1 /* 2 ** 2014 August 30 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** 14 ** OVERVIEW 15 ** 16 ** The RBU extension requires that the RBU update be packaged as an 17 ** SQLite database. The tables it expects to find are described in 18 ** sqlite3rbu.h. Essentially, for each table xyz in the target database 19 ** that the user wishes to write to, a corresponding data_xyz table is 20 ** created in the RBU database and populated with one row for each row to 21 ** update, insert or delete from the target table. 22 ** 23 ** The update proceeds in three stages: 24 ** 25 ** 1) The database is updated. The modified database pages are written 26 ** to a *-oal file. A *-oal file is just like a *-wal file, except 27 ** that it is named "<database>-oal" instead of "<database>-wal". 28 ** Because regular SQLite clients do not look for file named 29 ** "<database>-oal", they go on using the original database in 30 ** rollback mode while the *-oal file is being generated. 31 ** 32 ** During this stage RBU does not update the database by writing 33 ** directly to the target tables. Instead it creates "imposter" 34 ** tables using the SQLITE_TESTCTRL_IMPOSTER interface that it uses 35 ** to update each b-tree individually. All updates required by each 36 ** b-tree are completed before moving on to the next, and all 37 ** updates are done in sorted key order. 38 ** 39 ** 2) The "<database>-oal" file is moved to the equivalent "<database>-wal" 40 ** location using a call to rename(2). Before doing this the RBU 41 ** module takes an EXCLUSIVE lock on the database file, ensuring 42 ** that there are no other active readers. 43 ** 44 ** Once the EXCLUSIVE lock is released, any other database readers 45 ** detect the new *-wal file and read the database in wal mode. At 46 ** this point they see the new version of the database - including 47 ** the updates made as part of the RBU update. 48 ** 49 ** 3) The new *-wal file is checkpointed. This proceeds in the same way 50 ** as a regular database checkpoint, except that a single frame is 51 ** checkpointed each time sqlite3rbu_step() is called. If the RBU 52 ** handle is closed before the entire *-wal file is checkpointed, 53 ** the checkpoint progress is saved in the RBU database and the 54 ** checkpoint can be resumed by another RBU client at some point in 55 ** the future. 56 ** 57 ** POTENTIAL PROBLEMS 58 ** 59 ** The rename() call might not be portable. And RBU is not currently 60 ** syncing the directory after renaming the file. 61 ** 62 ** When state is saved, any commit to the *-oal file and the commit to 63 ** the RBU update database are not atomic. So if the power fails at the 64 ** wrong moment they might get out of sync. As the main database will be 65 ** committed before the RBU update database this will likely either just 66 ** pass unnoticed, or result in SQLITE_CONSTRAINT errors (due to UNIQUE 67 ** constraint violations). 68 ** 69 ** If some client does modify the target database mid RBU update, or some 70 ** other error occurs, the RBU extension will keep throwing errors. It's 71 ** not really clear how to get out of this state. The system could just 72 ** by delete the RBU update database and *-oal file and have the device 73 ** download the update again and start over. 74 ** 75 ** At present, for an UPDATE, both the new.* and old.* records are 76 ** collected in the rbu_xyz table. And for both UPDATEs and DELETEs all 77 ** fields are collected. This means we're probably writing a lot more 78 ** data to disk when saving the state of an ongoing update to the RBU 79 ** update database than is strictly necessary. 80 ** 81 */ 82 83 #include <assert.h> 84 #include <string.h> 85 #include <stdio.h> 86 87 #include "sqlite3.h" 88 89 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU) 90 #include "sqlite3rbu.h" 91 92 #if defined(_WIN32_WCE) 93 #include "windows.h" 94 #endif 95 96 /* Maximum number of prepared UPDATE statements held by this module */ 97 #define SQLITE_RBU_UPDATE_CACHESIZE 16 98 99 /* Delta checksums disabled by default. Compile with -DRBU_ENABLE_DELTA_CKSUM 100 ** to enable checksum verification. 101 */ 102 #ifndef RBU_ENABLE_DELTA_CKSUM 103 # define RBU_ENABLE_DELTA_CKSUM 0 104 #endif 105 106 /* 107 ** Swap two objects of type TYPE. 108 */ 109 #if !defined(SQLITE_AMALGAMATION) 110 # define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 111 #endif 112 113 /* 114 ** Name of the URI option that causes RBU to take an exclusive lock as 115 ** part of the incremental checkpoint operation. 116 */ 117 #define RBU_EXCLUSIVE_CHECKPOINT "rbu_exclusive_checkpoint" 118 119 120 /* 121 ** The rbu_state table is used to save the state of a partially applied 122 ** update so that it can be resumed later. The table consists of integer 123 ** keys mapped to values as follows: 124 ** 125 ** RBU_STATE_STAGE: 126 ** May be set to integer values 1, 2, 4 or 5. As follows: 127 ** 1: the *-rbu file is currently under construction. 128 ** 2: the *-rbu file has been constructed, but not yet moved 129 ** to the *-wal path. 130 ** 4: the checkpoint is underway. 131 ** 5: the rbu update has been checkpointed. 132 ** 133 ** RBU_STATE_TBL: 134 ** Only valid if STAGE==1. The target database name of the table 135 ** currently being written. 136 ** 137 ** RBU_STATE_IDX: 138 ** Only valid if STAGE==1. The target database name of the index 139 ** currently being written, or NULL if the main table is currently being 140 ** updated. 141 ** 142 ** RBU_STATE_ROW: 143 ** Only valid if STAGE==1. Number of rows already processed for the current 144 ** table/index. 145 ** 146 ** RBU_STATE_PROGRESS: 147 ** Trbul number of sqlite3rbu_step() calls made so far as part of this 148 ** rbu update. 149 ** 150 ** RBU_STATE_CKPT: 151 ** Valid if STAGE==4. The 64-bit checksum associated with the wal-index 152 ** header created by recovering the *-wal file. This is used to detect 153 ** cases when another client appends frames to the *-wal file in the 154 ** middle of an incremental checkpoint (an incremental checkpoint cannot 155 ** be continued if this happens). 156 ** 157 ** RBU_STATE_COOKIE: 158 ** Valid if STAGE==1. The current change-counter cookie value in the 159 ** target db file. 160 ** 161 ** RBU_STATE_OALSZ: 162 ** Valid if STAGE==1. The size in bytes of the *-oal file. 163 ** 164 ** RBU_STATE_DATATBL: 165 ** Only valid if STAGE==1. The RBU database name of the table 166 ** currently being read. 167 */ 168 #define RBU_STATE_STAGE 1 169 #define RBU_STATE_TBL 2 170 #define RBU_STATE_IDX 3 171 #define RBU_STATE_ROW 4 172 #define RBU_STATE_PROGRESS 5 173 #define RBU_STATE_CKPT 6 174 #define RBU_STATE_COOKIE 7 175 #define RBU_STATE_OALSZ 8 176 #define RBU_STATE_PHASEONESTEP 9 177 #define RBU_STATE_DATATBL 10 178 179 #define RBU_STAGE_OAL 1 180 #define RBU_STAGE_MOVE 2 181 #define RBU_STAGE_CAPTURE 3 182 #define RBU_STAGE_CKPT 4 183 #define RBU_STAGE_DONE 5 184 185 186 #define RBU_CREATE_STATE \ 187 "CREATE TABLE IF NOT EXISTS %s.rbu_state(k INTEGER PRIMARY KEY, v)" 188 189 typedef struct RbuFrame RbuFrame; 190 typedef struct RbuObjIter RbuObjIter; 191 typedef struct RbuState RbuState; 192 typedef struct RbuSpan RbuSpan; 193 typedef struct rbu_vfs rbu_vfs; 194 typedef struct rbu_file rbu_file; 195 typedef struct RbuUpdateStmt RbuUpdateStmt; 196 197 #if !defined(SQLITE_AMALGAMATION) 198 typedef unsigned int u32; 199 typedef unsigned short u16; 200 typedef unsigned char u8; 201 typedef sqlite3_int64 i64; 202 #endif 203 204 /* 205 ** These values must match the values defined in wal.c for the equivalent 206 ** locks. These are not magic numbers as they are part of the SQLite file 207 ** format. 208 */ 209 #define WAL_LOCK_WRITE 0 210 #define WAL_LOCK_CKPT 1 211 #define WAL_LOCK_READ0 3 212 213 #define SQLITE_FCNTL_RBUCNT 5149216 214 215 /* 216 ** A structure to store values read from the rbu_state table in memory. 217 */ 218 struct RbuState { 219 int eStage; 220 char *zTbl; 221 char *zDataTbl; 222 char *zIdx; 223 i64 iWalCksum; 224 int nRow; 225 i64 nProgress; 226 u32 iCookie; 227 i64 iOalSz; 228 i64 nPhaseOneStep; 229 }; 230 231 struct RbuUpdateStmt { 232 char *zMask; /* Copy of update mask used with pUpdate */ 233 sqlite3_stmt *pUpdate; /* Last update statement (or NULL) */ 234 RbuUpdateStmt *pNext; 235 }; 236 237 struct RbuSpan { 238 const char *zSpan; 239 int nSpan; 240 }; 241 242 /* 243 ** An iterator of this type is used to iterate through all objects in 244 ** the target database that require updating. For each such table, the 245 ** iterator visits, in order: 246 ** 247 ** * the table itself, 248 ** * each index of the table (zero or more points to visit), and 249 ** * a special "cleanup table" state. 250 ** 251 ** abIndexed: 252 ** If the table has no indexes on it, abIndexed is set to NULL. Otherwise, 253 ** it points to an array of flags nTblCol elements in size. The flag is 254 ** set for each column that is either a part of the PK or a part of an 255 ** index. Or clear otherwise. 256 ** 257 ** If there are one or more partial indexes on the table, all fields of 258 ** this array set set to 1. This is because in that case, the module has 259 ** no way to tell which fields will be required to add and remove entries 260 ** from the partial indexes. 261 ** 262 */ 263 struct RbuObjIter { 264 sqlite3_stmt *pTblIter; /* Iterate through tables */ 265 sqlite3_stmt *pIdxIter; /* Index iterator */ 266 int nTblCol; /* Size of azTblCol[] array */ 267 char **azTblCol; /* Array of unquoted target column names */ 268 char **azTblType; /* Array of target column types */ 269 int *aiSrcOrder; /* src table col -> target table col */ 270 u8 *abTblPk; /* Array of flags, set on target PK columns */ 271 u8 *abNotNull; /* Array of flags, set on NOT NULL columns */ 272 u8 *abIndexed; /* Array of flags, set on indexed & PK cols */ 273 int eType; /* Table type - an RBU_PK_XXX value */ 274 275 /* Output variables. zTbl==0 implies EOF. */ 276 int bCleanup; /* True in "cleanup" state */ 277 const char *zTbl; /* Name of target db table */ 278 const char *zDataTbl; /* Name of rbu db table (or null) */ 279 const char *zIdx; /* Name of target db index (or null) */ 280 int iTnum; /* Root page of current object */ 281 int iPkTnum; /* If eType==EXTERNAL, root of PK index */ 282 int bUnique; /* Current index is unique */ 283 int nIndex; /* Number of aux. indexes on table zTbl */ 284 285 /* Statements created by rbuObjIterPrepareAll() */ 286 int nCol; /* Number of columns in current object */ 287 sqlite3_stmt *pSelect; /* Source data */ 288 sqlite3_stmt *pInsert; /* Statement for INSERT operations */ 289 sqlite3_stmt *pDelete; /* Statement for DELETE ops */ 290 sqlite3_stmt *pTmpInsert; /* Insert into rbu_tmp_$zDataTbl */ 291 int nIdxCol; 292 RbuSpan *aIdxCol; 293 char *zIdxSql; 294 295 /* Last UPDATE used (for PK b-tree updates only), or NULL. */ 296 RbuUpdateStmt *pRbuUpdate; 297 }; 298 299 /* 300 ** Values for RbuObjIter.eType 301 ** 302 ** 0: Table does not exist (error) 303 ** 1: Table has an implicit rowid. 304 ** 2: Table has an explicit IPK column. 305 ** 3: Table has an external PK index. 306 ** 4: Table is WITHOUT ROWID. 307 ** 5: Table is a virtual table. 308 */ 309 #define RBU_PK_NOTABLE 0 310 #define RBU_PK_NONE 1 311 #define RBU_PK_IPK 2 312 #define RBU_PK_EXTERNAL 3 313 #define RBU_PK_WITHOUT_ROWID 4 314 #define RBU_PK_VTAB 5 315 316 317 /* 318 ** Within the RBU_STAGE_OAL stage, each call to sqlite3rbu_step() performs 319 ** one of the following operations. 320 */ 321 #define RBU_INSERT 1 /* Insert on a main table b-tree */ 322 #define RBU_DELETE 2 /* Delete a row from a main table b-tree */ 323 #define RBU_REPLACE 3 /* Delete and then insert a row */ 324 #define RBU_IDX_DELETE 4 /* Delete a row from an aux. index b-tree */ 325 #define RBU_IDX_INSERT 5 /* Insert on an aux. index b-tree */ 326 327 #define RBU_UPDATE 6 /* Update a row in a main table b-tree */ 328 329 /* 330 ** A single step of an incremental checkpoint - frame iWalFrame of the wal 331 ** file should be copied to page iDbPage of the database file. 332 */ 333 struct RbuFrame { 334 u32 iDbPage; 335 u32 iWalFrame; 336 }; 337 338 /* 339 ** RBU handle. 340 ** 341 ** nPhaseOneStep: 342 ** If the RBU database contains an rbu_count table, this value is set to 343 ** a running estimate of the number of b-tree operations required to 344 ** finish populating the *-oal file. This allows the sqlite3_bp_progress() 345 ** API to calculate the permyriadage progress of populating the *-oal file 346 ** using the formula: 347 ** 348 ** permyriadage = (10000 * nProgress) / nPhaseOneStep 349 ** 350 ** nPhaseOneStep is initialized to the sum of: 351 ** 352 ** nRow * (nIndex + 1) 353 ** 354 ** for all source tables in the RBU database, where nRow is the number 355 ** of rows in the source table and nIndex the number of indexes on the 356 ** corresponding target database table. 357 ** 358 ** This estimate is accurate if the RBU update consists entirely of 359 ** INSERT operations. However, it is inaccurate if: 360 ** 361 ** * the RBU update contains any UPDATE operations. If the PK specified 362 ** for an UPDATE operation does not exist in the target table, then 363 ** no b-tree operations are required on index b-trees. Or if the 364 ** specified PK does exist, then (nIndex*2) such operations are 365 ** required (one delete and one insert on each index b-tree). 366 ** 367 ** * the RBU update contains any DELETE operations for which the specified 368 ** PK does not exist. In this case no operations are required on index 369 ** b-trees. 370 ** 371 ** * the RBU update contains REPLACE operations. These are similar to 372 ** UPDATE operations. 373 ** 374 ** nPhaseOneStep is updated to account for the conditions above during the 375 ** first pass of each source table. The updated nPhaseOneStep value is 376 ** stored in the rbu_state table if the RBU update is suspended. 377 */ 378 struct sqlite3rbu { 379 int eStage; /* Value of RBU_STATE_STAGE field */ 380 sqlite3 *dbMain; /* target database handle */ 381 sqlite3 *dbRbu; /* rbu database handle */ 382 char *zTarget; /* Path to target db */ 383 char *zRbu; /* Path to rbu db */ 384 char *zState; /* Path to state db (or NULL if zRbu) */ 385 char zStateDb[5]; /* Db name for state ("stat" or "main") */ 386 int rc; /* Value returned by last rbu_step() call */ 387 char *zErrmsg; /* Error message if rc!=SQLITE_OK */ 388 int nStep; /* Rows processed for current object */ 389 int nProgress; /* Rows processed for all objects */ 390 RbuObjIter objiter; /* Iterator for skipping through tbl/idx */ 391 const char *zVfsName; /* Name of automatically created rbu vfs */ 392 rbu_file *pTargetFd; /* File handle open on target db */ 393 int nPagePerSector; /* Pages per sector for pTargetFd */ 394 i64 iOalSz; 395 i64 nPhaseOneStep; 396 void *pRenameArg; 397 int (*xRename)(void*, const char*, const char*); 398 399 /* The following state variables are used as part of the incremental 400 ** checkpoint stage (eStage==RBU_STAGE_CKPT). See comments surrounding 401 ** function rbuSetupCheckpoint() for details. */ 402 u32 iMaxFrame; /* Largest iWalFrame value in aFrame[] */ 403 u32 mLock; 404 int nFrame; /* Entries in aFrame[] array */ 405 int nFrameAlloc; /* Allocated size of aFrame[] array */ 406 RbuFrame *aFrame; 407 int pgsz; 408 u8 *aBuf; 409 i64 iWalCksum; 410 i64 szTemp; /* Current size of all temp files in use */ 411 i64 szTempLimit; /* Total size limit for temp files */ 412 413 /* Used in RBU vacuum mode only */ 414 int nRbu; /* Number of RBU VFS in the stack */ 415 rbu_file *pRbuFd; /* Fd for main db of dbRbu */ 416 }; 417 418 /* 419 ** An rbu VFS is implemented using an instance of this structure. 420 ** 421 ** Variable pRbu is only non-NULL for automatically created RBU VFS objects. 422 ** It is NULL for RBU VFS objects created explicitly using 423 ** sqlite3rbu_create_vfs(). It is used to track the total amount of temp 424 ** space used by the RBU handle. 425 */ 426 struct rbu_vfs { 427 sqlite3_vfs base; /* rbu VFS shim methods */ 428 sqlite3_vfs *pRealVfs; /* Underlying VFS */ 429 sqlite3_mutex *mutex; /* Mutex to protect pMain */ 430 sqlite3rbu *pRbu; /* Owner RBU object */ 431 rbu_file *pMain; /* List of main db files */ 432 rbu_file *pMainRbu; /* List of main db files with pRbu!=0 */ 433 }; 434 435 /* 436 ** Each file opened by an rbu VFS is represented by an instance of 437 ** the following structure. 438 ** 439 ** If this is a temporary file (pRbu!=0 && flags&DELETE_ON_CLOSE), variable 440 ** "sz" is set to the current size of the database file. 441 */ 442 struct rbu_file { 443 sqlite3_file base; /* sqlite3_file methods */ 444 sqlite3_file *pReal; /* Underlying file handle */ 445 rbu_vfs *pRbuVfs; /* Pointer to the rbu_vfs object */ 446 sqlite3rbu *pRbu; /* Pointer to rbu object (rbu target only) */ 447 i64 sz; /* Size of file in bytes (temp only) */ 448 449 int openFlags; /* Flags this file was opened with */ 450 u32 iCookie; /* Cookie value for main db files */ 451 u8 iWriteVer; /* "write-version" value for main db files */ 452 u8 bNolock; /* True to fail EXCLUSIVE locks */ 453 454 int nShm; /* Number of entries in apShm[] array */ 455 char **apShm; /* Array of mmap'd *-shm regions */ 456 char *zDel; /* Delete this when closing file */ 457 458 const char *zWal; /* Wal filename for this main db file */ 459 rbu_file *pWalFd; /* Wal file descriptor for this main db */ 460 rbu_file *pMainNext; /* Next MAIN_DB file */ 461 rbu_file *pMainRbuNext; /* Next MAIN_DB file with pRbu!=0 */ 462 }; 463 464 /* 465 ** True for an RBU vacuum handle, or false otherwise. 466 */ 467 #define rbuIsVacuum(p) ((p)->zTarget==0) 468 469 470 /************************************************************************* 471 ** The following three functions, found below: 472 ** 473 ** rbuDeltaGetInt() 474 ** rbuDeltaChecksum() 475 ** rbuDeltaApply() 476 ** 477 ** are lifted from the fossil source code (http://fossil-scm.org). They 478 ** are used to implement the scalar SQL function rbu_fossil_delta(). 479 */ 480 481 /* 482 ** Read bytes from *pz and convert them into a positive integer. When 483 ** finished, leave *pz pointing to the first character past the end of 484 ** the integer. The *pLen parameter holds the length of the string 485 ** in *pz and is decremented once for each character in the integer. 486 */ 487 static unsigned int rbuDeltaGetInt(const char **pz, int *pLen){ 488 static const signed char zValue[] = { 489 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 490 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 491 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 492 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, 493 -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 494 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, 36, 495 -1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 496 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, -1, -1, -1, 63, -1, 497 }; 498 unsigned int v = 0; 499 int c; 500 unsigned char *z = (unsigned char*)*pz; 501 unsigned char *zStart = z; 502 while( (c = zValue[0x7f&*(z++)])>=0 ){ 503 v = (v<<6) + c; 504 } 505 z--; 506 *pLen -= z - zStart; 507 *pz = (char*)z; 508 return v; 509 } 510 511 #if RBU_ENABLE_DELTA_CKSUM 512 /* 513 ** Compute a 32-bit checksum on the N-byte buffer. Return the result. 514 */ 515 static unsigned int rbuDeltaChecksum(const char *zIn, size_t N){ 516 const unsigned char *z = (const unsigned char *)zIn; 517 unsigned sum0 = 0; 518 unsigned sum1 = 0; 519 unsigned sum2 = 0; 520 unsigned sum3 = 0; 521 while(N >= 16){ 522 sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]); 523 sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]); 524 sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]); 525 sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]); 526 z += 16; 527 N -= 16; 528 } 529 while(N >= 4){ 530 sum0 += z[0]; 531 sum1 += z[1]; 532 sum2 += z[2]; 533 sum3 += z[3]; 534 z += 4; 535 N -= 4; 536 } 537 sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24); 538 switch(N){ 539 case 3: sum3 += (z[2] << 8); 540 case 2: sum3 += (z[1] << 16); 541 case 1: sum3 += (z[0] << 24); 542 default: ; 543 } 544 return sum3; 545 } 546 #endif 547 548 /* 549 ** Apply a delta. 550 ** 551 ** The output buffer should be big enough to hold the whole output 552 ** file and a NUL terminator at the end. The delta_output_size() 553 ** routine will determine this size for you. 554 ** 555 ** The delta string should be null-terminated. But the delta string 556 ** may contain embedded NUL characters (if the input and output are 557 ** binary files) so we also have to pass in the length of the delta in 558 ** the lenDelta parameter. 559 ** 560 ** This function returns the size of the output file in bytes (excluding 561 ** the final NUL terminator character). Except, if the delta string is 562 ** malformed or intended for use with a source file other than zSrc, 563 ** then this routine returns -1. 564 ** 565 ** Refer to the delta_create() documentation above for a description 566 ** of the delta file format. 567 */ 568 static int rbuDeltaApply( 569 const char *zSrc, /* The source or pattern file */ 570 int lenSrc, /* Length of the source file */ 571 const char *zDelta, /* Delta to apply to the pattern */ 572 int lenDelta, /* Length of the delta */ 573 char *zOut /* Write the output into this preallocated buffer */ 574 ){ 575 unsigned int limit; 576 unsigned int total = 0; 577 #if RBU_ENABLE_DELTA_CKSUM 578 char *zOrigOut = zOut; 579 #endif 580 581 limit = rbuDeltaGetInt(&zDelta, &lenDelta); 582 if( *zDelta!='\n' ){ 583 /* ERROR: size integer not terminated by "\n" */ 584 return -1; 585 } 586 zDelta++; lenDelta--; 587 while( *zDelta && lenDelta>0 ){ 588 unsigned int cnt, ofst; 589 cnt = rbuDeltaGetInt(&zDelta, &lenDelta); 590 switch( zDelta[0] ){ 591 case '@': { 592 zDelta++; lenDelta--; 593 ofst = rbuDeltaGetInt(&zDelta, &lenDelta); 594 if( lenDelta>0 && zDelta[0]!=',' ){ 595 /* ERROR: copy command not terminated by ',' */ 596 return -1; 597 } 598 zDelta++; lenDelta--; 599 total += cnt; 600 if( total>limit ){ 601 /* ERROR: copy exceeds output file size */ 602 return -1; 603 } 604 if( (int)(ofst+cnt) > lenSrc ){ 605 /* ERROR: copy extends past end of input */ 606 return -1; 607 } 608 memcpy(zOut, &zSrc[ofst], cnt); 609 zOut += cnt; 610 break; 611 } 612 case ':': { 613 zDelta++; lenDelta--; 614 total += cnt; 615 if( total>limit ){ 616 /* ERROR: insert command gives an output larger than predicted */ 617 return -1; 618 } 619 if( (int)cnt>lenDelta ){ 620 /* ERROR: insert count exceeds size of delta */ 621 return -1; 622 } 623 memcpy(zOut, zDelta, cnt); 624 zOut += cnt; 625 zDelta += cnt; 626 lenDelta -= cnt; 627 break; 628 } 629 case ';': { 630 zDelta++; lenDelta--; 631 zOut[0] = 0; 632 #if RBU_ENABLE_DELTA_CKSUM 633 if( cnt!=rbuDeltaChecksum(zOrigOut, total) ){ 634 /* ERROR: bad checksum */ 635 return -1; 636 } 637 #endif 638 if( total!=limit ){ 639 /* ERROR: generated size does not match predicted size */ 640 return -1; 641 } 642 return total; 643 } 644 default: { 645 /* ERROR: unknown delta operator */ 646 return -1; 647 } 648 } 649 } 650 /* ERROR: unterminated delta */ 651 return -1; 652 } 653 654 static int rbuDeltaOutputSize(const char *zDelta, int lenDelta){ 655 int size; 656 size = rbuDeltaGetInt(&zDelta, &lenDelta); 657 if( *zDelta!='\n' ){ 658 /* ERROR: size integer not terminated by "\n" */ 659 return -1; 660 } 661 return size; 662 } 663 664 /* 665 ** End of code taken from fossil. 666 *************************************************************************/ 667 668 /* 669 ** Implementation of SQL scalar function rbu_fossil_delta(). 670 ** 671 ** This function applies a fossil delta patch to a blob. Exactly two 672 ** arguments must be passed to this function. The first is the blob to 673 ** patch and the second the patch to apply. If no error occurs, this 674 ** function returns the patched blob. 675 */ 676 static void rbuFossilDeltaFunc( 677 sqlite3_context *context, 678 int argc, 679 sqlite3_value **argv 680 ){ 681 const char *aDelta; 682 int nDelta; 683 const char *aOrig; 684 int nOrig; 685 686 int nOut; 687 int nOut2; 688 char *aOut; 689 690 assert( argc==2 ); 691 692 nOrig = sqlite3_value_bytes(argv[0]); 693 aOrig = (const char*)sqlite3_value_blob(argv[0]); 694 nDelta = sqlite3_value_bytes(argv[1]); 695 aDelta = (const char*)sqlite3_value_blob(argv[1]); 696 697 /* Figure out the size of the output */ 698 nOut = rbuDeltaOutputSize(aDelta, nDelta); 699 if( nOut<0 ){ 700 sqlite3_result_error(context, "corrupt fossil delta", -1); 701 return; 702 } 703 704 aOut = sqlite3_malloc(nOut+1); 705 if( aOut==0 ){ 706 sqlite3_result_error_nomem(context); 707 }else{ 708 nOut2 = rbuDeltaApply(aOrig, nOrig, aDelta, nDelta, aOut); 709 if( nOut2!=nOut ){ 710 sqlite3_free(aOut); 711 sqlite3_result_error(context, "corrupt fossil delta", -1); 712 }else{ 713 sqlite3_result_blob(context, aOut, nOut, sqlite3_free); 714 } 715 } 716 } 717 718 719 /* 720 ** Prepare the SQL statement in buffer zSql against database handle db. 721 ** If successful, set *ppStmt to point to the new statement and return 722 ** SQLITE_OK. 723 ** 724 ** Otherwise, if an error does occur, set *ppStmt to NULL and return 725 ** an SQLite error code. Additionally, set output variable *pzErrmsg to 726 ** point to a buffer containing an error message. It is the responsibility 727 ** of the caller to (eventually) free this buffer using sqlite3_free(). 728 */ 729 static int prepareAndCollectError( 730 sqlite3 *db, 731 sqlite3_stmt **ppStmt, 732 char **pzErrmsg, 733 const char *zSql 734 ){ 735 int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0); 736 if( rc!=SQLITE_OK ){ 737 *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 738 *ppStmt = 0; 739 } 740 return rc; 741 } 742 743 /* 744 ** Reset the SQL statement passed as the first argument. Return a copy 745 ** of the value returned by sqlite3_reset(). 746 ** 747 ** If an error has occurred, then set *pzErrmsg to point to a buffer 748 ** containing an error message. It is the responsibility of the caller 749 ** to eventually free this buffer using sqlite3_free(). 750 */ 751 static int resetAndCollectError(sqlite3_stmt *pStmt, char **pzErrmsg){ 752 int rc = sqlite3_reset(pStmt); 753 if( rc!=SQLITE_OK ){ 754 *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(sqlite3_db_handle(pStmt))); 755 } 756 return rc; 757 } 758 759 /* 760 ** Unless it is NULL, argument zSql points to a buffer allocated using 761 ** sqlite3_malloc containing an SQL statement. This function prepares the SQL 762 ** statement against database db and frees the buffer. If statement 763 ** compilation is successful, *ppStmt is set to point to the new statement 764 ** handle and SQLITE_OK is returned. 765 ** 766 ** Otherwise, if an error occurs, *ppStmt is set to NULL and an error code 767 ** returned. In this case, *pzErrmsg may also be set to point to an error 768 ** message. It is the responsibility of the caller to free this error message 769 ** buffer using sqlite3_free(). 770 ** 771 ** If argument zSql is NULL, this function assumes that an OOM has occurred. 772 ** In this case SQLITE_NOMEM is returned and *ppStmt set to NULL. 773 */ 774 static int prepareFreeAndCollectError( 775 sqlite3 *db, 776 sqlite3_stmt **ppStmt, 777 char **pzErrmsg, 778 char *zSql 779 ){ 780 int rc; 781 assert( *pzErrmsg==0 ); 782 if( zSql==0 ){ 783 rc = SQLITE_NOMEM; 784 *ppStmt = 0; 785 }else{ 786 rc = prepareAndCollectError(db, ppStmt, pzErrmsg, zSql); 787 sqlite3_free(zSql); 788 } 789 return rc; 790 } 791 792 /* 793 ** Free the RbuObjIter.azTblCol[] and RbuObjIter.abTblPk[] arrays allocated 794 ** by an earlier call to rbuObjIterCacheTableInfo(). 795 */ 796 static void rbuObjIterFreeCols(RbuObjIter *pIter){ 797 int i; 798 for(i=0; i<pIter->nTblCol; i++){ 799 sqlite3_free(pIter->azTblCol[i]); 800 sqlite3_free(pIter->azTblType[i]); 801 } 802 sqlite3_free(pIter->azTblCol); 803 pIter->azTblCol = 0; 804 pIter->azTblType = 0; 805 pIter->aiSrcOrder = 0; 806 pIter->abTblPk = 0; 807 pIter->abNotNull = 0; 808 pIter->nTblCol = 0; 809 pIter->eType = 0; /* Invalid value */ 810 } 811 812 /* 813 ** Finalize all statements and free all allocations that are specific to 814 ** the current object (table/index pair). 815 */ 816 static void rbuObjIterClearStatements(RbuObjIter *pIter){ 817 RbuUpdateStmt *pUp; 818 819 sqlite3_finalize(pIter->pSelect); 820 sqlite3_finalize(pIter->pInsert); 821 sqlite3_finalize(pIter->pDelete); 822 sqlite3_finalize(pIter->pTmpInsert); 823 pUp = pIter->pRbuUpdate; 824 while( pUp ){ 825 RbuUpdateStmt *pTmp = pUp->pNext; 826 sqlite3_finalize(pUp->pUpdate); 827 sqlite3_free(pUp); 828 pUp = pTmp; 829 } 830 sqlite3_free(pIter->aIdxCol); 831 sqlite3_free(pIter->zIdxSql); 832 833 pIter->pSelect = 0; 834 pIter->pInsert = 0; 835 pIter->pDelete = 0; 836 pIter->pRbuUpdate = 0; 837 pIter->pTmpInsert = 0; 838 pIter->nCol = 0; 839 pIter->nIdxCol = 0; 840 pIter->aIdxCol = 0; 841 pIter->zIdxSql = 0; 842 } 843 844 /* 845 ** Clean up any resources allocated as part of the iterator object passed 846 ** as the only argument. 847 */ 848 static void rbuObjIterFinalize(RbuObjIter *pIter){ 849 rbuObjIterClearStatements(pIter); 850 sqlite3_finalize(pIter->pTblIter); 851 sqlite3_finalize(pIter->pIdxIter); 852 rbuObjIterFreeCols(pIter); 853 memset(pIter, 0, sizeof(RbuObjIter)); 854 } 855 856 /* 857 ** Advance the iterator to the next position. 858 ** 859 ** If no error occurs, SQLITE_OK is returned and the iterator is left 860 ** pointing to the next entry. Otherwise, an error code and message is 861 ** left in the RBU handle passed as the first argument. A copy of the 862 ** error code is returned. 863 */ 864 static int rbuObjIterNext(sqlite3rbu *p, RbuObjIter *pIter){ 865 int rc = p->rc; 866 if( rc==SQLITE_OK ){ 867 868 /* Free any SQLite statements used while processing the previous object */ 869 rbuObjIterClearStatements(pIter); 870 if( pIter->zIdx==0 ){ 871 rc = sqlite3_exec(p->dbMain, 872 "DROP TRIGGER IF EXISTS temp.rbu_insert_tr;" 873 "DROP TRIGGER IF EXISTS temp.rbu_update1_tr;" 874 "DROP TRIGGER IF EXISTS temp.rbu_update2_tr;" 875 "DROP TRIGGER IF EXISTS temp.rbu_delete_tr;" 876 , 0, 0, &p->zErrmsg 877 ); 878 } 879 880 if( rc==SQLITE_OK ){ 881 if( pIter->bCleanup ){ 882 rbuObjIterFreeCols(pIter); 883 pIter->bCleanup = 0; 884 rc = sqlite3_step(pIter->pTblIter); 885 if( rc!=SQLITE_ROW ){ 886 rc = resetAndCollectError(pIter->pTblIter, &p->zErrmsg); 887 pIter->zTbl = 0; 888 }else{ 889 pIter->zTbl = (const char*)sqlite3_column_text(pIter->pTblIter, 0); 890 pIter->zDataTbl = (const char*)sqlite3_column_text(pIter->pTblIter,1); 891 rc = (pIter->zDataTbl && pIter->zTbl) ? SQLITE_OK : SQLITE_NOMEM; 892 } 893 }else{ 894 if( pIter->zIdx==0 ){ 895 sqlite3_stmt *pIdx = pIter->pIdxIter; 896 rc = sqlite3_bind_text(pIdx, 1, pIter->zTbl, -1, SQLITE_STATIC); 897 } 898 if( rc==SQLITE_OK ){ 899 rc = sqlite3_step(pIter->pIdxIter); 900 if( rc!=SQLITE_ROW ){ 901 rc = resetAndCollectError(pIter->pIdxIter, &p->zErrmsg); 902 pIter->bCleanup = 1; 903 pIter->zIdx = 0; 904 }else{ 905 pIter->zIdx = (const char*)sqlite3_column_text(pIter->pIdxIter, 0); 906 pIter->iTnum = sqlite3_column_int(pIter->pIdxIter, 1); 907 pIter->bUnique = sqlite3_column_int(pIter->pIdxIter, 2); 908 rc = pIter->zIdx ? SQLITE_OK : SQLITE_NOMEM; 909 } 910 } 911 } 912 } 913 } 914 915 if( rc!=SQLITE_OK ){ 916 rbuObjIterFinalize(pIter); 917 p->rc = rc; 918 } 919 return rc; 920 } 921 922 923 /* 924 ** The implementation of the rbu_target_name() SQL function. This function 925 ** accepts one or two arguments. The first argument is the name of a table - 926 ** the name of a table in the RBU database. The second, if it is present, is 1 927 ** for a view or 0 for a table. 928 ** 929 ** For a non-vacuum RBU handle, if the table name matches the pattern: 930 ** 931 ** data[0-9]_<name> 932 ** 933 ** where <name> is any sequence of 1 or more characters, <name> is returned. 934 ** Otherwise, if the only argument does not match the above pattern, an SQL 935 ** NULL is returned. 936 ** 937 ** "data_t1" -> "t1" 938 ** "data0123_t2" -> "t2" 939 ** "dataAB_t3" -> NULL 940 ** 941 ** For an rbu vacuum handle, a copy of the first argument is returned if 942 ** the second argument is either missing or 0 (not a view). 943 */ 944 static void rbuTargetNameFunc( 945 sqlite3_context *pCtx, 946 int argc, 947 sqlite3_value **argv 948 ){ 949 sqlite3rbu *p = sqlite3_user_data(pCtx); 950 const char *zIn; 951 assert( argc==1 || argc==2 ); 952 953 zIn = (const char*)sqlite3_value_text(argv[0]); 954 if( zIn ){ 955 if( rbuIsVacuum(p) ){ 956 assert( argc==2 || argc==1 ); 957 if( argc==1 || 0==sqlite3_value_int(argv[1]) ){ 958 sqlite3_result_text(pCtx, zIn, -1, SQLITE_STATIC); 959 } 960 }else{ 961 if( strlen(zIn)>4 && memcmp("data", zIn, 4)==0 ){ 962 int i; 963 for(i=4; zIn[i]>='0' && zIn[i]<='9'; i++); 964 if( zIn[i]=='_' && zIn[i+1] ){ 965 sqlite3_result_text(pCtx, &zIn[i+1], -1, SQLITE_STATIC); 966 } 967 } 968 } 969 } 970 } 971 972 /* 973 ** Initialize the iterator structure passed as the second argument. 974 ** 975 ** If no error occurs, SQLITE_OK is returned and the iterator is left 976 ** pointing to the first entry. Otherwise, an error code and message is 977 ** left in the RBU handle passed as the first argument. A copy of the 978 ** error code is returned. 979 */ 980 static int rbuObjIterFirst(sqlite3rbu *p, RbuObjIter *pIter){ 981 int rc; 982 memset(pIter, 0, sizeof(RbuObjIter)); 983 984 rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pTblIter, &p->zErrmsg, 985 sqlite3_mprintf( 986 "SELECT rbu_target_name(name, type='view') AS target, name " 987 "FROM sqlite_schema " 988 "WHERE type IN ('table', 'view') AND target IS NOT NULL " 989 " %s " 990 "ORDER BY name" 991 , rbuIsVacuum(p) ? "AND rootpage!=0 AND rootpage IS NOT NULL" : "")); 992 993 if( rc==SQLITE_OK ){ 994 rc = prepareAndCollectError(p->dbMain, &pIter->pIdxIter, &p->zErrmsg, 995 "SELECT name, rootpage, sql IS NULL OR substr(8, 6)=='UNIQUE' " 996 " FROM main.sqlite_schema " 997 " WHERE type='index' AND tbl_name = ?" 998 ); 999 } 1000 1001 pIter->bCleanup = 1; 1002 p->rc = rc; 1003 return rbuObjIterNext(p, pIter); 1004 } 1005 1006 /* 1007 ** This is a wrapper around "sqlite3_mprintf(zFmt, ...)". If an OOM occurs, 1008 ** an error code is stored in the RBU handle passed as the first argument. 1009 ** 1010 ** If an error has already occurred (p->rc is already set to something other 1011 ** than SQLITE_OK), then this function returns NULL without modifying the 1012 ** stored error code. In this case it still calls sqlite3_free() on any 1013 ** printf() parameters associated with %z conversions. 1014 */ 1015 static char *rbuMPrintf(sqlite3rbu *p, const char *zFmt, ...){ 1016 char *zSql = 0; 1017 va_list ap; 1018 va_start(ap, zFmt); 1019 zSql = sqlite3_vmprintf(zFmt, ap); 1020 if( p->rc==SQLITE_OK ){ 1021 if( zSql==0 ) p->rc = SQLITE_NOMEM; 1022 }else{ 1023 sqlite3_free(zSql); 1024 zSql = 0; 1025 } 1026 va_end(ap); 1027 return zSql; 1028 } 1029 1030 /* 1031 ** Argument zFmt is a sqlite3_mprintf() style format string. The trailing 1032 ** arguments are the usual subsitution values. This function performs 1033 ** the printf() style substitutions and executes the result as an SQL 1034 ** statement on the RBU handles database. 1035 ** 1036 ** If an error occurs, an error code and error message is stored in the 1037 ** RBU handle. If an error has already occurred when this function is 1038 ** called, it is a no-op. 1039 */ 1040 static int rbuMPrintfExec(sqlite3rbu *p, sqlite3 *db, const char *zFmt, ...){ 1041 va_list ap; 1042 char *zSql; 1043 va_start(ap, zFmt); 1044 zSql = sqlite3_vmprintf(zFmt, ap); 1045 if( p->rc==SQLITE_OK ){ 1046 if( zSql==0 ){ 1047 p->rc = SQLITE_NOMEM; 1048 }else{ 1049 p->rc = sqlite3_exec(db, zSql, 0, 0, &p->zErrmsg); 1050 } 1051 } 1052 sqlite3_free(zSql); 1053 va_end(ap); 1054 return p->rc; 1055 } 1056 1057 /* 1058 ** Attempt to allocate and return a pointer to a zeroed block of nByte 1059 ** bytes. 1060 ** 1061 ** If an error (i.e. an OOM condition) occurs, return NULL and leave an 1062 ** error code in the rbu handle passed as the first argument. Or, if an 1063 ** error has already occurred when this function is called, return NULL 1064 ** immediately without attempting the allocation or modifying the stored 1065 ** error code. 1066 */ 1067 static void *rbuMalloc(sqlite3rbu *p, sqlite3_int64 nByte){ 1068 void *pRet = 0; 1069 if( p->rc==SQLITE_OK ){ 1070 assert( nByte>0 ); 1071 pRet = sqlite3_malloc64(nByte); 1072 if( pRet==0 ){ 1073 p->rc = SQLITE_NOMEM; 1074 }else{ 1075 memset(pRet, 0, nByte); 1076 } 1077 } 1078 return pRet; 1079 } 1080 1081 1082 /* 1083 ** Allocate and zero the pIter->azTblCol[] and abTblPk[] arrays so that 1084 ** there is room for at least nCol elements. If an OOM occurs, store an 1085 ** error code in the RBU handle passed as the first argument. 1086 */ 1087 static void rbuAllocateIterArrays(sqlite3rbu *p, RbuObjIter *pIter, int nCol){ 1088 sqlite3_int64 nByte = (2*sizeof(char*) + sizeof(int) + 3*sizeof(u8)) * nCol; 1089 char **azNew; 1090 1091 azNew = (char**)rbuMalloc(p, nByte); 1092 if( azNew ){ 1093 pIter->azTblCol = azNew; 1094 pIter->azTblType = &azNew[nCol]; 1095 pIter->aiSrcOrder = (int*)&pIter->azTblType[nCol]; 1096 pIter->abTblPk = (u8*)&pIter->aiSrcOrder[nCol]; 1097 pIter->abNotNull = (u8*)&pIter->abTblPk[nCol]; 1098 pIter->abIndexed = (u8*)&pIter->abNotNull[nCol]; 1099 } 1100 } 1101 1102 /* 1103 ** The first argument must be a nul-terminated string. This function 1104 ** returns a copy of the string in memory obtained from sqlite3_malloc(). 1105 ** It is the responsibility of the caller to eventually free this memory 1106 ** using sqlite3_free(). 1107 ** 1108 ** If an OOM condition is encountered when attempting to allocate memory, 1109 ** output variable (*pRc) is set to SQLITE_NOMEM before returning. Otherwise, 1110 ** if the allocation succeeds, (*pRc) is left unchanged. 1111 */ 1112 static char *rbuStrndup(const char *zStr, int *pRc){ 1113 char *zRet = 0; 1114 1115 if( *pRc==SQLITE_OK ){ 1116 if( zStr ){ 1117 size_t nCopy = strlen(zStr) + 1; 1118 zRet = (char*)sqlite3_malloc64(nCopy); 1119 if( zRet ){ 1120 memcpy(zRet, zStr, nCopy); 1121 }else{ 1122 *pRc = SQLITE_NOMEM; 1123 } 1124 } 1125 } 1126 1127 return zRet; 1128 } 1129 1130 /* 1131 ** Finalize the statement passed as the second argument. 1132 ** 1133 ** If the sqlite3_finalize() call indicates that an error occurs, and the 1134 ** rbu handle error code is not already set, set the error code and error 1135 ** message accordingly. 1136 */ 1137 static void rbuFinalize(sqlite3rbu *p, sqlite3_stmt *pStmt){ 1138 sqlite3 *db = sqlite3_db_handle(pStmt); 1139 int rc = sqlite3_finalize(pStmt); 1140 if( p->rc==SQLITE_OK && rc!=SQLITE_OK ){ 1141 p->rc = rc; 1142 p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 1143 } 1144 } 1145 1146 /* Determine the type of a table. 1147 ** 1148 ** peType is of type (int*), a pointer to an output parameter of type 1149 ** (int). This call sets the output parameter as follows, depending 1150 ** on the type of the table specified by parameters dbName and zTbl. 1151 ** 1152 ** RBU_PK_NOTABLE: No such table. 1153 ** RBU_PK_NONE: Table has an implicit rowid. 1154 ** RBU_PK_IPK: Table has an explicit IPK column. 1155 ** RBU_PK_EXTERNAL: Table has an external PK index. 1156 ** RBU_PK_WITHOUT_ROWID: Table is WITHOUT ROWID. 1157 ** RBU_PK_VTAB: Table is a virtual table. 1158 ** 1159 ** Argument *piPk is also of type (int*), and also points to an output 1160 ** parameter. Unless the table has an external primary key index 1161 ** (i.e. unless *peType is set to 3), then *piPk is set to zero. Or, 1162 ** if the table does have an external primary key index, then *piPk 1163 ** is set to the root page number of the primary key index before 1164 ** returning. 1165 ** 1166 ** ALGORITHM: 1167 ** 1168 ** if( no entry exists in sqlite_schema ){ 1169 ** return RBU_PK_NOTABLE 1170 ** }else if( sql for the entry starts with "CREATE VIRTUAL" ){ 1171 ** return RBU_PK_VTAB 1172 ** }else if( "PRAGMA index_list()" for the table contains a "pk" index ){ 1173 ** if( the index that is the pk exists in sqlite_schema ){ 1174 ** *piPK = rootpage of that index. 1175 ** return RBU_PK_EXTERNAL 1176 ** }else{ 1177 ** return RBU_PK_WITHOUT_ROWID 1178 ** } 1179 ** }else if( "PRAGMA table_info()" lists one or more "pk" columns ){ 1180 ** return RBU_PK_IPK 1181 ** }else{ 1182 ** return RBU_PK_NONE 1183 ** } 1184 */ 1185 static void rbuTableType( 1186 sqlite3rbu *p, 1187 const char *zTab, 1188 int *peType, 1189 int *piTnum, 1190 int *piPk 1191 ){ 1192 /* 1193 ** 0) SELECT count(*) FROM sqlite_schema where name=%Q AND IsVirtual(%Q) 1194 ** 1) PRAGMA index_list = ? 1195 ** 2) SELECT count(*) FROM sqlite_schema where name=%Q 1196 ** 3) PRAGMA table_info = ? 1197 */ 1198 sqlite3_stmt *aStmt[4] = {0, 0, 0, 0}; 1199 1200 *peType = RBU_PK_NOTABLE; 1201 *piPk = 0; 1202 1203 assert( p->rc==SQLITE_OK ); 1204 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[0], &p->zErrmsg, 1205 sqlite3_mprintf( 1206 "SELECT " 1207 " (sql COLLATE nocase BETWEEN 'CREATE VIRTUAL' AND 'CREATE VIRTUAM')," 1208 " rootpage" 1209 " FROM sqlite_schema" 1210 " WHERE name=%Q", zTab 1211 )); 1212 if( p->rc!=SQLITE_OK || sqlite3_step(aStmt[0])!=SQLITE_ROW ){ 1213 /* Either an error, or no such table. */ 1214 goto rbuTableType_end; 1215 } 1216 if( sqlite3_column_int(aStmt[0], 0) ){ 1217 *peType = RBU_PK_VTAB; /* virtual table */ 1218 goto rbuTableType_end; 1219 } 1220 *piTnum = sqlite3_column_int(aStmt[0], 1); 1221 1222 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[1], &p->zErrmsg, 1223 sqlite3_mprintf("PRAGMA index_list=%Q",zTab) 1224 ); 1225 if( p->rc ) goto rbuTableType_end; 1226 while( sqlite3_step(aStmt[1])==SQLITE_ROW ){ 1227 const u8 *zOrig = sqlite3_column_text(aStmt[1], 3); 1228 const u8 *zIdx = sqlite3_column_text(aStmt[1], 1); 1229 if( zOrig && zIdx && zOrig[0]=='p' ){ 1230 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[2], &p->zErrmsg, 1231 sqlite3_mprintf( 1232 "SELECT rootpage FROM sqlite_schema WHERE name = %Q", zIdx 1233 )); 1234 if( p->rc==SQLITE_OK ){ 1235 if( sqlite3_step(aStmt[2])==SQLITE_ROW ){ 1236 *piPk = sqlite3_column_int(aStmt[2], 0); 1237 *peType = RBU_PK_EXTERNAL; 1238 }else{ 1239 *peType = RBU_PK_WITHOUT_ROWID; 1240 } 1241 } 1242 goto rbuTableType_end; 1243 } 1244 } 1245 1246 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[3], &p->zErrmsg, 1247 sqlite3_mprintf("PRAGMA table_info=%Q",zTab) 1248 ); 1249 if( p->rc==SQLITE_OK ){ 1250 while( sqlite3_step(aStmt[3])==SQLITE_ROW ){ 1251 if( sqlite3_column_int(aStmt[3],5)>0 ){ 1252 *peType = RBU_PK_IPK; /* explicit IPK column */ 1253 goto rbuTableType_end; 1254 } 1255 } 1256 *peType = RBU_PK_NONE; 1257 } 1258 1259 rbuTableType_end: { 1260 unsigned int i; 1261 for(i=0; i<sizeof(aStmt)/sizeof(aStmt[0]); i++){ 1262 rbuFinalize(p, aStmt[i]); 1263 } 1264 } 1265 } 1266 1267 /* 1268 ** This is a helper function for rbuObjIterCacheTableInfo(). It populates 1269 ** the pIter->abIndexed[] array. 1270 */ 1271 static void rbuObjIterCacheIndexedCols(sqlite3rbu *p, RbuObjIter *pIter){ 1272 sqlite3_stmt *pList = 0; 1273 int bIndex = 0; 1274 1275 if( p->rc==SQLITE_OK ){ 1276 memcpy(pIter->abIndexed, pIter->abTblPk, sizeof(u8)*pIter->nTblCol); 1277 p->rc = prepareFreeAndCollectError(p->dbMain, &pList, &p->zErrmsg, 1278 sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl) 1279 ); 1280 } 1281 1282 pIter->nIndex = 0; 1283 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pList) ){ 1284 const char *zIdx = (const char*)sqlite3_column_text(pList, 1); 1285 int bPartial = sqlite3_column_int(pList, 4); 1286 sqlite3_stmt *pXInfo = 0; 1287 if( zIdx==0 ) break; 1288 if( bPartial ){ 1289 memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol); 1290 } 1291 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, 1292 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx) 1293 ); 1294 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ 1295 int iCid = sqlite3_column_int(pXInfo, 1); 1296 if( iCid>=0 ) pIter->abIndexed[iCid] = 1; 1297 if( iCid==-2 ){ 1298 memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol); 1299 } 1300 } 1301 rbuFinalize(p, pXInfo); 1302 bIndex = 1; 1303 pIter->nIndex++; 1304 } 1305 1306 if( pIter->eType==RBU_PK_WITHOUT_ROWID ){ 1307 /* "PRAGMA index_list" includes the main PK b-tree */ 1308 pIter->nIndex--; 1309 } 1310 1311 rbuFinalize(p, pList); 1312 if( bIndex==0 ) pIter->abIndexed = 0; 1313 } 1314 1315 1316 /* 1317 ** If they are not already populated, populate the pIter->azTblCol[], 1318 ** pIter->abTblPk[], pIter->nTblCol and pIter->bRowid variables according to 1319 ** the table (not index) that the iterator currently points to. 1320 ** 1321 ** Return SQLITE_OK if successful, or an SQLite error code otherwise. If 1322 ** an error does occur, an error code and error message are also left in 1323 ** the RBU handle. 1324 */ 1325 static int rbuObjIterCacheTableInfo(sqlite3rbu *p, RbuObjIter *pIter){ 1326 if( pIter->azTblCol==0 ){ 1327 sqlite3_stmt *pStmt = 0; 1328 int nCol = 0; 1329 int i; /* for() loop iterator variable */ 1330 int bRbuRowid = 0; /* If input table has column "rbu_rowid" */ 1331 int iOrder = 0; 1332 int iTnum = 0; 1333 1334 /* Figure out the type of table this step will deal with. */ 1335 assert( pIter->eType==0 ); 1336 rbuTableType(p, pIter->zTbl, &pIter->eType, &iTnum, &pIter->iPkTnum); 1337 if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_NOTABLE ){ 1338 p->rc = SQLITE_ERROR; 1339 p->zErrmsg = sqlite3_mprintf("no such table: %s", pIter->zTbl); 1340 } 1341 if( p->rc ) return p->rc; 1342 if( pIter->zIdx==0 ) pIter->iTnum = iTnum; 1343 1344 assert( pIter->eType==RBU_PK_NONE || pIter->eType==RBU_PK_IPK 1345 || pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_WITHOUT_ROWID 1346 || pIter->eType==RBU_PK_VTAB 1347 ); 1348 1349 /* Populate the azTblCol[] and nTblCol variables based on the columns 1350 ** of the input table. Ignore any input table columns that begin with 1351 ** "rbu_". */ 1352 p->rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg, 1353 sqlite3_mprintf("SELECT * FROM '%q'", pIter->zDataTbl) 1354 ); 1355 if( p->rc==SQLITE_OK ){ 1356 nCol = sqlite3_column_count(pStmt); 1357 rbuAllocateIterArrays(p, pIter, nCol); 1358 } 1359 for(i=0; p->rc==SQLITE_OK && i<nCol; i++){ 1360 const char *zName = (const char*)sqlite3_column_name(pStmt, i); 1361 if( sqlite3_strnicmp("rbu_", zName, 4) ){ 1362 char *zCopy = rbuStrndup(zName, &p->rc); 1363 pIter->aiSrcOrder[pIter->nTblCol] = pIter->nTblCol; 1364 pIter->azTblCol[pIter->nTblCol++] = zCopy; 1365 } 1366 else if( 0==sqlite3_stricmp("rbu_rowid", zName) ){ 1367 bRbuRowid = 1; 1368 } 1369 } 1370 sqlite3_finalize(pStmt); 1371 pStmt = 0; 1372 1373 if( p->rc==SQLITE_OK 1374 && rbuIsVacuum(p)==0 1375 && bRbuRowid!=(pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE) 1376 ){ 1377 p->rc = SQLITE_ERROR; 1378 p->zErrmsg = sqlite3_mprintf( 1379 "table %q %s rbu_rowid column", pIter->zDataTbl, 1380 (bRbuRowid ? "may not have" : "requires") 1381 ); 1382 } 1383 1384 /* Check that all non-HIDDEN columns in the destination table are also 1385 ** present in the input table. Populate the abTblPk[], azTblType[] and 1386 ** aiTblOrder[] arrays at the same time. */ 1387 if( p->rc==SQLITE_OK ){ 1388 p->rc = prepareFreeAndCollectError(p->dbMain, &pStmt, &p->zErrmsg, 1389 sqlite3_mprintf("PRAGMA table_info(%Q)", pIter->zTbl) 1390 ); 1391 } 1392 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ 1393 const char *zName = (const char*)sqlite3_column_text(pStmt, 1); 1394 if( zName==0 ) break; /* An OOM - finalize() below returns S_NOMEM */ 1395 for(i=iOrder; i<pIter->nTblCol; i++){ 1396 if( 0==strcmp(zName, pIter->azTblCol[i]) ) break; 1397 } 1398 if( i==pIter->nTblCol ){ 1399 p->rc = SQLITE_ERROR; 1400 p->zErrmsg = sqlite3_mprintf("column missing from %q: %s", 1401 pIter->zDataTbl, zName 1402 ); 1403 }else{ 1404 int iPk = sqlite3_column_int(pStmt, 5); 1405 int bNotNull = sqlite3_column_int(pStmt, 3); 1406 const char *zType = (const char*)sqlite3_column_text(pStmt, 2); 1407 1408 if( i!=iOrder ){ 1409 SWAP(int, pIter->aiSrcOrder[i], pIter->aiSrcOrder[iOrder]); 1410 SWAP(char*, pIter->azTblCol[i], pIter->azTblCol[iOrder]); 1411 } 1412 1413 pIter->azTblType[iOrder] = rbuStrndup(zType, &p->rc); 1414 assert( iPk>=0 ); 1415 pIter->abTblPk[iOrder] = (u8)iPk; 1416 pIter->abNotNull[iOrder] = (u8)bNotNull || (iPk!=0); 1417 iOrder++; 1418 } 1419 } 1420 1421 rbuFinalize(p, pStmt); 1422 rbuObjIterCacheIndexedCols(p, pIter); 1423 assert( pIter->eType!=RBU_PK_VTAB || pIter->abIndexed==0 ); 1424 assert( pIter->eType!=RBU_PK_VTAB || pIter->nIndex==0 ); 1425 } 1426 1427 return p->rc; 1428 } 1429 1430 /* 1431 ** This function constructs and returns a pointer to a nul-terminated 1432 ** string containing some SQL clause or list based on one or more of the 1433 ** column names currently stored in the pIter->azTblCol[] array. 1434 */ 1435 static char *rbuObjIterGetCollist( 1436 sqlite3rbu *p, /* RBU object */ 1437 RbuObjIter *pIter /* Object iterator for column names */ 1438 ){ 1439 char *zList = 0; 1440 const char *zSep = ""; 1441 int i; 1442 for(i=0; i<pIter->nTblCol; i++){ 1443 const char *z = pIter->azTblCol[i]; 1444 zList = rbuMPrintf(p, "%z%s\"%w\"", zList, zSep, z); 1445 zSep = ", "; 1446 } 1447 return zList; 1448 } 1449 1450 /* 1451 ** Return a comma separated list of the quoted PRIMARY KEY column names, 1452 ** in order, for the current table. Before each column name, add the text 1453 ** zPre. After each column name, add the zPost text. Use zSeparator as 1454 ** the separator text (usually ", "). 1455 */ 1456 static char *rbuObjIterGetPkList( 1457 sqlite3rbu *p, /* RBU object */ 1458 RbuObjIter *pIter, /* Object iterator for column names */ 1459 const char *zPre, /* Before each quoted column name */ 1460 const char *zSeparator, /* Separator to use between columns */ 1461 const char *zPost /* After each quoted column name */ 1462 ){ 1463 int iPk = 1; 1464 char *zRet = 0; 1465 const char *zSep = ""; 1466 while( 1 ){ 1467 int i; 1468 for(i=0; i<pIter->nTblCol; i++){ 1469 if( (int)pIter->abTblPk[i]==iPk ){ 1470 const char *zCol = pIter->azTblCol[i]; 1471 zRet = rbuMPrintf(p, "%z%s%s\"%w\"%s", zRet, zSep, zPre, zCol, zPost); 1472 zSep = zSeparator; 1473 break; 1474 } 1475 } 1476 if( i==pIter->nTblCol ) break; 1477 iPk++; 1478 } 1479 return zRet; 1480 } 1481 1482 /* 1483 ** This function is called as part of restarting an RBU vacuum within 1484 ** stage 1 of the process (while the *-oal file is being built) while 1485 ** updating a table (not an index). The table may be a rowid table or 1486 ** a WITHOUT ROWID table. It queries the target database to find the 1487 ** largest key that has already been written to the target table and 1488 ** constructs a WHERE clause that can be used to extract the remaining 1489 ** rows from the source table. For a rowid table, the WHERE clause 1490 ** is of the form: 1491 ** 1492 ** "WHERE _rowid_ > ?" 1493 ** 1494 ** and for WITHOUT ROWID tables: 1495 ** 1496 ** "WHERE (key1, key2) > (?, ?)" 1497 ** 1498 ** Instead of "?" placeholders, the actual WHERE clauses created by 1499 ** this function contain literal SQL values. 1500 */ 1501 static char *rbuVacuumTableStart( 1502 sqlite3rbu *p, /* RBU handle */ 1503 RbuObjIter *pIter, /* RBU iterator object */ 1504 int bRowid, /* True for a rowid table */ 1505 const char *zWrite /* Target table name prefix */ 1506 ){ 1507 sqlite3_stmt *pMax = 0; 1508 char *zRet = 0; 1509 if( bRowid ){ 1510 p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg, 1511 sqlite3_mprintf( 1512 "SELECT max(_rowid_) FROM \"%s%w\"", zWrite, pIter->zTbl 1513 ) 1514 ); 1515 if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){ 1516 sqlite3_int64 iMax = sqlite3_column_int64(pMax, 0); 1517 zRet = rbuMPrintf(p, " WHERE _rowid_ > %lld ", iMax); 1518 } 1519 rbuFinalize(p, pMax); 1520 }else{ 1521 char *zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", " DESC"); 1522 char *zSelect = rbuObjIterGetPkList(p, pIter, "quote(", "||','||", ")"); 1523 char *zList = rbuObjIterGetPkList(p, pIter, "", ", ", ""); 1524 1525 if( p->rc==SQLITE_OK ){ 1526 p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg, 1527 sqlite3_mprintf( 1528 "SELECT %s FROM \"%s%w\" ORDER BY %s LIMIT 1", 1529 zSelect, zWrite, pIter->zTbl, zOrder 1530 ) 1531 ); 1532 if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){ 1533 const char *zVal = (const char*)sqlite3_column_text(pMax, 0); 1534 zRet = rbuMPrintf(p, " WHERE (%s) > (%s) ", zList, zVal); 1535 } 1536 rbuFinalize(p, pMax); 1537 } 1538 1539 sqlite3_free(zOrder); 1540 sqlite3_free(zSelect); 1541 sqlite3_free(zList); 1542 } 1543 return zRet; 1544 } 1545 1546 /* 1547 ** This function is called as part of restating an RBU vacuum when the 1548 ** current operation is writing content to an index. If possible, it 1549 ** queries the target index b-tree for the largest key already written to 1550 ** it, then composes and returns an expression that can be used in a WHERE 1551 ** clause to select the remaining required rows from the source table. 1552 ** It is only possible to return such an expression if: 1553 ** 1554 ** * The index contains no DESC columns, and 1555 ** * The last key written to the index before the operation was 1556 ** suspended does not contain any NULL values. 1557 ** 1558 ** The expression is of the form: 1559 ** 1560 ** (index-field1, index-field2, ...) > (?, ?, ...) 1561 ** 1562 ** except that the "?" placeholders are replaced with literal values. 1563 ** 1564 ** If the expression cannot be created, NULL is returned. In this case, 1565 ** the caller has to use an OFFSET clause to extract only the required 1566 ** rows from the sourct table, just as it does for an RBU update operation. 1567 */ 1568 static char *rbuVacuumIndexStart( 1569 sqlite3rbu *p, /* RBU handle */ 1570 RbuObjIter *pIter /* RBU iterator object */ 1571 ){ 1572 char *zOrder = 0; 1573 char *zLhs = 0; 1574 char *zSelect = 0; 1575 char *zVector = 0; 1576 char *zRet = 0; 1577 int bFailed = 0; 1578 const char *zSep = ""; 1579 int iCol = 0; 1580 sqlite3_stmt *pXInfo = 0; 1581 1582 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, 1583 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx) 1584 ); 1585 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ 1586 int iCid = sqlite3_column_int(pXInfo, 1); 1587 const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4); 1588 const char *zCol; 1589 if( sqlite3_column_int(pXInfo, 3) ){ 1590 bFailed = 1; 1591 break; 1592 } 1593 1594 if( iCid<0 ){ 1595 if( pIter->eType==RBU_PK_IPK ){ 1596 int i; 1597 for(i=0; pIter->abTblPk[i]==0; i++); 1598 assert( i<pIter->nTblCol ); 1599 zCol = pIter->azTblCol[i]; 1600 }else{ 1601 zCol = "_rowid_"; 1602 } 1603 }else{ 1604 zCol = pIter->azTblCol[iCid]; 1605 } 1606 1607 zLhs = rbuMPrintf(p, "%z%s \"%w\" COLLATE %Q", 1608 zLhs, zSep, zCol, zCollate 1609 ); 1610 zOrder = rbuMPrintf(p, "%z%s \"rbu_imp_%d%w\" COLLATE %Q DESC", 1611 zOrder, zSep, iCol, zCol, zCollate 1612 ); 1613 zSelect = rbuMPrintf(p, "%z%s quote(\"rbu_imp_%d%w\")", 1614 zSelect, zSep, iCol, zCol 1615 ); 1616 zSep = ", "; 1617 iCol++; 1618 } 1619 rbuFinalize(p, pXInfo); 1620 if( bFailed ) goto index_start_out; 1621 1622 if( p->rc==SQLITE_OK ){ 1623 sqlite3_stmt *pSel = 0; 1624 1625 p->rc = prepareFreeAndCollectError(p->dbMain, &pSel, &p->zErrmsg, 1626 sqlite3_mprintf("SELECT %s FROM \"rbu_imp_%w\" ORDER BY %s LIMIT 1", 1627 zSelect, pIter->zTbl, zOrder 1628 ) 1629 ); 1630 if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSel) ){ 1631 zSep = ""; 1632 for(iCol=0; iCol<pIter->nCol; iCol++){ 1633 const char *zQuoted = (const char*)sqlite3_column_text(pSel, iCol); 1634 if( zQuoted==0 ){ 1635 p->rc = SQLITE_NOMEM; 1636 }else if( zQuoted[0]=='N' ){ 1637 bFailed = 1; 1638 break; 1639 } 1640 zVector = rbuMPrintf(p, "%z%s%s", zVector, zSep, zQuoted); 1641 zSep = ", "; 1642 } 1643 1644 if( !bFailed ){ 1645 zRet = rbuMPrintf(p, "(%s) > (%s)", zLhs, zVector); 1646 } 1647 } 1648 rbuFinalize(p, pSel); 1649 } 1650 1651 index_start_out: 1652 sqlite3_free(zOrder); 1653 sqlite3_free(zSelect); 1654 sqlite3_free(zVector); 1655 sqlite3_free(zLhs); 1656 return zRet; 1657 } 1658 1659 /* 1660 ** This function is used to create a SELECT list (the list of SQL 1661 ** expressions that follows a SELECT keyword) for a SELECT statement 1662 ** used to read from an data_xxx or rbu_tmp_xxx table while updating the 1663 ** index object currently indicated by the iterator object passed as the 1664 ** second argument. A "PRAGMA index_xinfo = <idxname>" statement is used 1665 ** to obtain the required information. 1666 ** 1667 ** If the index is of the following form: 1668 ** 1669 ** CREATE INDEX i1 ON t1(c, b COLLATE nocase); 1670 ** 1671 ** and "t1" is a table with an explicit INTEGER PRIMARY KEY column 1672 ** "ipk", the returned string is: 1673 ** 1674 ** "`c` COLLATE 'BINARY', `b` COLLATE 'NOCASE', `ipk` COLLATE 'BINARY'" 1675 ** 1676 ** As well as the returned string, three other malloc'd strings are 1677 ** returned via output parameters. As follows: 1678 ** 1679 ** pzImposterCols: ... 1680 ** pzImposterPk: ... 1681 ** pzWhere: ... 1682 */ 1683 static char *rbuObjIterGetIndexCols( 1684 sqlite3rbu *p, /* RBU object */ 1685 RbuObjIter *pIter, /* Object iterator for column names */ 1686 char **pzImposterCols, /* OUT: Columns for imposter table */ 1687 char **pzImposterPk, /* OUT: Imposter PK clause */ 1688 char **pzWhere, /* OUT: WHERE clause */ 1689 int *pnBind /* OUT: Trbul number of columns */ 1690 ){ 1691 int rc = p->rc; /* Error code */ 1692 int rc2; /* sqlite3_finalize() return code */ 1693 char *zRet = 0; /* String to return */ 1694 char *zImpCols = 0; /* String to return via *pzImposterCols */ 1695 char *zImpPK = 0; /* String to return via *pzImposterPK */ 1696 char *zWhere = 0; /* String to return via *pzWhere */ 1697 int nBind = 0; /* Value to return via *pnBind */ 1698 const char *zCom = ""; /* Set to ", " later on */ 1699 const char *zAnd = ""; /* Set to " AND " later on */ 1700 sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = ? */ 1701 1702 if( rc==SQLITE_OK ){ 1703 assert( p->zErrmsg==0 ); 1704 rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, 1705 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx) 1706 ); 1707 } 1708 1709 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ 1710 int iCid = sqlite3_column_int(pXInfo, 1); 1711 int bDesc = sqlite3_column_int(pXInfo, 3); 1712 const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4); 1713 const char *zCol = 0; 1714 const char *zType; 1715 1716 if( iCid==-2 ){ 1717 int iSeq = sqlite3_column_int(pXInfo, 0); 1718 zRet = sqlite3_mprintf("%z%s(%.*s) COLLATE %Q", zRet, zCom, 1719 pIter->aIdxCol[iSeq].nSpan, pIter->aIdxCol[iSeq].zSpan, zCollate 1720 ); 1721 zType = ""; 1722 }else { 1723 if( iCid<0 ){ 1724 /* An integer primary key. If the table has an explicit IPK, use 1725 ** its name. Otherwise, use "rbu_rowid". */ 1726 if( pIter->eType==RBU_PK_IPK ){ 1727 int i; 1728 for(i=0; pIter->abTblPk[i]==0; i++); 1729 assert( i<pIter->nTblCol ); 1730 zCol = pIter->azTblCol[i]; 1731 }else if( rbuIsVacuum(p) ){ 1732 zCol = "_rowid_"; 1733 }else{ 1734 zCol = "rbu_rowid"; 1735 } 1736 zType = "INTEGER"; 1737 }else{ 1738 zCol = pIter->azTblCol[iCid]; 1739 zType = pIter->azTblType[iCid]; 1740 } 1741 zRet = sqlite3_mprintf("%z%s\"%w\" COLLATE %Q", zRet, zCom,zCol,zCollate); 1742 } 1743 1744 if( pIter->bUnique==0 || sqlite3_column_int(pXInfo, 5) ){ 1745 const char *zOrder = (bDesc ? " DESC" : ""); 1746 zImpPK = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\"%s", 1747 zImpPK, zCom, nBind, zCol, zOrder 1748 ); 1749 } 1750 zImpCols = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\" %s COLLATE %Q", 1751 zImpCols, zCom, nBind, zCol, zType, zCollate 1752 ); 1753 zWhere = sqlite3_mprintf( 1754 "%z%s\"rbu_imp_%d%w\" IS ?", zWhere, zAnd, nBind, zCol 1755 ); 1756 if( zRet==0 || zImpPK==0 || zImpCols==0 || zWhere==0 ) rc = SQLITE_NOMEM; 1757 zCom = ", "; 1758 zAnd = " AND "; 1759 nBind++; 1760 } 1761 1762 rc2 = sqlite3_finalize(pXInfo); 1763 if( rc==SQLITE_OK ) rc = rc2; 1764 1765 if( rc!=SQLITE_OK ){ 1766 sqlite3_free(zRet); 1767 sqlite3_free(zImpCols); 1768 sqlite3_free(zImpPK); 1769 sqlite3_free(zWhere); 1770 zRet = 0; 1771 zImpCols = 0; 1772 zImpPK = 0; 1773 zWhere = 0; 1774 p->rc = rc; 1775 } 1776 1777 *pzImposterCols = zImpCols; 1778 *pzImposterPk = zImpPK; 1779 *pzWhere = zWhere; 1780 *pnBind = nBind; 1781 return zRet; 1782 } 1783 1784 /* 1785 ** Assuming the current table columns are "a", "b" and "c", and the zObj 1786 ** paramter is passed "old", return a string of the form: 1787 ** 1788 ** "old.a, old.b, old.b" 1789 ** 1790 ** With the column names escaped. 1791 ** 1792 ** For tables with implicit rowids - RBU_PK_EXTERNAL and RBU_PK_NONE, append 1793 ** the text ", old._rowid_" to the returned value. 1794 */ 1795 static char *rbuObjIterGetOldlist( 1796 sqlite3rbu *p, 1797 RbuObjIter *pIter, 1798 const char *zObj 1799 ){ 1800 char *zList = 0; 1801 if( p->rc==SQLITE_OK && pIter->abIndexed ){ 1802 const char *zS = ""; 1803 int i; 1804 for(i=0; i<pIter->nTblCol; i++){ 1805 if( pIter->abIndexed[i] ){ 1806 const char *zCol = pIter->azTblCol[i]; 1807 zList = sqlite3_mprintf("%z%s%s.\"%w\"", zList, zS, zObj, zCol); 1808 }else{ 1809 zList = sqlite3_mprintf("%z%sNULL", zList, zS); 1810 } 1811 zS = ", "; 1812 if( zList==0 ){ 1813 p->rc = SQLITE_NOMEM; 1814 break; 1815 } 1816 } 1817 1818 /* For a table with implicit rowids, append "old._rowid_" to the list. */ 1819 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ 1820 zList = rbuMPrintf(p, "%z, %s._rowid_", zList, zObj); 1821 } 1822 } 1823 return zList; 1824 } 1825 1826 /* 1827 ** Return an expression that can be used in a WHERE clause to match the 1828 ** primary key of the current table. For example, if the table is: 1829 ** 1830 ** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c)); 1831 ** 1832 ** Return the string: 1833 ** 1834 ** "b = ?1 AND c = ?2" 1835 */ 1836 static char *rbuObjIterGetWhere( 1837 sqlite3rbu *p, 1838 RbuObjIter *pIter 1839 ){ 1840 char *zList = 0; 1841 if( pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE ){ 1842 zList = rbuMPrintf(p, "_rowid_ = ?%d", pIter->nTblCol+1); 1843 }else if( pIter->eType==RBU_PK_EXTERNAL ){ 1844 const char *zSep = ""; 1845 int i; 1846 for(i=0; i<pIter->nTblCol; i++){ 1847 if( pIter->abTblPk[i] ){ 1848 zList = rbuMPrintf(p, "%z%sc%d=?%d", zList, zSep, i, i+1); 1849 zSep = " AND "; 1850 } 1851 } 1852 zList = rbuMPrintf(p, 1853 "_rowid_ = (SELECT id FROM rbu_imposter2 WHERE %z)", zList 1854 ); 1855 1856 }else{ 1857 const char *zSep = ""; 1858 int i; 1859 for(i=0; i<pIter->nTblCol; i++){ 1860 if( pIter->abTblPk[i] ){ 1861 const char *zCol = pIter->azTblCol[i]; 1862 zList = rbuMPrintf(p, "%z%s\"%w\"=?%d", zList, zSep, zCol, i+1); 1863 zSep = " AND "; 1864 } 1865 } 1866 } 1867 return zList; 1868 } 1869 1870 /* 1871 ** The SELECT statement iterating through the keys for the current object 1872 ** (p->objiter.pSelect) currently points to a valid row. However, there 1873 ** is something wrong with the rbu_control value in the rbu_control value 1874 ** stored in the (p->nCol+1)'th column. Set the error code and error message 1875 ** of the RBU handle to something reflecting this. 1876 */ 1877 static void rbuBadControlError(sqlite3rbu *p){ 1878 p->rc = SQLITE_ERROR; 1879 p->zErrmsg = sqlite3_mprintf("invalid rbu_control value"); 1880 } 1881 1882 1883 /* 1884 ** Return a nul-terminated string containing the comma separated list of 1885 ** assignments that should be included following the "SET" keyword of 1886 ** an UPDATE statement used to update the table object that the iterator 1887 ** passed as the second argument currently points to if the rbu_control 1888 ** column of the data_xxx table entry is set to zMask. 1889 ** 1890 ** The memory for the returned string is obtained from sqlite3_malloc(). 1891 ** It is the responsibility of the caller to eventually free it using 1892 ** sqlite3_free(). 1893 ** 1894 ** If an OOM error is encountered when allocating space for the new 1895 ** string, an error code is left in the rbu handle passed as the first 1896 ** argument and NULL is returned. Or, if an error has already occurred 1897 ** when this function is called, NULL is returned immediately, without 1898 ** attempting the allocation or modifying the stored error code. 1899 */ 1900 static char *rbuObjIterGetSetlist( 1901 sqlite3rbu *p, 1902 RbuObjIter *pIter, 1903 const char *zMask 1904 ){ 1905 char *zList = 0; 1906 if( p->rc==SQLITE_OK ){ 1907 int i; 1908 1909 if( (int)strlen(zMask)!=pIter->nTblCol ){ 1910 rbuBadControlError(p); 1911 }else{ 1912 const char *zSep = ""; 1913 for(i=0; i<pIter->nTblCol; i++){ 1914 char c = zMask[pIter->aiSrcOrder[i]]; 1915 if( c=='x' ){ 1916 zList = rbuMPrintf(p, "%z%s\"%w\"=?%d", 1917 zList, zSep, pIter->azTblCol[i], i+1 1918 ); 1919 zSep = ", "; 1920 } 1921 else if( c=='d' ){ 1922 zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_delta(\"%w\", ?%d)", 1923 zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1 1924 ); 1925 zSep = ", "; 1926 } 1927 else if( c=='f' ){ 1928 zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_fossil_delta(\"%w\", ?%d)", 1929 zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1 1930 ); 1931 zSep = ", "; 1932 } 1933 } 1934 } 1935 } 1936 return zList; 1937 } 1938 1939 /* 1940 ** Return a nul-terminated string consisting of nByte comma separated 1941 ** "?" expressions. For example, if nByte is 3, return a pointer to 1942 ** a buffer containing the string "?,?,?". 1943 ** 1944 ** The memory for the returned string is obtained from sqlite3_malloc(). 1945 ** It is the responsibility of the caller to eventually free it using 1946 ** sqlite3_free(). 1947 ** 1948 ** If an OOM error is encountered when allocating space for the new 1949 ** string, an error code is left in the rbu handle passed as the first 1950 ** argument and NULL is returned. Or, if an error has already occurred 1951 ** when this function is called, NULL is returned immediately, without 1952 ** attempting the allocation or modifying the stored error code. 1953 */ 1954 static char *rbuObjIterGetBindlist(sqlite3rbu *p, int nBind){ 1955 char *zRet = 0; 1956 sqlite3_int64 nByte = 2*(sqlite3_int64)nBind + 1; 1957 1958 zRet = (char*)rbuMalloc(p, nByte); 1959 if( zRet ){ 1960 int i; 1961 for(i=0; i<nBind; i++){ 1962 zRet[i*2] = '?'; 1963 zRet[i*2+1] = (i+1==nBind) ? '\0' : ','; 1964 } 1965 } 1966 return zRet; 1967 } 1968 1969 /* 1970 ** The iterator currently points to a table (not index) of type 1971 ** RBU_PK_WITHOUT_ROWID. This function creates the PRIMARY KEY 1972 ** declaration for the corresponding imposter table. For example, 1973 ** if the iterator points to a table created as: 1974 ** 1975 ** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, a DESC)) WITHOUT ROWID 1976 ** 1977 ** this function returns: 1978 ** 1979 ** PRIMARY KEY("b", "a" DESC) 1980 */ 1981 static char *rbuWithoutRowidPK(sqlite3rbu *p, RbuObjIter *pIter){ 1982 char *z = 0; 1983 assert( pIter->zIdx==0 ); 1984 if( p->rc==SQLITE_OK ){ 1985 const char *zSep = "PRIMARY KEY("; 1986 sqlite3_stmt *pXList = 0; /* PRAGMA index_list = (pIter->zTbl) */ 1987 sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = <pk-index> */ 1988 1989 p->rc = prepareFreeAndCollectError(p->dbMain, &pXList, &p->zErrmsg, 1990 sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl) 1991 ); 1992 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXList) ){ 1993 const char *zOrig = (const char*)sqlite3_column_text(pXList,3); 1994 if( zOrig && strcmp(zOrig, "pk")==0 ){ 1995 const char *zIdx = (const char*)sqlite3_column_text(pXList,1); 1996 if( zIdx ){ 1997 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, 1998 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx) 1999 ); 2000 } 2001 break; 2002 } 2003 } 2004 rbuFinalize(p, pXList); 2005 2006 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ 2007 if( sqlite3_column_int(pXInfo, 5) ){ 2008 /* int iCid = sqlite3_column_int(pXInfo, 0); */ 2009 const char *zCol = (const char*)sqlite3_column_text(pXInfo, 2); 2010 const char *zDesc = sqlite3_column_int(pXInfo, 3) ? " DESC" : ""; 2011 z = rbuMPrintf(p, "%z%s\"%w\"%s", z, zSep, zCol, zDesc); 2012 zSep = ", "; 2013 } 2014 } 2015 z = rbuMPrintf(p, "%z)", z); 2016 rbuFinalize(p, pXInfo); 2017 } 2018 return z; 2019 } 2020 2021 /* 2022 ** This function creates the second imposter table used when writing to 2023 ** a table b-tree where the table has an external primary key. If the 2024 ** iterator passed as the second argument does not currently point to 2025 ** a table (not index) with an external primary key, this function is a 2026 ** no-op. 2027 ** 2028 ** Assuming the iterator does point to a table with an external PK, this 2029 ** function creates a WITHOUT ROWID imposter table named "rbu_imposter2" 2030 ** used to access that PK index. For example, if the target table is 2031 ** declared as follows: 2032 ** 2033 ** CREATE TABLE t1(a, b TEXT, c REAL, PRIMARY KEY(b, c)); 2034 ** 2035 ** then the imposter table schema is: 2036 ** 2037 ** CREATE TABLE rbu_imposter2(c1 TEXT, c2 REAL, id INTEGER) WITHOUT ROWID; 2038 ** 2039 */ 2040 static void rbuCreateImposterTable2(sqlite3rbu *p, RbuObjIter *pIter){ 2041 if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_EXTERNAL ){ 2042 int tnum = pIter->iPkTnum; /* Root page of PK index */ 2043 sqlite3_stmt *pQuery = 0; /* SELECT name ... WHERE rootpage = $tnum */ 2044 const char *zIdx = 0; /* Name of PK index */ 2045 sqlite3_stmt *pXInfo = 0; /* PRAGMA main.index_xinfo = $zIdx */ 2046 const char *zComma = ""; 2047 char *zCols = 0; /* Used to build up list of table cols */ 2048 char *zPk = 0; /* Used to build up table PK declaration */ 2049 2050 /* Figure out the name of the primary key index for the current table. 2051 ** This is needed for the argument to "PRAGMA index_xinfo". Set 2052 ** zIdx to point to a nul-terminated string containing this name. */ 2053 p->rc = prepareAndCollectError(p->dbMain, &pQuery, &p->zErrmsg, 2054 "SELECT name FROM sqlite_schema WHERE rootpage = ?" 2055 ); 2056 if( p->rc==SQLITE_OK ){ 2057 sqlite3_bind_int(pQuery, 1, tnum); 2058 if( SQLITE_ROW==sqlite3_step(pQuery) ){ 2059 zIdx = (const char*)sqlite3_column_text(pQuery, 0); 2060 } 2061 } 2062 if( zIdx ){ 2063 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg, 2064 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx) 2065 ); 2066 } 2067 rbuFinalize(p, pQuery); 2068 2069 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){ 2070 int bKey = sqlite3_column_int(pXInfo, 5); 2071 if( bKey ){ 2072 int iCid = sqlite3_column_int(pXInfo, 1); 2073 int bDesc = sqlite3_column_int(pXInfo, 3); 2074 const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4); 2075 zCols = rbuMPrintf(p, "%z%sc%d %s COLLATE %Q", zCols, zComma, 2076 iCid, pIter->azTblType[iCid], zCollate 2077 ); 2078 zPk = rbuMPrintf(p, "%z%sc%d%s", zPk, zComma, iCid, bDesc?" DESC":""); 2079 zComma = ", "; 2080 } 2081 } 2082 zCols = rbuMPrintf(p, "%z, id INTEGER", zCols); 2083 rbuFinalize(p, pXInfo); 2084 2085 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum); 2086 rbuMPrintfExec(p, p->dbMain, 2087 "CREATE TABLE rbu_imposter2(%z, PRIMARY KEY(%z)) WITHOUT ROWID", 2088 zCols, zPk 2089 ); 2090 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0); 2091 } 2092 } 2093 2094 /* 2095 ** If an error has already occurred when this function is called, it 2096 ** immediately returns zero (without doing any work). Or, if an error 2097 ** occurs during the execution of this function, it sets the error code 2098 ** in the sqlite3rbu object indicated by the first argument and returns 2099 ** zero. 2100 ** 2101 ** The iterator passed as the second argument is guaranteed to point to 2102 ** a table (not an index) when this function is called. This function 2103 ** attempts to create any imposter table required to write to the main 2104 ** table b-tree of the table before returning. Non-zero is returned if 2105 ** an imposter table are created, or zero otherwise. 2106 ** 2107 ** An imposter table is required in all cases except RBU_PK_VTAB. Only 2108 ** virtual tables are written to directly. The imposter table has the 2109 ** same schema as the actual target table (less any UNIQUE constraints). 2110 ** More precisely, the "same schema" means the same columns, types, 2111 ** collation sequences. For tables that do not have an external PRIMARY 2112 ** KEY, it also means the same PRIMARY KEY declaration. 2113 */ 2114 static void rbuCreateImposterTable(sqlite3rbu *p, RbuObjIter *pIter){ 2115 if( p->rc==SQLITE_OK && pIter->eType!=RBU_PK_VTAB ){ 2116 int tnum = pIter->iTnum; 2117 const char *zComma = ""; 2118 char *zSql = 0; 2119 int iCol; 2120 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1); 2121 2122 for(iCol=0; p->rc==SQLITE_OK && iCol<pIter->nTblCol; iCol++){ 2123 const char *zPk = ""; 2124 const char *zCol = pIter->azTblCol[iCol]; 2125 const char *zColl = 0; 2126 2127 p->rc = sqlite3_table_column_metadata( 2128 p->dbMain, "main", pIter->zTbl, zCol, 0, &zColl, 0, 0, 0 2129 ); 2130 2131 if( pIter->eType==RBU_PK_IPK && pIter->abTblPk[iCol] ){ 2132 /* If the target table column is an "INTEGER PRIMARY KEY", add 2133 ** "PRIMARY KEY" to the imposter table column declaration. */ 2134 zPk = "PRIMARY KEY "; 2135 } 2136 zSql = rbuMPrintf(p, "%z%s\"%w\" %s %sCOLLATE %Q%s", 2137 zSql, zComma, zCol, pIter->azTblType[iCol], zPk, zColl, 2138 (pIter->abNotNull[iCol] ? " NOT NULL" : "") 2139 ); 2140 zComma = ", "; 2141 } 2142 2143 if( pIter->eType==RBU_PK_WITHOUT_ROWID ){ 2144 char *zPk = rbuWithoutRowidPK(p, pIter); 2145 if( zPk ){ 2146 zSql = rbuMPrintf(p, "%z, %z", zSql, zPk); 2147 } 2148 } 2149 2150 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum); 2151 rbuMPrintfExec(p, p->dbMain, "CREATE TABLE \"rbu_imp_%w\"(%z)%s", 2152 pIter->zTbl, zSql, 2153 (pIter->eType==RBU_PK_WITHOUT_ROWID ? " WITHOUT ROWID" : "") 2154 ); 2155 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0); 2156 } 2157 } 2158 2159 /* 2160 ** Prepare a statement used to insert rows into the "rbu_tmp_xxx" table. 2161 ** Specifically a statement of the form: 2162 ** 2163 ** INSERT INTO rbu_tmp_xxx VALUES(?, ?, ? ...); 2164 ** 2165 ** The number of bound variables is equal to the number of columns in 2166 ** the target table, plus one (for the rbu_control column), plus one more 2167 ** (for the rbu_rowid column) if the target table is an implicit IPK or 2168 ** virtual table. 2169 */ 2170 static void rbuObjIterPrepareTmpInsert( 2171 sqlite3rbu *p, 2172 RbuObjIter *pIter, 2173 const char *zCollist, 2174 const char *zRbuRowid 2175 ){ 2176 int bRbuRowid = (pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE); 2177 char *zBind = rbuObjIterGetBindlist(p, pIter->nTblCol + 1 + bRbuRowid); 2178 if( zBind ){ 2179 assert( pIter->pTmpInsert==0 ); 2180 p->rc = prepareFreeAndCollectError( 2181 p->dbRbu, &pIter->pTmpInsert, &p->zErrmsg, sqlite3_mprintf( 2182 "INSERT INTO %s.'rbu_tmp_%q'(rbu_control,%s%s) VALUES(%z)", 2183 p->zStateDb, pIter->zDataTbl, zCollist, zRbuRowid, zBind 2184 )); 2185 } 2186 } 2187 2188 static void rbuTmpInsertFunc( 2189 sqlite3_context *pCtx, 2190 int nVal, 2191 sqlite3_value **apVal 2192 ){ 2193 sqlite3rbu *p = sqlite3_user_data(pCtx); 2194 int rc = SQLITE_OK; 2195 int i; 2196 2197 assert( sqlite3_value_int(apVal[0])!=0 2198 || p->objiter.eType==RBU_PK_EXTERNAL 2199 || p->objiter.eType==RBU_PK_NONE 2200 ); 2201 if( sqlite3_value_int(apVal[0])!=0 ){ 2202 p->nPhaseOneStep += p->objiter.nIndex; 2203 } 2204 2205 for(i=0; rc==SQLITE_OK && i<nVal; i++){ 2206 rc = sqlite3_bind_value(p->objiter.pTmpInsert, i+1, apVal[i]); 2207 } 2208 if( rc==SQLITE_OK ){ 2209 sqlite3_step(p->objiter.pTmpInsert); 2210 rc = sqlite3_reset(p->objiter.pTmpInsert); 2211 } 2212 2213 if( rc!=SQLITE_OK ){ 2214 sqlite3_result_error_code(pCtx, rc); 2215 } 2216 } 2217 2218 static char *rbuObjIterGetIndexWhere(sqlite3rbu *p, RbuObjIter *pIter){ 2219 sqlite3_stmt *pStmt = 0; 2220 int rc = p->rc; 2221 char *zRet = 0; 2222 2223 assert( pIter->zIdxSql==0 && pIter->nIdxCol==0 && pIter->aIdxCol==0 ); 2224 2225 if( rc==SQLITE_OK ){ 2226 rc = prepareAndCollectError(p->dbMain, &pStmt, &p->zErrmsg, 2227 "SELECT trim(sql) FROM sqlite_schema WHERE type='index' AND name=?" 2228 ); 2229 } 2230 if( rc==SQLITE_OK ){ 2231 int rc2; 2232 rc = sqlite3_bind_text(pStmt, 1, pIter->zIdx, -1, SQLITE_STATIC); 2233 if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ 2234 char *zSql = (char*)sqlite3_column_text(pStmt, 0); 2235 if( zSql ){ 2236 pIter->zIdxSql = zSql = rbuStrndup(zSql, &rc); 2237 } 2238 if( zSql ){ 2239 int nParen = 0; /* Number of open parenthesis */ 2240 int i; 2241 int iIdxCol = 0; 2242 int nIdxAlloc = 0; 2243 for(i=0; zSql[i]; i++){ 2244 char c = zSql[i]; 2245 2246 /* If necessary, grow the pIter->aIdxCol[] array */ 2247 if( iIdxCol==nIdxAlloc ){ 2248 RbuSpan *aIdxCol = (RbuSpan*)sqlite3_realloc( 2249 pIter->aIdxCol, (nIdxAlloc+16)*sizeof(RbuSpan) 2250 ); 2251 if( aIdxCol==0 ){ 2252 rc = SQLITE_NOMEM; 2253 break; 2254 } 2255 pIter->aIdxCol = aIdxCol; 2256 nIdxAlloc += 16; 2257 } 2258 2259 if( c=='(' ){ 2260 if( nParen==0 ){ 2261 assert( iIdxCol==0 ); 2262 pIter->aIdxCol[0].zSpan = &zSql[i+1]; 2263 } 2264 nParen++; 2265 } 2266 else if( c==')' ){ 2267 nParen--; 2268 if( nParen==0 ){ 2269 int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan; 2270 pIter->aIdxCol[iIdxCol++].nSpan = nSpan; 2271 i++; 2272 break; 2273 } 2274 }else if( c==',' && nParen==1 ){ 2275 int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan; 2276 pIter->aIdxCol[iIdxCol++].nSpan = nSpan; 2277 pIter->aIdxCol[iIdxCol].zSpan = &zSql[i+1]; 2278 }else if( c=='"' || c=='\'' || c=='`' ){ 2279 for(i++; 1; i++){ 2280 if( zSql[i]==c ){ 2281 if( zSql[i+1]!=c ) break; 2282 i++; 2283 } 2284 } 2285 }else if( c=='[' ){ 2286 for(i++; 1; i++){ 2287 if( zSql[i]==']' ) break; 2288 } 2289 }else if( c=='-' && zSql[i+1]=='-' ){ 2290 for(i=i+2; zSql[i] && zSql[i]!='\n'; i++); 2291 if( zSql[i]=='\0' ) break; 2292 }else if( c=='/' && zSql[i+1]=='*' ){ 2293 for(i=i+2; zSql[i] && (zSql[i]!='*' || zSql[i+1]!='/'); i++); 2294 if( zSql[i]=='\0' ) break; 2295 i++; 2296 } 2297 } 2298 if( zSql[i] ){ 2299 zRet = rbuStrndup(&zSql[i], &rc); 2300 } 2301 pIter->nIdxCol = iIdxCol; 2302 } 2303 } 2304 2305 rc2 = sqlite3_finalize(pStmt); 2306 if( rc==SQLITE_OK ) rc = rc2; 2307 } 2308 2309 p->rc = rc; 2310 return zRet; 2311 } 2312 2313 /* 2314 ** Ensure that the SQLite statement handles required to update the 2315 ** target database object currently indicated by the iterator passed 2316 ** as the second argument are available. 2317 */ 2318 static int rbuObjIterPrepareAll( 2319 sqlite3rbu *p, 2320 RbuObjIter *pIter, 2321 int nOffset /* Add "LIMIT -1 OFFSET $nOffset" to SELECT */ 2322 ){ 2323 assert( pIter->bCleanup==0 ); 2324 if( pIter->pSelect==0 && rbuObjIterCacheTableInfo(p, pIter)==SQLITE_OK ){ 2325 const int tnum = pIter->iTnum; 2326 char *zCollist = 0; /* List of indexed columns */ 2327 char **pz = &p->zErrmsg; 2328 const char *zIdx = pIter->zIdx; 2329 char *zLimit = 0; 2330 2331 if( nOffset ){ 2332 zLimit = sqlite3_mprintf(" LIMIT -1 OFFSET %d", nOffset); 2333 if( !zLimit ) p->rc = SQLITE_NOMEM; 2334 } 2335 2336 if( zIdx ){ 2337 const char *zTbl = pIter->zTbl; 2338 char *zImposterCols = 0; /* Columns for imposter table */ 2339 char *zImposterPK = 0; /* Primary key declaration for imposter */ 2340 char *zWhere = 0; /* WHERE clause on PK columns */ 2341 char *zBind = 0; 2342 char *zPart = 0; 2343 int nBind = 0; 2344 2345 assert( pIter->eType!=RBU_PK_VTAB ); 2346 zPart = rbuObjIterGetIndexWhere(p, pIter); 2347 zCollist = rbuObjIterGetIndexCols( 2348 p, pIter, &zImposterCols, &zImposterPK, &zWhere, &nBind 2349 ); 2350 zBind = rbuObjIterGetBindlist(p, nBind); 2351 2352 /* Create the imposter table used to write to this index. */ 2353 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1); 2354 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1,tnum); 2355 rbuMPrintfExec(p, p->dbMain, 2356 "CREATE TABLE \"rbu_imp_%w\"( %s, PRIMARY KEY( %s ) ) WITHOUT ROWID", 2357 zTbl, zImposterCols, zImposterPK 2358 ); 2359 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0); 2360 2361 /* Create the statement to insert index entries */ 2362 pIter->nCol = nBind; 2363 if( p->rc==SQLITE_OK ){ 2364 p->rc = prepareFreeAndCollectError( 2365 p->dbMain, &pIter->pInsert, &p->zErrmsg, 2366 sqlite3_mprintf("INSERT INTO \"rbu_imp_%w\" VALUES(%s)", zTbl, zBind) 2367 ); 2368 } 2369 2370 /* And to delete index entries */ 2371 if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){ 2372 p->rc = prepareFreeAndCollectError( 2373 p->dbMain, &pIter->pDelete, &p->zErrmsg, 2374 sqlite3_mprintf("DELETE FROM \"rbu_imp_%w\" WHERE %s", zTbl, zWhere) 2375 ); 2376 } 2377 2378 /* Create the SELECT statement to read keys in sorted order */ 2379 if( p->rc==SQLITE_OK ){ 2380 char *zSql; 2381 if( rbuIsVacuum(p) ){ 2382 char *zStart = 0; 2383 if( nOffset ){ 2384 zStart = rbuVacuumIndexStart(p, pIter); 2385 if( zStart ){ 2386 sqlite3_free(zLimit); 2387 zLimit = 0; 2388 } 2389 } 2390 2391 zSql = sqlite3_mprintf( 2392 "SELECT %s, 0 AS rbu_control FROM '%q' %s %s %s ORDER BY %s%s", 2393 zCollist, 2394 pIter->zDataTbl, 2395 zPart, 2396 (zStart ? (zPart ? "AND" : "WHERE") : ""), zStart, 2397 zCollist, zLimit 2398 ); 2399 sqlite3_free(zStart); 2400 }else 2401 2402 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ 2403 zSql = sqlite3_mprintf( 2404 "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s ORDER BY %s%s", 2405 zCollist, p->zStateDb, pIter->zDataTbl, 2406 zPart, zCollist, zLimit 2407 ); 2408 }else{ 2409 zSql = sqlite3_mprintf( 2410 "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s " 2411 "UNION ALL " 2412 "SELECT %s, rbu_control FROM '%q' " 2413 "%s %s typeof(rbu_control)='integer' AND rbu_control!=1 " 2414 "ORDER BY %s%s", 2415 zCollist, p->zStateDb, pIter->zDataTbl, zPart, 2416 zCollist, pIter->zDataTbl, 2417 zPart, 2418 (zPart ? "AND" : "WHERE"), 2419 zCollist, zLimit 2420 ); 2421 } 2422 if( p->rc==SQLITE_OK ){ 2423 p->rc = prepareFreeAndCollectError(p->dbRbu,&pIter->pSelect,pz,zSql); 2424 }else{ 2425 sqlite3_free(zSql); 2426 } 2427 } 2428 2429 sqlite3_free(zImposterCols); 2430 sqlite3_free(zImposterPK); 2431 sqlite3_free(zWhere); 2432 sqlite3_free(zBind); 2433 sqlite3_free(zPart); 2434 }else{ 2435 int bRbuRowid = (pIter->eType==RBU_PK_VTAB) 2436 ||(pIter->eType==RBU_PK_NONE) 2437 ||(pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p)); 2438 const char *zTbl = pIter->zTbl; /* Table this step applies to */ 2439 const char *zWrite; /* Imposter table name */ 2440 2441 char *zBindings = rbuObjIterGetBindlist(p, pIter->nTblCol + bRbuRowid); 2442 char *zWhere = rbuObjIterGetWhere(p, pIter); 2443 char *zOldlist = rbuObjIterGetOldlist(p, pIter, "old"); 2444 char *zNewlist = rbuObjIterGetOldlist(p, pIter, "new"); 2445 2446 zCollist = rbuObjIterGetCollist(p, pIter); 2447 pIter->nCol = pIter->nTblCol; 2448 2449 /* Create the imposter table or tables (if required). */ 2450 rbuCreateImposterTable(p, pIter); 2451 rbuCreateImposterTable2(p, pIter); 2452 zWrite = (pIter->eType==RBU_PK_VTAB ? "" : "rbu_imp_"); 2453 2454 /* Create the INSERT statement to write to the target PK b-tree */ 2455 if( p->rc==SQLITE_OK ){ 2456 p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pInsert, pz, 2457 sqlite3_mprintf( 2458 "INSERT INTO \"%s%w\"(%s%s) VALUES(%s)", 2459 zWrite, zTbl, zCollist, (bRbuRowid ? ", _rowid_" : ""), zBindings 2460 ) 2461 ); 2462 } 2463 2464 /* Create the DELETE statement to write to the target PK b-tree. 2465 ** Because it only performs INSERT operations, this is not required for 2466 ** an rbu vacuum handle. */ 2467 if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){ 2468 p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pDelete, pz, 2469 sqlite3_mprintf( 2470 "DELETE FROM \"%s%w\" WHERE %s", zWrite, zTbl, zWhere 2471 ) 2472 ); 2473 } 2474 2475 if( rbuIsVacuum(p)==0 && pIter->abIndexed ){ 2476 const char *zRbuRowid = ""; 2477 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ 2478 zRbuRowid = ", rbu_rowid"; 2479 } 2480 2481 /* Create the rbu_tmp_xxx table and the triggers to populate it. */ 2482 rbuMPrintfExec(p, p->dbRbu, 2483 "CREATE TABLE IF NOT EXISTS %s.'rbu_tmp_%q' AS " 2484 "SELECT *%s FROM '%q' WHERE 0;" 2485 , p->zStateDb, pIter->zDataTbl 2486 , (pIter->eType==RBU_PK_EXTERNAL ? ", 0 AS rbu_rowid" : "") 2487 , pIter->zDataTbl 2488 ); 2489 2490 rbuMPrintfExec(p, p->dbMain, 2491 "CREATE TEMP TRIGGER rbu_delete_tr BEFORE DELETE ON \"%s%w\" " 2492 "BEGIN " 2493 " SELECT rbu_tmp_insert(3, %s);" 2494 "END;" 2495 2496 "CREATE TEMP TRIGGER rbu_update1_tr BEFORE UPDATE ON \"%s%w\" " 2497 "BEGIN " 2498 " SELECT rbu_tmp_insert(3, %s);" 2499 "END;" 2500 2501 "CREATE TEMP TRIGGER rbu_update2_tr AFTER UPDATE ON \"%s%w\" " 2502 "BEGIN " 2503 " SELECT rbu_tmp_insert(4, %s);" 2504 "END;", 2505 zWrite, zTbl, zOldlist, 2506 zWrite, zTbl, zOldlist, 2507 zWrite, zTbl, zNewlist 2508 ); 2509 2510 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){ 2511 rbuMPrintfExec(p, p->dbMain, 2512 "CREATE TEMP TRIGGER rbu_insert_tr AFTER INSERT ON \"%s%w\" " 2513 "BEGIN " 2514 " SELECT rbu_tmp_insert(0, %s);" 2515 "END;", 2516 zWrite, zTbl, zNewlist 2517 ); 2518 } 2519 2520 rbuObjIterPrepareTmpInsert(p, pIter, zCollist, zRbuRowid); 2521 } 2522 2523 /* Create the SELECT statement to read keys from data_xxx */ 2524 if( p->rc==SQLITE_OK ){ 2525 const char *zRbuRowid = ""; 2526 char *zStart = 0; 2527 char *zOrder = 0; 2528 if( bRbuRowid ){ 2529 zRbuRowid = rbuIsVacuum(p) ? ",_rowid_ " : ",rbu_rowid"; 2530 } 2531 2532 if( rbuIsVacuum(p) ){ 2533 if( nOffset ){ 2534 zStart = rbuVacuumTableStart(p, pIter, bRbuRowid, zWrite); 2535 if( zStart ){ 2536 sqlite3_free(zLimit); 2537 zLimit = 0; 2538 } 2539 } 2540 if( bRbuRowid ){ 2541 zOrder = rbuMPrintf(p, "_rowid_"); 2542 }else{ 2543 zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", ""); 2544 } 2545 } 2546 2547 if( p->rc==SQLITE_OK ){ 2548 p->rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pSelect, pz, 2549 sqlite3_mprintf( 2550 "SELECT %s,%s rbu_control%s FROM '%q'%s %s %s %s", 2551 zCollist, 2552 (rbuIsVacuum(p) ? "0 AS " : ""), 2553 zRbuRowid, 2554 pIter->zDataTbl, (zStart ? zStart : ""), 2555 (zOrder ? "ORDER BY" : ""), zOrder, 2556 zLimit 2557 ) 2558 ); 2559 } 2560 sqlite3_free(zStart); 2561 sqlite3_free(zOrder); 2562 } 2563 2564 sqlite3_free(zWhere); 2565 sqlite3_free(zOldlist); 2566 sqlite3_free(zNewlist); 2567 sqlite3_free(zBindings); 2568 } 2569 sqlite3_free(zCollist); 2570 sqlite3_free(zLimit); 2571 } 2572 2573 return p->rc; 2574 } 2575 2576 /* 2577 ** Set output variable *ppStmt to point to an UPDATE statement that may 2578 ** be used to update the imposter table for the main table b-tree of the 2579 ** table object that pIter currently points to, assuming that the 2580 ** rbu_control column of the data_xyz table contains zMask. 2581 ** 2582 ** If the zMask string does not specify any columns to update, then this 2583 ** is not an error. Output variable *ppStmt is set to NULL in this case. 2584 */ 2585 static int rbuGetUpdateStmt( 2586 sqlite3rbu *p, /* RBU handle */ 2587 RbuObjIter *pIter, /* Object iterator */ 2588 const char *zMask, /* rbu_control value ('x.x.') */ 2589 sqlite3_stmt **ppStmt /* OUT: UPDATE statement handle */ 2590 ){ 2591 RbuUpdateStmt **pp; 2592 RbuUpdateStmt *pUp = 0; 2593 int nUp = 0; 2594 2595 /* In case an error occurs */ 2596 *ppStmt = 0; 2597 2598 /* Search for an existing statement. If one is found, shift it to the front 2599 ** of the LRU queue and return immediately. Otherwise, leave nUp pointing 2600 ** to the number of statements currently in the cache and pUp to the 2601 ** last object in the list. */ 2602 for(pp=&pIter->pRbuUpdate; *pp; pp=&((*pp)->pNext)){ 2603 pUp = *pp; 2604 if( strcmp(pUp->zMask, zMask)==0 ){ 2605 *pp = pUp->pNext; 2606 pUp->pNext = pIter->pRbuUpdate; 2607 pIter->pRbuUpdate = pUp; 2608 *ppStmt = pUp->pUpdate; 2609 return SQLITE_OK; 2610 } 2611 nUp++; 2612 } 2613 assert( pUp==0 || pUp->pNext==0 ); 2614 2615 if( nUp>=SQLITE_RBU_UPDATE_CACHESIZE ){ 2616 for(pp=&pIter->pRbuUpdate; *pp!=pUp; pp=&((*pp)->pNext)); 2617 *pp = 0; 2618 sqlite3_finalize(pUp->pUpdate); 2619 pUp->pUpdate = 0; 2620 }else{ 2621 pUp = (RbuUpdateStmt*)rbuMalloc(p, sizeof(RbuUpdateStmt)+pIter->nTblCol+1); 2622 } 2623 2624 if( pUp ){ 2625 char *zWhere = rbuObjIterGetWhere(p, pIter); 2626 char *zSet = rbuObjIterGetSetlist(p, pIter, zMask); 2627 char *zUpdate = 0; 2628 2629 pUp->zMask = (char*)&pUp[1]; 2630 memcpy(pUp->zMask, zMask, pIter->nTblCol); 2631 pUp->pNext = pIter->pRbuUpdate; 2632 pIter->pRbuUpdate = pUp; 2633 2634 if( zSet ){ 2635 const char *zPrefix = ""; 2636 2637 if( pIter->eType!=RBU_PK_VTAB ) zPrefix = "rbu_imp_"; 2638 zUpdate = sqlite3_mprintf("UPDATE \"%s%w\" SET %s WHERE %s", 2639 zPrefix, pIter->zTbl, zSet, zWhere 2640 ); 2641 p->rc = prepareFreeAndCollectError( 2642 p->dbMain, &pUp->pUpdate, &p->zErrmsg, zUpdate 2643 ); 2644 *ppStmt = pUp->pUpdate; 2645 } 2646 sqlite3_free(zWhere); 2647 sqlite3_free(zSet); 2648 } 2649 2650 return p->rc; 2651 } 2652 2653 static sqlite3 *rbuOpenDbhandle( 2654 sqlite3rbu *p, 2655 const char *zName, 2656 int bUseVfs 2657 ){ 2658 sqlite3 *db = 0; 2659 if( p->rc==SQLITE_OK ){ 2660 const int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_URI; 2661 p->rc = sqlite3_open_v2(zName, &db, flags, bUseVfs ? p->zVfsName : 0); 2662 if( p->rc ){ 2663 p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 2664 sqlite3_close(db); 2665 db = 0; 2666 } 2667 } 2668 return db; 2669 } 2670 2671 /* 2672 ** Free an RbuState object allocated by rbuLoadState(). 2673 */ 2674 static void rbuFreeState(RbuState *p){ 2675 if( p ){ 2676 sqlite3_free(p->zTbl); 2677 sqlite3_free(p->zDataTbl); 2678 sqlite3_free(p->zIdx); 2679 sqlite3_free(p); 2680 } 2681 } 2682 2683 /* 2684 ** Allocate an RbuState object and load the contents of the rbu_state 2685 ** table into it. Return a pointer to the new object. It is the 2686 ** responsibility of the caller to eventually free the object using 2687 ** sqlite3_free(). 2688 ** 2689 ** If an error occurs, leave an error code and message in the rbu handle 2690 ** and return NULL. 2691 */ 2692 static RbuState *rbuLoadState(sqlite3rbu *p){ 2693 RbuState *pRet = 0; 2694 sqlite3_stmt *pStmt = 0; 2695 int rc; 2696 int rc2; 2697 2698 pRet = (RbuState*)rbuMalloc(p, sizeof(RbuState)); 2699 if( pRet==0 ) return 0; 2700 2701 rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg, 2702 sqlite3_mprintf("SELECT k, v FROM %s.rbu_state", p->zStateDb) 2703 ); 2704 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ 2705 switch( sqlite3_column_int(pStmt, 0) ){ 2706 case RBU_STATE_STAGE: 2707 pRet->eStage = sqlite3_column_int(pStmt, 1); 2708 if( pRet->eStage!=RBU_STAGE_OAL 2709 && pRet->eStage!=RBU_STAGE_MOVE 2710 && pRet->eStage!=RBU_STAGE_CKPT 2711 ){ 2712 p->rc = SQLITE_CORRUPT; 2713 } 2714 break; 2715 2716 case RBU_STATE_TBL: 2717 pRet->zTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc); 2718 break; 2719 2720 case RBU_STATE_IDX: 2721 pRet->zIdx = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc); 2722 break; 2723 2724 case RBU_STATE_ROW: 2725 pRet->nRow = sqlite3_column_int(pStmt, 1); 2726 break; 2727 2728 case RBU_STATE_PROGRESS: 2729 pRet->nProgress = sqlite3_column_int64(pStmt, 1); 2730 break; 2731 2732 case RBU_STATE_CKPT: 2733 pRet->iWalCksum = sqlite3_column_int64(pStmt, 1); 2734 break; 2735 2736 case RBU_STATE_COOKIE: 2737 pRet->iCookie = (u32)sqlite3_column_int64(pStmt, 1); 2738 break; 2739 2740 case RBU_STATE_OALSZ: 2741 pRet->iOalSz = sqlite3_column_int64(pStmt, 1); 2742 break; 2743 2744 case RBU_STATE_PHASEONESTEP: 2745 pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1); 2746 break; 2747 2748 case RBU_STATE_DATATBL: 2749 pRet->zDataTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc); 2750 break; 2751 2752 default: 2753 rc = SQLITE_CORRUPT; 2754 break; 2755 } 2756 } 2757 rc2 = sqlite3_finalize(pStmt); 2758 if( rc==SQLITE_OK ) rc = rc2; 2759 2760 p->rc = rc; 2761 return pRet; 2762 } 2763 2764 2765 /* 2766 ** Open the database handle and attach the RBU database as "rbu". If an 2767 ** error occurs, leave an error code and message in the RBU handle. 2768 ** 2769 ** If argument dbMain is not NULL, then it is a database handle already 2770 ** open on the target database. Use this handle instead of opening a new 2771 ** one. 2772 */ 2773 static void rbuOpenDatabase(sqlite3rbu *p, sqlite3 *dbMain, int *pbRetry){ 2774 assert( p->rc || (p->dbMain==0 && p->dbRbu==0) ); 2775 assert( p->rc || rbuIsVacuum(p) || p->zTarget!=0 ); 2776 assert( dbMain==0 || rbuIsVacuum(p)==0 ); 2777 2778 /* Open the RBU database */ 2779 p->dbRbu = rbuOpenDbhandle(p, p->zRbu, 1); 2780 p->dbMain = dbMain; 2781 2782 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){ 2783 sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p); 2784 if( p->zState==0 ){ 2785 const char *zFile = sqlite3_db_filename(p->dbRbu, "main"); 2786 p->zState = rbuMPrintf(p, "file:///%s-vacuum?modeof=%s", zFile, zFile); 2787 } 2788 } 2789 2790 /* If using separate RBU and state databases, attach the state database to 2791 ** the RBU db handle now. */ 2792 if( p->zState ){ 2793 rbuMPrintfExec(p, p->dbRbu, "ATTACH %Q AS stat", p->zState); 2794 memcpy(p->zStateDb, "stat", 4); 2795 }else{ 2796 memcpy(p->zStateDb, "main", 4); 2797 } 2798 2799 #if 0 2800 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){ 2801 p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, 0); 2802 } 2803 #endif 2804 2805 /* If it has not already been created, create the rbu_state table */ 2806 rbuMPrintfExec(p, p->dbRbu, RBU_CREATE_STATE, p->zStateDb); 2807 2808 #if 0 2809 if( rbuIsVacuum(p) ){ 2810 if( p->rc==SQLITE_OK ){ 2811 int rc2; 2812 int bOk = 0; 2813 sqlite3_stmt *pCnt = 0; 2814 p->rc = prepareAndCollectError(p->dbRbu, &pCnt, &p->zErrmsg, 2815 "SELECT count(*) FROM stat.sqlite_schema" 2816 ); 2817 if( p->rc==SQLITE_OK 2818 && sqlite3_step(pCnt)==SQLITE_ROW 2819 && 1==sqlite3_column_int(pCnt, 0) 2820 ){ 2821 bOk = 1; 2822 } 2823 rc2 = sqlite3_finalize(pCnt); 2824 if( p->rc==SQLITE_OK ) p->rc = rc2; 2825 2826 if( p->rc==SQLITE_OK && bOk==0 ){ 2827 p->rc = SQLITE_ERROR; 2828 p->zErrmsg = sqlite3_mprintf("invalid state database"); 2829 } 2830 2831 if( p->rc==SQLITE_OK ){ 2832 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0); 2833 } 2834 } 2835 } 2836 #endif 2837 2838 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){ 2839 int bOpen = 0; 2840 int rc; 2841 p->nRbu = 0; 2842 p->pRbuFd = 0; 2843 rc = sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p); 2844 if( rc!=SQLITE_NOTFOUND ) p->rc = rc; 2845 if( p->eStage>=RBU_STAGE_MOVE ){ 2846 bOpen = 1; 2847 }else{ 2848 RbuState *pState = rbuLoadState(p); 2849 if( pState ){ 2850 bOpen = (pState->eStage>=RBU_STAGE_MOVE); 2851 rbuFreeState(pState); 2852 } 2853 } 2854 if( bOpen ) p->dbMain = rbuOpenDbhandle(p, p->zRbu, p->nRbu<=1); 2855 } 2856 2857 p->eStage = 0; 2858 if( p->rc==SQLITE_OK && p->dbMain==0 ){ 2859 if( !rbuIsVacuum(p) ){ 2860 p->dbMain = rbuOpenDbhandle(p, p->zTarget, 1); 2861 }else if( p->pRbuFd->pWalFd ){ 2862 if( pbRetry ){ 2863 p->pRbuFd->bNolock = 0; 2864 sqlite3_close(p->dbRbu); 2865 sqlite3_close(p->dbMain); 2866 p->dbMain = 0; 2867 p->dbRbu = 0; 2868 *pbRetry = 1; 2869 return; 2870 } 2871 p->rc = SQLITE_ERROR; 2872 p->zErrmsg = sqlite3_mprintf("cannot vacuum wal mode database"); 2873 }else{ 2874 char *zTarget; 2875 char *zExtra = 0; 2876 if( strlen(p->zRbu)>=5 && 0==memcmp("file:", p->zRbu, 5) ){ 2877 zExtra = &p->zRbu[5]; 2878 while( *zExtra ){ 2879 if( *zExtra++=='?' ) break; 2880 } 2881 if( *zExtra=='\0' ) zExtra = 0; 2882 } 2883 2884 zTarget = sqlite3_mprintf("file:%s-vactmp?rbu_memory=1%s%s", 2885 sqlite3_db_filename(p->dbRbu, "main"), 2886 (zExtra==0 ? "" : "&"), (zExtra==0 ? "" : zExtra) 2887 ); 2888 2889 if( zTarget==0 ){ 2890 p->rc = SQLITE_NOMEM; 2891 return; 2892 } 2893 p->dbMain = rbuOpenDbhandle(p, zTarget, p->nRbu<=1); 2894 sqlite3_free(zTarget); 2895 } 2896 } 2897 2898 if( p->rc==SQLITE_OK ){ 2899 p->rc = sqlite3_create_function(p->dbMain, 2900 "rbu_tmp_insert", -1, SQLITE_UTF8, (void*)p, rbuTmpInsertFunc, 0, 0 2901 ); 2902 } 2903 2904 if( p->rc==SQLITE_OK ){ 2905 p->rc = sqlite3_create_function(p->dbMain, 2906 "rbu_fossil_delta", 2, SQLITE_UTF8, 0, rbuFossilDeltaFunc, 0, 0 2907 ); 2908 } 2909 2910 if( p->rc==SQLITE_OK ){ 2911 p->rc = sqlite3_create_function(p->dbRbu, 2912 "rbu_target_name", -1, SQLITE_UTF8, (void*)p, rbuTargetNameFunc, 0, 0 2913 ); 2914 } 2915 2916 if( p->rc==SQLITE_OK ){ 2917 p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p); 2918 } 2919 rbuMPrintfExec(p, p->dbMain, "SELECT * FROM sqlite_schema"); 2920 2921 /* Mark the database file just opened as an RBU target database. If 2922 ** this call returns SQLITE_NOTFOUND, then the RBU vfs is not in use. 2923 ** This is an error. */ 2924 if( p->rc==SQLITE_OK ){ 2925 p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p); 2926 } 2927 2928 if( p->rc==SQLITE_NOTFOUND ){ 2929 p->rc = SQLITE_ERROR; 2930 p->zErrmsg = sqlite3_mprintf("rbu vfs not found"); 2931 } 2932 } 2933 2934 /* 2935 ** This routine is a copy of the sqlite3FileSuffix3() routine from the core. 2936 ** It is a no-op unless SQLITE_ENABLE_8_3_NAMES is defined. 2937 ** 2938 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database 2939 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and 2940 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than 2941 ** three characters, then shorten the suffix on z[] to be the last three 2942 ** characters of the original suffix. 2943 ** 2944 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always 2945 ** do the suffix shortening regardless of URI parameter. 2946 ** 2947 ** Examples: 2948 ** 2949 ** test.db-journal => test.nal 2950 ** test.db-wal => test.wal 2951 ** test.db-shm => test.shm 2952 ** test.db-mj7f3319fa => test.9fa 2953 */ 2954 static void rbuFileSuffix3(const char *zBase, char *z){ 2955 #ifdef SQLITE_ENABLE_8_3_NAMES 2956 #if SQLITE_ENABLE_8_3_NAMES<2 2957 if( sqlite3_uri_boolean(zBase, "8_3_names", 0) ) 2958 #endif 2959 { 2960 int i, sz; 2961 sz = (int)strlen(z)&0xffffff; 2962 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} 2963 if( z[i]=='.' && sz>i+4 ) memmove(&z[i+1], &z[sz-3], 4); 2964 } 2965 #endif 2966 } 2967 2968 /* 2969 ** Return the current wal-index header checksum for the target database 2970 ** as a 64-bit integer. 2971 ** 2972 ** The checksum is store in the first page of xShmMap memory as an 8-byte 2973 ** blob starting at byte offset 40. 2974 */ 2975 static i64 rbuShmChecksum(sqlite3rbu *p){ 2976 i64 iRet = 0; 2977 if( p->rc==SQLITE_OK ){ 2978 sqlite3_file *pDb = p->pTargetFd->pReal; 2979 u32 volatile *ptr; 2980 p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, (void volatile**)&ptr); 2981 if( p->rc==SQLITE_OK ){ 2982 iRet = ((i64)ptr[10] << 32) + ptr[11]; 2983 } 2984 } 2985 return iRet; 2986 } 2987 2988 /* 2989 ** This function is called as part of initializing or reinitializing an 2990 ** incremental checkpoint. 2991 ** 2992 ** It populates the sqlite3rbu.aFrame[] array with the set of 2993 ** (wal frame -> db page) copy operations required to checkpoint the 2994 ** current wal file, and obtains the set of shm locks required to safely 2995 ** perform the copy operations directly on the file-system. 2996 ** 2997 ** If argument pState is not NULL, then the incremental checkpoint is 2998 ** being resumed. In this case, if the checksum of the wal-index-header 2999 ** following recovery is not the same as the checksum saved in the RbuState 3000 ** object, then the rbu handle is set to DONE state. This occurs if some 3001 ** other client appends a transaction to the wal file in the middle of 3002 ** an incremental checkpoint. 3003 */ 3004 static void rbuSetupCheckpoint(sqlite3rbu *p, RbuState *pState){ 3005 3006 /* If pState is NULL, then the wal file may not have been opened and 3007 ** recovered. Running a read-statement here to ensure that doing so 3008 ** does not interfere with the "capture" process below. */ 3009 if( pState==0 ){ 3010 p->eStage = 0; 3011 if( p->rc==SQLITE_OK ){ 3012 p->rc = sqlite3_exec(p->dbMain, "SELECT * FROM sqlite_schema", 0, 0, 0); 3013 } 3014 } 3015 3016 /* Assuming no error has occurred, run a "restart" checkpoint with the 3017 ** sqlite3rbu.eStage variable set to CAPTURE. This turns on the following 3018 ** special behaviour in the rbu VFS: 3019 ** 3020 ** * If the exclusive shm WRITER or READ0 lock cannot be obtained, 3021 ** the checkpoint fails with SQLITE_BUSY (normally SQLite would 3022 ** proceed with running a passive checkpoint instead of failing). 3023 ** 3024 ** * Attempts to read from the *-wal file or write to the database file 3025 ** do not perform any IO. Instead, the frame/page combinations that 3026 ** would be read/written are recorded in the sqlite3rbu.aFrame[] 3027 ** array. 3028 ** 3029 ** * Calls to xShmLock(UNLOCK) to release the exclusive shm WRITER, 3030 ** READ0 and CHECKPOINT locks taken as part of the checkpoint are 3031 ** no-ops. These locks will not be released until the connection 3032 ** is closed. 3033 ** 3034 ** * Attempting to xSync() the database file causes an SQLITE_INTERNAL 3035 ** error. 3036 ** 3037 ** As a result, unless an error (i.e. OOM or SQLITE_BUSY) occurs, the 3038 ** checkpoint below fails with SQLITE_INTERNAL, and leaves the aFrame[] 3039 ** array populated with a set of (frame -> page) mappings. Because the 3040 ** WRITER, CHECKPOINT and READ0 locks are still held, it is safe to copy 3041 ** data from the wal file into the database file according to the 3042 ** contents of aFrame[]. 3043 */ 3044 if( p->rc==SQLITE_OK ){ 3045 int rc2; 3046 p->eStage = RBU_STAGE_CAPTURE; 3047 rc2 = sqlite3_exec(p->dbMain, "PRAGMA main.wal_checkpoint=restart", 0, 0,0); 3048 if( rc2!=SQLITE_INTERNAL ) p->rc = rc2; 3049 } 3050 3051 if( p->rc==SQLITE_OK && p->nFrame>0 ){ 3052 p->eStage = RBU_STAGE_CKPT; 3053 p->nStep = (pState ? pState->nRow : 0); 3054 p->aBuf = rbuMalloc(p, p->pgsz); 3055 p->iWalCksum = rbuShmChecksum(p); 3056 } 3057 3058 if( p->rc==SQLITE_OK ){ 3059 if( p->nFrame==0 || (pState && pState->iWalCksum!=p->iWalCksum) ){ 3060 p->rc = SQLITE_DONE; 3061 p->eStage = RBU_STAGE_DONE; 3062 }else{ 3063 int nSectorSize; 3064 sqlite3_file *pDb = p->pTargetFd->pReal; 3065 sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal; 3066 assert( p->nPagePerSector==0 ); 3067 nSectorSize = pDb->pMethods->xSectorSize(pDb); 3068 if( nSectorSize>p->pgsz ){ 3069 p->nPagePerSector = nSectorSize / p->pgsz; 3070 }else{ 3071 p->nPagePerSector = 1; 3072 } 3073 3074 /* Call xSync() on the wal file. This causes SQLite to sync the 3075 ** directory in which the target database and the wal file reside, in 3076 ** case it has not been synced since the rename() call in 3077 ** rbuMoveOalFile(). */ 3078 p->rc = pWal->pMethods->xSync(pWal, SQLITE_SYNC_NORMAL); 3079 } 3080 } 3081 } 3082 3083 /* 3084 ** Called when iAmt bytes are read from offset iOff of the wal file while 3085 ** the rbu object is in capture mode. Record the frame number of the frame 3086 ** being read in the aFrame[] array. 3087 */ 3088 static int rbuCaptureWalRead(sqlite3rbu *pRbu, i64 iOff, int iAmt){ 3089 const u32 mReq = (1<<WAL_LOCK_WRITE)|(1<<WAL_LOCK_CKPT)|(1<<WAL_LOCK_READ0); 3090 u32 iFrame; 3091 3092 if( pRbu->mLock!=mReq ){ 3093 pRbu->rc = SQLITE_BUSY; 3094 return SQLITE_INTERNAL; 3095 } 3096 3097 pRbu->pgsz = iAmt; 3098 if( pRbu->nFrame==pRbu->nFrameAlloc ){ 3099 int nNew = (pRbu->nFrameAlloc ? pRbu->nFrameAlloc : 64) * 2; 3100 RbuFrame *aNew; 3101 aNew = (RbuFrame*)sqlite3_realloc64(pRbu->aFrame, nNew * sizeof(RbuFrame)); 3102 if( aNew==0 ) return SQLITE_NOMEM; 3103 pRbu->aFrame = aNew; 3104 pRbu->nFrameAlloc = nNew; 3105 } 3106 3107 iFrame = (u32)((iOff-32) / (i64)(iAmt+24)) + 1; 3108 if( pRbu->iMaxFrame<iFrame ) pRbu->iMaxFrame = iFrame; 3109 pRbu->aFrame[pRbu->nFrame].iWalFrame = iFrame; 3110 pRbu->aFrame[pRbu->nFrame].iDbPage = 0; 3111 pRbu->nFrame++; 3112 return SQLITE_OK; 3113 } 3114 3115 /* 3116 ** Called when a page of data is written to offset iOff of the database 3117 ** file while the rbu handle is in capture mode. Record the page number 3118 ** of the page being written in the aFrame[] array. 3119 */ 3120 static int rbuCaptureDbWrite(sqlite3rbu *pRbu, i64 iOff){ 3121 pRbu->aFrame[pRbu->nFrame-1].iDbPage = (u32)(iOff / pRbu->pgsz) + 1; 3122 return SQLITE_OK; 3123 } 3124 3125 /* 3126 ** This is called as part of an incremental checkpoint operation. Copy 3127 ** a single frame of data from the wal file into the database file, as 3128 ** indicated by the RbuFrame object. 3129 */ 3130 static void rbuCheckpointFrame(sqlite3rbu *p, RbuFrame *pFrame){ 3131 sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal; 3132 sqlite3_file *pDb = p->pTargetFd->pReal; 3133 i64 iOff; 3134 3135 assert( p->rc==SQLITE_OK ); 3136 iOff = (i64)(pFrame->iWalFrame-1) * (p->pgsz + 24) + 32 + 24; 3137 p->rc = pWal->pMethods->xRead(pWal, p->aBuf, p->pgsz, iOff); 3138 if( p->rc ) return; 3139 3140 iOff = (i64)(pFrame->iDbPage-1) * p->pgsz; 3141 p->rc = pDb->pMethods->xWrite(pDb, p->aBuf, p->pgsz, iOff); 3142 } 3143 3144 3145 /* 3146 ** Take an EXCLUSIVE lock on the database file. Return SQLITE_OK if 3147 ** successful, or an SQLite error code otherwise. 3148 */ 3149 static int rbuLockDatabase(sqlite3 *db){ 3150 int rc = SQLITE_OK; 3151 sqlite3_file *fd = 0; 3152 sqlite3_file_control(db, "main", SQLITE_FCNTL_FILE_POINTER, &fd); 3153 3154 if( fd->pMethods ){ 3155 rc = fd->pMethods->xLock(fd, SQLITE_LOCK_SHARED); 3156 if( rc==SQLITE_OK ){ 3157 rc = fd->pMethods->xLock(fd, SQLITE_LOCK_EXCLUSIVE); 3158 } 3159 } 3160 return rc; 3161 } 3162 3163 /* 3164 ** Return true if the database handle passed as the only argument 3165 ** was opened with the rbu_exclusive_checkpoint=1 URI parameter 3166 ** specified. Or false otherwise. 3167 */ 3168 static int rbuExclusiveCheckpoint(sqlite3 *db){ 3169 const char *zUri = sqlite3_db_filename(db, 0); 3170 return sqlite3_uri_boolean(zUri, RBU_EXCLUSIVE_CHECKPOINT, 0); 3171 } 3172 3173 #if defined(_WIN32_WCE) 3174 static LPWSTR rbuWinUtf8ToUnicode(const char *zFilename){ 3175 int nChar; 3176 LPWSTR zWideFilename; 3177 3178 nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0); 3179 if( nChar==0 ){ 3180 return 0; 3181 } 3182 zWideFilename = sqlite3_malloc64( nChar*sizeof(zWideFilename[0]) ); 3183 if( zWideFilename==0 ){ 3184 return 0; 3185 } 3186 memset(zWideFilename, 0, nChar*sizeof(zWideFilename[0])); 3187 nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, 3188 nChar); 3189 if( nChar==0 ){ 3190 sqlite3_free(zWideFilename); 3191 zWideFilename = 0; 3192 } 3193 return zWideFilename; 3194 } 3195 #endif 3196 3197 /* 3198 ** The RBU handle is currently in RBU_STAGE_OAL state, with a SHARED lock 3199 ** on the database file. This proc moves the *-oal file to the *-wal path, 3200 ** then reopens the database file (this time in vanilla, non-oal, WAL mode). 3201 ** If an error occurs, leave an error code and error message in the rbu 3202 ** handle. 3203 */ 3204 static void rbuMoveOalFile(sqlite3rbu *p){ 3205 const char *zBase = sqlite3_db_filename(p->dbMain, "main"); 3206 const char *zMove = zBase; 3207 char *zOal; 3208 char *zWal; 3209 3210 if( rbuIsVacuum(p) ){ 3211 zMove = sqlite3_db_filename(p->dbRbu, "main"); 3212 } 3213 zOal = sqlite3_mprintf("%s-oal", zMove); 3214 zWal = sqlite3_mprintf("%s-wal", zMove); 3215 3216 assert( p->eStage==RBU_STAGE_MOVE ); 3217 assert( p->rc==SQLITE_OK && p->zErrmsg==0 ); 3218 if( zWal==0 || zOal==0 ){ 3219 p->rc = SQLITE_NOMEM; 3220 }else{ 3221 /* Move the *-oal file to *-wal. At this point connection p->db is 3222 ** holding a SHARED lock on the target database file (because it is 3223 ** in WAL mode). So no other connection may be writing the db. 3224 ** 3225 ** In order to ensure that there are no database readers, an EXCLUSIVE 3226 ** lock is obtained here before the *-oal is moved to *-wal. 3227 */ 3228 sqlite3 *dbMain = 0; 3229 rbuFileSuffix3(zBase, zWal); 3230 rbuFileSuffix3(zBase, zOal); 3231 3232 /* Re-open the databases. */ 3233 rbuObjIterFinalize(&p->objiter); 3234 sqlite3_close(p->dbRbu); 3235 sqlite3_close(p->dbMain); 3236 p->dbMain = 0; 3237 p->dbRbu = 0; 3238 3239 dbMain = rbuOpenDbhandle(p, p->zTarget, 1); 3240 if( dbMain ){ 3241 assert( p->rc==SQLITE_OK ); 3242 p->rc = rbuLockDatabase(dbMain); 3243 } 3244 3245 if( p->rc==SQLITE_OK ){ 3246 p->rc = p->xRename(p->pRenameArg, zOal, zWal); 3247 } 3248 3249 if( p->rc!=SQLITE_OK 3250 || rbuIsVacuum(p) 3251 || rbuExclusiveCheckpoint(dbMain)==0 3252 ){ 3253 sqlite3_close(dbMain); 3254 dbMain = 0; 3255 } 3256 3257 if( p->rc==SQLITE_OK ){ 3258 rbuOpenDatabase(p, dbMain, 0); 3259 rbuSetupCheckpoint(p, 0); 3260 } 3261 } 3262 3263 sqlite3_free(zWal); 3264 sqlite3_free(zOal); 3265 } 3266 3267 /* 3268 ** The SELECT statement iterating through the keys for the current object 3269 ** (p->objiter.pSelect) currently points to a valid row. This function 3270 ** determines the type of operation requested by this row and returns 3271 ** one of the following values to indicate the result: 3272 ** 3273 ** * RBU_INSERT 3274 ** * RBU_DELETE 3275 ** * RBU_IDX_DELETE 3276 ** * RBU_UPDATE 3277 ** 3278 ** If RBU_UPDATE is returned, then output variable *pzMask is set to 3279 ** point to the text value indicating the columns to update. 3280 ** 3281 ** If the rbu_control field contains an invalid value, an error code and 3282 ** message are left in the RBU handle and zero returned. 3283 */ 3284 static int rbuStepType(sqlite3rbu *p, const char **pzMask){ 3285 int iCol = p->objiter.nCol; /* Index of rbu_control column */ 3286 int res = 0; /* Return value */ 3287 3288 switch( sqlite3_column_type(p->objiter.pSelect, iCol) ){ 3289 case SQLITE_INTEGER: { 3290 int iVal = sqlite3_column_int(p->objiter.pSelect, iCol); 3291 switch( iVal ){ 3292 case 0: res = RBU_INSERT; break; 3293 case 1: res = RBU_DELETE; break; 3294 case 2: res = RBU_REPLACE; break; 3295 case 3: res = RBU_IDX_DELETE; break; 3296 case 4: res = RBU_IDX_INSERT; break; 3297 } 3298 break; 3299 } 3300 3301 case SQLITE_TEXT: { 3302 const unsigned char *z = sqlite3_column_text(p->objiter.pSelect, iCol); 3303 if( z==0 ){ 3304 p->rc = SQLITE_NOMEM; 3305 }else{ 3306 *pzMask = (const char*)z; 3307 } 3308 res = RBU_UPDATE; 3309 3310 break; 3311 } 3312 3313 default: 3314 break; 3315 } 3316 3317 if( res==0 ){ 3318 rbuBadControlError(p); 3319 } 3320 return res; 3321 } 3322 3323 #ifdef SQLITE_DEBUG 3324 /* 3325 ** Assert that column iCol of statement pStmt is named zName. 3326 */ 3327 static void assertColumnName(sqlite3_stmt *pStmt, int iCol, const char *zName){ 3328 const char *zCol = sqlite3_column_name(pStmt, iCol); 3329 assert( 0==sqlite3_stricmp(zName, zCol) ); 3330 } 3331 #else 3332 # define assertColumnName(x,y,z) 3333 #endif 3334 3335 /* 3336 ** Argument eType must be one of RBU_INSERT, RBU_DELETE, RBU_IDX_INSERT or 3337 ** RBU_IDX_DELETE. This function performs the work of a single 3338 ** sqlite3rbu_step() call for the type of operation specified by eType. 3339 */ 3340 static void rbuStepOneOp(sqlite3rbu *p, int eType){ 3341 RbuObjIter *pIter = &p->objiter; 3342 sqlite3_value *pVal; 3343 sqlite3_stmt *pWriter; 3344 int i; 3345 3346 assert( p->rc==SQLITE_OK ); 3347 assert( eType!=RBU_DELETE || pIter->zIdx==0 ); 3348 assert( eType==RBU_DELETE || eType==RBU_IDX_DELETE 3349 || eType==RBU_INSERT || eType==RBU_IDX_INSERT 3350 ); 3351 3352 /* If this is a delete, decrement nPhaseOneStep by nIndex. If the DELETE 3353 ** statement below does actually delete a row, nPhaseOneStep will be 3354 ** incremented by the same amount when SQL function rbu_tmp_insert() 3355 ** is invoked by the trigger. */ 3356 if( eType==RBU_DELETE ){ 3357 p->nPhaseOneStep -= p->objiter.nIndex; 3358 } 3359 3360 if( eType==RBU_IDX_DELETE || eType==RBU_DELETE ){ 3361 pWriter = pIter->pDelete; 3362 }else{ 3363 pWriter = pIter->pInsert; 3364 } 3365 3366 for(i=0; i<pIter->nCol; i++){ 3367 /* If this is an INSERT into a table b-tree and the table has an 3368 ** explicit INTEGER PRIMARY KEY, check that this is not an attempt 3369 ** to write a NULL into the IPK column. That is not permitted. */ 3370 if( eType==RBU_INSERT 3371 && pIter->zIdx==0 && pIter->eType==RBU_PK_IPK && pIter->abTblPk[i] 3372 && sqlite3_column_type(pIter->pSelect, i)==SQLITE_NULL 3373 ){ 3374 p->rc = SQLITE_MISMATCH; 3375 p->zErrmsg = sqlite3_mprintf("datatype mismatch"); 3376 return; 3377 } 3378 3379 if( eType==RBU_DELETE && pIter->abTblPk[i]==0 ){ 3380 continue; 3381 } 3382 3383 pVal = sqlite3_column_value(pIter->pSelect, i); 3384 p->rc = sqlite3_bind_value(pWriter, i+1, pVal); 3385 if( p->rc ) return; 3386 } 3387 if( pIter->zIdx==0 ){ 3388 if( pIter->eType==RBU_PK_VTAB 3389 || pIter->eType==RBU_PK_NONE 3390 || (pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p)) 3391 ){ 3392 /* For a virtual table, or a table with no primary key, the 3393 ** SELECT statement is: 3394 ** 3395 ** SELECT <cols>, rbu_control, rbu_rowid FROM .... 3396 ** 3397 ** Hence column_value(pIter->nCol+1). 3398 */ 3399 assertColumnName(pIter->pSelect, pIter->nCol+1, 3400 rbuIsVacuum(p) ? "rowid" : "rbu_rowid" 3401 ); 3402 pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1); 3403 p->rc = sqlite3_bind_value(pWriter, pIter->nCol+1, pVal); 3404 } 3405 } 3406 if( p->rc==SQLITE_OK ){ 3407 sqlite3_step(pWriter); 3408 p->rc = resetAndCollectError(pWriter, &p->zErrmsg); 3409 } 3410 } 3411 3412 /* 3413 ** This function does the work for an sqlite3rbu_step() call. 3414 ** 3415 ** The object-iterator (p->objiter) currently points to a valid object, 3416 ** and the input cursor (p->objiter.pSelect) currently points to a valid 3417 ** input row. Perform whatever processing is required and return. 3418 ** 3419 ** If no error occurs, SQLITE_OK is returned. Otherwise, an error code 3420 ** and message is left in the RBU handle and a copy of the error code 3421 ** returned. 3422 */ 3423 static int rbuStep(sqlite3rbu *p){ 3424 RbuObjIter *pIter = &p->objiter; 3425 const char *zMask = 0; 3426 int eType = rbuStepType(p, &zMask); 3427 3428 if( eType ){ 3429 assert( eType==RBU_INSERT || eType==RBU_DELETE 3430 || eType==RBU_REPLACE || eType==RBU_IDX_DELETE 3431 || eType==RBU_IDX_INSERT || eType==RBU_UPDATE 3432 ); 3433 assert( eType!=RBU_UPDATE || pIter->zIdx==0 ); 3434 3435 if( pIter->zIdx==0 && (eType==RBU_IDX_DELETE || eType==RBU_IDX_INSERT) ){ 3436 rbuBadControlError(p); 3437 } 3438 else if( eType==RBU_REPLACE ){ 3439 if( pIter->zIdx==0 ){ 3440 p->nPhaseOneStep += p->objiter.nIndex; 3441 rbuStepOneOp(p, RBU_DELETE); 3442 } 3443 if( p->rc==SQLITE_OK ) rbuStepOneOp(p, RBU_INSERT); 3444 } 3445 else if( eType!=RBU_UPDATE ){ 3446 rbuStepOneOp(p, eType); 3447 } 3448 else{ 3449 sqlite3_value *pVal; 3450 sqlite3_stmt *pUpdate = 0; 3451 assert( eType==RBU_UPDATE ); 3452 p->nPhaseOneStep -= p->objiter.nIndex; 3453 rbuGetUpdateStmt(p, pIter, zMask, &pUpdate); 3454 if( pUpdate ){ 3455 int i; 3456 for(i=0; p->rc==SQLITE_OK && i<pIter->nCol; i++){ 3457 char c = zMask[pIter->aiSrcOrder[i]]; 3458 pVal = sqlite3_column_value(pIter->pSelect, i); 3459 if( pIter->abTblPk[i] || c!='.' ){ 3460 p->rc = sqlite3_bind_value(pUpdate, i+1, pVal); 3461 } 3462 } 3463 if( p->rc==SQLITE_OK 3464 && (pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE) 3465 ){ 3466 /* Bind the rbu_rowid value to column _rowid_ */ 3467 assertColumnName(pIter->pSelect, pIter->nCol+1, "rbu_rowid"); 3468 pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1); 3469 p->rc = sqlite3_bind_value(pUpdate, pIter->nCol+1, pVal); 3470 } 3471 if( p->rc==SQLITE_OK ){ 3472 sqlite3_step(pUpdate); 3473 p->rc = resetAndCollectError(pUpdate, &p->zErrmsg); 3474 } 3475 } 3476 } 3477 } 3478 return p->rc; 3479 } 3480 3481 /* 3482 ** Increment the schema cookie of the main database opened by p->dbMain. 3483 ** 3484 ** Or, if this is an RBU vacuum, set the schema cookie of the main db 3485 ** opened by p->dbMain to one more than the schema cookie of the main 3486 ** db opened by p->dbRbu. 3487 */ 3488 static void rbuIncrSchemaCookie(sqlite3rbu *p){ 3489 if( p->rc==SQLITE_OK ){ 3490 sqlite3 *dbread = (rbuIsVacuum(p) ? p->dbRbu : p->dbMain); 3491 int iCookie = 1000000; 3492 sqlite3_stmt *pStmt; 3493 3494 p->rc = prepareAndCollectError(dbread, &pStmt, &p->zErrmsg, 3495 "PRAGMA schema_version" 3496 ); 3497 if( p->rc==SQLITE_OK ){ 3498 /* Coverage: it may be that this sqlite3_step() cannot fail. There 3499 ** is already a transaction open, so the prepared statement cannot 3500 ** throw an SQLITE_SCHEMA exception. The only database page the 3501 ** statement reads is page 1, which is guaranteed to be in the cache. 3502 ** And no memory allocations are required. */ 3503 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 3504 iCookie = sqlite3_column_int(pStmt, 0); 3505 } 3506 rbuFinalize(p, pStmt); 3507 } 3508 if( p->rc==SQLITE_OK ){ 3509 rbuMPrintfExec(p, p->dbMain, "PRAGMA schema_version = %d", iCookie+1); 3510 } 3511 } 3512 } 3513 3514 /* 3515 ** Update the contents of the rbu_state table within the rbu database. The 3516 ** value stored in the RBU_STATE_STAGE column is eStage. All other values 3517 ** are determined by inspecting the rbu handle passed as the first argument. 3518 */ 3519 static void rbuSaveState(sqlite3rbu *p, int eStage){ 3520 if( p->rc==SQLITE_OK || p->rc==SQLITE_DONE ){ 3521 sqlite3_stmt *pInsert = 0; 3522 rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd); 3523 int rc; 3524 3525 assert( p->zErrmsg==0 ); 3526 rc = prepareFreeAndCollectError(p->dbRbu, &pInsert, &p->zErrmsg, 3527 sqlite3_mprintf( 3528 "INSERT OR REPLACE INTO %s.rbu_state(k, v) VALUES " 3529 "(%d, %d), " 3530 "(%d, %Q), " 3531 "(%d, %Q), " 3532 "(%d, %d), " 3533 "(%d, %d), " 3534 "(%d, %lld), " 3535 "(%d, %lld), " 3536 "(%d, %lld), " 3537 "(%d, %lld), " 3538 "(%d, %Q) ", 3539 p->zStateDb, 3540 RBU_STATE_STAGE, eStage, 3541 RBU_STATE_TBL, p->objiter.zTbl, 3542 RBU_STATE_IDX, p->objiter.zIdx, 3543 RBU_STATE_ROW, p->nStep, 3544 RBU_STATE_PROGRESS, p->nProgress, 3545 RBU_STATE_CKPT, p->iWalCksum, 3546 RBU_STATE_COOKIE, (i64)pFd->iCookie, 3547 RBU_STATE_OALSZ, p->iOalSz, 3548 RBU_STATE_PHASEONESTEP, p->nPhaseOneStep, 3549 RBU_STATE_DATATBL, p->objiter.zDataTbl 3550 ) 3551 ); 3552 assert( pInsert==0 || rc==SQLITE_OK ); 3553 3554 if( rc==SQLITE_OK ){ 3555 sqlite3_step(pInsert); 3556 rc = sqlite3_finalize(pInsert); 3557 } 3558 if( rc!=SQLITE_OK ) p->rc = rc; 3559 } 3560 } 3561 3562 3563 /* 3564 ** The second argument passed to this function is the name of a PRAGMA 3565 ** setting - "page_size", "auto_vacuum", "user_version" or "application_id". 3566 ** This function executes the following on sqlite3rbu.dbRbu: 3567 ** 3568 ** "PRAGMA main.$zPragma" 3569 ** 3570 ** where $zPragma is the string passed as the second argument, then 3571 ** on sqlite3rbu.dbMain: 3572 ** 3573 ** "PRAGMA main.$zPragma = $val" 3574 ** 3575 ** where $val is the value returned by the first PRAGMA invocation. 3576 ** 3577 ** In short, it copies the value of the specified PRAGMA setting from 3578 ** dbRbu to dbMain. 3579 */ 3580 static void rbuCopyPragma(sqlite3rbu *p, const char *zPragma){ 3581 if( p->rc==SQLITE_OK ){ 3582 sqlite3_stmt *pPragma = 0; 3583 p->rc = prepareFreeAndCollectError(p->dbRbu, &pPragma, &p->zErrmsg, 3584 sqlite3_mprintf("PRAGMA main.%s", zPragma) 3585 ); 3586 if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pPragma) ){ 3587 p->rc = rbuMPrintfExec(p, p->dbMain, "PRAGMA main.%s = %d", 3588 zPragma, sqlite3_column_int(pPragma, 0) 3589 ); 3590 } 3591 rbuFinalize(p, pPragma); 3592 } 3593 } 3594 3595 /* 3596 ** The RBU handle passed as the only argument has just been opened and 3597 ** the state database is empty. If this RBU handle was opened for an 3598 ** RBU vacuum operation, create the schema in the target db. 3599 */ 3600 static void rbuCreateTargetSchema(sqlite3rbu *p){ 3601 sqlite3_stmt *pSql = 0; 3602 sqlite3_stmt *pInsert = 0; 3603 3604 assert( rbuIsVacuum(p) ); 3605 p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=1", 0,0, &p->zErrmsg); 3606 if( p->rc==SQLITE_OK ){ 3607 p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg, 3608 "SELECT sql FROM sqlite_schema WHERE sql!='' AND rootpage!=0" 3609 " AND name!='sqlite_sequence' " 3610 " ORDER BY type DESC" 3611 ); 3612 } 3613 3614 while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){ 3615 const char *zSql = (const char*)sqlite3_column_text(pSql, 0); 3616 p->rc = sqlite3_exec(p->dbMain, zSql, 0, 0, &p->zErrmsg); 3617 } 3618 rbuFinalize(p, pSql); 3619 if( p->rc!=SQLITE_OK ) return; 3620 3621 if( p->rc==SQLITE_OK ){ 3622 p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg, 3623 "SELECT * FROM sqlite_schema WHERE rootpage=0 OR rootpage IS NULL" 3624 ); 3625 } 3626 3627 if( p->rc==SQLITE_OK ){ 3628 p->rc = prepareAndCollectError(p->dbMain, &pInsert, &p->zErrmsg, 3629 "INSERT INTO sqlite_schema VALUES(?,?,?,?,?)" 3630 ); 3631 } 3632 3633 while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){ 3634 int i; 3635 for(i=0; i<5; i++){ 3636 sqlite3_bind_value(pInsert, i+1, sqlite3_column_value(pSql, i)); 3637 } 3638 sqlite3_step(pInsert); 3639 p->rc = sqlite3_reset(pInsert); 3640 } 3641 if( p->rc==SQLITE_OK ){ 3642 p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=0",0,0,&p->zErrmsg); 3643 } 3644 3645 rbuFinalize(p, pSql); 3646 rbuFinalize(p, pInsert); 3647 } 3648 3649 /* 3650 ** Step the RBU object. 3651 */ 3652 int sqlite3rbu_step(sqlite3rbu *p){ 3653 if( p ){ 3654 switch( p->eStage ){ 3655 case RBU_STAGE_OAL: { 3656 RbuObjIter *pIter = &p->objiter; 3657 3658 /* If this is an RBU vacuum operation and the state table was empty 3659 ** when this handle was opened, create the target database schema. */ 3660 if( rbuIsVacuum(p) && p->nProgress==0 && p->rc==SQLITE_OK ){ 3661 rbuCreateTargetSchema(p); 3662 rbuCopyPragma(p, "user_version"); 3663 rbuCopyPragma(p, "application_id"); 3664 } 3665 3666 while( p->rc==SQLITE_OK && pIter->zTbl ){ 3667 3668 if( pIter->bCleanup ){ 3669 /* Clean up the rbu_tmp_xxx table for the previous table. It 3670 ** cannot be dropped as there are currently active SQL statements. 3671 ** But the contents can be deleted. */ 3672 if( rbuIsVacuum(p)==0 && pIter->abIndexed ){ 3673 rbuMPrintfExec(p, p->dbRbu, 3674 "DELETE FROM %s.'rbu_tmp_%q'", p->zStateDb, pIter->zDataTbl 3675 ); 3676 } 3677 }else{ 3678 rbuObjIterPrepareAll(p, pIter, 0); 3679 3680 /* Advance to the next row to process. */ 3681 if( p->rc==SQLITE_OK ){ 3682 int rc = sqlite3_step(pIter->pSelect); 3683 if( rc==SQLITE_ROW ){ 3684 p->nProgress++; 3685 p->nStep++; 3686 return rbuStep(p); 3687 } 3688 p->rc = sqlite3_reset(pIter->pSelect); 3689 p->nStep = 0; 3690 } 3691 } 3692 3693 rbuObjIterNext(p, pIter); 3694 } 3695 3696 if( p->rc==SQLITE_OK ){ 3697 assert( pIter->zTbl==0 ); 3698 rbuSaveState(p, RBU_STAGE_MOVE); 3699 rbuIncrSchemaCookie(p); 3700 if( p->rc==SQLITE_OK ){ 3701 p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg); 3702 } 3703 if( p->rc==SQLITE_OK ){ 3704 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg); 3705 } 3706 p->eStage = RBU_STAGE_MOVE; 3707 } 3708 break; 3709 } 3710 3711 case RBU_STAGE_MOVE: { 3712 if( p->rc==SQLITE_OK ){ 3713 rbuMoveOalFile(p); 3714 p->nProgress++; 3715 } 3716 break; 3717 } 3718 3719 case RBU_STAGE_CKPT: { 3720 if( p->rc==SQLITE_OK ){ 3721 if( p->nStep>=p->nFrame ){ 3722 sqlite3_file *pDb = p->pTargetFd->pReal; 3723 3724 /* Sync the db file */ 3725 p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL); 3726 3727 /* Update nBackfill */ 3728 if( p->rc==SQLITE_OK ){ 3729 void volatile *ptr; 3730 p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, &ptr); 3731 if( p->rc==SQLITE_OK ){ 3732 ((u32 volatile*)ptr)[24] = p->iMaxFrame; 3733 } 3734 } 3735 3736 if( p->rc==SQLITE_OK ){ 3737 p->eStage = RBU_STAGE_DONE; 3738 p->rc = SQLITE_DONE; 3739 } 3740 }else{ 3741 /* At one point the following block copied a single frame from the 3742 ** wal file to the database file. So that one call to sqlite3rbu_step() 3743 ** checkpointed a single frame. 3744 ** 3745 ** However, if the sector-size is larger than the page-size, and the 3746 ** application calls sqlite3rbu_savestate() or close() immediately 3747 ** after this step, then rbu_step() again, then a power failure occurs, 3748 ** then the database page written here may be damaged. Work around 3749 ** this by checkpointing frames until the next page in the aFrame[] 3750 ** lies on a different disk sector to the current one. */ 3751 u32 iSector; 3752 do{ 3753 RbuFrame *pFrame = &p->aFrame[p->nStep]; 3754 iSector = (pFrame->iDbPage-1) / p->nPagePerSector; 3755 rbuCheckpointFrame(p, pFrame); 3756 p->nStep++; 3757 }while( p->nStep<p->nFrame 3758 && iSector==((p->aFrame[p->nStep].iDbPage-1) / p->nPagePerSector) 3759 && p->rc==SQLITE_OK 3760 ); 3761 } 3762 p->nProgress++; 3763 } 3764 break; 3765 } 3766 3767 default: 3768 break; 3769 } 3770 return p->rc; 3771 }else{ 3772 return SQLITE_NOMEM; 3773 } 3774 } 3775 3776 /* 3777 ** Compare strings z1 and z2, returning 0 if they are identical, or non-zero 3778 ** otherwise. Either or both argument may be NULL. Two NULL values are 3779 ** considered equal, and NULL is considered distinct from all other values. 3780 */ 3781 static int rbuStrCompare(const char *z1, const char *z2){ 3782 if( z1==0 && z2==0 ) return 0; 3783 if( z1==0 || z2==0 ) return 1; 3784 return (sqlite3_stricmp(z1, z2)!=0); 3785 } 3786 3787 /* 3788 ** This function is called as part of sqlite3rbu_open() when initializing 3789 ** an rbu handle in OAL stage. If the rbu update has not started (i.e. 3790 ** the rbu_state table was empty) it is a no-op. Otherwise, it arranges 3791 ** things so that the next call to sqlite3rbu_step() continues on from 3792 ** where the previous rbu handle left off. 3793 ** 3794 ** If an error occurs, an error code and error message are left in the 3795 ** rbu handle passed as the first argument. 3796 */ 3797 static void rbuSetupOal(sqlite3rbu *p, RbuState *pState){ 3798 assert( p->rc==SQLITE_OK ); 3799 if( pState->zTbl ){ 3800 RbuObjIter *pIter = &p->objiter; 3801 int rc = SQLITE_OK; 3802 3803 while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup 3804 || rbuStrCompare(pIter->zIdx, pState->zIdx) 3805 || (pState->zDataTbl==0 && rbuStrCompare(pIter->zTbl, pState->zTbl)) 3806 || (pState->zDataTbl && rbuStrCompare(pIter->zDataTbl, pState->zDataTbl)) 3807 )){ 3808 rc = rbuObjIterNext(p, pIter); 3809 } 3810 3811 if( rc==SQLITE_OK && !pIter->zTbl ){ 3812 rc = SQLITE_ERROR; 3813 p->zErrmsg = sqlite3_mprintf("rbu_state mismatch error"); 3814 } 3815 3816 if( rc==SQLITE_OK ){ 3817 p->nStep = pState->nRow; 3818 rc = rbuObjIterPrepareAll(p, &p->objiter, p->nStep); 3819 } 3820 3821 p->rc = rc; 3822 } 3823 } 3824 3825 /* 3826 ** If there is a "*-oal" file in the file-system corresponding to the 3827 ** target database in the file-system, delete it. If an error occurs, 3828 ** leave an error code and error message in the rbu handle. 3829 */ 3830 static void rbuDeleteOalFile(sqlite3rbu *p){ 3831 char *zOal = rbuMPrintf(p, "%s-oal", p->zTarget); 3832 if( zOal ){ 3833 sqlite3_vfs *pVfs = sqlite3_vfs_find(0); 3834 assert( pVfs && p->rc==SQLITE_OK && p->zErrmsg==0 ); 3835 pVfs->xDelete(pVfs, zOal, 0); 3836 sqlite3_free(zOal); 3837 } 3838 } 3839 3840 /* 3841 ** Allocate a private rbu VFS for the rbu handle passed as the only 3842 ** argument. This VFS will be used unless the call to sqlite3rbu_open() 3843 ** specified a URI with a vfs=? option in place of a target database 3844 ** file name. 3845 */ 3846 static void rbuCreateVfs(sqlite3rbu *p){ 3847 int rnd; 3848 char zRnd[64]; 3849 3850 assert( p->rc==SQLITE_OK ); 3851 sqlite3_randomness(sizeof(int), (void*)&rnd); 3852 sqlite3_snprintf(sizeof(zRnd), zRnd, "rbu_vfs_%d", rnd); 3853 p->rc = sqlite3rbu_create_vfs(zRnd, 0); 3854 if( p->rc==SQLITE_OK ){ 3855 sqlite3_vfs *pVfs = sqlite3_vfs_find(zRnd); 3856 assert( pVfs ); 3857 p->zVfsName = pVfs->zName; 3858 ((rbu_vfs*)pVfs)->pRbu = p; 3859 } 3860 } 3861 3862 /* 3863 ** Destroy the private VFS created for the rbu handle passed as the only 3864 ** argument by an earlier call to rbuCreateVfs(). 3865 */ 3866 static void rbuDeleteVfs(sqlite3rbu *p){ 3867 if( p->zVfsName ){ 3868 sqlite3rbu_destroy_vfs(p->zVfsName); 3869 p->zVfsName = 0; 3870 } 3871 } 3872 3873 /* 3874 ** This user-defined SQL function is invoked with a single argument - the 3875 ** name of a table expected to appear in the target database. It returns 3876 ** the number of auxilliary indexes on the table. 3877 */ 3878 static void rbuIndexCntFunc( 3879 sqlite3_context *pCtx, 3880 int nVal, 3881 sqlite3_value **apVal 3882 ){ 3883 sqlite3rbu *p = (sqlite3rbu*)sqlite3_user_data(pCtx); 3884 sqlite3_stmt *pStmt = 0; 3885 char *zErrmsg = 0; 3886 int rc; 3887 sqlite3 *db = (rbuIsVacuum(p) ? p->dbRbu : p->dbMain); 3888 3889 assert( nVal==1 ); 3890 3891 rc = prepareFreeAndCollectError(db, &pStmt, &zErrmsg, 3892 sqlite3_mprintf("SELECT count(*) FROM sqlite_schema " 3893 "WHERE type='index' AND tbl_name = %Q", sqlite3_value_text(apVal[0])) 3894 ); 3895 if( rc!=SQLITE_OK ){ 3896 sqlite3_result_error(pCtx, zErrmsg, -1); 3897 }else{ 3898 int nIndex = 0; 3899 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 3900 nIndex = sqlite3_column_int(pStmt, 0); 3901 } 3902 rc = sqlite3_finalize(pStmt); 3903 if( rc==SQLITE_OK ){ 3904 sqlite3_result_int(pCtx, nIndex); 3905 }else{ 3906 sqlite3_result_error(pCtx, sqlite3_errmsg(db), -1); 3907 } 3908 } 3909 3910 sqlite3_free(zErrmsg); 3911 } 3912 3913 /* 3914 ** If the RBU database contains the rbu_count table, use it to initialize 3915 ** the sqlite3rbu.nPhaseOneStep variable. The schema of the rbu_count table 3916 ** is assumed to contain the same columns as: 3917 ** 3918 ** CREATE TABLE rbu_count(tbl TEXT PRIMARY KEY, cnt INTEGER) WITHOUT ROWID; 3919 ** 3920 ** There should be one row in the table for each data_xxx table in the 3921 ** database. The 'tbl' column should contain the name of a data_xxx table, 3922 ** and the cnt column the number of rows it contains. 3923 ** 3924 ** sqlite3rbu.nPhaseOneStep is initialized to the sum of (1 + nIndex) * cnt 3925 ** for all rows in the rbu_count table, where nIndex is the number of 3926 ** indexes on the corresponding target database table. 3927 */ 3928 static void rbuInitPhaseOneSteps(sqlite3rbu *p){ 3929 if( p->rc==SQLITE_OK ){ 3930 sqlite3_stmt *pStmt = 0; 3931 int bExists = 0; /* True if rbu_count exists */ 3932 3933 p->nPhaseOneStep = -1; 3934 3935 p->rc = sqlite3_create_function(p->dbRbu, 3936 "rbu_index_cnt", 1, SQLITE_UTF8, (void*)p, rbuIndexCntFunc, 0, 0 3937 ); 3938 3939 /* Check for the rbu_count table. If it does not exist, or if an error 3940 ** occurs, nPhaseOneStep will be left set to -1. */ 3941 if( p->rc==SQLITE_OK ){ 3942 p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg, 3943 "SELECT 1 FROM sqlite_schema WHERE tbl_name = 'rbu_count'" 3944 ); 3945 } 3946 if( p->rc==SQLITE_OK ){ 3947 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 3948 bExists = 1; 3949 } 3950 p->rc = sqlite3_finalize(pStmt); 3951 } 3952 3953 if( p->rc==SQLITE_OK && bExists ){ 3954 p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg, 3955 "SELECT sum(cnt * (1 + rbu_index_cnt(rbu_target_name(tbl))))" 3956 "FROM rbu_count" 3957 ); 3958 if( p->rc==SQLITE_OK ){ 3959 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 3960 p->nPhaseOneStep = sqlite3_column_int64(pStmt, 0); 3961 } 3962 p->rc = sqlite3_finalize(pStmt); 3963 } 3964 } 3965 } 3966 } 3967 3968 3969 static sqlite3rbu *openRbuHandle( 3970 const char *zTarget, 3971 const char *zRbu, 3972 const char *zState 3973 ){ 3974 sqlite3rbu *p; 3975 size_t nTarget = zTarget ? strlen(zTarget) : 0; 3976 size_t nRbu = strlen(zRbu); 3977 size_t nByte = sizeof(sqlite3rbu) + nTarget+1 + nRbu+1; 3978 3979 p = (sqlite3rbu*)sqlite3_malloc64(nByte); 3980 if( p ){ 3981 RbuState *pState = 0; 3982 3983 /* Create the custom VFS. */ 3984 memset(p, 0, sizeof(sqlite3rbu)); 3985 sqlite3rbu_rename_handler(p, 0, 0); 3986 rbuCreateVfs(p); 3987 3988 /* Open the target, RBU and state databases */ 3989 if( p->rc==SQLITE_OK ){ 3990 char *pCsr = (char*)&p[1]; 3991 int bRetry = 0; 3992 if( zTarget ){ 3993 p->zTarget = pCsr; 3994 memcpy(p->zTarget, zTarget, nTarget+1); 3995 pCsr += nTarget+1; 3996 } 3997 p->zRbu = pCsr; 3998 memcpy(p->zRbu, zRbu, nRbu+1); 3999 pCsr += nRbu+1; 4000 if( zState ){ 4001 p->zState = rbuMPrintf(p, "%s", zState); 4002 } 4003 4004 /* If the first attempt to open the database file fails and the bRetry 4005 ** flag it set, this means that the db was not opened because it seemed 4006 ** to be a wal-mode db. But, this may have happened due to an earlier 4007 ** RBU vacuum operation leaving an old wal file in the directory. 4008 ** If this is the case, it will have been checkpointed and deleted 4009 ** when the handle was closed and a second attempt to open the 4010 ** database may succeed. */ 4011 rbuOpenDatabase(p, 0, &bRetry); 4012 if( bRetry ){ 4013 rbuOpenDatabase(p, 0, 0); 4014 } 4015 } 4016 4017 if( p->rc==SQLITE_OK ){ 4018 pState = rbuLoadState(p); 4019 assert( pState || p->rc!=SQLITE_OK ); 4020 if( p->rc==SQLITE_OK ){ 4021 4022 if( pState->eStage==0 ){ 4023 rbuDeleteOalFile(p); 4024 rbuInitPhaseOneSteps(p); 4025 p->eStage = RBU_STAGE_OAL; 4026 }else{ 4027 p->eStage = pState->eStage; 4028 p->nPhaseOneStep = pState->nPhaseOneStep; 4029 } 4030 p->nProgress = pState->nProgress; 4031 p->iOalSz = pState->iOalSz; 4032 } 4033 } 4034 assert( p->rc!=SQLITE_OK || p->eStage!=0 ); 4035 4036 if( p->rc==SQLITE_OK && p->pTargetFd->pWalFd ){ 4037 if( p->eStage==RBU_STAGE_OAL ){ 4038 p->rc = SQLITE_ERROR; 4039 p->zErrmsg = sqlite3_mprintf("cannot update wal mode database"); 4040 }else if( p->eStage==RBU_STAGE_MOVE ){ 4041 p->eStage = RBU_STAGE_CKPT; 4042 p->nStep = 0; 4043 } 4044 } 4045 4046 if( p->rc==SQLITE_OK 4047 && (p->eStage==RBU_STAGE_OAL || p->eStage==RBU_STAGE_MOVE) 4048 && pState->eStage!=0 4049 ){ 4050 rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd); 4051 if( pFd->iCookie!=pState->iCookie ){ 4052 /* At this point (pTargetFd->iCookie) contains the value of the 4053 ** change-counter cookie (the thing that gets incremented when a 4054 ** transaction is committed in rollback mode) currently stored on 4055 ** page 1 of the database file. */ 4056 p->rc = SQLITE_BUSY; 4057 p->zErrmsg = sqlite3_mprintf("database modified during rbu %s", 4058 (rbuIsVacuum(p) ? "vacuum" : "update") 4059 ); 4060 } 4061 } 4062 4063 if( p->rc==SQLITE_OK ){ 4064 if( p->eStage==RBU_STAGE_OAL ){ 4065 sqlite3 *db = p->dbMain; 4066 p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, &p->zErrmsg); 4067 4068 /* Point the object iterator at the first object */ 4069 if( p->rc==SQLITE_OK ){ 4070 p->rc = rbuObjIterFirst(p, &p->objiter); 4071 } 4072 4073 /* If the RBU database contains no data_xxx tables, declare the RBU 4074 ** update finished. */ 4075 if( p->rc==SQLITE_OK && p->objiter.zTbl==0 ){ 4076 p->rc = SQLITE_DONE; 4077 p->eStage = RBU_STAGE_DONE; 4078 }else{ 4079 if( p->rc==SQLITE_OK && pState->eStage==0 && rbuIsVacuum(p) ){ 4080 rbuCopyPragma(p, "page_size"); 4081 rbuCopyPragma(p, "auto_vacuum"); 4082 } 4083 4084 /* Open transactions both databases. The *-oal file is opened or 4085 ** created at this point. */ 4086 if( p->rc==SQLITE_OK ){ 4087 p->rc = sqlite3_exec(db, "BEGIN IMMEDIATE", 0, 0, &p->zErrmsg); 4088 } 4089 4090 /* Check if the main database is a zipvfs db. If it is, set the upper 4091 ** level pager to use "journal_mode=off". This prevents it from 4092 ** generating a large journal using a temp file. */ 4093 if( p->rc==SQLITE_OK ){ 4094 int frc = sqlite3_file_control(db, "main", SQLITE_FCNTL_ZIPVFS, 0); 4095 if( frc==SQLITE_OK ){ 4096 p->rc = sqlite3_exec( 4097 db, "PRAGMA journal_mode=off",0,0,&p->zErrmsg); 4098 } 4099 } 4100 4101 if( p->rc==SQLITE_OK ){ 4102 rbuSetupOal(p, pState); 4103 } 4104 } 4105 }else if( p->eStage==RBU_STAGE_MOVE ){ 4106 /* no-op */ 4107 }else if( p->eStage==RBU_STAGE_CKPT ){ 4108 if( !rbuIsVacuum(p) && rbuExclusiveCheckpoint(p->dbMain) ){ 4109 /* If the rbu_exclusive_checkpoint=1 URI parameter was specified 4110 ** and an incremental checkpoint is being resumed, attempt an 4111 ** exclusive lock on the db file. If this fails, so be it. */ 4112 p->eStage = RBU_STAGE_DONE; 4113 rbuLockDatabase(p->dbMain); 4114 p->eStage = RBU_STAGE_CKPT; 4115 } 4116 rbuSetupCheckpoint(p, pState); 4117 }else if( p->eStage==RBU_STAGE_DONE ){ 4118 p->rc = SQLITE_DONE; 4119 }else{ 4120 p->rc = SQLITE_CORRUPT; 4121 } 4122 } 4123 4124 rbuFreeState(pState); 4125 } 4126 4127 return p; 4128 } 4129 4130 /* 4131 ** Allocate and return an RBU handle with all fields zeroed except for the 4132 ** error code, which is set to SQLITE_MISUSE. 4133 */ 4134 static sqlite3rbu *rbuMisuseError(void){ 4135 sqlite3rbu *pRet; 4136 pRet = sqlite3_malloc64(sizeof(sqlite3rbu)); 4137 if( pRet ){ 4138 memset(pRet, 0, sizeof(sqlite3rbu)); 4139 pRet->rc = SQLITE_MISUSE; 4140 } 4141 return pRet; 4142 } 4143 4144 /* 4145 ** Open and return a new RBU handle. 4146 */ 4147 sqlite3rbu *sqlite3rbu_open( 4148 const char *zTarget, 4149 const char *zRbu, 4150 const char *zState 4151 ){ 4152 if( zTarget==0 || zRbu==0 ){ return rbuMisuseError(); } 4153 return openRbuHandle(zTarget, zRbu, zState); 4154 } 4155 4156 /* 4157 ** Open a handle to begin or resume an RBU VACUUM operation. 4158 */ 4159 sqlite3rbu *sqlite3rbu_vacuum( 4160 const char *zTarget, 4161 const char *zState 4162 ){ 4163 if( zTarget==0 ){ return rbuMisuseError(); } 4164 if( zState ){ 4165 int n = strlen(zState); 4166 if( n>=7 && 0==memcmp("-vactmp", &zState[n-7], 7) ){ 4167 return rbuMisuseError(); 4168 } 4169 } 4170 /* TODO: Check that both arguments are non-NULL */ 4171 return openRbuHandle(0, zTarget, zState); 4172 } 4173 4174 /* 4175 ** Return the database handle used by pRbu. 4176 */ 4177 sqlite3 *sqlite3rbu_db(sqlite3rbu *pRbu, int bRbu){ 4178 sqlite3 *db = 0; 4179 if( pRbu ){ 4180 db = (bRbu ? pRbu->dbRbu : pRbu->dbMain); 4181 } 4182 return db; 4183 } 4184 4185 4186 /* 4187 ** If the error code currently stored in the RBU handle is SQLITE_CONSTRAINT, 4188 ** then edit any error message string so as to remove all occurrences of 4189 ** the pattern "rbu_imp_[0-9]*". 4190 */ 4191 static void rbuEditErrmsg(sqlite3rbu *p){ 4192 if( p->rc==SQLITE_CONSTRAINT && p->zErrmsg ){ 4193 unsigned int i; 4194 size_t nErrmsg = strlen(p->zErrmsg); 4195 for(i=0; i<(nErrmsg-8); i++){ 4196 if( memcmp(&p->zErrmsg[i], "rbu_imp_", 8)==0 ){ 4197 int nDel = 8; 4198 while( p->zErrmsg[i+nDel]>='0' && p->zErrmsg[i+nDel]<='9' ) nDel++; 4199 memmove(&p->zErrmsg[i], &p->zErrmsg[i+nDel], nErrmsg + 1 - i - nDel); 4200 nErrmsg -= nDel; 4201 } 4202 } 4203 } 4204 } 4205 4206 /* 4207 ** Close the RBU handle. 4208 */ 4209 int sqlite3rbu_close(sqlite3rbu *p, char **pzErrmsg){ 4210 int rc; 4211 if( p ){ 4212 4213 /* Commit the transaction to the *-oal file. */ 4214 if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){ 4215 p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg); 4216 } 4217 4218 /* Sync the db file if currently doing an incremental checkpoint */ 4219 if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_CKPT ){ 4220 sqlite3_file *pDb = p->pTargetFd->pReal; 4221 p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL); 4222 } 4223 4224 rbuSaveState(p, p->eStage); 4225 4226 if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){ 4227 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg); 4228 } 4229 4230 /* Close any open statement handles. */ 4231 rbuObjIterFinalize(&p->objiter); 4232 4233 /* If this is an RBU vacuum handle and the vacuum has either finished 4234 ** successfully or encountered an error, delete the contents of the 4235 ** state table. This causes the next call to sqlite3rbu_vacuum() 4236 ** specifying the current target and state databases to start a new 4237 ** vacuum from scratch. */ 4238 if( rbuIsVacuum(p) && p->rc!=SQLITE_OK && p->dbRbu ){ 4239 int rc2 = sqlite3_exec(p->dbRbu, "DELETE FROM stat.rbu_state", 0, 0, 0); 4240 if( p->rc==SQLITE_DONE && rc2!=SQLITE_OK ) p->rc = rc2; 4241 } 4242 4243 /* Close the open database handle and VFS object. */ 4244 sqlite3_close(p->dbRbu); 4245 sqlite3_close(p->dbMain); 4246 assert( p->szTemp==0 ); 4247 rbuDeleteVfs(p); 4248 sqlite3_free(p->aBuf); 4249 sqlite3_free(p->aFrame); 4250 4251 rbuEditErrmsg(p); 4252 rc = p->rc; 4253 if( pzErrmsg ){ 4254 *pzErrmsg = p->zErrmsg; 4255 }else{ 4256 sqlite3_free(p->zErrmsg); 4257 } 4258 sqlite3_free(p->zState); 4259 sqlite3_free(p); 4260 }else{ 4261 rc = SQLITE_NOMEM; 4262 *pzErrmsg = 0; 4263 } 4264 return rc; 4265 } 4266 4267 /* 4268 ** Return the total number of key-value operations (inserts, deletes or 4269 ** updates) that have been performed on the target database since the 4270 ** current RBU update was started. 4271 */ 4272 sqlite3_int64 sqlite3rbu_progress(sqlite3rbu *pRbu){ 4273 return pRbu->nProgress; 4274 } 4275 4276 /* 4277 ** Return permyriadage progress indications for the two main stages of 4278 ** an RBU update. 4279 */ 4280 void sqlite3rbu_bp_progress(sqlite3rbu *p, int *pnOne, int *pnTwo){ 4281 const int MAX_PROGRESS = 10000; 4282 switch( p->eStage ){ 4283 case RBU_STAGE_OAL: 4284 if( p->nPhaseOneStep>0 ){ 4285 *pnOne = (int)(MAX_PROGRESS * (i64)p->nProgress/(i64)p->nPhaseOneStep); 4286 }else{ 4287 *pnOne = -1; 4288 } 4289 *pnTwo = 0; 4290 break; 4291 4292 case RBU_STAGE_MOVE: 4293 *pnOne = MAX_PROGRESS; 4294 *pnTwo = 0; 4295 break; 4296 4297 case RBU_STAGE_CKPT: 4298 *pnOne = MAX_PROGRESS; 4299 *pnTwo = (int)(MAX_PROGRESS * (i64)p->nStep / (i64)p->nFrame); 4300 break; 4301 4302 case RBU_STAGE_DONE: 4303 *pnOne = MAX_PROGRESS; 4304 *pnTwo = MAX_PROGRESS; 4305 break; 4306 4307 default: 4308 assert( 0 ); 4309 } 4310 } 4311 4312 /* 4313 ** Return the current state of the RBU vacuum or update operation. 4314 */ 4315 int sqlite3rbu_state(sqlite3rbu *p){ 4316 int aRes[] = { 4317 0, SQLITE_RBU_STATE_OAL, SQLITE_RBU_STATE_MOVE, 4318 0, SQLITE_RBU_STATE_CHECKPOINT, SQLITE_RBU_STATE_DONE 4319 }; 4320 4321 assert( RBU_STAGE_OAL==1 ); 4322 assert( RBU_STAGE_MOVE==2 ); 4323 assert( RBU_STAGE_CKPT==4 ); 4324 assert( RBU_STAGE_DONE==5 ); 4325 assert( aRes[RBU_STAGE_OAL]==SQLITE_RBU_STATE_OAL ); 4326 assert( aRes[RBU_STAGE_MOVE]==SQLITE_RBU_STATE_MOVE ); 4327 assert( aRes[RBU_STAGE_CKPT]==SQLITE_RBU_STATE_CHECKPOINT ); 4328 assert( aRes[RBU_STAGE_DONE]==SQLITE_RBU_STATE_DONE ); 4329 4330 if( p->rc!=SQLITE_OK && p->rc!=SQLITE_DONE ){ 4331 return SQLITE_RBU_STATE_ERROR; 4332 }else{ 4333 assert( p->rc!=SQLITE_DONE || p->eStage==RBU_STAGE_DONE ); 4334 assert( p->eStage==RBU_STAGE_OAL 4335 || p->eStage==RBU_STAGE_MOVE 4336 || p->eStage==RBU_STAGE_CKPT 4337 || p->eStage==RBU_STAGE_DONE 4338 ); 4339 return aRes[p->eStage]; 4340 } 4341 } 4342 4343 int sqlite3rbu_savestate(sqlite3rbu *p){ 4344 int rc = p->rc; 4345 if( rc==SQLITE_DONE ) return SQLITE_OK; 4346 4347 assert( p->eStage>=RBU_STAGE_OAL && p->eStage<=RBU_STAGE_DONE ); 4348 if( p->eStage==RBU_STAGE_OAL ){ 4349 assert( rc!=SQLITE_DONE ); 4350 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, 0); 4351 } 4352 4353 /* Sync the db file */ 4354 if( rc==SQLITE_OK && p->eStage==RBU_STAGE_CKPT ){ 4355 sqlite3_file *pDb = p->pTargetFd->pReal; 4356 rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL); 4357 } 4358 4359 p->rc = rc; 4360 rbuSaveState(p, p->eStage); 4361 rc = p->rc; 4362 4363 if( p->eStage==RBU_STAGE_OAL ){ 4364 assert( rc!=SQLITE_DONE ); 4365 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0); 4366 if( rc==SQLITE_OK ){ 4367 const char *zBegin = rbuIsVacuum(p) ? "BEGIN" : "BEGIN IMMEDIATE"; 4368 rc = sqlite3_exec(p->dbRbu, zBegin, 0, 0, 0); 4369 } 4370 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "BEGIN IMMEDIATE", 0, 0,0); 4371 } 4372 4373 p->rc = rc; 4374 return rc; 4375 } 4376 4377 /* 4378 ** Default xRename callback for RBU. 4379 */ 4380 static int xDefaultRename(void *pArg, const char *zOld, const char *zNew){ 4381 int rc = SQLITE_OK; 4382 #if defined(_WIN32_WCE) 4383 { 4384 LPWSTR zWideOld; 4385 LPWSTR zWideNew; 4386 4387 zWideOld = rbuWinUtf8ToUnicode(zOld); 4388 if( zWideOld ){ 4389 zWideNew = rbuWinUtf8ToUnicode(zNew); 4390 if( zWideNew ){ 4391 if( MoveFileW(zWideOld, zWideNew) ){ 4392 rc = SQLITE_OK; 4393 }else{ 4394 rc = SQLITE_IOERR; 4395 } 4396 sqlite3_free(zWideNew); 4397 }else{ 4398 rc = SQLITE_IOERR_NOMEM; 4399 } 4400 sqlite3_free(zWideOld); 4401 }else{ 4402 rc = SQLITE_IOERR_NOMEM; 4403 } 4404 } 4405 #else 4406 rc = rename(zOld, zNew) ? SQLITE_IOERR : SQLITE_OK; 4407 #endif 4408 return rc; 4409 } 4410 4411 void sqlite3rbu_rename_handler( 4412 sqlite3rbu *pRbu, 4413 void *pArg, 4414 int (*xRename)(void *pArg, const char *zOld, const char *zNew) 4415 ){ 4416 if( xRename ){ 4417 pRbu->xRename = xRename; 4418 pRbu->pRenameArg = pArg; 4419 }else{ 4420 pRbu->xRename = xDefaultRename; 4421 pRbu->pRenameArg = 0; 4422 } 4423 } 4424 4425 /************************************************************************** 4426 ** Beginning of RBU VFS shim methods. The VFS shim modifies the behaviour 4427 ** of a standard VFS in the following ways: 4428 ** 4429 ** 1. Whenever the first page of a main database file is read or 4430 ** written, the value of the change-counter cookie is stored in 4431 ** rbu_file.iCookie. Similarly, the value of the "write-version" 4432 ** database header field is stored in rbu_file.iWriteVer. This ensures 4433 ** that the values are always trustworthy within an open transaction. 4434 ** 4435 ** 2. Whenever an SQLITE_OPEN_WAL file is opened, the (rbu_file.pWalFd) 4436 ** member variable of the associated database file descriptor is set 4437 ** to point to the new file. A mutex protected linked list of all main 4438 ** db fds opened using a particular RBU VFS is maintained at 4439 ** rbu_vfs.pMain to facilitate this. 4440 ** 4441 ** 3. Using a new file-control "SQLITE_FCNTL_RBU", a main db rbu_file 4442 ** object can be marked as the target database of an RBU update. This 4443 ** turns on the following extra special behaviour: 4444 ** 4445 ** 3a. If xAccess() is called to check if there exists a *-wal file 4446 ** associated with an RBU target database currently in RBU_STAGE_OAL 4447 ** stage (preparing the *-oal file), the following special handling 4448 ** applies: 4449 ** 4450 ** * if the *-wal file does exist, return SQLITE_CANTOPEN. An RBU 4451 ** target database may not be in wal mode already. 4452 ** 4453 ** * if the *-wal file does not exist, set the output parameter to 4454 ** non-zero (to tell SQLite that it does exist) anyway. 4455 ** 4456 ** Then, when xOpen() is called to open the *-wal file associated with 4457 ** the RBU target in RBU_STAGE_OAL stage, instead of opening the *-wal 4458 ** file, the rbu vfs opens the corresponding *-oal file instead. 4459 ** 4460 ** 3b. The *-shm pages returned by xShmMap() for a target db file in 4461 ** RBU_STAGE_OAL mode are actually stored in heap memory. This is to 4462 ** avoid creating a *-shm file on disk. Additionally, xShmLock() calls 4463 ** are no-ops on target database files in RBU_STAGE_OAL mode. This is 4464 ** because assert() statements in some VFS implementations fail if 4465 ** xShmLock() is called before xShmMap(). 4466 ** 4467 ** 3c. If an EXCLUSIVE lock is attempted on a target database file in any 4468 ** mode except RBU_STAGE_DONE (all work completed and checkpointed), it 4469 ** fails with an SQLITE_BUSY error. This is to stop RBU connections 4470 ** from automatically checkpointing a *-wal (or *-oal) file from within 4471 ** sqlite3_close(). 4472 ** 4473 ** 3d. In RBU_STAGE_CAPTURE mode, all xRead() calls on the wal file, and 4474 ** all xWrite() calls on the target database file perform no IO. 4475 ** Instead the frame and page numbers that would be read and written 4476 ** are recorded. Additionally, successful attempts to obtain exclusive 4477 ** xShmLock() WRITER, CHECKPOINTER and READ0 locks on the target 4478 ** database file are recorded. xShmLock() calls to unlock the same 4479 ** locks are no-ops (so that once obtained, these locks are never 4480 ** relinquished). Finally, calls to xSync() on the target database 4481 ** file fail with SQLITE_INTERNAL errors. 4482 */ 4483 4484 static void rbuUnlockShm(rbu_file *p){ 4485 assert( p->openFlags & SQLITE_OPEN_MAIN_DB ); 4486 if( p->pRbu ){ 4487 int (*xShmLock)(sqlite3_file*,int,int,int) = p->pReal->pMethods->xShmLock; 4488 int i; 4489 for(i=0; i<SQLITE_SHM_NLOCK;i++){ 4490 if( (1<<i) & p->pRbu->mLock ){ 4491 xShmLock(p->pReal, i, 1, SQLITE_SHM_UNLOCK|SQLITE_SHM_EXCLUSIVE); 4492 } 4493 } 4494 p->pRbu->mLock = 0; 4495 } 4496 } 4497 4498 /* 4499 */ 4500 static int rbuUpdateTempSize(rbu_file *pFd, sqlite3_int64 nNew){ 4501 sqlite3rbu *pRbu = pFd->pRbu; 4502 i64 nDiff = nNew - pFd->sz; 4503 pRbu->szTemp += nDiff; 4504 pFd->sz = nNew; 4505 assert( pRbu->szTemp>=0 ); 4506 if( pRbu->szTempLimit && pRbu->szTemp>pRbu->szTempLimit ) return SQLITE_FULL; 4507 return SQLITE_OK; 4508 } 4509 4510 /* 4511 ** Add an item to the main-db lists, if it is not already present. 4512 ** 4513 ** There are two main-db lists. One for all file descriptors, and one 4514 ** for all file descriptors with rbu_file.pDb!=0. If the argument has 4515 ** rbu_file.pDb!=0, then it is assumed to already be present on the 4516 ** main list and is only added to the pDb!=0 list. 4517 */ 4518 static void rbuMainlistAdd(rbu_file *p){ 4519 rbu_vfs *pRbuVfs = p->pRbuVfs; 4520 rbu_file *pIter; 4521 assert( (p->openFlags & SQLITE_OPEN_MAIN_DB) ); 4522 sqlite3_mutex_enter(pRbuVfs->mutex); 4523 if( p->pRbu==0 ){ 4524 for(pIter=pRbuVfs->pMain; pIter; pIter=pIter->pMainNext); 4525 p->pMainNext = pRbuVfs->pMain; 4526 pRbuVfs->pMain = p; 4527 }else{ 4528 for(pIter=pRbuVfs->pMainRbu; pIter && pIter!=p; pIter=pIter->pMainRbuNext){} 4529 if( pIter==0 ){ 4530 p->pMainRbuNext = pRbuVfs->pMainRbu; 4531 pRbuVfs->pMainRbu = p; 4532 } 4533 } 4534 sqlite3_mutex_leave(pRbuVfs->mutex); 4535 } 4536 4537 /* 4538 ** Remove an item from the main-db lists. 4539 */ 4540 static void rbuMainlistRemove(rbu_file *p){ 4541 rbu_file **pp; 4542 sqlite3_mutex_enter(p->pRbuVfs->mutex); 4543 for(pp=&p->pRbuVfs->pMain; *pp && *pp!=p; pp=&((*pp)->pMainNext)){} 4544 if( *pp ) *pp = p->pMainNext; 4545 p->pMainNext = 0; 4546 for(pp=&p->pRbuVfs->pMainRbu; *pp && *pp!=p; pp=&((*pp)->pMainRbuNext)){} 4547 if( *pp ) *pp = p->pMainRbuNext; 4548 p->pMainRbuNext = 0; 4549 sqlite3_mutex_leave(p->pRbuVfs->mutex); 4550 } 4551 4552 /* 4553 ** Given that zWal points to a buffer containing a wal file name passed to 4554 ** either the xOpen() or xAccess() VFS method, search the main-db list for 4555 ** a file-handle opened by the same database connection on the corresponding 4556 ** database file. 4557 ** 4558 ** If parameter bRbu is true, only search for file-descriptors with 4559 ** rbu_file.pDb!=0. 4560 */ 4561 static rbu_file *rbuFindMaindb(rbu_vfs *pRbuVfs, const char *zWal, int bRbu){ 4562 rbu_file *pDb; 4563 sqlite3_mutex_enter(pRbuVfs->mutex); 4564 if( bRbu ){ 4565 for(pDb=pRbuVfs->pMainRbu; pDb && pDb->zWal!=zWal; pDb=pDb->pMainRbuNext){} 4566 }else{ 4567 for(pDb=pRbuVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext){} 4568 } 4569 sqlite3_mutex_leave(pRbuVfs->mutex); 4570 return pDb; 4571 } 4572 4573 /* 4574 ** Close an rbu file. 4575 */ 4576 static int rbuVfsClose(sqlite3_file *pFile){ 4577 rbu_file *p = (rbu_file*)pFile; 4578 int rc; 4579 int i; 4580 4581 /* Free the contents of the apShm[] array. And the array itself. */ 4582 for(i=0; i<p->nShm; i++){ 4583 sqlite3_free(p->apShm[i]); 4584 } 4585 sqlite3_free(p->apShm); 4586 p->apShm = 0; 4587 sqlite3_free(p->zDel); 4588 4589 if( p->openFlags & SQLITE_OPEN_MAIN_DB ){ 4590 rbuMainlistRemove(p); 4591 rbuUnlockShm(p); 4592 p->pReal->pMethods->xShmUnmap(p->pReal, 0); 4593 } 4594 else if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){ 4595 rbuUpdateTempSize(p, 0); 4596 } 4597 assert( p->pMainNext==0 && p->pRbuVfs->pMain!=p ); 4598 4599 /* Close the underlying file handle */ 4600 rc = p->pReal->pMethods->xClose(p->pReal); 4601 return rc; 4602 } 4603 4604 4605 /* 4606 ** Read and return an unsigned 32-bit big-endian integer from the buffer 4607 ** passed as the only argument. 4608 */ 4609 static u32 rbuGetU32(u8 *aBuf){ 4610 return ((u32)aBuf[0] << 24) 4611 + ((u32)aBuf[1] << 16) 4612 + ((u32)aBuf[2] << 8) 4613 + ((u32)aBuf[3]); 4614 } 4615 4616 /* 4617 ** Write an unsigned 32-bit value in big-endian format to the supplied 4618 ** buffer. 4619 */ 4620 static void rbuPutU32(u8 *aBuf, u32 iVal){ 4621 aBuf[0] = (iVal >> 24) & 0xFF; 4622 aBuf[1] = (iVal >> 16) & 0xFF; 4623 aBuf[2] = (iVal >> 8) & 0xFF; 4624 aBuf[3] = (iVal >> 0) & 0xFF; 4625 } 4626 4627 static void rbuPutU16(u8 *aBuf, u16 iVal){ 4628 aBuf[0] = (iVal >> 8) & 0xFF; 4629 aBuf[1] = (iVal >> 0) & 0xFF; 4630 } 4631 4632 /* 4633 ** Read data from an rbuVfs-file. 4634 */ 4635 static int rbuVfsRead( 4636 sqlite3_file *pFile, 4637 void *zBuf, 4638 int iAmt, 4639 sqlite_int64 iOfst 4640 ){ 4641 rbu_file *p = (rbu_file*)pFile; 4642 sqlite3rbu *pRbu = p->pRbu; 4643 int rc; 4644 4645 if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){ 4646 assert( p->openFlags & SQLITE_OPEN_WAL ); 4647 rc = rbuCaptureWalRead(p->pRbu, iOfst, iAmt); 4648 }else{ 4649 if( pRbu && pRbu->eStage==RBU_STAGE_OAL 4650 && (p->openFlags & SQLITE_OPEN_WAL) 4651 && iOfst>=pRbu->iOalSz 4652 ){ 4653 rc = SQLITE_OK; 4654 memset(zBuf, 0, iAmt); 4655 }else{ 4656 rc = p->pReal->pMethods->xRead(p->pReal, zBuf, iAmt, iOfst); 4657 #if 1 4658 /* If this is being called to read the first page of the target 4659 ** database as part of an rbu vacuum operation, synthesize the 4660 ** contents of the first page if it does not yet exist. Otherwise, 4661 ** SQLite will not check for a *-wal file. */ 4662 if( pRbu && rbuIsVacuum(pRbu) 4663 && rc==SQLITE_IOERR_SHORT_READ && iOfst==0 4664 && (p->openFlags & SQLITE_OPEN_MAIN_DB) 4665 && pRbu->rc==SQLITE_OK 4666 ){ 4667 sqlite3_file *pFd = (sqlite3_file*)pRbu->pRbuFd; 4668 rc = pFd->pMethods->xRead(pFd, zBuf, iAmt, iOfst); 4669 if( rc==SQLITE_OK ){ 4670 u8 *aBuf = (u8*)zBuf; 4671 u32 iRoot = rbuGetU32(&aBuf[52]) ? 1 : 0; 4672 rbuPutU32(&aBuf[52], iRoot); /* largest root page number */ 4673 rbuPutU32(&aBuf[36], 0); /* number of free pages */ 4674 rbuPutU32(&aBuf[32], 0); /* first page on free list trunk */ 4675 rbuPutU32(&aBuf[28], 1); /* size of db file in pages */ 4676 rbuPutU32(&aBuf[24], pRbu->pRbuFd->iCookie+1); /* Change counter */ 4677 4678 if( iAmt>100 ){ 4679 memset(&aBuf[100], 0, iAmt-100); 4680 rbuPutU16(&aBuf[105], iAmt & 0xFFFF); 4681 aBuf[100] = 0x0D; 4682 } 4683 } 4684 } 4685 #endif 4686 } 4687 if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){ 4688 /* These look like magic numbers. But they are stable, as they are part 4689 ** of the definition of the SQLite file format, which may not change. */ 4690 u8 *pBuf = (u8*)zBuf; 4691 p->iCookie = rbuGetU32(&pBuf[24]); 4692 p->iWriteVer = pBuf[19]; 4693 } 4694 } 4695 return rc; 4696 } 4697 4698 /* 4699 ** Write data to an rbuVfs-file. 4700 */ 4701 static int rbuVfsWrite( 4702 sqlite3_file *pFile, 4703 const void *zBuf, 4704 int iAmt, 4705 sqlite_int64 iOfst 4706 ){ 4707 rbu_file *p = (rbu_file*)pFile; 4708 sqlite3rbu *pRbu = p->pRbu; 4709 int rc; 4710 4711 if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){ 4712 assert( p->openFlags & SQLITE_OPEN_MAIN_DB ); 4713 rc = rbuCaptureDbWrite(p->pRbu, iOfst); 4714 }else{ 4715 if( pRbu ){ 4716 if( pRbu->eStage==RBU_STAGE_OAL 4717 && (p->openFlags & SQLITE_OPEN_WAL) 4718 && iOfst>=pRbu->iOalSz 4719 ){ 4720 pRbu->iOalSz = iAmt + iOfst; 4721 }else if( p->openFlags & SQLITE_OPEN_DELETEONCLOSE ){ 4722 i64 szNew = iAmt+iOfst; 4723 if( szNew>p->sz ){ 4724 rc = rbuUpdateTempSize(p, szNew); 4725 if( rc!=SQLITE_OK ) return rc; 4726 } 4727 } 4728 } 4729 rc = p->pReal->pMethods->xWrite(p->pReal, zBuf, iAmt, iOfst); 4730 if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){ 4731 /* These look like magic numbers. But they are stable, as they are part 4732 ** of the definition of the SQLite file format, which may not change. */ 4733 u8 *pBuf = (u8*)zBuf; 4734 p->iCookie = rbuGetU32(&pBuf[24]); 4735 p->iWriteVer = pBuf[19]; 4736 } 4737 } 4738 return rc; 4739 } 4740 4741 /* 4742 ** Truncate an rbuVfs-file. 4743 */ 4744 static int rbuVfsTruncate(sqlite3_file *pFile, sqlite_int64 size){ 4745 rbu_file *p = (rbu_file*)pFile; 4746 if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){ 4747 int rc = rbuUpdateTempSize(p, size); 4748 if( rc!=SQLITE_OK ) return rc; 4749 } 4750 return p->pReal->pMethods->xTruncate(p->pReal, size); 4751 } 4752 4753 /* 4754 ** Sync an rbuVfs-file. 4755 */ 4756 static int rbuVfsSync(sqlite3_file *pFile, int flags){ 4757 rbu_file *p = (rbu_file *)pFile; 4758 if( p->pRbu && p->pRbu->eStage==RBU_STAGE_CAPTURE ){ 4759 if( p->openFlags & SQLITE_OPEN_MAIN_DB ){ 4760 return SQLITE_INTERNAL; 4761 } 4762 return SQLITE_OK; 4763 } 4764 return p->pReal->pMethods->xSync(p->pReal, flags); 4765 } 4766 4767 /* 4768 ** Return the current file-size of an rbuVfs-file. 4769 */ 4770 static int rbuVfsFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){ 4771 rbu_file *p = (rbu_file *)pFile; 4772 int rc; 4773 rc = p->pReal->pMethods->xFileSize(p->pReal, pSize); 4774 4775 /* If this is an RBU vacuum operation and this is the target database, 4776 ** pretend that it has at least one page. Otherwise, SQLite will not 4777 ** check for the existance of a *-wal file. rbuVfsRead() contains 4778 ** similar logic. */ 4779 if( rc==SQLITE_OK && *pSize==0 4780 && p->pRbu && rbuIsVacuum(p->pRbu) 4781 && (p->openFlags & SQLITE_OPEN_MAIN_DB) 4782 ){ 4783 *pSize = 1024; 4784 } 4785 return rc; 4786 } 4787 4788 /* 4789 ** Lock an rbuVfs-file. 4790 */ 4791 static int rbuVfsLock(sqlite3_file *pFile, int eLock){ 4792 rbu_file *p = (rbu_file*)pFile; 4793 sqlite3rbu *pRbu = p->pRbu; 4794 int rc = SQLITE_OK; 4795 4796 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) ); 4797 if( eLock==SQLITE_LOCK_EXCLUSIVE 4798 && (p->bNolock || (pRbu && pRbu->eStage!=RBU_STAGE_DONE)) 4799 ){ 4800 /* Do not allow EXCLUSIVE locks. Preventing SQLite from taking this 4801 ** prevents it from checkpointing the database from sqlite3_close(). */ 4802 rc = SQLITE_BUSY; 4803 }else{ 4804 rc = p->pReal->pMethods->xLock(p->pReal, eLock); 4805 } 4806 4807 return rc; 4808 } 4809 4810 /* 4811 ** Unlock an rbuVfs-file. 4812 */ 4813 static int rbuVfsUnlock(sqlite3_file *pFile, int eLock){ 4814 rbu_file *p = (rbu_file *)pFile; 4815 return p->pReal->pMethods->xUnlock(p->pReal, eLock); 4816 } 4817 4818 /* 4819 ** Check if another file-handle holds a RESERVED lock on an rbuVfs-file. 4820 */ 4821 static int rbuVfsCheckReservedLock(sqlite3_file *pFile, int *pResOut){ 4822 rbu_file *p = (rbu_file *)pFile; 4823 return p->pReal->pMethods->xCheckReservedLock(p->pReal, pResOut); 4824 } 4825 4826 /* 4827 ** File control method. For custom operations on an rbuVfs-file. 4828 */ 4829 static int rbuVfsFileControl(sqlite3_file *pFile, int op, void *pArg){ 4830 rbu_file *p = (rbu_file *)pFile; 4831 int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl; 4832 int rc; 4833 4834 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) 4835 || p->openFlags & (SQLITE_OPEN_TRANSIENT_DB|SQLITE_OPEN_TEMP_JOURNAL) 4836 ); 4837 if( op==SQLITE_FCNTL_RBU ){ 4838 sqlite3rbu *pRbu = (sqlite3rbu*)pArg; 4839 4840 /* First try to find another RBU vfs lower down in the vfs stack. If 4841 ** one is found, this vfs will operate in pass-through mode. The lower 4842 ** level vfs will do the special RBU handling. */ 4843 rc = xControl(p->pReal, op, pArg); 4844 4845 if( rc==SQLITE_NOTFOUND ){ 4846 /* Now search for a zipvfs instance lower down in the VFS stack. If 4847 ** one is found, this is an error. */ 4848 void *dummy = 0; 4849 rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy); 4850 if( rc==SQLITE_OK ){ 4851 rc = SQLITE_ERROR; 4852 pRbu->zErrmsg = sqlite3_mprintf("rbu/zipvfs setup error"); 4853 }else if( rc==SQLITE_NOTFOUND ){ 4854 pRbu->pTargetFd = p; 4855 p->pRbu = pRbu; 4856 rbuMainlistAdd(p); 4857 if( p->pWalFd ) p->pWalFd->pRbu = pRbu; 4858 rc = SQLITE_OK; 4859 } 4860 } 4861 return rc; 4862 } 4863 else if( op==SQLITE_FCNTL_RBUCNT ){ 4864 sqlite3rbu *pRbu = (sqlite3rbu*)pArg; 4865 pRbu->nRbu++; 4866 pRbu->pRbuFd = p; 4867 p->bNolock = 1; 4868 } 4869 4870 rc = xControl(p->pReal, op, pArg); 4871 if( rc==SQLITE_OK && op==SQLITE_FCNTL_VFSNAME ){ 4872 rbu_vfs *pRbuVfs = p->pRbuVfs; 4873 char *zIn = *(char**)pArg; 4874 char *zOut = sqlite3_mprintf("rbu(%s)/%z", pRbuVfs->base.zName, zIn); 4875 *(char**)pArg = zOut; 4876 if( zOut==0 ) rc = SQLITE_NOMEM; 4877 } 4878 4879 return rc; 4880 } 4881 4882 /* 4883 ** Return the sector-size in bytes for an rbuVfs-file. 4884 */ 4885 static int rbuVfsSectorSize(sqlite3_file *pFile){ 4886 rbu_file *p = (rbu_file *)pFile; 4887 return p->pReal->pMethods->xSectorSize(p->pReal); 4888 } 4889 4890 /* 4891 ** Return the device characteristic flags supported by an rbuVfs-file. 4892 */ 4893 static int rbuVfsDeviceCharacteristics(sqlite3_file *pFile){ 4894 rbu_file *p = (rbu_file *)pFile; 4895 return p->pReal->pMethods->xDeviceCharacteristics(p->pReal); 4896 } 4897 4898 /* 4899 ** Take or release a shared-memory lock. 4900 */ 4901 static int rbuVfsShmLock(sqlite3_file *pFile, int ofst, int n, int flags){ 4902 rbu_file *p = (rbu_file*)pFile; 4903 sqlite3rbu *pRbu = p->pRbu; 4904 int rc = SQLITE_OK; 4905 4906 #ifdef SQLITE_AMALGAMATION 4907 assert( WAL_CKPT_LOCK==1 ); 4908 #endif 4909 4910 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) ); 4911 if( pRbu && ( 4912 pRbu->eStage==RBU_STAGE_OAL 4913 || pRbu->eStage==RBU_STAGE_MOVE 4914 || pRbu->eStage==RBU_STAGE_DONE 4915 )){ 4916 /* Prevent SQLite from taking a shm-lock on the target file when it 4917 ** is supplying heap memory to the upper layer in place of *-shm 4918 ** segments. */ 4919 if( ofst==WAL_LOCK_CKPT && n==1 ) rc = SQLITE_BUSY; 4920 }else{ 4921 int bCapture = 0; 4922 if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){ 4923 bCapture = 1; 4924 } 4925 if( bCapture==0 || 0==(flags & SQLITE_SHM_UNLOCK) ){ 4926 rc = p->pReal->pMethods->xShmLock(p->pReal, ofst, n, flags); 4927 if( bCapture && rc==SQLITE_OK ){ 4928 pRbu->mLock |= ((1<<n) - 1) << ofst; 4929 } 4930 } 4931 } 4932 4933 return rc; 4934 } 4935 4936 /* 4937 ** Obtain a pointer to a mapping of a single 32KiB page of the *-shm file. 4938 */ 4939 static int rbuVfsShmMap( 4940 sqlite3_file *pFile, 4941 int iRegion, 4942 int szRegion, 4943 int isWrite, 4944 void volatile **pp 4945 ){ 4946 rbu_file *p = (rbu_file*)pFile; 4947 int rc = SQLITE_OK; 4948 int eStage = (p->pRbu ? p->pRbu->eStage : 0); 4949 4950 /* If not in RBU_STAGE_OAL, allow this call to pass through. Or, if this 4951 ** rbu is in the RBU_STAGE_OAL state, use heap memory for *-shm space 4952 ** instead of a file on disk. */ 4953 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) ); 4954 if( eStage==RBU_STAGE_OAL ){ 4955 sqlite3_int64 nByte = (iRegion+1) * sizeof(char*); 4956 char **apNew = (char**)sqlite3_realloc64(p->apShm, nByte); 4957 4958 /* This is an RBU connection that uses its own heap memory for the 4959 ** pages of the *-shm file. Since no other process can have run 4960 ** recovery, the connection must request *-shm pages in order 4961 ** from start to finish. */ 4962 assert( iRegion==p->nShm ); 4963 if( apNew==0 ){ 4964 rc = SQLITE_NOMEM; 4965 }else{ 4966 memset(&apNew[p->nShm], 0, sizeof(char*) * (1 + iRegion - p->nShm)); 4967 p->apShm = apNew; 4968 p->nShm = iRegion+1; 4969 } 4970 4971 if( rc==SQLITE_OK ){ 4972 char *pNew = (char*)sqlite3_malloc64(szRegion); 4973 if( pNew==0 ){ 4974 rc = SQLITE_NOMEM; 4975 }else{ 4976 memset(pNew, 0, szRegion); 4977 p->apShm[iRegion] = pNew; 4978 } 4979 } 4980 4981 if( rc==SQLITE_OK ){ 4982 *pp = p->apShm[iRegion]; 4983 }else{ 4984 *pp = 0; 4985 } 4986 }else{ 4987 assert( p->apShm==0 ); 4988 rc = p->pReal->pMethods->xShmMap(p->pReal, iRegion, szRegion, isWrite, pp); 4989 } 4990 4991 return rc; 4992 } 4993 4994 /* 4995 ** Memory barrier. 4996 */ 4997 static void rbuVfsShmBarrier(sqlite3_file *pFile){ 4998 rbu_file *p = (rbu_file *)pFile; 4999 p->pReal->pMethods->xShmBarrier(p->pReal); 5000 } 5001 5002 /* 5003 ** The xShmUnmap method. 5004 */ 5005 static int rbuVfsShmUnmap(sqlite3_file *pFile, int delFlag){ 5006 rbu_file *p = (rbu_file*)pFile; 5007 int rc = SQLITE_OK; 5008 int eStage = (p->pRbu ? p->pRbu->eStage : 0); 5009 5010 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) ); 5011 if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){ 5012 /* no-op */ 5013 }else{ 5014 /* Release the checkpointer and writer locks */ 5015 rbuUnlockShm(p); 5016 rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag); 5017 } 5018 return rc; 5019 } 5020 5021 /* 5022 ** Open an rbu file handle. 5023 */ 5024 static int rbuVfsOpen( 5025 sqlite3_vfs *pVfs, 5026 const char *zName, 5027 sqlite3_file *pFile, 5028 int flags, 5029 int *pOutFlags 5030 ){ 5031 static sqlite3_io_methods rbuvfs_io_methods = { 5032 2, /* iVersion */ 5033 rbuVfsClose, /* xClose */ 5034 rbuVfsRead, /* xRead */ 5035 rbuVfsWrite, /* xWrite */ 5036 rbuVfsTruncate, /* xTruncate */ 5037 rbuVfsSync, /* xSync */ 5038 rbuVfsFileSize, /* xFileSize */ 5039 rbuVfsLock, /* xLock */ 5040 rbuVfsUnlock, /* xUnlock */ 5041 rbuVfsCheckReservedLock, /* xCheckReservedLock */ 5042 rbuVfsFileControl, /* xFileControl */ 5043 rbuVfsSectorSize, /* xSectorSize */ 5044 rbuVfsDeviceCharacteristics, /* xDeviceCharacteristics */ 5045 rbuVfsShmMap, /* xShmMap */ 5046 rbuVfsShmLock, /* xShmLock */ 5047 rbuVfsShmBarrier, /* xShmBarrier */ 5048 rbuVfsShmUnmap, /* xShmUnmap */ 5049 0, 0 /* xFetch, xUnfetch */ 5050 }; 5051 rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs; 5052 sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs; 5053 rbu_file *pFd = (rbu_file *)pFile; 5054 int rc = SQLITE_OK; 5055 const char *zOpen = zName; 5056 int oflags = flags; 5057 5058 memset(pFd, 0, sizeof(rbu_file)); 5059 pFd->pReal = (sqlite3_file*)&pFd[1]; 5060 pFd->pRbuVfs = pRbuVfs; 5061 pFd->openFlags = flags; 5062 if( zName ){ 5063 if( flags & SQLITE_OPEN_MAIN_DB ){ 5064 /* A main database has just been opened. The following block sets 5065 ** (pFd->zWal) to point to a buffer owned by SQLite that contains 5066 ** the name of the *-wal file this db connection will use. SQLite 5067 ** happens to pass a pointer to this buffer when using xAccess() 5068 ** or xOpen() to operate on the *-wal file. */ 5069 pFd->zWal = sqlite3_filename_wal(zName); 5070 } 5071 else if( flags & SQLITE_OPEN_WAL ){ 5072 rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName, 0); 5073 if( pDb ){ 5074 if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){ 5075 /* This call is to open a *-wal file. Intead, open the *-oal. */ 5076 size_t nOpen; 5077 if( rbuIsVacuum(pDb->pRbu) ){ 5078 zOpen = sqlite3_db_filename(pDb->pRbu->dbRbu, "main"); 5079 zOpen = sqlite3_filename_wal(zOpen); 5080 } 5081 nOpen = strlen(zOpen); 5082 ((char*)zOpen)[nOpen-3] = 'o'; 5083 pFd->pRbu = pDb->pRbu; 5084 } 5085 pDb->pWalFd = pFd; 5086 } 5087 } 5088 }else{ 5089 pFd->pRbu = pRbuVfs->pRbu; 5090 } 5091 5092 if( oflags & SQLITE_OPEN_MAIN_DB 5093 && sqlite3_uri_boolean(zName, "rbu_memory", 0) 5094 ){ 5095 assert( oflags & SQLITE_OPEN_MAIN_DB ); 5096 oflags = SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 5097 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; 5098 zOpen = 0; 5099 } 5100 5101 if( rc==SQLITE_OK ){ 5102 rc = pRealVfs->xOpen(pRealVfs, zOpen, pFd->pReal, oflags, pOutFlags); 5103 } 5104 if( pFd->pReal->pMethods ){ 5105 /* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods 5106 ** pointer and, if the file is a main database file, link it into the 5107 ** mutex protected linked list of all such files. */ 5108 pFile->pMethods = &rbuvfs_io_methods; 5109 if( flags & SQLITE_OPEN_MAIN_DB ){ 5110 rbuMainlistAdd(pFd); 5111 } 5112 }else{ 5113 sqlite3_free(pFd->zDel); 5114 } 5115 5116 return rc; 5117 } 5118 5119 /* 5120 ** Delete the file located at zPath. 5121 */ 5122 static int rbuVfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ 5123 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs; 5124 return pRealVfs->xDelete(pRealVfs, zPath, dirSync); 5125 } 5126 5127 /* 5128 ** Test for access permissions. Return true if the requested permission 5129 ** is available, or false otherwise. 5130 */ 5131 static int rbuVfsAccess( 5132 sqlite3_vfs *pVfs, 5133 const char *zPath, 5134 int flags, 5135 int *pResOut 5136 ){ 5137 rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs; 5138 sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs; 5139 int rc; 5140 5141 rc = pRealVfs->xAccess(pRealVfs, zPath, flags, pResOut); 5142 5143 /* If this call is to check if a *-wal file associated with an RBU target 5144 ** database connection exists, and the RBU update is in RBU_STAGE_OAL, 5145 ** the following special handling is activated: 5146 ** 5147 ** a) if the *-wal file does exist, return SQLITE_CANTOPEN. This 5148 ** ensures that the RBU extension never tries to update a database 5149 ** in wal mode, even if the first page of the database file has 5150 ** been damaged. 5151 ** 5152 ** b) if the *-wal file does not exist, claim that it does anyway, 5153 ** causing SQLite to call xOpen() to open it. This call will also 5154 ** be intercepted (see the rbuVfsOpen() function) and the *-oal 5155 ** file opened instead. 5156 */ 5157 if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ 5158 rbu_file *pDb = rbuFindMaindb(pRbuVfs, zPath, 1); 5159 if( pDb && pDb->pRbu->eStage==RBU_STAGE_OAL ){ 5160 assert( pDb->pRbu ); 5161 if( *pResOut ){ 5162 rc = SQLITE_CANTOPEN; 5163 }else{ 5164 sqlite3_int64 sz = 0; 5165 rc = rbuVfsFileSize(&pDb->base, &sz); 5166 *pResOut = (sz>0); 5167 } 5168 } 5169 } 5170 5171 return rc; 5172 } 5173 5174 /* 5175 ** Populate buffer zOut with the full canonical pathname corresponding 5176 ** to the pathname in zPath. zOut is guaranteed to point to a buffer 5177 ** of at least (DEVSYM_MAX_PATHNAME+1) bytes. 5178 */ 5179 static int rbuVfsFullPathname( 5180 sqlite3_vfs *pVfs, 5181 const char *zPath, 5182 int nOut, 5183 char *zOut 5184 ){ 5185 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs; 5186 return pRealVfs->xFullPathname(pRealVfs, zPath, nOut, zOut); 5187 } 5188 5189 #ifndef SQLITE_OMIT_LOAD_EXTENSION 5190 /* 5191 ** Open the dynamic library located at zPath and return a handle. 5192 */ 5193 static void *rbuVfsDlOpen(sqlite3_vfs *pVfs, const char *zPath){ 5194 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs; 5195 return pRealVfs->xDlOpen(pRealVfs, zPath); 5196 } 5197 5198 /* 5199 ** Populate the buffer zErrMsg (size nByte bytes) with a human readable 5200 ** utf-8 string describing the most recent error encountered associated 5201 ** with dynamic libraries. 5202 */ 5203 static void rbuVfsDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){ 5204 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs; 5205 pRealVfs->xDlError(pRealVfs, nByte, zErrMsg); 5206 } 5207 5208 /* 5209 ** Return a pointer to the symbol zSymbol in the dynamic library pHandle. 5210 */ 5211 static void (*rbuVfsDlSym( 5212 sqlite3_vfs *pVfs, 5213 void *pArg, 5214 const char *zSym 5215 ))(void){ 5216 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs; 5217 return pRealVfs->xDlSym(pRealVfs, pArg, zSym); 5218 } 5219 5220 /* 5221 ** Close the dynamic library handle pHandle. 5222 */ 5223 static void rbuVfsDlClose(sqlite3_vfs *pVfs, void *pHandle){ 5224 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs; 5225 pRealVfs->xDlClose(pRealVfs, pHandle); 5226 } 5227 #endif /* SQLITE_OMIT_LOAD_EXTENSION */ 5228 5229 /* 5230 ** Populate the buffer pointed to by zBufOut with nByte bytes of 5231 ** random data. 5232 */ 5233 static int rbuVfsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ 5234 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs; 5235 return pRealVfs->xRandomness(pRealVfs, nByte, zBufOut); 5236 } 5237 5238 /* 5239 ** Sleep for nMicro microseconds. Return the number of microseconds 5240 ** actually slept. 5241 */ 5242 static int rbuVfsSleep(sqlite3_vfs *pVfs, int nMicro){ 5243 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs; 5244 return pRealVfs->xSleep(pRealVfs, nMicro); 5245 } 5246 5247 /* 5248 ** Return the current time as a Julian Day number in *pTimeOut. 5249 */ 5250 static int rbuVfsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){ 5251 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs; 5252 return pRealVfs->xCurrentTime(pRealVfs, pTimeOut); 5253 } 5254 5255 /* 5256 ** No-op. 5257 */ 5258 static int rbuVfsGetLastError(sqlite3_vfs *pVfs, int a, char *b){ 5259 return 0; 5260 } 5261 5262 /* 5263 ** Deregister and destroy an RBU vfs created by an earlier call to 5264 ** sqlite3rbu_create_vfs(). 5265 */ 5266 void sqlite3rbu_destroy_vfs(const char *zName){ 5267 sqlite3_vfs *pVfs = sqlite3_vfs_find(zName); 5268 if( pVfs && pVfs->xOpen==rbuVfsOpen ){ 5269 sqlite3_mutex_free(((rbu_vfs*)pVfs)->mutex); 5270 sqlite3_vfs_unregister(pVfs); 5271 sqlite3_free(pVfs); 5272 } 5273 } 5274 5275 /* 5276 ** Create an RBU VFS named zName that accesses the underlying file-system 5277 ** via existing VFS zParent. The new object is registered as a non-default 5278 ** VFS with SQLite before returning. 5279 */ 5280 int sqlite3rbu_create_vfs(const char *zName, const char *zParent){ 5281 5282 /* Template for VFS */ 5283 static sqlite3_vfs vfs_template = { 5284 1, /* iVersion */ 5285 0, /* szOsFile */ 5286 0, /* mxPathname */ 5287 0, /* pNext */ 5288 0, /* zName */ 5289 0, /* pAppData */ 5290 rbuVfsOpen, /* xOpen */ 5291 rbuVfsDelete, /* xDelete */ 5292 rbuVfsAccess, /* xAccess */ 5293 rbuVfsFullPathname, /* xFullPathname */ 5294 5295 #ifndef SQLITE_OMIT_LOAD_EXTENSION 5296 rbuVfsDlOpen, /* xDlOpen */ 5297 rbuVfsDlError, /* xDlError */ 5298 rbuVfsDlSym, /* xDlSym */ 5299 rbuVfsDlClose, /* xDlClose */ 5300 #else 5301 0, 0, 0, 0, 5302 #endif 5303 5304 rbuVfsRandomness, /* xRandomness */ 5305 rbuVfsSleep, /* xSleep */ 5306 rbuVfsCurrentTime, /* xCurrentTime */ 5307 rbuVfsGetLastError, /* xGetLastError */ 5308 0, /* xCurrentTimeInt64 (version 2) */ 5309 0, 0, 0 /* Unimplemented version 3 methods */ 5310 }; 5311 5312 rbu_vfs *pNew = 0; /* Newly allocated VFS */ 5313 int rc = SQLITE_OK; 5314 size_t nName; 5315 size_t nByte; 5316 5317 nName = strlen(zName); 5318 nByte = sizeof(rbu_vfs) + nName + 1; 5319 pNew = (rbu_vfs*)sqlite3_malloc64(nByte); 5320 if( pNew==0 ){ 5321 rc = SQLITE_NOMEM; 5322 }else{ 5323 sqlite3_vfs *pParent; /* Parent VFS */ 5324 memset(pNew, 0, nByte); 5325 pParent = sqlite3_vfs_find(zParent); 5326 if( pParent==0 ){ 5327 rc = SQLITE_NOTFOUND; 5328 }else{ 5329 char *zSpace; 5330 memcpy(&pNew->base, &vfs_template, sizeof(sqlite3_vfs)); 5331 pNew->base.mxPathname = pParent->mxPathname; 5332 pNew->base.szOsFile = sizeof(rbu_file) + pParent->szOsFile; 5333 pNew->pRealVfs = pParent; 5334 pNew->base.zName = (const char*)(zSpace = (char*)&pNew[1]); 5335 memcpy(zSpace, zName, nName); 5336 5337 /* Allocate the mutex and register the new VFS (not as the default) */ 5338 pNew->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE); 5339 if( pNew->mutex==0 ){ 5340 rc = SQLITE_NOMEM; 5341 }else{ 5342 rc = sqlite3_vfs_register(&pNew->base, 0); 5343 } 5344 } 5345 5346 if( rc!=SQLITE_OK ){ 5347 sqlite3_mutex_free(pNew->mutex); 5348 sqlite3_free(pNew); 5349 } 5350 } 5351 5352 return rc; 5353 } 5354 5355 /* 5356 ** Configure the aggregate temp file size limit for this RBU handle. 5357 */ 5358 sqlite3_int64 sqlite3rbu_temp_size_limit(sqlite3rbu *pRbu, sqlite3_int64 n){ 5359 if( n>=0 ){ 5360 pRbu->szTempLimit = n; 5361 } 5362 return pRbu->szTempLimit; 5363 } 5364 5365 sqlite3_int64 sqlite3rbu_temp_size(sqlite3rbu *pRbu){ 5366 return pRbu->szTemp; 5367 } 5368 5369 5370 /**************************************************************************/ 5371 5372 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU) */ 5373