1 /* 2 ** 2007 October 14 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement a memory 13 ** allocation subsystem for use by SQLite. 14 ** 15 ** This version of the memory allocation subsystem omits all 16 ** use of malloc(). The application gives SQLite a block of memory 17 ** before calling sqlite3_initialize() from which allocations 18 ** are made and returned by the xMalloc() and xRealloc() 19 ** implementations. Once sqlite3_initialize() has been called, 20 ** the amount of memory available to SQLite is fixed and cannot 21 ** be changed. 22 ** 23 ** This version of the memory allocation subsystem is included 24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. 25 ** 26 ** This memory allocator uses the following algorithm: 27 ** 28 ** 1. All memory allocation sizes are rounded up to a power of 2. 29 ** 30 ** 2. If two adjacent free blocks are the halves of a larger block, 31 ** then the two blocks are coalesced into the single larger block. 32 ** 33 ** 3. New memory is allocated from the first available free block. 34 ** 35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions 36 ** Concerning Dynamic Storage Allocation". Journal of the Association for 37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. 38 ** 39 ** Let n be the size of the largest allocation divided by the minimum 40 ** allocation size (after rounding all sizes up to a power of 2.) Let M 41 ** be the maximum amount of memory ever outstanding at one time. Let 42 ** N be the total amount of memory available for allocation. Robson 43 ** proved that this memory allocator will never breakdown due to 44 ** fragmentation as long as the following constraint holds: 45 ** 46 ** N >= M*(1 + log2(n)/2) - n + 1 47 ** 48 ** The sqlite3_status() logic tracks the maximum values of n and M so 49 ** that an application can, at any time, verify this constraint. 50 */ 51 #include "sqliteInt.h" 52 53 /* 54 ** This version of the memory allocator is used only when 55 ** SQLITE_ENABLE_MEMSYS5 is defined. 56 */ 57 #ifdef SQLITE_ENABLE_MEMSYS5 58 59 /* 60 ** A minimum allocation is an instance of the following structure. 61 ** Larger allocations are an array of these structures where the 62 ** size of the array is a power of 2. 63 ** 64 ** The size of this object must be a power of two. That fact is 65 ** verified in memsys5Init(). 66 */ 67 typedef struct Mem5Link Mem5Link; 68 struct Mem5Link { 69 int next; /* Index of next free chunk */ 70 int prev; /* Index of previous free chunk */ 71 }; 72 73 /* 74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since 75 ** mem5.szAtom is always at least 8 and 32-bit integers are used, 76 ** it is not actually possible to reach this limit. 77 */ 78 #define LOGMAX 30 79 80 /* 81 ** Masks used for mem5.aCtrl[] elements. 82 */ 83 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */ 84 #define CTRL_FREE 0x20 /* True if not checked out */ 85 86 /* 87 ** All of the static variables used by this module are collected 88 ** into a single structure named "mem5". This is to keep the 89 ** static variables organized and to reduce namespace pollution 90 ** when this module is combined with other in the amalgamation. 91 */ 92 static SQLITE_WSD struct Mem5Global { 93 /* 94 ** Memory available for allocation 95 */ 96 int szAtom; /* Smallest possible allocation in bytes */ 97 int nBlock; /* Number of szAtom sized blocks in zPool */ 98 u8 *zPool; /* Memory available to be allocated */ 99 100 /* 101 ** Mutex to control access to the memory allocation subsystem. 102 */ 103 sqlite3_mutex *mutex; 104 105 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) 106 /* 107 ** Performance statistics 108 */ 109 u64 nAlloc; /* Total number of calls to malloc */ 110 u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ 111 u64 totalExcess; /* Total internal fragmentation */ 112 u32 currentOut; /* Current checkout, including internal fragmentation */ 113 u32 currentCount; /* Current number of distinct checkouts */ 114 u32 maxOut; /* Maximum instantaneous currentOut */ 115 u32 maxCount; /* Maximum instantaneous currentCount */ 116 u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ 117 #endif 118 119 /* 120 ** Lists of free blocks. aiFreelist[0] is a list of free blocks of 121 ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2. 122 ** aiFreelist[2] holds free blocks of size szAtom*4. And so forth. 123 */ 124 int aiFreelist[LOGMAX+1]; 125 126 /* 127 ** Space for tracking which blocks are checked out and the size 128 ** of each block. One byte per block. 129 */ 130 u8 *aCtrl; 131 132 } mem5; 133 134 /* 135 ** Access the static variable through a macro for SQLITE_OMIT_WSD. 136 */ 137 #define mem5 GLOBAL(struct Mem5Global, mem5) 138 139 /* 140 ** Assuming mem5.zPool is divided up into an array of Mem5Link 141 ** structures, return a pointer to the idx-th such link. 142 */ 143 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom])) 144 145 /* 146 ** Unlink the chunk at mem5.aPool[i] from list it is currently 147 ** on. It should be found on mem5.aiFreelist[iLogsize]. 148 */ 149 static void memsys5Unlink(int i, int iLogsize){ 150 int next, prev; 151 assert( i>=0 && i<mem5.nBlock ); 152 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 153 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); 154 155 next = MEM5LINK(i)->next; 156 prev = MEM5LINK(i)->prev; 157 if( prev<0 ){ 158 mem5.aiFreelist[iLogsize] = next; 159 }else{ 160 MEM5LINK(prev)->next = next; 161 } 162 if( next>=0 ){ 163 MEM5LINK(next)->prev = prev; 164 } 165 } 166 167 /* 168 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize 169 ** free list. 170 */ 171 static void memsys5Link(int i, int iLogsize){ 172 int x; 173 assert( sqlite3_mutex_held(mem5.mutex) ); 174 assert( i>=0 && i<mem5.nBlock ); 175 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 176 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); 177 178 x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; 179 MEM5LINK(i)->prev = -1; 180 if( x>=0 ){ 181 assert( x<mem5.nBlock ); 182 MEM5LINK(x)->prev = i; 183 } 184 mem5.aiFreelist[iLogsize] = i; 185 } 186 187 /* 188 ** Obtain or release the mutex needed to access global data structures. 189 */ 190 static void memsys5Enter(void){ 191 sqlite3_mutex_enter(mem5.mutex); 192 } 193 static void memsys5Leave(void){ 194 sqlite3_mutex_leave(mem5.mutex); 195 } 196 197 /* 198 ** Return the size of an outstanding allocation, in bytes. 199 ** This only works for chunks that are currently checked out. 200 */ 201 static int memsys5Size(void *p){ 202 int iSize, i; 203 assert( p!=0 ); 204 i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom); 205 assert( i>=0 && i<mem5.nBlock ); 206 iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); 207 return iSize; 208 } 209 210 /* 211 ** Return a block of memory of at least nBytes in size. 212 ** Return NULL if unable. Return NULL if nBytes==0. 213 ** 214 ** The caller guarantees that nByte is positive. 215 ** 216 ** The caller has obtained a mutex prior to invoking this 217 ** routine so there is never any chance that two or more 218 ** threads can be in this routine at the same time. 219 */ 220 static void *memsys5MallocUnsafe(int nByte){ 221 int i; /* Index of a mem5.aPool[] slot */ 222 int iBin; /* Index into mem5.aiFreelist[] */ 223 int iFullSz; /* Size of allocation rounded up to power of 2 */ 224 int iLogsize; /* Log2 of iFullSz/POW2_MIN */ 225 226 /* nByte must be a positive */ 227 assert( nByte>0 ); 228 229 /* No more than 1GiB per allocation */ 230 if( nByte > 0x40000000 ) return 0; 231 232 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) 233 /* Keep track of the maximum allocation request. Even unfulfilled 234 ** requests are counted */ 235 if( (u32)nByte>mem5.maxRequest ){ 236 mem5.maxRequest = nByte; 237 } 238 #endif 239 240 241 /* Round nByte up to the next valid power of two */ 242 for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){} 243 244 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free 245 ** block. If not, then split a block of the next larger power of 246 ** two in order to create a new free block of size iLogsize. 247 */ 248 for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){} 249 if( iBin>LOGMAX ){ 250 testcase( sqlite3GlobalConfig.xLog!=0 ); 251 sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); 252 return 0; 253 } 254 i = mem5.aiFreelist[iBin]; 255 memsys5Unlink(i, iBin); 256 while( iBin>iLogsize ){ 257 int newSize; 258 259 iBin--; 260 newSize = 1 << iBin; 261 mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; 262 memsys5Link(i+newSize, iBin); 263 } 264 mem5.aCtrl[i] = iLogsize; 265 266 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) 267 /* Update allocator performance statistics. */ 268 mem5.nAlloc++; 269 mem5.totalAlloc += iFullSz; 270 mem5.totalExcess += iFullSz - nByte; 271 mem5.currentCount++; 272 mem5.currentOut += iFullSz; 273 if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; 274 if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; 275 #endif 276 277 #ifdef SQLITE_DEBUG 278 /* Make sure the allocated memory does not assume that it is set to zero 279 ** or retains a value from a previous allocation */ 280 memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz); 281 #endif 282 283 /* Return a pointer to the allocated memory. */ 284 return (void*)&mem5.zPool[i*mem5.szAtom]; 285 } 286 287 /* 288 ** Free an outstanding memory allocation. 289 */ 290 static void memsys5FreeUnsafe(void *pOld){ 291 u32 size, iLogsize; 292 int iBlock; 293 294 /* Set iBlock to the index of the block pointed to by pOld in 295 ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool. 296 */ 297 iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom); 298 299 /* Check that the pointer pOld points to a valid, non-free block. */ 300 assert( iBlock>=0 && iBlock<mem5.nBlock ); 301 assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 ); 302 assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 ); 303 304 iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE; 305 size = 1<<iLogsize; 306 assert( iBlock+size-1<(u32)mem5.nBlock ); 307 308 mem5.aCtrl[iBlock] |= CTRL_FREE; 309 mem5.aCtrl[iBlock+size-1] |= CTRL_FREE; 310 311 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) 312 assert( mem5.currentCount>0 ); 313 assert( mem5.currentOut>=(size*mem5.szAtom) ); 314 mem5.currentCount--; 315 mem5.currentOut -= size*mem5.szAtom; 316 assert( mem5.currentOut>0 || mem5.currentCount==0 ); 317 assert( mem5.currentCount>0 || mem5.currentOut==0 ); 318 #endif 319 320 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; 321 while( ALWAYS(iLogsize<LOGMAX) ){ 322 int iBuddy; 323 if( (iBlock>>iLogsize) & 1 ){ 324 iBuddy = iBlock - size; 325 assert( iBuddy>=0 ); 326 }else{ 327 iBuddy = iBlock + size; 328 if( iBuddy>=mem5.nBlock ) break; 329 } 330 if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; 331 memsys5Unlink(iBuddy, iLogsize); 332 iLogsize++; 333 if( iBuddy<iBlock ){ 334 mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize; 335 mem5.aCtrl[iBlock] = 0; 336 iBlock = iBuddy; 337 }else{ 338 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; 339 mem5.aCtrl[iBuddy] = 0; 340 } 341 size *= 2; 342 } 343 344 #ifdef SQLITE_DEBUG 345 /* Overwrite freed memory with the 0x55 bit pattern to verify that it is 346 ** not used after being freed */ 347 memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size); 348 #endif 349 350 memsys5Link(iBlock, iLogsize); 351 } 352 353 /* 354 ** Allocate nBytes of memory. 355 */ 356 static void *memsys5Malloc(int nBytes){ 357 sqlite3_int64 *p = 0; 358 if( nBytes>0 ){ 359 memsys5Enter(); 360 p = memsys5MallocUnsafe(nBytes); 361 memsys5Leave(); 362 } 363 return (void*)p; 364 } 365 366 /* 367 ** Free memory. 368 ** 369 ** The outer layer memory allocator prevents this routine from 370 ** being called with pPrior==0. 371 */ 372 static void memsys5Free(void *pPrior){ 373 assert( pPrior!=0 ); 374 memsys5Enter(); 375 memsys5FreeUnsafe(pPrior); 376 memsys5Leave(); 377 } 378 379 /* 380 ** Change the size of an existing memory allocation. 381 ** 382 ** The outer layer memory allocator prevents this routine from 383 ** being called with pPrior==0. 384 ** 385 ** nBytes is always a value obtained from a prior call to 386 ** memsys5Round(). Hence nBytes is always a non-negative power 387 ** of two. If nBytes==0 that means that an oversize allocation 388 ** (an allocation larger than 0x40000000) was requested and this 389 ** routine should return 0 without freeing pPrior. 390 */ 391 static void *memsys5Realloc(void *pPrior, int nBytes){ 392 int nOld; 393 void *p; 394 assert( pPrior!=0 ); 395 assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */ 396 assert( nBytes>=0 ); 397 if( nBytes==0 ){ 398 return 0; 399 } 400 nOld = memsys5Size(pPrior); 401 if( nBytes<=nOld ){ 402 return pPrior; 403 } 404 p = memsys5Malloc(nBytes); 405 if( p ){ 406 memcpy(p, pPrior, nOld); 407 memsys5Free(pPrior); 408 } 409 return p; 410 } 411 412 /* 413 ** Round up a request size to the next valid allocation size. If 414 ** the allocation is too large to be handled by this allocation system, 415 ** return 0. 416 ** 417 ** All allocations must be a power of two and must be expressed by a 418 ** 32-bit signed integer. Hence the largest allocation is 0x40000000 419 ** or 1073741824 bytes. 420 */ 421 static int memsys5Roundup(int n){ 422 int iFullSz; 423 if( n<=mem5.szAtom*2 ){ 424 if( n<=mem5.szAtom ) return mem5.szAtom; 425 return mem5.szAtom*2; 426 } 427 if( n>0x40000000 ) return 0; 428 for(iFullSz=mem5.szAtom*8; iFullSz<n; iFullSz *= 4); 429 if( (iFullSz/2)>=n ) return iFullSz/2; 430 return iFullSz; 431 } 432 433 /* 434 ** Return the ceiling of the logarithm base 2 of iValue. 435 ** 436 ** Examples: memsys5Log(1) -> 0 437 ** memsys5Log(2) -> 1 438 ** memsys5Log(4) -> 2 439 ** memsys5Log(5) -> 3 440 ** memsys5Log(8) -> 3 441 ** memsys5Log(9) -> 4 442 */ 443 static int memsys5Log(int iValue){ 444 int iLog; 445 for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++); 446 return iLog; 447 } 448 449 /* 450 ** Initialize the memory allocator. 451 ** 452 ** This routine is not threadsafe. The caller must be holding a mutex 453 ** to prevent multiple threads from entering at the same time. 454 */ 455 static int memsys5Init(void *NotUsed){ 456 int ii; /* Loop counter */ 457 int nByte; /* Number of bytes of memory available to this allocator */ 458 u8 *zByte; /* Memory usable by this allocator */ 459 int nMinLog; /* Log base 2 of minimum allocation size in bytes */ 460 int iOffset; /* An offset into mem5.aCtrl[] */ 461 462 UNUSED_PARAMETER(NotUsed); 463 464 /* For the purposes of this routine, disable the mutex */ 465 mem5.mutex = 0; 466 467 /* The size of a Mem5Link object must be a power of two. Verify that 468 ** this is case. 469 */ 470 assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 ); 471 472 nByte = sqlite3GlobalConfig.nHeap; 473 zByte = (u8*)sqlite3GlobalConfig.pHeap; 474 assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */ 475 476 /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */ 477 nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); 478 mem5.szAtom = (1<<nMinLog); 479 while( (int)sizeof(Mem5Link)>mem5.szAtom ){ 480 mem5.szAtom = mem5.szAtom << 1; 481 } 482 483 mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); 484 mem5.zPool = zByte; 485 mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; 486 487 for(ii=0; ii<=LOGMAX; ii++){ 488 mem5.aiFreelist[ii] = -1; 489 } 490 491 iOffset = 0; 492 for(ii=LOGMAX; ii>=0; ii--){ 493 int nAlloc = (1<<ii); 494 if( (iOffset+nAlloc)<=mem5.nBlock ){ 495 mem5.aCtrl[iOffset] = ii | CTRL_FREE; 496 memsys5Link(iOffset, ii); 497 iOffset += nAlloc; 498 } 499 assert((iOffset+nAlloc)>mem5.nBlock); 500 } 501 502 /* If a mutex is required for normal operation, allocate one */ 503 if( sqlite3GlobalConfig.bMemstat==0 ){ 504 mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 505 } 506 507 return SQLITE_OK; 508 } 509 510 /* 511 ** Deinitialize this module. 512 */ 513 static void memsys5Shutdown(void *NotUsed){ 514 UNUSED_PARAMETER(NotUsed); 515 mem5.mutex = 0; 516 return; 517 } 518 519 #ifdef SQLITE_TEST 520 /* 521 ** Open the file indicated and write a log of all unfreed memory 522 ** allocations into that log. 523 */ 524 void sqlite3Memsys5Dump(const char *zFilename){ 525 FILE *out; 526 int i, j, n; 527 int nMinLog; 528 529 if( zFilename==0 || zFilename[0]==0 ){ 530 out = stdout; 531 }else{ 532 out = fopen(zFilename, "w"); 533 if( out==0 ){ 534 fprintf(stderr, "** Unable to output memory debug output log: %s **\n", 535 zFilename); 536 return; 537 } 538 } 539 memsys5Enter(); 540 nMinLog = memsys5Log(mem5.szAtom); 541 for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ 542 for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} 543 fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); 544 } 545 fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); 546 fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); 547 fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); 548 fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); 549 fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); 550 fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); 551 fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); 552 fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); 553 memsys5Leave(); 554 if( out==stdout ){ 555 fflush(stdout); 556 }else{ 557 fclose(out); 558 } 559 } 560 #endif 561 562 /* 563 ** This routine is the only routine in this file with external 564 ** linkage. It returns a pointer to a static sqlite3_mem_methods 565 ** struct populated with the memsys5 methods. 566 */ 567 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ 568 static const sqlite3_mem_methods memsys5Methods = { 569 memsys5Malloc, 570 memsys5Free, 571 memsys5Realloc, 572 memsys5Size, 573 memsys5Roundup, 574 memsys5Init, 575 memsys5Shutdown, 576 0 577 }; 578 return &memsys5Methods; 579 } 580 581 #endif /* SQLITE_ENABLE_MEMSYS5 */ 582