1 /* 2 ** 2003 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code used to implement the PRAGMA command. 13 */ 14 #include "sqliteInt.h" 15 16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) 17 # if defined(__APPLE__) 18 # define SQLITE_ENABLE_LOCKING_STYLE 1 19 # else 20 # define SQLITE_ENABLE_LOCKING_STYLE 0 21 # endif 22 #endif 23 24 /*************************************************************************** 25 ** The "pragma.h" include file is an automatically generated file that 26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[] 27 ** object. This ensures that the aPragmaName[] table is arranged in 28 ** lexicographical order to facility a binary search of the pragma name. 29 ** Do not edit pragma.h directly. Edit and rerun the script in at 30 ** ../tool/mkpragmatab.tcl. */ 31 #include "pragma.h" 32 33 /* 34 ** Interpret the given string as a safety level. Return 0 for OFF, 35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or 36 ** unrecognized string argument. The FULL and EXTRA option is disallowed 37 ** if the omitFull parameter it 1. 38 ** 39 ** Note that the values returned are one less that the values that 40 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done 41 ** to support legacy SQL code. The safety level used to be boolean 42 ** and older scripts may have used numbers 0 for OFF and 1 for ON. 43 */ 44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){ 45 /* 123456789 123456789 123 */ 46 static const char zText[] = "onoffalseyestruextrafull"; 47 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20}; 48 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4}; 49 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2}; 50 /* on no off false yes true extra full */ 51 int i, n; 52 if( sqlite3Isdigit(*z) ){ 53 return (u8)sqlite3Atoi(z); 54 } 55 n = sqlite3Strlen30(z); 56 for(i=0; i<ArraySize(iLength); i++){ 57 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 58 && (!omitFull || iValue[i]<=1) 59 ){ 60 return iValue[i]; 61 } 62 } 63 return dflt; 64 } 65 66 /* 67 ** Interpret the given string as a boolean value. 68 */ 69 u8 sqlite3GetBoolean(const char *z, u8 dflt){ 70 return getSafetyLevel(z,1,dflt)!=0; 71 } 72 73 /* The sqlite3GetBoolean() function is used by other modules but the 74 ** remainder of this file is specific to PRAGMA processing. So omit 75 ** the rest of the file if PRAGMAs are omitted from the build. 76 */ 77 #if !defined(SQLITE_OMIT_PRAGMA) 78 79 /* 80 ** Interpret the given string as a locking mode value. 81 */ 82 static int getLockingMode(const char *z){ 83 if( z ){ 84 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE; 85 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL; 86 } 87 return PAGER_LOCKINGMODE_QUERY; 88 } 89 90 #ifndef SQLITE_OMIT_AUTOVACUUM 91 /* 92 ** Interpret the given string as an auto-vacuum mode value. 93 ** 94 ** The following strings, "none", "full" and "incremental" are 95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively. 96 */ 97 static int getAutoVacuum(const char *z){ 98 int i; 99 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE; 100 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL; 101 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR; 102 i = sqlite3Atoi(z); 103 return (u8)((i>=0&&i<=2)?i:0); 104 } 105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ 106 107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 108 /* 109 ** Interpret the given string as a temp db location. Return 1 for file 110 ** backed temporary databases, 2 for the Red-Black tree in memory database 111 ** and 0 to use the compile-time default. 112 */ 113 static int getTempStore(const char *z){ 114 if( z[0]>='0' && z[0]<='2' ){ 115 return z[0] - '0'; 116 }else if( sqlite3StrICmp(z, "file")==0 ){ 117 return 1; 118 }else if( sqlite3StrICmp(z, "memory")==0 ){ 119 return 2; 120 }else{ 121 return 0; 122 } 123 } 124 #endif /* SQLITE_PAGER_PRAGMAS */ 125 126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 127 /* 128 ** Invalidate temp storage, either when the temp storage is changed 129 ** from default, or when 'file' and the temp_store_directory has changed 130 */ 131 static int invalidateTempStorage(Parse *pParse){ 132 sqlite3 *db = pParse->db; 133 if( db->aDb[1].pBt!=0 ){ 134 if( !db->autoCommit 135 || sqlite3BtreeTxnState(db->aDb[1].pBt)!=SQLITE_TXN_NONE 136 ){ 137 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " 138 "from within a transaction"); 139 return SQLITE_ERROR; 140 } 141 sqlite3BtreeClose(db->aDb[1].pBt); 142 db->aDb[1].pBt = 0; 143 sqlite3ResetAllSchemasOfConnection(db); 144 } 145 return SQLITE_OK; 146 } 147 #endif /* SQLITE_PAGER_PRAGMAS */ 148 149 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 150 /* 151 ** If the TEMP database is open, close it and mark the database schema 152 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE 153 ** or DEFAULT_TEMP_STORE pragmas. 154 */ 155 static int changeTempStorage(Parse *pParse, const char *zStorageType){ 156 int ts = getTempStore(zStorageType); 157 sqlite3 *db = pParse->db; 158 if( db->temp_store==ts ) return SQLITE_OK; 159 if( invalidateTempStorage( pParse ) != SQLITE_OK ){ 160 return SQLITE_ERROR; 161 } 162 db->temp_store = (u8)ts; 163 return SQLITE_OK; 164 } 165 #endif /* SQLITE_PAGER_PRAGMAS */ 166 167 /* 168 ** Set result column names for a pragma. 169 */ 170 static void setPragmaResultColumnNames( 171 Vdbe *v, /* The query under construction */ 172 const PragmaName *pPragma /* The pragma */ 173 ){ 174 u8 n = pPragma->nPragCName; 175 sqlite3VdbeSetNumCols(v, n==0 ? 1 : n); 176 if( n==0 ){ 177 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC); 178 }else{ 179 int i, j; 180 for(i=0, j=pPragma->iPragCName; i<n; i++, j++){ 181 sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC); 182 } 183 } 184 } 185 186 /* 187 ** Generate code to return a single integer value. 188 */ 189 static void returnSingleInt(Vdbe *v, i64 value){ 190 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64); 191 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 192 } 193 194 /* 195 ** Generate code to return a single text value. 196 */ 197 static void returnSingleText( 198 Vdbe *v, /* Prepared statement under construction */ 199 const char *zValue /* Value to be returned */ 200 ){ 201 if( zValue ){ 202 sqlite3VdbeLoadString(v, 1, (const char*)zValue); 203 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 204 } 205 } 206 207 208 /* 209 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0 210 ** set these values for all pagers. 211 */ 212 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 213 static void setAllPagerFlags(sqlite3 *db){ 214 if( db->autoCommit ){ 215 Db *pDb = db->aDb; 216 int n = db->nDb; 217 assert( SQLITE_FullFSync==PAGER_FULLFSYNC ); 218 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC ); 219 assert( SQLITE_CacheSpill==PAGER_CACHESPILL ); 220 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL) 221 == PAGER_FLAGS_MASK ); 222 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level ); 223 while( (n--) > 0 ){ 224 if( pDb->pBt ){ 225 sqlite3BtreeSetPagerFlags(pDb->pBt, 226 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) ); 227 } 228 pDb++; 229 } 230 } 231 } 232 #else 233 # define setAllPagerFlags(X) /* no-op */ 234 #endif 235 236 237 /* 238 ** Return a human-readable name for a constraint resolution action. 239 */ 240 #ifndef SQLITE_OMIT_FOREIGN_KEY 241 static const char *actionName(u8 action){ 242 const char *zName; 243 switch( action ){ 244 case OE_SetNull: zName = "SET NULL"; break; 245 case OE_SetDflt: zName = "SET DEFAULT"; break; 246 case OE_Cascade: zName = "CASCADE"; break; 247 case OE_Restrict: zName = "RESTRICT"; break; 248 default: zName = "NO ACTION"; 249 assert( action==OE_None ); break; 250 } 251 return zName; 252 } 253 #endif 254 255 256 /* 257 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants 258 ** defined in pager.h. This function returns the associated lowercase 259 ** journal-mode name. 260 */ 261 const char *sqlite3JournalModename(int eMode){ 262 static char * const azModeName[] = { 263 "delete", "persist", "off", "truncate", "memory" 264 #ifndef SQLITE_OMIT_WAL 265 , "wal" 266 #endif 267 }; 268 assert( PAGER_JOURNALMODE_DELETE==0 ); 269 assert( PAGER_JOURNALMODE_PERSIST==1 ); 270 assert( PAGER_JOURNALMODE_OFF==2 ); 271 assert( PAGER_JOURNALMODE_TRUNCATE==3 ); 272 assert( PAGER_JOURNALMODE_MEMORY==4 ); 273 assert( PAGER_JOURNALMODE_WAL==5 ); 274 assert( eMode>=0 && eMode<=ArraySize(azModeName) ); 275 276 if( eMode==ArraySize(azModeName) ) return 0; 277 return azModeName[eMode]; 278 } 279 280 /* 281 ** Locate a pragma in the aPragmaName[] array. 282 */ 283 static const PragmaName *pragmaLocate(const char *zName){ 284 int upr, lwr, mid = 0, rc; 285 lwr = 0; 286 upr = ArraySize(aPragmaName)-1; 287 while( lwr<=upr ){ 288 mid = (lwr+upr)/2; 289 rc = sqlite3_stricmp(zName, aPragmaName[mid].zName); 290 if( rc==0 ) break; 291 if( rc<0 ){ 292 upr = mid - 1; 293 }else{ 294 lwr = mid + 1; 295 } 296 } 297 return lwr>upr ? 0 : &aPragmaName[mid]; 298 } 299 300 /* 301 ** Create zero or more entries in the output for the SQL functions 302 ** defined by FuncDef p. 303 */ 304 static void pragmaFunclistLine( 305 Vdbe *v, /* The prepared statement being created */ 306 FuncDef *p, /* A particular function definition */ 307 int isBuiltin, /* True if this is a built-in function */ 308 int showInternFuncs /* True if showing internal functions */ 309 ){ 310 u32 mask = 311 SQLITE_DETERMINISTIC | 312 SQLITE_DIRECTONLY | 313 SQLITE_SUBTYPE | 314 SQLITE_INNOCUOUS | 315 SQLITE_FUNC_INTERNAL 316 ; 317 if( showInternFuncs ) mask = 0xffffffff; 318 for(; p; p=p->pNext){ 319 const char *zType; 320 static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" }; 321 322 assert( SQLITE_FUNC_ENCMASK==0x3 ); 323 assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 ); 324 assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 ); 325 assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 ); 326 327 if( p->xSFunc==0 ) continue; 328 if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0 329 && showInternFuncs==0 330 ){ 331 continue; 332 } 333 if( p->xValue!=0 ){ 334 zType = "w"; 335 }else if( p->xFinalize!=0 ){ 336 zType = "a"; 337 }else{ 338 zType = "s"; 339 } 340 sqlite3VdbeMultiLoad(v, 1, "sissii", 341 p->zName, isBuiltin, 342 zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK], 343 p->nArg, 344 (p->funcFlags & mask) ^ SQLITE_INNOCUOUS 345 ); 346 } 347 } 348 349 350 /* 351 ** Helper subroutine for PRAGMA integrity_check: 352 ** 353 ** Generate code to output a single-column result row with a value of the 354 ** string held in register 3. Decrement the result count in register 1 355 ** and halt if the maximum number of result rows have been issued. 356 */ 357 static int integrityCheckResultRow(Vdbe *v){ 358 int addr; 359 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); 360 addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1); 361 VdbeCoverage(v); 362 sqlite3VdbeAddOp0(v, OP_Halt); 363 return addr; 364 } 365 366 /* 367 ** Process a pragma statement. 368 ** 369 ** Pragmas are of this form: 370 ** 371 ** PRAGMA [schema.]id [= value] 372 ** 373 ** The identifier might also be a string. The value is a string, and 374 ** identifier, or a number. If minusFlag is true, then the value is 375 ** a number that was preceded by a minus sign. 376 ** 377 ** If the left side is "database.id" then pId1 is the database name 378 ** and pId2 is the id. If the left side is just "id" then pId1 is the 379 ** id and pId2 is any empty string. 380 */ 381 void sqlite3Pragma( 382 Parse *pParse, 383 Token *pId1, /* First part of [schema.]id field */ 384 Token *pId2, /* Second part of [schema.]id field, or NULL */ 385 Token *pValue, /* Token for <value>, or NULL */ 386 int minusFlag /* True if a '-' sign preceded <value> */ 387 ){ 388 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ 389 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ 390 const char *zDb = 0; /* The database name */ 391 Token *pId; /* Pointer to <id> token */ 392 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */ 393 int iDb; /* Database index for <database> */ 394 int rc; /* return value form SQLITE_FCNTL_PRAGMA */ 395 sqlite3 *db = pParse->db; /* The database connection */ 396 Db *pDb; /* The specific database being pragmaed */ 397 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */ 398 const PragmaName *pPragma; /* The pragma */ 399 400 if( v==0 ) return; 401 sqlite3VdbeRunOnlyOnce(v); 402 pParse->nMem = 2; 403 404 /* Interpret the [schema.] part of the pragma statement. iDb is the 405 ** index of the database this pragma is being applied to in db.aDb[]. */ 406 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); 407 if( iDb<0 ) return; 408 pDb = &db->aDb[iDb]; 409 410 /* If the temp database has been explicitly named as part of the 411 ** pragma, make sure it is open. 412 */ 413 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ 414 return; 415 } 416 417 zLeft = sqlite3NameFromToken(db, pId); 418 if( !zLeft ) return; 419 if( minusFlag ){ 420 zRight = sqlite3MPrintf(db, "-%T", pValue); 421 }else{ 422 zRight = sqlite3NameFromToken(db, pValue); 423 } 424 425 assert( pId2 ); 426 zDb = pId2->n>0 ? pDb->zDbSName : 0; 427 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ 428 goto pragma_out; 429 } 430 431 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS 432 ** connection. If it returns SQLITE_OK, then assume that the VFS 433 ** handled the pragma and generate a no-op prepared statement. 434 ** 435 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed, 436 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file 437 ** object corresponding to the database file to which the pragma 438 ** statement refers. 439 ** 440 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA 441 ** file control is an array of pointers to strings (char**) in which the 442 ** second element of the array is the name of the pragma and the third 443 ** element is the argument to the pragma or NULL if the pragma has no 444 ** argument. 445 */ 446 aFcntl[0] = 0; 447 aFcntl[1] = zLeft; 448 aFcntl[2] = zRight; 449 aFcntl[3] = 0; 450 db->busyHandler.nBusy = 0; 451 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); 452 if( rc==SQLITE_OK ){ 453 sqlite3VdbeSetNumCols(v, 1); 454 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT); 455 returnSingleText(v, aFcntl[0]); 456 sqlite3_free(aFcntl[0]); 457 goto pragma_out; 458 } 459 if( rc!=SQLITE_NOTFOUND ){ 460 if( aFcntl[0] ){ 461 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]); 462 sqlite3_free(aFcntl[0]); 463 } 464 pParse->nErr++; 465 pParse->rc = rc; 466 goto pragma_out; 467 } 468 469 /* Locate the pragma in the lookup table */ 470 pPragma = pragmaLocate(zLeft); 471 if( pPragma==0 ){ 472 /* IMP: R-43042-22504 No error messages are generated if an 473 ** unknown pragma is issued. */ 474 goto pragma_out; 475 } 476 477 /* Make sure the database schema is loaded if the pragma requires that */ 478 if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){ 479 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 480 } 481 482 /* Register the result column names for pragmas that return results */ 483 if( (pPragma->mPragFlg & PragFlg_NoColumns)==0 484 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0) 485 ){ 486 setPragmaResultColumnNames(v, pPragma); 487 } 488 489 /* Jump to the appropriate pragma handler */ 490 switch( pPragma->ePragTyp ){ 491 492 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) 493 /* 494 ** PRAGMA [schema.]default_cache_size 495 ** PRAGMA [schema.]default_cache_size=N 496 ** 497 ** The first form reports the current persistent setting for the 498 ** page cache size. The value returned is the maximum number of 499 ** pages in the page cache. The second form sets both the current 500 ** page cache size value and the persistent page cache size value 501 ** stored in the database file. 502 ** 503 ** Older versions of SQLite would set the default cache size to a 504 ** negative number to indicate synchronous=OFF. These days, synchronous 505 ** is always on by default regardless of the sign of the default cache 506 ** size. But continue to take the absolute value of the default cache 507 ** size of historical compatibility. 508 */ 509 case PragTyp_DEFAULT_CACHE_SIZE: { 510 static const int iLn = VDBE_OFFSET_LINENO(2); 511 static const VdbeOpList getCacheSize[] = { 512 { OP_Transaction, 0, 0, 0}, /* 0 */ 513 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */ 514 { OP_IfPos, 1, 8, 0}, 515 { OP_Integer, 0, 2, 0}, 516 { OP_Subtract, 1, 2, 1}, 517 { OP_IfPos, 1, 8, 0}, 518 { OP_Integer, 0, 1, 0}, /* 6 */ 519 { OP_Noop, 0, 0, 0}, 520 { OP_ResultRow, 1, 1, 0}, 521 }; 522 VdbeOp *aOp; 523 sqlite3VdbeUsesBtree(v, iDb); 524 if( !zRight ){ 525 pParse->nMem += 2; 526 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize)); 527 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn); 528 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 529 aOp[0].p1 = iDb; 530 aOp[1].p1 = iDb; 531 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE; 532 }else{ 533 int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); 534 sqlite3BeginWriteOperation(pParse, 0, iDb); 535 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size); 536 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 537 pDb->pSchema->cache_size = size; 538 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 539 } 540 break; 541 } 542 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */ 543 544 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) 545 /* 546 ** PRAGMA [schema.]page_size 547 ** PRAGMA [schema.]page_size=N 548 ** 549 ** The first form reports the current setting for the 550 ** database page size in bytes. The second form sets the 551 ** database page size value. The value can only be set if 552 ** the database has not yet been created. 553 */ 554 case PragTyp_PAGE_SIZE: { 555 Btree *pBt = pDb->pBt; 556 assert( pBt!=0 ); 557 if( !zRight ){ 558 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0; 559 returnSingleInt(v, size); 560 }else{ 561 /* Malloc may fail when setting the page-size, as there is an internal 562 ** buffer that the pager module resizes using sqlite3_realloc(). 563 */ 564 db->nextPagesize = sqlite3Atoi(zRight); 565 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,0,0) ){ 566 sqlite3OomFault(db); 567 } 568 } 569 break; 570 } 571 572 /* 573 ** PRAGMA [schema.]secure_delete 574 ** PRAGMA [schema.]secure_delete=ON/OFF/FAST 575 ** 576 ** The first form reports the current setting for the 577 ** secure_delete flag. The second form changes the secure_delete 578 ** flag setting and reports the new value. 579 */ 580 case PragTyp_SECURE_DELETE: { 581 Btree *pBt = pDb->pBt; 582 int b = -1; 583 assert( pBt!=0 ); 584 if( zRight ){ 585 if( sqlite3_stricmp(zRight, "fast")==0 ){ 586 b = 2; 587 }else{ 588 b = sqlite3GetBoolean(zRight, 0); 589 } 590 } 591 if( pId2->n==0 && b>=0 ){ 592 int ii; 593 for(ii=0; ii<db->nDb; ii++){ 594 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b); 595 } 596 } 597 b = sqlite3BtreeSecureDelete(pBt, b); 598 returnSingleInt(v, b); 599 break; 600 } 601 602 /* 603 ** PRAGMA [schema.]max_page_count 604 ** PRAGMA [schema.]max_page_count=N 605 ** 606 ** The first form reports the current setting for the 607 ** maximum number of pages in the database file. The 608 ** second form attempts to change this setting. Both 609 ** forms return the current setting. 610 ** 611 ** The absolute value of N is used. This is undocumented and might 612 ** change. The only purpose is to provide an easy way to test 613 ** the sqlite3AbsInt32() function. 614 ** 615 ** PRAGMA [schema.]page_count 616 ** 617 ** Return the number of pages in the specified database. 618 */ 619 case PragTyp_PAGE_COUNT: { 620 int iReg; 621 i64 x = 0; 622 sqlite3CodeVerifySchema(pParse, iDb); 623 iReg = ++pParse->nMem; 624 if( sqlite3Tolower(zLeft[0])=='p' ){ 625 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); 626 }else{ 627 if( zRight && sqlite3DecOrHexToI64(zRight,&x)==0 ){ 628 if( x<0 ) x = 0; 629 else if( x>0xfffffffe ) x = 0xfffffffe; 630 }else{ 631 x = 0; 632 } 633 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, (int)x); 634 } 635 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); 636 break; 637 } 638 639 /* 640 ** PRAGMA [schema.]locking_mode 641 ** PRAGMA [schema.]locking_mode = (normal|exclusive) 642 */ 643 case PragTyp_LOCKING_MODE: { 644 const char *zRet = "normal"; 645 int eMode = getLockingMode(zRight); 646 647 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ 648 /* Simple "PRAGMA locking_mode;" statement. This is a query for 649 ** the current default locking mode (which may be different to 650 ** the locking-mode of the main database). 651 */ 652 eMode = db->dfltLockMode; 653 }else{ 654 Pager *pPager; 655 if( pId2->n==0 ){ 656 /* This indicates that no database name was specified as part 657 ** of the PRAGMA command. In this case the locking-mode must be 658 ** set on all attached databases, as well as the main db file. 659 ** 660 ** Also, the sqlite3.dfltLockMode variable is set so that 661 ** any subsequently attached databases also use the specified 662 ** locking mode. 663 */ 664 int ii; 665 assert(pDb==&db->aDb[0]); 666 for(ii=2; ii<db->nDb; ii++){ 667 pPager = sqlite3BtreePager(db->aDb[ii].pBt); 668 sqlite3PagerLockingMode(pPager, eMode); 669 } 670 db->dfltLockMode = (u8)eMode; 671 } 672 pPager = sqlite3BtreePager(pDb->pBt); 673 eMode = sqlite3PagerLockingMode(pPager, eMode); 674 } 675 676 assert( eMode==PAGER_LOCKINGMODE_NORMAL 677 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 678 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ 679 zRet = "exclusive"; 680 } 681 returnSingleText(v, zRet); 682 break; 683 } 684 685 /* 686 ** PRAGMA [schema.]journal_mode 687 ** PRAGMA [schema.]journal_mode = 688 ** (delete|persist|off|truncate|memory|wal|off) 689 */ 690 case PragTyp_JOURNAL_MODE: { 691 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */ 692 int ii; /* Loop counter */ 693 694 if( zRight==0 ){ 695 /* If there is no "=MODE" part of the pragma, do a query for the 696 ** current mode */ 697 eMode = PAGER_JOURNALMODE_QUERY; 698 }else{ 699 const char *zMode; 700 int n = sqlite3Strlen30(zRight); 701 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){ 702 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break; 703 } 704 if( !zMode ){ 705 /* If the "=MODE" part does not match any known journal mode, 706 ** then do a query */ 707 eMode = PAGER_JOURNALMODE_QUERY; 708 } 709 if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){ 710 /* Do not allow journal-mode "OFF" in defensive since the database 711 ** can become corrupted using ordinary SQL when the journal is off */ 712 eMode = PAGER_JOURNALMODE_QUERY; 713 } 714 } 715 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){ 716 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */ 717 iDb = 0; 718 pId2->n = 1; 719 } 720 for(ii=db->nDb-1; ii>=0; ii--){ 721 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 722 sqlite3VdbeUsesBtree(v, ii); 723 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode); 724 } 725 } 726 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 727 break; 728 } 729 730 /* 731 ** PRAGMA [schema.]journal_size_limit 732 ** PRAGMA [schema.]journal_size_limit=N 733 ** 734 ** Get or set the size limit on rollback journal files. 735 */ 736 case PragTyp_JOURNAL_SIZE_LIMIT: { 737 Pager *pPager = sqlite3BtreePager(pDb->pBt); 738 i64 iLimit = -2; 739 if( zRight ){ 740 sqlite3DecOrHexToI64(zRight, &iLimit); 741 if( iLimit<-1 ) iLimit = -1; 742 } 743 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); 744 returnSingleInt(v, iLimit); 745 break; 746 } 747 748 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 749 750 /* 751 ** PRAGMA [schema.]auto_vacuum 752 ** PRAGMA [schema.]auto_vacuum=N 753 ** 754 ** Get or set the value of the database 'auto-vacuum' parameter. 755 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL 756 */ 757 #ifndef SQLITE_OMIT_AUTOVACUUM 758 case PragTyp_AUTO_VACUUM: { 759 Btree *pBt = pDb->pBt; 760 assert( pBt!=0 ); 761 if( !zRight ){ 762 returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt)); 763 }else{ 764 int eAuto = getAutoVacuum(zRight); 765 assert( eAuto>=0 && eAuto<=2 ); 766 db->nextAutovac = (u8)eAuto; 767 /* Call SetAutoVacuum() to set initialize the internal auto and 768 ** incr-vacuum flags. This is required in case this connection 769 ** creates the database file. It is important that it is created 770 ** as an auto-vacuum capable db. 771 */ 772 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); 773 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ 774 /* When setting the auto_vacuum mode to either "full" or 775 ** "incremental", write the value of meta[6] in the database 776 ** file. Before writing to meta[6], check that meta[3] indicates 777 ** that this really is an auto-vacuum capable database. 778 */ 779 static const int iLn = VDBE_OFFSET_LINENO(2); 780 static const VdbeOpList setMeta6[] = { 781 { OP_Transaction, 0, 1, 0}, /* 0 */ 782 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE}, 783 { OP_If, 1, 0, 0}, /* 2 */ 784 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ 785 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */ 786 }; 787 VdbeOp *aOp; 788 int iAddr = sqlite3VdbeCurrentAddr(v); 789 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6)); 790 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn); 791 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 792 aOp[0].p1 = iDb; 793 aOp[1].p1 = iDb; 794 aOp[2].p2 = iAddr+4; 795 aOp[4].p1 = iDb; 796 aOp[4].p3 = eAuto - 1; 797 sqlite3VdbeUsesBtree(v, iDb); 798 } 799 } 800 break; 801 } 802 #endif 803 804 /* 805 ** PRAGMA [schema.]incremental_vacuum(N) 806 ** 807 ** Do N steps of incremental vacuuming on a database. 808 */ 809 #ifndef SQLITE_OMIT_AUTOVACUUM 810 case PragTyp_INCREMENTAL_VACUUM: { 811 int iLimit = 0, addr; 812 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ 813 iLimit = 0x7fffffff; 814 } 815 sqlite3BeginWriteOperation(pParse, 0, iDb); 816 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); 817 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v); 818 sqlite3VdbeAddOp1(v, OP_ResultRow, 1); 819 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); 820 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v); 821 sqlite3VdbeJumpHere(v, addr); 822 break; 823 } 824 #endif 825 826 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 827 /* 828 ** PRAGMA [schema.]cache_size 829 ** PRAGMA [schema.]cache_size=N 830 ** 831 ** The first form reports the current local setting for the 832 ** page cache size. The second form sets the local 833 ** page cache size value. If N is positive then that is the 834 ** number of pages in the cache. If N is negative, then the 835 ** number of pages is adjusted so that the cache uses -N kibibytes 836 ** of memory. 837 */ 838 case PragTyp_CACHE_SIZE: { 839 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 840 if( !zRight ){ 841 returnSingleInt(v, pDb->pSchema->cache_size); 842 }else{ 843 int size = sqlite3Atoi(zRight); 844 pDb->pSchema->cache_size = size; 845 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 846 } 847 break; 848 } 849 850 /* 851 ** PRAGMA [schema.]cache_spill 852 ** PRAGMA cache_spill=BOOLEAN 853 ** PRAGMA [schema.]cache_spill=N 854 ** 855 ** The first form reports the current local setting for the 856 ** page cache spill size. The second form turns cache spill on 857 ** or off. When turnning cache spill on, the size is set to the 858 ** current cache_size. The third form sets a spill size that 859 ** may be different form the cache size. 860 ** If N is positive then that is the 861 ** number of pages in the cache. If N is negative, then the 862 ** number of pages is adjusted so that the cache uses -N kibibytes 863 ** of memory. 864 ** 865 ** If the number of cache_spill pages is less then the number of 866 ** cache_size pages, no spilling occurs until the page count exceeds 867 ** the number of cache_size pages. 868 ** 869 ** The cache_spill=BOOLEAN setting applies to all attached schemas, 870 ** not just the schema specified. 871 */ 872 case PragTyp_CACHE_SPILL: { 873 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 874 if( !zRight ){ 875 returnSingleInt(v, 876 (db->flags & SQLITE_CacheSpill)==0 ? 0 : 877 sqlite3BtreeSetSpillSize(pDb->pBt,0)); 878 }else{ 879 int size = 1; 880 if( sqlite3GetInt32(zRight, &size) ){ 881 sqlite3BtreeSetSpillSize(pDb->pBt, size); 882 } 883 if( sqlite3GetBoolean(zRight, size!=0) ){ 884 db->flags |= SQLITE_CacheSpill; 885 }else{ 886 db->flags &= ~(u64)SQLITE_CacheSpill; 887 } 888 setAllPagerFlags(db); 889 } 890 break; 891 } 892 893 /* 894 ** PRAGMA [schema.]mmap_size(N) 895 ** 896 ** Used to set mapping size limit. The mapping size limit is 897 ** used to limit the aggregate size of all memory mapped regions of the 898 ** database file. If this parameter is set to zero, then memory mapping 899 ** is not used at all. If N is negative, then the default memory map 900 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set. 901 ** The parameter N is measured in bytes. 902 ** 903 ** This value is advisory. The underlying VFS is free to memory map 904 ** as little or as much as it wants. Except, if N is set to 0 then the 905 ** upper layers will never invoke the xFetch interfaces to the VFS. 906 */ 907 case PragTyp_MMAP_SIZE: { 908 sqlite3_int64 sz; 909 #if SQLITE_MAX_MMAP_SIZE>0 910 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 911 if( zRight ){ 912 int ii; 913 sqlite3DecOrHexToI64(zRight, &sz); 914 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap; 915 if( pId2->n==0 ) db->szMmap = sz; 916 for(ii=db->nDb-1; ii>=0; ii--){ 917 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ 918 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz); 919 } 920 } 921 } 922 sz = -1; 923 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz); 924 #else 925 sz = 0; 926 rc = SQLITE_OK; 927 #endif 928 if( rc==SQLITE_OK ){ 929 returnSingleInt(v, sz); 930 }else if( rc!=SQLITE_NOTFOUND ){ 931 pParse->nErr++; 932 pParse->rc = rc; 933 } 934 break; 935 } 936 937 /* 938 ** PRAGMA temp_store 939 ** PRAGMA temp_store = "default"|"memory"|"file" 940 ** 941 ** Return or set the local value of the temp_store flag. Changing 942 ** the local value does not make changes to the disk file and the default 943 ** value will be restored the next time the database is opened. 944 ** 945 ** Note that it is possible for the library compile-time options to 946 ** override this setting 947 */ 948 case PragTyp_TEMP_STORE: { 949 if( !zRight ){ 950 returnSingleInt(v, db->temp_store); 951 }else{ 952 changeTempStorage(pParse, zRight); 953 } 954 break; 955 } 956 957 /* 958 ** PRAGMA temp_store_directory 959 ** PRAGMA temp_store_directory = ""|"directory_name" 960 ** 961 ** Return or set the local value of the temp_store_directory flag. Changing 962 ** the value sets a specific directory to be used for temporary files. 963 ** Setting to a null string reverts to the default temporary directory search. 964 ** If temporary directory is changed, then invalidateTempStorage. 965 ** 966 */ 967 case PragTyp_TEMP_STORE_DIRECTORY: { 968 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); 969 if( !zRight ){ 970 returnSingleText(v, sqlite3_temp_directory); 971 }else{ 972 #ifndef SQLITE_OMIT_WSD 973 if( zRight[0] ){ 974 int res; 975 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 976 if( rc!=SQLITE_OK || res==0 ){ 977 sqlite3ErrorMsg(pParse, "not a writable directory"); 978 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); 979 goto pragma_out; 980 } 981 } 982 if( SQLITE_TEMP_STORE==0 983 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) 984 || (SQLITE_TEMP_STORE==2 && db->temp_store==1) 985 ){ 986 invalidateTempStorage(pParse); 987 } 988 sqlite3_free(sqlite3_temp_directory); 989 if( zRight[0] ){ 990 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); 991 }else{ 992 sqlite3_temp_directory = 0; 993 } 994 #endif /* SQLITE_OMIT_WSD */ 995 } 996 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); 997 break; 998 } 999 1000 #if SQLITE_OS_WIN 1001 /* 1002 ** PRAGMA data_store_directory 1003 ** PRAGMA data_store_directory = ""|"directory_name" 1004 ** 1005 ** Return or set the local value of the data_store_directory flag. Changing 1006 ** the value sets a specific directory to be used for database files that 1007 ** were specified with a relative pathname. Setting to a null string reverts 1008 ** to the default database directory, which for database files specified with 1009 ** a relative path will probably be based on the current directory for the 1010 ** process. Database file specified with an absolute path are not impacted 1011 ** by this setting, regardless of its value. 1012 ** 1013 */ 1014 case PragTyp_DATA_STORE_DIRECTORY: { 1015 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); 1016 if( !zRight ){ 1017 returnSingleText(v, sqlite3_data_directory); 1018 }else{ 1019 #ifndef SQLITE_OMIT_WSD 1020 if( zRight[0] ){ 1021 int res; 1022 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); 1023 if( rc!=SQLITE_OK || res==0 ){ 1024 sqlite3ErrorMsg(pParse, "not a writable directory"); 1025 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); 1026 goto pragma_out; 1027 } 1028 } 1029 sqlite3_free(sqlite3_data_directory); 1030 if( zRight[0] ){ 1031 sqlite3_data_directory = sqlite3_mprintf("%s", zRight); 1032 }else{ 1033 sqlite3_data_directory = 0; 1034 } 1035 #endif /* SQLITE_OMIT_WSD */ 1036 } 1037 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR)); 1038 break; 1039 } 1040 #endif 1041 1042 #if SQLITE_ENABLE_LOCKING_STYLE 1043 /* 1044 ** PRAGMA [schema.]lock_proxy_file 1045 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path" 1046 ** 1047 ** Return or set the value of the lock_proxy_file flag. Changing 1048 ** the value sets a specific file to be used for database access locks. 1049 ** 1050 */ 1051 case PragTyp_LOCK_PROXY_FILE: { 1052 if( !zRight ){ 1053 Pager *pPager = sqlite3BtreePager(pDb->pBt); 1054 char *proxy_file_path = NULL; 1055 sqlite3_file *pFile = sqlite3PagerFile(pPager); 1056 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE, 1057 &proxy_file_path); 1058 returnSingleText(v, proxy_file_path); 1059 }else{ 1060 Pager *pPager = sqlite3BtreePager(pDb->pBt); 1061 sqlite3_file *pFile = sqlite3PagerFile(pPager); 1062 int res; 1063 if( zRight[0] ){ 1064 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 1065 zRight); 1066 } else { 1067 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 1068 NULL); 1069 } 1070 if( res!=SQLITE_OK ){ 1071 sqlite3ErrorMsg(pParse, "failed to set lock proxy file"); 1072 goto pragma_out; 1073 } 1074 } 1075 break; 1076 } 1077 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ 1078 1079 /* 1080 ** PRAGMA [schema.]synchronous 1081 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA 1082 ** 1083 ** Return or set the local value of the synchronous flag. Changing 1084 ** the local value does not make changes to the disk file and the 1085 ** default value will be restored the next time the database is 1086 ** opened. 1087 */ 1088 case PragTyp_SYNCHRONOUS: { 1089 if( !zRight ){ 1090 returnSingleInt(v, pDb->safety_level-1); 1091 }else{ 1092 if( !db->autoCommit ){ 1093 sqlite3ErrorMsg(pParse, 1094 "Safety level may not be changed inside a transaction"); 1095 }else if( iDb!=1 ){ 1096 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK; 1097 if( iLevel==0 ) iLevel = 1; 1098 pDb->safety_level = iLevel; 1099 pDb->bSyncSet = 1; 1100 setAllPagerFlags(db); 1101 } 1102 } 1103 break; 1104 } 1105 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ 1106 1107 #ifndef SQLITE_OMIT_FLAG_PRAGMAS 1108 case PragTyp_FLAG: { 1109 if( zRight==0 ){ 1110 setPragmaResultColumnNames(v, pPragma); 1111 returnSingleInt(v, (db->flags & pPragma->iArg)!=0 ); 1112 }else{ 1113 u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */ 1114 if( db->autoCommit==0 ){ 1115 /* Foreign key support may not be enabled or disabled while not 1116 ** in auto-commit mode. */ 1117 mask &= ~(SQLITE_ForeignKeys); 1118 } 1119 #if SQLITE_USER_AUTHENTICATION 1120 if( db->auth.authLevel==UAUTH_User ){ 1121 /* Do not allow non-admin users to modify the schema arbitrarily */ 1122 mask &= ~(SQLITE_WriteSchema); 1123 } 1124 #endif 1125 1126 if( sqlite3GetBoolean(zRight, 0) ){ 1127 db->flags |= mask; 1128 }else{ 1129 db->flags &= ~mask; 1130 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0; 1131 if( (mask & SQLITE_WriteSchema)!=0 1132 && sqlite3_stricmp(zRight, "reset")==0 1133 ){ 1134 /* IMP: R-60817-01178 If the argument is "RESET" then schema 1135 ** writing is disabled (as with "PRAGMA writable_schema=OFF") and, 1136 ** in addition, the schema is reloaded. */ 1137 sqlite3ResetAllSchemasOfConnection(db); 1138 } 1139 } 1140 1141 /* Many of the flag-pragmas modify the code generated by the SQL 1142 ** compiler (eg. count_changes). So add an opcode to expire all 1143 ** compiled SQL statements after modifying a pragma value. 1144 */ 1145 sqlite3VdbeAddOp0(v, OP_Expire); 1146 setAllPagerFlags(db); 1147 } 1148 break; 1149 } 1150 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ 1151 1152 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS 1153 /* 1154 ** PRAGMA table_info(<table>) 1155 ** 1156 ** Return a single row for each column of the named table. The columns of 1157 ** the returned data set are: 1158 ** 1159 ** cid: Column id (numbered from left to right, starting at 0) 1160 ** name: Column name 1161 ** type: Column declaration type. 1162 ** notnull: True if 'NOT NULL' is part of column declaration 1163 ** dflt_value: The default value for the column, if any. 1164 ** pk: Non-zero for PK fields. 1165 */ 1166 case PragTyp_TABLE_INFO: if( zRight ){ 1167 Table *pTab; 1168 sqlite3CodeVerifyNamedSchema(pParse, zDb); 1169 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); 1170 if( pTab ){ 1171 int i, k; 1172 int nHidden = 0; 1173 Column *pCol; 1174 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 1175 pParse->nMem = 7; 1176 sqlite3ViewGetColumnNames(pParse, pTab); 1177 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1178 int isHidden = 0; 1179 const Expr *pColExpr; 1180 if( pCol->colFlags & COLFLAG_NOINSERT ){ 1181 if( pPragma->iArg==0 ){ 1182 nHidden++; 1183 continue; 1184 } 1185 if( pCol->colFlags & COLFLAG_VIRTUAL ){ 1186 isHidden = 2; /* GENERATED ALWAYS AS ... VIRTUAL */ 1187 }else if( pCol->colFlags & COLFLAG_STORED ){ 1188 isHidden = 3; /* GENERATED ALWAYS AS ... STORED */ 1189 }else{ assert( pCol->colFlags & COLFLAG_HIDDEN ); 1190 isHidden = 1; /* HIDDEN */ 1191 } 1192 } 1193 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ 1194 k = 0; 1195 }else if( pPk==0 ){ 1196 k = 1; 1197 }else{ 1198 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){} 1199 } 1200 pColExpr = sqlite3ColumnExpr(pTab,pCol); 1201 assert( pColExpr==0 || pColExpr->op==TK_SPAN || isHidden>=2 ); 1202 assert( pColExpr==0 || !ExprHasProperty(pColExpr, EP_IntValue) 1203 || isHidden>=2 ); 1204 sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi", 1205 i-nHidden, 1206 pCol->zCnName, 1207 sqlite3ColumnType(pCol,""), 1208 pCol->notNull ? 1 : 0, 1209 (isHidden>=2 || pColExpr==0) ? 0 : pColExpr->u.zToken, 1210 k, 1211 isHidden); 1212 } 1213 } 1214 } 1215 break; 1216 1217 /* 1218 ** PRAGMA table_list 1219 ** 1220 ** Return a single row for each table, virtual table, or view in the 1221 ** entire schema. 1222 ** 1223 ** schema: Name of attached database hold this table 1224 ** name: Name of the table itself 1225 ** type: "table", "view", "virtual", "shadow" 1226 ** ncol: Number of columns 1227 ** wr: True for a WITHOUT ROWID table 1228 ** strict: True for a STRICT table 1229 */ 1230 case PragTyp_TABLE_LIST: { 1231 int ii; 1232 pParse->nMem = 6; 1233 sqlite3CodeVerifyNamedSchema(pParse, zDb); 1234 for(ii=0; ii<db->nDb; ii++){ 1235 HashElem *k; 1236 Hash *pHash; 1237 int initNCol; 1238 if( zDb && sqlite3_stricmp(zDb, db->aDb[ii].zDbSName)!=0 ) continue; 1239 1240 /* Ensure that the Table.nCol field is initialized for all views 1241 ** and virtual tables. Each time we initialize a Table.nCol value 1242 ** for a table, that can potentially disrupt the hash table, so restart 1243 ** the initialization scan. 1244 */ 1245 pHash = &db->aDb[ii].pSchema->tblHash; 1246 initNCol = sqliteHashCount(pHash); 1247 while( initNCol-- ){ 1248 for(k=sqliteHashFirst(pHash); 1; k=sqliteHashNext(k) ){ 1249 Table *pTab; 1250 if( k==0 ){ initNCol = 0; break; } 1251 pTab = sqliteHashData(k); 1252 if( pTab->nCol==0 ){ 1253 char *zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\"", pTab->zName); 1254 if( zSql ){ 1255 sqlite3_stmt *pDummy = 0; 1256 (void)sqlite3_prepare(db, zSql, -1, &pDummy, 0); 1257 (void)sqlite3_finalize(pDummy); 1258 sqlite3DbFree(db, zSql); 1259 } 1260 if( db->mallocFailed ){ 1261 sqlite3ErrorMsg(db->pParse, "out of memory"); 1262 db->pParse->rc = SQLITE_NOMEM_BKPT; 1263 } 1264 pHash = &db->aDb[ii].pSchema->tblHash; 1265 break; 1266 } 1267 } 1268 } 1269 1270 for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k) ){ 1271 Table *pTab = sqliteHashData(k); 1272 const char *zType; 1273 if( zRight && sqlite3_stricmp(zRight, pTab->zName)!=0 ) continue; 1274 if( IsView(pTab) ){ 1275 zType = "view"; 1276 }else if( IsVirtual(pTab) ){ 1277 zType = "virtual"; 1278 }else if( pTab->tabFlags & TF_Shadow ){ 1279 zType = "shadow"; 1280 }else{ 1281 zType = "table"; 1282 } 1283 sqlite3VdbeMultiLoad(v, 1, "sssiii", 1284 db->aDb[ii].zDbSName, 1285 sqlite3PreferredTableName(pTab->zName), 1286 zType, 1287 pTab->nCol, 1288 (pTab->tabFlags & TF_WithoutRowid)!=0, 1289 (pTab->tabFlags & TF_Strict)!=0 1290 ); 1291 } 1292 } 1293 } 1294 break; 1295 1296 #ifdef SQLITE_DEBUG 1297 case PragTyp_STATS: { 1298 Index *pIdx; 1299 HashElem *i; 1300 pParse->nMem = 5; 1301 sqlite3CodeVerifySchema(pParse, iDb); 1302 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){ 1303 Table *pTab = sqliteHashData(i); 1304 sqlite3VdbeMultiLoad(v, 1, "ssiii", 1305 sqlite3PreferredTableName(pTab->zName), 1306 0, 1307 pTab->szTabRow, 1308 pTab->nRowLogEst, 1309 pTab->tabFlags); 1310 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1311 sqlite3VdbeMultiLoad(v, 2, "siiiX", 1312 pIdx->zName, 1313 pIdx->szIdxRow, 1314 pIdx->aiRowLogEst[0], 1315 pIdx->hasStat1); 1316 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5); 1317 } 1318 } 1319 } 1320 break; 1321 #endif 1322 1323 case PragTyp_INDEX_INFO: if( zRight ){ 1324 Index *pIdx; 1325 Table *pTab; 1326 pIdx = sqlite3FindIndex(db, zRight, zDb); 1327 if( pIdx==0 ){ 1328 /* If there is no index named zRight, check to see if there is a 1329 ** WITHOUT ROWID table named zRight, and if there is, show the 1330 ** structure of the PRIMARY KEY index for that table. */ 1331 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); 1332 if( pTab && !HasRowid(pTab) ){ 1333 pIdx = sqlite3PrimaryKeyIndex(pTab); 1334 } 1335 } 1336 if( pIdx ){ 1337 int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema); 1338 int i; 1339 int mx; 1340 if( pPragma->iArg ){ 1341 /* PRAGMA index_xinfo (newer version with more rows and columns) */ 1342 mx = pIdx->nColumn; 1343 pParse->nMem = 6; 1344 }else{ 1345 /* PRAGMA index_info (legacy version) */ 1346 mx = pIdx->nKeyCol; 1347 pParse->nMem = 3; 1348 } 1349 pTab = pIdx->pTable; 1350 sqlite3CodeVerifySchema(pParse, iIdxDb); 1351 assert( pParse->nMem<=pPragma->nPragCName ); 1352 for(i=0; i<mx; i++){ 1353 i16 cnum = pIdx->aiColumn[i]; 1354 sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum, 1355 cnum<0 ? 0 : pTab->aCol[cnum].zCnName); 1356 if( pPragma->iArg ){ 1357 sqlite3VdbeMultiLoad(v, 4, "isiX", 1358 pIdx->aSortOrder[i], 1359 pIdx->azColl[i], 1360 i<pIdx->nKeyCol); 1361 } 1362 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem); 1363 } 1364 } 1365 } 1366 break; 1367 1368 case PragTyp_INDEX_LIST: if( zRight ){ 1369 Index *pIdx; 1370 Table *pTab; 1371 int i; 1372 pTab = sqlite3FindTable(db, zRight, zDb); 1373 if( pTab ){ 1374 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1375 pParse->nMem = 5; 1376 sqlite3CodeVerifySchema(pParse, iTabDb); 1377 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ 1378 const char *azOrigin[] = { "c", "u", "pk" }; 1379 sqlite3VdbeMultiLoad(v, 1, "isisi", 1380 i, 1381 pIdx->zName, 1382 IsUniqueIndex(pIdx), 1383 azOrigin[pIdx->idxType], 1384 pIdx->pPartIdxWhere!=0); 1385 } 1386 } 1387 } 1388 break; 1389 1390 case PragTyp_DATABASE_LIST: { 1391 int i; 1392 pParse->nMem = 3; 1393 for(i=0; i<db->nDb; i++){ 1394 if( db->aDb[i].pBt==0 ) continue; 1395 assert( db->aDb[i].zDbSName!=0 ); 1396 sqlite3VdbeMultiLoad(v, 1, "iss", 1397 i, 1398 db->aDb[i].zDbSName, 1399 sqlite3BtreeGetFilename(db->aDb[i].pBt)); 1400 } 1401 } 1402 break; 1403 1404 case PragTyp_COLLATION_LIST: { 1405 int i = 0; 1406 HashElem *p; 1407 pParse->nMem = 2; 1408 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ 1409 CollSeq *pColl = (CollSeq *)sqliteHashData(p); 1410 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName); 1411 } 1412 } 1413 break; 1414 1415 #ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS 1416 case PragTyp_FUNCTION_LIST: { 1417 int i; 1418 HashElem *j; 1419 FuncDef *p; 1420 int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0; 1421 pParse->nMem = 6; 1422 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){ 1423 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){ 1424 assert( p->funcFlags & SQLITE_FUNC_BUILTIN ); 1425 pragmaFunclistLine(v, p, 1, showInternFunc); 1426 } 1427 } 1428 for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){ 1429 p = (FuncDef*)sqliteHashData(j); 1430 assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 ); 1431 pragmaFunclistLine(v, p, 0, showInternFunc); 1432 } 1433 } 1434 break; 1435 1436 #ifndef SQLITE_OMIT_VIRTUALTABLE 1437 case PragTyp_MODULE_LIST: { 1438 HashElem *j; 1439 pParse->nMem = 1; 1440 for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){ 1441 Module *pMod = (Module*)sqliteHashData(j); 1442 sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName); 1443 } 1444 } 1445 break; 1446 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1447 1448 case PragTyp_PRAGMA_LIST: { 1449 int i; 1450 for(i=0; i<ArraySize(aPragmaName); i++){ 1451 sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName); 1452 } 1453 } 1454 break; 1455 #endif /* SQLITE_INTROSPECTION_PRAGMAS */ 1456 1457 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ 1458 1459 #ifndef SQLITE_OMIT_FOREIGN_KEY 1460 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){ 1461 FKey *pFK; 1462 Table *pTab; 1463 pTab = sqlite3FindTable(db, zRight, zDb); 1464 if( pTab && IsOrdinaryTable(pTab) ){ 1465 pFK = pTab->u.tab.pFKey; 1466 if( pFK ){ 1467 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1468 int i = 0; 1469 pParse->nMem = 8; 1470 sqlite3CodeVerifySchema(pParse, iTabDb); 1471 while(pFK){ 1472 int j; 1473 for(j=0; j<pFK->nCol; j++){ 1474 sqlite3VdbeMultiLoad(v, 1, "iissssss", 1475 i, 1476 j, 1477 pFK->zTo, 1478 pTab->aCol[pFK->aCol[j].iFrom].zCnName, 1479 pFK->aCol[j].zCol, 1480 actionName(pFK->aAction[1]), /* ON UPDATE */ 1481 actionName(pFK->aAction[0]), /* ON DELETE */ 1482 "NONE"); 1483 } 1484 ++i; 1485 pFK = pFK->pNextFrom; 1486 } 1487 } 1488 } 1489 } 1490 break; 1491 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1492 1493 #ifndef SQLITE_OMIT_FOREIGN_KEY 1494 #ifndef SQLITE_OMIT_TRIGGER 1495 case PragTyp_FOREIGN_KEY_CHECK: { 1496 FKey *pFK; /* A foreign key constraint */ 1497 Table *pTab; /* Child table contain "REFERENCES" keyword */ 1498 Table *pParent; /* Parent table that child points to */ 1499 Index *pIdx; /* Index in the parent table */ 1500 int i; /* Loop counter: Foreign key number for pTab */ 1501 int j; /* Loop counter: Field of the foreign key */ 1502 HashElem *k; /* Loop counter: Next table in schema */ 1503 int x; /* result variable */ 1504 int regResult; /* 3 registers to hold a result row */ 1505 int regRow; /* Registers to hold a row from pTab */ 1506 int addrTop; /* Top of a loop checking foreign keys */ 1507 int addrOk; /* Jump here if the key is OK */ 1508 int *aiCols; /* child to parent column mapping */ 1509 1510 regResult = pParse->nMem+1; 1511 pParse->nMem += 4; 1512 regRow = ++pParse->nMem; 1513 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); 1514 while( k ){ 1515 if( zRight ){ 1516 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); 1517 k = 0; 1518 }else{ 1519 pTab = (Table*)sqliteHashData(k); 1520 k = sqliteHashNext(k); 1521 } 1522 if( pTab==0 || !IsOrdinaryTable(pTab) || pTab->u.tab.pFKey==0 ) continue; 1523 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1524 zDb = db->aDb[iDb].zDbSName; 1525 sqlite3CodeVerifySchema(pParse, iDb); 1526 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1527 if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow; 1528 sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead); 1529 sqlite3VdbeLoadString(v, regResult, pTab->zName); 1530 assert( IsOrdinaryTable(pTab) ); 1531 for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1532 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1533 if( pParent==0 ) continue; 1534 pIdx = 0; 1535 sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName); 1536 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); 1537 if( x==0 ){ 1538 if( pIdx==0 ){ 1539 sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead); 1540 }else{ 1541 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb); 1542 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1543 } 1544 }else{ 1545 k = 0; 1546 break; 1547 } 1548 } 1549 assert( pParse->nErr>0 || pFK==0 ); 1550 if( pFK ) break; 1551 if( pParse->nTab<i ) pParse->nTab = i; 1552 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v); 1553 assert( IsOrdinaryTable(pTab) ); 1554 for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){ 1555 pParent = sqlite3FindTable(db, pFK->zTo, zDb); 1556 pIdx = 0; 1557 aiCols = 0; 1558 if( pParent ){ 1559 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); 1560 assert( x==0 || db->mallocFailed ); 1561 } 1562 addrOk = sqlite3VdbeMakeLabel(pParse); 1563 1564 /* Generate code to read the child key values into registers 1565 ** regRow..regRow+n. If any of the child key values are NULL, this 1566 ** row cannot cause an FK violation. Jump directly to addrOk in 1567 ** this case. */ 1568 if( regRow+pFK->nCol>pParse->nMem ) pParse->nMem = regRow+pFK->nCol; 1569 for(j=0; j<pFK->nCol; j++){ 1570 int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom; 1571 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j); 1572 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); 1573 } 1574 1575 /* Generate code to query the parent index for a matching parent 1576 ** key. If a match is found, jump to addrOk. */ 1577 if( pIdx ){ 1578 sqlite3VdbeAddOp4(v, OP_Affinity, regRow, pFK->nCol, 0, 1579 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol); 1580 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regRow, pFK->nCol); 1581 VdbeCoverage(v); 1582 }else if( pParent ){ 1583 int jmp = sqlite3VdbeCurrentAddr(v)+2; 1584 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v); 1585 sqlite3VdbeGoto(v, addrOk); 1586 assert( pFK->nCol==1 || db->mallocFailed ); 1587 } 1588 1589 /* Generate code to report an FK violation to the caller. */ 1590 if( HasRowid(pTab) ){ 1591 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); 1592 }else{ 1593 sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1); 1594 } 1595 sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1); 1596 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); 1597 sqlite3VdbeResolveLabel(v, addrOk); 1598 sqlite3DbFree(db, aiCols); 1599 } 1600 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); 1601 sqlite3VdbeJumpHere(v, addrTop); 1602 } 1603 } 1604 break; 1605 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1606 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 1607 1608 #ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA 1609 /* Reinstall the LIKE and GLOB functions. The variant of LIKE 1610 ** used will be case sensitive or not depending on the RHS. 1611 */ 1612 case PragTyp_CASE_SENSITIVE_LIKE: { 1613 if( zRight ){ 1614 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0)); 1615 } 1616 } 1617 break; 1618 #endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */ 1619 1620 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX 1621 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 1622 #endif 1623 1624 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 1625 /* PRAGMA integrity_check 1626 ** PRAGMA integrity_check(N) 1627 ** PRAGMA quick_check 1628 ** PRAGMA quick_check(N) 1629 ** 1630 ** Verify the integrity of the database. 1631 ** 1632 ** The "quick_check" is reduced version of 1633 ** integrity_check designed to detect most database corruption 1634 ** without the overhead of cross-checking indexes. Quick_check 1635 ** is linear time wherease integrity_check is O(NlogN). 1636 ** 1637 ** The maximum nubmer of errors is 100 by default. A different default 1638 ** can be specified using a numeric parameter N. 1639 ** 1640 ** Or, the parameter N can be the name of a table. In that case, only 1641 ** the one table named is verified. The freelist is only verified if 1642 ** the named table is "sqlite_schema" (or one of its aliases). 1643 ** 1644 ** All schemas are checked by default. To check just a single 1645 ** schema, use the form: 1646 ** 1647 ** PRAGMA schema.integrity_check; 1648 */ 1649 case PragTyp_INTEGRITY_CHECK: { 1650 int i, j, addr, mxErr; 1651 Table *pObjTab = 0; /* Check only this one table, if not NULL */ 1652 1653 int isQuick = (sqlite3Tolower(zLeft[0])=='q'); 1654 1655 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check", 1656 ** then iDb is set to the index of the database identified by <db>. 1657 ** In this case, the integrity of database iDb only is verified by 1658 ** the VDBE created below. 1659 ** 1660 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or 1661 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb 1662 ** to -1 here, to indicate that the VDBE should verify the integrity 1663 ** of all attached databases. */ 1664 assert( iDb>=0 ); 1665 assert( iDb==0 || pId2->z ); 1666 if( pId2->z==0 ) iDb = -1; 1667 1668 /* Initialize the VDBE program */ 1669 pParse->nMem = 6; 1670 1671 /* Set the maximum error count */ 1672 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1673 if( zRight ){ 1674 if( sqlite3GetInt32(zRight, &mxErr) ){ 1675 if( mxErr<=0 ){ 1676 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; 1677 } 1678 }else{ 1679 pObjTab = sqlite3LocateTable(pParse, 0, zRight, 1680 iDb>=0 ? db->aDb[iDb].zDbSName : 0); 1681 } 1682 } 1683 sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */ 1684 1685 /* Do an integrity check on each database file */ 1686 for(i=0; i<db->nDb; i++){ 1687 HashElem *x; /* For looping over tables in the schema */ 1688 Hash *pTbls; /* Set of all tables in the schema */ 1689 int *aRoot; /* Array of root page numbers of all btrees */ 1690 int cnt = 0; /* Number of entries in aRoot[] */ 1691 int mxIdx = 0; /* Maximum number of indexes for any table */ 1692 1693 if( OMIT_TEMPDB && i==1 ) continue; 1694 if( iDb>=0 && i!=iDb ) continue; 1695 1696 sqlite3CodeVerifySchema(pParse, i); 1697 1698 /* Do an integrity check of the B-Tree 1699 ** 1700 ** Begin by finding the root pages numbers 1701 ** for all tables and indices in the database. 1702 */ 1703 assert( sqlite3SchemaMutexHeld(db, i, 0) ); 1704 pTbls = &db->aDb[i].pSchema->tblHash; 1705 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1706 Table *pTab = sqliteHashData(x); /* Current table */ 1707 Index *pIdx; /* An index on pTab */ 1708 int nIdx; /* Number of indexes on pTab */ 1709 if( pObjTab && pObjTab!=pTab ) continue; 1710 if( HasRowid(pTab) ) cnt++; 1711 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; } 1712 if( nIdx>mxIdx ) mxIdx = nIdx; 1713 } 1714 if( cnt==0 ) continue; 1715 if( pObjTab ) cnt++; 1716 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1)); 1717 if( aRoot==0 ) break; 1718 cnt = 0; 1719 if( pObjTab ) aRoot[++cnt] = 0; 1720 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1721 Table *pTab = sqliteHashData(x); 1722 Index *pIdx; 1723 if( pObjTab && pObjTab!=pTab ) continue; 1724 if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum; 1725 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1726 aRoot[++cnt] = pIdx->tnum; 1727 } 1728 } 1729 aRoot[0] = cnt; 1730 1731 /* Make sure sufficient number of registers have been allocated */ 1732 pParse->nMem = MAX( pParse->nMem, 8+mxIdx ); 1733 sqlite3ClearTempRegCache(pParse); 1734 1735 /* Do the b-tree integrity checks */ 1736 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY); 1737 sqlite3VdbeChangeP5(v, (u8)i); 1738 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v); 1739 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, 1740 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName), 1741 P4_DYNAMIC); 1742 sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3); 1743 integrityCheckResultRow(v); 1744 sqlite3VdbeJumpHere(v, addr); 1745 1746 /* Make sure all the indices are constructed correctly. 1747 */ 1748 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ 1749 Table *pTab = sqliteHashData(x); 1750 Index *pIdx, *pPk; 1751 Index *pPrior = 0; /* Previous index */ 1752 int loopTop; 1753 int iDataCur, iIdxCur; 1754 int r1 = -1; 1755 int bStrict; /* True for a STRICT table */ 1756 int r2; /* Previous key for WITHOUT ROWID tables */ 1757 int mxCol; /* Maximum non-virtual column number */ 1758 1759 if( !IsOrdinaryTable(pTab) ) continue; 1760 if( pObjTab && pObjTab!=pTab ) continue; 1761 if( isQuick || HasRowid(pTab) ){ 1762 pPk = 0; 1763 r2 = 0; 1764 }else{ 1765 pPk = sqlite3PrimaryKeyIndex(pTab); 1766 r2 = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1767 sqlite3VdbeAddOp3(v, OP_Null, 1, r2, r2+pPk->nKeyCol-1); 1768 } 1769 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0, 1770 1, 0, &iDataCur, &iIdxCur); 1771 /* reg[7] counts the number of entries in the table. 1772 ** reg[8+i] counts the number of entries in the i-th index 1773 */ 1774 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); 1775 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1776 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ 1777 } 1778 assert( pParse->nMem>=8+j ); 1779 assert( sqlite3NoTempsInRange(pParse,1,7+j) ); 1780 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); 1781 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); 1782 1783 /* Fetch the right-most column from the table. This will cause 1784 ** the entire record header to be parsed and sanity checked. It 1785 ** will also prepopulate the cursor column cache that is used 1786 ** by the OP_IsType code, so it is a required step. 1787 */ 1788 mxCol = pTab->nCol-1; 1789 while( mxCol>=0 1790 && ((pTab->aCol[mxCol].colFlags & COLFLAG_VIRTUAL)!=0 1791 || pTab->iPKey==mxCol) ) mxCol--; 1792 if( mxCol>=0 ){ 1793 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, mxCol, 3); 1794 sqlite3VdbeTypeofColumn(v, 3); 1795 } 1796 1797 if( !isQuick ){ 1798 if( pPk ){ 1799 /* Verify WITHOUT ROWID keys are in ascending order */ 1800 int a1; 1801 char *zErr; 1802 a1 = sqlite3VdbeAddOp4Int(v, OP_IdxGT, iDataCur, 0,r2,pPk->nKeyCol); 1803 VdbeCoverage(v); 1804 sqlite3VdbeAddOp1(v, OP_IsNull, r2); VdbeCoverage(v); 1805 zErr = sqlite3MPrintf(db, 1806 "row not in PRIMARY KEY order for %s", 1807 pTab->zName); 1808 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1809 integrityCheckResultRow(v); 1810 sqlite3VdbeJumpHere(v, a1); 1811 sqlite3VdbeJumpHere(v, a1+1); 1812 for(j=0; j<pPk->nKeyCol; j++){ 1813 sqlite3ExprCodeLoadIndexColumn(pParse, pPk, iDataCur, j, r2+j); 1814 } 1815 } 1816 } 1817 /* Verify datatypes for all columns: 1818 ** 1819 ** (1) NOT NULL columns may not contain a NULL 1820 ** (2) Datatype must be exact for non-ANY columns in STRICT tables 1821 ** (3) Datatype for TEXT columns in non-STRICT tables must be 1822 ** NULL, TEXT, or BLOB. 1823 ** (4) Datatype for numeric columns in non-STRICT tables must not 1824 ** be a TEXT value that can be losslessly converted to numeric. 1825 */ 1826 bStrict = (pTab->tabFlags & TF_Strict)!=0; 1827 for(j=0; j<pTab->nCol; j++){ 1828 char *zErr; 1829 Column *pCol = pTab->aCol + j; /* The column to be checked */ 1830 int labelError; /* Jump here to report an error */ 1831 int labelOk; /* Jump here if all looks ok */ 1832 int p1, p3, p4; /* Operands to the OP_IsType opcode */ 1833 int doTypeCheck; /* Check datatypes (besides NOT NULL) */ 1834 1835 if( j==pTab->iPKey ) continue; 1836 if( bStrict ){ 1837 doTypeCheck = pCol->eCType>COLTYPE_ANY; 1838 }else{ 1839 doTypeCheck = pCol->affinity>SQLITE_AFF_BLOB; 1840 } 1841 if( pCol->notNull==0 && !doTypeCheck ) continue; 1842 1843 /* Compute the operands that will be needed for OP_IsType */ 1844 p4 = SQLITE_NULL; 1845 if( pCol->colFlags & COLFLAG_VIRTUAL ){ 1846 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); 1847 p1 = -1; 1848 p3 = 3; 1849 }else{ 1850 if( pCol->iDflt ){ 1851 sqlite3_value *pDfltValue = 0; 1852 sqlite3ValueFromExpr(db, sqlite3ColumnExpr(pTab,pCol), ENC(db), 1853 pCol->affinity, &pDfltValue); 1854 if( pDfltValue ){ 1855 p4 = sqlite3_value_type(pDfltValue); 1856 sqlite3ValueFree(pDfltValue); 1857 } 1858 } 1859 p1 = iDataCur; 1860 if( !HasRowid(pTab) ){ 1861 testcase( j!=sqlite3TableColumnToStorage(pTab, j) ); 1862 p3 = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), j); 1863 }else{ 1864 p3 = sqlite3TableColumnToStorage(pTab,j); 1865 testcase( p3!=j); 1866 } 1867 } 1868 1869 labelError = sqlite3VdbeMakeLabel(pParse); 1870 labelOk = sqlite3VdbeMakeLabel(pParse); 1871 if( pCol->notNull ){ 1872 /* (1) NOT NULL columns may not contain a NULL */ 1873 int jmp2 = sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); 1874 sqlite3VdbeChangeP5(v, 0x0f); 1875 VdbeCoverage(v); 1876 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName, 1877 pCol->zCnName); 1878 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1879 if( doTypeCheck ){ 1880 sqlite3VdbeGoto(v, labelError); 1881 sqlite3VdbeJumpHere(v, jmp2); 1882 }else{ 1883 /* VDBE byte code will fall thru */ 1884 } 1885 } 1886 if( bStrict && doTypeCheck ){ 1887 /* (2) Datatype must be exact for non-ANY columns in STRICT tables*/ 1888 static unsigned char aStdTypeMask[] = { 1889 0x1f, /* ANY */ 1890 0x18, /* BLOB */ 1891 0x11, /* INT */ 1892 0x11, /* INTEGER */ 1893 0x13, /* REAL */ 1894 0x14 /* TEXT */ 1895 }; 1896 sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); 1897 assert( pCol->eCType>=1 && pCol->eCType<=sizeof(aStdTypeMask) ); 1898 sqlite3VdbeChangeP5(v, aStdTypeMask[pCol->eCType-1]); 1899 VdbeCoverage(v); 1900 zErr = sqlite3MPrintf(db, "non-%s value in %s.%s", 1901 sqlite3StdType[pCol->eCType-1], 1902 pTab->zName, pTab->aCol[j].zCnName); 1903 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1904 }else if( !bStrict && pCol->affinity==SQLITE_AFF_TEXT ){ 1905 /* (3) Datatype for TEXT columns in non-STRICT tables must be 1906 ** NULL, TEXT, or BLOB. */ 1907 sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); 1908 sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */ 1909 VdbeCoverage(v); 1910 zErr = sqlite3MPrintf(db, "NUMERIC value in %s.%s", 1911 pTab->zName, pTab->aCol[j].zCnName); 1912 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1913 }else if( !bStrict && pCol->affinity>=SQLITE_AFF_NUMERIC ){ 1914 /* (4) Datatype for numeric columns in non-STRICT tables must not 1915 ** be a TEXT value that can be converted to numeric. */ 1916 sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4); 1917 sqlite3VdbeChangeP5(v, 0x1b); /* NULL, INT, FLOAT, or BLOB */ 1918 VdbeCoverage(v); 1919 if( p1>=0 ){ 1920 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); 1921 } 1922 sqlite3VdbeAddOp4(v, OP_Affinity, 3, 1, 0, "C", P4_STATIC); 1923 sqlite3VdbeAddOp4Int(v, OP_IsType, -1, labelOk, 3, p4); 1924 sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */ 1925 VdbeCoverage(v); 1926 zErr = sqlite3MPrintf(db, "TEXT value in %s.%s", 1927 pTab->zName, pTab->aCol[j].zCnName); 1928 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1929 } 1930 sqlite3VdbeResolveLabel(v, labelError); 1931 integrityCheckResultRow(v); 1932 sqlite3VdbeResolveLabel(v, labelOk); 1933 } 1934 /* Verify CHECK constraints */ 1935 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1936 ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0); 1937 if( db->mallocFailed==0 ){ 1938 int addrCkFault = sqlite3VdbeMakeLabel(pParse); 1939 int addrCkOk = sqlite3VdbeMakeLabel(pParse); 1940 char *zErr; 1941 int k; 1942 pParse->iSelfTab = iDataCur + 1; 1943 for(k=pCheck->nExpr-1; k>0; k--){ 1944 sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0); 1945 } 1946 sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk, 1947 SQLITE_JUMPIFNULL); 1948 sqlite3VdbeResolveLabel(v, addrCkFault); 1949 pParse->iSelfTab = 0; 1950 zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s", 1951 pTab->zName); 1952 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); 1953 integrityCheckResultRow(v); 1954 sqlite3VdbeResolveLabel(v, addrCkOk); 1955 } 1956 sqlite3ExprListDelete(db, pCheck); 1957 } 1958 if( !isQuick ){ /* Omit the remaining tests for quick_check */ 1959 /* Validate index entries for the current row */ 1960 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 1961 int jmp2, jmp3, jmp4, jmp5; 1962 int ckUniq = sqlite3VdbeMakeLabel(pParse); 1963 if( pPk==pIdx ) continue; 1964 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, 1965 pPrior, r1); 1966 pPrior = pIdx; 1967 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */ 1968 /* Verify that an index entry exists for the current table row */ 1969 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1, 1970 pIdx->nColumn); VdbeCoverage(v); 1971 sqlite3VdbeLoadString(v, 3, "row "); 1972 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); 1973 sqlite3VdbeLoadString(v, 4, " missing from index "); 1974 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1975 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName); 1976 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); 1977 jmp4 = integrityCheckResultRow(v); 1978 sqlite3VdbeJumpHere(v, jmp2); 1979 /* For UNIQUE indexes, verify that only one entry exists with the 1980 ** current key. The entry is unique if (1) any column is NULL 1981 ** or (2) the next entry has a different key */ 1982 if( IsUniqueIndex(pIdx) ){ 1983 int uniqOk = sqlite3VdbeMakeLabel(pParse); 1984 int jmp6; 1985 int kk; 1986 for(kk=0; kk<pIdx->nKeyCol; kk++){ 1987 int iCol = pIdx->aiColumn[kk]; 1988 assert( iCol!=XN_ROWID && iCol<pTab->nCol ); 1989 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue; 1990 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk); 1991 VdbeCoverage(v); 1992 } 1993 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v); 1994 sqlite3VdbeGoto(v, uniqOk); 1995 sqlite3VdbeJumpHere(v, jmp6); 1996 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1, 1997 pIdx->nKeyCol); VdbeCoverage(v); 1998 sqlite3VdbeLoadString(v, 3, "non-unique entry in index "); 1999 sqlite3VdbeGoto(v, jmp5); 2000 sqlite3VdbeResolveLabel(v, uniqOk); 2001 } 2002 sqlite3VdbeJumpHere(v, jmp4); 2003 sqlite3ResolvePartIdxLabel(pParse, jmp3); 2004 } 2005 } 2006 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); 2007 sqlite3VdbeJumpHere(v, loopTop-1); 2008 if( !isQuick ){ 2009 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index "); 2010 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ 2011 if( pPk==pIdx ) continue; 2012 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3); 2013 addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v); 2014 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2015 sqlite3VdbeLoadString(v, 4, pIdx->zName); 2016 sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3); 2017 integrityCheckResultRow(v); 2018 sqlite3VdbeJumpHere(v, addr); 2019 } 2020 if( pPk ){ 2021 sqlite3ReleaseTempRange(pParse, r2, pPk->nKeyCol); 2022 } 2023 } 2024 } 2025 } 2026 { 2027 static const int iLn = VDBE_OFFSET_LINENO(2); 2028 static const VdbeOpList endCode[] = { 2029 { OP_AddImm, 1, 0, 0}, /* 0 */ 2030 { OP_IfNotZero, 1, 4, 0}, /* 1 */ 2031 { OP_String8, 0, 3, 0}, /* 2 */ 2032 { OP_ResultRow, 3, 1, 0}, /* 3 */ 2033 { OP_Halt, 0, 0, 0}, /* 4 */ 2034 { OP_String8, 0, 3, 0}, /* 5 */ 2035 { OP_Goto, 0, 3, 0}, /* 6 */ 2036 }; 2037 VdbeOp *aOp; 2038 2039 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); 2040 if( aOp ){ 2041 aOp[0].p2 = 1-mxErr; 2042 aOp[2].p4type = P4_STATIC; 2043 aOp[2].p4.z = "ok"; 2044 aOp[5].p4type = P4_STATIC; 2045 aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT); 2046 } 2047 sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2); 2048 } 2049 } 2050 break; 2051 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 2052 2053 #ifndef SQLITE_OMIT_UTF16 2054 /* 2055 ** PRAGMA encoding 2056 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" 2057 ** 2058 ** In its first form, this pragma returns the encoding of the main 2059 ** database. If the database is not initialized, it is initialized now. 2060 ** 2061 ** The second form of this pragma is a no-op if the main database file 2062 ** has not already been initialized. In this case it sets the default 2063 ** encoding that will be used for the main database file if a new file 2064 ** is created. If an existing main database file is opened, then the 2065 ** default text encoding for the existing database is used. 2066 ** 2067 ** In all cases new databases created using the ATTACH command are 2068 ** created to use the same default text encoding as the main database. If 2069 ** the main database has not been initialized and/or created when ATTACH 2070 ** is executed, this is done before the ATTACH operation. 2071 ** 2072 ** In the second form this pragma sets the text encoding to be used in 2073 ** new database files created using this database handle. It is only 2074 ** useful if invoked immediately after the main database i 2075 */ 2076 case PragTyp_ENCODING: { 2077 static const struct EncName { 2078 char *zName; 2079 u8 enc; 2080 } encnames[] = { 2081 { "UTF8", SQLITE_UTF8 }, 2082 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */ 2083 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */ 2084 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */ 2085 { "UTF16le", SQLITE_UTF16LE }, 2086 { "UTF16be", SQLITE_UTF16BE }, 2087 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ 2088 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ 2089 { 0, 0 } 2090 }; 2091 const struct EncName *pEnc; 2092 if( !zRight ){ /* "PRAGMA encoding" */ 2093 if( sqlite3ReadSchema(pParse) ) goto pragma_out; 2094 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 ); 2095 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE ); 2096 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE ); 2097 returnSingleText(v, encnames[ENC(pParse->db)].zName); 2098 }else{ /* "PRAGMA encoding = XXX" */ 2099 /* Only change the value of sqlite.enc if the database handle is not 2100 ** initialized. If the main database exists, the new sqlite.enc value 2101 ** will be overwritten when the schema is next loaded. If it does not 2102 ** already exists, it will be created to use the new encoding value. 2103 */ 2104 if( (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ 2105 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ 2106 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ 2107 u8 enc = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; 2108 SCHEMA_ENC(db) = enc; 2109 sqlite3SetTextEncoding(db, enc); 2110 break; 2111 } 2112 } 2113 if( !pEnc->zName ){ 2114 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); 2115 } 2116 } 2117 } 2118 } 2119 break; 2120 #endif /* SQLITE_OMIT_UTF16 */ 2121 2122 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS 2123 /* 2124 ** PRAGMA [schema.]schema_version 2125 ** PRAGMA [schema.]schema_version = <integer> 2126 ** 2127 ** PRAGMA [schema.]user_version 2128 ** PRAGMA [schema.]user_version = <integer> 2129 ** 2130 ** PRAGMA [schema.]freelist_count 2131 ** 2132 ** PRAGMA [schema.]data_version 2133 ** 2134 ** PRAGMA [schema.]application_id 2135 ** PRAGMA [schema.]application_id = <integer> 2136 ** 2137 ** The pragma's schema_version and user_version are used to set or get 2138 ** the value of the schema-version and user-version, respectively. Both 2139 ** the schema-version and the user-version are 32-bit signed integers 2140 ** stored in the database header. 2141 ** 2142 ** The schema-cookie is usually only manipulated internally by SQLite. It 2143 ** is incremented by SQLite whenever the database schema is modified (by 2144 ** creating or dropping a table or index). The schema version is used by 2145 ** SQLite each time a query is executed to ensure that the internal cache 2146 ** of the schema used when compiling the SQL query matches the schema of 2147 ** the database against which the compiled query is actually executed. 2148 ** Subverting this mechanism by using "PRAGMA schema_version" to modify 2149 ** the schema-version is potentially dangerous and may lead to program 2150 ** crashes or database corruption. Use with caution! 2151 ** 2152 ** The user-version is not used internally by SQLite. It may be used by 2153 ** applications for any purpose. 2154 */ 2155 case PragTyp_HEADER_VALUE: { 2156 int iCookie = pPragma->iArg; /* Which cookie to read or write */ 2157 sqlite3VdbeUsesBtree(v, iDb); 2158 if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){ 2159 /* Write the specified cookie value */ 2160 static const VdbeOpList setCookie[] = { 2161 { OP_Transaction, 0, 1, 0}, /* 0 */ 2162 { OP_SetCookie, 0, 0, 0}, /* 1 */ 2163 }; 2164 VdbeOp *aOp; 2165 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie)); 2166 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0); 2167 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 2168 aOp[0].p1 = iDb; 2169 aOp[1].p1 = iDb; 2170 aOp[1].p2 = iCookie; 2171 aOp[1].p3 = sqlite3Atoi(zRight); 2172 aOp[1].p5 = 1; 2173 if( iCookie==BTREE_SCHEMA_VERSION && (db->flags & SQLITE_Defensive)!=0 ){ 2174 /* Do not allow the use of PRAGMA schema_version=VALUE in defensive 2175 ** mode. Change the OP_SetCookie opcode into a no-op. */ 2176 aOp[1].opcode = OP_Noop; 2177 } 2178 }else{ 2179 /* Read the specified cookie value */ 2180 static const VdbeOpList readCookie[] = { 2181 { OP_Transaction, 0, 0, 0}, /* 0 */ 2182 { OP_ReadCookie, 0, 1, 0}, /* 1 */ 2183 { OP_ResultRow, 1, 1, 0} 2184 }; 2185 VdbeOp *aOp; 2186 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie)); 2187 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0); 2188 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; 2189 aOp[0].p1 = iDb; 2190 aOp[1].p1 = iDb; 2191 aOp[1].p3 = iCookie; 2192 sqlite3VdbeReusable(v); 2193 } 2194 } 2195 break; 2196 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ 2197 2198 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 2199 /* 2200 ** PRAGMA compile_options 2201 ** 2202 ** Return the names of all compile-time options used in this build, 2203 ** one option per row. 2204 */ 2205 case PragTyp_COMPILE_OPTIONS: { 2206 int i = 0; 2207 const char *zOpt; 2208 pParse->nMem = 1; 2209 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){ 2210 sqlite3VdbeLoadString(v, 1, zOpt); 2211 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); 2212 } 2213 sqlite3VdbeReusable(v); 2214 } 2215 break; 2216 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ 2217 2218 #ifndef SQLITE_OMIT_WAL 2219 /* 2220 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate 2221 ** 2222 ** Checkpoint the database. 2223 */ 2224 case PragTyp_WAL_CHECKPOINT: { 2225 int iBt = (pId2->z?iDb:SQLITE_MAX_DB); 2226 int eMode = SQLITE_CHECKPOINT_PASSIVE; 2227 if( zRight ){ 2228 if( sqlite3StrICmp(zRight, "full")==0 ){ 2229 eMode = SQLITE_CHECKPOINT_FULL; 2230 }else if( sqlite3StrICmp(zRight, "restart")==0 ){ 2231 eMode = SQLITE_CHECKPOINT_RESTART; 2232 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){ 2233 eMode = SQLITE_CHECKPOINT_TRUNCATE; 2234 } 2235 } 2236 pParse->nMem = 3; 2237 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); 2238 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); 2239 } 2240 break; 2241 2242 /* 2243 ** PRAGMA wal_autocheckpoint 2244 ** PRAGMA wal_autocheckpoint = N 2245 ** 2246 ** Configure a database connection to automatically checkpoint a database 2247 ** after accumulating N frames in the log. Or query for the current value 2248 ** of N. 2249 */ 2250 case PragTyp_WAL_AUTOCHECKPOINT: { 2251 if( zRight ){ 2252 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight)); 2253 } 2254 returnSingleInt(v, 2255 db->xWalCallback==sqlite3WalDefaultHook ? 2256 SQLITE_PTR_TO_INT(db->pWalArg) : 0); 2257 } 2258 break; 2259 #endif 2260 2261 /* 2262 ** PRAGMA shrink_memory 2263 ** 2264 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database 2265 ** connection on which it is invoked to free up as much memory as it 2266 ** can, by calling sqlite3_db_release_memory(). 2267 */ 2268 case PragTyp_SHRINK_MEMORY: { 2269 sqlite3_db_release_memory(db); 2270 break; 2271 } 2272 2273 /* 2274 ** PRAGMA optimize 2275 ** PRAGMA optimize(MASK) 2276 ** PRAGMA schema.optimize 2277 ** PRAGMA schema.optimize(MASK) 2278 ** 2279 ** Attempt to optimize the database. All schemas are optimized in the first 2280 ** two forms, and only the specified schema is optimized in the latter two. 2281 ** 2282 ** The details of optimizations performed by this pragma are expected 2283 ** to change and improve over time. Applications should anticipate that 2284 ** this pragma will perform new optimizations in future releases. 2285 ** 2286 ** The optional argument is a bitmask of optimizations to perform: 2287 ** 2288 ** 0x0001 Debugging mode. Do not actually perform any optimizations 2289 ** but instead return one line of text for each optimization 2290 ** that would have been done. Off by default. 2291 ** 2292 ** 0x0002 Run ANALYZE on tables that might benefit. On by default. 2293 ** See below for additional information. 2294 ** 2295 ** 0x0004 (Not yet implemented) Record usage and performance 2296 ** information from the current session in the 2297 ** database file so that it will be available to "optimize" 2298 ** pragmas run by future database connections. 2299 ** 2300 ** 0x0008 (Not yet implemented) Create indexes that might have 2301 ** been helpful to recent queries 2302 ** 2303 ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all 2304 ** of the optimizations listed above except Debug Mode, including new 2305 ** optimizations that have not yet been invented. If new optimizations are 2306 ** ever added that should be off by default, those off-by-default 2307 ** optimizations will have bitmasks of 0x10000 or larger. 2308 ** 2309 ** DETERMINATION OF WHEN TO RUN ANALYZE 2310 ** 2311 ** In the current implementation, a table is analyzed if only if all of 2312 ** the following are true: 2313 ** 2314 ** (1) MASK bit 0x02 is set. 2315 ** 2316 ** (2) The query planner used sqlite_stat1-style statistics for one or 2317 ** more indexes of the table at some point during the lifetime of 2318 ** the current connection. 2319 ** 2320 ** (3) One or more indexes of the table are currently unanalyzed OR 2321 ** the number of rows in the table has increased by 25 times or more 2322 ** since the last time ANALYZE was run. 2323 ** 2324 ** The rules for when tables are analyzed are likely to change in 2325 ** future releases. 2326 */ 2327 case PragTyp_OPTIMIZE: { 2328 int iDbLast; /* Loop termination point for the schema loop */ 2329 int iTabCur; /* Cursor for a table whose size needs checking */ 2330 HashElem *k; /* Loop over tables of a schema */ 2331 Schema *pSchema; /* The current schema */ 2332 Table *pTab; /* A table in the schema */ 2333 Index *pIdx; /* An index of the table */ 2334 LogEst szThreshold; /* Size threshold above which reanalysis is needd */ 2335 char *zSubSql; /* SQL statement for the OP_SqlExec opcode */ 2336 u32 opMask; /* Mask of operations to perform */ 2337 2338 if( zRight ){ 2339 opMask = (u32)sqlite3Atoi(zRight); 2340 if( (opMask & 0x02)==0 ) break; 2341 }else{ 2342 opMask = 0xfffe; 2343 } 2344 iTabCur = pParse->nTab++; 2345 for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){ 2346 if( iDb==1 ) continue; 2347 sqlite3CodeVerifySchema(pParse, iDb); 2348 pSchema = db->aDb[iDb].pSchema; 2349 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 2350 pTab = (Table*)sqliteHashData(k); 2351 2352 /* If table pTab has not been used in a way that would benefit from 2353 ** having analysis statistics during the current session, then skip it. 2354 ** This also has the effect of skipping virtual tables and views */ 2355 if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue; 2356 2357 /* Reanalyze if the table is 25 times larger than the last analysis */ 2358 szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 ); 2359 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2360 if( !pIdx->hasStat1 ){ 2361 szThreshold = 0; /* Always analyze if any index lacks statistics */ 2362 break; 2363 } 2364 } 2365 if( szThreshold ){ 2366 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 2367 sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur, 2368 sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold); 2369 VdbeCoverage(v); 2370 } 2371 zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"", 2372 db->aDb[iDb].zDbSName, pTab->zName); 2373 if( opMask & 0x01 ){ 2374 int r1 = sqlite3GetTempReg(pParse); 2375 sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC); 2376 sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1); 2377 }else{ 2378 sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC); 2379 } 2380 } 2381 } 2382 sqlite3VdbeAddOp0(v, OP_Expire); 2383 break; 2384 } 2385 2386 /* 2387 ** PRAGMA busy_timeout 2388 ** PRAGMA busy_timeout = N 2389 ** 2390 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value 2391 ** if one is set. If no busy handler or a different busy handler is set 2392 ** then 0 is returned. Setting the busy_timeout to 0 or negative 2393 ** disables the timeout. 2394 */ 2395 /*case PragTyp_BUSY_TIMEOUT*/ default: { 2396 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT ); 2397 if( zRight ){ 2398 sqlite3_busy_timeout(db, sqlite3Atoi(zRight)); 2399 } 2400 returnSingleInt(v, db->busyTimeout); 2401 break; 2402 } 2403 2404 /* 2405 ** PRAGMA soft_heap_limit 2406 ** PRAGMA soft_heap_limit = N 2407 ** 2408 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the 2409 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is 2410 ** specified and is a non-negative integer. 2411 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always 2412 ** returns the same integer that would be returned by the 2413 ** sqlite3_soft_heap_limit64(-1) C-language function. 2414 */ 2415 case PragTyp_SOFT_HEAP_LIMIT: { 2416 sqlite3_int64 N; 2417 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ 2418 sqlite3_soft_heap_limit64(N); 2419 } 2420 returnSingleInt(v, sqlite3_soft_heap_limit64(-1)); 2421 break; 2422 } 2423 2424 /* 2425 ** PRAGMA hard_heap_limit 2426 ** PRAGMA hard_heap_limit = N 2427 ** 2428 ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap 2429 ** limit. The hard heap limit can be activated or lowered by this 2430 ** pragma, but not raised or deactivated. Only the 2431 ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate 2432 ** the hard heap limit. This allows an application to set a heap limit 2433 ** constraint that cannot be relaxed by an untrusted SQL script. 2434 */ 2435 case PragTyp_HARD_HEAP_LIMIT: { 2436 sqlite3_int64 N; 2437 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ 2438 sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1); 2439 if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N); 2440 } 2441 returnSingleInt(v, sqlite3_hard_heap_limit64(-1)); 2442 break; 2443 } 2444 2445 /* 2446 ** PRAGMA threads 2447 ** PRAGMA threads = N 2448 ** 2449 ** Configure the maximum number of worker threads. Return the new 2450 ** maximum, which might be less than requested. 2451 */ 2452 case PragTyp_THREADS: { 2453 sqlite3_int64 N; 2454 if( zRight 2455 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK 2456 && N>=0 2457 ){ 2458 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff)); 2459 } 2460 returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1)); 2461 break; 2462 } 2463 2464 /* 2465 ** PRAGMA analysis_limit 2466 ** PRAGMA analysis_limit = N 2467 ** 2468 ** Configure the maximum number of rows that ANALYZE will examine 2469 ** in each index that it looks at. Return the new limit. 2470 */ 2471 case PragTyp_ANALYSIS_LIMIT: { 2472 sqlite3_int64 N; 2473 if( zRight 2474 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK /* IMP: R-40975-20399 */ 2475 && N>=0 2476 ){ 2477 db->nAnalysisLimit = (int)(N&0x7fffffff); 2478 } 2479 returnSingleInt(v, db->nAnalysisLimit); /* IMP: R-57594-65522 */ 2480 break; 2481 } 2482 2483 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) 2484 /* 2485 ** Report the current state of file logs for all databases 2486 */ 2487 case PragTyp_LOCK_STATUS: { 2488 static const char *const azLockName[] = { 2489 "unlocked", "shared", "reserved", "pending", "exclusive" 2490 }; 2491 int i; 2492 pParse->nMem = 2; 2493 for(i=0; i<db->nDb; i++){ 2494 Btree *pBt; 2495 const char *zState = "unknown"; 2496 int j; 2497 if( db->aDb[i].zDbSName==0 ) continue; 2498 pBt = db->aDb[i].pBt; 2499 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){ 2500 zState = "closed"; 2501 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0, 2502 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ 2503 zState = azLockName[j]; 2504 } 2505 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState); 2506 } 2507 break; 2508 } 2509 #endif 2510 2511 #if defined(SQLITE_ENABLE_CEROD) 2512 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){ 2513 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ 2514 sqlite3_activate_cerod(&zRight[6]); 2515 } 2516 } 2517 break; 2518 #endif 2519 2520 } /* End of the PRAGMA switch */ 2521 2522 /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only 2523 ** purpose is to execute assert() statements to verify that if the 2524 ** PragFlg_NoColumns1 flag is set and the caller specified an argument 2525 ** to the PRAGMA, the implementation has not added any OP_ResultRow 2526 ** instructions to the VM. */ 2527 if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){ 2528 sqlite3VdbeVerifyNoResultRow(v); 2529 } 2530 2531 pragma_out: 2532 sqlite3DbFree(db, zLeft); 2533 sqlite3DbFree(db, zRight); 2534 } 2535 #ifndef SQLITE_OMIT_VIRTUALTABLE 2536 /***************************************************************************** 2537 ** Implementation of an eponymous virtual table that runs a pragma. 2538 ** 2539 */ 2540 typedef struct PragmaVtab PragmaVtab; 2541 typedef struct PragmaVtabCursor PragmaVtabCursor; 2542 struct PragmaVtab { 2543 sqlite3_vtab base; /* Base class. Must be first */ 2544 sqlite3 *db; /* The database connection to which it belongs */ 2545 const PragmaName *pName; /* Name of the pragma */ 2546 u8 nHidden; /* Number of hidden columns */ 2547 u8 iHidden; /* Index of the first hidden column */ 2548 }; 2549 struct PragmaVtabCursor { 2550 sqlite3_vtab_cursor base; /* Base class. Must be first */ 2551 sqlite3_stmt *pPragma; /* The pragma statement to run */ 2552 sqlite_int64 iRowid; /* Current rowid */ 2553 char *azArg[2]; /* Value of the argument and schema */ 2554 }; 2555 2556 /* 2557 ** Pragma virtual table module xConnect method. 2558 */ 2559 static int pragmaVtabConnect( 2560 sqlite3 *db, 2561 void *pAux, 2562 int argc, const char *const*argv, 2563 sqlite3_vtab **ppVtab, 2564 char **pzErr 2565 ){ 2566 const PragmaName *pPragma = (const PragmaName*)pAux; 2567 PragmaVtab *pTab = 0; 2568 int rc; 2569 int i, j; 2570 char cSep = '('; 2571 StrAccum acc; 2572 char zBuf[200]; 2573 2574 UNUSED_PARAMETER(argc); 2575 UNUSED_PARAMETER(argv); 2576 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 2577 sqlite3_str_appendall(&acc, "CREATE TABLE x"); 2578 for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){ 2579 sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]); 2580 cSep = ','; 2581 } 2582 if( i==0 ){ 2583 sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName); 2584 i++; 2585 } 2586 j = 0; 2587 if( pPragma->mPragFlg & PragFlg_Result1 ){ 2588 sqlite3_str_appendall(&acc, ",arg HIDDEN"); 2589 j++; 2590 } 2591 if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){ 2592 sqlite3_str_appendall(&acc, ",schema HIDDEN"); 2593 j++; 2594 } 2595 sqlite3_str_append(&acc, ")", 1); 2596 sqlite3StrAccumFinish(&acc); 2597 assert( strlen(zBuf) < sizeof(zBuf)-1 ); 2598 rc = sqlite3_declare_vtab(db, zBuf); 2599 if( rc==SQLITE_OK ){ 2600 pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab)); 2601 if( pTab==0 ){ 2602 rc = SQLITE_NOMEM; 2603 }else{ 2604 memset(pTab, 0, sizeof(PragmaVtab)); 2605 pTab->pName = pPragma; 2606 pTab->db = db; 2607 pTab->iHidden = i; 2608 pTab->nHidden = j; 2609 } 2610 }else{ 2611 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 2612 } 2613 2614 *ppVtab = (sqlite3_vtab*)pTab; 2615 return rc; 2616 } 2617 2618 /* 2619 ** Pragma virtual table module xDisconnect method. 2620 */ 2621 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){ 2622 PragmaVtab *pTab = (PragmaVtab*)pVtab; 2623 sqlite3_free(pTab); 2624 return SQLITE_OK; 2625 } 2626 2627 /* Figure out the best index to use to search a pragma virtual table. 2628 ** 2629 ** There are not really any index choices. But we want to encourage the 2630 ** query planner to give == constraints on as many hidden parameters as 2631 ** possible, and especially on the first hidden parameter. So return a 2632 ** high cost if hidden parameters are unconstrained. 2633 */ 2634 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 2635 PragmaVtab *pTab = (PragmaVtab*)tab; 2636 const struct sqlite3_index_constraint *pConstraint; 2637 int i, j; 2638 int seen[2]; 2639 2640 pIdxInfo->estimatedCost = (double)1; 2641 if( pTab->nHidden==0 ){ return SQLITE_OK; } 2642 pConstraint = pIdxInfo->aConstraint; 2643 seen[0] = 0; 2644 seen[1] = 0; 2645 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ 2646 if( pConstraint->usable==0 ) continue; 2647 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; 2648 if( pConstraint->iColumn < pTab->iHidden ) continue; 2649 j = pConstraint->iColumn - pTab->iHidden; 2650 assert( j < 2 ); 2651 seen[j] = i+1; 2652 } 2653 if( seen[0]==0 ){ 2654 pIdxInfo->estimatedCost = (double)2147483647; 2655 pIdxInfo->estimatedRows = 2147483647; 2656 return SQLITE_OK; 2657 } 2658 j = seen[0]-1; 2659 pIdxInfo->aConstraintUsage[j].argvIndex = 1; 2660 pIdxInfo->aConstraintUsage[j].omit = 1; 2661 if( seen[1]==0 ) return SQLITE_OK; 2662 pIdxInfo->estimatedCost = (double)20; 2663 pIdxInfo->estimatedRows = 20; 2664 j = seen[1]-1; 2665 pIdxInfo->aConstraintUsage[j].argvIndex = 2; 2666 pIdxInfo->aConstraintUsage[j].omit = 1; 2667 return SQLITE_OK; 2668 } 2669 2670 /* Create a new cursor for the pragma virtual table */ 2671 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){ 2672 PragmaVtabCursor *pCsr; 2673 pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr)); 2674 if( pCsr==0 ) return SQLITE_NOMEM; 2675 memset(pCsr, 0, sizeof(PragmaVtabCursor)); 2676 pCsr->base.pVtab = pVtab; 2677 *ppCursor = &pCsr->base; 2678 return SQLITE_OK; 2679 } 2680 2681 /* Clear all content from pragma virtual table cursor. */ 2682 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){ 2683 int i; 2684 sqlite3_finalize(pCsr->pPragma); 2685 pCsr->pPragma = 0; 2686 for(i=0; i<ArraySize(pCsr->azArg); i++){ 2687 sqlite3_free(pCsr->azArg[i]); 2688 pCsr->azArg[i] = 0; 2689 } 2690 } 2691 2692 /* Close a pragma virtual table cursor */ 2693 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){ 2694 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur; 2695 pragmaVtabCursorClear(pCsr); 2696 sqlite3_free(pCsr); 2697 return SQLITE_OK; 2698 } 2699 2700 /* Advance the pragma virtual table cursor to the next row */ 2701 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){ 2702 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2703 int rc = SQLITE_OK; 2704 2705 /* Increment the xRowid value */ 2706 pCsr->iRowid++; 2707 assert( pCsr->pPragma ); 2708 if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){ 2709 rc = sqlite3_finalize(pCsr->pPragma); 2710 pCsr->pPragma = 0; 2711 pragmaVtabCursorClear(pCsr); 2712 } 2713 return rc; 2714 } 2715 2716 /* 2717 ** Pragma virtual table module xFilter method. 2718 */ 2719 static int pragmaVtabFilter( 2720 sqlite3_vtab_cursor *pVtabCursor, 2721 int idxNum, const char *idxStr, 2722 int argc, sqlite3_value **argv 2723 ){ 2724 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2725 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); 2726 int rc; 2727 int i, j; 2728 StrAccum acc; 2729 char *zSql; 2730 2731 UNUSED_PARAMETER(idxNum); 2732 UNUSED_PARAMETER(idxStr); 2733 pragmaVtabCursorClear(pCsr); 2734 j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1; 2735 for(i=0; i<argc; i++, j++){ 2736 const char *zText = (const char*)sqlite3_value_text(argv[i]); 2737 assert( j<ArraySize(pCsr->azArg) ); 2738 assert( pCsr->azArg[j]==0 ); 2739 if( zText ){ 2740 pCsr->azArg[j] = sqlite3_mprintf("%s", zText); 2741 if( pCsr->azArg[j]==0 ){ 2742 return SQLITE_NOMEM; 2743 } 2744 } 2745 } 2746 sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]); 2747 sqlite3_str_appendall(&acc, "PRAGMA "); 2748 if( pCsr->azArg[1] ){ 2749 sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]); 2750 } 2751 sqlite3_str_appendall(&acc, pTab->pName->zName); 2752 if( pCsr->azArg[0] ){ 2753 sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]); 2754 } 2755 zSql = sqlite3StrAccumFinish(&acc); 2756 if( zSql==0 ) return SQLITE_NOMEM; 2757 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0); 2758 sqlite3_free(zSql); 2759 if( rc!=SQLITE_OK ){ 2760 pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db)); 2761 return rc; 2762 } 2763 return pragmaVtabNext(pVtabCursor); 2764 } 2765 2766 /* 2767 ** Pragma virtual table module xEof method. 2768 */ 2769 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){ 2770 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2771 return (pCsr->pPragma==0); 2772 } 2773 2774 /* The xColumn method simply returns the corresponding column from 2775 ** the PRAGMA. 2776 */ 2777 static int pragmaVtabColumn( 2778 sqlite3_vtab_cursor *pVtabCursor, 2779 sqlite3_context *ctx, 2780 int i 2781 ){ 2782 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2783 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); 2784 if( i<pTab->iHidden ){ 2785 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i)); 2786 }else{ 2787 sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT); 2788 } 2789 return SQLITE_OK; 2790 } 2791 2792 /* 2793 ** Pragma virtual table module xRowid method. 2794 */ 2795 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){ 2796 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; 2797 *p = pCsr->iRowid; 2798 return SQLITE_OK; 2799 } 2800 2801 /* The pragma virtual table object */ 2802 static const sqlite3_module pragmaVtabModule = { 2803 0, /* iVersion */ 2804 0, /* xCreate - create a table */ 2805 pragmaVtabConnect, /* xConnect - connect to an existing table */ 2806 pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */ 2807 pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */ 2808 0, /* xDestroy - Drop a table */ 2809 pragmaVtabOpen, /* xOpen - open a cursor */ 2810 pragmaVtabClose, /* xClose - close a cursor */ 2811 pragmaVtabFilter, /* xFilter - configure scan constraints */ 2812 pragmaVtabNext, /* xNext - advance a cursor */ 2813 pragmaVtabEof, /* xEof */ 2814 pragmaVtabColumn, /* xColumn - read data */ 2815 pragmaVtabRowid, /* xRowid - read data */ 2816 0, /* xUpdate - write data */ 2817 0, /* xBegin - begin transaction */ 2818 0, /* xSync - sync transaction */ 2819 0, /* xCommit - commit transaction */ 2820 0, /* xRollback - rollback transaction */ 2821 0, /* xFindFunction - function overloading */ 2822 0, /* xRename - rename the table */ 2823 0, /* xSavepoint */ 2824 0, /* xRelease */ 2825 0, /* xRollbackTo */ 2826 0 /* xShadowName */ 2827 }; 2828 2829 /* 2830 ** Check to see if zTabName is really the name of a pragma. If it is, 2831 ** then register an eponymous virtual table for that pragma and return 2832 ** a pointer to the Module object for the new virtual table. 2833 */ 2834 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){ 2835 const PragmaName *pName; 2836 assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 ); 2837 pName = pragmaLocate(zName+7); 2838 if( pName==0 ) return 0; 2839 if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0; 2840 assert( sqlite3HashFind(&db->aModule, zName)==0 ); 2841 return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0); 2842 } 2843 2844 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2845 2846 #endif /* SQLITE_OMIT_PRAGMA */ 2847