1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle INSERT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Generate code that will 19 ** 20 ** (1) acquire a lock for table pTab then 21 ** (2) open pTab as cursor iCur. 22 ** 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 24 ** for that table that is actually opened. 25 */ 26 void sqlite3OpenTable( 27 Parse *pParse, /* Generate code into this VDBE */ 28 int iCur, /* The cursor number of the table */ 29 int iDb, /* The database index in sqlite3.aDb[] */ 30 Table *pTab, /* The table to be opened */ 31 int opcode /* OP_OpenRead or OP_OpenWrite */ 32 ){ 33 Vdbe *v; 34 assert( !IsVirtual(pTab) ); 35 assert( pParse->pVdbe!=0 ); 36 v = pParse->pVdbe; 37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 38 sqlite3TableLock(pParse, iDb, pTab->tnum, 39 (opcode==OP_OpenWrite)?1:0, pTab->zName); 40 if( HasRowid(pTab) ){ 41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 42 VdbeComment((v, "%s", pTab->zName)); 43 }else{ 44 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 45 assert( pPk!=0 ); 46 assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); 47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 48 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 49 VdbeComment((v, "%s", pTab->zName)); 50 } 51 } 52 53 /* 54 ** Return a pointer to the column affinity string associated with index 55 ** pIdx. A column affinity string has one character for each column in 56 ** the table, according to the affinity of the column: 57 ** 58 ** Character Column affinity 59 ** ------------------------------ 60 ** 'A' BLOB 61 ** 'B' TEXT 62 ** 'C' NUMERIC 63 ** 'D' INTEGER 64 ** 'F' REAL 65 ** 66 ** An extra 'D' is appended to the end of the string to cover the 67 ** rowid that appears as the last column in every index. 68 ** 69 ** Memory for the buffer containing the column index affinity string 70 ** is managed along with the rest of the Index structure. It will be 71 ** released when sqlite3DeleteIndex() is called. 72 */ 73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 74 if( !pIdx->zColAff ){ 75 /* The first time a column affinity string for a particular index is 76 ** required, it is allocated and populated here. It is then stored as 77 ** a member of the Index structure for subsequent use. 78 ** 79 ** The column affinity string will eventually be deleted by 80 ** sqliteDeleteIndex() when the Index structure itself is cleaned 81 ** up. 82 */ 83 int n; 84 Table *pTab = pIdx->pTable; 85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 86 if( !pIdx->zColAff ){ 87 sqlite3OomFault(db); 88 return 0; 89 } 90 for(n=0; n<pIdx->nColumn; n++){ 91 i16 x = pIdx->aiColumn[n]; 92 char aff; 93 if( x>=0 ){ 94 aff = pTab->aCol[x].affinity; 95 }else if( x==XN_ROWID ){ 96 aff = SQLITE_AFF_INTEGER; 97 }else{ 98 assert( x==XN_EXPR ); 99 assert( pIdx->bHasExpr ); 100 assert( pIdx->aColExpr!=0 ); 101 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 102 } 103 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 104 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 105 pIdx->zColAff[n] = aff; 106 } 107 pIdx->zColAff[n] = 0; 108 } 109 110 return pIdx->zColAff; 111 } 112 113 /* 114 ** Compute an affinity string for a table. Space is obtained 115 ** from sqlite3DbMalloc(). The caller is responsible for freeing 116 ** the space when done. 117 */ 118 char *sqlite3TableAffinityStr(sqlite3 *db, const Table *pTab){ 119 char *zColAff; 120 zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1); 121 if( zColAff ){ 122 int i, j; 123 for(i=j=0; i<pTab->nCol; i++){ 124 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 125 zColAff[j++] = pTab->aCol[i].affinity; 126 } 127 } 128 do{ 129 zColAff[j--] = 0; 130 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 131 } 132 return zColAff; 133 } 134 135 /* 136 ** Make changes to the evolving bytecode to do affinity transformations 137 ** of values that are about to be gathered into a row for table pTab. 138 ** 139 ** For ordinary (legacy, non-strict) tables: 140 ** ----------------------------------------- 141 ** 142 ** Compute the affinity string for table pTab, if it has not already been 143 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 144 ** 145 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 146 ** which were then optimized out) then this routine becomes a no-op. 147 ** 148 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 149 ** affinities for register iReg and following. Or if iReg==0, 150 ** then just set the P4 operand of the previous opcode (which should be 151 ** an OP_MakeRecord) to the affinity string. 152 ** 153 ** A column affinity string has one character per column: 154 ** 155 ** Character Column affinity 156 ** --------- --------------- 157 ** 'A' BLOB 158 ** 'B' TEXT 159 ** 'C' NUMERIC 160 ** 'D' INTEGER 161 ** 'E' REAL 162 ** 163 ** For STRICT tables: 164 ** ------------------ 165 ** 166 ** Generate an appropropriate OP_TypeCheck opcode that will verify the 167 ** datatypes against the column definitions in pTab. If iReg==0, that 168 ** means an OP_MakeRecord opcode has already been generated and should be 169 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 170 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 171 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 172 ** the first of a series of registers that will form the new record. 173 ** Apply the type checking to that array of registers. 174 */ 175 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 176 int i; 177 char *zColAff; 178 if( pTab->tabFlags & TF_Strict ){ 179 if( iReg==0 ){ 180 /* Move the previous opcode (which should be OP_MakeRecord) forward 181 ** by one slot and insert a new OP_TypeCheck where the current 182 ** OP_MakeRecord is found */ 183 VdbeOp *pPrev; 184 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 185 pPrev = sqlite3VdbeGetLastOp(v); 186 assert( pPrev!=0 ); 187 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 188 pPrev->opcode = OP_TypeCheck; 189 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 190 }else{ 191 /* Insert an isolated OP_Typecheck */ 192 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 193 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 194 } 195 return; 196 } 197 zColAff = pTab->zColAff; 198 if( zColAff==0 ){ 199 zColAff = sqlite3TableAffinityStr(0, pTab); 200 if( !zColAff ){ 201 sqlite3OomFault(sqlite3VdbeDb(v)); 202 return; 203 } 204 pTab->zColAff = zColAff; 205 } 206 assert( zColAff!=0 ); 207 i = sqlite3Strlen30NN(zColAff); 208 if( i ){ 209 if( iReg ){ 210 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 211 }else{ 212 assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord 213 || sqlite3VdbeDb(v)->mallocFailed ); 214 sqlite3VdbeChangeP4(v, -1, zColAff, i); 215 } 216 } 217 } 218 219 /* 220 ** Return non-zero if the table pTab in database iDb or any of its indices 221 ** have been opened at any point in the VDBE program. This is used to see if 222 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 223 ** run without using a temporary table for the results of the SELECT. 224 */ 225 static int readsTable(Parse *p, int iDb, Table *pTab){ 226 Vdbe *v = sqlite3GetVdbe(p); 227 int i; 228 int iEnd = sqlite3VdbeCurrentAddr(v); 229 #ifndef SQLITE_OMIT_VIRTUALTABLE 230 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 231 #endif 232 233 for(i=1; i<iEnd; i++){ 234 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 235 assert( pOp!=0 ); 236 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 237 Index *pIndex; 238 Pgno tnum = pOp->p2; 239 if( tnum==pTab->tnum ){ 240 return 1; 241 } 242 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 243 if( tnum==pIndex->tnum ){ 244 return 1; 245 } 246 } 247 } 248 #ifndef SQLITE_OMIT_VIRTUALTABLE 249 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 250 assert( pOp->p4.pVtab!=0 ); 251 assert( pOp->p4type==P4_VTAB ); 252 return 1; 253 } 254 #endif 255 } 256 return 0; 257 } 258 259 /* This walker callback will compute the union of colFlags flags for all 260 ** referenced columns in a CHECK constraint or generated column expression. 261 */ 262 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 263 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 264 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 265 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 266 } 267 return WRC_Continue; 268 } 269 270 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 271 /* 272 ** All regular columns for table pTab have been puts into registers 273 ** starting with iRegStore. The registers that correspond to STORED 274 ** or VIRTUAL columns have not yet been initialized. This routine goes 275 ** back and computes the values for those columns based on the previously 276 ** computed normal columns. 277 */ 278 void sqlite3ComputeGeneratedColumns( 279 Parse *pParse, /* Parsing context */ 280 int iRegStore, /* Register holding the first column */ 281 Table *pTab /* The table */ 282 ){ 283 int i; 284 Walker w; 285 Column *pRedo; 286 int eProgress; 287 VdbeOp *pOp; 288 289 assert( pTab->tabFlags & TF_HasGenerated ); 290 testcase( pTab->tabFlags & TF_HasVirtual ); 291 testcase( pTab->tabFlags & TF_HasStored ); 292 293 /* Before computing generated columns, first go through and make sure 294 ** that appropriate affinity has been applied to the regular columns 295 */ 296 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 297 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 298 pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 299 if( pOp->opcode==OP_Affinity ){ 300 /* Change the OP_Affinity argument to '@' (NONE) for all stored 301 ** columns. '@' is the no-op affinity and those columns have not 302 ** yet been computed. */ 303 int ii, jj; 304 char *zP4 = pOp->p4.z; 305 assert( zP4!=0 ); 306 assert( pOp->p4type==P4_DYNAMIC ); 307 for(ii=jj=0; zP4[jj]; ii++){ 308 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 309 continue; 310 } 311 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 312 zP4[jj] = SQLITE_AFF_NONE; 313 } 314 jj++; 315 } 316 }else if( pOp->opcode==OP_TypeCheck ){ 317 /* If an OP_TypeCheck was generated because the table is STRICT, 318 ** then set the P3 operand to indicate that generated columns should 319 ** not be checked */ 320 pOp->p3 = 1; 321 } 322 } 323 324 /* Because there can be multiple generated columns that refer to one another, 325 ** this is a two-pass algorithm. On the first pass, mark all generated 326 ** columns as "not available". 327 */ 328 for(i=0; i<pTab->nCol; i++){ 329 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 330 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 331 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 332 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 333 } 334 } 335 336 w.u.pTab = pTab; 337 w.xExprCallback = exprColumnFlagUnion; 338 w.xSelectCallback = 0; 339 w.xSelectCallback2 = 0; 340 341 /* On the second pass, compute the value of each NOT-AVAILABLE column. 342 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 343 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 344 ** they are needed. 345 */ 346 pParse->iSelfTab = -iRegStore; 347 do{ 348 eProgress = 0; 349 pRedo = 0; 350 for(i=0; i<pTab->nCol; i++){ 351 Column *pCol = pTab->aCol + i; 352 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 353 int x; 354 pCol->colFlags |= COLFLAG_BUSY; 355 w.eCode = 0; 356 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 357 pCol->colFlags &= ~COLFLAG_BUSY; 358 if( w.eCode & COLFLAG_NOTAVAIL ){ 359 pRedo = pCol; 360 continue; 361 } 362 eProgress = 1; 363 assert( pCol->colFlags & COLFLAG_GENERATED ); 364 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 365 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 366 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 367 } 368 } 369 }while( pRedo && eProgress ); 370 if( pRedo ){ 371 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 372 } 373 pParse->iSelfTab = 0; 374 } 375 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 376 377 378 #ifndef SQLITE_OMIT_AUTOINCREMENT 379 /* 380 ** Locate or create an AutoincInfo structure associated with table pTab 381 ** which is in database iDb. Return the register number for the register 382 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 383 ** table. (Also return zero when doing a VACUUM since we do not want to 384 ** update the AUTOINCREMENT counters during a VACUUM.) 385 ** 386 ** There is at most one AutoincInfo structure per table even if the 387 ** same table is autoincremented multiple times due to inserts within 388 ** triggers. A new AutoincInfo structure is created if this is the 389 ** first use of table pTab. On 2nd and subsequent uses, the original 390 ** AutoincInfo structure is used. 391 ** 392 ** Four consecutive registers are allocated: 393 ** 394 ** (1) The name of the pTab table. 395 ** (2) The maximum ROWID of pTab. 396 ** (3) The rowid in sqlite_sequence of pTab 397 ** (4) The original value of the max ROWID in pTab, or NULL if none 398 ** 399 ** The 2nd register is the one that is returned. That is all the 400 ** insert routine needs to know about. 401 */ 402 static int autoIncBegin( 403 Parse *pParse, /* Parsing context */ 404 int iDb, /* Index of the database holding pTab */ 405 Table *pTab /* The table we are writing to */ 406 ){ 407 int memId = 0; /* Register holding maximum rowid */ 408 assert( pParse->db->aDb[iDb].pSchema!=0 ); 409 if( (pTab->tabFlags & TF_Autoincrement)!=0 410 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 411 ){ 412 Parse *pToplevel = sqlite3ParseToplevel(pParse); 413 AutoincInfo *pInfo; 414 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 415 416 /* Verify that the sqlite_sequence table exists and is an ordinary 417 ** rowid table with exactly two columns. 418 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 419 if( pSeqTab==0 420 || !HasRowid(pSeqTab) 421 || NEVER(IsVirtual(pSeqTab)) 422 || pSeqTab->nCol!=2 423 ){ 424 pParse->nErr++; 425 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 426 return 0; 427 } 428 429 pInfo = pToplevel->pAinc; 430 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 431 if( pInfo==0 ){ 432 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 433 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 434 testcase( pParse->earlyCleanup ); 435 if( pParse->db->mallocFailed ) return 0; 436 pInfo->pNext = pToplevel->pAinc; 437 pToplevel->pAinc = pInfo; 438 pInfo->pTab = pTab; 439 pInfo->iDb = iDb; 440 pToplevel->nMem++; /* Register to hold name of table */ 441 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 442 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 443 } 444 memId = pInfo->regCtr; 445 } 446 return memId; 447 } 448 449 /* 450 ** This routine generates code that will initialize all of the 451 ** register used by the autoincrement tracker. 452 */ 453 void sqlite3AutoincrementBegin(Parse *pParse){ 454 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 455 sqlite3 *db = pParse->db; /* The database connection */ 456 Db *pDb; /* Database only autoinc table */ 457 int memId; /* Register holding max rowid */ 458 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 459 460 /* This routine is never called during trigger-generation. It is 461 ** only called from the top-level */ 462 assert( pParse->pTriggerTab==0 ); 463 assert( sqlite3IsToplevel(pParse) ); 464 465 assert( v ); /* We failed long ago if this is not so */ 466 for(p = pParse->pAinc; p; p = p->pNext){ 467 static const int iLn = VDBE_OFFSET_LINENO(2); 468 static const VdbeOpList autoInc[] = { 469 /* 0 */ {OP_Null, 0, 0, 0}, 470 /* 1 */ {OP_Rewind, 0, 10, 0}, 471 /* 2 */ {OP_Column, 0, 0, 0}, 472 /* 3 */ {OP_Ne, 0, 9, 0}, 473 /* 4 */ {OP_Rowid, 0, 0, 0}, 474 /* 5 */ {OP_Column, 0, 1, 0}, 475 /* 6 */ {OP_AddImm, 0, 0, 0}, 476 /* 7 */ {OP_Copy, 0, 0, 0}, 477 /* 8 */ {OP_Goto, 0, 11, 0}, 478 /* 9 */ {OP_Next, 0, 2, 0}, 479 /* 10 */ {OP_Integer, 0, 0, 0}, 480 /* 11 */ {OP_Close, 0, 0, 0} 481 }; 482 VdbeOp *aOp; 483 pDb = &db->aDb[p->iDb]; 484 memId = p->regCtr; 485 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 486 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 487 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 488 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 489 if( aOp==0 ) break; 490 aOp[0].p2 = memId; 491 aOp[0].p3 = memId+2; 492 aOp[2].p3 = memId; 493 aOp[3].p1 = memId-1; 494 aOp[3].p3 = memId; 495 aOp[3].p5 = SQLITE_JUMPIFNULL; 496 aOp[4].p2 = memId+1; 497 aOp[5].p3 = memId; 498 aOp[6].p1 = memId; 499 aOp[7].p2 = memId+2; 500 aOp[7].p1 = memId; 501 aOp[10].p2 = memId; 502 if( pParse->nTab==0 ) pParse->nTab = 1; 503 } 504 } 505 506 /* 507 ** Update the maximum rowid for an autoincrement calculation. 508 ** 509 ** This routine should be called when the regRowid register holds a 510 ** new rowid that is about to be inserted. If that new rowid is 511 ** larger than the maximum rowid in the memId memory cell, then the 512 ** memory cell is updated. 513 */ 514 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 515 if( memId>0 ){ 516 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 517 } 518 } 519 520 /* 521 ** This routine generates the code needed to write autoincrement 522 ** maximum rowid values back into the sqlite_sequence register. 523 ** Every statement that might do an INSERT into an autoincrement 524 ** table (either directly or through triggers) needs to call this 525 ** routine just before the "exit" code. 526 */ 527 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 528 AutoincInfo *p; 529 Vdbe *v = pParse->pVdbe; 530 sqlite3 *db = pParse->db; 531 532 assert( v ); 533 for(p = pParse->pAinc; p; p = p->pNext){ 534 static const int iLn = VDBE_OFFSET_LINENO(2); 535 static const VdbeOpList autoIncEnd[] = { 536 /* 0 */ {OP_NotNull, 0, 2, 0}, 537 /* 1 */ {OP_NewRowid, 0, 0, 0}, 538 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 539 /* 3 */ {OP_Insert, 0, 0, 0}, 540 /* 4 */ {OP_Close, 0, 0, 0} 541 }; 542 VdbeOp *aOp; 543 Db *pDb = &db->aDb[p->iDb]; 544 int iRec; 545 int memId = p->regCtr; 546 547 iRec = sqlite3GetTempReg(pParse); 548 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 549 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 550 VdbeCoverage(v); 551 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 552 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 553 if( aOp==0 ) break; 554 aOp[0].p1 = memId+1; 555 aOp[1].p2 = memId+1; 556 aOp[2].p1 = memId-1; 557 aOp[2].p3 = iRec; 558 aOp[3].p2 = iRec; 559 aOp[3].p3 = memId+1; 560 aOp[3].p5 = OPFLAG_APPEND; 561 sqlite3ReleaseTempReg(pParse, iRec); 562 } 563 } 564 void sqlite3AutoincrementEnd(Parse *pParse){ 565 if( pParse->pAinc ) autoIncrementEnd(pParse); 566 } 567 #else 568 /* 569 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 570 ** above are all no-ops 571 */ 572 # define autoIncBegin(A,B,C) (0) 573 # define autoIncStep(A,B,C) 574 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 575 576 577 /* Forward declaration */ 578 static int xferOptimization( 579 Parse *pParse, /* Parser context */ 580 Table *pDest, /* The table we are inserting into */ 581 Select *pSelect, /* A SELECT statement to use as the data source */ 582 int onError, /* How to handle constraint errors */ 583 int iDbDest /* The database of pDest */ 584 ); 585 586 /* 587 ** This routine is called to handle SQL of the following forms: 588 ** 589 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 590 ** insert into TABLE (IDLIST) select 591 ** insert into TABLE (IDLIST) default values 592 ** 593 ** The IDLIST following the table name is always optional. If omitted, 594 ** then a list of all (non-hidden) columns for the table is substituted. 595 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 596 ** is omitted. 597 ** 598 ** For the pSelect parameter holds the values to be inserted for the 599 ** first two forms shown above. A VALUES clause is really just short-hand 600 ** for a SELECT statement that omits the FROM clause and everything else 601 ** that follows. If the pSelect parameter is NULL, that means that the 602 ** DEFAULT VALUES form of the INSERT statement is intended. 603 ** 604 ** The code generated follows one of four templates. For a simple 605 ** insert with data coming from a single-row VALUES clause, the code executes 606 ** once straight down through. Pseudo-code follows (we call this 607 ** the "1st template"): 608 ** 609 ** open write cursor to <table> and its indices 610 ** put VALUES clause expressions into registers 611 ** write the resulting record into <table> 612 ** cleanup 613 ** 614 ** The three remaining templates assume the statement is of the form 615 ** 616 ** INSERT INTO <table> SELECT ... 617 ** 618 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 619 ** in other words if the SELECT pulls all columns from a single table 620 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 621 ** if <table2> and <table1> are distinct tables but have identical 622 ** schemas, including all the same indices, then a special optimization 623 ** is invoked that copies raw records from <table2> over to <table1>. 624 ** See the xferOptimization() function for the implementation of this 625 ** template. This is the 2nd template. 626 ** 627 ** open a write cursor to <table> 628 ** open read cursor on <table2> 629 ** transfer all records in <table2> over to <table> 630 ** close cursors 631 ** foreach index on <table> 632 ** open a write cursor on the <table> index 633 ** open a read cursor on the corresponding <table2> index 634 ** transfer all records from the read to the write cursors 635 ** close cursors 636 ** end foreach 637 ** 638 ** The 3rd template is for when the second template does not apply 639 ** and the SELECT clause does not read from <table> at any time. 640 ** The generated code follows this template: 641 ** 642 ** X <- A 643 ** goto B 644 ** A: setup for the SELECT 645 ** loop over the rows in the SELECT 646 ** load values into registers R..R+n 647 ** yield X 648 ** end loop 649 ** cleanup after the SELECT 650 ** end-coroutine X 651 ** B: open write cursor to <table> and its indices 652 ** C: yield X, at EOF goto D 653 ** insert the select result into <table> from R..R+n 654 ** goto C 655 ** D: cleanup 656 ** 657 ** The 4th template is used if the insert statement takes its 658 ** values from a SELECT but the data is being inserted into a table 659 ** that is also read as part of the SELECT. In the third form, 660 ** we have to use an intermediate table to store the results of 661 ** the select. The template is like this: 662 ** 663 ** X <- A 664 ** goto B 665 ** A: setup for the SELECT 666 ** loop over the tables in the SELECT 667 ** load value into register R..R+n 668 ** yield X 669 ** end loop 670 ** cleanup after the SELECT 671 ** end co-routine R 672 ** B: open temp table 673 ** L: yield X, at EOF goto M 674 ** insert row from R..R+n into temp table 675 ** goto L 676 ** M: open write cursor to <table> and its indices 677 ** rewind temp table 678 ** C: loop over rows of intermediate table 679 ** transfer values form intermediate table into <table> 680 ** end loop 681 ** D: cleanup 682 */ 683 void sqlite3Insert( 684 Parse *pParse, /* Parser context */ 685 SrcList *pTabList, /* Name of table into which we are inserting */ 686 Select *pSelect, /* A SELECT statement to use as the data source */ 687 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 688 int onError, /* How to handle constraint errors */ 689 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 690 ){ 691 sqlite3 *db; /* The main database structure */ 692 Table *pTab; /* The table to insert into. aka TABLE */ 693 int i, j; /* Loop counters */ 694 Vdbe *v; /* Generate code into this virtual machine */ 695 Index *pIdx; /* For looping over indices of the table */ 696 int nColumn; /* Number of columns in the data */ 697 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 698 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 699 int iIdxCur = 0; /* First index cursor */ 700 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 701 int endOfLoop; /* Label for the end of the insertion loop */ 702 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 703 int addrInsTop = 0; /* Jump to label "D" */ 704 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 705 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 706 int iDb; /* Index of database holding TABLE */ 707 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 708 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 709 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 710 u8 bIdListInOrder; /* True if IDLIST is in table order */ 711 ExprList *pList = 0; /* List of VALUES() to be inserted */ 712 int iRegStore; /* Register in which to store next column */ 713 714 /* Register allocations */ 715 int regFromSelect = 0;/* Base register for data coming from SELECT */ 716 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 717 int regRowCount = 0; /* Memory cell used for the row counter */ 718 int regIns; /* Block of regs holding rowid+data being inserted */ 719 int regRowid; /* registers holding insert rowid */ 720 int regData; /* register holding first column to insert */ 721 int *aRegIdx = 0; /* One register allocated to each index */ 722 723 #ifndef SQLITE_OMIT_TRIGGER 724 int isView; /* True if attempting to insert into a view */ 725 Trigger *pTrigger; /* List of triggers on pTab, if required */ 726 int tmask; /* Mask of trigger times */ 727 #endif 728 729 db = pParse->db; 730 assert( db->pParse==pParse ); 731 if( pParse->nErr ){ 732 goto insert_cleanup; 733 } 734 assert( db->mallocFailed==0 ); 735 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 736 737 /* If the Select object is really just a simple VALUES() list with a 738 ** single row (the common case) then keep that one row of values 739 ** and discard the other (unused) parts of the pSelect object 740 */ 741 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 742 pList = pSelect->pEList; 743 pSelect->pEList = 0; 744 sqlite3SelectDelete(db, pSelect); 745 pSelect = 0; 746 } 747 748 /* Locate the table into which we will be inserting new information. 749 */ 750 assert( pTabList->nSrc==1 ); 751 pTab = sqlite3SrcListLookup(pParse, pTabList); 752 if( pTab==0 ){ 753 goto insert_cleanup; 754 } 755 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 756 assert( iDb<db->nDb ); 757 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 758 db->aDb[iDb].zDbSName) ){ 759 goto insert_cleanup; 760 } 761 withoutRowid = !HasRowid(pTab); 762 763 /* Figure out if we have any triggers and if the table being 764 ** inserted into is a view 765 */ 766 #ifndef SQLITE_OMIT_TRIGGER 767 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 768 isView = IsView(pTab); 769 #else 770 # define pTrigger 0 771 # define tmask 0 772 # define isView 0 773 #endif 774 #ifdef SQLITE_OMIT_VIEW 775 # undef isView 776 # define isView 0 777 #endif 778 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 779 780 #if TREETRACE_ENABLED 781 if( sqlite3TreeTrace & 0x10000 ){ 782 sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); 783 sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, 784 onError, pUpsert, pTrigger); 785 } 786 #endif 787 788 /* If pTab is really a view, make sure it has been initialized. 789 ** ViewGetColumnNames() is a no-op if pTab is not a view. 790 */ 791 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 792 goto insert_cleanup; 793 } 794 795 /* Cannot insert into a read-only table. 796 */ 797 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ 798 goto insert_cleanup; 799 } 800 801 /* Allocate a VDBE 802 */ 803 v = sqlite3GetVdbe(pParse); 804 if( v==0 ) goto insert_cleanup; 805 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 806 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 807 808 #ifndef SQLITE_OMIT_XFER_OPT 809 /* If the statement is of the form 810 ** 811 ** INSERT INTO <table1> SELECT * FROM <table2>; 812 ** 813 ** Then special optimizations can be applied that make the transfer 814 ** very fast and which reduce fragmentation of indices. 815 ** 816 ** This is the 2nd template. 817 */ 818 if( pColumn==0 819 && pSelect!=0 820 && pTrigger==0 821 && xferOptimization(pParse, pTab, pSelect, onError, iDb) 822 ){ 823 assert( !pTrigger ); 824 assert( pList==0 ); 825 goto insert_end; 826 } 827 #endif /* SQLITE_OMIT_XFER_OPT */ 828 829 /* If this is an AUTOINCREMENT table, look up the sequence number in the 830 ** sqlite_sequence table and store it in memory cell regAutoinc. 831 */ 832 regAutoinc = autoIncBegin(pParse, iDb, pTab); 833 834 /* Allocate a block registers to hold the rowid and the values 835 ** for all columns of the new row. 836 */ 837 regRowid = regIns = pParse->nMem+1; 838 pParse->nMem += pTab->nCol + 1; 839 if( IsVirtual(pTab) ){ 840 regRowid++; 841 pParse->nMem++; 842 } 843 regData = regRowid+1; 844 845 /* If the INSERT statement included an IDLIST term, then make sure 846 ** all elements of the IDLIST really are columns of the table and 847 ** remember the column indices. 848 ** 849 ** If the table has an INTEGER PRIMARY KEY column and that column 850 ** is named in the IDLIST, then record in the ipkColumn variable 851 ** the index into IDLIST of the primary key column. ipkColumn is 852 ** the index of the primary key as it appears in IDLIST, not as 853 ** is appears in the original table. (The index of the INTEGER 854 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 855 ** loop, if ipkColumn==(-1), that means that integer primary key 856 ** is unspecified, and hence the table is either WITHOUT ROWID or 857 ** it will automatically generated an integer primary key. 858 ** 859 ** bIdListInOrder is true if the columns in IDLIST are in storage 860 ** order. This enables an optimization that avoids shuffling the 861 ** columns into storage order. False negatives are harmless, 862 ** but false positives will cause database corruption. 863 */ 864 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 865 if( pColumn ){ 866 assert( pColumn->eU4!=EU4_EXPR ); 867 pColumn->eU4 = EU4_IDX; 868 for(i=0; i<pColumn->nId; i++){ 869 pColumn->a[i].u4.idx = -1; 870 } 871 for(i=0; i<pColumn->nId; i++){ 872 for(j=0; j<pTab->nCol; j++){ 873 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 874 pColumn->a[i].u4.idx = j; 875 if( i!=j ) bIdListInOrder = 0; 876 if( j==pTab->iPKey ){ 877 ipkColumn = i; assert( !withoutRowid ); 878 } 879 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 880 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 881 sqlite3ErrorMsg(pParse, 882 "cannot INSERT into generated column \"%s\"", 883 pTab->aCol[j].zCnName); 884 goto insert_cleanup; 885 } 886 #endif 887 break; 888 } 889 } 890 if( j>=pTab->nCol ){ 891 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 892 ipkColumn = i; 893 bIdListInOrder = 0; 894 }else{ 895 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 896 pTabList->a, pColumn->a[i].zName); 897 pParse->checkSchema = 1; 898 goto insert_cleanup; 899 } 900 } 901 } 902 } 903 904 /* Figure out how many columns of data are supplied. If the data 905 ** is coming from a SELECT statement, then generate a co-routine that 906 ** produces a single row of the SELECT on each invocation. The 907 ** co-routine is the common header to the 3rd and 4th templates. 908 */ 909 if( pSelect ){ 910 /* Data is coming from a SELECT or from a multi-row VALUES clause. 911 ** Generate a co-routine to run the SELECT. */ 912 int regYield; /* Register holding co-routine entry-point */ 913 int addrTop; /* Top of the co-routine */ 914 int rc; /* Result code */ 915 916 regYield = ++pParse->nMem; 917 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 918 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 919 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 920 dest.iSdst = bIdListInOrder ? regData : 0; 921 dest.nSdst = pTab->nCol; 922 rc = sqlite3Select(pParse, pSelect, &dest); 923 regFromSelect = dest.iSdst; 924 assert( db->pParse==pParse ); 925 if( rc || pParse->nErr ) goto insert_cleanup; 926 assert( db->mallocFailed==0 ); 927 sqlite3VdbeEndCoroutine(v, regYield); 928 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 929 assert( pSelect->pEList ); 930 nColumn = pSelect->pEList->nExpr; 931 932 /* Set useTempTable to TRUE if the result of the SELECT statement 933 ** should be written into a temporary table (template 4). Set to 934 ** FALSE if each output row of the SELECT can be written directly into 935 ** the destination table (template 3). 936 ** 937 ** A temp table must be used if the table being updated is also one 938 ** of the tables being read by the SELECT statement. Also use a 939 ** temp table in the case of row triggers. 940 */ 941 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 942 useTempTable = 1; 943 } 944 945 if( useTempTable ){ 946 /* Invoke the coroutine to extract information from the SELECT 947 ** and add it to a transient table srcTab. The code generated 948 ** here is from the 4th template: 949 ** 950 ** B: open temp table 951 ** L: yield X, goto M at EOF 952 ** insert row from R..R+n into temp table 953 ** goto L 954 ** M: ... 955 */ 956 int regRec; /* Register to hold packed record */ 957 int regTempRowid; /* Register to hold temp table ROWID */ 958 int addrL; /* Label "L" */ 959 960 srcTab = pParse->nTab++; 961 regRec = sqlite3GetTempReg(pParse); 962 regTempRowid = sqlite3GetTempReg(pParse); 963 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 964 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 965 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 966 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 967 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 968 sqlite3VdbeGoto(v, addrL); 969 sqlite3VdbeJumpHere(v, addrL); 970 sqlite3ReleaseTempReg(pParse, regRec); 971 sqlite3ReleaseTempReg(pParse, regTempRowid); 972 } 973 }else{ 974 /* This is the case if the data for the INSERT is coming from a 975 ** single-row VALUES clause 976 */ 977 NameContext sNC; 978 memset(&sNC, 0, sizeof(sNC)); 979 sNC.pParse = pParse; 980 srcTab = -1; 981 assert( useTempTable==0 ); 982 if( pList ){ 983 nColumn = pList->nExpr; 984 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 985 goto insert_cleanup; 986 } 987 }else{ 988 nColumn = 0; 989 } 990 } 991 992 /* If there is no IDLIST term but the table has an integer primary 993 ** key, the set the ipkColumn variable to the integer primary key 994 ** column index in the original table definition. 995 */ 996 if( pColumn==0 && nColumn>0 ){ 997 ipkColumn = pTab->iPKey; 998 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 999 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1000 testcase( pTab->tabFlags & TF_HasVirtual ); 1001 testcase( pTab->tabFlags & TF_HasStored ); 1002 for(i=ipkColumn-1; i>=0; i--){ 1003 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 1004 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 1005 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 1006 ipkColumn--; 1007 } 1008 } 1009 } 1010 #endif 1011 1012 /* Make sure the number of columns in the source data matches the number 1013 ** of columns to be inserted into the table. 1014 */ 1015 assert( TF_HasHidden==COLFLAG_HIDDEN ); 1016 assert( TF_HasGenerated==COLFLAG_GENERATED ); 1017 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 1018 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 1019 for(i=0; i<pTab->nCol; i++){ 1020 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 1021 } 1022 } 1023 if( nColumn!=(pTab->nCol-nHidden) ){ 1024 sqlite3ErrorMsg(pParse, 1025 "table %S has %d columns but %d values were supplied", 1026 pTabList->a, pTab->nCol-nHidden, nColumn); 1027 goto insert_cleanup; 1028 } 1029 } 1030 if( pColumn!=0 && nColumn!=pColumn->nId ){ 1031 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 1032 goto insert_cleanup; 1033 } 1034 1035 /* Initialize the count of rows to be inserted 1036 */ 1037 if( (db->flags & SQLITE_CountRows)!=0 1038 && !pParse->nested 1039 && !pParse->pTriggerTab 1040 && !pParse->bReturning 1041 ){ 1042 regRowCount = ++pParse->nMem; 1043 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 1044 } 1045 1046 /* If this is not a view, open the table and and all indices */ 1047 if( !isView ){ 1048 int nIdx; 1049 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 1050 &iDataCur, &iIdxCur); 1051 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 1052 if( aRegIdx==0 ){ 1053 goto insert_cleanup; 1054 } 1055 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 1056 assert( pIdx ); 1057 aRegIdx[i] = ++pParse->nMem; 1058 pParse->nMem += pIdx->nColumn; 1059 } 1060 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 1061 } 1062 #ifndef SQLITE_OMIT_UPSERT 1063 if( pUpsert ){ 1064 Upsert *pNx; 1065 if( IsVirtual(pTab) ){ 1066 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 1067 pTab->zName); 1068 goto insert_cleanup; 1069 } 1070 if( IsView(pTab) ){ 1071 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 1072 goto insert_cleanup; 1073 } 1074 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 1075 goto insert_cleanup; 1076 } 1077 pTabList->a[0].iCursor = iDataCur; 1078 pNx = pUpsert; 1079 do{ 1080 pNx->pUpsertSrc = pTabList; 1081 pNx->regData = regData; 1082 pNx->iDataCur = iDataCur; 1083 pNx->iIdxCur = iIdxCur; 1084 if( pNx->pUpsertTarget ){ 1085 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ 1086 goto insert_cleanup; 1087 } 1088 } 1089 pNx = pNx->pNextUpsert; 1090 }while( pNx!=0 ); 1091 } 1092 #endif 1093 1094 1095 /* This is the top of the main insertion loop */ 1096 if( useTempTable ){ 1097 /* This block codes the top of loop only. The complete loop is the 1098 ** following pseudocode (template 4): 1099 ** 1100 ** rewind temp table, if empty goto D 1101 ** C: loop over rows of intermediate table 1102 ** transfer values form intermediate table into <table> 1103 ** end loop 1104 ** D: ... 1105 */ 1106 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 1107 addrCont = sqlite3VdbeCurrentAddr(v); 1108 }else if( pSelect ){ 1109 /* This block codes the top of loop only. The complete loop is the 1110 ** following pseudocode (template 3): 1111 ** 1112 ** C: yield X, at EOF goto D 1113 ** insert the select result into <table> from R..R+n 1114 ** goto C 1115 ** D: ... 1116 */ 1117 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 1118 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 1119 VdbeCoverage(v); 1120 if( ipkColumn>=0 ){ 1121 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 1122 ** SELECT, go ahead and copy the value into the rowid slot now, so that 1123 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 1124 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 1125 } 1126 } 1127 1128 /* Compute data for ordinary columns of the new entry. Values 1129 ** are written in storage order into registers starting with regData. 1130 ** Only ordinary columns are computed in this loop. The rowid 1131 ** (if there is one) is computed later and generated columns are 1132 ** computed after the rowid since they might depend on the value 1133 ** of the rowid. 1134 */ 1135 nHidden = 0; 1136 iRegStore = regData; assert( regData==regRowid+1 ); 1137 for(i=0; i<pTab->nCol; i++, iRegStore++){ 1138 int k; 1139 u32 colFlags; 1140 assert( i>=nHidden ); 1141 if( i==pTab->iPKey ){ 1142 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 1143 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 1144 ** using excess space. The file format definition requires this extra 1145 ** NULL - we cannot optimize further by skipping the column completely */ 1146 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1147 continue; 1148 } 1149 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 1150 nHidden++; 1151 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 1152 /* Virtual columns do not participate in OP_MakeRecord. So back up 1153 ** iRegStore by one slot to compensate for the iRegStore++ in the 1154 ** outer for() loop */ 1155 iRegStore--; 1156 continue; 1157 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 1158 /* Stored columns are computed later. But if there are BEFORE 1159 ** triggers, the slots used for stored columns will be OP_Copy-ed 1160 ** to a second block of registers, so the register needs to be 1161 ** initialized to NULL to avoid an uninitialized register read */ 1162 if( tmask & TRIGGER_BEFORE ){ 1163 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 1164 } 1165 continue; 1166 }else if( pColumn==0 ){ 1167 /* Hidden columns that are not explicitly named in the INSERT 1168 ** get there default value */ 1169 sqlite3ExprCodeFactorable(pParse, 1170 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1171 iRegStore); 1172 continue; 1173 } 1174 } 1175 if( pColumn ){ 1176 assert( pColumn->eU4==EU4_IDX ); 1177 for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){} 1178 if( j>=pColumn->nId ){ 1179 /* A column not named in the insert column list gets its 1180 ** default value */ 1181 sqlite3ExprCodeFactorable(pParse, 1182 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1183 iRegStore); 1184 continue; 1185 } 1186 k = j; 1187 }else if( nColumn==0 ){ 1188 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 1189 sqlite3ExprCodeFactorable(pParse, 1190 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 1191 iRegStore); 1192 continue; 1193 }else{ 1194 k = i - nHidden; 1195 } 1196 1197 if( useTempTable ){ 1198 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 1199 }else if( pSelect ){ 1200 if( regFromSelect!=regData ){ 1201 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 1202 } 1203 }else{ 1204 Expr *pX = pList->a[k].pExpr; 1205 int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); 1206 if( y!=iRegStore ){ 1207 sqlite3VdbeAddOp2(v, 1208 ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); 1209 } 1210 } 1211 } 1212 1213 1214 /* Run the BEFORE and INSTEAD OF triggers, if there are any 1215 */ 1216 endOfLoop = sqlite3VdbeMakeLabel(pParse); 1217 if( tmask & TRIGGER_BEFORE ){ 1218 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 1219 1220 /* build the NEW.* reference row. Note that if there is an INTEGER 1221 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 1222 ** translated into a unique ID for the row. But on a BEFORE trigger, 1223 ** we do not know what the unique ID will be (because the insert has 1224 ** not happened yet) so we substitute a rowid of -1 1225 */ 1226 if( ipkColumn<0 ){ 1227 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1228 }else{ 1229 int addr1; 1230 assert( !withoutRowid ); 1231 if( useTempTable ){ 1232 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 1233 }else{ 1234 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 1235 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 1236 } 1237 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 1238 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 1239 sqlite3VdbeJumpHere(v, addr1); 1240 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 1241 } 1242 1243 /* Copy the new data already generated. */ 1244 assert( pTab->nNVCol>0 ); 1245 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 1246 1247 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1248 /* Compute the new value for generated columns after all other 1249 ** columns have already been computed. This must be done after 1250 ** computing the ROWID in case one of the generated columns 1251 ** refers to the ROWID. */ 1252 if( pTab->tabFlags & TF_HasGenerated ){ 1253 testcase( pTab->tabFlags & TF_HasVirtual ); 1254 testcase( pTab->tabFlags & TF_HasStored ); 1255 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 1256 } 1257 #endif 1258 1259 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 1260 ** do not attempt any conversions before assembling the record. 1261 ** If this is a real table, attempt conversions as required by the 1262 ** table column affinities. 1263 */ 1264 if( !isView ){ 1265 sqlite3TableAffinity(v, pTab, regCols+1); 1266 } 1267 1268 /* Fire BEFORE or INSTEAD OF triggers */ 1269 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 1270 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 1271 1272 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 1273 } 1274 1275 if( !isView ){ 1276 if( IsVirtual(pTab) ){ 1277 /* The row that the VUpdate opcode will delete: none */ 1278 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 1279 } 1280 if( ipkColumn>=0 ){ 1281 /* Compute the new rowid */ 1282 if( useTempTable ){ 1283 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 1284 }else if( pSelect ){ 1285 /* Rowid already initialized at tag-20191021-001 */ 1286 }else{ 1287 Expr *pIpk = pList->a[ipkColumn].pExpr; 1288 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 1289 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1290 appendFlag = 1; 1291 }else{ 1292 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 1293 } 1294 } 1295 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 1296 ** to generate a unique primary key value. 1297 */ 1298 if( !appendFlag ){ 1299 int addr1; 1300 if( !IsVirtual(pTab) ){ 1301 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 1302 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1303 sqlite3VdbeJumpHere(v, addr1); 1304 }else{ 1305 addr1 = sqlite3VdbeCurrentAddr(v); 1306 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 1307 } 1308 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 1309 } 1310 }else if( IsVirtual(pTab) || withoutRowid ){ 1311 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 1312 }else{ 1313 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 1314 appendFlag = 1; 1315 } 1316 autoIncStep(pParse, regAutoinc, regRowid); 1317 1318 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1319 /* Compute the new value for generated columns after all other 1320 ** columns have already been computed. This must be done after 1321 ** computing the ROWID in case one of the generated columns 1322 ** is derived from the INTEGER PRIMARY KEY. */ 1323 if( pTab->tabFlags & TF_HasGenerated ){ 1324 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 1325 } 1326 #endif 1327 1328 /* Generate code to check constraints and generate index keys and 1329 ** do the insertion. 1330 */ 1331 #ifndef SQLITE_OMIT_VIRTUALTABLE 1332 if( IsVirtual(pTab) ){ 1333 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 1334 sqlite3VtabMakeWritable(pParse, pTab); 1335 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 1336 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 1337 sqlite3MayAbort(pParse); 1338 }else 1339 #endif 1340 { 1341 int isReplace = 0;/* Set to true if constraints may cause a replace */ 1342 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 1343 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 1344 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 1345 ); 1346 if( db->flags & SQLITE_ForeignKeys ){ 1347 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 1348 } 1349 1350 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 1351 ** constraints or (b) there are no triggers and this table is not a 1352 ** parent table in a foreign key constraint. It is safe to set the 1353 ** flag in the second case as if any REPLACE constraint is hit, an 1354 ** OP_Delete or OP_IdxDelete instruction will be executed on each 1355 ** cursor that is disturbed. And these instructions both clear the 1356 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 1357 ** functionality. */ 1358 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 1359 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 1360 regIns, aRegIdx, 0, appendFlag, bUseSeek 1361 ); 1362 } 1363 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1364 }else if( pParse->bReturning ){ 1365 /* If there is a RETURNING clause, populate the rowid register with 1366 ** constant value -1, in case one or more of the returned expressions 1367 ** refer to the "rowid" of the view. */ 1368 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 1369 #endif 1370 } 1371 1372 /* Update the count of rows that are inserted 1373 */ 1374 if( regRowCount ){ 1375 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 1376 } 1377 1378 if( pTrigger ){ 1379 /* Code AFTER triggers */ 1380 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 1381 pTab, regData-2-pTab->nCol, onError, endOfLoop); 1382 } 1383 1384 /* The bottom of the main insertion loop, if the data source 1385 ** is a SELECT statement. 1386 */ 1387 sqlite3VdbeResolveLabel(v, endOfLoop); 1388 if( useTempTable ){ 1389 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 1390 sqlite3VdbeJumpHere(v, addrInsTop); 1391 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 1392 }else if( pSelect ){ 1393 sqlite3VdbeGoto(v, addrCont); 1394 #ifdef SQLITE_DEBUG 1395 /* If we are jumping back to an OP_Yield that is preceded by an 1396 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 1397 ** OP_ReleaseReg will be included in the loop. */ 1398 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 1399 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 1400 sqlite3VdbeChangeP5(v, 1); 1401 } 1402 #endif 1403 sqlite3VdbeJumpHere(v, addrInsTop); 1404 } 1405 1406 #ifndef SQLITE_OMIT_XFER_OPT 1407 insert_end: 1408 #endif /* SQLITE_OMIT_XFER_OPT */ 1409 /* Update the sqlite_sequence table by storing the content of the 1410 ** maximum rowid counter values recorded while inserting into 1411 ** autoincrement tables. 1412 */ 1413 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 1414 sqlite3AutoincrementEnd(pParse); 1415 } 1416 1417 /* 1418 ** Return the number of rows inserted. If this routine is 1419 ** generating code because of a call to sqlite3NestedParse(), do not 1420 ** invoke the callback function. 1421 */ 1422 if( regRowCount ){ 1423 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 1424 } 1425 1426 insert_cleanup: 1427 sqlite3SrcListDelete(db, pTabList); 1428 sqlite3ExprListDelete(db, pList); 1429 sqlite3UpsertDelete(db, pUpsert); 1430 sqlite3SelectDelete(db, pSelect); 1431 sqlite3IdListDelete(db, pColumn); 1432 if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); 1433 } 1434 1435 /* Make sure "isView" and other macros defined above are undefined. Otherwise 1436 ** they may interfere with compilation of other functions in this file 1437 ** (or in another file, if this file becomes part of the amalgamation). */ 1438 #ifdef isView 1439 #undef isView 1440 #endif 1441 #ifdef pTrigger 1442 #undef pTrigger 1443 #endif 1444 #ifdef tmask 1445 #undef tmask 1446 #endif 1447 1448 /* 1449 ** Meanings of bits in of pWalker->eCode for 1450 ** sqlite3ExprReferencesUpdatedColumn() 1451 */ 1452 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 1453 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 1454 1455 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 1456 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 1457 ** expression node references any of the 1458 ** columns that are being modifed by an UPDATE statement. 1459 */ 1460 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 1461 if( pExpr->op==TK_COLUMN ){ 1462 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 1463 if( pExpr->iColumn>=0 ){ 1464 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 1465 pWalker->eCode |= CKCNSTRNT_COLUMN; 1466 } 1467 }else{ 1468 pWalker->eCode |= CKCNSTRNT_ROWID; 1469 } 1470 } 1471 return WRC_Continue; 1472 } 1473 1474 /* 1475 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 1476 ** only columns that are modified by the UPDATE are those for which 1477 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 1478 ** 1479 ** Return true if CHECK constraint pExpr uses any of the 1480 ** changing columns (or the rowid if it is changing). In other words, 1481 ** return true if this CHECK constraint must be validated for 1482 ** the new row in the UPDATE statement. 1483 ** 1484 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 1485 ** The operation of this routine is the same - return true if an only if 1486 ** the expression uses one or more of columns identified by the second and 1487 ** third arguments. 1488 */ 1489 int sqlite3ExprReferencesUpdatedColumn( 1490 Expr *pExpr, /* The expression to be checked */ 1491 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 1492 int chngRowid /* True if UPDATE changes the rowid */ 1493 ){ 1494 Walker w; 1495 memset(&w, 0, sizeof(w)); 1496 w.eCode = 0; 1497 w.xExprCallback = checkConstraintExprNode; 1498 w.u.aiCol = aiChng; 1499 sqlite3WalkExpr(&w, pExpr); 1500 if( !chngRowid ){ 1501 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 1502 w.eCode &= ~CKCNSTRNT_ROWID; 1503 } 1504 testcase( w.eCode==0 ); 1505 testcase( w.eCode==CKCNSTRNT_COLUMN ); 1506 testcase( w.eCode==CKCNSTRNT_ROWID ); 1507 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 1508 return w.eCode!=0; 1509 } 1510 1511 /* 1512 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 1513 ** the indexes of a table in the order provided in the Table->pIndex list. 1514 ** However, sometimes (rarely - when there is an upsert) it wants to visit 1515 ** the indexes in a different order. The following data structures accomplish 1516 ** this. 1517 ** 1518 ** The IndexIterator object is used to walk through all of the indexes 1519 ** of a table in either Index.pNext order, or in some other order established 1520 ** by an array of IndexListTerm objects. 1521 */ 1522 typedef struct IndexListTerm IndexListTerm; 1523 typedef struct IndexIterator IndexIterator; 1524 struct IndexIterator { 1525 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 1526 int i; /* Index of the current item from the list */ 1527 union { 1528 struct { /* Use this object for eType==0: A Index.pNext list */ 1529 Index *pIdx; /* The current Index */ 1530 } lx; 1531 struct { /* Use this object for eType==1; Array of IndexListTerm */ 1532 int nIdx; /* Size of the array */ 1533 IndexListTerm *aIdx; /* Array of IndexListTerms */ 1534 } ax; 1535 } u; 1536 }; 1537 1538 /* When IndexIterator.eType==1, then each index is an array of instances 1539 ** of the following object 1540 */ 1541 struct IndexListTerm { 1542 Index *p; /* The index */ 1543 int ix; /* Which entry in the original Table.pIndex list is this index*/ 1544 }; 1545 1546 /* Return the first index on the list */ 1547 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 1548 assert( pIter->i==0 ); 1549 if( pIter->eType ){ 1550 *pIx = pIter->u.ax.aIdx[0].ix; 1551 return pIter->u.ax.aIdx[0].p; 1552 }else{ 1553 *pIx = 0; 1554 return pIter->u.lx.pIdx; 1555 } 1556 } 1557 1558 /* Return the next index from the list. Return NULL when out of indexes */ 1559 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 1560 if( pIter->eType ){ 1561 int i = ++pIter->i; 1562 if( i>=pIter->u.ax.nIdx ){ 1563 *pIx = i; 1564 return 0; 1565 } 1566 *pIx = pIter->u.ax.aIdx[i].ix; 1567 return pIter->u.ax.aIdx[i].p; 1568 }else{ 1569 ++(*pIx); 1570 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 1571 return pIter->u.lx.pIdx; 1572 } 1573 } 1574 1575 /* 1576 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 1577 ** on table pTab. 1578 ** 1579 ** The regNewData parameter is the first register in a range that contains 1580 ** the data to be inserted or the data after the update. There will be 1581 ** pTab->nCol+1 registers in this range. The first register (the one 1582 ** that regNewData points to) will contain the new rowid, or NULL in the 1583 ** case of a WITHOUT ROWID table. The second register in the range will 1584 ** contain the content of the first table column. The third register will 1585 ** contain the content of the second table column. And so forth. 1586 ** 1587 ** The regOldData parameter is similar to regNewData except that it contains 1588 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 1589 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 1590 ** checking regOldData for zero. 1591 ** 1592 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 1593 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 1594 ** might be modified by the UPDATE. If pkChng is false, then the key of 1595 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 1596 ** 1597 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 1598 ** was explicitly specified as part of the INSERT statement. If pkChng 1599 ** is zero, it means that the either rowid is computed automatically or 1600 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 1601 ** pkChng will only be true if the INSERT statement provides an integer 1602 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 1603 ** 1604 ** The code generated by this routine will store new index entries into 1605 ** registers identified by aRegIdx[]. No index entry is created for 1606 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 1607 ** the same as the order of indices on the linked list of indices 1608 ** at pTab->pIndex. 1609 ** 1610 ** (2019-05-07) The generated code also creates a new record for the 1611 ** main table, if pTab is a rowid table, and stores that record in the 1612 ** register identified by aRegIdx[nIdx] - in other words in the first 1613 ** entry of aRegIdx[] past the last index. It is important that the 1614 ** record be generated during constraint checks to avoid affinity changes 1615 ** to the register content that occur after constraint checks but before 1616 ** the new record is inserted. 1617 ** 1618 ** The caller must have already opened writeable cursors on the main 1619 ** table and all applicable indices (that is to say, all indices for which 1620 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 1621 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 1622 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 1623 ** for the first index in the pTab->pIndex list. Cursors for other indices 1624 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 1625 ** 1626 ** This routine also generates code to check constraints. NOT NULL, 1627 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 1628 ** then the appropriate action is performed. There are five possible 1629 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 1630 ** 1631 ** Constraint type Action What Happens 1632 ** --------------- ---------- ---------------------------------------- 1633 ** any ROLLBACK The current transaction is rolled back and 1634 ** sqlite3_step() returns immediately with a 1635 ** return code of SQLITE_CONSTRAINT. 1636 ** 1637 ** any ABORT Back out changes from the current command 1638 ** only (do not do a complete rollback) then 1639 ** cause sqlite3_step() to return immediately 1640 ** with SQLITE_CONSTRAINT. 1641 ** 1642 ** any FAIL Sqlite3_step() returns immediately with a 1643 ** return code of SQLITE_CONSTRAINT. The 1644 ** transaction is not rolled back and any 1645 ** changes to prior rows are retained. 1646 ** 1647 ** any IGNORE The attempt in insert or update the current 1648 ** row is skipped, without throwing an error. 1649 ** Processing continues with the next row. 1650 ** (There is an immediate jump to ignoreDest.) 1651 ** 1652 ** NOT NULL REPLACE The NULL value is replace by the default 1653 ** value for that column. If the default value 1654 ** is NULL, the action is the same as ABORT. 1655 ** 1656 ** UNIQUE REPLACE The other row that conflicts with the row 1657 ** being inserted is removed. 1658 ** 1659 ** CHECK REPLACE Illegal. The results in an exception. 1660 ** 1661 ** Which action to take is determined by the overrideError parameter. 1662 ** Or if overrideError==OE_Default, then the pParse->onError parameter 1663 ** is used. Or if pParse->onError==OE_Default then the onError value 1664 ** for the constraint is used. 1665 */ 1666 void sqlite3GenerateConstraintChecks( 1667 Parse *pParse, /* The parser context */ 1668 Table *pTab, /* The table being inserted or updated */ 1669 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 1670 int iDataCur, /* Canonical data cursor (main table or PK index) */ 1671 int iIdxCur, /* First index cursor */ 1672 int regNewData, /* First register in a range holding values to insert */ 1673 int regOldData, /* Previous content. 0 for INSERTs */ 1674 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 1675 u8 overrideError, /* Override onError to this if not OE_Default */ 1676 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 1677 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 1678 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 1679 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 1680 ){ 1681 Vdbe *v; /* VDBE under constrution */ 1682 Index *pIdx; /* Pointer to one of the indices */ 1683 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 1684 sqlite3 *db; /* Database connection */ 1685 int i; /* loop counter */ 1686 int ix; /* Index loop counter */ 1687 int nCol; /* Number of columns */ 1688 int onError; /* Conflict resolution strategy */ 1689 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 1690 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 1691 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 1692 u8 isUpdate; /* True if this is an UPDATE operation */ 1693 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 1694 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 1695 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 1696 int ipkTop = 0; /* Top of the IPK uniqueness check */ 1697 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 1698 /* Variables associated with retesting uniqueness constraints after 1699 ** replace triggers fire have run */ 1700 int regTrigCnt; /* Register used to count replace trigger invocations */ 1701 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 1702 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 1703 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 1704 int nReplaceTrig = 0; /* Number of replace triggers coded */ 1705 IndexIterator sIdxIter; /* Index iterator */ 1706 1707 isUpdate = regOldData!=0; 1708 db = pParse->db; 1709 v = pParse->pVdbe; 1710 assert( v!=0 ); 1711 assert( !IsView(pTab) ); /* This table is not a VIEW */ 1712 nCol = pTab->nCol; 1713 1714 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 1715 ** normal rowid tables. nPkField is the number of key fields in the 1716 ** pPk index or 1 for a rowid table. In other words, nPkField is the 1717 ** number of fields in the true primary key of the table. */ 1718 if( HasRowid(pTab) ){ 1719 pPk = 0; 1720 nPkField = 1; 1721 }else{ 1722 pPk = sqlite3PrimaryKeyIndex(pTab); 1723 nPkField = pPk->nKeyCol; 1724 } 1725 1726 /* Record that this module has started */ 1727 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 1728 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 1729 1730 /* Test all NOT NULL constraints. 1731 */ 1732 if( pTab->tabFlags & TF_HasNotNull ){ 1733 int b2ndPass = 0; /* True if currently running 2nd pass */ 1734 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 1735 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 1736 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 1737 for(i=0; i<nCol; i++){ 1738 int iReg; /* Register holding column value */ 1739 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 1740 int isGenerated; /* non-zero if column is generated */ 1741 onError = pCol->notNull; 1742 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 1743 if( i==pTab->iPKey ){ 1744 continue; /* ROWID is never NULL */ 1745 } 1746 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 1747 if( isGenerated && !b2ndPass ){ 1748 nGenerated++; 1749 continue; /* Generated columns processed on 2nd pass */ 1750 } 1751 if( aiChng && aiChng[i]<0 && !isGenerated ){ 1752 /* Do not check NOT NULL on columns that do not change */ 1753 continue; 1754 } 1755 if( overrideError!=OE_Default ){ 1756 onError = overrideError; 1757 }else if( onError==OE_Default ){ 1758 onError = OE_Abort; 1759 } 1760 if( onError==OE_Replace ){ 1761 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 1762 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 1763 ){ 1764 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 1765 testcase( pCol->colFlags & COLFLAG_STORED ); 1766 testcase( pCol->colFlags & COLFLAG_GENERATED ); 1767 onError = OE_Abort; 1768 }else{ 1769 assert( !isGenerated ); 1770 } 1771 }else if( b2ndPass && !isGenerated ){ 1772 continue; 1773 } 1774 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 1775 || onError==OE_Ignore || onError==OE_Replace ); 1776 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 1777 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 1778 switch( onError ){ 1779 case OE_Replace: { 1780 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 1781 VdbeCoverage(v); 1782 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 1783 nSeenReplace++; 1784 sqlite3ExprCodeCopy(pParse, 1785 sqlite3ColumnExpr(pTab, pCol), iReg); 1786 sqlite3VdbeJumpHere(v, addr1); 1787 break; 1788 } 1789 case OE_Abort: 1790 sqlite3MayAbort(pParse); 1791 /* no break */ deliberate_fall_through 1792 case OE_Rollback: 1793 case OE_Fail: { 1794 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 1795 pCol->zCnName); 1796 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 1797 onError, iReg); 1798 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 1799 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 1800 VdbeCoverage(v); 1801 break; 1802 } 1803 default: { 1804 assert( onError==OE_Ignore ); 1805 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 1806 VdbeCoverage(v); 1807 break; 1808 } 1809 } /* end switch(onError) */ 1810 } /* end loop i over columns */ 1811 if( nGenerated==0 && nSeenReplace==0 ){ 1812 /* If there are no generated columns with NOT NULL constraints 1813 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 1814 ** pass is sufficient */ 1815 break; 1816 } 1817 if( b2ndPass ) break; /* Never need more than 2 passes */ 1818 b2ndPass = 1; 1819 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 1820 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 1821 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 1822 ** first pass, recomputed values for all generated columns, as 1823 ** those values might depend on columns affected by the REPLACE. 1824 */ 1825 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 1826 } 1827 #endif 1828 } /* end of 2-pass loop */ 1829 } /* end if( has-not-null-constraints ) */ 1830 1831 /* Test all CHECK constraints 1832 */ 1833 #ifndef SQLITE_OMIT_CHECK 1834 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 1835 ExprList *pCheck = pTab->pCheck; 1836 pParse->iSelfTab = -(regNewData+1); 1837 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 1838 for(i=0; i<pCheck->nExpr; i++){ 1839 int allOk; 1840 Expr *pCopy; 1841 Expr *pExpr = pCheck->a[i].pExpr; 1842 if( aiChng 1843 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 1844 ){ 1845 /* The check constraints do not reference any of the columns being 1846 ** updated so there is no point it verifying the check constraint */ 1847 continue; 1848 } 1849 if( bAffinityDone==0 ){ 1850 sqlite3TableAffinity(v, pTab, regNewData+1); 1851 bAffinityDone = 1; 1852 } 1853 allOk = sqlite3VdbeMakeLabel(pParse); 1854 sqlite3VdbeVerifyAbortable(v, onError); 1855 pCopy = sqlite3ExprDup(db, pExpr, 0); 1856 if( !db->mallocFailed ){ 1857 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 1858 } 1859 sqlite3ExprDelete(db, pCopy); 1860 if( onError==OE_Ignore ){ 1861 sqlite3VdbeGoto(v, ignoreDest); 1862 }else{ 1863 char *zName = pCheck->a[i].zEName; 1864 assert( zName!=0 || pParse->db->mallocFailed ); 1865 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 1866 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 1867 onError, zName, P4_TRANSIENT, 1868 P5_ConstraintCheck); 1869 } 1870 sqlite3VdbeResolveLabel(v, allOk); 1871 } 1872 pParse->iSelfTab = 0; 1873 } 1874 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1875 1876 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 1877 ** order: 1878 ** 1879 ** (1) OE_Update 1880 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 1881 ** (3) OE_Replace 1882 ** 1883 ** OE_Fail and OE_Ignore must happen before any changes are made. 1884 ** OE_Update guarantees that only a single row will change, so it 1885 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 1886 ** could happen in any order, but they are grouped up front for 1887 ** convenience. 1888 ** 1889 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 1890 ** The order of constraints used to have OE_Update as (2) and OE_Abort 1891 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 1892 ** constraint before any others, so it had to be moved. 1893 ** 1894 ** Constraint checking code is generated in this order: 1895 ** (A) The rowid constraint 1896 ** (B) Unique index constraints that do not have OE_Replace as their 1897 ** default conflict resolution strategy 1898 ** (C) Unique index that do use OE_Replace by default. 1899 ** 1900 ** The ordering of (2) and (3) is accomplished by making sure the linked 1901 ** list of indexes attached to a table puts all OE_Replace indexes last 1902 ** in the list. See sqlite3CreateIndex() for where that happens. 1903 */ 1904 sIdxIter.eType = 0; 1905 sIdxIter.i = 0; 1906 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 1907 sIdxIter.u.lx.pIdx = pTab->pIndex; 1908 if( pUpsert ){ 1909 if( pUpsert->pUpsertTarget==0 ){ 1910 /* There is just on ON CONFLICT clause and it has no constraint-target */ 1911 assert( pUpsert->pNextUpsert==0 ); 1912 if( pUpsert->isDoUpdate==0 ){ 1913 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 1914 ** Make all unique constraint resolution be OE_Ignore */ 1915 overrideError = OE_Ignore; 1916 pUpsert = 0; 1917 }else{ 1918 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 1919 overrideError = OE_Update; 1920 } 1921 }else if( pTab->pIndex!=0 ){ 1922 /* Otherwise, we'll need to run the IndexListTerm array version of the 1923 ** iterator to ensure that all of the ON CONFLICT conditions are 1924 ** checked first and in order. */ 1925 int nIdx, jj; 1926 u64 nByte; 1927 Upsert *pTerm; 1928 u8 *bUsed; 1929 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 1930 assert( aRegIdx[nIdx]>0 ); 1931 } 1932 sIdxIter.eType = 1; 1933 sIdxIter.u.ax.nIdx = nIdx; 1934 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 1935 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 1936 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 1937 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 1938 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 1939 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 1940 if( pTerm->pUpsertTarget==0 ) break; 1941 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 1942 jj = 0; 1943 pIdx = pTab->pIndex; 1944 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 1945 pIdx = pIdx->pNext; 1946 jj++; 1947 } 1948 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 1949 bUsed[jj] = 1; 1950 sIdxIter.u.ax.aIdx[i].p = pIdx; 1951 sIdxIter.u.ax.aIdx[i].ix = jj; 1952 i++; 1953 } 1954 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 1955 if( bUsed[jj] ) continue; 1956 sIdxIter.u.ax.aIdx[i].p = pIdx; 1957 sIdxIter.u.ax.aIdx[i].ix = jj; 1958 i++; 1959 } 1960 assert( i==nIdx ); 1961 } 1962 } 1963 1964 /* Determine if it is possible that triggers (either explicitly coded 1965 ** triggers or FK resolution actions) might run as a result of deletes 1966 ** that happen when OE_Replace conflict resolution occurs. (Call these 1967 ** "replace triggers".) If any replace triggers run, we will need to 1968 ** recheck all of the uniqueness constraints after they have all run. 1969 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 1970 ** 1971 ** If replace triggers are a possibility, then 1972 ** 1973 ** (1) Allocate register regTrigCnt and initialize it to zero. 1974 ** That register will count the number of replace triggers that 1975 ** fire. Constraint recheck only occurs if the number is positive. 1976 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 1977 ** (3) Initialize addrRecheck and lblRecheckOk 1978 ** 1979 ** The uniqueness rechecking code will create a series of tests to run 1980 ** in a second pass. The addrRecheck and lblRecheckOk variables are 1981 ** used to link together these tests which are separated from each other 1982 ** in the generate bytecode. 1983 */ 1984 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 1985 /* There are not DELETE triggers nor FK constraints. No constraint 1986 ** rechecks are needed. */ 1987 pTrigger = 0; 1988 regTrigCnt = 0; 1989 }else{ 1990 if( db->flags&SQLITE_RecTriggers ){ 1991 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 1992 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 1993 }else{ 1994 pTrigger = 0; 1995 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 1996 } 1997 if( regTrigCnt ){ 1998 /* Replace triggers might exist. Allocate the counter and 1999 ** initialize it to zero. */ 2000 regTrigCnt = ++pParse->nMem; 2001 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 2002 VdbeComment((v, "trigger count")); 2003 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2004 addrRecheck = lblRecheckOk; 2005 } 2006 } 2007 2008 /* If rowid is changing, make sure the new rowid does not previously 2009 ** exist in the table. 2010 */ 2011 if( pkChng && pPk==0 ){ 2012 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 2013 2014 /* Figure out what action to take in case of a rowid collision */ 2015 onError = pTab->keyConf; 2016 if( overrideError!=OE_Default ){ 2017 onError = overrideError; 2018 }else if( onError==OE_Default ){ 2019 onError = OE_Abort; 2020 } 2021 2022 /* figure out whether or not upsert applies in this case */ 2023 if( pUpsert ){ 2024 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 2025 if( pUpsertClause!=0 ){ 2026 if( pUpsertClause->isDoUpdate==0 ){ 2027 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2028 }else{ 2029 onError = OE_Update; /* DO UPDATE */ 2030 } 2031 } 2032 if( pUpsertClause!=pUpsert ){ 2033 /* The first ON CONFLICT clause has a conflict target other than 2034 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 2035 ** and then come back here and deal with the IPK afterwards */ 2036 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 2037 } 2038 } 2039 2040 /* If the response to a rowid conflict is REPLACE but the response 2041 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 2042 ** to defer the running of the rowid conflict checking until after 2043 ** the UNIQUE constraints have run. 2044 */ 2045 if( onError==OE_Replace /* IPK rule is REPLACE */ 2046 && onError!=overrideError /* Rules for other constraints are different */ 2047 && pTab->pIndex /* There exist other constraints */ 2048 && !upsertIpkDelay /* IPK check already deferred by UPSERT */ 2049 ){ 2050 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 2051 VdbeComment((v, "defer IPK REPLACE until last")); 2052 } 2053 2054 if( isUpdate ){ 2055 /* pkChng!=0 does not mean that the rowid has changed, only that 2056 ** it might have changed. Skip the conflict logic below if the rowid 2057 ** is unchanged. */ 2058 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 2059 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2060 VdbeCoverage(v); 2061 } 2062 2063 /* Check to see if the new rowid already exists in the table. Skip 2064 ** the following conflict logic if it does not. */ 2065 VdbeNoopComment((v, "uniqueness check for ROWID")); 2066 sqlite3VdbeVerifyAbortable(v, onError); 2067 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 2068 VdbeCoverage(v); 2069 2070 switch( onError ){ 2071 default: { 2072 onError = OE_Abort; 2073 /* no break */ deliberate_fall_through 2074 } 2075 case OE_Rollback: 2076 case OE_Abort: 2077 case OE_Fail: { 2078 testcase( onError==OE_Rollback ); 2079 testcase( onError==OE_Abort ); 2080 testcase( onError==OE_Fail ); 2081 sqlite3RowidConstraint(pParse, onError, pTab); 2082 break; 2083 } 2084 case OE_Replace: { 2085 /* If there are DELETE triggers on this table and the 2086 ** recursive-triggers flag is set, call GenerateRowDelete() to 2087 ** remove the conflicting row from the table. This will fire 2088 ** the triggers and remove both the table and index b-tree entries. 2089 ** 2090 ** Otherwise, if there are no triggers or the recursive-triggers 2091 ** flag is not set, but the table has one or more indexes, call 2092 ** GenerateRowIndexDelete(). This removes the index b-tree entries 2093 ** only. The table b-tree entry will be replaced by the new entry 2094 ** when it is inserted. 2095 ** 2096 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 2097 ** also invoke MultiWrite() to indicate that this VDBE may require 2098 ** statement rollback (if the statement is aborted after the delete 2099 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 2100 ** but being more selective here allows statements like: 2101 ** 2102 ** REPLACE INTO t(rowid) VALUES($newrowid) 2103 ** 2104 ** to run without a statement journal if there are no indexes on the 2105 ** table. 2106 */ 2107 if( regTrigCnt ){ 2108 sqlite3MultiWrite(pParse); 2109 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2110 regNewData, 1, 0, OE_Replace, 1, -1); 2111 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2112 nReplaceTrig++; 2113 }else{ 2114 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2115 assert( HasRowid(pTab) ); 2116 /* This OP_Delete opcode fires the pre-update-hook only. It does 2117 ** not modify the b-tree. It is more efficient to let the coming 2118 ** OP_Insert replace the existing entry than it is to delete the 2119 ** existing entry and then insert a new one. */ 2120 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 2121 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2122 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 2123 if( pTab->pIndex ){ 2124 sqlite3MultiWrite(pParse); 2125 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 2126 } 2127 } 2128 seenReplace = 1; 2129 break; 2130 } 2131 #ifndef SQLITE_OMIT_UPSERT 2132 case OE_Update: { 2133 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 2134 /* no break */ deliberate_fall_through 2135 } 2136 #endif 2137 case OE_Ignore: { 2138 testcase( onError==OE_Ignore ); 2139 sqlite3VdbeGoto(v, ignoreDest); 2140 break; 2141 } 2142 } 2143 sqlite3VdbeResolveLabel(v, addrRowidOk); 2144 if( pUpsert && pUpsertClause!=pUpsert ){ 2145 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 2146 }else if( ipkTop ){ 2147 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 2148 sqlite3VdbeJumpHere(v, ipkTop-1); 2149 } 2150 } 2151 2152 /* Test all UNIQUE constraints by creating entries for each UNIQUE 2153 ** index and making sure that duplicate entries do not already exist. 2154 ** Compute the revised record entries for indices as we go. 2155 ** 2156 ** This loop also handles the case of the PRIMARY KEY index for a 2157 ** WITHOUT ROWID table. 2158 */ 2159 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 2160 pIdx; 2161 pIdx = indexIteratorNext(&sIdxIter, &ix) 2162 ){ 2163 int regIdx; /* Range of registers hold conent for pIdx */ 2164 int regR; /* Range of registers holding conflicting PK */ 2165 int iThisCur; /* Cursor for this UNIQUE index */ 2166 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 2167 int addrConflictCk; /* First opcode in the conflict check logic */ 2168 2169 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 2170 if( pUpsert ){ 2171 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 2172 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 2173 sqlite3VdbeJumpHere(v, upsertIpkDelay); 2174 } 2175 } 2176 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 2177 if( bAffinityDone==0 ){ 2178 sqlite3TableAffinity(v, pTab, regNewData+1); 2179 bAffinityDone = 1; 2180 } 2181 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 2182 iThisCur = iIdxCur+ix; 2183 2184 2185 /* Skip partial indices for which the WHERE clause is not true */ 2186 if( pIdx->pPartIdxWhere ){ 2187 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 2188 pParse->iSelfTab = -(regNewData+1); 2189 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 2190 SQLITE_JUMPIFNULL); 2191 pParse->iSelfTab = 0; 2192 } 2193 2194 /* Create a record for this index entry as it should appear after 2195 ** the insert or update. Store that record in the aRegIdx[ix] register 2196 */ 2197 regIdx = aRegIdx[ix]+1; 2198 for(i=0; i<pIdx->nColumn; i++){ 2199 int iField = pIdx->aiColumn[i]; 2200 int x; 2201 if( iField==XN_EXPR ){ 2202 pParse->iSelfTab = -(regNewData+1); 2203 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 2204 pParse->iSelfTab = 0; 2205 VdbeComment((v, "%s column %d", pIdx->zName, i)); 2206 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 2207 x = regNewData; 2208 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 2209 VdbeComment((v, "rowid")); 2210 }else{ 2211 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 2212 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 2213 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 2214 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 2215 } 2216 } 2217 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 2218 VdbeComment((v, "for %s", pIdx->zName)); 2219 #ifdef SQLITE_ENABLE_NULL_TRIM 2220 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 2221 sqlite3SetMakeRecordP5(v, pIdx->pTable); 2222 } 2223 #endif 2224 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 2225 2226 /* In an UPDATE operation, if this index is the PRIMARY KEY index 2227 ** of a WITHOUT ROWID table and there has been no change the 2228 ** primary key, then no collision is possible. The collision detection 2229 ** logic below can all be skipped. */ 2230 if( isUpdate && pPk==pIdx && pkChng==0 ){ 2231 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2232 continue; 2233 } 2234 2235 /* Find out what action to take in case there is a uniqueness conflict */ 2236 onError = pIdx->onError; 2237 if( onError==OE_None ){ 2238 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2239 continue; /* pIdx is not a UNIQUE index */ 2240 } 2241 if( overrideError!=OE_Default ){ 2242 onError = overrideError; 2243 }else if( onError==OE_Default ){ 2244 onError = OE_Abort; 2245 } 2246 2247 /* Figure out if the upsert clause applies to this index */ 2248 if( pUpsertClause ){ 2249 if( pUpsertClause->isDoUpdate==0 ){ 2250 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 2251 }else{ 2252 onError = OE_Update; /* DO UPDATE */ 2253 } 2254 } 2255 2256 /* Collision detection may be omitted if all of the following are true: 2257 ** (1) The conflict resolution algorithm is REPLACE 2258 ** (2) The table is a WITHOUT ROWID table 2259 ** (3) There are no secondary indexes on the table 2260 ** (4) No delete triggers need to be fired if there is a conflict 2261 ** (5) No FK constraint counters need to be updated if a conflict occurs. 2262 ** 2263 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 2264 ** must be explicitly deleted in order to ensure any pre-update hook 2265 ** is invoked. */ 2266 assert( IsOrdinaryTable(pTab) ); 2267 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 2268 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 2269 && pPk==pIdx /* Condition 2 */ 2270 && onError==OE_Replace /* Condition 1 */ 2271 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 2272 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 2273 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 2274 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 2275 ){ 2276 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2277 continue; 2278 } 2279 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 2280 2281 /* Check to see if the new index entry will be unique */ 2282 sqlite3VdbeVerifyAbortable(v, onError); 2283 addrConflictCk = 2284 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 2285 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 2286 2287 /* Generate code to handle collisions */ 2288 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 2289 if( isUpdate || onError==OE_Replace ){ 2290 if( HasRowid(pTab) ){ 2291 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 2292 /* Conflict only if the rowid of the existing index entry 2293 ** is different from old-rowid */ 2294 if( isUpdate ){ 2295 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 2296 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2297 VdbeCoverage(v); 2298 } 2299 }else{ 2300 int x; 2301 /* Extract the PRIMARY KEY from the end of the index entry and 2302 ** store it in registers regR..regR+nPk-1 */ 2303 if( pIdx!=pPk ){ 2304 for(i=0; i<pPk->nKeyCol; i++){ 2305 assert( pPk->aiColumn[i]>=0 ); 2306 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 2307 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 2308 VdbeComment((v, "%s.%s", pTab->zName, 2309 pTab->aCol[pPk->aiColumn[i]].zCnName)); 2310 } 2311 } 2312 if( isUpdate ){ 2313 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 2314 ** table, only conflict if the new PRIMARY KEY values are actually 2315 ** different from the old. See TH3 withoutrowid04.test. 2316 ** 2317 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 2318 ** of the matched index row are different from the original PRIMARY 2319 ** KEY values of this row before the update. */ 2320 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 2321 int op = OP_Ne; 2322 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 2323 2324 for(i=0; i<pPk->nKeyCol; i++){ 2325 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 2326 x = pPk->aiColumn[i]; 2327 assert( x>=0 ); 2328 if( i==(pPk->nKeyCol-1) ){ 2329 addrJump = addrUniqueOk; 2330 op = OP_Eq; 2331 } 2332 x = sqlite3TableColumnToStorage(pTab, x); 2333 sqlite3VdbeAddOp4(v, op, 2334 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 2335 ); 2336 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2337 VdbeCoverageIf(v, op==OP_Eq); 2338 VdbeCoverageIf(v, op==OP_Ne); 2339 } 2340 } 2341 } 2342 } 2343 2344 /* Generate code that executes if the new index entry is not unique */ 2345 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 2346 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 2347 switch( onError ){ 2348 case OE_Rollback: 2349 case OE_Abort: 2350 case OE_Fail: { 2351 testcase( onError==OE_Rollback ); 2352 testcase( onError==OE_Abort ); 2353 testcase( onError==OE_Fail ); 2354 sqlite3UniqueConstraint(pParse, onError, pIdx); 2355 break; 2356 } 2357 #ifndef SQLITE_OMIT_UPSERT 2358 case OE_Update: { 2359 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 2360 /* no break */ deliberate_fall_through 2361 } 2362 #endif 2363 case OE_Ignore: { 2364 testcase( onError==OE_Ignore ); 2365 sqlite3VdbeGoto(v, ignoreDest); 2366 break; 2367 } 2368 default: { 2369 int nConflictCk; /* Number of opcodes in conflict check logic */ 2370 2371 assert( onError==OE_Replace ); 2372 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 2373 assert( nConflictCk>0 || db->mallocFailed ); 2374 testcase( nConflictCk<=0 ); 2375 testcase( nConflictCk>1 ); 2376 if( regTrigCnt ){ 2377 sqlite3MultiWrite(pParse); 2378 nReplaceTrig++; 2379 } 2380 if( pTrigger && isUpdate ){ 2381 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 2382 } 2383 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 2384 regR, nPkField, 0, OE_Replace, 2385 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 2386 if( pTrigger && isUpdate ){ 2387 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 2388 } 2389 if( regTrigCnt ){ 2390 int addrBypass; /* Jump destination to bypass recheck logic */ 2391 2392 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 2393 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 2394 VdbeComment((v, "bypass recheck")); 2395 2396 /* Here we insert code that will be invoked after all constraint 2397 ** checks have run, if and only if one or more replace triggers 2398 ** fired. */ 2399 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2400 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 2401 if( pIdx->pPartIdxWhere ){ 2402 /* Bypass the recheck if this partial index is not defined 2403 ** for the current row */ 2404 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 2405 VdbeCoverage(v); 2406 } 2407 /* Copy the constraint check code from above, except change 2408 ** the constraint-ok jump destination to be the address of 2409 ** the next retest block */ 2410 while( nConflictCk>0 ){ 2411 VdbeOp x; /* Conflict check opcode to copy */ 2412 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 2413 ** Hence, make a complete copy of the opcode, rather than using 2414 ** a pointer to the opcode. */ 2415 x = *sqlite3VdbeGetOp(v, addrConflictCk); 2416 if( x.opcode!=OP_IdxRowid ){ 2417 int p2; /* New P2 value for copied conflict check opcode */ 2418 const char *zP4; 2419 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 2420 p2 = lblRecheckOk; 2421 }else{ 2422 p2 = x.p2; 2423 } 2424 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 2425 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 2426 sqlite3VdbeChangeP5(v, x.p5); 2427 VdbeCoverageIf(v, p2!=x.p2); 2428 } 2429 nConflictCk--; 2430 addrConflictCk++; 2431 } 2432 /* If the retest fails, issue an abort */ 2433 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 2434 2435 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 2436 } 2437 seenReplace = 1; 2438 break; 2439 } 2440 } 2441 sqlite3VdbeResolveLabel(v, addrUniqueOk); 2442 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 2443 if( pUpsertClause 2444 && upsertIpkReturn 2445 && sqlite3UpsertNextIsIPK(pUpsertClause) 2446 ){ 2447 sqlite3VdbeGoto(v, upsertIpkDelay+1); 2448 sqlite3VdbeJumpHere(v, upsertIpkReturn); 2449 upsertIpkReturn = 0; 2450 } 2451 } 2452 2453 /* If the IPK constraint is a REPLACE, run it last */ 2454 if( ipkTop ){ 2455 sqlite3VdbeGoto(v, ipkTop); 2456 VdbeComment((v, "Do IPK REPLACE")); 2457 assert( ipkBottom>0 ); 2458 sqlite3VdbeJumpHere(v, ipkBottom); 2459 } 2460 2461 /* Recheck all uniqueness constraints after replace triggers have run */ 2462 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 2463 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 2464 if( nReplaceTrig ){ 2465 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 2466 if( !pPk ){ 2467 if( isUpdate ){ 2468 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 2469 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 2470 VdbeCoverage(v); 2471 } 2472 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 2473 VdbeCoverage(v); 2474 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 2475 }else{ 2476 sqlite3VdbeGoto(v, addrRecheck); 2477 } 2478 sqlite3VdbeResolveLabel(v, lblRecheckOk); 2479 } 2480 2481 /* Generate the table record */ 2482 if( HasRowid(pTab) ){ 2483 int regRec = aRegIdx[ix]; 2484 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 2485 sqlite3SetMakeRecordP5(v, pTab); 2486 if( !bAffinityDone ){ 2487 sqlite3TableAffinity(v, pTab, 0); 2488 } 2489 } 2490 2491 *pbMayReplace = seenReplace; 2492 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 2493 } 2494 2495 #ifdef SQLITE_ENABLE_NULL_TRIM 2496 /* 2497 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 2498 ** to be the number of columns in table pTab that must not be NULL-trimmed. 2499 ** 2500 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 2501 */ 2502 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 2503 u16 i; 2504 2505 /* Records with omitted columns are only allowed for schema format 2506 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 2507 if( pTab->pSchema->file_format<2 ) return; 2508 2509 for(i=pTab->nCol-1; i>0; i--){ 2510 if( pTab->aCol[i].iDflt!=0 ) break; 2511 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 2512 } 2513 sqlite3VdbeChangeP5(v, i+1); 2514 } 2515 #endif 2516 2517 /* 2518 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 2519 ** number is iCur, and register regData contains the new record for the 2520 ** PK index. This function adds code to invoke the pre-update hook, 2521 ** if one is registered. 2522 */ 2523 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 2524 static void codeWithoutRowidPreupdate( 2525 Parse *pParse, /* Parse context */ 2526 Table *pTab, /* Table being updated */ 2527 int iCur, /* Cursor number for table */ 2528 int regData /* Data containing new record */ 2529 ){ 2530 Vdbe *v = pParse->pVdbe; 2531 int r = sqlite3GetTempReg(pParse); 2532 assert( !HasRowid(pTab) ); 2533 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 2534 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 2535 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 2536 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 2537 sqlite3ReleaseTempReg(pParse, r); 2538 } 2539 #else 2540 # define codeWithoutRowidPreupdate(a,b,c,d) 2541 #endif 2542 2543 /* 2544 ** This routine generates code to finish the INSERT or UPDATE operation 2545 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 2546 ** A consecutive range of registers starting at regNewData contains the 2547 ** rowid and the content to be inserted. 2548 ** 2549 ** The arguments to this routine should be the same as the first six 2550 ** arguments to sqlite3GenerateConstraintChecks. 2551 */ 2552 void sqlite3CompleteInsertion( 2553 Parse *pParse, /* The parser context */ 2554 Table *pTab, /* the table into which we are inserting */ 2555 int iDataCur, /* Cursor of the canonical data source */ 2556 int iIdxCur, /* First index cursor */ 2557 int regNewData, /* Range of content */ 2558 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 2559 int update_flags, /* True for UPDATE, False for INSERT */ 2560 int appendBias, /* True if this is likely to be an append */ 2561 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 2562 ){ 2563 Vdbe *v; /* Prepared statements under construction */ 2564 Index *pIdx; /* An index being inserted or updated */ 2565 u8 pik_flags; /* flag values passed to the btree insert */ 2566 int i; /* Loop counter */ 2567 2568 assert( update_flags==0 2569 || update_flags==OPFLAG_ISUPDATE 2570 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 2571 ); 2572 2573 v = pParse->pVdbe; 2574 assert( v!=0 ); 2575 assert( !IsView(pTab) ); /* This table is not a VIEW */ 2576 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2577 /* All REPLACE indexes are at the end of the list */ 2578 assert( pIdx->onError!=OE_Replace 2579 || pIdx->pNext==0 2580 || pIdx->pNext->onError==OE_Replace ); 2581 if( aRegIdx[i]==0 ) continue; 2582 if( pIdx->pPartIdxWhere ){ 2583 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 2584 VdbeCoverage(v); 2585 } 2586 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 2587 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2588 pik_flags |= OPFLAG_NCHANGE; 2589 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 2590 if( update_flags==0 ){ 2591 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 2592 } 2593 } 2594 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 2595 aRegIdx[i]+1, 2596 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 2597 sqlite3VdbeChangeP5(v, pik_flags); 2598 } 2599 if( !HasRowid(pTab) ) return; 2600 if( pParse->nested ){ 2601 pik_flags = 0; 2602 }else{ 2603 pik_flags = OPFLAG_NCHANGE; 2604 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 2605 } 2606 if( appendBias ){ 2607 pik_flags |= OPFLAG_APPEND; 2608 } 2609 if( useSeekResult ){ 2610 pik_flags |= OPFLAG_USESEEKRESULT; 2611 } 2612 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 2613 if( !pParse->nested ){ 2614 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 2615 } 2616 sqlite3VdbeChangeP5(v, pik_flags); 2617 } 2618 2619 /* 2620 ** Allocate cursors for the pTab table and all its indices and generate 2621 ** code to open and initialized those cursors. 2622 ** 2623 ** The cursor for the object that contains the complete data (normally 2624 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 2625 ** ROWID table) is returned in *piDataCur. The first index cursor is 2626 ** returned in *piIdxCur. The number of indices is returned. 2627 ** 2628 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 2629 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 2630 ** If iBase is negative, then allocate the next available cursor. 2631 ** 2632 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 2633 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 2634 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 2635 ** pTab->pIndex list. 2636 ** 2637 ** If pTab is a virtual table, then this routine is a no-op and the 2638 ** *piDataCur and *piIdxCur values are left uninitialized. 2639 */ 2640 int sqlite3OpenTableAndIndices( 2641 Parse *pParse, /* Parsing context */ 2642 Table *pTab, /* Table to be opened */ 2643 int op, /* OP_OpenRead or OP_OpenWrite */ 2644 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 2645 int iBase, /* Use this for the table cursor, if there is one */ 2646 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 2647 int *piDataCur, /* Write the database source cursor number here */ 2648 int *piIdxCur /* Write the first index cursor number here */ 2649 ){ 2650 int i; 2651 int iDb; 2652 int iDataCur; 2653 Index *pIdx; 2654 Vdbe *v; 2655 2656 assert( op==OP_OpenRead || op==OP_OpenWrite ); 2657 assert( op==OP_OpenWrite || p5==0 ); 2658 if( IsVirtual(pTab) ){ 2659 /* This routine is a no-op for virtual tables. Leave the output 2660 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 2661 ** for improved error detection. */ 2662 *piDataCur = *piIdxCur = -999; 2663 return 0; 2664 } 2665 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2666 v = pParse->pVdbe; 2667 assert( v!=0 ); 2668 if( iBase<0 ) iBase = pParse->nTab; 2669 iDataCur = iBase++; 2670 if( piDataCur ) *piDataCur = iDataCur; 2671 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 2672 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 2673 }else{ 2674 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 2675 } 2676 if( piIdxCur ) *piIdxCur = iBase; 2677 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 2678 int iIdxCur = iBase++; 2679 assert( pIdx->pSchema==pTab->pSchema ); 2680 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 2681 if( piDataCur ) *piDataCur = iIdxCur; 2682 p5 = 0; 2683 } 2684 if( aToOpen==0 || aToOpen[i+1] ){ 2685 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 2686 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2687 sqlite3VdbeChangeP5(v, p5); 2688 VdbeComment((v, "%s", pIdx->zName)); 2689 } 2690 } 2691 if( iBase>pParse->nTab ) pParse->nTab = iBase; 2692 return i; 2693 } 2694 2695 2696 #ifdef SQLITE_TEST 2697 /* 2698 ** The following global variable is incremented whenever the 2699 ** transfer optimization is used. This is used for testing 2700 ** purposes only - to make sure the transfer optimization really 2701 ** is happening when it is supposed to. 2702 */ 2703 int sqlite3_xferopt_count; 2704 #endif /* SQLITE_TEST */ 2705 2706 2707 #ifndef SQLITE_OMIT_XFER_OPT 2708 /* 2709 ** Check to see if index pSrc is compatible as a source of data 2710 ** for index pDest in an insert transfer optimization. The rules 2711 ** for a compatible index: 2712 ** 2713 ** * The index is over the same set of columns 2714 ** * The same DESC and ASC markings occurs on all columns 2715 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 2716 ** * The same collating sequence on each column 2717 ** * The index has the exact same WHERE clause 2718 */ 2719 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 2720 int i; 2721 assert( pDest && pSrc ); 2722 assert( pDest->pTable!=pSrc->pTable ); 2723 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 2724 return 0; /* Different number of columns */ 2725 } 2726 if( pDest->onError!=pSrc->onError ){ 2727 return 0; /* Different conflict resolution strategies */ 2728 } 2729 for(i=0; i<pSrc->nKeyCol; i++){ 2730 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 2731 return 0; /* Different columns indexed */ 2732 } 2733 if( pSrc->aiColumn[i]==XN_EXPR ){ 2734 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 2735 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 2736 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 2737 return 0; /* Different expressions in the index */ 2738 } 2739 } 2740 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 2741 return 0; /* Different sort orders */ 2742 } 2743 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 2744 return 0; /* Different collating sequences */ 2745 } 2746 } 2747 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 2748 return 0; /* Different WHERE clauses */ 2749 } 2750 2751 /* If no test above fails then the indices must be compatible */ 2752 return 1; 2753 } 2754 2755 /* 2756 ** Attempt the transfer optimization on INSERTs of the form 2757 ** 2758 ** INSERT INTO tab1 SELECT * FROM tab2; 2759 ** 2760 ** The xfer optimization transfers raw records from tab2 over to tab1. 2761 ** Columns are not decoded and reassembled, which greatly improves 2762 ** performance. Raw index records are transferred in the same way. 2763 ** 2764 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 2765 ** There are lots of rules for determining compatibility - see comments 2766 ** embedded in the code for details. 2767 ** 2768 ** This routine returns TRUE if the optimization is guaranteed to be used. 2769 ** Sometimes the xfer optimization will only work if the destination table 2770 ** is empty - a factor that can only be determined at run-time. In that 2771 ** case, this routine generates code for the xfer optimization but also 2772 ** does a test to see if the destination table is empty and jumps over the 2773 ** xfer optimization code if the test fails. In that case, this routine 2774 ** returns FALSE so that the caller will know to go ahead and generate 2775 ** an unoptimized transfer. This routine also returns FALSE if there 2776 ** is no chance that the xfer optimization can be applied. 2777 ** 2778 ** This optimization is particularly useful at making VACUUM run faster. 2779 */ 2780 static int xferOptimization( 2781 Parse *pParse, /* Parser context */ 2782 Table *pDest, /* The table we are inserting into */ 2783 Select *pSelect, /* A SELECT statement to use as the data source */ 2784 int onError, /* How to handle constraint errors */ 2785 int iDbDest /* The database of pDest */ 2786 ){ 2787 sqlite3 *db = pParse->db; 2788 ExprList *pEList; /* The result set of the SELECT */ 2789 Table *pSrc; /* The table in the FROM clause of SELECT */ 2790 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 2791 SrcItem *pItem; /* An element of pSelect->pSrc */ 2792 int i; /* Loop counter */ 2793 int iDbSrc; /* The database of pSrc */ 2794 int iSrc, iDest; /* Cursors from source and destination */ 2795 int addr1, addr2; /* Loop addresses */ 2796 int emptyDestTest = 0; /* Address of test for empty pDest */ 2797 int emptySrcTest = 0; /* Address of test for empty pSrc */ 2798 Vdbe *v; /* The VDBE we are building */ 2799 int regAutoinc; /* Memory register used by AUTOINC */ 2800 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 2801 int regData, regRowid; /* Registers holding data and rowid */ 2802 2803 assert( pSelect!=0 ); 2804 if( pParse->pWith || pSelect->pWith ){ 2805 /* Do not attempt to process this query if there are an WITH clauses 2806 ** attached to it. Proceeding may generate a false "no such table: xxx" 2807 ** error if pSelect reads from a CTE named "xxx". */ 2808 return 0; 2809 } 2810 #ifndef SQLITE_OMIT_VIRTUALTABLE 2811 if( IsVirtual(pDest) ){ 2812 return 0; /* tab1 must not be a virtual table */ 2813 } 2814 #endif 2815 if( onError==OE_Default ){ 2816 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 2817 if( onError==OE_Default ) onError = OE_Abort; 2818 } 2819 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 2820 if( pSelect->pSrc->nSrc!=1 ){ 2821 return 0; /* FROM clause must have exactly one term */ 2822 } 2823 if( pSelect->pSrc->a[0].pSelect ){ 2824 return 0; /* FROM clause cannot contain a subquery */ 2825 } 2826 if( pSelect->pWhere ){ 2827 return 0; /* SELECT may not have a WHERE clause */ 2828 } 2829 if( pSelect->pOrderBy ){ 2830 return 0; /* SELECT may not have an ORDER BY clause */ 2831 } 2832 /* Do not need to test for a HAVING clause. If HAVING is present but 2833 ** there is no ORDER BY, we will get an error. */ 2834 if( pSelect->pGroupBy ){ 2835 return 0; /* SELECT may not have a GROUP BY clause */ 2836 } 2837 if( pSelect->pLimit ){ 2838 return 0; /* SELECT may not have a LIMIT clause */ 2839 } 2840 if( pSelect->pPrior ){ 2841 return 0; /* SELECT may not be a compound query */ 2842 } 2843 if( pSelect->selFlags & SF_Distinct ){ 2844 return 0; /* SELECT may not be DISTINCT */ 2845 } 2846 pEList = pSelect->pEList; 2847 assert( pEList!=0 ); 2848 if( pEList->nExpr!=1 ){ 2849 return 0; /* The result set must have exactly one column */ 2850 } 2851 assert( pEList->a[0].pExpr ); 2852 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 2853 return 0; /* The result set must be the special operator "*" */ 2854 } 2855 2856 /* At this point we have established that the statement is of the 2857 ** correct syntactic form to participate in this optimization. Now 2858 ** we have to check the semantics. 2859 */ 2860 pItem = pSelect->pSrc->a; 2861 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 2862 if( pSrc==0 ){ 2863 return 0; /* FROM clause does not contain a real table */ 2864 } 2865 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 2866 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 2867 return 0; /* tab1 and tab2 may not be the same table */ 2868 } 2869 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 2870 return 0; /* source and destination must both be WITHOUT ROWID or not */ 2871 } 2872 if( !IsOrdinaryTable(pSrc) ){ 2873 return 0; /* tab2 may not be a view or virtual table */ 2874 } 2875 if( pDest->nCol!=pSrc->nCol ){ 2876 return 0; /* Number of columns must be the same in tab1 and tab2 */ 2877 } 2878 if( pDest->iPKey!=pSrc->iPKey ){ 2879 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 2880 } 2881 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 2882 return 0; /* Cannot feed from a non-strict into a strict table */ 2883 } 2884 for(i=0; i<pDest->nCol; i++){ 2885 Column *pDestCol = &pDest->aCol[i]; 2886 Column *pSrcCol = &pSrc->aCol[i]; 2887 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 2888 if( (db->mDbFlags & DBFLAG_Vacuum)==0 2889 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 2890 ){ 2891 return 0; /* Neither table may have __hidden__ columns */ 2892 } 2893 #endif 2894 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 2895 /* Even if tables t1 and t2 have identical schemas, if they contain 2896 ** generated columns, then this statement is semantically incorrect: 2897 ** 2898 ** INSERT INTO t2 SELECT * FROM t1; 2899 ** 2900 ** The reason is that generated column values are returned by the 2901 ** the SELECT statement on the right but the INSERT statement on the 2902 ** left wants them to be omitted. 2903 ** 2904 ** Nevertheless, this is a useful notational shorthand to tell SQLite 2905 ** to do a bulk transfer all of the content from t1 over to t2. 2906 ** 2907 ** We could, in theory, disable this (except for internal use by the 2908 ** VACUUM command where it is actually needed). But why do that? It 2909 ** seems harmless enough, and provides a useful service. 2910 */ 2911 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 2912 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 2913 return 0; /* Both columns have the same generated-column type */ 2914 } 2915 /* But the transfer is only allowed if both the source and destination 2916 ** tables have the exact same expressions for generated columns. 2917 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 2918 */ 2919 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 2920 if( sqlite3ExprCompare(0, 2921 sqlite3ColumnExpr(pSrc, pSrcCol), 2922 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 2923 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 2924 testcase( pDestCol->colFlags & COLFLAG_STORED ); 2925 return 0; /* Different generator expressions */ 2926 } 2927 } 2928 #endif 2929 if( pDestCol->affinity!=pSrcCol->affinity ){ 2930 return 0; /* Affinity must be the same on all columns */ 2931 } 2932 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 2933 sqlite3ColumnColl(pSrcCol))!=0 ){ 2934 return 0; /* Collating sequence must be the same on all columns */ 2935 } 2936 if( pDestCol->notNull && !pSrcCol->notNull ){ 2937 return 0; /* tab2 must be NOT NULL if tab1 is */ 2938 } 2939 /* Default values for second and subsequent columns need to match. */ 2940 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 2941 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 2942 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 2943 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 2944 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 2945 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 2946 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 2947 if( (pDestExpr==0)!=(pSrcExpr==0) 2948 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 2949 pSrcExpr->u.zToken)!=0) 2950 ){ 2951 return 0; /* Default values must be the same for all columns */ 2952 } 2953 } 2954 } 2955 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 2956 if( IsUniqueIndex(pDestIdx) ){ 2957 destHasUniqueIdx = 1; 2958 } 2959 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 2960 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 2961 } 2962 if( pSrcIdx==0 ){ 2963 return 0; /* pDestIdx has no corresponding index in pSrc */ 2964 } 2965 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 2966 && sqlite3FaultSim(411)==SQLITE_OK ){ 2967 /* The sqlite3FaultSim() call allows this corruption test to be 2968 ** bypassed during testing, in order to exercise other corruption tests 2969 ** further downstream. */ 2970 return 0; /* Corrupt schema - two indexes on the same btree */ 2971 } 2972 } 2973 #ifndef SQLITE_OMIT_CHECK 2974 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ 2975 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 2976 } 2977 #endif 2978 #ifndef SQLITE_OMIT_FOREIGN_KEY 2979 /* Disallow the transfer optimization if the destination table constains 2980 ** any foreign key constraints. This is more restrictive than necessary. 2981 ** But the main beneficiary of the transfer optimization is the VACUUM 2982 ** command, and the VACUUM command disables foreign key constraints. So 2983 ** the extra complication to make this rule less restrictive is probably 2984 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 2985 */ 2986 assert( IsOrdinaryTable(pDest) ); 2987 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 2988 return 0; 2989 } 2990 #endif 2991 if( (db->flags & SQLITE_CountRows)!=0 ){ 2992 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 2993 } 2994 2995 /* If we get this far, it means that the xfer optimization is at 2996 ** least a possibility, though it might only work if the destination 2997 ** table (tab1) is initially empty. 2998 */ 2999 #ifdef SQLITE_TEST 3000 sqlite3_xferopt_count++; 3001 #endif 3002 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 3003 v = sqlite3GetVdbe(pParse); 3004 sqlite3CodeVerifySchema(pParse, iDbSrc); 3005 iSrc = pParse->nTab++; 3006 iDest = pParse->nTab++; 3007 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 3008 regData = sqlite3GetTempReg(pParse); 3009 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 3010 regRowid = sqlite3GetTempReg(pParse); 3011 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 3012 assert( HasRowid(pDest) || destHasUniqueIdx ); 3013 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 3014 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 3015 || destHasUniqueIdx /* (2) */ 3016 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 3017 )){ 3018 /* In some circumstances, we are able to run the xfer optimization 3019 ** only if the destination table is initially empty. Unless the 3020 ** DBFLAG_Vacuum flag is set, this block generates code to make 3021 ** that determination. If DBFLAG_Vacuum is set, then the destination 3022 ** table is always empty. 3023 ** 3024 ** Conditions under which the destination must be empty: 3025 ** 3026 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 3027 ** (If the destination is not initially empty, the rowid fields 3028 ** of index entries might need to change.) 3029 ** 3030 ** (2) The destination has a unique index. (The xfer optimization 3031 ** is unable to test uniqueness.) 3032 ** 3033 ** (3) onError is something other than OE_Abort and OE_Rollback. 3034 */ 3035 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 3036 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 3037 sqlite3VdbeJumpHere(v, addr1); 3038 } 3039 if( HasRowid(pSrc) ){ 3040 u8 insFlags; 3041 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 3042 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3043 if( pDest->iPKey>=0 ){ 3044 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3045 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3046 sqlite3VdbeVerifyAbortable(v, onError); 3047 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 3048 VdbeCoverage(v); 3049 sqlite3RowidConstraint(pParse, onError, pDest); 3050 sqlite3VdbeJumpHere(v, addr2); 3051 } 3052 autoIncStep(pParse, regAutoinc, regRowid); 3053 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 3054 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 3055 }else{ 3056 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 3057 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 3058 } 3059 3060 if( db->mDbFlags & DBFLAG_Vacuum ){ 3061 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3062 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3063 }else{ 3064 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 3065 } 3066 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 3067 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3068 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3069 insFlags &= ~OPFLAG_PREFORMAT; 3070 }else 3071 #endif 3072 { 3073 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 3074 } 3075 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 3076 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 3077 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 3078 } 3079 sqlite3VdbeChangeP5(v, insFlags); 3080 3081 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 3082 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3083 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3084 }else{ 3085 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 3086 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 3087 } 3088 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 3089 u8 idxInsFlags = 0; 3090 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 3091 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 3092 } 3093 assert( pSrcIdx ); 3094 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 3095 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 3096 VdbeComment((v, "%s", pSrcIdx->zName)); 3097 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 3098 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 3099 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 3100 VdbeComment((v, "%s", pDestIdx->zName)); 3101 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 3102 if( db->mDbFlags & DBFLAG_Vacuum ){ 3103 /* This INSERT command is part of a VACUUM operation, which guarantees 3104 ** that the destination table is empty. If all indexed columns use 3105 ** collation sequence BINARY, then it can also be assumed that the 3106 ** index will be populated by inserting keys in strictly sorted 3107 ** order. In this case, instead of seeking within the b-tree as part 3108 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 3109 ** OP_IdxInsert to seek to the point within the b-tree where each key 3110 ** should be inserted. This is faster. 3111 ** 3112 ** If any of the indexed columns use a collation sequence other than 3113 ** BINARY, this optimization is disabled. This is because the user 3114 ** might change the definition of a collation sequence and then run 3115 ** a VACUUM command. In that case keys may not be written in strictly 3116 ** sorted order. */ 3117 for(i=0; i<pSrcIdx->nColumn; i++){ 3118 const char *zColl = pSrcIdx->azColl[i]; 3119 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 3120 } 3121 if( i==pSrcIdx->nColumn ){ 3122 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 3123 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 3124 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 3125 } 3126 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 3127 idxInsFlags |= OPFLAG_NCHANGE; 3128 } 3129 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 3130 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 3131 if( (db->mDbFlags & DBFLAG_Vacuum)==0 3132 && !HasRowid(pDest) 3133 && IsPrimaryKeyIndex(pDestIdx) 3134 ){ 3135 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 3136 } 3137 } 3138 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 3139 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 3140 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 3141 sqlite3VdbeJumpHere(v, addr1); 3142 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 3143 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3144 } 3145 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 3146 sqlite3ReleaseTempReg(pParse, regRowid); 3147 sqlite3ReleaseTempReg(pParse, regData); 3148 if( emptyDestTest ){ 3149 sqlite3AutoincrementEnd(pParse); 3150 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 3151 sqlite3VdbeJumpHere(v, emptyDestTest); 3152 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 3153 return 0; 3154 }else{ 3155 return 1; 3156 } 3157 } 3158 #endif /* SQLITE_OMIT_XFER_OPT */ 3159