1 2 #if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK) 3 #include "sqlite3session.h" 4 #include <assert.h> 5 #include <string.h> 6 7 #ifndef SQLITE_AMALGAMATION 8 # include "sqliteInt.h" 9 # include "vdbeInt.h" 10 #endif 11 12 typedef struct SessionTable SessionTable; 13 typedef struct SessionChange SessionChange; 14 typedef struct SessionBuffer SessionBuffer; 15 typedef struct SessionInput SessionInput; 16 17 /* 18 ** Minimum chunk size used by streaming versions of functions. 19 */ 20 #ifndef SESSIONS_STRM_CHUNK_SIZE 21 # ifdef SQLITE_TEST 22 # define SESSIONS_STRM_CHUNK_SIZE 64 23 # else 24 # define SESSIONS_STRM_CHUNK_SIZE 1024 25 # endif 26 #endif 27 28 static int sessions_strm_chunk_size = SESSIONS_STRM_CHUNK_SIZE; 29 30 typedef struct SessionHook SessionHook; 31 struct SessionHook { 32 void *pCtx; 33 int (*xOld)(void*,int,sqlite3_value**); 34 int (*xNew)(void*,int,sqlite3_value**); 35 int (*xCount)(void*); 36 int (*xDepth)(void*); 37 }; 38 39 /* 40 ** Session handle structure. 41 */ 42 struct sqlite3_session { 43 sqlite3 *db; /* Database handle session is attached to */ 44 char *zDb; /* Name of database session is attached to */ 45 int bEnableSize; /* True if changeset_size() enabled */ 46 int bEnable; /* True if currently recording */ 47 int bIndirect; /* True if all changes are indirect */ 48 int bAutoAttach; /* True to auto-attach tables */ 49 int rc; /* Non-zero if an error has occurred */ 50 void *pFilterCtx; /* First argument to pass to xTableFilter */ 51 int (*xTableFilter)(void *pCtx, const char *zTab); 52 i64 nMalloc; /* Number of bytes of data allocated */ 53 i64 nMaxChangesetSize; 54 sqlite3_value *pZeroBlob; /* Value containing X'' */ 55 sqlite3_session *pNext; /* Next session object on same db. */ 56 SessionTable *pTable; /* List of attached tables */ 57 SessionHook hook; /* APIs to grab new and old data with */ 58 }; 59 60 /* 61 ** Instances of this structure are used to build strings or binary records. 62 */ 63 struct SessionBuffer { 64 u8 *aBuf; /* Pointer to changeset buffer */ 65 int nBuf; /* Size of buffer aBuf */ 66 int nAlloc; /* Size of allocation containing aBuf */ 67 }; 68 69 /* 70 ** An object of this type is used internally as an abstraction for 71 ** input data. Input data may be supplied either as a single large buffer 72 ** (e.g. sqlite3changeset_start()) or using a stream function (e.g. 73 ** sqlite3changeset_start_strm()). 74 */ 75 struct SessionInput { 76 int bNoDiscard; /* If true, do not discard in InputBuffer() */ 77 int iCurrent; /* Offset in aData[] of current change */ 78 int iNext; /* Offset in aData[] of next change */ 79 u8 *aData; /* Pointer to buffer containing changeset */ 80 int nData; /* Number of bytes in aData */ 81 82 SessionBuffer buf; /* Current read buffer */ 83 int (*xInput)(void*, void*, int*); /* Input stream call (or NULL) */ 84 void *pIn; /* First argument to xInput */ 85 int bEof; /* Set to true after xInput finished */ 86 }; 87 88 /* 89 ** Structure for changeset iterators. 90 */ 91 struct sqlite3_changeset_iter { 92 SessionInput in; /* Input buffer or stream */ 93 SessionBuffer tblhdr; /* Buffer to hold apValue/zTab/abPK/ */ 94 int bPatchset; /* True if this is a patchset */ 95 int bInvert; /* True to invert changeset */ 96 int bSkipEmpty; /* Skip noop UPDATE changes */ 97 int rc; /* Iterator error code */ 98 sqlite3_stmt *pConflict; /* Points to conflicting row, if any */ 99 char *zTab; /* Current table */ 100 int nCol; /* Number of columns in zTab */ 101 int op; /* Current operation */ 102 int bIndirect; /* True if current change was indirect */ 103 u8 *abPK; /* Primary key array */ 104 sqlite3_value **apValue; /* old.* and new.* values */ 105 }; 106 107 /* 108 ** Each session object maintains a set of the following structures, one 109 ** for each table the session object is monitoring. The structures are 110 ** stored in a linked list starting at sqlite3_session.pTable. 111 ** 112 ** The keys of the SessionTable.aChange[] hash table are all rows that have 113 ** been modified in any way since the session object was attached to the 114 ** table. 115 ** 116 ** The data associated with each hash-table entry is a structure containing 117 ** a subset of the initial values that the modified row contained at the 118 ** start of the session. Or no initial values if the row was inserted. 119 */ 120 struct SessionTable { 121 SessionTable *pNext; 122 char *zName; /* Local name of table */ 123 int nCol; /* Number of columns in table zName */ 124 int bStat1; /* True if this is sqlite_stat1 */ 125 const char **azCol; /* Column names */ 126 u8 *abPK; /* Array of primary key flags */ 127 int nEntry; /* Total number of entries in hash table */ 128 int nChange; /* Size of apChange[] array */ 129 SessionChange **apChange; /* Hash table buckets */ 130 }; 131 132 /* 133 ** RECORD FORMAT: 134 ** 135 ** The following record format is similar to (but not compatible with) that 136 ** used in SQLite database files. This format is used as part of the 137 ** change-set binary format, and so must be architecture independent. 138 ** 139 ** Unlike the SQLite database record format, each field is self-contained - 140 ** there is no separation of header and data. Each field begins with a 141 ** single byte describing its type, as follows: 142 ** 143 ** 0x00: Undefined value. 144 ** 0x01: Integer value. 145 ** 0x02: Real value. 146 ** 0x03: Text value. 147 ** 0x04: Blob value. 148 ** 0x05: SQL NULL value. 149 ** 150 ** Note that the above match the definitions of SQLITE_INTEGER, SQLITE_TEXT 151 ** and so on in sqlite3.h. For undefined and NULL values, the field consists 152 ** only of the single type byte. For other types of values, the type byte 153 ** is followed by: 154 ** 155 ** Text values: 156 ** A varint containing the number of bytes in the value (encoded using 157 ** UTF-8). Followed by a buffer containing the UTF-8 representation 158 ** of the text value. There is no nul terminator. 159 ** 160 ** Blob values: 161 ** A varint containing the number of bytes in the value, followed by 162 ** a buffer containing the value itself. 163 ** 164 ** Integer values: 165 ** An 8-byte big-endian integer value. 166 ** 167 ** Real values: 168 ** An 8-byte big-endian IEEE 754-2008 real value. 169 ** 170 ** Varint values are encoded in the same way as varints in the SQLite 171 ** record format. 172 ** 173 ** CHANGESET FORMAT: 174 ** 175 ** A changeset is a collection of DELETE, UPDATE and INSERT operations on 176 ** one or more tables. Operations on a single table are grouped together, 177 ** but may occur in any order (i.e. deletes, updates and inserts are all 178 ** mixed together). 179 ** 180 ** Each group of changes begins with a table header: 181 ** 182 ** 1 byte: Constant 0x54 (capital 'T') 183 ** Varint: Number of columns in the table. 184 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 185 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 186 ** 187 ** Followed by one or more changes to the table. 188 ** 189 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 190 ** 1 byte: The "indirect-change" flag. 191 ** old.* record: (delete and update only) 192 ** new.* record: (insert and update only) 193 ** 194 ** The "old.*" and "new.*" records, if present, are N field records in the 195 ** format described above under "RECORD FORMAT", where N is the number of 196 ** columns in the table. The i'th field of each record is associated with 197 ** the i'th column of the table, counting from left to right in the order 198 ** in which columns were declared in the CREATE TABLE statement. 199 ** 200 ** The new.* record that is part of each INSERT change contains the values 201 ** that make up the new row. Similarly, the old.* record that is part of each 202 ** DELETE change contains the values that made up the row that was deleted 203 ** from the database. In the changeset format, the records that are part 204 ** of INSERT or DELETE changes never contain any undefined (type byte 0x00) 205 ** fields. 206 ** 207 ** Within the old.* record associated with an UPDATE change, all fields 208 ** associated with table columns that are not PRIMARY KEY columns and are 209 ** not modified by the UPDATE change are set to "undefined". Other fields 210 ** are set to the values that made up the row before the UPDATE that the 211 ** change records took place. Within the new.* record, fields associated 212 ** with table columns modified by the UPDATE change contain the new 213 ** values. Fields associated with table columns that are not modified 214 ** are set to "undefined". 215 ** 216 ** PATCHSET FORMAT: 217 ** 218 ** A patchset is also a collection of changes. It is similar to a changeset, 219 ** but leaves undefined those fields that are not useful if no conflict 220 ** resolution is required when applying the changeset. 221 ** 222 ** Each group of changes begins with a table header: 223 ** 224 ** 1 byte: Constant 0x50 (capital 'P') 225 ** Varint: Number of columns in the table. 226 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 227 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 228 ** 229 ** Followed by one or more changes to the table. 230 ** 231 ** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09). 232 ** 1 byte: The "indirect-change" flag. 233 ** single record: (PK fields for DELETE, PK and modified fields for UPDATE, 234 ** full record for INSERT). 235 ** 236 ** As in the changeset format, each field of the single record that is part 237 ** of a patchset change is associated with the correspondingly positioned 238 ** table column, counting from left to right within the CREATE TABLE 239 ** statement. 240 ** 241 ** For a DELETE change, all fields within the record except those associated 242 ** with PRIMARY KEY columns are omitted. The PRIMARY KEY fields contain the 243 ** values identifying the row to delete. 244 ** 245 ** For an UPDATE change, all fields except those associated with PRIMARY KEY 246 ** columns and columns that are modified by the UPDATE are set to "undefined". 247 ** PRIMARY KEY fields contain the values identifying the table row to update, 248 ** and fields associated with modified columns contain the new column values. 249 ** 250 ** The records associated with INSERT changes are in the same format as for 251 ** changesets. It is not possible for a record associated with an INSERT 252 ** change to contain a field set to "undefined". 253 ** 254 ** REBASE BLOB FORMAT: 255 ** 256 ** A rebase blob may be output by sqlite3changeset_apply_v2() and its 257 ** streaming equivalent for use with the sqlite3_rebaser APIs to rebase 258 ** existing changesets. A rebase blob contains one entry for each conflict 259 ** resolved using either the OMIT or REPLACE strategies within the apply_v2() 260 ** call. 261 ** 262 ** The format used for a rebase blob is very similar to that used for 263 ** changesets. All entries related to a single table are grouped together. 264 ** 265 ** Each group of entries begins with a table header in changeset format: 266 ** 267 ** 1 byte: Constant 0x54 (capital 'T') 268 ** Varint: Number of columns in the table. 269 ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. 270 ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. 271 ** 272 ** Followed by one or more entries associated with the table. 273 ** 274 ** 1 byte: Either SQLITE_INSERT (0x12), DELETE (0x09). 275 ** 1 byte: Flag. 0x01 for REPLACE, 0x00 for OMIT. 276 ** record: (in the record format defined above). 277 ** 278 ** In a rebase blob, the first field is set to SQLITE_INSERT if the change 279 ** that caused the conflict was an INSERT or UPDATE, or to SQLITE_DELETE if 280 ** it was a DELETE. The second field is set to 0x01 if the conflict 281 ** resolution strategy was REPLACE, or 0x00 if it was OMIT. 282 ** 283 ** If the change that caused the conflict was a DELETE, then the single 284 ** record is a copy of the old.* record from the original changeset. If it 285 ** was an INSERT, then the single record is a copy of the new.* record. If 286 ** the conflicting change was an UPDATE, then the single record is a copy 287 ** of the new.* record with the PK fields filled in based on the original 288 ** old.* record. 289 */ 290 291 /* 292 ** For each row modified during a session, there exists a single instance of 293 ** this structure stored in a SessionTable.aChange[] hash table. 294 */ 295 struct SessionChange { 296 u8 op; /* One of UPDATE, DELETE, INSERT */ 297 u8 bIndirect; /* True if this change is "indirect" */ 298 int nMaxSize; /* Max size of eventual changeset record */ 299 int nRecord; /* Number of bytes in buffer aRecord[] */ 300 u8 *aRecord; /* Buffer containing old.* record */ 301 SessionChange *pNext; /* For hash-table collisions */ 302 }; 303 304 /* 305 ** Write a varint with value iVal into the buffer at aBuf. Return the 306 ** number of bytes written. 307 */ 308 static int sessionVarintPut(u8 *aBuf, int iVal){ 309 return putVarint32(aBuf, iVal); 310 } 311 312 /* 313 ** Return the number of bytes required to store value iVal as a varint. 314 */ 315 static int sessionVarintLen(int iVal){ 316 return sqlite3VarintLen(iVal); 317 } 318 319 /* 320 ** Read a varint value from aBuf[] into *piVal. Return the number of 321 ** bytes read. 322 */ 323 static int sessionVarintGet(u8 *aBuf, int *piVal){ 324 return getVarint32(aBuf, *piVal); 325 } 326 327 /* Load an unaligned and unsigned 32-bit integer */ 328 #define SESSION_UINT32(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 329 330 /* 331 ** Read a 64-bit big-endian integer value from buffer aRec[]. Return 332 ** the value read. 333 */ 334 static sqlite3_int64 sessionGetI64(u8 *aRec){ 335 u64 x = SESSION_UINT32(aRec); 336 u32 y = SESSION_UINT32(aRec+4); 337 x = (x<<32) + y; 338 return (sqlite3_int64)x; 339 } 340 341 /* 342 ** Write a 64-bit big-endian integer value to the buffer aBuf[]. 343 */ 344 static void sessionPutI64(u8 *aBuf, sqlite3_int64 i){ 345 aBuf[0] = (i>>56) & 0xFF; 346 aBuf[1] = (i>>48) & 0xFF; 347 aBuf[2] = (i>>40) & 0xFF; 348 aBuf[3] = (i>>32) & 0xFF; 349 aBuf[4] = (i>>24) & 0xFF; 350 aBuf[5] = (i>>16) & 0xFF; 351 aBuf[6] = (i>> 8) & 0xFF; 352 aBuf[7] = (i>> 0) & 0xFF; 353 } 354 355 /* 356 ** This function is used to serialize the contents of value pValue (see 357 ** comment titled "RECORD FORMAT" above). 358 ** 359 ** If it is non-NULL, the serialized form of the value is written to 360 ** buffer aBuf. *pnWrite is set to the number of bytes written before 361 ** returning. Or, if aBuf is NULL, the only thing this function does is 362 ** set *pnWrite. 363 ** 364 ** If no error occurs, SQLITE_OK is returned. Or, if an OOM error occurs 365 ** within a call to sqlite3_value_text() (may fail if the db is utf-16)) 366 ** SQLITE_NOMEM is returned. 367 */ 368 static int sessionSerializeValue( 369 u8 *aBuf, /* If non-NULL, write serialized value here */ 370 sqlite3_value *pValue, /* Value to serialize */ 371 sqlite3_int64 *pnWrite /* IN/OUT: Increment by bytes written */ 372 ){ 373 int nByte; /* Size of serialized value in bytes */ 374 375 if( pValue ){ 376 int eType; /* Value type (SQLITE_NULL, TEXT etc.) */ 377 378 eType = sqlite3_value_type(pValue); 379 if( aBuf ) aBuf[0] = eType; 380 381 switch( eType ){ 382 case SQLITE_NULL: 383 nByte = 1; 384 break; 385 386 case SQLITE_INTEGER: 387 case SQLITE_FLOAT: 388 if( aBuf ){ 389 /* TODO: SQLite does something special to deal with mixed-endian 390 ** floating point values (e.g. ARM7). This code probably should 391 ** too. */ 392 u64 i; 393 if( eType==SQLITE_INTEGER ){ 394 i = (u64)sqlite3_value_int64(pValue); 395 }else{ 396 double r; 397 assert( sizeof(double)==8 && sizeof(u64)==8 ); 398 r = sqlite3_value_double(pValue); 399 memcpy(&i, &r, 8); 400 } 401 sessionPutI64(&aBuf[1], i); 402 } 403 nByte = 9; 404 break; 405 406 default: { 407 u8 *z; 408 int n; 409 int nVarint; 410 411 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 412 if( eType==SQLITE_TEXT ){ 413 z = (u8 *)sqlite3_value_text(pValue); 414 }else{ 415 z = (u8 *)sqlite3_value_blob(pValue); 416 } 417 n = sqlite3_value_bytes(pValue); 418 if( z==0 && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 419 nVarint = sessionVarintLen(n); 420 421 if( aBuf ){ 422 sessionVarintPut(&aBuf[1], n); 423 if( n>0 ) memcpy(&aBuf[nVarint + 1], z, n); 424 } 425 426 nByte = 1 + nVarint + n; 427 break; 428 } 429 } 430 }else{ 431 nByte = 1; 432 if( aBuf ) aBuf[0] = '\0'; 433 } 434 435 if( pnWrite ) *pnWrite += nByte; 436 return SQLITE_OK; 437 } 438 439 /* 440 ** Allocate and return a pointer to a buffer nByte bytes in size. If 441 ** pSession is not NULL, increase the sqlite3_session.nMalloc variable 442 ** by the number of bytes allocated. 443 */ 444 static void *sessionMalloc64(sqlite3_session *pSession, i64 nByte){ 445 void *pRet = sqlite3_malloc64(nByte); 446 if( pSession ) pSession->nMalloc += sqlite3_msize(pRet); 447 return pRet; 448 } 449 450 /* 451 ** Free buffer pFree, which must have been allocated by an earlier 452 ** call to sessionMalloc64(). If pSession is not NULL, decrease the 453 ** sqlite3_session.nMalloc counter by the number of bytes freed. 454 */ 455 static void sessionFree(sqlite3_session *pSession, void *pFree){ 456 if( pSession ) pSession->nMalloc -= sqlite3_msize(pFree); 457 sqlite3_free(pFree); 458 } 459 460 /* 461 ** This macro is used to calculate hash key values for data structures. In 462 ** order to use this macro, the entire data structure must be represented 463 ** as a series of unsigned integers. In order to calculate a hash-key value 464 ** for a data structure represented as three such integers, the macro may 465 ** then be used as follows: 466 ** 467 ** int hash_key_value; 468 ** hash_key_value = HASH_APPEND(0, <value 1>); 469 ** hash_key_value = HASH_APPEND(hash_key_value, <value 2>); 470 ** hash_key_value = HASH_APPEND(hash_key_value, <value 3>); 471 ** 472 ** In practice, the data structures this macro is used for are the primary 473 ** key values of modified rows. 474 */ 475 #define HASH_APPEND(hash, add) ((hash) << 3) ^ (hash) ^ (unsigned int)(add) 476 477 /* 478 ** Append the hash of the 64-bit integer passed as the second argument to the 479 ** hash-key value passed as the first. Return the new hash-key value. 480 */ 481 static unsigned int sessionHashAppendI64(unsigned int h, i64 i){ 482 h = HASH_APPEND(h, i & 0xFFFFFFFF); 483 return HASH_APPEND(h, (i>>32)&0xFFFFFFFF); 484 } 485 486 /* 487 ** Append the hash of the blob passed via the second and third arguments to 488 ** the hash-key value passed as the first. Return the new hash-key value. 489 */ 490 static unsigned int sessionHashAppendBlob(unsigned int h, int n, const u8 *z){ 491 int i; 492 for(i=0; i<n; i++) h = HASH_APPEND(h, z[i]); 493 return h; 494 } 495 496 /* 497 ** Append the hash of the data type passed as the second argument to the 498 ** hash-key value passed as the first. Return the new hash-key value. 499 */ 500 static unsigned int sessionHashAppendType(unsigned int h, int eType){ 501 return HASH_APPEND(h, eType); 502 } 503 504 /* 505 ** This function may only be called from within a pre-update callback. 506 ** It calculates a hash based on the primary key values of the old.* or 507 ** new.* row currently available and, assuming no error occurs, writes it to 508 ** *piHash before returning. If the primary key contains one or more NULL 509 ** values, *pbNullPK is set to true before returning. 510 ** 511 ** If an error occurs, an SQLite error code is returned and the final values 512 ** of *piHash asn *pbNullPK are undefined. Otherwise, SQLITE_OK is returned 513 ** and the output variables are set as described above. 514 */ 515 static int sessionPreupdateHash( 516 sqlite3_session *pSession, /* Session object that owns pTab */ 517 SessionTable *pTab, /* Session table handle */ 518 int bNew, /* True to hash the new.* PK */ 519 int *piHash, /* OUT: Hash value */ 520 int *pbNullPK /* OUT: True if there are NULL values in PK */ 521 ){ 522 unsigned int h = 0; /* Hash value to return */ 523 int i; /* Used to iterate through columns */ 524 525 assert( *pbNullPK==0 ); 526 assert( pTab->nCol==pSession->hook.xCount(pSession->hook.pCtx) ); 527 for(i=0; i<pTab->nCol; i++){ 528 if( pTab->abPK[i] ){ 529 int rc; 530 int eType; 531 sqlite3_value *pVal; 532 533 if( bNew ){ 534 rc = pSession->hook.xNew(pSession->hook.pCtx, i, &pVal); 535 }else{ 536 rc = pSession->hook.xOld(pSession->hook.pCtx, i, &pVal); 537 } 538 if( rc!=SQLITE_OK ) return rc; 539 540 eType = sqlite3_value_type(pVal); 541 h = sessionHashAppendType(h, eType); 542 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 543 i64 iVal; 544 if( eType==SQLITE_INTEGER ){ 545 iVal = sqlite3_value_int64(pVal); 546 }else{ 547 double rVal = sqlite3_value_double(pVal); 548 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 549 memcpy(&iVal, &rVal, 8); 550 } 551 h = sessionHashAppendI64(h, iVal); 552 }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 553 const u8 *z; 554 int n; 555 if( eType==SQLITE_TEXT ){ 556 z = (const u8 *)sqlite3_value_text(pVal); 557 }else{ 558 z = (const u8 *)sqlite3_value_blob(pVal); 559 } 560 n = sqlite3_value_bytes(pVal); 561 if( !z && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM; 562 h = sessionHashAppendBlob(h, n, z); 563 }else{ 564 assert( eType==SQLITE_NULL ); 565 assert( pTab->bStat1==0 || i!=1 ); 566 *pbNullPK = 1; 567 } 568 } 569 } 570 571 *piHash = (h % pTab->nChange); 572 return SQLITE_OK; 573 } 574 575 /* 576 ** The buffer that the argument points to contains a serialized SQL value. 577 ** Return the number of bytes of space occupied by the value (including 578 ** the type byte). 579 */ 580 static int sessionSerialLen(u8 *a){ 581 int e = *a; 582 int n; 583 if( e==0 || e==0xFF ) return 1; 584 if( e==SQLITE_NULL ) return 1; 585 if( e==SQLITE_INTEGER || e==SQLITE_FLOAT ) return 9; 586 return sessionVarintGet(&a[1], &n) + 1 + n; 587 } 588 589 /* 590 ** Based on the primary key values stored in change aRecord, calculate a 591 ** hash key. Assume the has table has nBucket buckets. The hash keys 592 ** calculated by this function are compatible with those calculated by 593 ** sessionPreupdateHash(). 594 ** 595 ** The bPkOnly argument is non-zero if the record at aRecord[] is from 596 ** a patchset DELETE. In this case the non-PK fields are omitted entirely. 597 */ 598 static unsigned int sessionChangeHash( 599 SessionTable *pTab, /* Table handle */ 600 int bPkOnly, /* Record consists of PK fields only */ 601 u8 *aRecord, /* Change record */ 602 int nBucket /* Assume this many buckets in hash table */ 603 ){ 604 unsigned int h = 0; /* Value to return */ 605 int i; /* Used to iterate through columns */ 606 u8 *a = aRecord; /* Used to iterate through change record */ 607 608 for(i=0; i<pTab->nCol; i++){ 609 int eType = *a; 610 int isPK = pTab->abPK[i]; 611 if( bPkOnly && isPK==0 ) continue; 612 613 /* It is not possible for eType to be SQLITE_NULL here. The session 614 ** module does not record changes for rows with NULL values stored in 615 ** primary key columns. */ 616 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 617 || eType==SQLITE_TEXT || eType==SQLITE_BLOB 618 || eType==SQLITE_NULL || eType==0 619 ); 620 assert( !isPK || (eType!=0 && eType!=SQLITE_NULL) ); 621 622 if( isPK ){ 623 a++; 624 h = sessionHashAppendType(h, eType); 625 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 626 h = sessionHashAppendI64(h, sessionGetI64(a)); 627 a += 8; 628 }else{ 629 int n; 630 a += sessionVarintGet(a, &n); 631 h = sessionHashAppendBlob(h, n, a); 632 a += n; 633 } 634 }else{ 635 a += sessionSerialLen(a); 636 } 637 } 638 return (h % nBucket); 639 } 640 641 /* 642 ** Arguments aLeft and aRight are pointers to change records for table pTab. 643 ** This function returns true if the two records apply to the same row (i.e. 644 ** have the same values stored in the primary key columns), or false 645 ** otherwise. 646 */ 647 static int sessionChangeEqual( 648 SessionTable *pTab, /* Table used for PK definition */ 649 int bLeftPkOnly, /* True if aLeft[] contains PK fields only */ 650 u8 *aLeft, /* Change record */ 651 int bRightPkOnly, /* True if aRight[] contains PK fields only */ 652 u8 *aRight /* Change record */ 653 ){ 654 u8 *a1 = aLeft; /* Cursor to iterate through aLeft */ 655 u8 *a2 = aRight; /* Cursor to iterate through aRight */ 656 int iCol; /* Used to iterate through table columns */ 657 658 for(iCol=0; iCol<pTab->nCol; iCol++){ 659 if( pTab->abPK[iCol] ){ 660 int n1 = sessionSerialLen(a1); 661 int n2 = sessionSerialLen(a2); 662 663 if( n1!=n2 || memcmp(a1, a2, n1) ){ 664 return 0; 665 } 666 a1 += n1; 667 a2 += n2; 668 }else{ 669 if( bLeftPkOnly==0 ) a1 += sessionSerialLen(a1); 670 if( bRightPkOnly==0 ) a2 += sessionSerialLen(a2); 671 } 672 } 673 674 return 1; 675 } 676 677 /* 678 ** Arguments aLeft and aRight both point to buffers containing change 679 ** records with nCol columns. This function "merges" the two records into 680 ** a single records which is written to the buffer at *paOut. *paOut is 681 ** then set to point to one byte after the last byte written before 682 ** returning. 683 ** 684 ** The merging of records is done as follows: For each column, if the 685 ** aRight record contains a value for the column, copy the value from 686 ** their. Otherwise, if aLeft contains a value, copy it. If neither 687 ** record contains a value for a given column, then neither does the 688 ** output record. 689 */ 690 static void sessionMergeRecord( 691 u8 **paOut, 692 int nCol, 693 u8 *aLeft, 694 u8 *aRight 695 ){ 696 u8 *a1 = aLeft; /* Cursor used to iterate through aLeft */ 697 u8 *a2 = aRight; /* Cursor used to iterate through aRight */ 698 u8 *aOut = *paOut; /* Output cursor */ 699 int iCol; /* Used to iterate from 0 to nCol */ 700 701 for(iCol=0; iCol<nCol; iCol++){ 702 int n1 = sessionSerialLen(a1); 703 int n2 = sessionSerialLen(a2); 704 if( *a2 ){ 705 memcpy(aOut, a2, n2); 706 aOut += n2; 707 }else{ 708 memcpy(aOut, a1, n1); 709 aOut += n1; 710 } 711 a1 += n1; 712 a2 += n2; 713 } 714 715 *paOut = aOut; 716 } 717 718 /* 719 ** This is a helper function used by sessionMergeUpdate(). 720 ** 721 ** When this function is called, both *paOne and *paTwo point to a value 722 ** within a change record. Before it returns, both have been advanced so 723 ** as to point to the next value in the record. 724 ** 725 ** If, when this function is called, *paTwo points to a valid value (i.e. 726 ** *paTwo[0] is not 0x00 - the "no value" placeholder), a copy of the *paTwo 727 ** pointer is returned and *pnVal is set to the number of bytes in the 728 ** serialized value. Otherwise, a copy of *paOne is returned and *pnVal 729 ** set to the number of bytes in the value at *paOne. If *paOne points 730 ** to the "no value" placeholder, *pnVal is set to 1. In other words: 731 ** 732 ** if( *paTwo is valid ) return *paTwo; 733 ** return *paOne; 734 ** 735 */ 736 static u8 *sessionMergeValue( 737 u8 **paOne, /* IN/OUT: Left-hand buffer pointer */ 738 u8 **paTwo, /* IN/OUT: Right-hand buffer pointer */ 739 int *pnVal /* OUT: Bytes in returned value */ 740 ){ 741 u8 *a1 = *paOne; 742 u8 *a2 = *paTwo; 743 u8 *pRet = 0; 744 int n1; 745 746 assert( a1 ); 747 if( a2 ){ 748 int n2 = sessionSerialLen(a2); 749 if( *a2 ){ 750 *pnVal = n2; 751 pRet = a2; 752 } 753 *paTwo = &a2[n2]; 754 } 755 756 n1 = sessionSerialLen(a1); 757 if( pRet==0 ){ 758 *pnVal = n1; 759 pRet = a1; 760 } 761 *paOne = &a1[n1]; 762 763 return pRet; 764 } 765 766 /* 767 ** This function is used by changeset_concat() to merge two UPDATE changes 768 ** on the same row. 769 */ 770 static int sessionMergeUpdate( 771 u8 **paOut, /* IN/OUT: Pointer to output buffer */ 772 SessionTable *pTab, /* Table change pertains to */ 773 int bPatchset, /* True if records are patchset records */ 774 u8 *aOldRecord1, /* old.* record for first change */ 775 u8 *aOldRecord2, /* old.* record for second change */ 776 u8 *aNewRecord1, /* new.* record for first change */ 777 u8 *aNewRecord2 /* new.* record for second change */ 778 ){ 779 u8 *aOld1 = aOldRecord1; 780 u8 *aOld2 = aOldRecord2; 781 u8 *aNew1 = aNewRecord1; 782 u8 *aNew2 = aNewRecord2; 783 784 u8 *aOut = *paOut; 785 int i; 786 787 if( bPatchset==0 ){ 788 int bRequired = 0; 789 790 assert( aOldRecord1 && aNewRecord1 ); 791 792 /* Write the old.* vector first. */ 793 for(i=0; i<pTab->nCol; i++){ 794 int nOld; 795 u8 *aOld; 796 int nNew; 797 u8 *aNew; 798 799 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 800 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 801 if( pTab->abPK[i] || nOld!=nNew || memcmp(aOld, aNew, nNew) ){ 802 if( pTab->abPK[i]==0 ) bRequired = 1; 803 memcpy(aOut, aOld, nOld); 804 aOut += nOld; 805 }else{ 806 *(aOut++) = '\0'; 807 } 808 } 809 810 if( !bRequired ) return 0; 811 } 812 813 /* Write the new.* vector */ 814 aOld1 = aOldRecord1; 815 aOld2 = aOldRecord2; 816 aNew1 = aNewRecord1; 817 aNew2 = aNewRecord2; 818 for(i=0; i<pTab->nCol; i++){ 819 int nOld; 820 u8 *aOld; 821 int nNew; 822 u8 *aNew; 823 824 aOld = sessionMergeValue(&aOld1, &aOld2, &nOld); 825 aNew = sessionMergeValue(&aNew1, &aNew2, &nNew); 826 if( bPatchset==0 827 && (pTab->abPK[i] || (nOld==nNew && 0==memcmp(aOld, aNew, nNew))) 828 ){ 829 *(aOut++) = '\0'; 830 }else{ 831 memcpy(aOut, aNew, nNew); 832 aOut += nNew; 833 } 834 } 835 836 *paOut = aOut; 837 return 1; 838 } 839 840 /* 841 ** This function is only called from within a pre-update-hook callback. 842 ** It determines if the current pre-update-hook change affects the same row 843 ** as the change stored in argument pChange. If so, it returns true. Otherwise 844 ** if the pre-update-hook does not affect the same row as pChange, it returns 845 ** false. 846 */ 847 static int sessionPreupdateEqual( 848 sqlite3_session *pSession, /* Session object that owns SessionTable */ 849 SessionTable *pTab, /* Table associated with change */ 850 SessionChange *pChange, /* Change to compare to */ 851 int op /* Current pre-update operation */ 852 ){ 853 int iCol; /* Used to iterate through columns */ 854 u8 *a = pChange->aRecord; /* Cursor used to scan change record */ 855 856 assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE ); 857 for(iCol=0; iCol<pTab->nCol; iCol++){ 858 if( !pTab->abPK[iCol] ){ 859 a += sessionSerialLen(a); 860 }else{ 861 sqlite3_value *pVal; /* Value returned by preupdate_new/old */ 862 int rc; /* Error code from preupdate_new/old */ 863 int eType = *a++; /* Type of value from change record */ 864 865 /* The following calls to preupdate_new() and preupdate_old() can not 866 ** fail. This is because they cache their return values, and by the 867 ** time control flows to here they have already been called once from 868 ** within sessionPreupdateHash(). The first two asserts below verify 869 ** this (that the method has already been called). */ 870 if( op==SQLITE_INSERT ){ 871 /* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */ 872 rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal); 873 }else{ 874 /* assert( db->pPreUpdate->pUnpacked ); */ 875 rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal); 876 } 877 assert( rc==SQLITE_OK ); 878 if( sqlite3_value_type(pVal)!=eType ) return 0; 879 880 /* A SessionChange object never has a NULL value in a PK column */ 881 assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT 882 || eType==SQLITE_BLOB || eType==SQLITE_TEXT 883 ); 884 885 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 886 i64 iVal = sessionGetI64(a); 887 a += 8; 888 if( eType==SQLITE_INTEGER ){ 889 if( sqlite3_value_int64(pVal)!=iVal ) return 0; 890 }else{ 891 double rVal; 892 assert( sizeof(iVal)==8 && sizeof(rVal)==8 ); 893 memcpy(&rVal, &iVal, 8); 894 if( sqlite3_value_double(pVal)!=rVal ) return 0; 895 } 896 }else{ 897 int n; 898 const u8 *z; 899 a += sessionVarintGet(a, &n); 900 if( sqlite3_value_bytes(pVal)!=n ) return 0; 901 if( eType==SQLITE_TEXT ){ 902 z = sqlite3_value_text(pVal); 903 }else{ 904 z = sqlite3_value_blob(pVal); 905 } 906 if( n>0 && memcmp(a, z, n) ) return 0; 907 a += n; 908 } 909 } 910 } 911 912 return 1; 913 } 914 915 /* 916 ** If required, grow the hash table used to store changes on table pTab 917 ** (part of the session pSession). If a fatal OOM error occurs, set the 918 ** session object to failed and return SQLITE_ERROR. Otherwise, return 919 ** SQLITE_OK. 920 ** 921 ** It is possible that a non-fatal OOM error occurs in this function. In 922 ** that case the hash-table does not grow, but SQLITE_OK is returned anyway. 923 ** Growing the hash table in this case is a performance optimization only, 924 ** it is not required for correct operation. 925 */ 926 static int sessionGrowHash( 927 sqlite3_session *pSession, /* For memory accounting. May be NULL */ 928 int bPatchset, 929 SessionTable *pTab 930 ){ 931 if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){ 932 int i; 933 SessionChange **apNew; 934 sqlite3_int64 nNew = 2*(sqlite3_int64)(pTab->nChange ? pTab->nChange : 128); 935 936 apNew = (SessionChange**)sessionMalloc64( 937 pSession, sizeof(SessionChange*) * nNew 938 ); 939 if( apNew==0 ){ 940 if( pTab->nChange==0 ){ 941 return SQLITE_ERROR; 942 } 943 return SQLITE_OK; 944 } 945 memset(apNew, 0, sizeof(SessionChange *) * nNew); 946 947 for(i=0; i<pTab->nChange; i++){ 948 SessionChange *p; 949 SessionChange *pNext; 950 for(p=pTab->apChange[i]; p; p=pNext){ 951 int bPkOnly = (p->op==SQLITE_DELETE && bPatchset); 952 int iHash = sessionChangeHash(pTab, bPkOnly, p->aRecord, nNew); 953 pNext = p->pNext; 954 p->pNext = apNew[iHash]; 955 apNew[iHash] = p; 956 } 957 } 958 959 sessionFree(pSession, pTab->apChange); 960 pTab->nChange = nNew; 961 pTab->apChange = apNew; 962 } 963 964 return SQLITE_OK; 965 } 966 967 /* 968 ** This function queries the database for the names of the columns of table 969 ** zThis, in schema zDb. 970 ** 971 ** Otherwise, if they are not NULL, variable *pnCol is set to the number 972 ** of columns in the database table and variable *pzTab is set to point to a 973 ** nul-terminated copy of the table name. *pazCol (if not NULL) is set to 974 ** point to an array of pointers to column names. And *pabPK (again, if not 975 ** NULL) is set to point to an array of booleans - true if the corresponding 976 ** column is part of the primary key. 977 ** 978 ** For example, if the table is declared as: 979 ** 980 ** CREATE TABLE tbl1(w, x, y, z, PRIMARY KEY(w, z)); 981 ** 982 ** Then the four output variables are populated as follows: 983 ** 984 ** *pnCol = 4 985 ** *pzTab = "tbl1" 986 ** *pazCol = {"w", "x", "y", "z"} 987 ** *pabPK = {1, 0, 0, 1} 988 ** 989 ** All returned buffers are part of the same single allocation, which must 990 ** be freed using sqlite3_free() by the caller 991 */ 992 static int sessionTableInfo( 993 sqlite3_session *pSession, /* For memory accounting. May be NULL */ 994 sqlite3 *db, /* Database connection */ 995 const char *zDb, /* Name of attached database (e.g. "main") */ 996 const char *zThis, /* Table name */ 997 int *pnCol, /* OUT: number of columns */ 998 const char **pzTab, /* OUT: Copy of zThis */ 999 const char ***pazCol, /* OUT: Array of column names for table */ 1000 u8 **pabPK /* OUT: Array of booleans - true for PK col */ 1001 ){ 1002 char *zPragma; 1003 sqlite3_stmt *pStmt; 1004 int rc; 1005 sqlite3_int64 nByte; 1006 int nDbCol = 0; 1007 int nThis; 1008 int i; 1009 u8 *pAlloc = 0; 1010 char **azCol = 0; 1011 u8 *abPK = 0; 1012 1013 assert( pazCol && pabPK ); 1014 1015 nThis = sqlite3Strlen30(zThis); 1016 if( nThis==12 && 0==sqlite3_stricmp("sqlite_stat1", zThis) ){ 1017 rc = sqlite3_table_column_metadata(db, zDb, zThis, 0, 0, 0, 0, 0, 0); 1018 if( rc==SQLITE_OK ){ 1019 /* For sqlite_stat1, pretend that (tbl,idx) is the PRIMARY KEY. */ 1020 zPragma = sqlite3_mprintf( 1021 "SELECT 0, 'tbl', '', 0, '', 1 UNION ALL " 1022 "SELECT 1, 'idx', '', 0, '', 2 UNION ALL " 1023 "SELECT 2, 'stat', '', 0, '', 0" 1024 ); 1025 }else if( rc==SQLITE_ERROR ){ 1026 zPragma = sqlite3_mprintf(""); 1027 }else{ 1028 *pazCol = 0; 1029 *pabPK = 0; 1030 *pnCol = 0; 1031 if( pzTab ) *pzTab = 0; 1032 return rc; 1033 } 1034 }else{ 1035 zPragma = sqlite3_mprintf("PRAGMA '%q'.table_info('%q')", zDb, zThis); 1036 } 1037 if( !zPragma ){ 1038 *pazCol = 0; 1039 *pabPK = 0; 1040 *pnCol = 0; 1041 if( pzTab ) *pzTab = 0; 1042 return SQLITE_NOMEM; 1043 } 1044 1045 rc = sqlite3_prepare_v2(db, zPragma, -1, &pStmt, 0); 1046 sqlite3_free(zPragma); 1047 if( rc!=SQLITE_OK ){ 1048 *pazCol = 0; 1049 *pabPK = 0; 1050 *pnCol = 0; 1051 if( pzTab ) *pzTab = 0; 1052 return rc; 1053 } 1054 1055 nByte = nThis + 1; 1056 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1057 nByte += sqlite3_column_bytes(pStmt, 1); 1058 nDbCol++; 1059 } 1060 rc = sqlite3_reset(pStmt); 1061 1062 if( rc==SQLITE_OK ){ 1063 nByte += nDbCol * (sizeof(const char *) + sizeof(u8) + 1); 1064 pAlloc = sessionMalloc64(pSession, nByte); 1065 if( pAlloc==0 ){ 1066 rc = SQLITE_NOMEM; 1067 } 1068 } 1069 if( rc==SQLITE_OK ){ 1070 azCol = (char **)pAlloc; 1071 pAlloc = (u8 *)&azCol[nDbCol]; 1072 abPK = (u8 *)pAlloc; 1073 pAlloc = &abPK[nDbCol]; 1074 if( pzTab ){ 1075 memcpy(pAlloc, zThis, nThis+1); 1076 *pzTab = (char *)pAlloc; 1077 pAlloc += nThis+1; 1078 } 1079 1080 i = 0; 1081 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1082 int nName = sqlite3_column_bytes(pStmt, 1); 1083 const unsigned char *zName = sqlite3_column_text(pStmt, 1); 1084 if( zName==0 ) break; 1085 memcpy(pAlloc, zName, nName+1); 1086 azCol[i] = (char *)pAlloc; 1087 pAlloc += nName+1; 1088 abPK[i] = sqlite3_column_int(pStmt, 5); 1089 i++; 1090 } 1091 rc = sqlite3_reset(pStmt); 1092 1093 } 1094 1095 /* If successful, populate the output variables. Otherwise, zero them and 1096 ** free any allocation made. An error code will be returned in this case. 1097 */ 1098 if( rc==SQLITE_OK ){ 1099 *pazCol = (const char **)azCol; 1100 *pabPK = abPK; 1101 *pnCol = nDbCol; 1102 }else{ 1103 *pazCol = 0; 1104 *pabPK = 0; 1105 *pnCol = 0; 1106 if( pzTab ) *pzTab = 0; 1107 sessionFree(pSession, azCol); 1108 } 1109 sqlite3_finalize(pStmt); 1110 return rc; 1111 } 1112 1113 /* 1114 ** This function is only called from within a pre-update handler for a 1115 ** write to table pTab, part of session pSession. If this is the first 1116 ** write to this table, initalize the SessionTable.nCol, azCol[] and 1117 ** abPK[] arrays accordingly. 1118 ** 1119 ** If an error occurs, an error code is stored in sqlite3_session.rc and 1120 ** non-zero returned. Or, if no error occurs but the table has no primary 1121 ** key, sqlite3_session.rc is left set to SQLITE_OK and non-zero returned to 1122 ** indicate that updates on this table should be ignored. SessionTable.abPK 1123 ** is set to NULL in this case. 1124 */ 1125 static int sessionInitTable(sqlite3_session *pSession, SessionTable *pTab){ 1126 if( pTab->nCol==0 ){ 1127 u8 *abPK; 1128 assert( pTab->azCol==0 || pTab->abPK==0 ); 1129 pSession->rc = sessionTableInfo(pSession, pSession->db, pSession->zDb, 1130 pTab->zName, &pTab->nCol, 0, &pTab->azCol, &abPK 1131 ); 1132 if( pSession->rc==SQLITE_OK ){ 1133 int i; 1134 for(i=0; i<pTab->nCol; i++){ 1135 if( abPK[i] ){ 1136 pTab->abPK = abPK; 1137 break; 1138 } 1139 } 1140 if( 0==sqlite3_stricmp("sqlite_stat1", pTab->zName) ){ 1141 pTab->bStat1 = 1; 1142 } 1143 1144 if( pSession->bEnableSize ){ 1145 pSession->nMaxChangesetSize += ( 1146 1 + sessionVarintLen(pTab->nCol) + pTab->nCol + strlen(pTab->zName)+1 1147 ); 1148 } 1149 } 1150 } 1151 return (pSession->rc || pTab->abPK==0); 1152 } 1153 1154 /* 1155 ** Versions of the four methods in object SessionHook for use with the 1156 ** sqlite_stat1 table. The purpose of this is to substitute a zero-length 1157 ** blob each time a NULL value is read from the "idx" column of the 1158 ** sqlite_stat1 table. 1159 */ 1160 typedef struct SessionStat1Ctx SessionStat1Ctx; 1161 struct SessionStat1Ctx { 1162 SessionHook hook; 1163 sqlite3_session *pSession; 1164 }; 1165 static int sessionStat1Old(void *pCtx, int iCol, sqlite3_value **ppVal){ 1166 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1167 sqlite3_value *pVal = 0; 1168 int rc = p->hook.xOld(p->hook.pCtx, iCol, &pVal); 1169 if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){ 1170 pVal = p->pSession->pZeroBlob; 1171 } 1172 *ppVal = pVal; 1173 return rc; 1174 } 1175 static int sessionStat1New(void *pCtx, int iCol, sqlite3_value **ppVal){ 1176 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1177 sqlite3_value *pVal = 0; 1178 int rc = p->hook.xNew(p->hook.pCtx, iCol, &pVal); 1179 if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){ 1180 pVal = p->pSession->pZeroBlob; 1181 } 1182 *ppVal = pVal; 1183 return rc; 1184 } 1185 static int sessionStat1Count(void *pCtx){ 1186 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1187 return p->hook.xCount(p->hook.pCtx); 1188 } 1189 static int sessionStat1Depth(void *pCtx){ 1190 SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx; 1191 return p->hook.xDepth(p->hook.pCtx); 1192 } 1193 1194 static int sessionUpdateMaxSize( 1195 int op, 1196 sqlite3_session *pSession, /* Session object pTab is attached to */ 1197 SessionTable *pTab, /* Table that change applies to */ 1198 SessionChange *pC /* Update pC->nMaxSize */ 1199 ){ 1200 i64 nNew = 2; 1201 if( pC->op==SQLITE_INSERT ){ 1202 if( op!=SQLITE_DELETE ){ 1203 int ii; 1204 for(ii=0; ii<pTab->nCol; ii++){ 1205 sqlite3_value *p = 0; 1206 pSession->hook.xNew(pSession->hook.pCtx, ii, &p); 1207 sessionSerializeValue(0, p, &nNew); 1208 } 1209 } 1210 }else if( op==SQLITE_DELETE ){ 1211 nNew += pC->nRecord; 1212 if( sqlite3_preupdate_blobwrite(pSession->db)>=0 ){ 1213 nNew += pC->nRecord; 1214 } 1215 }else{ 1216 int ii; 1217 u8 *pCsr = pC->aRecord; 1218 for(ii=0; ii<pTab->nCol; ii++){ 1219 int bChanged = 1; 1220 int nOld = 0; 1221 int eType; 1222 sqlite3_value *p = 0; 1223 pSession->hook.xNew(pSession->hook.pCtx, ii, &p); 1224 if( p==0 ){ 1225 return SQLITE_NOMEM; 1226 } 1227 1228 eType = *pCsr++; 1229 switch( eType ){ 1230 case SQLITE_NULL: 1231 bChanged = sqlite3_value_type(p)!=SQLITE_NULL; 1232 break; 1233 1234 case SQLITE_FLOAT: 1235 case SQLITE_INTEGER: { 1236 if( eType==sqlite3_value_type(p) ){ 1237 sqlite3_int64 iVal = sessionGetI64(pCsr); 1238 if( eType==SQLITE_INTEGER ){ 1239 bChanged = (iVal!=sqlite3_value_int64(p)); 1240 }else{ 1241 double dVal; 1242 memcpy(&dVal, &iVal, 8); 1243 bChanged = (dVal!=sqlite3_value_double(p)); 1244 } 1245 } 1246 nOld = 8; 1247 pCsr += 8; 1248 break; 1249 } 1250 1251 default: { 1252 int nByte; 1253 nOld = sessionVarintGet(pCsr, &nByte); 1254 pCsr += nOld; 1255 nOld += nByte; 1256 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 1257 if( eType==sqlite3_value_type(p) 1258 && nByte==sqlite3_value_bytes(p) 1259 && (nByte==0 || 0==memcmp(pCsr, sqlite3_value_blob(p), nByte)) 1260 ){ 1261 bChanged = 0; 1262 } 1263 pCsr += nByte; 1264 break; 1265 } 1266 } 1267 1268 if( bChanged && pTab->abPK[ii] ){ 1269 nNew = pC->nRecord + 2; 1270 break; 1271 } 1272 1273 if( bChanged ){ 1274 nNew += 1 + nOld; 1275 sessionSerializeValue(0, p, &nNew); 1276 }else if( pTab->abPK[ii] ){ 1277 nNew += 2 + nOld; 1278 }else{ 1279 nNew += 2; 1280 } 1281 } 1282 } 1283 1284 if( nNew>pC->nMaxSize ){ 1285 int nIncr = nNew - pC->nMaxSize; 1286 pC->nMaxSize = nNew; 1287 pSession->nMaxChangesetSize += nIncr; 1288 } 1289 return SQLITE_OK; 1290 } 1291 1292 /* 1293 ** This function is only called from with a pre-update-hook reporting a 1294 ** change on table pTab (attached to session pSession). The type of change 1295 ** (UPDATE, INSERT, DELETE) is specified by the first argument. 1296 ** 1297 ** Unless one is already present or an error occurs, an entry is added 1298 ** to the changed-rows hash table associated with table pTab. 1299 */ 1300 static void sessionPreupdateOneChange( 1301 int op, /* One of SQLITE_UPDATE, INSERT, DELETE */ 1302 sqlite3_session *pSession, /* Session object pTab is attached to */ 1303 SessionTable *pTab /* Table that change applies to */ 1304 ){ 1305 int iHash; 1306 int bNull = 0; 1307 int rc = SQLITE_OK; 1308 SessionStat1Ctx stat1 = {{0,0,0,0,0},0}; 1309 1310 if( pSession->rc ) return; 1311 1312 /* Load table details if required */ 1313 if( sessionInitTable(pSession, pTab) ) return; 1314 1315 /* Check the number of columns in this xPreUpdate call matches the 1316 ** number of columns in the table. */ 1317 if( pTab->nCol!=pSession->hook.xCount(pSession->hook.pCtx) ){ 1318 pSession->rc = SQLITE_SCHEMA; 1319 return; 1320 } 1321 1322 /* Grow the hash table if required */ 1323 if( sessionGrowHash(pSession, 0, pTab) ){ 1324 pSession->rc = SQLITE_NOMEM; 1325 return; 1326 } 1327 1328 if( pTab->bStat1 ){ 1329 stat1.hook = pSession->hook; 1330 stat1.pSession = pSession; 1331 pSession->hook.pCtx = (void*)&stat1; 1332 pSession->hook.xNew = sessionStat1New; 1333 pSession->hook.xOld = sessionStat1Old; 1334 pSession->hook.xCount = sessionStat1Count; 1335 pSession->hook.xDepth = sessionStat1Depth; 1336 if( pSession->pZeroBlob==0 ){ 1337 sqlite3_value *p = sqlite3ValueNew(0); 1338 if( p==0 ){ 1339 rc = SQLITE_NOMEM; 1340 goto error_out; 1341 } 1342 sqlite3ValueSetStr(p, 0, "", 0, SQLITE_STATIC); 1343 pSession->pZeroBlob = p; 1344 } 1345 } 1346 1347 /* Calculate the hash-key for this change. If the primary key of the row 1348 ** includes a NULL value, exit early. Such changes are ignored by the 1349 ** session module. */ 1350 rc = sessionPreupdateHash(pSession, pTab, op==SQLITE_INSERT, &iHash, &bNull); 1351 if( rc!=SQLITE_OK ) goto error_out; 1352 1353 if( bNull==0 ){ 1354 /* Search the hash table for an existing record for this row. */ 1355 SessionChange *pC; 1356 for(pC=pTab->apChange[iHash]; pC; pC=pC->pNext){ 1357 if( sessionPreupdateEqual(pSession, pTab, pC, op) ) break; 1358 } 1359 1360 if( pC==0 ){ 1361 /* Create a new change object containing all the old values (if 1362 ** this is an SQLITE_UPDATE or SQLITE_DELETE), or just the PK 1363 ** values (if this is an INSERT). */ 1364 sqlite3_int64 nByte; /* Number of bytes to allocate */ 1365 int i; /* Used to iterate through columns */ 1366 1367 assert( rc==SQLITE_OK ); 1368 pTab->nEntry++; 1369 1370 /* Figure out how large an allocation is required */ 1371 nByte = sizeof(SessionChange); 1372 for(i=0; i<pTab->nCol; i++){ 1373 sqlite3_value *p = 0; 1374 if( op!=SQLITE_INSERT ){ 1375 TESTONLY(int trc = ) pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1376 assert( trc==SQLITE_OK ); 1377 }else if( pTab->abPK[i] ){ 1378 TESTONLY(int trc = ) pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1379 assert( trc==SQLITE_OK ); 1380 } 1381 1382 /* This may fail if SQLite value p contains a utf-16 string that must 1383 ** be converted to utf-8 and an OOM error occurs while doing so. */ 1384 rc = sessionSerializeValue(0, p, &nByte); 1385 if( rc!=SQLITE_OK ) goto error_out; 1386 } 1387 1388 /* Allocate the change object */ 1389 pC = (SessionChange *)sessionMalloc64(pSession, nByte); 1390 if( !pC ){ 1391 rc = SQLITE_NOMEM; 1392 goto error_out; 1393 }else{ 1394 memset(pC, 0, sizeof(SessionChange)); 1395 pC->aRecord = (u8 *)&pC[1]; 1396 } 1397 1398 /* Populate the change object. None of the preupdate_old(), 1399 ** preupdate_new() or SerializeValue() calls below may fail as all 1400 ** required values and encodings have already been cached in memory. 1401 ** It is not possible for an OOM to occur in this block. */ 1402 nByte = 0; 1403 for(i=0; i<pTab->nCol; i++){ 1404 sqlite3_value *p = 0; 1405 if( op!=SQLITE_INSERT ){ 1406 pSession->hook.xOld(pSession->hook.pCtx, i, &p); 1407 }else if( pTab->abPK[i] ){ 1408 pSession->hook.xNew(pSession->hook.pCtx, i, &p); 1409 } 1410 sessionSerializeValue(&pC->aRecord[nByte], p, &nByte); 1411 } 1412 1413 /* Add the change to the hash-table */ 1414 if( pSession->bIndirect || pSession->hook.xDepth(pSession->hook.pCtx) ){ 1415 pC->bIndirect = 1; 1416 } 1417 pC->nRecord = nByte; 1418 pC->op = op; 1419 pC->pNext = pTab->apChange[iHash]; 1420 pTab->apChange[iHash] = pC; 1421 1422 }else if( pC->bIndirect ){ 1423 /* If the existing change is considered "indirect", but this current 1424 ** change is "direct", mark the change object as direct. */ 1425 if( pSession->hook.xDepth(pSession->hook.pCtx)==0 1426 && pSession->bIndirect==0 1427 ){ 1428 pC->bIndirect = 0; 1429 } 1430 } 1431 1432 assert( rc==SQLITE_OK ); 1433 if( pSession->bEnableSize ){ 1434 rc = sessionUpdateMaxSize(op, pSession, pTab, pC); 1435 } 1436 } 1437 1438 1439 /* If an error has occurred, mark the session object as failed. */ 1440 error_out: 1441 if( pTab->bStat1 ){ 1442 pSession->hook = stat1.hook; 1443 } 1444 if( rc!=SQLITE_OK ){ 1445 pSession->rc = rc; 1446 } 1447 } 1448 1449 static int sessionFindTable( 1450 sqlite3_session *pSession, 1451 const char *zName, 1452 SessionTable **ppTab 1453 ){ 1454 int rc = SQLITE_OK; 1455 int nName = sqlite3Strlen30(zName); 1456 SessionTable *pRet; 1457 1458 /* Search for an existing table */ 1459 for(pRet=pSession->pTable; pRet; pRet=pRet->pNext){ 1460 if( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ) break; 1461 } 1462 1463 if( pRet==0 && pSession->bAutoAttach ){ 1464 /* If there is a table-filter configured, invoke it. If it returns 0, 1465 ** do not automatically add the new table. */ 1466 if( pSession->xTableFilter==0 1467 || pSession->xTableFilter(pSession->pFilterCtx, zName) 1468 ){ 1469 rc = sqlite3session_attach(pSession, zName); 1470 if( rc==SQLITE_OK ){ 1471 pRet = pSession->pTable; 1472 while( ALWAYS(pRet) && pRet->pNext ){ 1473 pRet = pRet->pNext; 1474 } 1475 assert( pRet!=0 ); 1476 assert( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ); 1477 } 1478 } 1479 } 1480 1481 assert( rc==SQLITE_OK || pRet==0 ); 1482 *ppTab = pRet; 1483 return rc; 1484 } 1485 1486 /* 1487 ** The 'pre-update' hook registered by this module with SQLite databases. 1488 */ 1489 static void xPreUpdate( 1490 void *pCtx, /* Copy of third arg to preupdate_hook() */ 1491 sqlite3 *db, /* Database handle */ 1492 int op, /* SQLITE_UPDATE, DELETE or INSERT */ 1493 char const *zDb, /* Database name */ 1494 char const *zName, /* Table name */ 1495 sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */ 1496 sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */ 1497 ){ 1498 sqlite3_session *pSession; 1499 int nDb = sqlite3Strlen30(zDb); 1500 1501 assert( sqlite3_mutex_held(db->mutex) ); 1502 1503 for(pSession=(sqlite3_session *)pCtx; pSession; pSession=pSession->pNext){ 1504 SessionTable *pTab; 1505 1506 /* If this session is attached to a different database ("main", "temp" 1507 ** etc.), or if it is not currently enabled, there is nothing to do. Skip 1508 ** to the next session object attached to this database. */ 1509 if( pSession->bEnable==0 ) continue; 1510 if( pSession->rc ) continue; 1511 if( sqlite3_strnicmp(zDb, pSession->zDb, nDb+1) ) continue; 1512 1513 pSession->rc = sessionFindTable(pSession, zName, &pTab); 1514 if( pTab ){ 1515 assert( pSession->rc==SQLITE_OK ); 1516 sessionPreupdateOneChange(op, pSession, pTab); 1517 if( op==SQLITE_UPDATE ){ 1518 sessionPreupdateOneChange(SQLITE_INSERT, pSession, pTab); 1519 } 1520 } 1521 } 1522 } 1523 1524 /* 1525 ** The pre-update hook implementations. 1526 */ 1527 static int sessionPreupdateOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1528 return sqlite3_preupdate_old((sqlite3*)pCtx, iVal, ppVal); 1529 } 1530 static int sessionPreupdateNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1531 return sqlite3_preupdate_new((sqlite3*)pCtx, iVal, ppVal); 1532 } 1533 static int sessionPreupdateCount(void *pCtx){ 1534 return sqlite3_preupdate_count((sqlite3*)pCtx); 1535 } 1536 static int sessionPreupdateDepth(void *pCtx){ 1537 return sqlite3_preupdate_depth((sqlite3*)pCtx); 1538 } 1539 1540 /* 1541 ** Install the pre-update hooks on the session object passed as the only 1542 ** argument. 1543 */ 1544 static void sessionPreupdateHooks( 1545 sqlite3_session *pSession 1546 ){ 1547 pSession->hook.pCtx = (void*)pSession->db; 1548 pSession->hook.xOld = sessionPreupdateOld; 1549 pSession->hook.xNew = sessionPreupdateNew; 1550 pSession->hook.xCount = sessionPreupdateCount; 1551 pSession->hook.xDepth = sessionPreupdateDepth; 1552 } 1553 1554 typedef struct SessionDiffCtx SessionDiffCtx; 1555 struct SessionDiffCtx { 1556 sqlite3_stmt *pStmt; 1557 int nOldOff; 1558 }; 1559 1560 /* 1561 ** The diff hook implementations. 1562 */ 1563 static int sessionDiffOld(void *pCtx, int iVal, sqlite3_value **ppVal){ 1564 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1565 *ppVal = sqlite3_column_value(p->pStmt, iVal+p->nOldOff); 1566 return SQLITE_OK; 1567 } 1568 static int sessionDiffNew(void *pCtx, int iVal, sqlite3_value **ppVal){ 1569 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1570 *ppVal = sqlite3_column_value(p->pStmt, iVal); 1571 return SQLITE_OK; 1572 } 1573 static int sessionDiffCount(void *pCtx){ 1574 SessionDiffCtx *p = (SessionDiffCtx*)pCtx; 1575 return p->nOldOff ? p->nOldOff : sqlite3_column_count(p->pStmt); 1576 } 1577 static int sessionDiffDepth(void *pCtx){ 1578 return 0; 1579 } 1580 1581 /* 1582 ** Install the diff hooks on the session object passed as the only 1583 ** argument. 1584 */ 1585 static void sessionDiffHooks( 1586 sqlite3_session *pSession, 1587 SessionDiffCtx *pDiffCtx 1588 ){ 1589 pSession->hook.pCtx = (void*)pDiffCtx; 1590 pSession->hook.xOld = sessionDiffOld; 1591 pSession->hook.xNew = sessionDiffNew; 1592 pSession->hook.xCount = sessionDiffCount; 1593 pSession->hook.xDepth = sessionDiffDepth; 1594 } 1595 1596 static char *sessionExprComparePK( 1597 int nCol, 1598 const char *zDb1, const char *zDb2, 1599 const char *zTab, 1600 const char **azCol, u8 *abPK 1601 ){ 1602 int i; 1603 const char *zSep = ""; 1604 char *zRet = 0; 1605 1606 for(i=0; i<nCol; i++){ 1607 if( abPK[i] ){ 1608 zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"=\"%w\".\"%w\".\"%w\"", 1609 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1610 ); 1611 zSep = " AND "; 1612 if( zRet==0 ) break; 1613 } 1614 } 1615 1616 return zRet; 1617 } 1618 1619 static char *sessionExprCompareOther( 1620 int nCol, 1621 const char *zDb1, const char *zDb2, 1622 const char *zTab, 1623 const char **azCol, u8 *abPK 1624 ){ 1625 int i; 1626 const char *zSep = ""; 1627 char *zRet = 0; 1628 int bHave = 0; 1629 1630 for(i=0; i<nCol; i++){ 1631 if( abPK[i]==0 ){ 1632 bHave = 1; 1633 zRet = sqlite3_mprintf( 1634 "%z%s\"%w\".\"%w\".\"%w\" IS NOT \"%w\".\"%w\".\"%w\"", 1635 zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i] 1636 ); 1637 zSep = " OR "; 1638 if( zRet==0 ) break; 1639 } 1640 } 1641 1642 if( bHave==0 ){ 1643 assert( zRet==0 ); 1644 zRet = sqlite3_mprintf("0"); 1645 } 1646 1647 return zRet; 1648 } 1649 1650 static char *sessionSelectFindNew( 1651 int nCol, 1652 const char *zDb1, /* Pick rows in this db only */ 1653 const char *zDb2, /* But not in this one */ 1654 const char *zTbl, /* Table name */ 1655 const char *zExpr 1656 ){ 1657 char *zRet = sqlite3_mprintf( 1658 "SELECT * FROM \"%w\".\"%w\" WHERE NOT EXISTS (" 1659 " SELECT 1 FROM \"%w\".\"%w\" WHERE %s" 1660 ")", 1661 zDb1, zTbl, zDb2, zTbl, zExpr 1662 ); 1663 return zRet; 1664 } 1665 1666 static int sessionDiffFindNew( 1667 int op, 1668 sqlite3_session *pSession, 1669 SessionTable *pTab, 1670 const char *zDb1, 1671 const char *zDb2, 1672 char *zExpr 1673 ){ 1674 int rc = SQLITE_OK; 1675 char *zStmt = sessionSelectFindNew(pTab->nCol, zDb1, zDb2, pTab->zName,zExpr); 1676 1677 if( zStmt==0 ){ 1678 rc = SQLITE_NOMEM; 1679 }else{ 1680 sqlite3_stmt *pStmt; 1681 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1682 if( rc==SQLITE_OK ){ 1683 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1684 pDiffCtx->pStmt = pStmt; 1685 pDiffCtx->nOldOff = 0; 1686 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1687 sessionPreupdateOneChange(op, pSession, pTab); 1688 } 1689 rc = sqlite3_finalize(pStmt); 1690 } 1691 sqlite3_free(zStmt); 1692 } 1693 1694 return rc; 1695 } 1696 1697 static int sessionDiffFindModified( 1698 sqlite3_session *pSession, 1699 SessionTable *pTab, 1700 const char *zFrom, 1701 const char *zExpr 1702 ){ 1703 int rc = SQLITE_OK; 1704 1705 char *zExpr2 = sessionExprCompareOther(pTab->nCol, 1706 pSession->zDb, zFrom, pTab->zName, pTab->azCol, pTab->abPK 1707 ); 1708 if( zExpr2==0 ){ 1709 rc = SQLITE_NOMEM; 1710 }else{ 1711 char *zStmt = sqlite3_mprintf( 1712 "SELECT * FROM \"%w\".\"%w\", \"%w\".\"%w\" WHERE %s AND (%z)", 1713 pSession->zDb, pTab->zName, zFrom, pTab->zName, zExpr, zExpr2 1714 ); 1715 if( zStmt==0 ){ 1716 rc = SQLITE_NOMEM; 1717 }else{ 1718 sqlite3_stmt *pStmt; 1719 rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0); 1720 1721 if( rc==SQLITE_OK ){ 1722 SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx; 1723 pDiffCtx->pStmt = pStmt; 1724 pDiffCtx->nOldOff = pTab->nCol; 1725 while( SQLITE_ROW==sqlite3_step(pStmt) ){ 1726 sessionPreupdateOneChange(SQLITE_UPDATE, pSession, pTab); 1727 } 1728 rc = sqlite3_finalize(pStmt); 1729 } 1730 sqlite3_free(zStmt); 1731 } 1732 } 1733 1734 return rc; 1735 } 1736 1737 int sqlite3session_diff( 1738 sqlite3_session *pSession, 1739 const char *zFrom, 1740 const char *zTbl, 1741 char **pzErrMsg 1742 ){ 1743 const char *zDb = pSession->zDb; 1744 int rc = pSession->rc; 1745 SessionDiffCtx d; 1746 1747 memset(&d, 0, sizeof(d)); 1748 sessionDiffHooks(pSession, &d); 1749 1750 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1751 if( pzErrMsg ) *pzErrMsg = 0; 1752 if( rc==SQLITE_OK ){ 1753 char *zExpr = 0; 1754 sqlite3 *db = pSession->db; 1755 SessionTable *pTo; /* Table zTbl */ 1756 1757 /* Locate and if necessary initialize the target table object */ 1758 rc = sessionFindTable(pSession, zTbl, &pTo); 1759 if( pTo==0 ) goto diff_out; 1760 if( sessionInitTable(pSession, pTo) ){ 1761 rc = pSession->rc; 1762 goto diff_out; 1763 } 1764 1765 /* Check the table schemas match */ 1766 if( rc==SQLITE_OK ){ 1767 int bHasPk = 0; 1768 int bMismatch = 0; 1769 int nCol; /* Columns in zFrom.zTbl */ 1770 u8 *abPK; 1771 const char **azCol = 0; 1772 rc = sessionTableInfo(0, db, zFrom, zTbl, &nCol, 0, &azCol, &abPK); 1773 if( rc==SQLITE_OK ){ 1774 if( pTo->nCol!=nCol ){ 1775 bMismatch = 1; 1776 }else{ 1777 int i; 1778 for(i=0; i<nCol; i++){ 1779 if( pTo->abPK[i]!=abPK[i] ) bMismatch = 1; 1780 if( sqlite3_stricmp(azCol[i], pTo->azCol[i]) ) bMismatch = 1; 1781 if( abPK[i] ) bHasPk = 1; 1782 } 1783 } 1784 } 1785 sqlite3_free((char*)azCol); 1786 if( bMismatch ){ 1787 if( pzErrMsg ){ 1788 *pzErrMsg = sqlite3_mprintf("table schemas do not match"); 1789 } 1790 rc = SQLITE_SCHEMA; 1791 } 1792 if( bHasPk==0 ){ 1793 /* Ignore tables with no primary keys */ 1794 goto diff_out; 1795 } 1796 } 1797 1798 if( rc==SQLITE_OK ){ 1799 zExpr = sessionExprComparePK(pTo->nCol, 1800 zDb, zFrom, pTo->zName, pTo->azCol, pTo->abPK 1801 ); 1802 } 1803 1804 /* Find new rows */ 1805 if( rc==SQLITE_OK ){ 1806 rc = sessionDiffFindNew(SQLITE_INSERT, pSession, pTo, zDb, zFrom, zExpr); 1807 } 1808 1809 /* Find old rows */ 1810 if( rc==SQLITE_OK ){ 1811 rc = sessionDiffFindNew(SQLITE_DELETE, pSession, pTo, zFrom, zDb, zExpr); 1812 } 1813 1814 /* Find modified rows */ 1815 if( rc==SQLITE_OK ){ 1816 rc = sessionDiffFindModified(pSession, pTo, zFrom, zExpr); 1817 } 1818 1819 sqlite3_free(zExpr); 1820 } 1821 1822 diff_out: 1823 sessionPreupdateHooks(pSession); 1824 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1825 return rc; 1826 } 1827 1828 /* 1829 ** Create a session object. This session object will record changes to 1830 ** database zDb attached to connection db. 1831 */ 1832 int sqlite3session_create( 1833 sqlite3 *db, /* Database handle */ 1834 const char *zDb, /* Name of db (e.g. "main") */ 1835 sqlite3_session **ppSession /* OUT: New session object */ 1836 ){ 1837 sqlite3_session *pNew; /* Newly allocated session object */ 1838 sqlite3_session *pOld; /* Session object already attached to db */ 1839 int nDb = sqlite3Strlen30(zDb); /* Length of zDb in bytes */ 1840 1841 /* Zero the output value in case an error occurs. */ 1842 *ppSession = 0; 1843 1844 /* Allocate and populate the new session object. */ 1845 pNew = (sqlite3_session *)sqlite3_malloc64(sizeof(sqlite3_session) + nDb + 1); 1846 if( !pNew ) return SQLITE_NOMEM; 1847 memset(pNew, 0, sizeof(sqlite3_session)); 1848 pNew->db = db; 1849 pNew->zDb = (char *)&pNew[1]; 1850 pNew->bEnable = 1; 1851 memcpy(pNew->zDb, zDb, nDb+1); 1852 sessionPreupdateHooks(pNew); 1853 1854 /* Add the new session object to the linked list of session objects 1855 ** attached to database handle $db. Do this under the cover of the db 1856 ** handle mutex. */ 1857 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1858 pOld = (sqlite3_session*)sqlite3_preupdate_hook(db, xPreUpdate, (void*)pNew); 1859 pNew->pNext = pOld; 1860 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1861 1862 *ppSession = pNew; 1863 return SQLITE_OK; 1864 } 1865 1866 /* 1867 ** Free the list of table objects passed as the first argument. The contents 1868 ** of the changed-rows hash tables are also deleted. 1869 */ 1870 static void sessionDeleteTable(sqlite3_session *pSession, SessionTable *pList){ 1871 SessionTable *pNext; 1872 SessionTable *pTab; 1873 1874 for(pTab=pList; pTab; pTab=pNext){ 1875 int i; 1876 pNext = pTab->pNext; 1877 for(i=0; i<pTab->nChange; i++){ 1878 SessionChange *p; 1879 SessionChange *pNextChange; 1880 for(p=pTab->apChange[i]; p; p=pNextChange){ 1881 pNextChange = p->pNext; 1882 sessionFree(pSession, p); 1883 } 1884 } 1885 sessionFree(pSession, (char*)pTab->azCol); /* cast works around VC++ bug */ 1886 sessionFree(pSession, pTab->apChange); 1887 sessionFree(pSession, pTab); 1888 } 1889 } 1890 1891 /* 1892 ** Delete a session object previously allocated using sqlite3session_create(). 1893 */ 1894 void sqlite3session_delete(sqlite3_session *pSession){ 1895 sqlite3 *db = pSession->db; 1896 sqlite3_session *pHead; 1897 sqlite3_session **pp; 1898 1899 /* Unlink the session from the linked list of sessions attached to the 1900 ** database handle. Hold the db mutex while doing so. */ 1901 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 1902 pHead = (sqlite3_session*)sqlite3_preupdate_hook(db, 0, 0); 1903 for(pp=&pHead; ALWAYS((*pp)!=0); pp=&((*pp)->pNext)){ 1904 if( (*pp)==pSession ){ 1905 *pp = (*pp)->pNext; 1906 if( pHead ) sqlite3_preupdate_hook(db, xPreUpdate, (void*)pHead); 1907 break; 1908 } 1909 } 1910 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 1911 sqlite3ValueFree(pSession->pZeroBlob); 1912 1913 /* Delete all attached table objects. And the contents of their 1914 ** associated hash-tables. */ 1915 sessionDeleteTable(pSession, pSession->pTable); 1916 1917 /* Assert that all allocations have been freed and then free the 1918 ** session object itself. */ 1919 assert( pSession->nMalloc==0 ); 1920 sqlite3_free(pSession); 1921 } 1922 1923 /* 1924 ** Set a table filter on a Session Object. 1925 */ 1926 void sqlite3session_table_filter( 1927 sqlite3_session *pSession, 1928 int(*xFilter)(void*, const char*), 1929 void *pCtx /* First argument passed to xFilter */ 1930 ){ 1931 pSession->bAutoAttach = 1; 1932 pSession->pFilterCtx = pCtx; 1933 pSession->xTableFilter = xFilter; 1934 } 1935 1936 /* 1937 ** Attach a table to a session. All subsequent changes made to the table 1938 ** while the session object is enabled will be recorded. 1939 ** 1940 ** Only tables that have a PRIMARY KEY defined may be attached. It does 1941 ** not matter if the PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) 1942 ** or not. 1943 */ 1944 int sqlite3session_attach( 1945 sqlite3_session *pSession, /* Session object */ 1946 const char *zName /* Table name */ 1947 ){ 1948 int rc = SQLITE_OK; 1949 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 1950 1951 if( !zName ){ 1952 pSession->bAutoAttach = 1; 1953 }else{ 1954 SessionTable *pTab; /* New table object (if required) */ 1955 int nName; /* Number of bytes in string zName */ 1956 1957 /* First search for an existing entry. If one is found, this call is 1958 ** a no-op. Return early. */ 1959 nName = sqlite3Strlen30(zName); 1960 for(pTab=pSession->pTable; pTab; pTab=pTab->pNext){ 1961 if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ) break; 1962 } 1963 1964 if( !pTab ){ 1965 /* Allocate new SessionTable object. */ 1966 int nByte = sizeof(SessionTable) + nName + 1; 1967 pTab = (SessionTable*)sessionMalloc64(pSession, nByte); 1968 if( !pTab ){ 1969 rc = SQLITE_NOMEM; 1970 }else{ 1971 /* Populate the new SessionTable object and link it into the list. 1972 ** The new object must be linked onto the end of the list, not 1973 ** simply added to the start of it in order to ensure that tables 1974 ** appear in the correct order when a changeset or patchset is 1975 ** eventually generated. */ 1976 SessionTable **ppTab; 1977 memset(pTab, 0, sizeof(SessionTable)); 1978 pTab->zName = (char *)&pTab[1]; 1979 memcpy(pTab->zName, zName, nName+1); 1980 for(ppTab=&pSession->pTable; *ppTab; ppTab=&(*ppTab)->pNext); 1981 *ppTab = pTab; 1982 } 1983 } 1984 } 1985 1986 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 1987 return rc; 1988 } 1989 1990 /* 1991 ** Ensure that there is room in the buffer to append nByte bytes of data. 1992 ** If not, use sqlite3_realloc() to grow the buffer so that there is. 1993 ** 1994 ** If successful, return zero. Otherwise, if an OOM condition is encountered, 1995 ** set *pRc to SQLITE_NOMEM and return non-zero. 1996 */ 1997 static int sessionBufferGrow(SessionBuffer *p, i64 nByte, int *pRc){ 1998 #define SESSION_MAX_BUFFER_SZ (0x7FFFFF00 - 1) 1999 i64 nReq = p->nBuf + nByte; 2000 if( *pRc==SQLITE_OK && nReq>p->nAlloc ){ 2001 u8 *aNew; 2002 i64 nNew = p->nAlloc ? p->nAlloc : 128; 2003 2004 do { 2005 nNew = nNew*2; 2006 }while( nNew<nReq ); 2007 2008 /* The value of SESSION_MAX_BUFFER_SZ is copied from the implementation 2009 ** of sqlite3_realloc64(). Allocations greater than this size in bytes 2010 ** always fail. It is used here to ensure that this routine can always 2011 ** allocate up to this limit - instead of up to the largest power of 2012 ** two smaller than the limit. */ 2013 if( nNew>SESSION_MAX_BUFFER_SZ ){ 2014 nNew = SESSION_MAX_BUFFER_SZ; 2015 if( nNew<nReq ){ 2016 *pRc = SQLITE_NOMEM; 2017 return 1; 2018 } 2019 } 2020 2021 aNew = (u8 *)sqlite3_realloc64(p->aBuf, nNew); 2022 if( 0==aNew ){ 2023 *pRc = SQLITE_NOMEM; 2024 }else{ 2025 p->aBuf = aNew; 2026 p->nAlloc = nNew; 2027 } 2028 } 2029 return (*pRc!=SQLITE_OK); 2030 } 2031 2032 /* 2033 ** Append the value passed as the second argument to the buffer passed 2034 ** as the first. 2035 ** 2036 ** This function is a no-op if *pRc is non-zero when it is called. 2037 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code 2038 ** before returning. 2039 */ 2040 static void sessionAppendValue(SessionBuffer *p, sqlite3_value *pVal, int *pRc){ 2041 int rc = *pRc; 2042 if( rc==SQLITE_OK ){ 2043 sqlite3_int64 nByte = 0; 2044 rc = sessionSerializeValue(0, pVal, &nByte); 2045 sessionBufferGrow(p, nByte, &rc); 2046 if( rc==SQLITE_OK ){ 2047 rc = sessionSerializeValue(&p->aBuf[p->nBuf], pVal, 0); 2048 p->nBuf += nByte; 2049 }else{ 2050 *pRc = rc; 2051 } 2052 } 2053 } 2054 2055 /* 2056 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 2057 ** called. Otherwise, append a single byte to the buffer. 2058 ** 2059 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 2060 ** returning. 2061 */ 2062 static void sessionAppendByte(SessionBuffer *p, u8 v, int *pRc){ 2063 if( 0==sessionBufferGrow(p, 1, pRc) ){ 2064 p->aBuf[p->nBuf++] = v; 2065 } 2066 } 2067 2068 /* 2069 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 2070 ** called. Otherwise, append a single varint to the buffer. 2071 ** 2072 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 2073 ** returning. 2074 */ 2075 static void sessionAppendVarint(SessionBuffer *p, int v, int *pRc){ 2076 if( 0==sessionBufferGrow(p, 9, pRc) ){ 2077 p->nBuf += sessionVarintPut(&p->aBuf[p->nBuf], v); 2078 } 2079 } 2080 2081 /* 2082 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 2083 ** called. Otherwise, append a blob of data to the buffer. 2084 ** 2085 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 2086 ** returning. 2087 */ 2088 static void sessionAppendBlob( 2089 SessionBuffer *p, 2090 const u8 *aBlob, 2091 int nBlob, 2092 int *pRc 2093 ){ 2094 if( nBlob>0 && 0==sessionBufferGrow(p, nBlob, pRc) ){ 2095 memcpy(&p->aBuf[p->nBuf], aBlob, nBlob); 2096 p->nBuf += nBlob; 2097 } 2098 } 2099 2100 /* 2101 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 2102 ** called. Otherwise, append a string to the buffer. All bytes in the string 2103 ** up to (but not including) the nul-terminator are written to the buffer. 2104 ** 2105 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 2106 ** returning. 2107 */ 2108 static void sessionAppendStr( 2109 SessionBuffer *p, 2110 const char *zStr, 2111 int *pRc 2112 ){ 2113 int nStr = sqlite3Strlen30(zStr); 2114 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 2115 memcpy(&p->aBuf[p->nBuf], zStr, nStr); 2116 p->nBuf += nStr; 2117 } 2118 } 2119 2120 /* 2121 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 2122 ** called. Otherwise, append the string representation of integer iVal 2123 ** to the buffer. No nul-terminator is written. 2124 ** 2125 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 2126 ** returning. 2127 */ 2128 static void sessionAppendInteger( 2129 SessionBuffer *p, /* Buffer to append to */ 2130 int iVal, /* Value to write the string rep. of */ 2131 int *pRc /* IN/OUT: Error code */ 2132 ){ 2133 char aBuf[24]; 2134 sqlite3_snprintf(sizeof(aBuf)-1, aBuf, "%d", iVal); 2135 sessionAppendStr(p, aBuf, pRc); 2136 } 2137 2138 /* 2139 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 2140 ** called. Otherwise, append the string zStr enclosed in quotes (") and 2141 ** with any embedded quote characters escaped to the buffer. No 2142 ** nul-terminator byte is written. 2143 ** 2144 ** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before 2145 ** returning. 2146 */ 2147 static void sessionAppendIdent( 2148 SessionBuffer *p, /* Buffer to a append to */ 2149 const char *zStr, /* String to quote, escape and append */ 2150 int *pRc /* IN/OUT: Error code */ 2151 ){ 2152 int nStr = sqlite3Strlen30(zStr)*2 + 2 + 1; 2153 if( 0==sessionBufferGrow(p, nStr, pRc) ){ 2154 char *zOut = (char *)&p->aBuf[p->nBuf]; 2155 const char *zIn = zStr; 2156 *zOut++ = '"'; 2157 while( *zIn ){ 2158 if( *zIn=='"' ) *zOut++ = '"'; 2159 *zOut++ = *(zIn++); 2160 } 2161 *zOut++ = '"'; 2162 p->nBuf = (int)((u8 *)zOut - p->aBuf); 2163 } 2164 } 2165 2166 /* 2167 ** This function is a no-op if *pRc is other than SQLITE_OK when it is 2168 ** called. Otherwse, it appends the serialized version of the value stored 2169 ** in column iCol of the row that SQL statement pStmt currently points 2170 ** to to the buffer. 2171 */ 2172 static void sessionAppendCol( 2173 SessionBuffer *p, /* Buffer to append to */ 2174 sqlite3_stmt *pStmt, /* Handle pointing to row containing value */ 2175 int iCol, /* Column to read value from */ 2176 int *pRc /* IN/OUT: Error code */ 2177 ){ 2178 if( *pRc==SQLITE_OK ){ 2179 int eType = sqlite3_column_type(pStmt, iCol); 2180 sessionAppendByte(p, (u8)eType, pRc); 2181 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2182 sqlite3_int64 i; 2183 u8 aBuf[8]; 2184 if( eType==SQLITE_INTEGER ){ 2185 i = sqlite3_column_int64(pStmt, iCol); 2186 }else{ 2187 double r = sqlite3_column_double(pStmt, iCol); 2188 memcpy(&i, &r, 8); 2189 } 2190 sessionPutI64(aBuf, i); 2191 sessionAppendBlob(p, aBuf, 8, pRc); 2192 } 2193 if( eType==SQLITE_BLOB || eType==SQLITE_TEXT ){ 2194 u8 *z; 2195 int nByte; 2196 if( eType==SQLITE_BLOB ){ 2197 z = (u8 *)sqlite3_column_blob(pStmt, iCol); 2198 }else{ 2199 z = (u8 *)sqlite3_column_text(pStmt, iCol); 2200 } 2201 nByte = sqlite3_column_bytes(pStmt, iCol); 2202 if( z || (eType==SQLITE_BLOB && nByte==0) ){ 2203 sessionAppendVarint(p, nByte, pRc); 2204 sessionAppendBlob(p, z, nByte, pRc); 2205 }else{ 2206 *pRc = SQLITE_NOMEM; 2207 } 2208 } 2209 } 2210 } 2211 2212 /* 2213 ** 2214 ** This function appends an update change to the buffer (see the comments 2215 ** under "CHANGESET FORMAT" at the top of the file). An update change 2216 ** consists of: 2217 ** 2218 ** 1 byte: SQLITE_UPDATE (0x17) 2219 ** n bytes: old.* record (see RECORD FORMAT) 2220 ** m bytes: new.* record (see RECORD FORMAT) 2221 ** 2222 ** The SessionChange object passed as the third argument contains the 2223 ** values that were stored in the row when the session began (the old.* 2224 ** values). The statement handle passed as the second argument points 2225 ** at the current version of the row (the new.* values). 2226 ** 2227 ** If all of the old.* values are equal to their corresponding new.* value 2228 ** (i.e. nothing has changed), then no data at all is appended to the buffer. 2229 ** 2230 ** Otherwise, the old.* record contains all primary key values and the 2231 ** original values of any fields that have been modified. The new.* record 2232 ** contains the new values of only those fields that have been modified. 2233 */ 2234 static int sessionAppendUpdate( 2235 SessionBuffer *pBuf, /* Buffer to append to */ 2236 int bPatchset, /* True for "patchset", 0 for "changeset" */ 2237 sqlite3_stmt *pStmt, /* Statement handle pointing at new row */ 2238 SessionChange *p, /* Object containing old values */ 2239 u8 *abPK /* Boolean array - true for PK columns */ 2240 ){ 2241 int rc = SQLITE_OK; 2242 SessionBuffer buf2 = {0,0,0}; /* Buffer to accumulate new.* record in */ 2243 int bNoop = 1; /* Set to zero if any values are modified */ 2244 int nRewind = pBuf->nBuf; /* Set to zero if any values are modified */ 2245 int i; /* Used to iterate through columns */ 2246 u8 *pCsr = p->aRecord; /* Used to iterate through old.* values */ 2247 2248 assert( abPK!=0 ); 2249 sessionAppendByte(pBuf, SQLITE_UPDATE, &rc); 2250 sessionAppendByte(pBuf, p->bIndirect, &rc); 2251 for(i=0; i<sqlite3_column_count(pStmt); i++){ 2252 int bChanged = 0; 2253 int nAdvance; 2254 int eType = *pCsr; 2255 switch( eType ){ 2256 case SQLITE_NULL: 2257 nAdvance = 1; 2258 if( sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ 2259 bChanged = 1; 2260 } 2261 break; 2262 2263 case SQLITE_FLOAT: 2264 case SQLITE_INTEGER: { 2265 nAdvance = 9; 2266 if( eType==sqlite3_column_type(pStmt, i) ){ 2267 sqlite3_int64 iVal = sessionGetI64(&pCsr[1]); 2268 if( eType==SQLITE_INTEGER ){ 2269 if( iVal==sqlite3_column_int64(pStmt, i) ) break; 2270 }else{ 2271 double dVal; 2272 memcpy(&dVal, &iVal, 8); 2273 if( dVal==sqlite3_column_double(pStmt, i) ) break; 2274 } 2275 } 2276 bChanged = 1; 2277 break; 2278 } 2279 2280 default: { 2281 int n; 2282 int nHdr = 1 + sessionVarintGet(&pCsr[1], &n); 2283 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 2284 nAdvance = nHdr + n; 2285 if( eType==sqlite3_column_type(pStmt, i) 2286 && n==sqlite3_column_bytes(pStmt, i) 2287 && (n==0 || 0==memcmp(&pCsr[nHdr], sqlite3_column_blob(pStmt, i), n)) 2288 ){ 2289 break; 2290 } 2291 bChanged = 1; 2292 } 2293 } 2294 2295 /* If at least one field has been modified, this is not a no-op. */ 2296 if( bChanged ) bNoop = 0; 2297 2298 /* Add a field to the old.* record. This is omitted if this modules is 2299 ** currently generating a patchset. */ 2300 if( bPatchset==0 ){ 2301 if( bChanged || abPK[i] ){ 2302 sessionAppendBlob(pBuf, pCsr, nAdvance, &rc); 2303 }else{ 2304 sessionAppendByte(pBuf, 0, &rc); 2305 } 2306 } 2307 2308 /* Add a field to the new.* record. Or the only record if currently 2309 ** generating a patchset. */ 2310 if( bChanged || (bPatchset && abPK[i]) ){ 2311 sessionAppendCol(&buf2, pStmt, i, &rc); 2312 }else{ 2313 sessionAppendByte(&buf2, 0, &rc); 2314 } 2315 2316 pCsr += nAdvance; 2317 } 2318 2319 if( bNoop ){ 2320 pBuf->nBuf = nRewind; 2321 }else{ 2322 sessionAppendBlob(pBuf, buf2.aBuf, buf2.nBuf, &rc); 2323 } 2324 sqlite3_free(buf2.aBuf); 2325 2326 return rc; 2327 } 2328 2329 /* 2330 ** Append a DELETE change to the buffer passed as the first argument. Use 2331 ** the changeset format if argument bPatchset is zero, or the patchset 2332 ** format otherwise. 2333 */ 2334 static int sessionAppendDelete( 2335 SessionBuffer *pBuf, /* Buffer to append to */ 2336 int bPatchset, /* True for "patchset", 0 for "changeset" */ 2337 SessionChange *p, /* Object containing old values */ 2338 int nCol, /* Number of columns in table */ 2339 u8 *abPK /* Boolean array - true for PK columns */ 2340 ){ 2341 int rc = SQLITE_OK; 2342 2343 sessionAppendByte(pBuf, SQLITE_DELETE, &rc); 2344 sessionAppendByte(pBuf, p->bIndirect, &rc); 2345 2346 if( bPatchset==0 ){ 2347 sessionAppendBlob(pBuf, p->aRecord, p->nRecord, &rc); 2348 }else{ 2349 int i; 2350 u8 *a = p->aRecord; 2351 for(i=0; i<nCol; i++){ 2352 u8 *pStart = a; 2353 int eType = *a++; 2354 2355 switch( eType ){ 2356 case 0: 2357 case SQLITE_NULL: 2358 assert( abPK[i]==0 ); 2359 break; 2360 2361 case SQLITE_FLOAT: 2362 case SQLITE_INTEGER: 2363 a += 8; 2364 break; 2365 2366 default: { 2367 int n; 2368 a += sessionVarintGet(a, &n); 2369 a += n; 2370 break; 2371 } 2372 } 2373 if( abPK[i] ){ 2374 sessionAppendBlob(pBuf, pStart, (int)(a-pStart), &rc); 2375 } 2376 } 2377 assert( (a - p->aRecord)==p->nRecord ); 2378 } 2379 2380 return rc; 2381 } 2382 2383 /* 2384 ** Formulate and prepare a SELECT statement to retrieve a row from table 2385 ** zTab in database zDb based on its primary key. i.e. 2386 ** 2387 ** SELECT * FROM zDb.zTab WHERE pk1 = ? AND pk2 = ? AND ... 2388 */ 2389 static int sessionSelectStmt( 2390 sqlite3 *db, /* Database handle */ 2391 const char *zDb, /* Database name */ 2392 const char *zTab, /* Table name */ 2393 int nCol, /* Number of columns in table */ 2394 const char **azCol, /* Names of table columns */ 2395 u8 *abPK, /* PRIMARY KEY array */ 2396 sqlite3_stmt **ppStmt /* OUT: Prepared SELECT statement */ 2397 ){ 2398 int rc = SQLITE_OK; 2399 char *zSql = 0; 2400 int nSql = -1; 2401 2402 if( 0==sqlite3_stricmp("sqlite_stat1", zTab) ){ 2403 zSql = sqlite3_mprintf( 2404 "SELECT tbl, ?2, stat FROM %Q.sqlite_stat1 WHERE tbl IS ?1 AND " 2405 "idx IS (CASE WHEN ?2=X'' THEN NULL ELSE ?2 END)", zDb 2406 ); 2407 if( zSql==0 ) rc = SQLITE_NOMEM; 2408 }else{ 2409 int i; 2410 const char *zSep = ""; 2411 SessionBuffer buf = {0, 0, 0}; 2412 2413 sessionAppendStr(&buf, "SELECT * FROM ", &rc); 2414 sessionAppendIdent(&buf, zDb, &rc); 2415 sessionAppendStr(&buf, ".", &rc); 2416 sessionAppendIdent(&buf, zTab, &rc); 2417 sessionAppendStr(&buf, " WHERE ", &rc); 2418 for(i=0; i<nCol; i++){ 2419 if( abPK[i] ){ 2420 sessionAppendStr(&buf, zSep, &rc); 2421 sessionAppendIdent(&buf, azCol[i], &rc); 2422 sessionAppendStr(&buf, " IS ?", &rc); 2423 sessionAppendInteger(&buf, i+1, &rc); 2424 zSep = " AND "; 2425 } 2426 } 2427 zSql = (char*)buf.aBuf; 2428 nSql = buf.nBuf; 2429 } 2430 2431 if( rc==SQLITE_OK ){ 2432 rc = sqlite3_prepare_v2(db, zSql, nSql, ppStmt, 0); 2433 } 2434 sqlite3_free(zSql); 2435 return rc; 2436 } 2437 2438 /* 2439 ** Bind the PRIMARY KEY values from the change passed in argument pChange 2440 ** to the SELECT statement passed as the first argument. The SELECT statement 2441 ** is as prepared by function sessionSelectStmt(). 2442 ** 2443 ** Return SQLITE_OK if all PK values are successfully bound, or an SQLite 2444 ** error code (e.g. SQLITE_NOMEM) otherwise. 2445 */ 2446 static int sessionSelectBind( 2447 sqlite3_stmt *pSelect, /* SELECT from sessionSelectStmt() */ 2448 int nCol, /* Number of columns in table */ 2449 u8 *abPK, /* PRIMARY KEY array */ 2450 SessionChange *pChange /* Change structure */ 2451 ){ 2452 int i; 2453 int rc = SQLITE_OK; 2454 u8 *a = pChange->aRecord; 2455 2456 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 2457 int eType = *a++; 2458 2459 switch( eType ){ 2460 case 0: 2461 case SQLITE_NULL: 2462 assert( abPK[i]==0 ); 2463 break; 2464 2465 case SQLITE_INTEGER: { 2466 if( abPK[i] ){ 2467 i64 iVal = sessionGetI64(a); 2468 rc = sqlite3_bind_int64(pSelect, i+1, iVal); 2469 } 2470 a += 8; 2471 break; 2472 } 2473 2474 case SQLITE_FLOAT: { 2475 if( abPK[i] ){ 2476 double rVal; 2477 i64 iVal = sessionGetI64(a); 2478 memcpy(&rVal, &iVal, 8); 2479 rc = sqlite3_bind_double(pSelect, i+1, rVal); 2480 } 2481 a += 8; 2482 break; 2483 } 2484 2485 case SQLITE_TEXT: { 2486 int n; 2487 a += sessionVarintGet(a, &n); 2488 if( abPK[i] ){ 2489 rc = sqlite3_bind_text(pSelect, i+1, (char *)a, n, SQLITE_TRANSIENT); 2490 } 2491 a += n; 2492 break; 2493 } 2494 2495 default: { 2496 int n; 2497 assert( eType==SQLITE_BLOB ); 2498 a += sessionVarintGet(a, &n); 2499 if( abPK[i] ){ 2500 rc = sqlite3_bind_blob(pSelect, i+1, a, n, SQLITE_TRANSIENT); 2501 } 2502 a += n; 2503 break; 2504 } 2505 } 2506 } 2507 2508 return rc; 2509 } 2510 2511 /* 2512 ** This function is a no-op if *pRc is set to other than SQLITE_OK when it 2513 ** is called. Otherwise, append a serialized table header (part of the binary 2514 ** changeset format) to buffer *pBuf. If an error occurs, set *pRc to an 2515 ** SQLite error code before returning. 2516 */ 2517 static void sessionAppendTableHdr( 2518 SessionBuffer *pBuf, /* Append header to this buffer */ 2519 int bPatchset, /* Use the patchset format if true */ 2520 SessionTable *pTab, /* Table object to append header for */ 2521 int *pRc /* IN/OUT: Error code */ 2522 ){ 2523 /* Write a table header */ 2524 sessionAppendByte(pBuf, (bPatchset ? 'P' : 'T'), pRc); 2525 sessionAppendVarint(pBuf, pTab->nCol, pRc); 2526 sessionAppendBlob(pBuf, pTab->abPK, pTab->nCol, pRc); 2527 sessionAppendBlob(pBuf, (u8 *)pTab->zName, (int)strlen(pTab->zName)+1, pRc); 2528 } 2529 2530 /* 2531 ** Generate either a changeset (if argument bPatchset is zero) or a patchset 2532 ** (if it is non-zero) based on the current contents of the session object 2533 ** passed as the first argument. 2534 ** 2535 ** If no error occurs, SQLITE_OK is returned and the new changeset/patchset 2536 ** stored in output variables *pnChangeset and *ppChangeset. Or, if an error 2537 ** occurs, an SQLite error code is returned and both output variables set 2538 ** to 0. 2539 */ 2540 static int sessionGenerateChangeset( 2541 sqlite3_session *pSession, /* Session object */ 2542 int bPatchset, /* True for patchset, false for changeset */ 2543 int (*xOutput)(void *pOut, const void *pData, int nData), 2544 void *pOut, /* First argument for xOutput */ 2545 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2546 void **ppChangeset /* OUT: Buffer containing changeset */ 2547 ){ 2548 sqlite3 *db = pSession->db; /* Source database handle */ 2549 SessionTable *pTab; /* Used to iterate through attached tables */ 2550 SessionBuffer buf = {0,0,0}; /* Buffer in which to accumlate changeset */ 2551 int rc; /* Return code */ 2552 2553 assert( xOutput==0 || (pnChangeset==0 && ppChangeset==0) ); 2554 assert( xOutput!=0 || (pnChangeset!=0 && ppChangeset!=0) ); 2555 2556 /* Zero the output variables in case an error occurs. If this session 2557 ** object is already in the error state (sqlite3_session.rc != SQLITE_OK), 2558 ** this call will be a no-op. */ 2559 if( xOutput==0 ){ 2560 assert( pnChangeset!=0 && ppChangeset!=0 ); 2561 *pnChangeset = 0; 2562 *ppChangeset = 0; 2563 } 2564 2565 if( pSession->rc ) return pSession->rc; 2566 rc = sqlite3_exec(pSession->db, "SAVEPOINT changeset", 0, 0, 0); 2567 if( rc!=SQLITE_OK ) return rc; 2568 2569 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 2570 2571 for(pTab=pSession->pTable; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 2572 if( pTab->nEntry ){ 2573 const char *zName = pTab->zName; 2574 int nCol = 0; /* Number of columns in table */ 2575 u8 *abPK = 0; /* Primary key array */ 2576 const char **azCol = 0; /* Table columns */ 2577 int i; /* Used to iterate through hash buckets */ 2578 sqlite3_stmt *pSel = 0; /* SELECT statement to query table pTab */ 2579 int nRewind = buf.nBuf; /* Initial size of write buffer */ 2580 int nNoop; /* Size of buffer after writing tbl header */ 2581 2582 /* Check the table schema is still Ok. */ 2583 rc = sessionTableInfo(0, db, pSession->zDb, zName, &nCol, 0,&azCol,&abPK); 2584 if( !rc && (pTab->nCol!=nCol || memcmp(abPK, pTab->abPK, nCol)) ){ 2585 rc = SQLITE_SCHEMA; 2586 } 2587 2588 /* Write a table header */ 2589 sessionAppendTableHdr(&buf, bPatchset, pTab, &rc); 2590 2591 /* Build and compile a statement to execute: */ 2592 if( rc==SQLITE_OK ){ 2593 rc = sessionSelectStmt( 2594 db, pSession->zDb, zName, nCol, azCol, abPK, &pSel); 2595 } 2596 2597 nNoop = buf.nBuf; 2598 for(i=0; i<pTab->nChange && rc==SQLITE_OK; i++){ 2599 SessionChange *p; /* Used to iterate through changes */ 2600 2601 for(p=pTab->apChange[i]; rc==SQLITE_OK && p; p=p->pNext){ 2602 rc = sessionSelectBind(pSel, nCol, abPK, p); 2603 if( rc!=SQLITE_OK ) continue; 2604 if( sqlite3_step(pSel)==SQLITE_ROW ){ 2605 if( p->op==SQLITE_INSERT ){ 2606 int iCol; 2607 sessionAppendByte(&buf, SQLITE_INSERT, &rc); 2608 sessionAppendByte(&buf, p->bIndirect, &rc); 2609 for(iCol=0; iCol<nCol; iCol++){ 2610 sessionAppendCol(&buf, pSel, iCol, &rc); 2611 } 2612 }else{ 2613 assert( abPK!=0 ); /* Because sessionSelectStmt() returned ok */ 2614 rc = sessionAppendUpdate(&buf, bPatchset, pSel, p, abPK); 2615 } 2616 }else if( p->op!=SQLITE_INSERT ){ 2617 rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK); 2618 } 2619 if( rc==SQLITE_OK ){ 2620 rc = sqlite3_reset(pSel); 2621 } 2622 2623 /* If the buffer is now larger than sessions_strm_chunk_size, pass 2624 ** its contents to the xOutput() callback. */ 2625 if( xOutput 2626 && rc==SQLITE_OK 2627 && buf.nBuf>nNoop 2628 && buf.nBuf>sessions_strm_chunk_size 2629 ){ 2630 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2631 nNoop = -1; 2632 buf.nBuf = 0; 2633 } 2634 2635 } 2636 } 2637 2638 sqlite3_finalize(pSel); 2639 if( buf.nBuf==nNoop ){ 2640 buf.nBuf = nRewind; 2641 } 2642 sqlite3_free((char*)azCol); /* cast works around VC++ bug */ 2643 } 2644 } 2645 2646 if( rc==SQLITE_OK ){ 2647 if( xOutput==0 ){ 2648 *pnChangeset = buf.nBuf; 2649 *ppChangeset = buf.aBuf; 2650 buf.aBuf = 0; 2651 }else if( buf.nBuf>0 ){ 2652 rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); 2653 } 2654 } 2655 2656 sqlite3_free(buf.aBuf); 2657 sqlite3_exec(db, "RELEASE changeset", 0, 0, 0); 2658 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 2659 return rc; 2660 } 2661 2662 /* 2663 ** Obtain a changeset object containing all changes recorded by the 2664 ** session object passed as the first argument. 2665 ** 2666 ** It is the responsibility of the caller to eventually free the buffer 2667 ** using sqlite3_free(). 2668 */ 2669 int sqlite3session_changeset( 2670 sqlite3_session *pSession, /* Session object */ 2671 int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ 2672 void **ppChangeset /* OUT: Buffer containing changeset */ 2673 ){ 2674 int rc; 2675 2676 if( pnChangeset==0 || ppChangeset==0 ) return SQLITE_MISUSE; 2677 rc = sessionGenerateChangeset(pSession, 0, 0, 0, pnChangeset,ppChangeset); 2678 assert( rc || pnChangeset==0 2679 || pSession->bEnableSize==0 || *pnChangeset<=pSession->nMaxChangesetSize 2680 ); 2681 return rc; 2682 } 2683 2684 /* 2685 ** Streaming version of sqlite3session_changeset(). 2686 */ 2687 int sqlite3session_changeset_strm( 2688 sqlite3_session *pSession, 2689 int (*xOutput)(void *pOut, const void *pData, int nData), 2690 void *pOut 2691 ){ 2692 if( xOutput==0 ) return SQLITE_MISUSE; 2693 return sessionGenerateChangeset(pSession, 0, xOutput, pOut, 0, 0); 2694 } 2695 2696 /* 2697 ** Streaming version of sqlite3session_patchset(). 2698 */ 2699 int sqlite3session_patchset_strm( 2700 sqlite3_session *pSession, 2701 int (*xOutput)(void *pOut, const void *pData, int nData), 2702 void *pOut 2703 ){ 2704 if( xOutput==0 ) return SQLITE_MISUSE; 2705 return sessionGenerateChangeset(pSession, 1, xOutput, pOut, 0, 0); 2706 } 2707 2708 /* 2709 ** Obtain a patchset object containing all changes recorded by the 2710 ** session object passed as the first argument. 2711 ** 2712 ** It is the responsibility of the caller to eventually free the buffer 2713 ** using sqlite3_free(). 2714 */ 2715 int sqlite3session_patchset( 2716 sqlite3_session *pSession, /* Session object */ 2717 int *pnPatchset, /* OUT: Size of buffer at *ppChangeset */ 2718 void **ppPatchset /* OUT: Buffer containing changeset */ 2719 ){ 2720 if( pnPatchset==0 || ppPatchset==0 ) return SQLITE_MISUSE; 2721 return sessionGenerateChangeset(pSession, 1, 0, 0, pnPatchset, ppPatchset); 2722 } 2723 2724 /* 2725 ** Enable or disable the session object passed as the first argument. 2726 */ 2727 int sqlite3session_enable(sqlite3_session *pSession, int bEnable){ 2728 int ret; 2729 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2730 if( bEnable>=0 ){ 2731 pSession->bEnable = bEnable; 2732 } 2733 ret = pSession->bEnable; 2734 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2735 return ret; 2736 } 2737 2738 /* 2739 ** Enable or disable the session object passed as the first argument. 2740 */ 2741 int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect){ 2742 int ret; 2743 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2744 if( bIndirect>=0 ){ 2745 pSession->bIndirect = bIndirect; 2746 } 2747 ret = pSession->bIndirect; 2748 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2749 return ret; 2750 } 2751 2752 /* 2753 ** Return true if there have been no changes to monitored tables recorded 2754 ** by the session object passed as the only argument. 2755 */ 2756 int sqlite3session_isempty(sqlite3_session *pSession){ 2757 int ret = 0; 2758 SessionTable *pTab; 2759 2760 sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db)); 2761 for(pTab=pSession->pTable; pTab && ret==0; pTab=pTab->pNext){ 2762 ret = (pTab->nEntry>0); 2763 } 2764 sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db)); 2765 2766 return (ret==0); 2767 } 2768 2769 /* 2770 ** Return the amount of heap memory in use. 2771 */ 2772 sqlite3_int64 sqlite3session_memory_used(sqlite3_session *pSession){ 2773 return pSession->nMalloc; 2774 } 2775 2776 /* 2777 ** Configure the session object passed as the first argument. 2778 */ 2779 int sqlite3session_object_config(sqlite3_session *pSession, int op, void *pArg){ 2780 int rc = SQLITE_OK; 2781 switch( op ){ 2782 case SQLITE_SESSION_OBJCONFIG_SIZE: { 2783 int iArg = *(int*)pArg; 2784 if( iArg>=0 ){ 2785 if( pSession->pTable ){ 2786 rc = SQLITE_MISUSE; 2787 }else{ 2788 pSession->bEnableSize = (iArg!=0); 2789 } 2790 } 2791 *(int*)pArg = pSession->bEnableSize; 2792 break; 2793 } 2794 2795 default: 2796 rc = SQLITE_MISUSE; 2797 } 2798 2799 return rc; 2800 } 2801 2802 /* 2803 ** Return the maximum size of sqlite3session_changeset() output. 2804 */ 2805 sqlite3_int64 sqlite3session_changeset_size(sqlite3_session *pSession){ 2806 return pSession->nMaxChangesetSize; 2807 } 2808 2809 /* 2810 ** Do the work for either sqlite3changeset_start() or start_strm(). 2811 */ 2812 static int sessionChangesetStart( 2813 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2814 int (*xInput)(void *pIn, void *pData, int *pnData), 2815 void *pIn, 2816 int nChangeset, /* Size of buffer pChangeset in bytes */ 2817 void *pChangeset, /* Pointer to buffer containing changeset */ 2818 int bInvert, /* True to invert changeset */ 2819 int bSkipEmpty /* True to skip empty UPDATE changes */ 2820 ){ 2821 sqlite3_changeset_iter *pRet; /* Iterator to return */ 2822 int nByte; /* Number of bytes to allocate for iterator */ 2823 2824 assert( xInput==0 || (pChangeset==0 && nChangeset==0) ); 2825 2826 /* Zero the output variable in case an error occurs. */ 2827 *pp = 0; 2828 2829 /* Allocate and initialize the iterator structure. */ 2830 nByte = sizeof(sqlite3_changeset_iter); 2831 pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte); 2832 if( !pRet ) return SQLITE_NOMEM; 2833 memset(pRet, 0, sizeof(sqlite3_changeset_iter)); 2834 pRet->in.aData = (u8 *)pChangeset; 2835 pRet->in.nData = nChangeset; 2836 pRet->in.xInput = xInput; 2837 pRet->in.pIn = pIn; 2838 pRet->in.bEof = (xInput ? 0 : 1); 2839 pRet->bInvert = bInvert; 2840 pRet->bSkipEmpty = bSkipEmpty; 2841 2842 /* Populate the output variable and return success. */ 2843 *pp = pRet; 2844 return SQLITE_OK; 2845 } 2846 2847 /* 2848 ** Create an iterator used to iterate through the contents of a changeset. 2849 */ 2850 int sqlite3changeset_start( 2851 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2852 int nChangeset, /* Size of buffer pChangeset in bytes */ 2853 void *pChangeset /* Pointer to buffer containing changeset */ 2854 ){ 2855 return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, 0, 0); 2856 } 2857 int sqlite3changeset_start_v2( 2858 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2859 int nChangeset, /* Size of buffer pChangeset in bytes */ 2860 void *pChangeset, /* Pointer to buffer containing changeset */ 2861 int flags 2862 ){ 2863 int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT); 2864 return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, bInvert, 0); 2865 } 2866 2867 /* 2868 ** Streaming version of sqlite3changeset_start(). 2869 */ 2870 int sqlite3changeset_start_strm( 2871 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2872 int (*xInput)(void *pIn, void *pData, int *pnData), 2873 void *pIn 2874 ){ 2875 return sessionChangesetStart(pp, xInput, pIn, 0, 0, 0, 0); 2876 } 2877 int sqlite3changeset_start_v2_strm( 2878 sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ 2879 int (*xInput)(void *pIn, void *pData, int *pnData), 2880 void *pIn, 2881 int flags 2882 ){ 2883 int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT); 2884 return sessionChangesetStart(pp, xInput, pIn, 0, 0, bInvert, 0); 2885 } 2886 2887 /* 2888 ** If the SessionInput object passed as the only argument is a streaming 2889 ** object and the buffer is full, discard some data to free up space. 2890 */ 2891 static void sessionDiscardData(SessionInput *pIn){ 2892 if( pIn->xInput && pIn->iNext>=sessions_strm_chunk_size ){ 2893 int nMove = pIn->buf.nBuf - pIn->iNext; 2894 assert( nMove>=0 ); 2895 if( nMove>0 ){ 2896 memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove); 2897 } 2898 pIn->buf.nBuf -= pIn->iNext; 2899 pIn->iNext = 0; 2900 pIn->nData = pIn->buf.nBuf; 2901 } 2902 } 2903 2904 /* 2905 ** Ensure that there are at least nByte bytes available in the buffer. Or, 2906 ** if there are not nByte bytes remaining in the input, that all available 2907 ** data is in the buffer. 2908 ** 2909 ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. 2910 */ 2911 static int sessionInputBuffer(SessionInput *pIn, int nByte){ 2912 int rc = SQLITE_OK; 2913 if( pIn->xInput ){ 2914 while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){ 2915 int nNew = sessions_strm_chunk_size; 2916 2917 if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn); 2918 if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){ 2919 rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew); 2920 if( nNew==0 ){ 2921 pIn->bEof = 1; 2922 }else{ 2923 pIn->buf.nBuf += nNew; 2924 } 2925 } 2926 2927 pIn->aData = pIn->buf.aBuf; 2928 pIn->nData = pIn->buf.nBuf; 2929 } 2930 } 2931 return rc; 2932 } 2933 2934 /* 2935 ** When this function is called, *ppRec points to the start of a record 2936 ** that contains nCol values. This function advances the pointer *ppRec 2937 ** until it points to the byte immediately following that record. 2938 */ 2939 static void sessionSkipRecord( 2940 u8 **ppRec, /* IN/OUT: Record pointer */ 2941 int nCol /* Number of values in record */ 2942 ){ 2943 u8 *aRec = *ppRec; 2944 int i; 2945 for(i=0; i<nCol; i++){ 2946 int eType = *aRec++; 2947 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 2948 int nByte; 2949 aRec += sessionVarintGet((u8*)aRec, &nByte); 2950 aRec += nByte; 2951 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2952 aRec += 8; 2953 } 2954 } 2955 2956 *ppRec = aRec; 2957 } 2958 2959 /* 2960 ** This function sets the value of the sqlite3_value object passed as the 2961 ** first argument to a copy of the string or blob held in the aData[] 2962 ** buffer. SQLITE_OK is returned if successful, or SQLITE_NOMEM if an OOM 2963 ** error occurs. 2964 */ 2965 static int sessionValueSetStr( 2966 sqlite3_value *pVal, /* Set the value of this object */ 2967 u8 *aData, /* Buffer containing string or blob data */ 2968 int nData, /* Size of buffer aData[] in bytes */ 2969 u8 enc /* String encoding (0 for blobs) */ 2970 ){ 2971 /* In theory this code could just pass SQLITE_TRANSIENT as the final 2972 ** argument to sqlite3ValueSetStr() and have the copy created 2973 ** automatically. But doing so makes it difficult to detect any OOM 2974 ** error. Hence the code to create the copy externally. */ 2975 u8 *aCopy = sqlite3_malloc64((sqlite3_int64)nData+1); 2976 if( aCopy==0 ) return SQLITE_NOMEM; 2977 memcpy(aCopy, aData, nData); 2978 sqlite3ValueSetStr(pVal, nData, (char*)aCopy, enc, sqlite3_free); 2979 return SQLITE_OK; 2980 } 2981 2982 /* 2983 ** Deserialize a single record from a buffer in memory. See "RECORD FORMAT" 2984 ** for details. 2985 ** 2986 ** When this function is called, *paChange points to the start of the record 2987 ** to deserialize. Assuming no error occurs, *paChange is set to point to 2988 ** one byte after the end of the same record before this function returns. 2989 ** If the argument abPK is NULL, then the record contains nCol values. Or, 2990 ** if abPK is other than NULL, then the record contains only the PK fields 2991 ** (in other words, it is a patchset DELETE record). 2992 ** 2993 ** If successful, each element of the apOut[] array (allocated by the caller) 2994 ** is set to point to an sqlite3_value object containing the value read 2995 ** from the corresponding position in the record. If that value is not 2996 ** included in the record (i.e. because the record is part of an UPDATE change 2997 ** and the field was not modified), the corresponding element of apOut[] is 2998 ** set to NULL. 2999 ** 3000 ** It is the responsibility of the caller to free all sqlite_value structures 3001 ** using sqlite3_free(). 3002 ** 3003 ** If an error occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned. 3004 ** The apOut[] array may have been partially populated in this case. 3005 */ 3006 static int sessionReadRecord( 3007 SessionInput *pIn, /* Input data */ 3008 int nCol, /* Number of values in record */ 3009 u8 *abPK, /* Array of primary key flags, or NULL */ 3010 sqlite3_value **apOut, /* Write values to this array */ 3011 int *pbEmpty 3012 ){ 3013 int i; /* Used to iterate through columns */ 3014 int rc = SQLITE_OK; 3015 3016 assert( pbEmpty==0 || *pbEmpty==0 ); 3017 if( pbEmpty ) *pbEmpty = 1; 3018 for(i=0; i<nCol && rc==SQLITE_OK; i++){ 3019 int eType = 0; /* Type of value (SQLITE_NULL, TEXT etc.) */ 3020 if( abPK && abPK[i]==0 ) continue; 3021 rc = sessionInputBuffer(pIn, 9); 3022 if( rc==SQLITE_OK ){ 3023 if( pIn->iNext>=pIn->nData ){ 3024 rc = SQLITE_CORRUPT_BKPT; 3025 }else{ 3026 eType = pIn->aData[pIn->iNext++]; 3027 assert( apOut[i]==0 ); 3028 if( eType ){ 3029 if( pbEmpty ) *pbEmpty = 0; 3030 apOut[i] = sqlite3ValueNew(0); 3031 if( !apOut[i] ) rc = SQLITE_NOMEM; 3032 } 3033 } 3034 } 3035 3036 if( rc==SQLITE_OK ){ 3037 u8 *aVal = &pIn->aData[pIn->iNext]; 3038 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 3039 int nByte; 3040 pIn->iNext += sessionVarintGet(aVal, &nByte); 3041 rc = sessionInputBuffer(pIn, nByte); 3042 if( rc==SQLITE_OK ){ 3043 if( nByte<0 || nByte>pIn->nData-pIn->iNext ){ 3044 rc = SQLITE_CORRUPT_BKPT; 3045 }else{ 3046 u8 enc = (eType==SQLITE_TEXT ? SQLITE_UTF8 : 0); 3047 rc = sessionValueSetStr(apOut[i],&pIn->aData[pIn->iNext],nByte,enc); 3048 pIn->iNext += nByte; 3049 } 3050 } 3051 } 3052 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 3053 sqlite3_int64 v = sessionGetI64(aVal); 3054 if( eType==SQLITE_INTEGER ){ 3055 sqlite3VdbeMemSetInt64(apOut[i], v); 3056 }else{ 3057 double d; 3058 memcpy(&d, &v, 8); 3059 sqlite3VdbeMemSetDouble(apOut[i], d); 3060 } 3061 pIn->iNext += 8; 3062 } 3063 } 3064 } 3065 3066 return rc; 3067 } 3068 3069 /* 3070 ** The input pointer currently points to the second byte of a table-header. 3071 ** Specifically, to the following: 3072 ** 3073 ** + number of columns in table (varint) 3074 ** + array of PK flags (1 byte per column), 3075 ** + table name (nul terminated). 3076 ** 3077 ** This function ensures that all of the above is present in the input 3078 ** buffer (i.e. that it can be accessed without any calls to xInput()). 3079 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. 3080 ** The input pointer is not moved. 3081 */ 3082 static int sessionChangesetBufferTblhdr(SessionInput *pIn, int *pnByte){ 3083 int rc = SQLITE_OK; 3084 int nCol = 0; 3085 int nRead = 0; 3086 3087 rc = sessionInputBuffer(pIn, 9); 3088 if( rc==SQLITE_OK ){ 3089 nRead += sessionVarintGet(&pIn->aData[pIn->iNext + nRead], &nCol); 3090 /* The hard upper limit for the number of columns in an SQLite 3091 ** database table is, according to sqliteLimit.h, 32676. So 3092 ** consider any table-header that purports to have more than 65536 3093 ** columns to be corrupt. This is convenient because otherwise, 3094 ** if the (nCol>65536) condition below were omitted, a sufficiently 3095 ** large value for nCol may cause nRead to wrap around and become 3096 ** negative. Leading to a crash. */ 3097 if( nCol<0 || nCol>65536 ){ 3098 rc = SQLITE_CORRUPT_BKPT; 3099 }else{ 3100 rc = sessionInputBuffer(pIn, nRead+nCol+100); 3101 nRead += nCol; 3102 } 3103 } 3104 3105 while( rc==SQLITE_OK ){ 3106 while( (pIn->iNext + nRead)<pIn->nData && pIn->aData[pIn->iNext + nRead] ){ 3107 nRead++; 3108 } 3109 if( (pIn->iNext + nRead)<pIn->nData ) break; 3110 rc = sessionInputBuffer(pIn, nRead + 100); 3111 } 3112 *pnByte = nRead+1; 3113 return rc; 3114 } 3115 3116 /* 3117 ** The input pointer currently points to the first byte of the first field 3118 ** of a record consisting of nCol columns. This function ensures the entire 3119 ** record is buffered. It does not move the input pointer. 3120 ** 3121 ** If successful, SQLITE_OK is returned and *pnByte is set to the size of 3122 ** the record in bytes. Otherwise, an SQLite error code is returned. The 3123 ** final value of *pnByte is undefined in this case. 3124 */ 3125 static int sessionChangesetBufferRecord( 3126 SessionInput *pIn, /* Input data */ 3127 int nCol, /* Number of columns in record */ 3128 int *pnByte /* OUT: Size of record in bytes */ 3129 ){ 3130 int rc = SQLITE_OK; 3131 int nByte = 0; 3132 int i; 3133 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 3134 int eType; 3135 rc = sessionInputBuffer(pIn, nByte + 10); 3136 if( rc==SQLITE_OK ){ 3137 eType = pIn->aData[pIn->iNext + nByte++]; 3138 if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ 3139 int n; 3140 nByte += sessionVarintGet(&pIn->aData[pIn->iNext+nByte], &n); 3141 nByte += n; 3142 rc = sessionInputBuffer(pIn, nByte); 3143 }else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 3144 nByte += 8; 3145 } 3146 } 3147 } 3148 *pnByte = nByte; 3149 return rc; 3150 } 3151 3152 /* 3153 ** The input pointer currently points to the second byte of a table-header. 3154 ** Specifically, to the following: 3155 ** 3156 ** + number of columns in table (varint) 3157 ** + array of PK flags (1 byte per column), 3158 ** + table name (nul terminated). 3159 ** 3160 ** This function decodes the table-header and populates the p->nCol, 3161 ** p->zTab and p->abPK[] variables accordingly. The p->apValue[] array is 3162 ** also allocated or resized according to the new value of p->nCol. The 3163 ** input pointer is left pointing to the byte following the table header. 3164 ** 3165 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code 3166 ** is returned and the final values of the various fields enumerated above 3167 ** are undefined. 3168 */ 3169 static int sessionChangesetReadTblhdr(sqlite3_changeset_iter *p){ 3170 int rc; 3171 int nCopy; 3172 assert( p->rc==SQLITE_OK ); 3173 3174 rc = sessionChangesetBufferTblhdr(&p->in, &nCopy); 3175 if( rc==SQLITE_OK ){ 3176 int nByte; 3177 int nVarint; 3178 nVarint = sessionVarintGet(&p->in.aData[p->in.iNext], &p->nCol); 3179 if( p->nCol>0 ){ 3180 nCopy -= nVarint; 3181 p->in.iNext += nVarint; 3182 nByte = p->nCol * sizeof(sqlite3_value*) * 2 + nCopy; 3183 p->tblhdr.nBuf = 0; 3184 sessionBufferGrow(&p->tblhdr, nByte, &rc); 3185 }else{ 3186 rc = SQLITE_CORRUPT_BKPT; 3187 } 3188 } 3189 3190 if( rc==SQLITE_OK ){ 3191 size_t iPK = sizeof(sqlite3_value*)*p->nCol*2; 3192 memset(p->tblhdr.aBuf, 0, iPK); 3193 memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy); 3194 p->in.iNext += nCopy; 3195 } 3196 3197 p->apValue = (sqlite3_value**)p->tblhdr.aBuf; 3198 if( p->apValue==0 ){ 3199 p->abPK = 0; 3200 p->zTab = 0; 3201 }else{ 3202 p->abPK = (u8*)&p->apValue[p->nCol*2]; 3203 p->zTab = p->abPK ? (char*)&p->abPK[p->nCol] : 0; 3204 } 3205 return (p->rc = rc); 3206 } 3207 3208 /* 3209 ** Advance the changeset iterator to the next change. The differences between 3210 ** this function and sessionChangesetNext() are that 3211 ** 3212 ** * If pbEmpty is not NULL and the change is a no-op UPDATE (an UPDATE 3213 ** that modifies no columns), this function sets (*pbEmpty) to 1. 3214 ** 3215 ** * If the iterator is configured to skip no-op UPDATEs, 3216 ** sessionChangesetNext() does that. This function does not. 3217 */ 3218 static int sessionChangesetNextOne( 3219 sqlite3_changeset_iter *p, /* Changeset iterator */ 3220 u8 **paRec, /* If non-NULL, store record pointer here */ 3221 int *pnRec, /* If non-NULL, store size of record here */ 3222 int *pbNew, /* If non-NULL, true if new table */ 3223 int *pbEmpty 3224 ){ 3225 int i; 3226 u8 op; 3227 3228 assert( (paRec==0 && pnRec==0) || (paRec && pnRec) ); 3229 assert( pbEmpty==0 || *pbEmpty==0 ); 3230 3231 /* If the iterator is in the error-state, return immediately. */ 3232 if( p->rc!=SQLITE_OK ) return p->rc; 3233 3234 /* Free the current contents of p->apValue[], if any. */ 3235 if( p->apValue ){ 3236 for(i=0; i<p->nCol*2; i++){ 3237 sqlite3ValueFree(p->apValue[i]); 3238 } 3239 memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2); 3240 } 3241 3242 /* Make sure the buffer contains at least 10 bytes of input data, or all 3243 ** remaining data if there are less than 10 bytes available. This is 3244 ** sufficient either for the 'T' or 'P' byte and the varint that follows 3245 ** it, or for the two single byte values otherwise. */ 3246 p->rc = sessionInputBuffer(&p->in, 2); 3247 if( p->rc!=SQLITE_OK ) return p->rc; 3248 3249 /* If the iterator is already at the end of the changeset, return DONE. */ 3250 if( p->in.iNext>=p->in.nData ){ 3251 return SQLITE_DONE; 3252 } 3253 3254 sessionDiscardData(&p->in); 3255 p->in.iCurrent = p->in.iNext; 3256 3257 op = p->in.aData[p->in.iNext++]; 3258 while( op=='T' || op=='P' ){ 3259 if( pbNew ) *pbNew = 1; 3260 p->bPatchset = (op=='P'); 3261 if( sessionChangesetReadTblhdr(p) ) return p->rc; 3262 if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc; 3263 p->in.iCurrent = p->in.iNext; 3264 if( p->in.iNext>=p->in.nData ) return SQLITE_DONE; 3265 op = p->in.aData[p->in.iNext++]; 3266 } 3267 3268 if( p->zTab==0 || (p->bPatchset && p->bInvert) ){ 3269 /* The first record in the changeset is not a table header. Must be a 3270 ** corrupt changeset. */ 3271 assert( p->in.iNext==1 || p->zTab ); 3272 return (p->rc = SQLITE_CORRUPT_BKPT); 3273 } 3274 3275 p->op = op; 3276 p->bIndirect = p->in.aData[p->in.iNext++]; 3277 if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){ 3278 return (p->rc = SQLITE_CORRUPT_BKPT); 3279 } 3280 3281 if( paRec ){ 3282 int nVal; /* Number of values to buffer */ 3283 if( p->bPatchset==0 && op==SQLITE_UPDATE ){ 3284 nVal = p->nCol * 2; 3285 }else if( p->bPatchset && op==SQLITE_DELETE ){ 3286 nVal = 0; 3287 for(i=0; i<p->nCol; i++) if( p->abPK[i] ) nVal++; 3288 }else{ 3289 nVal = p->nCol; 3290 } 3291 p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec); 3292 if( p->rc!=SQLITE_OK ) return p->rc; 3293 *paRec = &p->in.aData[p->in.iNext]; 3294 p->in.iNext += *pnRec; 3295 }else{ 3296 sqlite3_value **apOld = (p->bInvert ? &p->apValue[p->nCol] : p->apValue); 3297 sqlite3_value **apNew = (p->bInvert ? p->apValue : &p->apValue[p->nCol]); 3298 3299 /* If this is an UPDATE or DELETE, read the old.* record. */ 3300 if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){ 3301 u8 *abPK = p->bPatchset ? p->abPK : 0; 3302 p->rc = sessionReadRecord(&p->in, p->nCol, abPK, apOld, 0); 3303 if( p->rc!=SQLITE_OK ) return p->rc; 3304 } 3305 3306 /* If this is an INSERT or UPDATE, read the new.* record. */ 3307 if( p->op!=SQLITE_DELETE ){ 3308 p->rc = sessionReadRecord(&p->in, p->nCol, 0, apNew, pbEmpty); 3309 if( p->rc!=SQLITE_OK ) return p->rc; 3310 } 3311 3312 if( (p->bPatchset || p->bInvert) && p->op==SQLITE_UPDATE ){ 3313 /* If this is an UPDATE that is part of a patchset, then all PK and 3314 ** modified fields are present in the new.* record. The old.* record 3315 ** is currently completely empty. This block shifts the PK fields from 3316 ** new.* to old.*, to accommodate the code that reads these arrays. */ 3317 for(i=0; i<p->nCol; i++){ 3318 assert( p->bPatchset==0 || p->apValue[i]==0 ); 3319 if( p->abPK[i] ){ 3320 assert( p->apValue[i]==0 ); 3321 p->apValue[i] = p->apValue[i+p->nCol]; 3322 if( p->apValue[i]==0 ) return (p->rc = SQLITE_CORRUPT_BKPT); 3323 p->apValue[i+p->nCol] = 0; 3324 } 3325 } 3326 }else if( p->bInvert ){ 3327 if( p->op==SQLITE_INSERT ) p->op = SQLITE_DELETE; 3328 else if( p->op==SQLITE_DELETE ) p->op = SQLITE_INSERT; 3329 } 3330 } 3331 3332 return SQLITE_ROW; 3333 } 3334 3335 /* 3336 ** Advance the changeset iterator to the next change. 3337 ** 3338 ** If both paRec and pnRec are NULL, then this function works like the public 3339 ** API sqlite3changeset_next(). If SQLITE_ROW is returned, then the 3340 ** sqlite3changeset_new() and old() APIs may be used to query for values. 3341 ** 3342 ** Otherwise, if paRec and pnRec are not NULL, then a pointer to the change 3343 ** record is written to *paRec before returning and the number of bytes in 3344 ** the record to *pnRec. 3345 ** 3346 ** Either way, this function returns SQLITE_ROW if the iterator is 3347 ** successfully advanced to the next change in the changeset, an SQLite 3348 ** error code if an error occurs, or SQLITE_DONE if there are no further 3349 ** changes in the changeset. 3350 */ 3351 static int sessionChangesetNext( 3352 sqlite3_changeset_iter *p, /* Changeset iterator */ 3353 u8 **paRec, /* If non-NULL, store record pointer here */ 3354 int *pnRec, /* If non-NULL, store size of record here */ 3355 int *pbNew /* If non-NULL, true if new table */ 3356 ){ 3357 int bEmpty; 3358 int rc; 3359 do { 3360 bEmpty = 0; 3361 rc = sessionChangesetNextOne(p, paRec, pnRec, pbNew, &bEmpty); 3362 }while( rc==SQLITE_ROW && p->bSkipEmpty && bEmpty); 3363 return rc; 3364 } 3365 3366 /* 3367 ** Advance an iterator created by sqlite3changeset_start() to the next 3368 ** change in the changeset. This function may return SQLITE_ROW, SQLITE_DONE 3369 ** or SQLITE_CORRUPT. 3370 ** 3371 ** This function may not be called on iterators passed to a conflict handler 3372 ** callback by changeset_apply(). 3373 */ 3374 int sqlite3changeset_next(sqlite3_changeset_iter *p){ 3375 return sessionChangesetNext(p, 0, 0, 0); 3376 } 3377 3378 /* 3379 ** The following function extracts information on the current change 3380 ** from a changeset iterator. It may only be called after changeset_next() 3381 ** has returned SQLITE_ROW. 3382 */ 3383 int sqlite3changeset_op( 3384 sqlite3_changeset_iter *pIter, /* Iterator handle */ 3385 const char **pzTab, /* OUT: Pointer to table name */ 3386 int *pnCol, /* OUT: Number of columns in table */ 3387 int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */ 3388 int *pbIndirect /* OUT: True if change is indirect */ 3389 ){ 3390 *pOp = pIter->op; 3391 *pnCol = pIter->nCol; 3392 *pzTab = pIter->zTab; 3393 if( pbIndirect ) *pbIndirect = pIter->bIndirect; 3394 return SQLITE_OK; 3395 } 3396 3397 /* 3398 ** Return information regarding the PRIMARY KEY and number of columns in 3399 ** the database table affected by the change that pIter currently points 3400 ** to. This function may only be called after changeset_next() returns 3401 ** SQLITE_ROW. 3402 */ 3403 int sqlite3changeset_pk( 3404 sqlite3_changeset_iter *pIter, /* Iterator object */ 3405 unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */ 3406 int *pnCol /* OUT: Number of entries in output array */ 3407 ){ 3408 *pabPK = pIter->abPK; 3409 if( pnCol ) *pnCol = pIter->nCol; 3410 return SQLITE_OK; 3411 } 3412 3413 /* 3414 ** This function may only be called while the iterator is pointing to an 3415 ** SQLITE_UPDATE or SQLITE_DELETE change (see sqlite3changeset_op()). 3416 ** Otherwise, SQLITE_MISUSE is returned. 3417 ** 3418 ** It sets *ppValue to point to an sqlite3_value structure containing the 3419 ** iVal'th value in the old.* record. Or, if that particular value is not 3420 ** included in the record (because the change is an UPDATE and the field 3421 ** was not modified and is not a PK column), set *ppValue to NULL. 3422 ** 3423 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 3424 ** not modified. Otherwise, SQLITE_OK. 3425 */ 3426 int sqlite3changeset_old( 3427 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3428 int iVal, /* Index of old.* value to retrieve */ 3429 sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */ 3430 ){ 3431 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_DELETE ){ 3432 return SQLITE_MISUSE; 3433 } 3434 if( iVal<0 || iVal>=pIter->nCol ){ 3435 return SQLITE_RANGE; 3436 } 3437 *ppValue = pIter->apValue[iVal]; 3438 return SQLITE_OK; 3439 } 3440 3441 /* 3442 ** This function may only be called while the iterator is pointing to an 3443 ** SQLITE_UPDATE or SQLITE_INSERT change (see sqlite3changeset_op()). 3444 ** Otherwise, SQLITE_MISUSE is returned. 3445 ** 3446 ** It sets *ppValue to point to an sqlite3_value structure containing the 3447 ** iVal'th value in the new.* record. Or, if that particular value is not 3448 ** included in the record (because the change is an UPDATE and the field 3449 ** was not modified), set *ppValue to NULL. 3450 ** 3451 ** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is 3452 ** not modified. Otherwise, SQLITE_OK. 3453 */ 3454 int sqlite3changeset_new( 3455 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3456 int iVal, /* Index of new.* value to retrieve */ 3457 sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */ 3458 ){ 3459 if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_INSERT ){ 3460 return SQLITE_MISUSE; 3461 } 3462 if( iVal<0 || iVal>=pIter->nCol ){ 3463 return SQLITE_RANGE; 3464 } 3465 *ppValue = pIter->apValue[pIter->nCol+iVal]; 3466 return SQLITE_OK; 3467 } 3468 3469 /* 3470 ** The following two macros are used internally. They are similar to the 3471 ** sqlite3changeset_new() and sqlite3changeset_old() functions, except that 3472 ** they omit all error checking and return a pointer to the requested value. 3473 */ 3474 #define sessionChangesetNew(pIter, iVal) (pIter)->apValue[(pIter)->nCol+(iVal)] 3475 #define sessionChangesetOld(pIter, iVal) (pIter)->apValue[(iVal)] 3476 3477 /* 3478 ** This function may only be called with a changeset iterator that has been 3479 ** passed to an SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT 3480 ** conflict-handler function. Otherwise, SQLITE_MISUSE is returned. 3481 ** 3482 ** If successful, *ppValue is set to point to an sqlite3_value structure 3483 ** containing the iVal'th value of the conflicting record. 3484 ** 3485 ** If value iVal is out-of-range or some other error occurs, an SQLite error 3486 ** code is returned. Otherwise, SQLITE_OK. 3487 */ 3488 int sqlite3changeset_conflict( 3489 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3490 int iVal, /* Index of conflict record value to fetch */ 3491 sqlite3_value **ppValue /* OUT: Value from conflicting row */ 3492 ){ 3493 if( !pIter->pConflict ){ 3494 return SQLITE_MISUSE; 3495 } 3496 if( iVal<0 || iVal>=pIter->nCol ){ 3497 return SQLITE_RANGE; 3498 } 3499 *ppValue = sqlite3_column_value(pIter->pConflict, iVal); 3500 return SQLITE_OK; 3501 } 3502 3503 /* 3504 ** This function may only be called with an iterator passed to an 3505 ** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case 3506 ** it sets the output variable to the total number of known foreign key 3507 ** violations in the destination database and returns SQLITE_OK. 3508 ** 3509 ** In all other cases this function returns SQLITE_MISUSE. 3510 */ 3511 int sqlite3changeset_fk_conflicts( 3512 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 3513 int *pnOut /* OUT: Number of FK violations */ 3514 ){ 3515 if( pIter->pConflict || pIter->apValue ){ 3516 return SQLITE_MISUSE; 3517 } 3518 *pnOut = pIter->nCol; 3519 return SQLITE_OK; 3520 } 3521 3522 3523 /* 3524 ** Finalize an iterator allocated with sqlite3changeset_start(). 3525 ** 3526 ** This function may not be called on iterators passed to a conflict handler 3527 ** callback by changeset_apply(). 3528 */ 3529 int sqlite3changeset_finalize(sqlite3_changeset_iter *p){ 3530 int rc = SQLITE_OK; 3531 if( p ){ 3532 int i; /* Used to iterate through p->apValue[] */ 3533 rc = p->rc; 3534 if( p->apValue ){ 3535 for(i=0; i<p->nCol*2; i++) sqlite3ValueFree(p->apValue[i]); 3536 } 3537 sqlite3_free(p->tblhdr.aBuf); 3538 sqlite3_free(p->in.buf.aBuf); 3539 sqlite3_free(p); 3540 } 3541 return rc; 3542 } 3543 3544 static int sessionChangesetInvert( 3545 SessionInput *pInput, /* Input changeset */ 3546 int (*xOutput)(void *pOut, const void *pData, int nData), 3547 void *pOut, 3548 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3549 void **ppInverted /* OUT: Inverse of pChangeset */ 3550 ){ 3551 int rc = SQLITE_OK; /* Return value */ 3552 SessionBuffer sOut; /* Output buffer */ 3553 int nCol = 0; /* Number of cols in current table */ 3554 u8 *abPK = 0; /* PK array for current table */ 3555 sqlite3_value **apVal = 0; /* Space for values for UPDATE inversion */ 3556 SessionBuffer sPK = {0, 0, 0}; /* PK array for current table */ 3557 3558 /* Initialize the output buffer */ 3559 memset(&sOut, 0, sizeof(SessionBuffer)); 3560 3561 /* Zero the output variables in case an error occurs. */ 3562 if( ppInverted ){ 3563 *ppInverted = 0; 3564 *pnInverted = 0; 3565 } 3566 3567 while( 1 ){ 3568 u8 eType; 3569 3570 /* Test for EOF. */ 3571 if( (rc = sessionInputBuffer(pInput, 2)) ) goto finished_invert; 3572 if( pInput->iNext>=pInput->nData ) break; 3573 eType = pInput->aData[pInput->iNext]; 3574 3575 switch( eType ){ 3576 case 'T': { 3577 /* A 'table' record consists of: 3578 ** 3579 ** * A constant 'T' character, 3580 ** * Number of columns in said table (a varint), 3581 ** * An array of nCol bytes (sPK), 3582 ** * A nul-terminated table name. 3583 */ 3584 int nByte; 3585 int nVar; 3586 pInput->iNext++; 3587 if( (rc = sessionChangesetBufferTblhdr(pInput, &nByte)) ){ 3588 goto finished_invert; 3589 } 3590 nVar = sessionVarintGet(&pInput->aData[pInput->iNext], &nCol); 3591 sPK.nBuf = 0; 3592 sessionAppendBlob(&sPK, &pInput->aData[pInput->iNext+nVar], nCol, &rc); 3593 sessionAppendByte(&sOut, eType, &rc); 3594 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3595 if( rc ) goto finished_invert; 3596 3597 pInput->iNext += nByte; 3598 sqlite3_free(apVal); 3599 apVal = 0; 3600 abPK = sPK.aBuf; 3601 break; 3602 } 3603 3604 case SQLITE_INSERT: 3605 case SQLITE_DELETE: { 3606 int nByte; 3607 int bIndirect = pInput->aData[pInput->iNext+1]; 3608 int eType2 = (eType==SQLITE_DELETE ? SQLITE_INSERT : SQLITE_DELETE); 3609 pInput->iNext += 2; 3610 assert( rc==SQLITE_OK ); 3611 rc = sessionChangesetBufferRecord(pInput, nCol, &nByte); 3612 sessionAppendByte(&sOut, eType2, &rc); 3613 sessionAppendByte(&sOut, bIndirect, &rc); 3614 sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc); 3615 pInput->iNext += nByte; 3616 if( rc ) goto finished_invert; 3617 break; 3618 } 3619 3620 case SQLITE_UPDATE: { 3621 int iCol; 3622 3623 if( 0==apVal ){ 3624 apVal = (sqlite3_value **)sqlite3_malloc64(sizeof(apVal[0])*nCol*2); 3625 if( 0==apVal ){ 3626 rc = SQLITE_NOMEM; 3627 goto finished_invert; 3628 } 3629 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3630 } 3631 3632 /* Write the header for the new UPDATE change. Same as the original. */ 3633 sessionAppendByte(&sOut, eType, &rc); 3634 sessionAppendByte(&sOut, pInput->aData[pInput->iNext+1], &rc); 3635 3636 /* Read the old.* and new.* records for the update change. */ 3637 pInput->iNext += 2; 3638 rc = sessionReadRecord(pInput, nCol, 0, &apVal[0], 0); 3639 if( rc==SQLITE_OK ){ 3640 rc = sessionReadRecord(pInput, nCol, 0, &apVal[nCol], 0); 3641 } 3642 3643 /* Write the new old.* record. Consists of the PK columns from the 3644 ** original old.* record, and the other values from the original 3645 ** new.* record. */ 3646 for(iCol=0; iCol<nCol; iCol++){ 3647 sqlite3_value *pVal = apVal[iCol + (abPK[iCol] ? 0 : nCol)]; 3648 sessionAppendValue(&sOut, pVal, &rc); 3649 } 3650 3651 /* Write the new new.* record. Consists of a copy of all values 3652 ** from the original old.* record, except for the PK columns, which 3653 ** are set to "undefined". */ 3654 for(iCol=0; iCol<nCol; iCol++){ 3655 sqlite3_value *pVal = (abPK[iCol] ? 0 : apVal[iCol]); 3656 sessionAppendValue(&sOut, pVal, &rc); 3657 } 3658 3659 for(iCol=0; iCol<nCol*2; iCol++){ 3660 sqlite3ValueFree(apVal[iCol]); 3661 } 3662 memset(apVal, 0, sizeof(apVal[0])*nCol*2); 3663 if( rc!=SQLITE_OK ){ 3664 goto finished_invert; 3665 } 3666 3667 break; 3668 } 3669 3670 default: 3671 rc = SQLITE_CORRUPT_BKPT; 3672 goto finished_invert; 3673 } 3674 3675 assert( rc==SQLITE_OK ); 3676 if( xOutput && sOut.nBuf>=sessions_strm_chunk_size ){ 3677 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3678 sOut.nBuf = 0; 3679 if( rc!=SQLITE_OK ) goto finished_invert; 3680 } 3681 } 3682 3683 assert( rc==SQLITE_OK ); 3684 if( pnInverted && ALWAYS(ppInverted) ){ 3685 *pnInverted = sOut.nBuf; 3686 *ppInverted = sOut.aBuf; 3687 sOut.aBuf = 0; 3688 }else if( sOut.nBuf>0 && ALWAYS(xOutput!=0) ){ 3689 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 3690 } 3691 3692 finished_invert: 3693 sqlite3_free(sOut.aBuf); 3694 sqlite3_free(apVal); 3695 sqlite3_free(sPK.aBuf); 3696 return rc; 3697 } 3698 3699 3700 /* 3701 ** Invert a changeset object. 3702 */ 3703 int sqlite3changeset_invert( 3704 int nChangeset, /* Number of bytes in input */ 3705 const void *pChangeset, /* Input changeset */ 3706 int *pnInverted, /* OUT: Number of bytes in output changeset */ 3707 void **ppInverted /* OUT: Inverse of pChangeset */ 3708 ){ 3709 SessionInput sInput; 3710 3711 /* Set up the input stream */ 3712 memset(&sInput, 0, sizeof(SessionInput)); 3713 sInput.nData = nChangeset; 3714 sInput.aData = (u8*)pChangeset; 3715 3716 return sessionChangesetInvert(&sInput, 0, 0, pnInverted, ppInverted); 3717 } 3718 3719 /* 3720 ** Streaming version of sqlite3changeset_invert(). 3721 */ 3722 int sqlite3changeset_invert_strm( 3723 int (*xInput)(void *pIn, void *pData, int *pnData), 3724 void *pIn, 3725 int (*xOutput)(void *pOut, const void *pData, int nData), 3726 void *pOut 3727 ){ 3728 SessionInput sInput; 3729 int rc; 3730 3731 /* Set up the input stream */ 3732 memset(&sInput, 0, sizeof(SessionInput)); 3733 sInput.xInput = xInput; 3734 sInput.pIn = pIn; 3735 3736 rc = sessionChangesetInvert(&sInput, xOutput, pOut, 0, 0); 3737 sqlite3_free(sInput.buf.aBuf); 3738 return rc; 3739 } 3740 3741 3742 typedef struct SessionUpdate SessionUpdate; 3743 struct SessionUpdate { 3744 sqlite3_stmt *pStmt; 3745 u32 *aMask; 3746 SessionUpdate *pNext; 3747 }; 3748 3749 typedef struct SessionApplyCtx SessionApplyCtx; 3750 struct SessionApplyCtx { 3751 sqlite3 *db; 3752 sqlite3_stmt *pDelete; /* DELETE statement */ 3753 sqlite3_stmt *pInsert; /* INSERT statement */ 3754 sqlite3_stmt *pSelect; /* SELECT statement */ 3755 int nCol; /* Size of azCol[] and abPK[] arrays */ 3756 const char **azCol; /* Array of column names */ 3757 u8 *abPK; /* Boolean array - true if column is in PK */ 3758 u32 *aUpdateMask; /* Used by sessionUpdateFind */ 3759 SessionUpdate *pUp; 3760 int bStat1; /* True if table is sqlite_stat1 */ 3761 int bDeferConstraints; /* True to defer constraints */ 3762 int bInvertConstraints; /* Invert when iterating constraints buffer */ 3763 SessionBuffer constraints; /* Deferred constraints are stored here */ 3764 SessionBuffer rebase; /* Rebase information (if any) here */ 3765 u8 bRebaseStarted; /* If table header is already in rebase */ 3766 u8 bRebase; /* True to collect rebase information */ 3767 }; 3768 3769 /* Number of prepared UPDATE statements to cache. */ 3770 #define SESSION_UPDATE_CACHE_SZ 12 3771 3772 /* 3773 ** Find a prepared UPDATE statement suitable for the UPDATE step currently 3774 ** being visited by the iterator. The UPDATE is of the form: 3775 ** 3776 ** UPDATE tbl SET col = ?, col2 = ? WHERE pk1 IS ? AND pk2 IS ? 3777 */ 3778 static int sessionUpdateFind( 3779 sqlite3_changeset_iter *pIter, 3780 SessionApplyCtx *p, 3781 int bPatchset, 3782 sqlite3_stmt **ppStmt 3783 ){ 3784 int rc = SQLITE_OK; 3785 SessionUpdate *pUp = 0; 3786 int nCol = pIter->nCol; 3787 int nU32 = (pIter->nCol+33)/32; 3788 int ii; 3789 3790 if( p->aUpdateMask==0 ){ 3791 p->aUpdateMask = sqlite3_malloc(nU32*sizeof(u32)); 3792 if( p->aUpdateMask==0 ){ 3793 rc = SQLITE_NOMEM; 3794 } 3795 } 3796 3797 if( rc==SQLITE_OK ){ 3798 memset(p->aUpdateMask, 0, nU32*sizeof(u32)); 3799 rc = SQLITE_CORRUPT; 3800 for(ii=0; ii<pIter->nCol; ii++){ 3801 if( sessionChangesetNew(pIter, ii) ){ 3802 p->aUpdateMask[ii/32] |= (1<<(ii%32)); 3803 rc = SQLITE_OK; 3804 } 3805 } 3806 } 3807 3808 if( rc==SQLITE_OK ){ 3809 if( bPatchset ) p->aUpdateMask[nCol/32] |= (1<<(nCol%32)); 3810 3811 if( p->pUp ){ 3812 int nUp = 0; 3813 SessionUpdate **pp = &p->pUp; 3814 while( 1 ){ 3815 nUp++; 3816 if( 0==memcmp(p->aUpdateMask, (*pp)->aMask, nU32*sizeof(u32)) ){ 3817 pUp = *pp; 3818 *pp = pUp->pNext; 3819 pUp->pNext = p->pUp; 3820 p->pUp = pUp; 3821 break; 3822 } 3823 3824 if( (*pp)->pNext ){ 3825 pp = &(*pp)->pNext; 3826 }else{ 3827 if( nUp>=SESSION_UPDATE_CACHE_SZ ){ 3828 sqlite3_finalize((*pp)->pStmt); 3829 sqlite3_free(*pp); 3830 *pp = 0; 3831 } 3832 break; 3833 } 3834 } 3835 } 3836 3837 if( pUp==0 ){ 3838 int nByte = sizeof(SessionUpdate) * nU32*sizeof(u32); 3839 int bStat1 = (sqlite3_stricmp(pIter->zTab, "sqlite_stat1")==0); 3840 pUp = (SessionUpdate*)sqlite3_malloc(nByte); 3841 if( pUp==0 ){ 3842 rc = SQLITE_NOMEM; 3843 }else{ 3844 const char *zSep = ""; 3845 SessionBuffer buf; 3846 3847 memset(&buf, 0, sizeof(buf)); 3848 pUp->aMask = (u32*)&pUp[1]; 3849 memcpy(pUp->aMask, p->aUpdateMask, nU32*sizeof(u32)); 3850 3851 sessionAppendStr(&buf, "UPDATE main.", &rc); 3852 sessionAppendIdent(&buf, pIter->zTab, &rc); 3853 sessionAppendStr(&buf, " SET ", &rc); 3854 3855 /* Create the assignments part of the UPDATE */ 3856 for(ii=0; ii<pIter->nCol; ii++){ 3857 if( p->abPK[ii]==0 && sessionChangesetNew(pIter, ii) ){ 3858 sessionAppendStr(&buf, zSep, &rc); 3859 sessionAppendIdent(&buf, p->azCol[ii], &rc); 3860 sessionAppendStr(&buf, " = ?", &rc); 3861 sessionAppendInteger(&buf, ii*2+1, &rc); 3862 zSep = ", "; 3863 } 3864 } 3865 3866 /* Create the WHERE clause part of the UPDATE */ 3867 zSep = ""; 3868 sessionAppendStr(&buf, " WHERE ", &rc); 3869 for(ii=0; ii<pIter->nCol; ii++){ 3870 if( p->abPK[ii] || (bPatchset==0 && sessionChangesetOld(pIter, ii)) ){ 3871 sessionAppendStr(&buf, zSep, &rc); 3872 if( bStat1 && ii==1 ){ 3873 assert( sqlite3_stricmp(p->azCol[ii], "idx")==0 ); 3874 sessionAppendStr(&buf, 3875 "idx IS CASE " 3876 "WHEN length(?4)=0 AND typeof(?4)='blob' THEN NULL " 3877 "ELSE ?4 END ", &rc 3878 ); 3879 }else{ 3880 sessionAppendIdent(&buf, p->azCol[ii], &rc); 3881 sessionAppendStr(&buf, " IS ?", &rc); 3882 sessionAppendInteger(&buf, ii*2+2, &rc); 3883 } 3884 zSep = " AND "; 3885 } 3886 } 3887 3888 if( rc==SQLITE_OK ){ 3889 char *zSql = (char*)buf.aBuf; 3890 rc = sqlite3_prepare_v2(p->db, zSql, buf.nBuf, &pUp->pStmt, 0); 3891 } 3892 3893 if( rc!=SQLITE_OK ){ 3894 sqlite3_free(pUp); 3895 pUp = 0; 3896 }else{ 3897 pUp->pNext = p->pUp; 3898 p->pUp = pUp; 3899 } 3900 sqlite3_free(buf.aBuf); 3901 } 3902 } 3903 } 3904 3905 assert( (rc==SQLITE_OK)==(pUp!=0) ); 3906 if( pUp ){ 3907 *ppStmt = pUp->pStmt; 3908 }else{ 3909 *ppStmt = 0; 3910 } 3911 return rc; 3912 } 3913 3914 /* 3915 ** Free all cached UPDATE statements. 3916 */ 3917 static void sessionUpdateFree(SessionApplyCtx *p){ 3918 SessionUpdate *pUp; 3919 SessionUpdate *pNext; 3920 for(pUp=p->pUp; pUp; pUp=pNext){ 3921 pNext = pUp->pNext; 3922 sqlite3_finalize(pUp->pStmt); 3923 sqlite3_free(pUp); 3924 } 3925 p->pUp = 0; 3926 sqlite3_free(p->aUpdateMask); 3927 p->aUpdateMask = 0; 3928 } 3929 3930 /* 3931 ** Formulate a statement to DELETE a row from database db. Assuming a table 3932 ** structure like this: 3933 ** 3934 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 3935 ** 3936 ** The DELETE statement looks like this: 3937 ** 3938 ** DELETE FROM x WHERE a = :1 AND c = :3 AND (:5 OR b IS :2 AND d IS :4) 3939 ** 3940 ** Variable :5 (nCol+1) is a boolean. It should be set to 0 if we require 3941 ** matching b and d values, or 1 otherwise. The second case comes up if the 3942 ** conflict handler is invoked with NOTFOUND and returns CHANGESET_REPLACE. 3943 ** 3944 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pDelete is left 3945 ** pointing to the prepared version of the SQL statement. 3946 */ 3947 static int sessionDeleteRow( 3948 sqlite3 *db, /* Database handle */ 3949 const char *zTab, /* Table name */ 3950 SessionApplyCtx *p /* Session changeset-apply context */ 3951 ){ 3952 int i; 3953 const char *zSep = ""; 3954 int rc = SQLITE_OK; 3955 SessionBuffer buf = {0, 0, 0}; 3956 int nPk = 0; 3957 3958 sessionAppendStr(&buf, "DELETE FROM main.", &rc); 3959 sessionAppendIdent(&buf, zTab, &rc); 3960 sessionAppendStr(&buf, " WHERE ", &rc); 3961 3962 for(i=0; i<p->nCol; i++){ 3963 if( p->abPK[i] ){ 3964 nPk++; 3965 sessionAppendStr(&buf, zSep, &rc); 3966 sessionAppendIdent(&buf, p->azCol[i], &rc); 3967 sessionAppendStr(&buf, " = ?", &rc); 3968 sessionAppendInteger(&buf, i+1, &rc); 3969 zSep = " AND "; 3970 } 3971 } 3972 3973 if( nPk<p->nCol ){ 3974 sessionAppendStr(&buf, " AND (?", &rc); 3975 sessionAppendInteger(&buf, p->nCol+1, &rc); 3976 sessionAppendStr(&buf, " OR ", &rc); 3977 3978 zSep = ""; 3979 for(i=0; i<p->nCol; i++){ 3980 if( !p->abPK[i] ){ 3981 sessionAppendStr(&buf, zSep, &rc); 3982 sessionAppendIdent(&buf, p->azCol[i], &rc); 3983 sessionAppendStr(&buf, " IS ?", &rc); 3984 sessionAppendInteger(&buf, i+1, &rc); 3985 zSep = "AND "; 3986 } 3987 } 3988 sessionAppendStr(&buf, ")", &rc); 3989 } 3990 3991 if( rc==SQLITE_OK ){ 3992 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pDelete, 0); 3993 } 3994 sqlite3_free(buf.aBuf); 3995 3996 return rc; 3997 } 3998 3999 /* 4000 ** Formulate and prepare an SQL statement to query table zTab by primary 4001 ** key. Assuming the following table structure: 4002 ** 4003 ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); 4004 ** 4005 ** The SELECT statement looks like this: 4006 ** 4007 ** SELECT * FROM x WHERE a = ?1 AND c = ?3 4008 ** 4009 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pSelect is left 4010 ** pointing to the prepared version of the SQL statement. 4011 */ 4012 static int sessionSelectRow( 4013 sqlite3 *db, /* Database handle */ 4014 const char *zTab, /* Table name */ 4015 SessionApplyCtx *p /* Session changeset-apply context */ 4016 ){ 4017 return sessionSelectStmt( 4018 db, "main", zTab, p->nCol, p->azCol, p->abPK, &p->pSelect); 4019 } 4020 4021 /* 4022 ** Formulate and prepare an INSERT statement to add a record to table zTab. 4023 ** For example: 4024 ** 4025 ** INSERT INTO main."zTab" VALUES(?1, ?2, ?3 ...); 4026 ** 4027 ** If successful, SQLITE_OK is returned and SessionApplyCtx.pInsert is left 4028 ** pointing to the prepared version of the SQL statement. 4029 */ 4030 static int sessionInsertRow( 4031 sqlite3 *db, /* Database handle */ 4032 const char *zTab, /* Table name */ 4033 SessionApplyCtx *p /* Session changeset-apply context */ 4034 ){ 4035 int rc = SQLITE_OK; 4036 int i; 4037 SessionBuffer buf = {0, 0, 0}; 4038 4039 sessionAppendStr(&buf, "INSERT INTO main.", &rc); 4040 sessionAppendIdent(&buf, zTab, &rc); 4041 sessionAppendStr(&buf, "(", &rc); 4042 for(i=0; i<p->nCol; i++){ 4043 if( i!=0 ) sessionAppendStr(&buf, ", ", &rc); 4044 sessionAppendIdent(&buf, p->azCol[i], &rc); 4045 } 4046 4047 sessionAppendStr(&buf, ") VALUES(?", &rc); 4048 for(i=1; i<p->nCol; i++){ 4049 sessionAppendStr(&buf, ", ?", &rc); 4050 } 4051 sessionAppendStr(&buf, ")", &rc); 4052 4053 if( rc==SQLITE_OK ){ 4054 rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0); 4055 } 4056 sqlite3_free(buf.aBuf); 4057 return rc; 4058 } 4059 4060 static int sessionPrepare(sqlite3 *db, sqlite3_stmt **pp, const char *zSql){ 4061 return sqlite3_prepare_v2(db, zSql, -1, pp, 0); 4062 } 4063 4064 /* 4065 ** Prepare statements for applying changes to the sqlite_stat1 table. 4066 ** These are similar to those created by sessionSelectRow(), 4067 ** sessionInsertRow(), sessionUpdateRow() and sessionDeleteRow() for 4068 ** other tables. 4069 */ 4070 static int sessionStat1Sql(sqlite3 *db, SessionApplyCtx *p){ 4071 int rc = sessionSelectRow(db, "sqlite_stat1", p); 4072 if( rc==SQLITE_OK ){ 4073 rc = sessionPrepare(db, &p->pInsert, 4074 "INSERT INTO main.sqlite_stat1 VALUES(?1, " 4075 "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END, " 4076 "?3)" 4077 ); 4078 } 4079 if( rc==SQLITE_OK ){ 4080 rc = sessionPrepare(db, &p->pDelete, 4081 "DELETE FROM main.sqlite_stat1 WHERE tbl=?1 AND idx IS " 4082 "CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END " 4083 "AND (?4 OR stat IS ?3)" 4084 ); 4085 } 4086 return rc; 4087 } 4088 4089 /* 4090 ** A wrapper around sqlite3_bind_value() that detects an extra problem. 4091 ** See comments in the body of this function for details. 4092 */ 4093 static int sessionBindValue( 4094 sqlite3_stmt *pStmt, /* Statement to bind value to */ 4095 int i, /* Parameter number to bind to */ 4096 sqlite3_value *pVal /* Value to bind */ 4097 ){ 4098 int eType = sqlite3_value_type(pVal); 4099 /* COVERAGE: The (pVal->z==0) branch is never true using current versions 4100 ** of SQLite. If a malloc fails in an sqlite3_value_xxx() function, either 4101 ** the (pVal->z) variable remains as it was or the type of the value is 4102 ** set to SQLITE_NULL. */ 4103 if( (eType==SQLITE_TEXT || eType==SQLITE_BLOB) && pVal->z==0 ){ 4104 /* This condition occurs when an earlier OOM in a call to 4105 ** sqlite3_value_text() or sqlite3_value_blob() (perhaps from within 4106 ** a conflict-handler) has zeroed the pVal->z pointer. Return NOMEM. */ 4107 return SQLITE_NOMEM; 4108 } 4109 return sqlite3_bind_value(pStmt, i, pVal); 4110 } 4111 4112 /* 4113 ** Iterator pIter must point to an SQLITE_INSERT entry. This function 4114 ** transfers new.* values from the current iterator entry to statement 4115 ** pStmt. The table being inserted into has nCol columns. 4116 ** 4117 ** New.* value $i from the iterator is bound to variable ($i+1) of 4118 ** statement pStmt. If parameter abPK is NULL, all values from 0 to (nCol-1) 4119 ** are transfered to the statement. Otherwise, if abPK is not NULL, it points 4120 ** to an array nCol elements in size. In this case only those values for 4121 ** which abPK[$i] is true are read from the iterator and bound to the 4122 ** statement. 4123 ** 4124 ** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK. 4125 */ 4126 static int sessionBindRow( 4127 sqlite3_changeset_iter *pIter, /* Iterator to read values from */ 4128 int(*xValue)(sqlite3_changeset_iter *, int, sqlite3_value **), 4129 int nCol, /* Number of columns */ 4130 u8 *abPK, /* If not NULL, bind only if true */ 4131 sqlite3_stmt *pStmt /* Bind values to this statement */ 4132 ){ 4133 int i; 4134 int rc = SQLITE_OK; 4135 4136 /* Neither sqlite3changeset_old or sqlite3changeset_new can fail if the 4137 ** argument iterator points to a suitable entry. Make sure that xValue 4138 ** is one of these to guarantee that it is safe to ignore the return 4139 ** in the code below. */ 4140 assert( xValue==sqlite3changeset_old || xValue==sqlite3changeset_new ); 4141 4142 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 4143 if( !abPK || abPK[i] ){ 4144 sqlite3_value *pVal = 0; 4145 (void)xValue(pIter, i, &pVal); 4146 if( pVal==0 ){ 4147 /* The value in the changeset was "undefined". This indicates a 4148 ** corrupt changeset blob. */ 4149 rc = SQLITE_CORRUPT_BKPT; 4150 }else{ 4151 rc = sessionBindValue(pStmt, i+1, pVal); 4152 } 4153 } 4154 } 4155 return rc; 4156 } 4157 4158 /* 4159 ** SQL statement pSelect is as generated by the sessionSelectRow() function. 4160 ** This function binds the primary key values from the change that changeset 4161 ** iterator pIter points to to the SELECT and attempts to seek to the table 4162 ** entry. If a row is found, the SELECT statement left pointing at the row 4163 ** and SQLITE_ROW is returned. Otherwise, if no row is found and no error 4164 ** has occured, the statement is reset and SQLITE_OK is returned. If an 4165 ** error occurs, the statement is reset and an SQLite error code is returned. 4166 ** 4167 ** If this function returns SQLITE_ROW, the caller must eventually reset() 4168 ** statement pSelect. If any other value is returned, the statement does 4169 ** not require a reset(). 4170 ** 4171 ** If the iterator currently points to an INSERT record, bind values from the 4172 ** new.* record to the SELECT statement. Or, if it points to a DELETE or 4173 ** UPDATE, bind values from the old.* record. 4174 */ 4175 static int sessionSeekToRow( 4176 sqlite3 *db, /* Database handle */ 4177 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 4178 u8 *abPK, /* Primary key flags array */ 4179 sqlite3_stmt *pSelect /* SELECT statement from sessionSelectRow() */ 4180 ){ 4181 int rc; /* Return code */ 4182 int nCol; /* Number of columns in table */ 4183 int op; /* Changset operation (SQLITE_UPDATE etc.) */ 4184 const char *zDummy; /* Unused */ 4185 4186 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 4187 rc = sessionBindRow(pIter, 4188 op==SQLITE_INSERT ? sqlite3changeset_new : sqlite3changeset_old, 4189 nCol, abPK, pSelect 4190 ); 4191 4192 if( rc==SQLITE_OK ){ 4193 rc = sqlite3_step(pSelect); 4194 if( rc!=SQLITE_ROW ) rc = sqlite3_reset(pSelect); 4195 } 4196 4197 return rc; 4198 } 4199 4200 /* 4201 ** This function is called from within sqlite3changeset_apply_v2() when 4202 ** a conflict is encountered and resolved using conflict resolution 4203 ** mode eType (either SQLITE_CHANGESET_OMIT or SQLITE_CHANGESET_REPLACE).. 4204 ** It adds a conflict resolution record to the buffer in 4205 ** SessionApplyCtx.rebase, which will eventually be returned to the caller 4206 ** of apply_v2() as the "rebase" buffer. 4207 ** 4208 ** Return SQLITE_OK if successful, or an SQLite error code otherwise. 4209 */ 4210 static int sessionRebaseAdd( 4211 SessionApplyCtx *p, /* Apply context */ 4212 int eType, /* Conflict resolution (OMIT or REPLACE) */ 4213 sqlite3_changeset_iter *pIter /* Iterator pointing at current change */ 4214 ){ 4215 int rc = SQLITE_OK; 4216 if( p->bRebase ){ 4217 int i; 4218 int eOp = pIter->op; 4219 if( p->bRebaseStarted==0 ){ 4220 /* Append a table-header to the rebase buffer */ 4221 const char *zTab = pIter->zTab; 4222 sessionAppendByte(&p->rebase, 'T', &rc); 4223 sessionAppendVarint(&p->rebase, p->nCol, &rc); 4224 sessionAppendBlob(&p->rebase, p->abPK, p->nCol, &rc); 4225 sessionAppendBlob(&p->rebase, (u8*)zTab, (int)strlen(zTab)+1, &rc); 4226 p->bRebaseStarted = 1; 4227 } 4228 4229 assert( eType==SQLITE_CHANGESET_REPLACE||eType==SQLITE_CHANGESET_OMIT ); 4230 assert( eOp==SQLITE_DELETE || eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE ); 4231 4232 sessionAppendByte(&p->rebase, 4233 (eOp==SQLITE_DELETE ? SQLITE_DELETE : SQLITE_INSERT), &rc 4234 ); 4235 sessionAppendByte(&p->rebase, (eType==SQLITE_CHANGESET_REPLACE), &rc); 4236 for(i=0; i<p->nCol; i++){ 4237 sqlite3_value *pVal = 0; 4238 if( eOp==SQLITE_DELETE || (eOp==SQLITE_UPDATE && p->abPK[i]) ){ 4239 sqlite3changeset_old(pIter, i, &pVal); 4240 }else{ 4241 sqlite3changeset_new(pIter, i, &pVal); 4242 } 4243 sessionAppendValue(&p->rebase, pVal, &rc); 4244 } 4245 } 4246 return rc; 4247 } 4248 4249 /* 4250 ** Invoke the conflict handler for the change that the changeset iterator 4251 ** currently points to. 4252 ** 4253 ** Argument eType must be either CHANGESET_DATA or CHANGESET_CONFLICT. 4254 ** If argument pbReplace is NULL, then the type of conflict handler invoked 4255 ** depends solely on eType, as follows: 4256 ** 4257 ** eType value Value passed to xConflict 4258 ** ------------------------------------------------- 4259 ** CHANGESET_DATA CHANGESET_NOTFOUND 4260 ** CHANGESET_CONFLICT CHANGESET_CONSTRAINT 4261 ** 4262 ** Or, if pbReplace is not NULL, then an attempt is made to find an existing 4263 ** record with the same primary key as the record about to be deleted, updated 4264 ** or inserted. If such a record can be found, it is available to the conflict 4265 ** handler as the "conflicting" record. In this case the type of conflict 4266 ** handler invoked is as follows: 4267 ** 4268 ** eType value PK Record found? Value passed to xConflict 4269 ** ---------------------------------------------------------------- 4270 ** CHANGESET_DATA Yes CHANGESET_DATA 4271 ** CHANGESET_DATA No CHANGESET_NOTFOUND 4272 ** CHANGESET_CONFLICT Yes CHANGESET_CONFLICT 4273 ** CHANGESET_CONFLICT No CHANGESET_CONSTRAINT 4274 ** 4275 ** If pbReplace is not NULL, and a record with a matching PK is found, and 4276 ** the conflict handler function returns SQLITE_CHANGESET_REPLACE, *pbReplace 4277 ** is set to non-zero before returning SQLITE_OK. 4278 ** 4279 ** If the conflict handler returns SQLITE_CHANGESET_ABORT, SQLITE_ABORT is 4280 ** returned. Or, if the conflict handler returns an invalid value, 4281 ** SQLITE_MISUSE. If the conflict handler returns SQLITE_CHANGESET_OMIT, 4282 ** this function returns SQLITE_OK. 4283 */ 4284 static int sessionConflictHandler( 4285 int eType, /* Either CHANGESET_DATA or CONFLICT */ 4286 SessionApplyCtx *p, /* changeset_apply() context */ 4287 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 4288 int(*xConflict)(void *, int, sqlite3_changeset_iter*), 4289 void *pCtx, /* First argument for conflict handler */ 4290 int *pbReplace /* OUT: Set to true if PK row is found */ 4291 ){ 4292 int res = 0; /* Value returned by conflict handler */ 4293 int rc; 4294 int nCol; 4295 int op; 4296 const char *zDummy; 4297 4298 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 4299 4300 assert( eType==SQLITE_CHANGESET_CONFLICT || eType==SQLITE_CHANGESET_DATA ); 4301 assert( SQLITE_CHANGESET_CONFLICT+1==SQLITE_CHANGESET_CONSTRAINT ); 4302 assert( SQLITE_CHANGESET_DATA+1==SQLITE_CHANGESET_NOTFOUND ); 4303 4304 /* Bind the new.* PRIMARY KEY values to the SELECT statement. */ 4305 if( pbReplace ){ 4306 rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect); 4307 }else{ 4308 rc = SQLITE_OK; 4309 } 4310 4311 if( rc==SQLITE_ROW ){ 4312 /* There exists another row with the new.* primary key. */ 4313 pIter->pConflict = p->pSelect; 4314 res = xConflict(pCtx, eType, pIter); 4315 pIter->pConflict = 0; 4316 rc = sqlite3_reset(p->pSelect); 4317 }else if( rc==SQLITE_OK ){ 4318 if( p->bDeferConstraints && eType==SQLITE_CHANGESET_CONFLICT ){ 4319 /* Instead of invoking the conflict handler, append the change blob 4320 ** to the SessionApplyCtx.constraints buffer. */ 4321 u8 *aBlob = &pIter->in.aData[pIter->in.iCurrent]; 4322 int nBlob = pIter->in.iNext - pIter->in.iCurrent; 4323 sessionAppendBlob(&p->constraints, aBlob, nBlob, &rc); 4324 return SQLITE_OK; 4325 }else{ 4326 /* No other row with the new.* primary key. */ 4327 res = xConflict(pCtx, eType+1, pIter); 4328 if( res==SQLITE_CHANGESET_REPLACE ) rc = SQLITE_MISUSE; 4329 } 4330 } 4331 4332 if( rc==SQLITE_OK ){ 4333 switch( res ){ 4334 case SQLITE_CHANGESET_REPLACE: 4335 assert( pbReplace ); 4336 *pbReplace = 1; 4337 break; 4338 4339 case SQLITE_CHANGESET_OMIT: 4340 break; 4341 4342 case SQLITE_CHANGESET_ABORT: 4343 rc = SQLITE_ABORT; 4344 break; 4345 4346 default: 4347 rc = SQLITE_MISUSE; 4348 break; 4349 } 4350 if( rc==SQLITE_OK ){ 4351 rc = sessionRebaseAdd(p, res, pIter); 4352 } 4353 } 4354 4355 return rc; 4356 } 4357 4358 /* 4359 ** Attempt to apply the change that the iterator passed as the first argument 4360 ** currently points to to the database. If a conflict is encountered, invoke 4361 ** the conflict handler callback. 4362 ** 4363 ** If argument pbRetry is NULL, then ignore any CHANGESET_DATA conflict. If 4364 ** one is encountered, update or delete the row with the matching primary key 4365 ** instead. Or, if pbRetry is not NULL and a CHANGESET_DATA conflict occurs, 4366 ** invoke the conflict handler. If it returns CHANGESET_REPLACE, set *pbRetry 4367 ** to true before returning. In this case the caller will invoke this function 4368 ** again, this time with pbRetry set to NULL. 4369 ** 4370 ** If argument pbReplace is NULL and a CHANGESET_CONFLICT conflict is 4371 ** encountered invoke the conflict handler with CHANGESET_CONSTRAINT instead. 4372 ** Or, if pbReplace is not NULL, invoke it with CHANGESET_CONFLICT. If such 4373 ** an invocation returns SQLITE_CHANGESET_REPLACE, set *pbReplace to true 4374 ** before retrying. In this case the caller attempts to remove the conflicting 4375 ** row before invoking this function again, this time with pbReplace set 4376 ** to NULL. 4377 ** 4378 ** If any conflict handler returns SQLITE_CHANGESET_ABORT, this function 4379 ** returns SQLITE_ABORT. Otherwise, if no error occurs, SQLITE_OK is 4380 ** returned. 4381 */ 4382 static int sessionApplyOneOp( 4383 sqlite3_changeset_iter *pIter, /* Changeset iterator */ 4384 SessionApplyCtx *p, /* changeset_apply() context */ 4385 int(*xConflict)(void *, int, sqlite3_changeset_iter *), 4386 void *pCtx, /* First argument for the conflict handler */ 4387 int *pbReplace, /* OUT: True to remove PK row and retry */ 4388 int *pbRetry /* OUT: True to retry. */ 4389 ){ 4390 const char *zDummy; 4391 int op; 4392 int nCol; 4393 int rc = SQLITE_OK; 4394 4395 assert( p->pDelete && p->pInsert && p->pSelect ); 4396 assert( p->azCol && p->abPK ); 4397 assert( !pbReplace || *pbReplace==0 ); 4398 4399 sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0); 4400 4401 if( op==SQLITE_DELETE ){ 4402 4403 /* Bind values to the DELETE statement. If conflict handling is required, 4404 ** bind values for all columns and set bound variable (nCol+1) to true. 4405 ** Or, if conflict handling is not required, bind just the PK column 4406 ** values and, if it exists, set (nCol+1) to false. Conflict handling 4407 ** is not required if: 4408 ** 4409 ** * this is a patchset, or 4410 ** * (pbRetry==0), or 4411 ** * all columns of the table are PK columns (in this case there is 4412 ** no (nCol+1) variable to bind to). 4413 */ 4414 u8 *abPK = (pIter->bPatchset ? p->abPK : 0); 4415 rc = sessionBindRow(pIter, sqlite3changeset_old, nCol, abPK, p->pDelete); 4416 if( rc==SQLITE_OK && sqlite3_bind_parameter_count(p->pDelete)>nCol ){ 4417 rc = sqlite3_bind_int(p->pDelete, nCol+1, (pbRetry==0 || abPK)); 4418 } 4419 if( rc!=SQLITE_OK ) return rc; 4420 4421 sqlite3_step(p->pDelete); 4422 rc = sqlite3_reset(p->pDelete); 4423 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 4424 rc = sessionConflictHandler( 4425 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 4426 ); 4427 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 4428 rc = sessionConflictHandler( 4429 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 4430 ); 4431 } 4432 4433 }else if( op==SQLITE_UPDATE ){ 4434 int i; 4435 sqlite3_stmt *pUp = 0; 4436 int bPatchset = (pbRetry==0 || pIter->bPatchset); 4437 4438 rc = sessionUpdateFind(pIter, p, bPatchset, &pUp); 4439 4440 /* Bind values to the UPDATE statement. */ 4441 for(i=0; rc==SQLITE_OK && i<nCol; i++){ 4442 sqlite3_value *pOld = sessionChangesetOld(pIter, i); 4443 sqlite3_value *pNew = sessionChangesetNew(pIter, i); 4444 if( p->abPK[i] || (bPatchset==0 && pOld) ){ 4445 rc = sessionBindValue(pUp, i*2+2, pOld); 4446 } 4447 if( rc==SQLITE_OK && pNew ){ 4448 rc = sessionBindValue(pUp, i*2+1, pNew); 4449 } 4450 } 4451 if( rc!=SQLITE_OK ) return rc; 4452 4453 /* Attempt the UPDATE. In the case of a NOTFOUND or DATA conflict, 4454 ** the result will be SQLITE_OK with 0 rows modified. */ 4455 sqlite3_step(pUp); 4456 rc = sqlite3_reset(pUp); 4457 4458 if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){ 4459 /* A NOTFOUND or DATA error. Search the table to see if it contains 4460 ** a row with a matching primary key. If so, this is a DATA conflict. 4461 ** Otherwise, if there is no primary key match, it is a NOTFOUND. */ 4462 4463 rc = sessionConflictHandler( 4464 SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry 4465 ); 4466 4467 }else if( (rc&0xff)==SQLITE_CONSTRAINT ){ 4468 /* This is always a CONSTRAINT conflict. */ 4469 rc = sessionConflictHandler( 4470 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0 4471 ); 4472 } 4473 4474 }else{ 4475 assert( op==SQLITE_INSERT ); 4476 if( p->bStat1 ){ 4477 /* Check if there is a conflicting row. For sqlite_stat1, this needs 4478 ** to be done using a SELECT, as there is no PRIMARY KEY in the 4479 ** database schema to throw an exception if a duplicate is inserted. */ 4480 rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect); 4481 if( rc==SQLITE_ROW ){ 4482 rc = SQLITE_CONSTRAINT; 4483 sqlite3_reset(p->pSelect); 4484 } 4485 } 4486 4487 if( rc==SQLITE_OK ){ 4488 rc = sessionBindRow(pIter, sqlite3changeset_new, nCol, 0, p->pInsert); 4489 if( rc!=SQLITE_OK ) return rc; 4490 4491 sqlite3_step(p->pInsert); 4492 rc = sqlite3_reset(p->pInsert); 4493 } 4494 4495 if( (rc&0xff)==SQLITE_CONSTRAINT ){ 4496 rc = sessionConflictHandler( 4497 SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, pbReplace 4498 ); 4499 } 4500 } 4501 4502 return rc; 4503 } 4504 4505 /* 4506 ** Attempt to apply the change that the iterator passed as the first argument 4507 ** currently points to to the database. If a conflict is encountered, invoke 4508 ** the conflict handler callback. 4509 ** 4510 ** The difference between this function and sessionApplyOne() is that this 4511 ** function handles the case where the conflict-handler is invoked and 4512 ** returns SQLITE_CHANGESET_REPLACE - indicating that the change should be 4513 ** retried in some manner. 4514 */ 4515 static int sessionApplyOneWithRetry( 4516 sqlite3 *db, /* Apply change to "main" db of this handle */ 4517 sqlite3_changeset_iter *pIter, /* Changeset iterator to read change from */ 4518 SessionApplyCtx *pApply, /* Apply context */ 4519 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 4520 void *pCtx /* First argument passed to xConflict */ 4521 ){ 4522 int bReplace = 0; 4523 int bRetry = 0; 4524 int rc; 4525 4526 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, &bReplace, &bRetry); 4527 if( rc==SQLITE_OK ){ 4528 /* If the bRetry flag is set, the change has not been applied due to an 4529 ** SQLITE_CHANGESET_DATA problem (i.e. this is an UPDATE or DELETE and 4530 ** a row with the correct PK is present in the db, but one or more other 4531 ** fields do not contain the expected values) and the conflict handler 4532 ** returned SQLITE_CHANGESET_REPLACE. In this case retry the operation, 4533 ** but pass NULL as the final argument so that sessionApplyOneOp() ignores 4534 ** the SQLITE_CHANGESET_DATA problem. */ 4535 if( bRetry ){ 4536 assert( pIter->op==SQLITE_UPDATE || pIter->op==SQLITE_DELETE ); 4537 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 4538 } 4539 4540 /* If the bReplace flag is set, the change is an INSERT that has not 4541 ** been performed because the database already contains a row with the 4542 ** specified primary key and the conflict handler returned 4543 ** SQLITE_CHANGESET_REPLACE. In this case remove the conflicting row 4544 ** before reattempting the INSERT. */ 4545 else if( bReplace ){ 4546 assert( pIter->op==SQLITE_INSERT ); 4547 rc = sqlite3_exec(db, "SAVEPOINT replace_op", 0, 0, 0); 4548 if( rc==SQLITE_OK ){ 4549 rc = sessionBindRow(pIter, 4550 sqlite3changeset_new, pApply->nCol, pApply->abPK, pApply->pDelete); 4551 sqlite3_bind_int(pApply->pDelete, pApply->nCol+1, 1); 4552 } 4553 if( rc==SQLITE_OK ){ 4554 sqlite3_step(pApply->pDelete); 4555 rc = sqlite3_reset(pApply->pDelete); 4556 } 4557 if( rc==SQLITE_OK ){ 4558 rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0); 4559 } 4560 if( rc==SQLITE_OK ){ 4561 rc = sqlite3_exec(db, "RELEASE replace_op", 0, 0, 0); 4562 } 4563 } 4564 } 4565 4566 return rc; 4567 } 4568 4569 /* 4570 ** Retry the changes accumulated in the pApply->constraints buffer. 4571 */ 4572 static int sessionRetryConstraints( 4573 sqlite3 *db, 4574 int bPatchset, 4575 const char *zTab, 4576 SessionApplyCtx *pApply, 4577 int(*xConflict)(void*, int, sqlite3_changeset_iter*), 4578 void *pCtx /* First argument passed to xConflict */ 4579 ){ 4580 int rc = SQLITE_OK; 4581 4582 while( pApply->constraints.nBuf ){ 4583 sqlite3_changeset_iter *pIter2 = 0; 4584 SessionBuffer cons = pApply->constraints; 4585 memset(&pApply->constraints, 0, sizeof(SessionBuffer)); 4586 4587 rc = sessionChangesetStart( 4588 &pIter2, 0, 0, cons.nBuf, cons.aBuf, pApply->bInvertConstraints, 1 4589 ); 4590 if( rc==SQLITE_OK ){ 4591 size_t nByte = 2*pApply->nCol*sizeof(sqlite3_value*); 4592 int rc2; 4593 pIter2->bPatchset = bPatchset; 4594 pIter2->zTab = (char*)zTab; 4595 pIter2->nCol = pApply->nCol; 4596 pIter2->abPK = pApply->abPK; 4597 sessionBufferGrow(&pIter2->tblhdr, nByte, &rc); 4598 pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf; 4599 if( rc==SQLITE_OK ) memset(pIter2->apValue, 0, nByte); 4600 4601 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter2) ){ 4602 rc = sessionApplyOneWithRetry(db, pIter2, pApply, xConflict, pCtx); 4603 } 4604 4605 rc2 = sqlite3changeset_finalize(pIter2); 4606 if( rc==SQLITE_OK ) rc = rc2; 4607 } 4608 assert( pApply->bDeferConstraints || pApply->constraints.nBuf==0 ); 4609 4610 sqlite3_free(cons.aBuf); 4611 if( rc!=SQLITE_OK ) break; 4612 if( pApply->constraints.nBuf>=cons.nBuf ){ 4613 /* No progress was made on the last round. */ 4614 pApply->bDeferConstraints = 0; 4615 } 4616 } 4617 4618 return rc; 4619 } 4620 4621 /* 4622 ** Argument pIter is a changeset iterator that has been initialized, but 4623 ** not yet passed to sqlite3changeset_next(). This function applies the 4624 ** changeset to the main database attached to handle "db". The supplied 4625 ** conflict handler callback is invoked to resolve any conflicts encountered 4626 ** while applying the change. 4627 */ 4628 static int sessionChangesetApply( 4629 sqlite3 *db, /* Apply change to "main" db of this handle */ 4630 sqlite3_changeset_iter *pIter, /* Changeset to apply */ 4631 int(*xFilter)( 4632 void *pCtx, /* Copy of sixth arg to _apply() */ 4633 const char *zTab /* Table name */ 4634 ), 4635 int(*xConflict)( 4636 void *pCtx, /* Copy of fifth arg to _apply() */ 4637 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4638 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4639 ), 4640 void *pCtx, /* First argument passed to xConflict */ 4641 void **ppRebase, int *pnRebase, /* OUT: Rebase information */ 4642 int flags /* SESSION_APPLY_XXX flags */ 4643 ){ 4644 int schemaMismatch = 0; 4645 int rc = SQLITE_OK; /* Return code */ 4646 const char *zTab = 0; /* Name of current table */ 4647 int nTab = 0; /* Result of sqlite3Strlen30(zTab) */ 4648 SessionApplyCtx sApply; /* changeset_apply() context object */ 4649 int bPatchset; 4650 4651 assert( xConflict!=0 ); 4652 4653 pIter->in.bNoDiscard = 1; 4654 memset(&sApply, 0, sizeof(sApply)); 4655 sApply.bRebase = (ppRebase && pnRebase); 4656 sApply.bInvertConstraints = !!(flags & SQLITE_CHANGESETAPPLY_INVERT); 4657 sqlite3_mutex_enter(sqlite3_db_mutex(db)); 4658 if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){ 4659 rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0); 4660 } 4661 if( rc==SQLITE_OK ){ 4662 rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0); 4663 } 4664 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter) ){ 4665 int nCol; 4666 int op; 4667 const char *zNew; 4668 4669 sqlite3changeset_op(pIter, &zNew, &nCol, &op, 0); 4670 4671 if( zTab==0 || sqlite3_strnicmp(zNew, zTab, nTab+1) ){ 4672 u8 *abPK; 4673 4674 rc = sessionRetryConstraints( 4675 db, pIter->bPatchset, zTab, &sApply, xConflict, pCtx 4676 ); 4677 if( rc!=SQLITE_OK ) break; 4678 4679 sessionUpdateFree(&sApply); 4680 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4681 sqlite3_finalize(sApply.pDelete); 4682 sqlite3_finalize(sApply.pInsert); 4683 sqlite3_finalize(sApply.pSelect); 4684 sApply.db = db; 4685 sApply.pDelete = 0; 4686 sApply.pInsert = 0; 4687 sApply.pSelect = 0; 4688 sApply.nCol = 0; 4689 sApply.azCol = 0; 4690 sApply.abPK = 0; 4691 sApply.bStat1 = 0; 4692 sApply.bDeferConstraints = 1; 4693 sApply.bRebaseStarted = 0; 4694 memset(&sApply.constraints, 0, sizeof(SessionBuffer)); 4695 4696 /* If an xFilter() callback was specified, invoke it now. If the 4697 ** xFilter callback returns zero, skip this table. If it returns 4698 ** non-zero, proceed. */ 4699 schemaMismatch = (xFilter && (0==xFilter(pCtx, zNew))); 4700 if( schemaMismatch ){ 4701 zTab = sqlite3_mprintf("%s", zNew); 4702 if( zTab==0 ){ 4703 rc = SQLITE_NOMEM; 4704 break; 4705 } 4706 nTab = (int)strlen(zTab); 4707 sApply.azCol = (const char **)zTab; 4708 }else{ 4709 int nMinCol = 0; 4710 int i; 4711 4712 sqlite3changeset_pk(pIter, &abPK, 0); 4713 rc = sessionTableInfo(0, 4714 db, "main", zNew, &sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK 4715 ); 4716 if( rc!=SQLITE_OK ) break; 4717 for(i=0; i<sApply.nCol; i++){ 4718 if( sApply.abPK[i] ) nMinCol = i+1; 4719 } 4720 4721 if( sApply.nCol==0 ){ 4722 schemaMismatch = 1; 4723 sqlite3_log(SQLITE_SCHEMA, 4724 "sqlite3changeset_apply(): no such table: %s", zTab 4725 ); 4726 } 4727 else if( sApply.nCol<nCol ){ 4728 schemaMismatch = 1; 4729 sqlite3_log(SQLITE_SCHEMA, 4730 "sqlite3changeset_apply(): table %s has %d columns, " 4731 "expected %d or more", 4732 zTab, sApply.nCol, nCol 4733 ); 4734 } 4735 else if( nCol<nMinCol || memcmp(sApply.abPK, abPK, nCol)!=0 ){ 4736 schemaMismatch = 1; 4737 sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): " 4738 "primary key mismatch for table %s", zTab 4739 ); 4740 } 4741 else{ 4742 sApply.nCol = nCol; 4743 if( 0==sqlite3_stricmp(zTab, "sqlite_stat1") ){ 4744 if( (rc = sessionStat1Sql(db, &sApply) ) ){ 4745 break; 4746 } 4747 sApply.bStat1 = 1; 4748 }else{ 4749 if( (rc = sessionSelectRow(db, zTab, &sApply)) 4750 || (rc = sessionDeleteRow(db, zTab, &sApply)) 4751 || (rc = sessionInsertRow(db, zTab, &sApply)) 4752 ){ 4753 break; 4754 } 4755 sApply.bStat1 = 0; 4756 } 4757 } 4758 nTab = sqlite3Strlen30(zTab); 4759 } 4760 } 4761 4762 /* If there is a schema mismatch on the current table, proceed to the 4763 ** next change. A log message has already been issued. */ 4764 if( schemaMismatch ) continue; 4765 4766 rc = sessionApplyOneWithRetry(db, pIter, &sApply, xConflict, pCtx); 4767 } 4768 4769 bPatchset = pIter->bPatchset; 4770 if( rc==SQLITE_OK ){ 4771 rc = sqlite3changeset_finalize(pIter); 4772 }else{ 4773 sqlite3changeset_finalize(pIter); 4774 } 4775 4776 if( rc==SQLITE_OK ){ 4777 rc = sessionRetryConstraints(db, bPatchset, zTab, &sApply, xConflict, pCtx); 4778 } 4779 4780 if( rc==SQLITE_OK ){ 4781 int nFk, notUsed; 4782 sqlite3_db_status(db, SQLITE_DBSTATUS_DEFERRED_FKS, &nFk, ¬Used, 0); 4783 if( nFk!=0 ){ 4784 int res = SQLITE_CHANGESET_ABORT; 4785 sqlite3_changeset_iter sIter; 4786 memset(&sIter, 0, sizeof(sIter)); 4787 sIter.nCol = nFk; 4788 res = xConflict(pCtx, SQLITE_CHANGESET_FOREIGN_KEY, &sIter); 4789 if( res!=SQLITE_CHANGESET_OMIT ){ 4790 rc = SQLITE_CONSTRAINT; 4791 } 4792 } 4793 } 4794 sqlite3_exec(db, "PRAGMA defer_foreign_keys = 0", 0, 0, 0); 4795 4796 if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){ 4797 if( rc==SQLITE_OK ){ 4798 rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4799 }else{ 4800 sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0); 4801 sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); 4802 } 4803 } 4804 4805 assert( sApply.bRebase || sApply.rebase.nBuf==0 ); 4806 if( rc==SQLITE_OK && bPatchset==0 && sApply.bRebase ){ 4807 *ppRebase = (void*)sApply.rebase.aBuf; 4808 *pnRebase = sApply.rebase.nBuf; 4809 sApply.rebase.aBuf = 0; 4810 } 4811 sessionUpdateFree(&sApply); 4812 sqlite3_finalize(sApply.pInsert); 4813 sqlite3_finalize(sApply.pDelete); 4814 sqlite3_finalize(sApply.pSelect); 4815 sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */ 4816 sqlite3_free((char*)sApply.constraints.aBuf); 4817 sqlite3_free((char*)sApply.rebase.aBuf); 4818 sqlite3_mutex_leave(sqlite3_db_mutex(db)); 4819 return rc; 4820 } 4821 4822 /* 4823 ** Apply the changeset passed via pChangeset/nChangeset to the main 4824 ** database attached to handle "db". 4825 */ 4826 int sqlite3changeset_apply_v2( 4827 sqlite3 *db, /* Apply change to "main" db of this handle */ 4828 int nChangeset, /* Size of changeset in bytes */ 4829 void *pChangeset, /* Changeset blob */ 4830 int(*xFilter)( 4831 void *pCtx, /* Copy of sixth arg to _apply() */ 4832 const char *zTab /* Table name */ 4833 ), 4834 int(*xConflict)( 4835 void *pCtx, /* Copy of sixth arg to _apply() */ 4836 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4837 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4838 ), 4839 void *pCtx, /* First argument passed to xConflict */ 4840 void **ppRebase, int *pnRebase, 4841 int flags 4842 ){ 4843 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4844 int bInv = !!(flags & SQLITE_CHANGESETAPPLY_INVERT); 4845 int rc = sessionChangesetStart(&pIter, 0, 0, nChangeset, pChangeset, bInv, 1); 4846 if( rc==SQLITE_OK ){ 4847 rc = sessionChangesetApply( 4848 db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags 4849 ); 4850 } 4851 return rc; 4852 } 4853 4854 /* 4855 ** Apply the changeset passed via pChangeset/nChangeset to the main database 4856 ** attached to handle "db". Invoke the supplied conflict handler callback 4857 ** to resolve any conflicts encountered while applying the change. 4858 */ 4859 int sqlite3changeset_apply( 4860 sqlite3 *db, /* Apply change to "main" db of this handle */ 4861 int nChangeset, /* Size of changeset in bytes */ 4862 void *pChangeset, /* Changeset blob */ 4863 int(*xFilter)( 4864 void *pCtx, /* Copy of sixth arg to _apply() */ 4865 const char *zTab /* Table name */ 4866 ), 4867 int(*xConflict)( 4868 void *pCtx, /* Copy of fifth arg to _apply() */ 4869 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4870 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4871 ), 4872 void *pCtx /* First argument passed to xConflict */ 4873 ){ 4874 return sqlite3changeset_apply_v2( 4875 db, nChangeset, pChangeset, xFilter, xConflict, pCtx, 0, 0, 0 4876 ); 4877 } 4878 4879 /* 4880 ** Apply the changeset passed via xInput/pIn to the main database 4881 ** attached to handle "db". Invoke the supplied conflict handler callback 4882 ** to resolve any conflicts encountered while applying the change. 4883 */ 4884 int sqlite3changeset_apply_v2_strm( 4885 sqlite3 *db, /* Apply change to "main" db of this handle */ 4886 int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ 4887 void *pIn, /* First arg for xInput */ 4888 int(*xFilter)( 4889 void *pCtx, /* Copy of sixth arg to _apply() */ 4890 const char *zTab /* Table name */ 4891 ), 4892 int(*xConflict)( 4893 void *pCtx, /* Copy of sixth arg to _apply() */ 4894 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4895 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4896 ), 4897 void *pCtx, /* First argument passed to xConflict */ 4898 void **ppRebase, int *pnRebase, 4899 int flags 4900 ){ 4901 sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ 4902 int bInverse = !!(flags & SQLITE_CHANGESETAPPLY_INVERT); 4903 int rc = sessionChangesetStart(&pIter, xInput, pIn, 0, 0, bInverse, 1); 4904 if( rc==SQLITE_OK ){ 4905 rc = sessionChangesetApply( 4906 db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags 4907 ); 4908 } 4909 return rc; 4910 } 4911 int sqlite3changeset_apply_strm( 4912 sqlite3 *db, /* Apply change to "main" db of this handle */ 4913 int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ 4914 void *pIn, /* First arg for xInput */ 4915 int(*xFilter)( 4916 void *pCtx, /* Copy of sixth arg to _apply() */ 4917 const char *zTab /* Table name */ 4918 ), 4919 int(*xConflict)( 4920 void *pCtx, /* Copy of sixth arg to _apply() */ 4921 int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ 4922 sqlite3_changeset_iter *p /* Handle describing change and conflict */ 4923 ), 4924 void *pCtx /* First argument passed to xConflict */ 4925 ){ 4926 return sqlite3changeset_apply_v2_strm( 4927 db, xInput, pIn, xFilter, xConflict, pCtx, 0, 0, 0 4928 ); 4929 } 4930 4931 /* 4932 ** sqlite3_changegroup handle. 4933 */ 4934 struct sqlite3_changegroup { 4935 int rc; /* Error code */ 4936 int bPatch; /* True to accumulate patchsets */ 4937 SessionTable *pList; /* List of tables in current patch */ 4938 }; 4939 4940 /* 4941 ** This function is called to merge two changes to the same row together as 4942 ** part of an sqlite3changeset_concat() operation. A new change object is 4943 ** allocated and a pointer to it stored in *ppNew. 4944 */ 4945 static int sessionChangeMerge( 4946 SessionTable *pTab, /* Table structure */ 4947 int bRebase, /* True for a rebase hash-table */ 4948 int bPatchset, /* True for patchsets */ 4949 SessionChange *pExist, /* Existing change */ 4950 int op2, /* Second change operation */ 4951 int bIndirect, /* True if second change is indirect */ 4952 u8 *aRec, /* Second change record */ 4953 int nRec, /* Number of bytes in aRec */ 4954 SessionChange **ppNew /* OUT: Merged change */ 4955 ){ 4956 SessionChange *pNew = 0; 4957 int rc = SQLITE_OK; 4958 4959 if( !pExist ){ 4960 pNew = (SessionChange *)sqlite3_malloc64(sizeof(SessionChange) + nRec); 4961 if( !pNew ){ 4962 return SQLITE_NOMEM; 4963 } 4964 memset(pNew, 0, sizeof(SessionChange)); 4965 pNew->op = op2; 4966 pNew->bIndirect = bIndirect; 4967 pNew->aRecord = (u8*)&pNew[1]; 4968 if( bIndirect==0 || bRebase==0 ){ 4969 pNew->nRecord = nRec; 4970 memcpy(pNew->aRecord, aRec, nRec); 4971 }else{ 4972 int i; 4973 u8 *pIn = aRec; 4974 u8 *pOut = pNew->aRecord; 4975 for(i=0; i<pTab->nCol; i++){ 4976 int nIn = sessionSerialLen(pIn); 4977 if( *pIn==0 ){ 4978 *pOut++ = 0; 4979 }else if( pTab->abPK[i]==0 ){ 4980 *pOut++ = 0xFF; 4981 }else{ 4982 memcpy(pOut, pIn, nIn); 4983 pOut += nIn; 4984 } 4985 pIn += nIn; 4986 } 4987 pNew->nRecord = pOut - pNew->aRecord; 4988 } 4989 }else if( bRebase ){ 4990 if( pExist->op==SQLITE_DELETE && pExist->bIndirect ){ 4991 *ppNew = pExist; 4992 }else{ 4993 sqlite3_int64 nByte = nRec + pExist->nRecord + sizeof(SessionChange); 4994 pNew = (SessionChange*)sqlite3_malloc64(nByte); 4995 if( pNew==0 ){ 4996 rc = SQLITE_NOMEM; 4997 }else{ 4998 int i; 4999 u8 *a1 = pExist->aRecord; 5000 u8 *a2 = aRec; 5001 u8 *pOut; 5002 5003 memset(pNew, 0, nByte); 5004 pNew->bIndirect = bIndirect || pExist->bIndirect; 5005 pNew->op = op2; 5006 pOut = pNew->aRecord = (u8*)&pNew[1]; 5007 5008 for(i=0; i<pTab->nCol; i++){ 5009 int n1 = sessionSerialLen(a1); 5010 int n2 = sessionSerialLen(a2); 5011 if( *a1==0xFF || (pTab->abPK[i]==0 && bIndirect) ){ 5012 *pOut++ = 0xFF; 5013 }else if( *a2==0 ){ 5014 memcpy(pOut, a1, n1); 5015 pOut += n1; 5016 }else{ 5017 memcpy(pOut, a2, n2); 5018 pOut += n2; 5019 } 5020 a1 += n1; 5021 a2 += n2; 5022 } 5023 pNew->nRecord = pOut - pNew->aRecord; 5024 } 5025 sqlite3_free(pExist); 5026 } 5027 }else{ 5028 int op1 = pExist->op; 5029 5030 /* 5031 ** op1=INSERT, op2=INSERT -> Unsupported. Discard op2. 5032 ** op1=INSERT, op2=UPDATE -> INSERT. 5033 ** op1=INSERT, op2=DELETE -> (none) 5034 ** 5035 ** op1=UPDATE, op2=INSERT -> Unsupported. Discard op2. 5036 ** op1=UPDATE, op2=UPDATE -> UPDATE. 5037 ** op1=UPDATE, op2=DELETE -> DELETE. 5038 ** 5039 ** op1=DELETE, op2=INSERT -> UPDATE. 5040 ** op1=DELETE, op2=UPDATE -> Unsupported. Discard op2. 5041 ** op1=DELETE, op2=DELETE -> Unsupported. Discard op2. 5042 */ 5043 if( (op1==SQLITE_INSERT && op2==SQLITE_INSERT) 5044 || (op1==SQLITE_UPDATE && op2==SQLITE_INSERT) 5045 || (op1==SQLITE_DELETE && op2==SQLITE_UPDATE) 5046 || (op1==SQLITE_DELETE && op2==SQLITE_DELETE) 5047 ){ 5048 pNew = pExist; 5049 }else if( op1==SQLITE_INSERT && op2==SQLITE_DELETE ){ 5050 sqlite3_free(pExist); 5051 assert( pNew==0 ); 5052 }else{ 5053 u8 *aExist = pExist->aRecord; 5054 sqlite3_int64 nByte; 5055 u8 *aCsr; 5056 5057 /* Allocate a new SessionChange object. Ensure that the aRecord[] 5058 ** buffer of the new object is large enough to hold any record that 5059 ** may be generated by combining the input records. */ 5060 nByte = sizeof(SessionChange) + pExist->nRecord + nRec; 5061 pNew = (SessionChange *)sqlite3_malloc64(nByte); 5062 if( !pNew ){ 5063 sqlite3_free(pExist); 5064 return SQLITE_NOMEM; 5065 } 5066 memset(pNew, 0, sizeof(SessionChange)); 5067 pNew->bIndirect = (bIndirect && pExist->bIndirect); 5068 aCsr = pNew->aRecord = (u8 *)&pNew[1]; 5069 5070 if( op1==SQLITE_INSERT ){ /* INSERT + UPDATE */ 5071 u8 *a1 = aRec; 5072 assert( op2==SQLITE_UPDATE ); 5073 pNew->op = SQLITE_INSERT; 5074 if( bPatchset==0 ) sessionSkipRecord(&a1, pTab->nCol); 5075 sessionMergeRecord(&aCsr, pTab->nCol, aExist, a1); 5076 }else if( op1==SQLITE_DELETE ){ /* DELETE + INSERT */ 5077 assert( op2==SQLITE_INSERT ); 5078 pNew->op = SQLITE_UPDATE; 5079 if( bPatchset ){ 5080 memcpy(aCsr, aRec, nRec); 5081 aCsr += nRec; 5082 }else{ 5083 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aExist, 0,aRec,0) ){ 5084 sqlite3_free(pNew); 5085 pNew = 0; 5086 } 5087 } 5088 }else if( op2==SQLITE_UPDATE ){ /* UPDATE + UPDATE */ 5089 u8 *a1 = aExist; 5090 u8 *a2 = aRec; 5091 assert( op1==SQLITE_UPDATE ); 5092 if( bPatchset==0 ){ 5093 sessionSkipRecord(&a1, pTab->nCol); 5094 sessionSkipRecord(&a2, pTab->nCol); 5095 } 5096 pNew->op = SQLITE_UPDATE; 5097 if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aRec, aExist,a1,a2) ){ 5098 sqlite3_free(pNew); 5099 pNew = 0; 5100 } 5101 }else{ /* UPDATE + DELETE */ 5102 assert( op1==SQLITE_UPDATE && op2==SQLITE_DELETE ); 5103 pNew->op = SQLITE_DELETE; 5104 if( bPatchset ){ 5105 memcpy(aCsr, aRec, nRec); 5106 aCsr += nRec; 5107 }else{ 5108 sessionMergeRecord(&aCsr, pTab->nCol, aRec, aExist); 5109 } 5110 } 5111 5112 if( pNew ){ 5113 pNew->nRecord = (int)(aCsr - pNew->aRecord); 5114 } 5115 sqlite3_free(pExist); 5116 } 5117 } 5118 5119 *ppNew = pNew; 5120 return rc; 5121 } 5122 5123 /* 5124 ** Add all changes in the changeset traversed by the iterator passed as 5125 ** the first argument to the changegroup hash tables. 5126 */ 5127 static int sessionChangesetToHash( 5128 sqlite3_changeset_iter *pIter, /* Iterator to read from */ 5129 sqlite3_changegroup *pGrp, /* Changegroup object to add changeset to */ 5130 int bRebase /* True if hash table is for rebasing */ 5131 ){ 5132 u8 *aRec; 5133 int nRec; 5134 int rc = SQLITE_OK; 5135 SessionTable *pTab = 0; 5136 5137 while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, 0) ){ 5138 const char *zNew; 5139 int nCol; 5140 int op; 5141 int iHash; 5142 int bIndirect; 5143 SessionChange *pChange; 5144 SessionChange *pExist = 0; 5145 SessionChange **pp; 5146 5147 if( pGrp->pList==0 ){ 5148 pGrp->bPatch = pIter->bPatchset; 5149 }else if( pIter->bPatchset!=pGrp->bPatch ){ 5150 rc = SQLITE_ERROR; 5151 break; 5152 } 5153 5154 sqlite3changeset_op(pIter, &zNew, &nCol, &op, &bIndirect); 5155 if( !pTab || sqlite3_stricmp(zNew, pTab->zName) ){ 5156 /* Search the list for a matching table */ 5157 int nNew = (int)strlen(zNew); 5158 u8 *abPK; 5159 5160 sqlite3changeset_pk(pIter, &abPK, 0); 5161 for(pTab = pGrp->pList; pTab; pTab=pTab->pNext){ 5162 if( 0==sqlite3_strnicmp(pTab->zName, zNew, nNew+1) ) break; 5163 } 5164 if( !pTab ){ 5165 SessionTable **ppTab; 5166 5167 pTab = sqlite3_malloc64(sizeof(SessionTable) + nCol + nNew+1); 5168 if( !pTab ){ 5169 rc = SQLITE_NOMEM; 5170 break; 5171 } 5172 memset(pTab, 0, sizeof(SessionTable)); 5173 pTab->nCol = nCol; 5174 pTab->abPK = (u8*)&pTab[1]; 5175 memcpy(pTab->abPK, abPK, nCol); 5176 pTab->zName = (char*)&pTab->abPK[nCol]; 5177 memcpy(pTab->zName, zNew, nNew+1); 5178 5179 /* The new object must be linked on to the end of the list, not 5180 ** simply added to the start of it. This is to ensure that the 5181 ** tables within the output of sqlite3changegroup_output() are in 5182 ** the right order. */ 5183 for(ppTab=&pGrp->pList; *ppTab; ppTab=&(*ppTab)->pNext); 5184 *ppTab = pTab; 5185 }else if( pTab->nCol!=nCol || memcmp(pTab->abPK, abPK, nCol) ){ 5186 rc = SQLITE_SCHEMA; 5187 break; 5188 } 5189 } 5190 5191 if( sessionGrowHash(0, pIter->bPatchset, pTab) ){ 5192 rc = SQLITE_NOMEM; 5193 break; 5194 } 5195 iHash = sessionChangeHash( 5196 pTab, (pIter->bPatchset && op==SQLITE_DELETE), aRec, pTab->nChange 5197 ); 5198 5199 /* Search for existing entry. If found, remove it from the hash table. 5200 ** Code below may link it back in. 5201 */ 5202 for(pp=&pTab->apChange[iHash]; *pp; pp=&(*pp)->pNext){ 5203 int bPkOnly1 = 0; 5204 int bPkOnly2 = 0; 5205 if( pIter->bPatchset ){ 5206 bPkOnly1 = (*pp)->op==SQLITE_DELETE; 5207 bPkOnly2 = op==SQLITE_DELETE; 5208 } 5209 if( sessionChangeEqual(pTab, bPkOnly1, (*pp)->aRecord, bPkOnly2, aRec) ){ 5210 pExist = *pp; 5211 *pp = (*pp)->pNext; 5212 pTab->nEntry--; 5213 break; 5214 } 5215 } 5216 5217 rc = sessionChangeMerge(pTab, bRebase, 5218 pIter->bPatchset, pExist, op, bIndirect, aRec, nRec, &pChange 5219 ); 5220 if( rc ) break; 5221 if( pChange ){ 5222 pChange->pNext = pTab->apChange[iHash]; 5223 pTab->apChange[iHash] = pChange; 5224 pTab->nEntry++; 5225 } 5226 } 5227 5228 if( rc==SQLITE_OK ) rc = pIter->rc; 5229 return rc; 5230 } 5231 5232 /* 5233 ** Serialize a changeset (or patchset) based on all changesets (or patchsets) 5234 ** added to the changegroup object passed as the first argument. 5235 ** 5236 ** If xOutput is not NULL, then the changeset/patchset is returned to the 5237 ** user via one or more calls to xOutput, as with the other streaming 5238 ** interfaces. 5239 ** 5240 ** Or, if xOutput is NULL, then (*ppOut) is populated with a pointer to a 5241 ** buffer containing the output changeset before this function returns. In 5242 ** this case (*pnOut) is set to the size of the output buffer in bytes. It 5243 ** is the responsibility of the caller to free the output buffer using 5244 ** sqlite3_free() when it is no longer required. 5245 ** 5246 ** If successful, SQLITE_OK is returned. Or, if an error occurs, an SQLite 5247 ** error code. If an error occurs and xOutput is NULL, (*ppOut) and (*pnOut) 5248 ** are both set to 0 before returning. 5249 */ 5250 static int sessionChangegroupOutput( 5251 sqlite3_changegroup *pGrp, 5252 int (*xOutput)(void *pOut, const void *pData, int nData), 5253 void *pOut, 5254 int *pnOut, 5255 void **ppOut 5256 ){ 5257 int rc = SQLITE_OK; 5258 SessionBuffer buf = {0, 0, 0}; 5259 SessionTable *pTab; 5260 assert( xOutput==0 || (ppOut==0 && pnOut==0) ); 5261 5262 /* Create the serialized output changeset based on the contents of the 5263 ** hash tables attached to the SessionTable objects in list p->pList. 5264 */ 5265 for(pTab=pGrp->pList; rc==SQLITE_OK && pTab; pTab=pTab->pNext){ 5266 int i; 5267 if( pTab->nEntry==0 ) continue; 5268 5269 sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc); 5270 for(i=0; i<pTab->nChange; i++){ 5271 SessionChange *p; 5272 for(p=pTab->apChange[i]; p; p=p->pNext){ 5273 sessionAppendByte(&buf, p->op, &rc); 5274 sessionAppendByte(&buf, p->bIndirect, &rc); 5275 sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc); 5276 if( rc==SQLITE_OK && xOutput && buf.nBuf>=sessions_strm_chunk_size ){ 5277 rc = xOutput(pOut, buf.aBuf, buf.nBuf); 5278 buf.nBuf = 0; 5279 } 5280 } 5281 } 5282 } 5283 5284 if( rc==SQLITE_OK ){ 5285 if( xOutput ){ 5286 if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf); 5287 }else if( ppOut ){ 5288 *ppOut = buf.aBuf; 5289 if( pnOut ) *pnOut = buf.nBuf; 5290 buf.aBuf = 0; 5291 } 5292 } 5293 sqlite3_free(buf.aBuf); 5294 5295 return rc; 5296 } 5297 5298 /* 5299 ** Allocate a new, empty, sqlite3_changegroup. 5300 */ 5301 int sqlite3changegroup_new(sqlite3_changegroup **pp){ 5302 int rc = SQLITE_OK; /* Return code */ 5303 sqlite3_changegroup *p; /* New object */ 5304 p = (sqlite3_changegroup*)sqlite3_malloc(sizeof(sqlite3_changegroup)); 5305 if( p==0 ){ 5306 rc = SQLITE_NOMEM; 5307 }else{ 5308 memset(p, 0, sizeof(sqlite3_changegroup)); 5309 } 5310 *pp = p; 5311 return rc; 5312 } 5313 5314 /* 5315 ** Add the changeset currently stored in buffer pData, size nData bytes, 5316 ** to changeset-group p. 5317 */ 5318 int sqlite3changegroup_add(sqlite3_changegroup *pGrp, int nData, void *pData){ 5319 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 5320 int rc; /* Return code */ 5321 5322 rc = sqlite3changeset_start(&pIter, nData, pData); 5323 if( rc==SQLITE_OK ){ 5324 rc = sessionChangesetToHash(pIter, pGrp, 0); 5325 } 5326 sqlite3changeset_finalize(pIter); 5327 return rc; 5328 } 5329 5330 /* 5331 ** Obtain a buffer containing a changeset representing the concatenation 5332 ** of all changesets added to the group so far. 5333 */ 5334 int sqlite3changegroup_output( 5335 sqlite3_changegroup *pGrp, 5336 int *pnData, 5337 void **ppData 5338 ){ 5339 return sessionChangegroupOutput(pGrp, 0, 0, pnData, ppData); 5340 } 5341 5342 /* 5343 ** Streaming versions of changegroup_add(). 5344 */ 5345 int sqlite3changegroup_add_strm( 5346 sqlite3_changegroup *pGrp, 5347 int (*xInput)(void *pIn, void *pData, int *pnData), 5348 void *pIn 5349 ){ 5350 sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */ 5351 int rc; /* Return code */ 5352 5353 rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 5354 if( rc==SQLITE_OK ){ 5355 rc = sessionChangesetToHash(pIter, pGrp, 0); 5356 } 5357 sqlite3changeset_finalize(pIter); 5358 return rc; 5359 } 5360 5361 /* 5362 ** Streaming versions of changegroup_output(). 5363 */ 5364 int sqlite3changegroup_output_strm( 5365 sqlite3_changegroup *pGrp, 5366 int (*xOutput)(void *pOut, const void *pData, int nData), 5367 void *pOut 5368 ){ 5369 return sessionChangegroupOutput(pGrp, xOutput, pOut, 0, 0); 5370 } 5371 5372 /* 5373 ** Delete a changegroup object. 5374 */ 5375 void sqlite3changegroup_delete(sqlite3_changegroup *pGrp){ 5376 if( pGrp ){ 5377 sessionDeleteTable(0, pGrp->pList); 5378 sqlite3_free(pGrp); 5379 } 5380 } 5381 5382 /* 5383 ** Combine two changesets together. 5384 */ 5385 int sqlite3changeset_concat( 5386 int nLeft, /* Number of bytes in lhs input */ 5387 void *pLeft, /* Lhs input changeset */ 5388 int nRight /* Number of bytes in rhs input */, 5389 void *pRight, /* Rhs input changeset */ 5390 int *pnOut, /* OUT: Number of bytes in output changeset */ 5391 void **ppOut /* OUT: changeset (left <concat> right) */ 5392 ){ 5393 sqlite3_changegroup *pGrp; 5394 int rc; 5395 5396 rc = sqlite3changegroup_new(&pGrp); 5397 if( rc==SQLITE_OK ){ 5398 rc = sqlite3changegroup_add(pGrp, nLeft, pLeft); 5399 } 5400 if( rc==SQLITE_OK ){ 5401 rc = sqlite3changegroup_add(pGrp, nRight, pRight); 5402 } 5403 if( rc==SQLITE_OK ){ 5404 rc = sqlite3changegroup_output(pGrp, pnOut, ppOut); 5405 } 5406 sqlite3changegroup_delete(pGrp); 5407 5408 return rc; 5409 } 5410 5411 /* 5412 ** Streaming version of sqlite3changeset_concat(). 5413 */ 5414 int sqlite3changeset_concat_strm( 5415 int (*xInputA)(void *pIn, void *pData, int *pnData), 5416 void *pInA, 5417 int (*xInputB)(void *pIn, void *pData, int *pnData), 5418 void *pInB, 5419 int (*xOutput)(void *pOut, const void *pData, int nData), 5420 void *pOut 5421 ){ 5422 sqlite3_changegroup *pGrp; 5423 int rc; 5424 5425 rc = sqlite3changegroup_new(&pGrp); 5426 if( rc==SQLITE_OK ){ 5427 rc = sqlite3changegroup_add_strm(pGrp, xInputA, pInA); 5428 } 5429 if( rc==SQLITE_OK ){ 5430 rc = sqlite3changegroup_add_strm(pGrp, xInputB, pInB); 5431 } 5432 if( rc==SQLITE_OK ){ 5433 rc = sqlite3changegroup_output_strm(pGrp, xOutput, pOut); 5434 } 5435 sqlite3changegroup_delete(pGrp); 5436 5437 return rc; 5438 } 5439 5440 /* 5441 ** Changeset rebaser handle. 5442 */ 5443 struct sqlite3_rebaser { 5444 sqlite3_changegroup grp; /* Hash table */ 5445 }; 5446 5447 /* 5448 ** Buffers a1 and a2 must both contain a sessions module record nCol 5449 ** fields in size. This function appends an nCol sessions module 5450 ** record to buffer pBuf that is a copy of a1, except that for 5451 ** each field that is undefined in a1[], swap in the field from a2[]. 5452 */ 5453 static void sessionAppendRecordMerge( 5454 SessionBuffer *pBuf, /* Buffer to append to */ 5455 int nCol, /* Number of columns in each record */ 5456 u8 *a1, int n1, /* Record 1 */ 5457 u8 *a2, int n2, /* Record 2 */ 5458 int *pRc /* IN/OUT: error code */ 5459 ){ 5460 sessionBufferGrow(pBuf, n1+n2, pRc); 5461 if( *pRc==SQLITE_OK ){ 5462 int i; 5463 u8 *pOut = &pBuf->aBuf[pBuf->nBuf]; 5464 for(i=0; i<nCol; i++){ 5465 int nn1 = sessionSerialLen(a1); 5466 int nn2 = sessionSerialLen(a2); 5467 if( *a1==0 || *a1==0xFF ){ 5468 memcpy(pOut, a2, nn2); 5469 pOut += nn2; 5470 }else{ 5471 memcpy(pOut, a1, nn1); 5472 pOut += nn1; 5473 } 5474 a1 += nn1; 5475 a2 += nn2; 5476 } 5477 5478 pBuf->nBuf = pOut-pBuf->aBuf; 5479 assert( pBuf->nBuf<=pBuf->nAlloc ); 5480 } 5481 } 5482 5483 /* 5484 ** This function is called when rebasing a local UPDATE change against one 5485 ** or more remote UPDATE changes. The aRec/nRec buffer contains the current 5486 ** old.* and new.* records for the change. The rebase buffer (a single 5487 ** record) is in aChange/nChange. The rebased change is appended to buffer 5488 ** pBuf. 5489 ** 5490 ** Rebasing the UPDATE involves: 5491 ** 5492 ** * Removing any changes to fields for which the corresponding field 5493 ** in the rebase buffer is set to "replaced" (type 0xFF). If this 5494 ** means the UPDATE change updates no fields, nothing is appended 5495 ** to the output buffer. 5496 ** 5497 ** * For each field modified by the local change for which the 5498 ** corresponding field in the rebase buffer is not "undefined" (0x00) 5499 ** or "replaced" (0xFF), the old.* value is replaced by the value 5500 ** in the rebase buffer. 5501 */ 5502 static void sessionAppendPartialUpdate( 5503 SessionBuffer *pBuf, /* Append record here */ 5504 sqlite3_changeset_iter *pIter, /* Iterator pointed at local change */ 5505 u8 *aRec, int nRec, /* Local change */ 5506 u8 *aChange, int nChange, /* Record to rebase against */ 5507 int *pRc /* IN/OUT: Return Code */ 5508 ){ 5509 sessionBufferGrow(pBuf, 2+nRec+nChange, pRc); 5510 if( *pRc==SQLITE_OK ){ 5511 int bData = 0; 5512 u8 *pOut = &pBuf->aBuf[pBuf->nBuf]; 5513 int i; 5514 u8 *a1 = aRec; 5515 u8 *a2 = aChange; 5516 5517 *pOut++ = SQLITE_UPDATE; 5518 *pOut++ = pIter->bIndirect; 5519 for(i=0; i<pIter->nCol; i++){ 5520 int n1 = sessionSerialLen(a1); 5521 int n2 = sessionSerialLen(a2); 5522 if( pIter->abPK[i] || a2[0]==0 ){ 5523 if( !pIter->abPK[i] && a1[0] ) bData = 1; 5524 memcpy(pOut, a1, n1); 5525 pOut += n1; 5526 }else if( a2[0]!=0xFF ){ 5527 bData = 1; 5528 memcpy(pOut, a2, n2); 5529 pOut += n2; 5530 }else{ 5531 *pOut++ = '\0'; 5532 } 5533 a1 += n1; 5534 a2 += n2; 5535 } 5536 if( bData ){ 5537 a2 = aChange; 5538 for(i=0; i<pIter->nCol; i++){ 5539 int n1 = sessionSerialLen(a1); 5540 int n2 = sessionSerialLen(a2); 5541 if( pIter->abPK[i] || a2[0]!=0xFF ){ 5542 memcpy(pOut, a1, n1); 5543 pOut += n1; 5544 }else{ 5545 *pOut++ = '\0'; 5546 } 5547 a1 += n1; 5548 a2 += n2; 5549 } 5550 pBuf->nBuf = (pOut - pBuf->aBuf); 5551 } 5552 } 5553 } 5554 5555 /* 5556 ** pIter is configured to iterate through a changeset. This function rebases 5557 ** that changeset according to the current configuration of the rebaser 5558 ** object passed as the first argument. If no error occurs and argument xOutput 5559 ** is not NULL, then the changeset is returned to the caller by invoking 5560 ** xOutput zero or more times and SQLITE_OK returned. Or, if xOutput is NULL, 5561 ** then (*ppOut) is set to point to a buffer containing the rebased changeset 5562 ** before this function returns. In this case (*pnOut) is set to the size of 5563 ** the buffer in bytes. It is the responsibility of the caller to eventually 5564 ** free the (*ppOut) buffer using sqlite3_free(). 5565 ** 5566 ** If an error occurs, an SQLite error code is returned. If ppOut and 5567 ** pnOut are not NULL, then the two output parameters are set to 0 before 5568 ** returning. 5569 */ 5570 static int sessionRebase( 5571 sqlite3_rebaser *p, /* Rebaser hash table */ 5572 sqlite3_changeset_iter *pIter, /* Input data */ 5573 int (*xOutput)(void *pOut, const void *pData, int nData), 5574 void *pOut, /* Context for xOutput callback */ 5575 int *pnOut, /* OUT: Number of bytes in output changeset */ 5576 void **ppOut /* OUT: Inverse of pChangeset */ 5577 ){ 5578 int rc = SQLITE_OK; 5579 u8 *aRec = 0; 5580 int nRec = 0; 5581 int bNew = 0; 5582 SessionTable *pTab = 0; 5583 SessionBuffer sOut = {0,0,0}; 5584 5585 while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, &bNew) ){ 5586 SessionChange *pChange = 0; 5587 int bDone = 0; 5588 5589 if( bNew ){ 5590 const char *zTab = pIter->zTab; 5591 for(pTab=p->grp.pList; pTab; pTab=pTab->pNext){ 5592 if( 0==sqlite3_stricmp(pTab->zName, zTab) ) break; 5593 } 5594 bNew = 0; 5595 5596 /* A patchset may not be rebased */ 5597 if( pIter->bPatchset ){ 5598 rc = SQLITE_ERROR; 5599 } 5600 5601 /* Append a table header to the output for this new table */ 5602 sessionAppendByte(&sOut, pIter->bPatchset ? 'P' : 'T', &rc); 5603 sessionAppendVarint(&sOut, pIter->nCol, &rc); 5604 sessionAppendBlob(&sOut, pIter->abPK, pIter->nCol, &rc); 5605 sessionAppendBlob(&sOut,(u8*)pIter->zTab,(int)strlen(pIter->zTab)+1,&rc); 5606 } 5607 5608 if( pTab && rc==SQLITE_OK ){ 5609 int iHash = sessionChangeHash(pTab, 0, aRec, pTab->nChange); 5610 5611 for(pChange=pTab->apChange[iHash]; pChange; pChange=pChange->pNext){ 5612 if( sessionChangeEqual(pTab, 0, aRec, 0, pChange->aRecord) ){ 5613 break; 5614 } 5615 } 5616 } 5617 5618 if( pChange ){ 5619 assert( pChange->op==SQLITE_DELETE || pChange->op==SQLITE_INSERT ); 5620 switch( pIter->op ){ 5621 case SQLITE_INSERT: 5622 if( pChange->op==SQLITE_INSERT ){ 5623 bDone = 1; 5624 if( pChange->bIndirect==0 ){ 5625 sessionAppendByte(&sOut, SQLITE_UPDATE, &rc); 5626 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5627 sessionAppendBlob(&sOut, pChange->aRecord, pChange->nRecord, &rc); 5628 sessionAppendBlob(&sOut, aRec, nRec, &rc); 5629 } 5630 } 5631 break; 5632 5633 case SQLITE_UPDATE: 5634 bDone = 1; 5635 if( pChange->op==SQLITE_DELETE ){ 5636 if( pChange->bIndirect==0 ){ 5637 u8 *pCsr = aRec; 5638 sessionSkipRecord(&pCsr, pIter->nCol); 5639 sessionAppendByte(&sOut, SQLITE_INSERT, &rc); 5640 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5641 sessionAppendRecordMerge(&sOut, pIter->nCol, 5642 pCsr, nRec-(pCsr-aRec), 5643 pChange->aRecord, pChange->nRecord, &rc 5644 ); 5645 } 5646 }else{ 5647 sessionAppendPartialUpdate(&sOut, pIter, 5648 aRec, nRec, pChange->aRecord, pChange->nRecord, &rc 5649 ); 5650 } 5651 break; 5652 5653 default: 5654 assert( pIter->op==SQLITE_DELETE ); 5655 bDone = 1; 5656 if( pChange->op==SQLITE_INSERT ){ 5657 sessionAppendByte(&sOut, SQLITE_DELETE, &rc); 5658 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5659 sessionAppendRecordMerge(&sOut, pIter->nCol, 5660 pChange->aRecord, pChange->nRecord, aRec, nRec, &rc 5661 ); 5662 } 5663 break; 5664 } 5665 } 5666 5667 if( bDone==0 ){ 5668 sessionAppendByte(&sOut, pIter->op, &rc); 5669 sessionAppendByte(&sOut, pIter->bIndirect, &rc); 5670 sessionAppendBlob(&sOut, aRec, nRec, &rc); 5671 } 5672 if( rc==SQLITE_OK && xOutput && sOut.nBuf>sessions_strm_chunk_size ){ 5673 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 5674 sOut.nBuf = 0; 5675 } 5676 if( rc ) break; 5677 } 5678 5679 if( rc!=SQLITE_OK ){ 5680 sqlite3_free(sOut.aBuf); 5681 memset(&sOut, 0, sizeof(sOut)); 5682 } 5683 5684 if( rc==SQLITE_OK ){ 5685 if( xOutput ){ 5686 if( sOut.nBuf>0 ){ 5687 rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); 5688 } 5689 }else if( ppOut ){ 5690 *ppOut = (void*)sOut.aBuf; 5691 *pnOut = sOut.nBuf; 5692 sOut.aBuf = 0; 5693 } 5694 } 5695 sqlite3_free(sOut.aBuf); 5696 return rc; 5697 } 5698 5699 /* 5700 ** Create a new rebaser object. 5701 */ 5702 int sqlite3rebaser_create(sqlite3_rebaser **ppNew){ 5703 int rc = SQLITE_OK; 5704 sqlite3_rebaser *pNew; 5705 5706 pNew = sqlite3_malloc(sizeof(sqlite3_rebaser)); 5707 if( pNew==0 ){ 5708 rc = SQLITE_NOMEM; 5709 }else{ 5710 memset(pNew, 0, sizeof(sqlite3_rebaser)); 5711 } 5712 *ppNew = pNew; 5713 return rc; 5714 } 5715 5716 /* 5717 ** Call this one or more times to configure a rebaser. 5718 */ 5719 int sqlite3rebaser_configure( 5720 sqlite3_rebaser *p, 5721 int nRebase, const void *pRebase 5722 ){ 5723 sqlite3_changeset_iter *pIter = 0; /* Iterator opened on pData/nData */ 5724 int rc; /* Return code */ 5725 rc = sqlite3changeset_start(&pIter, nRebase, (void*)pRebase); 5726 if( rc==SQLITE_OK ){ 5727 rc = sessionChangesetToHash(pIter, &p->grp, 1); 5728 } 5729 sqlite3changeset_finalize(pIter); 5730 return rc; 5731 } 5732 5733 /* 5734 ** Rebase a changeset according to current rebaser configuration 5735 */ 5736 int sqlite3rebaser_rebase( 5737 sqlite3_rebaser *p, 5738 int nIn, const void *pIn, 5739 int *pnOut, void **ppOut 5740 ){ 5741 sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */ 5742 int rc = sqlite3changeset_start(&pIter, nIn, (void*)pIn); 5743 5744 if( rc==SQLITE_OK ){ 5745 rc = sessionRebase(p, pIter, 0, 0, pnOut, ppOut); 5746 sqlite3changeset_finalize(pIter); 5747 } 5748 5749 return rc; 5750 } 5751 5752 /* 5753 ** Rebase a changeset according to current rebaser configuration 5754 */ 5755 int sqlite3rebaser_rebase_strm( 5756 sqlite3_rebaser *p, 5757 int (*xInput)(void *pIn, void *pData, int *pnData), 5758 void *pIn, 5759 int (*xOutput)(void *pOut, const void *pData, int nData), 5760 void *pOut 5761 ){ 5762 sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */ 5763 int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn); 5764 5765 if( rc==SQLITE_OK ){ 5766 rc = sessionRebase(p, pIter, xOutput, pOut, 0, 0); 5767 sqlite3changeset_finalize(pIter); 5768 } 5769 5770 return rc; 5771 } 5772 5773 /* 5774 ** Destroy a rebaser object 5775 */ 5776 void sqlite3rebaser_delete(sqlite3_rebaser *p){ 5777 if( p ){ 5778 sessionDeleteTable(0, p->grp.pList); 5779 sqlite3_free(p); 5780 } 5781 } 5782 5783 /* 5784 ** Global configuration 5785 */ 5786 int sqlite3session_config(int op, void *pArg){ 5787 int rc = SQLITE_OK; 5788 switch( op ){ 5789 case SQLITE_SESSION_CONFIG_STRMSIZE: { 5790 int *pInt = (int*)pArg; 5791 if( *pInt>0 ){ 5792 sessions_strm_chunk_size = *pInt; 5793 } 5794 *pInt = sessions_strm_chunk_size; 5795 break; 5796 } 5797 default: 5798 rc = SQLITE_MISUSE; 5799 break; 5800 } 5801 return rc; 5802 } 5803 5804 #endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */ 5805