField>1 ){ 4896 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 4897 }else{ 4898 res = pPKey2->default_rc; 4899 pPKey2->eqSeen = 1; 4900 } 4901 }else if( res>0 ){ 4902 res = pPKey2->r2; 4903 }else{ 4904 res = pPKey2->r1; 4905 } 4906 } 4907 } 4908 4909 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 4910 || CORRUPT_DB 4911 || pPKey2->pKeyInfo->db->mallocFailed 4912 ); 4913 return res; 4914 } 4915 4916 /* 4917 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 4918 ** suitable for comparing serialized records to the unpacked record passed 4919 ** as the only argument. 4920 */ 4921 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 4922 /* varintRecordCompareInt() and varintRecordCompareString() both assume 4923 ** that the size-of-header varint that occurs at the start of each record 4924 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 4925 ** also assumes that it is safe to overread a buffer by at least the 4926 ** maximum possible legal header size plus 8 bytes. Because there is 4927 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 4928 ** buffer passed to varintRecordCompareInt() this makes it convenient to 4929 ** limit the size of the header to 64 bytes in cases where the first field 4930 ** is an integer. 4931 ** 4932 ** The easiest way to enforce this limit is to consider only records with 4933 ** 13 fields or less. If the first field is an integer, the maximum legal 4934 ** header size is (12*5 + 1 + 1) bytes. */ 4935 if( p->pKeyInfo->nAllField<=13 ){ 4936 int flags = p->aMem[0].flags; 4937 if( p->pKeyInfo->aSortFlags[0] ){ 4938 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 4939 return sqlite3VdbeRecordCompare; 4940 } 4941 p->r1 = 1; 4942 p->r2 = -1; 4943 }else{ 4944 p->r1 = -1; 4945 p->r2 = 1; 4946 } 4947 if( (flags & MEM_Int) ){ 4948 p->u.i = p->aMem[0].u.i; 4949 return vdbeRecordCompareInt; 4950 } 4951 testcase( flags & MEM_Real ); 4952 testcase( flags & MEM_Null ); 4953 testcase( flags & MEM_Blob ); 4954 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 4955 && p->pKeyInfo->aColl[0]==0 4956 ){ 4957 assert( flags & MEM_Str ); 4958 p->u.z = p->aMem[0].z; 4959 p->n = p->aMem[0].n; 4960 return vdbeRecordCompareString; 4961 } 4962 } 4963 4964 return sqlite3VdbeRecordCompare; 4965 } 4966 4967 /* 4968 ** pCur points at an index entry created using the OP_MakeRecord opcode. 4969 ** Read the rowid (the last field in the record) and store it in *rowid. 4970 ** Return SQLITE_OK if everything works, or an error code otherwise. 4971 ** 4972 ** pCur might be pointing to text obtained from a corrupt database file. 4973 ** So the content cannot be trusted. Do appropriate checks on the content. 4974 */ 4975 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 4976 i64 nCellKey = 0; 4977 int rc; 4978 u32 szHdr; /* Size of the header */ 4979 u32 typeRowid; /* Serial type of the rowid */ 4980 u32 lenRowid; /* Size of the rowid */ 4981 Mem m, v; 4982 4983 /* Get the size of the index entry. Only indices entries of less 4984 ** than 2GiB are support - anything large must be database corruption. 4985 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 4986 ** this code can safely assume that nCellKey is 32-bits 4987 */ 4988 assert( sqlite3BtreeCursorIsValid(pCur) ); 4989 nCellKey = sqlite3BtreePayloadSize(pCur); 4990 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 4991 4992 /* Read in the complete content of the index entry */ 4993 sqlite3VdbeMemInit(&m, db, 0); 4994 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 4995 if( rc ){ 4996 return rc; 4997 } 4998 4999 /* The index entry must begin with a header size */ 5000 getVarint32NR((u8*)m.z, szHdr); 5001 testcase( szHdr==3 ); 5002 testcase( szHdr==(u32)m.n ); 5003 testcase( szHdr>0x7fffffff ); 5004 assert( m.n>=0 ); 5005 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 5006 goto idx_rowid_corruption; 5007 } 5008 5009 /* The last field of the index should be an integer - the ROWID. 5010 ** Verify that the last entry really is an integer. */ 5011 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 5012 testcase( typeRowid==1 ); 5013 testcase( typeRowid==2 ); 5014 testcase( typeRowid==3 ); 5015 testcase( typeRowid==4 ); 5016 testcase( typeRowid==5 ); 5017 testcase( typeRowid==6 ); 5018 testcase( typeRowid==8 ); 5019 testcase( typeRowid==9 ); 5020 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 5021 goto idx_rowid_corruption; 5022 } 5023 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 5024 testcase( (u32)m.n==szHdr+lenRowid ); 5025 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 5026 goto idx_rowid_corruption; 5027 } 5028 5029 /* Fetch the integer off the end of the index record */ 5030 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 5031 *rowid = v.u.i; 5032 sqlite3VdbeMemReleaseMalloc(&m); 5033 return SQLITE_OK; 5034 5035 /* Jump here if database corruption is detected after m has been 5036 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 5037 idx_rowid_corruption: 5038 testcase( m.szMalloc!=0 ); 5039 sqlite3VdbeMemReleaseMalloc(&m); 5040 return SQLITE_CORRUPT_BKPT; 5041 } 5042 5043 /* 5044 ** Compare the key of the index entry that cursor pC is pointing to against 5045 ** the key string in pUnpacked. Write into *pRes a number 5046 ** that is negative, zero, or positive if pC is less than, equal to, 5047 ** or greater than pUnpacked. Return SQLITE_OK on success. 5048 ** 5049 ** pUnpacked is either created without a rowid or is truncated so that it 5050 ** omits the rowid at the end. The rowid at the end of the index entry 5051 ** is ignored as well. Hence, this routine only compares the prefixes 5052 ** of the keys prior to the final rowid, not the entire key. 5053 */ 5054 int sqlite3VdbeIdxKeyCompare( 5055 sqlite3 *db, /* Database connection */ 5056 VdbeCursor *pC, /* The cursor to compare against */ 5057 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 5058 int *res /* Write the comparison result here */ 5059 ){ 5060 i64 nCellKey = 0; 5061 int rc; 5062 BtCursor *pCur; 5063 Mem m; 5064 5065 assert( pC->eCurType==CURTYPE_BTREE ); 5066 pCur = pC->uc.pCursor; 5067 assert( sqlite3BtreeCursorIsValid(pCur) ); 5068 nCellKey = sqlite3BtreePayloadSize(pCur); 5069 /* nCellKey will always be between 0 and 0xffffffff because of the way 5070 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 5071 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 5072 *res = 0; 5073 return SQLITE_CORRUPT_BKPT; 5074 } 5075 sqlite3VdbeMemInit(&m, db, 0); 5076 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 5077 if( rc ){ 5078 return rc; 5079 } 5080 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 5081 sqlite3VdbeMemReleaseMalloc(&m); 5082 return SQLITE_OK; 5083 } 5084 5085 /* 5086 ** This routine sets the value to be returned by subsequent calls to 5087 ** sqlite3_changes() on the database handle 'db'. 5088 */ 5089 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ 5090 assert( sqlite3_mutex_held(db->mutex) ); 5091 db->nChange = nChange; 5092 db->nTotalChange += nChange; 5093 } 5094 5095 /* 5096 ** Set a flag in the vdbe to update the change counter when it is finalised 5097 ** or reset. 5098 */ 5099 void sqlite3VdbeCountChanges(Vdbe *v){ 5100 v->changeCntOn = 1; 5101 } 5102 5103 /* 5104 ** Mark every prepared statement associated with a database connection 5105 ** as expired. 5106 ** 5107 ** An expired statement means that recompilation of the statement is 5108 ** recommend. Statements expire when things happen that make their 5109 ** programs obsolete. Removing user-defined functions or collating 5110 ** sequences, or changing an authorization function are the types of 5111 ** things that make prepared statements obsolete. 5112 ** 5113 ** If iCode is 1, then expiration is advisory. The statement should 5114 ** be reprepared before being restarted, but if it is already running 5115 ** it is allowed to run to completion. 5116 ** 5117 ** Internally, this function just sets the Vdbe.expired flag on all 5118 ** prepared statements. The flag is set to 1 for an immediate expiration 5119 ** and set to 2 for an advisory expiration. 5120 */ 5121 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 5122 Vdbe *p; 5123 for(p = db->pVdbe; p; p=p->pVNext){ 5124 p->expired = iCode+1; 5125 } 5126 } 5127 5128 /* 5129 ** Return the database associated with the Vdbe. 5130 */ 5131 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 5132 return v->db; 5133 } 5134 5135 /* 5136 ** Return the SQLITE_PREPARE flags for a Vdbe. 5137 */ 5138 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 5139 return v->prepFlags; 5140 } 5141 5142 /* 5143 ** Return a pointer to an sqlite3_value structure containing the value bound 5144 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 5145 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 5146 ** constants) to the value before returning it. 5147 ** 5148 ** The returned value must be freed by the caller using sqlite3ValueFree(). 5149 */ 5150 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 5151 assert( iVar>0 ); 5152 if( v ){ 5153 Mem *pMem = &v->aVar[iVar-1]; 5154 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5155 if( 0==(pMem->flags & MEM_Null) ){ 5156 sqlite3_value *pRet = sqlite3ValueNew(v->db); 5157 if( pRet ){ 5158 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 5159 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 5160 } 5161 return pRet; 5162 } 5163 } 5164 return 0; 5165 } 5166 5167 /* 5168 ** Configure SQL variable iVar so that binding a new value to it signals 5169 ** to sqlite3_reoptimize() that re-preparing the statement may result 5170 ** in a better query plan. 5171 */ 5172 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 5173 assert( iVar>0 ); 5174 assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); 5175 if( iVar>=32 ){ 5176 v->expmask |= 0x80000000; 5177 }else{ 5178 v->expmask |= ((u32)1 << (iVar-1)); 5179 } 5180 } 5181 5182 /* 5183 ** Cause a function to throw an error if it was call from OP_PureFunc 5184 ** rather than OP_Function. 5185 ** 5186 ** OP_PureFunc means that the function must be deterministic, and should 5187 ** throw an error if it is given inputs that would make it non-deterministic. 5188 ** This routine is invoked by date/time functions that use non-deterministic 5189 ** features such as 'now'. 5190 */ 5191 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 5192 const VdbeOp *pOp; 5193 #ifdef SQLITE_ENABLE_STAT4 5194 if( pCtx->pVdbe==0 ) return 1; 5195 #endif 5196 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 5197 if( pOp->opcode==OP_PureFunc ){ 5198 const char *zContext; 5199 char *zMsg; 5200 if( pOp->p5 & NC_IsCheck ){ 5201 zContext = "a CHECK constraint"; 5202 }else if( pOp->p5 & NC_GenCol ){ 5203 zContext = "a generated column"; 5204 }else{ 5205 zContext = "an index"; 5206 } 5207 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 5208 pCtx->pFunc->zName, zContext); 5209 sqlite3_result_error(pCtx, zMsg, -1); 5210 sqlite3_free(zMsg); 5211 return 0; 5212 } 5213 return 1; 5214 } 5215 5216 #ifndef SQLITE_OMIT_VIRTUALTABLE 5217 /* 5218 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 5219 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 5220 ** in memory obtained from sqlite3DbMalloc). 5221 */ 5222 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 5223 if( pVtab->zErrMsg ){ 5224 sqlite3 *db = p->db; 5225 sqlite3DbFree(db, p->zErrMsg); 5226 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 5227 sqlite3_free(pVtab->zErrMsg); 5228 pVtab->zErrMsg = 0; 5229 } 5230 } 5231 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5232 5233 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5234 5235 /* 5236 ** If the second argument is not NULL, release any allocations associated 5237 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 5238 ** structure itself, using sqlite3DbFree(). 5239 ** 5240 ** This function is used to free UnpackedRecord structures allocated by 5241 ** the vdbeUnpackRecord() function found in vdbeapi.c. 5242 */ 5243 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 5244 assert( db!=0 ); 5245 if( p ){ 5246 int i; 5247 for(i=0; i<nField; i++){ 5248 Mem *pMem = &p->aMem[i]; 5249 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); 5250 } 5251 sqlite3DbNNFreeNN(db, p); 5252 } 5253 } 5254 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5255 5256 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5257 /* 5258 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 5259 ** then cursor passed as the second argument should point to the row about 5260 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 5261 ** the required value will be read from the row the cursor points to. 5262 */ 5263 void sqlite3VdbePreUpdateHook( 5264 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 5265 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 5266 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 5267 const char *zDb, /* Database name */ 5268 Table *pTab, /* Modified table */ 5269 i64 iKey1, /* Initial key value */ 5270 int iReg, /* Register for new.* record */ 5271 int iBlobWrite 5272 ){ 5273 sqlite3 *db = v->db; 5274 i64 iKey2; 5275 PreUpdate preupdate; 5276 const char *zTbl = pTab->zName; 5277 static const u8 fakeSortOrder = 0; 5278 5279 assert( db->pPreUpdate==0 ); 5280 memset(&preupdate, 0, sizeof(PreUpdate)); 5281 if( HasRowid(pTab)==0 ){ 5282 iKey1 = iKey2 = 0; 5283 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 5284 }else{ 5285 if( op==SQLITE_UPDATE ){ 5286 iKey2 = v->aMem[iReg].u.i; 5287 }else{ 5288 iKey2 = iKey1; 5289 } 5290 } 5291 5292 assert( pCsr!=0 ); 5293 assert( pCsr->eCurType==CURTYPE_BTREE ); 5294 assert( pCsr->nField==pTab->nCol 5295 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) 5296 ); 5297 5298 preupdate.v = v; 5299 preupdate.pCsr = pCsr; 5300 preupdate.op = op; 5301 preupdate.iNewReg = iReg; 5302 preupdate.keyinfo.db = db; 5303 preupdate.keyinfo.enc = ENC(db); 5304 preupdate.keyinfo.nKeyField = pTab->nCol; 5305 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 5306 preupdate.iKey1 = iKey1; 5307 preupdate.iKey2 = iKey2; 5308 preupdate.pTab = pTab; 5309 preupdate.iBlobWrite = iBlobWrite; 5310 5311 db->pPreUpdate = &preupdate; 5312 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 5313 db->pPreUpdate = 0; 5314 sqlite3DbFree(db, preupdate.aRecord); 5315 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 5316 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 5317 if( preupdate.aNew ){ 5318 int i; 5319 for(i=0; i<pCsr->nField; i++){ 5320 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 5321 } 5322 sqlite3DbNNFreeNN(db, preupdate.aNew); 5323 } 5324 } 5325 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 5326