1 /* 2 ** 2009 Oct 23 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ****************************************************************************** 12 ** 13 ** This file is part of the SQLite FTS3 extension module. Specifically, 14 ** this file contains code to insert, update and delete rows from FTS3 15 ** tables. It also contains code to merge FTS3 b-tree segments. Some 16 ** of the sub-routines used to merge segments are also used by the query 17 ** code in fts3.c. 18 */ 19 20 #include "fts3Int.h" 21 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) 22 23 #include <string.h> 24 #include <assert.h> 25 #include <stdlib.h> 26 #include <stdio.h> 27 28 #define FTS_MAX_APPENDABLE_HEIGHT 16 29 30 /* 31 ** When full-text index nodes are loaded from disk, the buffer that they 32 ** are loaded into has the following number of bytes of padding at the end 33 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer 34 ** of 920 bytes is allocated for it. 35 ** 36 ** This means that if we have a pointer into a buffer containing node data, 37 ** it is always safe to read up to two varints from it without risking an 38 ** overread, even if the node data is corrupted. 39 */ 40 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2) 41 42 /* 43 ** Under certain circumstances, b-tree nodes (doclists) can be loaded into 44 ** memory incrementally instead of all at once. This can be a big performance 45 ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext() 46 ** method before retrieving all query results (as may happen, for example, 47 ** if a query has a LIMIT clause). 48 ** 49 ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD 50 ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes. 51 ** The code is written so that the hard lower-limit for each of these values 52 ** is 1. Clearly such small values would be inefficient, but can be useful 53 ** for testing purposes. 54 ** 55 ** If this module is built with SQLITE_TEST defined, these constants may 56 ** be overridden at runtime for testing purposes. File fts3_test.c contains 57 ** a Tcl interface to read and write the values. 58 */ 59 #ifdef SQLITE_TEST 60 int test_fts3_node_chunksize = (4*1024); 61 int test_fts3_node_chunk_threshold = (4*1024)*4; 62 # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize 63 # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold 64 #else 65 # define FTS3_NODE_CHUNKSIZE (4*1024) 66 # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4) 67 #endif 68 69 /* 70 ** The values that may be meaningfully bound to the :1 parameter in 71 ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT. 72 */ 73 #define FTS_STAT_DOCTOTAL 0 74 #define FTS_STAT_INCRMERGEHINT 1 75 #define FTS_STAT_AUTOINCRMERGE 2 76 77 /* 78 ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic 79 ** and incremental merge operation that takes place. This is used for 80 ** debugging FTS only, it should not usually be turned on in production 81 ** systems. 82 */ 83 #ifdef FTS3_LOG_MERGES 84 static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){ 85 sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel); 86 } 87 #else 88 #define fts3LogMerge(x, y) 89 #endif 90 91 92 typedef struct PendingList PendingList; 93 typedef struct SegmentNode SegmentNode; 94 typedef struct SegmentWriter SegmentWriter; 95 96 /* 97 ** An instance of the following data structure is used to build doclists 98 ** incrementally. See function fts3PendingListAppend() for details. 99 */ 100 struct PendingList { 101 int nData; 102 char *aData; 103 int nSpace; 104 sqlite3_int64 iLastDocid; 105 sqlite3_int64 iLastCol; 106 sqlite3_int64 iLastPos; 107 }; 108 109 110 /* 111 ** Each cursor has a (possibly empty) linked list of the following objects. 112 */ 113 struct Fts3DeferredToken { 114 Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */ 115 int iCol; /* Column token must occur in */ 116 Fts3DeferredToken *pNext; /* Next in list of deferred tokens */ 117 PendingList *pList; /* Doclist is assembled here */ 118 }; 119 120 /* 121 ** An instance of this structure is used to iterate through the terms on 122 ** a contiguous set of segment b-tree leaf nodes. Although the details of 123 ** this structure are only manipulated by code in this file, opaque handles 124 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through 125 ** terms when querying the full-text index. See functions: 126 ** 127 ** sqlite3Fts3SegReaderNew() 128 ** sqlite3Fts3SegReaderFree() 129 ** sqlite3Fts3SegReaderIterate() 130 ** 131 ** Methods used to manipulate Fts3SegReader structures: 132 ** 133 ** fts3SegReaderNext() 134 ** fts3SegReaderFirstDocid() 135 ** fts3SegReaderNextDocid() 136 */ 137 struct Fts3SegReader { 138 int iIdx; /* Index within level, or 0x7FFFFFFF for PT */ 139 u8 bLookup; /* True for a lookup only */ 140 u8 rootOnly; /* True for a root-only reader */ 141 142 sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */ 143 sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */ 144 sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */ 145 sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */ 146 147 char *aNode; /* Pointer to node data (or NULL) */ 148 int nNode; /* Size of buffer at aNode (or 0) */ 149 int nPopulate; /* If >0, bytes of buffer aNode[] loaded */ 150 sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */ 151 152 Fts3HashElem **ppNextElem; 153 154 /* Variables set by fts3SegReaderNext(). These may be read directly 155 ** by the caller. They are valid from the time SegmentReaderNew() returns 156 ** until SegmentReaderNext() returns something other than SQLITE_OK 157 ** (i.e. SQLITE_DONE). 158 */ 159 int nTerm; /* Number of bytes in current term */ 160 char *zTerm; /* Pointer to current term */ 161 int nTermAlloc; /* Allocated size of zTerm buffer */ 162 char *aDoclist; /* Pointer to doclist of current entry */ 163 int nDoclist; /* Size of doclist in current entry */ 164 165 /* The following variables are used by fts3SegReaderNextDocid() to iterate 166 ** through the current doclist (aDoclist/nDoclist). 167 */ 168 char *pOffsetList; 169 int nOffsetList; /* For descending pending seg-readers only */ 170 sqlite3_int64 iDocid; 171 }; 172 173 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0) 174 #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0) 175 176 /* 177 ** An instance of this structure is used to create a segment b-tree in the 178 ** database. The internal details of this type are only accessed by the 179 ** following functions: 180 ** 181 ** fts3SegWriterAdd() 182 ** fts3SegWriterFlush() 183 ** fts3SegWriterFree() 184 */ 185 struct SegmentWriter { 186 SegmentNode *pTree; /* Pointer to interior tree structure */ 187 sqlite3_int64 iFirst; /* First slot in %_segments written */ 188 sqlite3_int64 iFree; /* Next free slot in %_segments */ 189 char *zTerm; /* Pointer to previous term buffer */ 190 int nTerm; /* Number of bytes in zTerm */ 191 int nMalloc; /* Size of malloc'd buffer at zMalloc */ 192 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ 193 int nSize; /* Size of allocation at aData */ 194 int nData; /* Bytes of data in aData */ 195 char *aData; /* Pointer to block from malloc() */ 196 i64 nLeafData; /* Number of bytes of leaf data written */ 197 }; 198 199 /* 200 ** Type SegmentNode is used by the following three functions to create 201 ** the interior part of the segment b+-tree structures (everything except 202 ** the leaf nodes). These functions and type are only ever used by code 203 ** within the fts3SegWriterXXX() family of functions described above. 204 ** 205 ** fts3NodeAddTerm() 206 ** fts3NodeWrite() 207 ** fts3NodeFree() 208 ** 209 ** When a b+tree is written to the database (either as a result of a merge 210 ** or the pending-terms table being flushed), leaves are written into the 211 ** database file as soon as they are completely populated. The interior of 212 ** the tree is assembled in memory and written out only once all leaves have 213 ** been populated and stored. This is Ok, as the b+-tree fanout is usually 214 ** very large, meaning that the interior of the tree consumes relatively 215 ** little memory. 216 */ 217 struct SegmentNode { 218 SegmentNode *pParent; /* Parent node (or NULL for root node) */ 219 SegmentNode *pRight; /* Pointer to right-sibling */ 220 SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */ 221 int nEntry; /* Number of terms written to node so far */ 222 char *zTerm; /* Pointer to previous term buffer */ 223 int nTerm; /* Number of bytes in zTerm */ 224 int nMalloc; /* Size of malloc'd buffer at zMalloc */ 225 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ 226 int nData; /* Bytes of valid data so far */ 227 char *aData; /* Node data */ 228 }; 229 230 /* 231 ** Valid values for the second argument to fts3SqlStmt(). 232 */ 233 #define SQL_DELETE_CONTENT 0 234 #define SQL_IS_EMPTY 1 235 #define SQL_DELETE_ALL_CONTENT 2 236 #define SQL_DELETE_ALL_SEGMENTS 3 237 #define SQL_DELETE_ALL_SEGDIR 4 238 #define SQL_DELETE_ALL_DOCSIZE 5 239 #define SQL_DELETE_ALL_STAT 6 240 #define SQL_SELECT_CONTENT_BY_ROWID 7 241 #define SQL_NEXT_SEGMENT_INDEX 8 242 #define SQL_INSERT_SEGMENTS 9 243 #define SQL_NEXT_SEGMENTS_ID 10 244 #define SQL_INSERT_SEGDIR 11 245 #define SQL_SELECT_LEVEL 12 246 #define SQL_SELECT_LEVEL_RANGE 13 247 #define SQL_SELECT_LEVEL_COUNT 14 248 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15 249 #define SQL_DELETE_SEGDIR_LEVEL 16 250 #define SQL_DELETE_SEGMENTS_RANGE 17 251 #define SQL_CONTENT_INSERT 18 252 #define SQL_DELETE_DOCSIZE 19 253 #define SQL_REPLACE_DOCSIZE 20 254 #define SQL_SELECT_DOCSIZE 21 255 #define SQL_SELECT_STAT 22 256 #define SQL_REPLACE_STAT 23 257 258 #define SQL_SELECT_ALL_PREFIX_LEVEL 24 259 #define SQL_DELETE_ALL_TERMS_SEGDIR 25 260 #define SQL_DELETE_SEGDIR_RANGE 26 261 #define SQL_SELECT_ALL_LANGID 27 262 #define SQL_FIND_MERGE_LEVEL 28 263 #define SQL_MAX_LEAF_NODE_ESTIMATE 29 264 #define SQL_DELETE_SEGDIR_ENTRY 30 265 #define SQL_SHIFT_SEGDIR_ENTRY 31 266 #define SQL_SELECT_SEGDIR 32 267 #define SQL_CHOMP_SEGDIR 33 268 #define SQL_SEGMENT_IS_APPENDABLE 34 269 #define SQL_SELECT_INDEXES 35 270 #define SQL_SELECT_MXLEVEL 36 271 272 #define SQL_SELECT_LEVEL_RANGE2 37 273 #define SQL_UPDATE_LEVEL_IDX 38 274 #define SQL_UPDATE_LEVEL 39 275 276 /* 277 ** This function is used to obtain an SQLite prepared statement handle 278 ** for the statement identified by the second argument. If successful, 279 ** *pp is set to the requested statement handle and SQLITE_OK returned. 280 ** Otherwise, an SQLite error code is returned and *pp is set to 0. 281 ** 282 ** If argument apVal is not NULL, then it must point to an array with 283 ** at least as many entries as the requested statement has bound 284 ** parameters. The values are bound to the statements parameters before 285 ** returning. 286 */ 287 static int fts3SqlStmt( 288 Fts3Table *p, /* Virtual table handle */ 289 int eStmt, /* One of the SQL_XXX constants above */ 290 sqlite3_stmt **pp, /* OUT: Statement handle */ 291 sqlite3_value **apVal /* Values to bind to statement */ 292 ){ 293 const char *azSql[] = { 294 /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?", 295 /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)", 296 /* 2 */ "DELETE FROM %Q.'%q_content'", 297 /* 3 */ "DELETE FROM %Q.'%q_segments'", 298 /* 4 */ "DELETE FROM %Q.'%q_segdir'", 299 /* 5 */ "DELETE FROM %Q.'%q_docsize'", 300 /* 6 */ "DELETE FROM %Q.'%q_stat'", 301 /* 7 */ "SELECT %s WHERE rowid=?", 302 /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1", 303 /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", 304 /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)", 305 /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", 306 307 /* Return segments in order from oldest to newest.*/ 308 /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root " 309 "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC", 310 /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root " 311 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?" 312 "ORDER BY level DESC, idx ASC", 313 314 /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?", 315 /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", 316 317 /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?", 318 /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?", 319 /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)", 320 /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?", 321 /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", 322 /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?", 323 /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?", 324 /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)", 325 /* 24 */ "", 326 /* 25 */ "", 327 328 /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", 329 /* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'", 330 331 /* This statement is used to determine which level to read the input from 332 ** when performing an incremental merge. It returns the absolute level number 333 ** of the oldest level in the db that contains at least ? segments. Or, 334 ** if no level in the FTS index contains more than ? segments, the statement 335 ** returns zero rows. */ 336 /* 28 */ "SELECT level, count(*) AS cnt FROM %Q.'%q_segdir' " 337 " GROUP BY level HAVING cnt>=?" 338 " ORDER BY (level %% 1024) ASC, 2 DESC LIMIT 1", 339 340 /* Estimate the upper limit on the number of leaf nodes in a new segment 341 ** created by merging the oldest :2 segments from absolute level :1. See 342 ** function sqlite3Fts3Incrmerge() for details. */ 343 /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) " 344 " FROM (SELECT * FROM %Q.'%q_segdir' " 345 " WHERE level = ? ORDER BY idx ASC LIMIT ?" 346 " )", 347 348 /* SQL_DELETE_SEGDIR_ENTRY 349 ** Delete the %_segdir entry on absolute level :1 with index :2. */ 350 /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", 351 352 /* SQL_SHIFT_SEGDIR_ENTRY 353 ** Modify the idx value for the segment with idx=:3 on absolute level :2 354 ** to :1. */ 355 /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?", 356 357 /* SQL_SELECT_SEGDIR 358 ** Read a single entry from the %_segdir table. The entry from absolute 359 ** level :1 with index value :2. */ 360 /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root " 361 "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", 362 363 /* SQL_CHOMP_SEGDIR 364 ** Update the start_block (:1) and root (:2) fields of the %_segdir 365 ** entry located on absolute level :3 with index :4. */ 366 /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?" 367 "WHERE level = ? AND idx = ?", 368 369 /* SQL_SEGMENT_IS_APPENDABLE 370 ** Return a single row if the segment with end_block=? is appendable. Or 371 ** no rows otherwise. */ 372 /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL", 373 374 /* SQL_SELECT_INDEXES 375 ** Return the list of valid segment indexes for absolute level ? */ 376 /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC", 377 378 /* SQL_SELECT_MXLEVEL 379 ** Return the largest relative level in the FTS index or indexes. */ 380 /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'", 381 382 /* Return segments in order from oldest to newest.*/ 383 /* 37 */ "SELECT level, idx, end_block " 384 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? " 385 "ORDER BY level DESC, idx ASC", 386 387 /* Update statements used while promoting segments */ 388 /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? " 389 "WHERE level=? AND idx=?", 390 /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1" 391 392 }; 393 int rc = SQLITE_OK; 394 sqlite3_stmt *pStmt; 395 396 assert( SizeofArray(azSql)==SizeofArray(p->aStmt) ); 397 assert( eStmt<SizeofArray(azSql) && eStmt>=0 ); 398 399 pStmt = p->aStmt[eStmt]; 400 if( !pStmt ){ 401 int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB; 402 char *zSql; 403 if( eStmt==SQL_CONTENT_INSERT ){ 404 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist); 405 }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){ 406 f &= ~SQLITE_PREPARE_NO_VTAB; 407 zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist); 408 }else{ 409 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName); 410 } 411 if( !zSql ){ 412 rc = SQLITE_NOMEM; 413 }else{ 414 rc = sqlite3_prepare_v3(p->db, zSql, -1, f, &pStmt, NULL); 415 sqlite3_free(zSql); 416 assert( rc==SQLITE_OK || pStmt==0 ); 417 p->aStmt[eStmt] = pStmt; 418 } 419 } 420 if( apVal ){ 421 int i; 422 int nParam = sqlite3_bind_parameter_count(pStmt); 423 for(i=0; rc==SQLITE_OK && i<nParam; i++){ 424 rc = sqlite3_bind_value(pStmt, i+1, apVal[i]); 425 } 426 } 427 *pp = pStmt; 428 return rc; 429 } 430 431 432 static int fts3SelectDocsize( 433 Fts3Table *pTab, /* FTS3 table handle */ 434 sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */ 435 sqlite3_stmt **ppStmt /* OUT: Statement handle */ 436 ){ 437 sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */ 438 int rc; /* Return code */ 439 440 rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0); 441 if( rc==SQLITE_OK ){ 442 sqlite3_bind_int64(pStmt, 1, iDocid); 443 rc = sqlite3_step(pStmt); 444 if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){ 445 rc = sqlite3_reset(pStmt); 446 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; 447 pStmt = 0; 448 }else{ 449 rc = SQLITE_OK; 450 } 451 } 452 453 *ppStmt = pStmt; 454 return rc; 455 } 456 457 int sqlite3Fts3SelectDoctotal( 458 Fts3Table *pTab, /* Fts3 table handle */ 459 sqlite3_stmt **ppStmt /* OUT: Statement handle */ 460 ){ 461 sqlite3_stmt *pStmt = 0; 462 int rc; 463 rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0); 464 if( rc==SQLITE_OK ){ 465 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); 466 if( sqlite3_step(pStmt)!=SQLITE_ROW 467 || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB 468 ){ 469 rc = sqlite3_reset(pStmt); 470 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; 471 pStmt = 0; 472 } 473 } 474 *ppStmt = pStmt; 475 return rc; 476 } 477 478 int sqlite3Fts3SelectDocsize( 479 Fts3Table *pTab, /* Fts3 table handle */ 480 sqlite3_int64 iDocid, /* Docid to read size data for */ 481 sqlite3_stmt **ppStmt /* OUT: Statement handle */ 482 ){ 483 return fts3SelectDocsize(pTab, iDocid, ppStmt); 484 } 485 486 /* 487 ** Similar to fts3SqlStmt(). Except, after binding the parameters in 488 ** array apVal[] to the SQL statement identified by eStmt, the statement 489 ** is executed. 490 ** 491 ** Returns SQLITE_OK if the statement is successfully executed, or an 492 ** SQLite error code otherwise. 493 */ 494 static void fts3SqlExec( 495 int *pRC, /* Result code */ 496 Fts3Table *p, /* The FTS3 table */ 497 int eStmt, /* Index of statement to evaluate */ 498 sqlite3_value **apVal /* Parameters to bind */ 499 ){ 500 sqlite3_stmt *pStmt; 501 int rc; 502 if( *pRC ) return; 503 rc = fts3SqlStmt(p, eStmt, &pStmt, apVal); 504 if( rc==SQLITE_OK ){ 505 sqlite3_step(pStmt); 506 rc = sqlite3_reset(pStmt); 507 } 508 *pRC = rc; 509 } 510 511 512 /* 513 ** This function ensures that the caller has obtained an exclusive 514 ** shared-cache table-lock on the %_segdir table. This is required before 515 ** writing data to the fts3 table. If this lock is not acquired first, then 516 ** the caller may end up attempting to take this lock as part of committing 517 ** a transaction, causing SQLite to return SQLITE_LOCKED or 518 ** LOCKED_SHAREDCACHEto a COMMIT command. 519 ** 520 ** It is best to avoid this because if FTS3 returns any error when 521 ** committing a transaction, the whole transaction will be rolled back. 522 ** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. 523 ** It can still happen if the user locks the underlying tables directly 524 ** instead of accessing them via FTS. 525 */ 526 static int fts3Writelock(Fts3Table *p){ 527 int rc = SQLITE_OK; 528 529 if( p->nPendingData==0 ){ 530 sqlite3_stmt *pStmt; 531 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0); 532 if( rc==SQLITE_OK ){ 533 sqlite3_bind_null(pStmt, 1); 534 sqlite3_step(pStmt); 535 rc = sqlite3_reset(pStmt); 536 } 537 } 538 539 return rc; 540 } 541 542 /* 543 ** FTS maintains a separate indexes for each language-id (a 32-bit integer). 544 ** Within each language id, a separate index is maintained to store the 545 ** document terms, and each configured prefix size (configured the FTS 546 ** "prefix=" option). And each index consists of multiple levels ("relative 547 ** levels"). 548 ** 549 ** All three of these values (the language id, the specific index and the 550 ** level within the index) are encoded in 64-bit integer values stored 551 ** in the %_segdir table on disk. This function is used to convert three 552 ** separate component values into the single 64-bit integer value that 553 ** can be used to query the %_segdir table. 554 ** 555 ** Specifically, each language-id/index combination is allocated 1024 556 ** 64-bit integer level values ("absolute levels"). The main terms index 557 ** for language-id 0 is allocate values 0-1023. The first prefix index 558 ** (if any) for language-id 0 is allocated values 1024-2047. And so on. 559 ** Language 1 indexes are allocated immediately following language 0. 560 ** 561 ** So, for a system with nPrefix prefix indexes configured, the block of 562 ** absolute levels that corresponds to language-id iLangid and index 563 ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024). 564 */ 565 static sqlite3_int64 getAbsoluteLevel( 566 Fts3Table *p, /* FTS3 table handle */ 567 int iLangid, /* Language id */ 568 int iIndex, /* Index in p->aIndex[] */ 569 int iLevel /* Level of segments */ 570 ){ 571 sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */ 572 assert_fts3_nc( iLangid>=0 ); 573 assert( p->nIndex>0 ); 574 assert( iIndex>=0 && iIndex<p->nIndex ); 575 576 iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL; 577 return iBase + iLevel; 578 } 579 580 /* 581 ** Set *ppStmt to a statement handle that may be used to iterate through 582 ** all rows in the %_segdir table, from oldest to newest. If successful, 583 ** return SQLITE_OK. If an error occurs while preparing the statement, 584 ** return an SQLite error code. 585 ** 586 ** There is only ever one instance of this SQL statement compiled for 587 ** each FTS3 table. 588 ** 589 ** The statement returns the following columns from the %_segdir table: 590 ** 591 ** 0: idx 592 ** 1: start_block 593 ** 2: leaves_end_block 594 ** 3: end_block 595 ** 4: root 596 */ 597 int sqlite3Fts3AllSegdirs( 598 Fts3Table *p, /* FTS3 table */ 599 int iLangid, /* Language being queried */ 600 int iIndex, /* Index for p->aIndex[] */ 601 int iLevel, /* Level to select (relative level) */ 602 sqlite3_stmt **ppStmt /* OUT: Compiled statement */ 603 ){ 604 int rc; 605 sqlite3_stmt *pStmt = 0; 606 607 assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 ); 608 assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); 609 assert( iIndex>=0 && iIndex<p->nIndex ); 610 611 if( iLevel<0 ){ 612 /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */ 613 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0); 614 if( rc==SQLITE_OK ){ 615 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); 616 sqlite3_bind_int64(pStmt, 2, 617 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) 618 ); 619 } 620 }else{ 621 /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */ 622 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); 623 if( rc==SQLITE_OK ){ 624 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel)); 625 } 626 } 627 *ppStmt = pStmt; 628 return rc; 629 } 630 631 632 /* 633 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned 634 ** if successful, or an SQLite error code otherwise. 635 ** 636 ** This function also serves to allocate the PendingList structure itself. 637 ** For example, to create a new PendingList structure containing two 638 ** varints: 639 ** 640 ** PendingList *p = 0; 641 ** fts3PendingListAppendVarint(&p, 1); 642 ** fts3PendingListAppendVarint(&p, 2); 643 */ 644 static int fts3PendingListAppendVarint( 645 PendingList **pp, /* IN/OUT: Pointer to PendingList struct */ 646 sqlite3_int64 i /* Value to append to data */ 647 ){ 648 PendingList *p = *pp; 649 650 /* Allocate or grow the PendingList as required. */ 651 if( !p ){ 652 p = sqlite3_malloc64(sizeof(*p) + 100); 653 if( !p ){ 654 return SQLITE_NOMEM; 655 } 656 p->nSpace = 100; 657 p->aData = (char *)&p[1]; 658 p->nData = 0; 659 } 660 else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){ 661 i64 nNew = p->nSpace * 2; 662 p = sqlite3_realloc64(p, sizeof(*p) + nNew); 663 if( !p ){ 664 sqlite3_free(*pp); 665 *pp = 0; 666 return SQLITE_NOMEM; 667 } 668 p->nSpace = (int)nNew; 669 p->aData = (char *)&p[1]; 670 } 671 672 /* Append the new serialized varint to the end of the list. */ 673 p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i); 674 p->aData[p->nData] = '\0'; 675 *pp = p; 676 return SQLITE_OK; 677 } 678 679 /* 680 ** Add a docid/column/position entry to a PendingList structure. Non-zero 681 ** is returned if the structure is sqlite3_realloced as part of adding 682 ** the entry. Otherwise, zero. 683 ** 684 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning. 685 ** Zero is always returned in this case. Otherwise, if no OOM error occurs, 686 ** it is set to SQLITE_OK. 687 */ 688 static int fts3PendingListAppend( 689 PendingList **pp, /* IN/OUT: PendingList structure */ 690 sqlite3_int64 iDocid, /* Docid for entry to add */ 691 sqlite3_int64 iCol, /* Column for entry to add */ 692 sqlite3_int64 iPos, /* Position of term for entry to add */ 693 int *pRc /* OUT: Return code */ 694 ){ 695 PendingList *p = *pp; 696 int rc = SQLITE_OK; 697 698 assert( !p || p->iLastDocid<=iDocid ); 699 700 if( !p || p->iLastDocid!=iDocid ){ 701 u64 iDelta = (u64)iDocid - (u64)(p ? p->iLastDocid : 0); 702 if( p ){ 703 assert( p->nData<p->nSpace ); 704 assert( p->aData[p->nData]==0 ); 705 p->nData++; 706 } 707 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){ 708 goto pendinglistappend_out; 709 } 710 p->iLastCol = -1; 711 p->iLastPos = 0; 712 p->iLastDocid = iDocid; 713 } 714 if( iCol>0 && p->iLastCol!=iCol ){ 715 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1)) 716 || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol)) 717 ){ 718 goto pendinglistappend_out; 719 } 720 p->iLastCol = iCol; 721 p->iLastPos = 0; 722 } 723 if( iCol>=0 ){ 724 assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) ); 725 rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos); 726 if( rc==SQLITE_OK ){ 727 p->iLastPos = iPos; 728 } 729 } 730 731 pendinglistappend_out: 732 *pRc = rc; 733 if( p!=*pp ){ 734 *pp = p; 735 return 1; 736 } 737 return 0; 738 } 739 740 /* 741 ** Free a PendingList object allocated by fts3PendingListAppend(). 742 */ 743 static void fts3PendingListDelete(PendingList *pList){ 744 sqlite3_free(pList); 745 } 746 747 /* 748 ** Add an entry to one of the pending-terms hash tables. 749 */ 750 static int fts3PendingTermsAddOne( 751 Fts3Table *p, 752 int iCol, 753 int iPos, 754 Fts3Hash *pHash, /* Pending terms hash table to add entry to */ 755 const char *zToken, 756 int nToken 757 ){ 758 PendingList *pList; 759 int rc = SQLITE_OK; 760 761 pList = (PendingList *)fts3HashFind(pHash, zToken, nToken); 762 if( pList ){ 763 p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem)); 764 } 765 if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){ 766 if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){ 767 /* Malloc failed while inserting the new entry. This can only 768 ** happen if there was no previous entry for this token. 769 */ 770 assert( 0==fts3HashFind(pHash, zToken, nToken) ); 771 sqlite3_free(pList); 772 rc = SQLITE_NOMEM; 773 } 774 } 775 if( rc==SQLITE_OK ){ 776 p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem)); 777 } 778 return rc; 779 } 780 781 /* 782 ** Tokenize the nul-terminated string zText and add all tokens to the 783 ** pending-terms hash-table. The docid used is that currently stored in 784 ** p->iPrevDocid, and the column is specified by argument iCol. 785 ** 786 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. 787 */ 788 static int fts3PendingTermsAdd( 789 Fts3Table *p, /* Table into which text will be inserted */ 790 int iLangid, /* Language id to use */ 791 const char *zText, /* Text of document to be inserted */ 792 int iCol, /* Column into which text is being inserted */ 793 u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */ 794 ){ 795 int rc; 796 int iStart = 0; 797 int iEnd = 0; 798 int iPos = 0; 799 int nWord = 0; 800 801 char const *zToken; 802 int nToken = 0; 803 804 sqlite3_tokenizer *pTokenizer = p->pTokenizer; 805 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; 806 sqlite3_tokenizer_cursor *pCsr; 807 int (*xNext)(sqlite3_tokenizer_cursor *pCursor, 808 const char**,int*,int*,int*,int*); 809 810 assert( pTokenizer && pModule ); 811 812 /* If the user has inserted a NULL value, this function may be called with 813 ** zText==0. In this case, add zero token entries to the hash table and 814 ** return early. */ 815 if( zText==0 ){ 816 *pnWord = 0; 817 return SQLITE_OK; 818 } 819 820 rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr); 821 if( rc!=SQLITE_OK ){ 822 return rc; 823 } 824 825 xNext = pModule->xNext; 826 while( SQLITE_OK==rc 827 && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos)) 828 ){ 829 int i; 830 if( iPos>=nWord ) nWord = iPos+1; 831 832 /* Positions cannot be negative; we use -1 as a terminator internally. 833 ** Tokens must have a non-zero length. 834 */ 835 if( iPos<0 || !zToken || nToken<=0 ){ 836 rc = SQLITE_ERROR; 837 break; 838 } 839 840 /* Add the term to the terms index */ 841 rc = fts3PendingTermsAddOne( 842 p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken 843 ); 844 845 /* Add the term to each of the prefix indexes that it is not too 846 ** short for. */ 847 for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){ 848 struct Fts3Index *pIndex = &p->aIndex[i]; 849 if( nToken<pIndex->nPrefix ) continue; 850 rc = fts3PendingTermsAddOne( 851 p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix 852 ); 853 } 854 } 855 856 pModule->xClose(pCsr); 857 *pnWord += nWord; 858 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 859 } 860 861 /* 862 ** Calling this function indicates that subsequent calls to 863 ** fts3PendingTermsAdd() are to add term/position-list pairs for the 864 ** contents of the document with docid iDocid. 865 */ 866 static int fts3PendingTermsDocid( 867 Fts3Table *p, /* Full-text table handle */ 868 int bDelete, /* True if this op is a delete */ 869 int iLangid, /* Language id of row being written */ 870 sqlite_int64 iDocid /* Docid of row being written */ 871 ){ 872 assert( iLangid>=0 ); 873 assert( bDelete==1 || bDelete==0 ); 874 875 /* TODO(shess) Explore whether partially flushing the buffer on 876 ** forced-flush would provide better performance. I suspect that if 877 ** we ordered the doclists by size and flushed the largest until the 878 ** buffer was half empty, that would let the less frequent terms 879 ** generate longer doclists. 880 */ 881 if( iDocid<p->iPrevDocid 882 || (iDocid==p->iPrevDocid && p->bPrevDelete==0) 883 || p->iPrevLangid!=iLangid 884 || p->nPendingData>p->nMaxPendingData 885 ){ 886 int rc = sqlite3Fts3PendingTermsFlush(p); 887 if( rc!=SQLITE_OK ) return rc; 888 } 889 p->iPrevDocid = iDocid; 890 p->iPrevLangid = iLangid; 891 p->bPrevDelete = bDelete; 892 return SQLITE_OK; 893 } 894 895 /* 896 ** Discard the contents of the pending-terms hash tables. 897 */ 898 void sqlite3Fts3PendingTermsClear(Fts3Table *p){ 899 int i; 900 for(i=0; i<p->nIndex; i++){ 901 Fts3HashElem *pElem; 902 Fts3Hash *pHash = &p->aIndex[i].hPending; 903 for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){ 904 PendingList *pList = (PendingList *)fts3HashData(pElem); 905 fts3PendingListDelete(pList); 906 } 907 fts3HashClear(pHash); 908 } 909 p->nPendingData = 0; 910 } 911 912 /* 913 ** This function is called by the xUpdate() method as part of an INSERT 914 ** operation. It adds entries for each term in the new record to the 915 ** pendingTerms hash table. 916 ** 917 ** Argument apVal is the same as the similarly named argument passed to 918 ** fts3InsertData(). Parameter iDocid is the docid of the new row. 919 */ 920 static int fts3InsertTerms( 921 Fts3Table *p, 922 int iLangid, 923 sqlite3_value **apVal, 924 u32 *aSz 925 ){ 926 int i; /* Iterator variable */ 927 for(i=2; i<p->nColumn+2; i++){ 928 int iCol = i-2; 929 if( p->abNotindexed[iCol]==0 ){ 930 const char *zText = (const char *)sqlite3_value_text(apVal[i]); 931 int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]); 932 if( rc!=SQLITE_OK ){ 933 return rc; 934 } 935 aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); 936 } 937 } 938 return SQLITE_OK; 939 } 940 941 /* 942 ** This function is called by the xUpdate() method for an INSERT operation. 943 ** The apVal parameter is passed a copy of the apVal argument passed by 944 ** SQLite to the xUpdate() method. i.e: 945 ** 946 ** apVal[0] Not used for INSERT. 947 ** apVal[1] rowid 948 ** apVal[2] Left-most user-defined column 949 ** ... 950 ** apVal[p->nColumn+1] Right-most user-defined column 951 ** apVal[p->nColumn+2] Hidden column with same name as table 952 ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid) 953 ** apVal[p->nColumn+4] Hidden languageid column 954 */ 955 static int fts3InsertData( 956 Fts3Table *p, /* Full-text table */ 957 sqlite3_value **apVal, /* Array of values to insert */ 958 sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */ 959 ){ 960 int rc; /* Return code */ 961 sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */ 962 963 if( p->zContentTbl ){ 964 sqlite3_value *pRowid = apVal[p->nColumn+3]; 965 if( sqlite3_value_type(pRowid)==SQLITE_NULL ){ 966 pRowid = apVal[1]; 967 } 968 if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){ 969 return SQLITE_CONSTRAINT; 970 } 971 *piDocid = sqlite3_value_int64(pRowid); 972 return SQLITE_OK; 973 } 974 975 /* Locate the statement handle used to insert data into the %_content 976 ** table. The SQL for this statement is: 977 ** 978 ** INSERT INTO %_content VALUES(?, ?, ?, ...) 979 ** 980 ** The statement features N '?' variables, where N is the number of user 981 ** defined columns in the FTS3 table, plus one for the docid field. 982 */ 983 rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]); 984 if( rc==SQLITE_OK && p->zLanguageid ){ 985 rc = sqlite3_bind_int( 986 pContentInsert, p->nColumn+2, 987 sqlite3_value_int(apVal[p->nColumn+4]) 988 ); 989 } 990 if( rc!=SQLITE_OK ) return rc; 991 992 /* There is a quirk here. The users INSERT statement may have specified 993 ** a value for the "rowid" field, for the "docid" field, or for both. 994 ** Which is a problem, since "rowid" and "docid" are aliases for the 995 ** same value. For example: 996 ** 997 ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2); 998 ** 999 ** In FTS3, this is an error. It is an error to specify non-NULL values 1000 ** for both docid and some other rowid alias. 1001 */ 1002 if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){ 1003 if( SQLITE_NULL==sqlite3_value_type(apVal[0]) 1004 && SQLITE_NULL!=sqlite3_value_type(apVal[1]) 1005 ){ 1006 /* A rowid/docid conflict. */ 1007 return SQLITE_ERROR; 1008 } 1009 rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]); 1010 if( rc!=SQLITE_OK ) return rc; 1011 } 1012 1013 /* Execute the statement to insert the record. Set *piDocid to the 1014 ** new docid value. 1015 */ 1016 sqlite3_step(pContentInsert); 1017 rc = sqlite3_reset(pContentInsert); 1018 1019 *piDocid = sqlite3_last_insert_rowid(p->db); 1020 return rc; 1021 } 1022 1023 1024 1025 /* 1026 ** Remove all data from the FTS3 table. Clear the hash table containing 1027 ** pending terms. 1028 */ 1029 static int fts3DeleteAll(Fts3Table *p, int bContent){ 1030 int rc = SQLITE_OK; /* Return code */ 1031 1032 /* Discard the contents of the pending-terms hash table. */ 1033 sqlite3Fts3PendingTermsClear(p); 1034 1035 /* Delete everything from the shadow tables. Except, leave %_content as 1036 ** is if bContent is false. */ 1037 assert( p->zContentTbl==0 || bContent==0 ); 1038 if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0); 1039 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0); 1040 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); 1041 if( p->bHasDocsize ){ 1042 fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0); 1043 } 1044 if( p->bHasStat ){ 1045 fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0); 1046 } 1047 return rc; 1048 } 1049 1050 /* 1051 ** 1052 */ 1053 static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){ 1054 int iLangid = 0; 1055 if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1); 1056 return iLangid; 1057 } 1058 1059 /* 1060 ** The first element in the apVal[] array is assumed to contain the docid 1061 ** (an integer) of a row about to be deleted. Remove all terms from the 1062 ** full-text index. 1063 */ 1064 static void fts3DeleteTerms( 1065 int *pRC, /* Result code */ 1066 Fts3Table *p, /* The FTS table to delete from */ 1067 sqlite3_value *pRowid, /* The docid to be deleted */ 1068 u32 *aSz, /* Sizes of deleted document written here */ 1069 int *pbFound /* OUT: Set to true if row really does exist */ 1070 ){ 1071 int rc; 1072 sqlite3_stmt *pSelect; 1073 1074 assert( *pbFound==0 ); 1075 if( *pRC ) return; 1076 rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); 1077 if( rc==SQLITE_OK ){ 1078 if( SQLITE_ROW==sqlite3_step(pSelect) ){ 1079 int i; 1080 int iLangid = langidFromSelect(p, pSelect); 1081 i64 iDocid = sqlite3_column_int64(pSelect, 0); 1082 rc = fts3PendingTermsDocid(p, 1, iLangid, iDocid); 1083 for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ 1084 int iCol = i-1; 1085 if( p->abNotindexed[iCol]==0 ){ 1086 const char *zText = (const char *)sqlite3_column_text(pSelect, i); 1087 rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]); 1088 aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); 1089 } 1090 } 1091 if( rc!=SQLITE_OK ){ 1092 sqlite3_reset(pSelect); 1093 *pRC = rc; 1094 return; 1095 } 1096 *pbFound = 1; 1097 } 1098 rc = sqlite3_reset(pSelect); 1099 }else{ 1100 sqlite3_reset(pSelect); 1101 } 1102 *pRC = rc; 1103 } 1104 1105 /* 1106 ** Forward declaration to account for the circular dependency between 1107 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx(). 1108 */ 1109 static int fts3SegmentMerge(Fts3Table *, int, int, int); 1110 1111 /* 1112 ** This function allocates a new level iLevel index in the segdir table. 1113 ** Usually, indexes are allocated within a level sequentially starting 1114 ** with 0, so the allocated index is one greater than the value returned 1115 ** by: 1116 ** 1117 ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel 1118 ** 1119 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested 1120 ** level, they are merged into a single level (iLevel+1) segment and the 1121 ** allocated index is 0. 1122 ** 1123 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK 1124 ** returned. Otherwise, an SQLite error code is returned. 1125 */ 1126 static int fts3AllocateSegdirIdx( 1127 Fts3Table *p, 1128 int iLangid, /* Language id */ 1129 int iIndex, /* Index for p->aIndex */ 1130 int iLevel, 1131 int *piIdx 1132 ){ 1133 int rc; /* Return Code */ 1134 sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */ 1135 int iNext = 0; /* Result of query pNextIdx */ 1136 1137 assert( iLangid>=0 ); 1138 assert( p->nIndex>=1 ); 1139 1140 /* Set variable iNext to the next available segdir index at level iLevel. */ 1141 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0); 1142 if( rc==SQLITE_OK ){ 1143 sqlite3_bind_int64( 1144 pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) 1145 ); 1146 if( SQLITE_ROW==sqlite3_step(pNextIdx) ){ 1147 iNext = sqlite3_column_int(pNextIdx, 0); 1148 } 1149 rc = sqlite3_reset(pNextIdx); 1150 } 1151 1152 if( rc==SQLITE_OK ){ 1153 /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already 1154 ** full, merge all segments in level iLevel into a single iLevel+1 1155 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise, 1156 ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext. 1157 */ 1158 if( iNext>=MergeCount(p) ){ 1159 fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel)); 1160 rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel); 1161 *piIdx = 0; 1162 }else{ 1163 *piIdx = iNext; 1164 } 1165 } 1166 1167 return rc; 1168 } 1169 1170 /* 1171 ** The %_segments table is declared as follows: 1172 ** 1173 ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB) 1174 ** 1175 ** This function reads data from a single row of the %_segments table. The 1176 ** specific row is identified by the iBlockid parameter. If paBlob is not 1177 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated 1178 ** with the contents of the blob stored in the "block" column of the 1179 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set 1180 ** to the size of the blob in bytes before returning. 1181 ** 1182 ** If an error occurs, or the table does not contain the specified row, 1183 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If 1184 ** paBlob is non-NULL, then it is the responsibility of the caller to 1185 ** eventually free the returned buffer. 1186 ** 1187 ** This function may leave an open sqlite3_blob* handle in the 1188 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls 1189 ** to this function. The handle may be closed by calling the 1190 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy 1191 ** performance improvement, but the blob handle should always be closed 1192 ** before control is returned to the user (to prevent a lock being held 1193 ** on the database file for longer than necessary). Thus, any virtual table 1194 ** method (xFilter etc.) that may directly or indirectly call this function 1195 ** must call sqlite3Fts3SegmentsClose() before returning. 1196 */ 1197 int sqlite3Fts3ReadBlock( 1198 Fts3Table *p, /* FTS3 table handle */ 1199 sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */ 1200 char **paBlob, /* OUT: Blob data in malloc'd buffer */ 1201 int *pnBlob, /* OUT: Size of blob data */ 1202 int *pnLoad /* OUT: Bytes actually loaded */ 1203 ){ 1204 int rc; /* Return code */ 1205 1206 /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */ 1207 assert( pnBlob ); 1208 1209 if( p->pSegments ){ 1210 rc = sqlite3_blob_reopen(p->pSegments, iBlockid); 1211 }else{ 1212 if( 0==p->zSegmentsTbl ){ 1213 p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName); 1214 if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM; 1215 } 1216 rc = sqlite3_blob_open( 1217 p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments 1218 ); 1219 } 1220 1221 if( rc==SQLITE_OK ){ 1222 int nByte = sqlite3_blob_bytes(p->pSegments); 1223 *pnBlob = nByte; 1224 if( paBlob ){ 1225 char *aByte = sqlite3_malloc64((i64)nByte + FTS3_NODE_PADDING); 1226 if( !aByte ){ 1227 rc = SQLITE_NOMEM; 1228 }else{ 1229 if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){ 1230 nByte = FTS3_NODE_CHUNKSIZE; 1231 *pnLoad = nByte; 1232 } 1233 rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0); 1234 memset(&aByte[nByte], 0, FTS3_NODE_PADDING); 1235 if( rc!=SQLITE_OK ){ 1236 sqlite3_free(aByte); 1237 aByte = 0; 1238 } 1239 } 1240 *paBlob = aByte; 1241 } 1242 }else if( rc==SQLITE_ERROR ){ 1243 rc = FTS_CORRUPT_VTAB; 1244 } 1245 1246 return rc; 1247 } 1248 1249 /* 1250 ** Close the blob handle at p->pSegments, if it is open. See comments above 1251 ** the sqlite3Fts3ReadBlock() function for details. 1252 */ 1253 void sqlite3Fts3SegmentsClose(Fts3Table *p){ 1254 sqlite3_blob_close(p->pSegments); 1255 p->pSegments = 0; 1256 } 1257 1258 static int fts3SegReaderIncrRead(Fts3SegReader *pReader){ 1259 int nRead; /* Number of bytes to read */ 1260 int rc; /* Return code */ 1261 1262 nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE); 1263 rc = sqlite3_blob_read( 1264 pReader->pBlob, 1265 &pReader->aNode[pReader->nPopulate], 1266 nRead, 1267 pReader->nPopulate 1268 ); 1269 1270 if( rc==SQLITE_OK ){ 1271 pReader->nPopulate += nRead; 1272 memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING); 1273 if( pReader->nPopulate==pReader->nNode ){ 1274 sqlite3_blob_close(pReader->pBlob); 1275 pReader->pBlob = 0; 1276 pReader->nPopulate = 0; 1277 } 1278 } 1279 return rc; 1280 } 1281 1282 static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){ 1283 int rc = SQLITE_OK; 1284 assert( !pReader->pBlob 1285 || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode]) 1286 ); 1287 while( pReader->pBlob && rc==SQLITE_OK 1288 && (pFrom - pReader->aNode + nByte)>pReader->nPopulate 1289 ){ 1290 rc = fts3SegReaderIncrRead(pReader); 1291 } 1292 return rc; 1293 } 1294 1295 /* 1296 ** Set an Fts3SegReader cursor to point at EOF. 1297 */ 1298 static void fts3SegReaderSetEof(Fts3SegReader *pSeg){ 1299 if( !fts3SegReaderIsRootOnly(pSeg) ){ 1300 sqlite3_free(pSeg->aNode); 1301 sqlite3_blob_close(pSeg->pBlob); 1302 pSeg->pBlob = 0; 1303 } 1304 pSeg->aNode = 0; 1305 } 1306 1307 /* 1308 ** Move the iterator passed as the first argument to the next term in the 1309 ** segment. If successful, SQLITE_OK is returned. If there is no next term, 1310 ** SQLITE_DONE. Otherwise, an SQLite error code. 1311 */ 1312 static int fts3SegReaderNext( 1313 Fts3Table *p, 1314 Fts3SegReader *pReader, 1315 int bIncr 1316 ){ 1317 int rc; /* Return code of various sub-routines */ 1318 char *pNext; /* Cursor variable */ 1319 int nPrefix; /* Number of bytes in term prefix */ 1320 int nSuffix; /* Number of bytes in term suffix */ 1321 1322 if( !pReader->aDoclist ){ 1323 pNext = pReader->aNode; 1324 }else{ 1325 pNext = &pReader->aDoclist[pReader->nDoclist]; 1326 } 1327 1328 if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ 1329 1330 if( fts3SegReaderIsPending(pReader) ){ 1331 Fts3HashElem *pElem = *(pReader->ppNextElem); 1332 sqlite3_free(pReader->aNode); 1333 pReader->aNode = 0; 1334 if( pElem ){ 1335 char *aCopy; 1336 PendingList *pList = (PendingList *)fts3HashData(pElem); 1337 int nCopy = pList->nData+1; 1338 1339 int nTerm = fts3HashKeysize(pElem); 1340 if( (nTerm+1)>pReader->nTermAlloc ){ 1341 sqlite3_free(pReader->zTerm); 1342 pReader->zTerm = (char*)sqlite3_malloc64(((i64)nTerm+1)*2); 1343 if( !pReader->zTerm ) return SQLITE_NOMEM; 1344 pReader->nTermAlloc = (nTerm+1)*2; 1345 } 1346 memcpy(pReader->zTerm, fts3HashKey(pElem), nTerm); 1347 pReader->zTerm[nTerm] = '\0'; 1348 pReader->nTerm = nTerm; 1349 1350 aCopy = (char*)sqlite3_malloc64(nCopy); 1351 if( !aCopy ) return SQLITE_NOMEM; 1352 memcpy(aCopy, pList->aData, nCopy); 1353 pReader->nNode = pReader->nDoclist = nCopy; 1354 pReader->aNode = pReader->aDoclist = aCopy; 1355 pReader->ppNextElem++; 1356 assert( pReader->aNode ); 1357 } 1358 return SQLITE_OK; 1359 } 1360 1361 fts3SegReaderSetEof(pReader); 1362 1363 /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf 1364 ** blocks have already been traversed. */ 1365 #ifdef CORRUPT_DB 1366 assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock || CORRUPT_DB ); 1367 #endif 1368 if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){ 1369 return SQLITE_OK; 1370 } 1371 1372 rc = sqlite3Fts3ReadBlock( 1373 p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, 1374 (bIncr ? &pReader->nPopulate : 0) 1375 ); 1376 if( rc!=SQLITE_OK ) return rc; 1377 assert( pReader->pBlob==0 ); 1378 if( bIncr && pReader->nPopulate<pReader->nNode ){ 1379 pReader->pBlob = p->pSegments; 1380 p->pSegments = 0; 1381 } 1382 pNext = pReader->aNode; 1383 } 1384 1385 assert( !fts3SegReaderIsPending(pReader) ); 1386 1387 rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2); 1388 if( rc!=SQLITE_OK ) return rc; 1389 1390 /* Because of the FTS3_NODE_PADDING bytes of padding, the following is 1391 ** safe (no risk of overread) even if the node data is corrupted. */ 1392 pNext += fts3GetVarint32(pNext, &nPrefix); 1393 pNext += fts3GetVarint32(pNext, &nSuffix); 1394 if( nSuffix<=0 1395 || (&pReader->aNode[pReader->nNode] - pNext)<nSuffix 1396 || nPrefix>pReader->nTerm 1397 ){ 1398 return FTS_CORRUPT_VTAB; 1399 } 1400 1401 /* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are 1402 ** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer 1403 ** overflow - hence the (i64) casts. */ 1404 if( (i64)nPrefix+nSuffix>(i64)pReader->nTermAlloc ){ 1405 i64 nNew = ((i64)nPrefix+nSuffix)*2; 1406 char *zNew = sqlite3_realloc64(pReader->zTerm, nNew); 1407 if( !zNew ){ 1408 return SQLITE_NOMEM; 1409 } 1410 pReader->zTerm = zNew; 1411 pReader->nTermAlloc = nNew; 1412 } 1413 1414 rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX); 1415 if( rc!=SQLITE_OK ) return rc; 1416 1417 memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix); 1418 pReader->nTerm = nPrefix+nSuffix; 1419 pNext += nSuffix; 1420 pNext += fts3GetVarint32(pNext, &pReader->nDoclist); 1421 pReader->aDoclist = pNext; 1422 pReader->pOffsetList = 0; 1423 1424 /* Check that the doclist does not appear to extend past the end of the 1425 ** b-tree node. And that the final byte of the doclist is 0x00. If either 1426 ** of these statements is untrue, then the data structure is corrupt. 1427 */ 1428 if( pReader->nDoclist > pReader->nNode-(pReader->aDoclist-pReader->aNode) 1429 || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1]) 1430 || pReader->nDoclist==0 1431 ){ 1432 return FTS_CORRUPT_VTAB; 1433 } 1434 return SQLITE_OK; 1435 } 1436 1437 /* 1438 ** Set the SegReader to point to the first docid in the doclist associated 1439 ** with the current term. 1440 */ 1441 static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){ 1442 int rc = SQLITE_OK; 1443 assert( pReader->aDoclist ); 1444 assert( !pReader->pOffsetList ); 1445 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ 1446 u8 bEof = 0; 1447 pReader->iDocid = 0; 1448 pReader->nOffsetList = 0; 1449 sqlite3Fts3DoclistPrev(0, 1450 pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList, 1451 &pReader->iDocid, &pReader->nOffsetList, &bEof 1452 ); 1453 }else{ 1454 rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX); 1455 if( rc==SQLITE_OK ){ 1456 int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid); 1457 pReader->pOffsetList = &pReader->aDoclist[n]; 1458 } 1459 } 1460 return rc; 1461 } 1462 1463 /* 1464 ** Advance the SegReader to point to the next docid in the doclist 1465 ** associated with the current term. 1466 ** 1467 ** If arguments ppOffsetList and pnOffsetList are not NULL, then 1468 ** *ppOffsetList is set to point to the first column-offset list 1469 ** in the doclist entry (i.e. immediately past the docid varint). 1470 ** *pnOffsetList is set to the length of the set of column-offset 1471 ** lists, not including the nul-terminator byte. For example: 1472 */ 1473 static int fts3SegReaderNextDocid( 1474 Fts3Table *pTab, 1475 Fts3SegReader *pReader, /* Reader to advance to next docid */ 1476 char **ppOffsetList, /* OUT: Pointer to current position-list */ 1477 int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */ 1478 ){ 1479 int rc = SQLITE_OK; 1480 char *p = pReader->pOffsetList; 1481 char c = 0; 1482 1483 assert( p ); 1484 1485 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ 1486 /* A pending-terms seg-reader for an FTS4 table that uses order=desc. 1487 ** Pending-terms doclists are always built up in ascending order, so 1488 ** we have to iterate through them backwards here. */ 1489 u8 bEof = 0; 1490 if( ppOffsetList ){ 1491 *ppOffsetList = pReader->pOffsetList; 1492 *pnOffsetList = pReader->nOffsetList - 1; 1493 } 1494 sqlite3Fts3DoclistPrev(0, 1495 pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid, 1496 &pReader->nOffsetList, &bEof 1497 ); 1498 if( bEof ){ 1499 pReader->pOffsetList = 0; 1500 }else{ 1501 pReader->pOffsetList = p; 1502 } 1503 }else{ 1504 char *pEnd = &pReader->aDoclist[pReader->nDoclist]; 1505 1506 /* Pointer p currently points at the first byte of an offset list. The 1507 ** following block advances it to point one byte past the end of 1508 ** the same offset list. */ 1509 while( 1 ){ 1510 1511 /* The following line of code (and the "p++" below the while() loop) is 1512 ** normally all that is required to move pointer p to the desired 1513 ** position. The exception is if this node is being loaded from disk 1514 ** incrementally and pointer "p" now points to the first byte past 1515 ** the populated part of pReader->aNode[]. 1516 */ 1517 while( *p | c ) c = *p++ & 0x80; 1518 assert( *p==0 ); 1519 1520 if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break; 1521 rc = fts3SegReaderIncrRead(pReader); 1522 if( rc!=SQLITE_OK ) return rc; 1523 } 1524 p++; 1525 1526 /* If required, populate the output variables with a pointer to and the 1527 ** size of the previous offset-list. 1528 */ 1529 if( ppOffsetList ){ 1530 *ppOffsetList = pReader->pOffsetList; 1531 *pnOffsetList = (int)(p - pReader->pOffsetList - 1); 1532 } 1533 1534 /* List may have been edited in place by fts3EvalNearTrim() */ 1535 while( p<pEnd && *p==0 ) p++; 1536 1537 /* If there are no more entries in the doclist, set pOffsetList to 1538 ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and 1539 ** Fts3SegReader.pOffsetList to point to the next offset list before 1540 ** returning. 1541 */ 1542 if( p>=pEnd ){ 1543 pReader->pOffsetList = 0; 1544 }else{ 1545 rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX); 1546 if( rc==SQLITE_OK ){ 1547 u64 iDelta; 1548 pReader->pOffsetList = p + sqlite3Fts3GetVarintU(p, &iDelta); 1549 if( pTab->bDescIdx ){ 1550 pReader->iDocid = (i64)((u64)pReader->iDocid - iDelta); 1551 }else{ 1552 pReader->iDocid = (i64)((u64)pReader->iDocid + iDelta); 1553 } 1554 } 1555 } 1556 } 1557 1558 return rc; 1559 } 1560 1561 1562 int sqlite3Fts3MsrOvfl( 1563 Fts3Cursor *pCsr, 1564 Fts3MultiSegReader *pMsr, 1565 int *pnOvfl 1566 ){ 1567 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; 1568 int nOvfl = 0; 1569 int ii; 1570 int rc = SQLITE_OK; 1571 int pgsz = p->nPgsz; 1572 1573 assert( p->bFts4 ); 1574 assert( pgsz>0 ); 1575 1576 for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){ 1577 Fts3SegReader *pReader = pMsr->apSegment[ii]; 1578 if( !fts3SegReaderIsPending(pReader) 1579 && !fts3SegReaderIsRootOnly(pReader) 1580 ){ 1581 sqlite3_int64 jj; 1582 for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){ 1583 int nBlob; 1584 rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0); 1585 if( rc!=SQLITE_OK ) break; 1586 if( (nBlob+35)>pgsz ){ 1587 nOvfl += (nBlob + 34)/pgsz; 1588 } 1589 } 1590 } 1591 } 1592 *pnOvfl = nOvfl; 1593 return rc; 1594 } 1595 1596 /* 1597 ** Free all allocations associated with the iterator passed as the 1598 ** second argument. 1599 */ 1600 void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ 1601 if( pReader ){ 1602 sqlite3_free(pReader->zTerm); 1603 if( !fts3SegReaderIsRootOnly(pReader) ){ 1604 sqlite3_free(pReader->aNode); 1605 } 1606 sqlite3_blob_close(pReader->pBlob); 1607 } 1608 sqlite3_free(pReader); 1609 } 1610 1611 /* 1612 ** Allocate a new SegReader object. 1613 */ 1614 int sqlite3Fts3SegReaderNew( 1615 int iAge, /* Segment "age". */ 1616 int bLookup, /* True for a lookup only */ 1617 sqlite3_int64 iStartLeaf, /* First leaf to traverse */ 1618 sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ 1619 sqlite3_int64 iEndBlock, /* Final block of segment */ 1620 const char *zRoot, /* Buffer containing root node */ 1621 int nRoot, /* Size of buffer containing root node */ 1622 Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ 1623 ){ 1624 Fts3SegReader *pReader; /* Newly allocated SegReader object */ 1625 int nExtra = 0; /* Bytes to allocate segment root node */ 1626 1627 assert( zRoot!=0 || nRoot==0 ); 1628 #ifdef CORRUPT_DB 1629 assert( zRoot!=0 || CORRUPT_DB ); 1630 #endif 1631 1632 if( iStartLeaf==0 ){ 1633 if( iEndLeaf!=0 ) return FTS_CORRUPT_VTAB; 1634 nExtra = nRoot + FTS3_NODE_PADDING; 1635 } 1636 1637 pReader = (Fts3SegReader *)sqlite3_malloc64(sizeof(Fts3SegReader) + nExtra); 1638 if( !pReader ){ 1639 return SQLITE_NOMEM; 1640 } 1641 memset(pReader, 0, sizeof(Fts3SegReader)); 1642 pReader->iIdx = iAge; 1643 pReader->bLookup = bLookup!=0; 1644 pReader->iStartBlock = iStartLeaf; 1645 pReader->iLeafEndBlock = iEndLeaf; 1646 pReader->iEndBlock = iEndBlock; 1647 1648 if( nExtra ){ 1649 /* The entire segment is stored in the root node. */ 1650 pReader->aNode = (char *)&pReader[1]; 1651 pReader->rootOnly = 1; 1652 pReader->nNode = nRoot; 1653 if( nRoot ) memcpy(pReader->aNode, zRoot, nRoot); 1654 memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); 1655 }else{ 1656 pReader->iCurrentBlock = iStartLeaf-1; 1657 } 1658 *ppReader = pReader; 1659 return SQLITE_OK; 1660 } 1661 1662 /* 1663 ** This is a comparison function used as a qsort() callback when sorting 1664 ** an array of pending terms by term. This occurs as part of flushing 1665 ** the contents of the pending-terms hash table to the database. 1666 */ 1667 static int SQLITE_CDECL fts3CompareElemByTerm( 1668 const void *lhs, 1669 const void *rhs 1670 ){ 1671 char *z1 = fts3HashKey(*(Fts3HashElem **)lhs); 1672 char *z2 = fts3HashKey(*(Fts3HashElem **)rhs); 1673 int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs); 1674 int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs); 1675 1676 int n = (n1<n2 ? n1 : n2); 1677 int c = memcmp(z1, z2, n); 1678 if( c==0 ){ 1679 c = n1 - n2; 1680 } 1681 return c; 1682 } 1683 1684 /* 1685 ** This function is used to allocate an Fts3SegReader that iterates through 1686 ** a subset of the terms stored in the Fts3Table.pendingTerms array. 1687 ** 1688 ** If the isPrefixIter parameter is zero, then the returned SegReader iterates 1689 ** through each term in the pending-terms table. Or, if isPrefixIter is 1690 ** non-zero, it iterates through each term and its prefixes. For example, if 1691 ** the pending terms hash table contains the terms "sqlite", "mysql" and 1692 ** "firebird", then the iterator visits the following 'terms' (in the order 1693 ** shown): 1694 ** 1695 ** f fi fir fire fireb firebi firebir firebird 1696 ** m my mys mysq mysql 1697 ** s sq sql sqli sqlit sqlite 1698 ** 1699 ** Whereas if isPrefixIter is zero, the terms visited are: 1700 ** 1701 ** firebird mysql sqlite 1702 */ 1703 int sqlite3Fts3SegReaderPending( 1704 Fts3Table *p, /* Virtual table handle */ 1705 int iIndex, /* Index for p->aIndex */ 1706 const char *zTerm, /* Term to search for */ 1707 int nTerm, /* Size of buffer zTerm */ 1708 int bPrefix, /* True for a prefix iterator */ 1709 Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ 1710 ){ 1711 Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ 1712 Fts3HashElem *pE; /* Iterator variable */ 1713 Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ 1714 int nElem = 0; /* Size of array at aElem */ 1715 int rc = SQLITE_OK; /* Return Code */ 1716 Fts3Hash *pHash; 1717 1718 pHash = &p->aIndex[iIndex].hPending; 1719 if( bPrefix ){ 1720 int nAlloc = 0; /* Size of allocated array at aElem */ 1721 1722 for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){ 1723 char *zKey = (char *)fts3HashKey(pE); 1724 int nKey = fts3HashKeysize(pE); 1725 if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){ 1726 if( nElem==nAlloc ){ 1727 Fts3HashElem **aElem2; 1728 nAlloc += 16; 1729 aElem2 = (Fts3HashElem **)sqlite3_realloc64( 1730 aElem, nAlloc*sizeof(Fts3HashElem *) 1731 ); 1732 if( !aElem2 ){ 1733 rc = SQLITE_NOMEM; 1734 nElem = 0; 1735 break; 1736 } 1737 aElem = aElem2; 1738 } 1739 1740 aElem[nElem++] = pE; 1741 } 1742 } 1743 1744 /* If more than one term matches the prefix, sort the Fts3HashElem 1745 ** objects in term order using qsort(). This uses the same comparison 1746 ** callback as is used when flushing terms to disk. 1747 */ 1748 if( nElem>1 ){ 1749 qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm); 1750 } 1751 1752 }else{ 1753 /* The query is a simple term lookup that matches at most one term in 1754 ** the index. All that is required is a straight hash-lookup. 1755 ** 1756 ** Because the stack address of pE may be accessed via the aElem pointer 1757 ** below, the "Fts3HashElem *pE" must be declared so that it is valid 1758 ** within this entire function, not just this "else{...}" block. 1759 */ 1760 pE = fts3HashFindElem(pHash, zTerm, nTerm); 1761 if( pE ){ 1762 aElem = &pE; 1763 nElem = 1; 1764 } 1765 } 1766 1767 if( nElem>0 ){ 1768 sqlite3_int64 nByte; 1769 nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *); 1770 pReader = (Fts3SegReader *)sqlite3_malloc64(nByte); 1771 if( !pReader ){ 1772 rc = SQLITE_NOMEM; 1773 }else{ 1774 memset(pReader, 0, nByte); 1775 pReader->iIdx = 0x7FFFFFFF; 1776 pReader->ppNextElem = (Fts3HashElem **)&pReader[1]; 1777 memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *)); 1778 } 1779 } 1780 1781 if( bPrefix ){ 1782 sqlite3_free(aElem); 1783 } 1784 *ppReader = pReader; 1785 return rc; 1786 } 1787 1788 /* 1789 ** Compare the entries pointed to by two Fts3SegReader structures. 1790 ** Comparison is as follows: 1791 ** 1792 ** 1) EOF is greater than not EOF. 1793 ** 1794 ** 2) The current terms (if any) are compared using memcmp(). If one 1795 ** term is a prefix of another, the longer term is considered the 1796 ** larger. 1797 ** 1798 ** 3) By segment age. An older segment is considered larger. 1799 */ 1800 static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ 1801 int rc; 1802 if( pLhs->aNode && pRhs->aNode ){ 1803 int rc2 = pLhs->nTerm - pRhs->nTerm; 1804 if( rc2<0 ){ 1805 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm); 1806 }else{ 1807 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm); 1808 } 1809 if( rc==0 ){ 1810 rc = rc2; 1811 } 1812 }else{ 1813 rc = (pLhs->aNode==0) - (pRhs->aNode==0); 1814 } 1815 if( rc==0 ){ 1816 rc = pRhs->iIdx - pLhs->iIdx; 1817 } 1818 assert_fts3_nc( rc!=0 ); 1819 return rc; 1820 } 1821 1822 /* 1823 ** A different comparison function for SegReader structures. In this 1824 ** version, it is assumed that each SegReader points to an entry in 1825 ** a doclist for identical terms. Comparison is made as follows: 1826 ** 1827 ** 1) EOF (end of doclist in this case) is greater than not EOF. 1828 ** 1829 ** 2) By current docid. 1830 ** 1831 ** 3) By segment age. An older segment is considered larger. 1832 */ 1833 static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ 1834 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); 1835 if( rc==0 ){ 1836 if( pLhs->iDocid==pRhs->iDocid ){ 1837 rc = pRhs->iIdx - pLhs->iIdx; 1838 }else{ 1839 rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1; 1840 } 1841 } 1842 assert( pLhs->aNode && pRhs->aNode ); 1843 return rc; 1844 } 1845 static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ 1846 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); 1847 if( rc==0 ){ 1848 if( pLhs->iDocid==pRhs->iDocid ){ 1849 rc = pRhs->iIdx - pLhs->iIdx; 1850 }else{ 1851 rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1; 1852 } 1853 } 1854 assert( pLhs->aNode && pRhs->aNode ); 1855 return rc; 1856 } 1857 1858 /* 1859 ** Compare the term that the Fts3SegReader object passed as the first argument 1860 ** points to with the term specified by arguments zTerm and nTerm. 1861 ** 1862 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return 1863 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are 1864 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm. 1865 */ 1866 static int fts3SegReaderTermCmp( 1867 Fts3SegReader *pSeg, /* Segment reader object */ 1868 const char *zTerm, /* Term to compare to */ 1869 int nTerm /* Size of term zTerm in bytes */ 1870 ){ 1871 int res = 0; 1872 if( pSeg->aNode ){ 1873 if( pSeg->nTerm>nTerm ){ 1874 res = memcmp(pSeg->zTerm, zTerm, nTerm); 1875 }else{ 1876 res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm); 1877 } 1878 if( res==0 ){ 1879 res = pSeg->nTerm-nTerm; 1880 } 1881 } 1882 return res; 1883 } 1884 1885 /* 1886 ** Argument apSegment is an array of nSegment elements. It is known that 1887 ** the final (nSegment-nSuspect) members are already in sorted order 1888 ** (according to the comparison function provided). This function shuffles 1889 ** the array around until all entries are in sorted order. 1890 */ 1891 static void fts3SegReaderSort( 1892 Fts3SegReader **apSegment, /* Array to sort entries of */ 1893 int nSegment, /* Size of apSegment array */ 1894 int nSuspect, /* Unsorted entry count */ 1895 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */ 1896 ){ 1897 int i; /* Iterator variable */ 1898 1899 assert( nSuspect<=nSegment ); 1900 1901 if( nSuspect==nSegment ) nSuspect--; 1902 for(i=nSuspect-1; i>=0; i--){ 1903 int j; 1904 for(j=i; j<(nSegment-1); j++){ 1905 Fts3SegReader *pTmp; 1906 if( xCmp(apSegment[j], apSegment[j+1])<0 ) break; 1907 pTmp = apSegment[j+1]; 1908 apSegment[j+1] = apSegment[j]; 1909 apSegment[j] = pTmp; 1910 } 1911 } 1912 1913 #ifndef NDEBUG 1914 /* Check that the list really is sorted now. */ 1915 for(i=0; i<(nSuspect-1); i++){ 1916 assert( xCmp(apSegment[i], apSegment[i+1])<0 ); 1917 } 1918 #endif 1919 } 1920 1921 /* 1922 ** Insert a record into the %_segments table. 1923 */ 1924 static int fts3WriteSegment( 1925 Fts3Table *p, /* Virtual table handle */ 1926 sqlite3_int64 iBlock, /* Block id for new block */ 1927 char *z, /* Pointer to buffer containing block data */ 1928 int n /* Size of buffer z in bytes */ 1929 ){ 1930 sqlite3_stmt *pStmt; 1931 int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0); 1932 if( rc==SQLITE_OK ){ 1933 sqlite3_bind_int64(pStmt, 1, iBlock); 1934 sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC); 1935 sqlite3_step(pStmt); 1936 rc = sqlite3_reset(pStmt); 1937 sqlite3_bind_null(pStmt, 2); 1938 } 1939 return rc; 1940 } 1941 1942 /* 1943 ** Find the largest relative level number in the table. If successful, set 1944 ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs, 1945 ** set *pnMax to zero and return an SQLite error code. 1946 */ 1947 int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){ 1948 int rc; 1949 int mxLevel = 0; 1950 sqlite3_stmt *pStmt = 0; 1951 1952 rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0); 1953 if( rc==SQLITE_OK ){ 1954 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 1955 mxLevel = sqlite3_column_int(pStmt, 0); 1956 } 1957 rc = sqlite3_reset(pStmt); 1958 } 1959 *pnMax = mxLevel; 1960 return rc; 1961 } 1962 1963 /* 1964 ** Insert a record into the %_segdir table. 1965 */ 1966 static int fts3WriteSegdir( 1967 Fts3Table *p, /* Virtual table handle */ 1968 sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */ 1969 int iIdx, /* Value for "idx" field */ 1970 sqlite3_int64 iStartBlock, /* Value for "start_block" field */ 1971 sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */ 1972 sqlite3_int64 iEndBlock, /* Value for "end_block" field */ 1973 sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */ 1974 char *zRoot, /* Blob value for "root" field */ 1975 int nRoot /* Number of bytes in buffer zRoot */ 1976 ){ 1977 sqlite3_stmt *pStmt; 1978 int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0); 1979 if( rc==SQLITE_OK ){ 1980 sqlite3_bind_int64(pStmt, 1, iLevel); 1981 sqlite3_bind_int(pStmt, 2, iIdx); 1982 sqlite3_bind_int64(pStmt, 3, iStartBlock); 1983 sqlite3_bind_int64(pStmt, 4, iLeafEndBlock); 1984 if( nLeafData==0 ){ 1985 sqlite3_bind_int64(pStmt, 5, iEndBlock); 1986 }else{ 1987 char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData); 1988 if( !zEnd ) return SQLITE_NOMEM; 1989 sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free); 1990 } 1991 sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC); 1992 sqlite3_step(pStmt); 1993 rc = sqlite3_reset(pStmt); 1994 sqlite3_bind_null(pStmt, 6); 1995 } 1996 return rc; 1997 } 1998 1999 /* 2000 ** Return the size of the common prefix (if any) shared by zPrev and 2001 ** zNext, in bytes. For example, 2002 ** 2003 ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3 2004 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2 2005 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0 2006 */ 2007 static int fts3PrefixCompress( 2008 const char *zPrev, /* Buffer containing previous term */ 2009 int nPrev, /* Size of buffer zPrev in bytes */ 2010 const char *zNext, /* Buffer containing next term */ 2011 int nNext /* Size of buffer zNext in bytes */ 2012 ){ 2013 int n; 2014 for(n=0; n<nPrev && n<nNext && zPrev[n]==zNext[n]; n++); 2015 assert_fts3_nc( n<nNext ); 2016 return n; 2017 } 2018 2019 /* 2020 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger 2021 ** (according to memcmp) than the previous term. 2022 */ 2023 static int fts3NodeAddTerm( 2024 Fts3Table *p, /* Virtual table handle */ 2025 SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */ 2026 int isCopyTerm, /* True if zTerm/nTerm is transient */ 2027 const char *zTerm, /* Pointer to buffer containing term */ 2028 int nTerm /* Size of term in bytes */ 2029 ){ 2030 SegmentNode *pTree = *ppTree; 2031 int rc; 2032 SegmentNode *pNew; 2033 2034 /* First try to append the term to the current node. Return early if 2035 ** this is possible. 2036 */ 2037 if( pTree ){ 2038 int nData = pTree->nData; /* Current size of node in bytes */ 2039 int nReq = nData; /* Required space after adding zTerm */ 2040 int nPrefix; /* Number of bytes of prefix compression */ 2041 int nSuffix; /* Suffix length */ 2042 2043 nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm); 2044 nSuffix = nTerm-nPrefix; 2045 2046 /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of 2047 ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when 2048 ** compared with BINARY collation. This indicates corruption. */ 2049 if( nSuffix<=0 ) return FTS_CORRUPT_VTAB; 2050 2051 nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix; 2052 if( nReq<=p->nNodeSize || !pTree->zTerm ){ 2053 2054 if( nReq>p->nNodeSize ){ 2055 /* An unusual case: this is the first term to be added to the node 2056 ** and the static node buffer (p->nNodeSize bytes) is not large 2057 ** enough. Use a separately malloced buffer instead This wastes 2058 ** p->nNodeSize bytes, but since this scenario only comes about when 2059 ** the database contain two terms that share a prefix of almost 2KB, 2060 ** this is not expected to be a serious problem. 2061 */ 2062 assert( pTree->aData==(char *)&pTree[1] ); 2063 pTree->aData = (char *)sqlite3_malloc64(nReq); 2064 if( !pTree->aData ){ 2065 return SQLITE_NOMEM; 2066 } 2067 } 2068 2069 if( pTree->zTerm ){ 2070 /* There is no prefix-length field for first term in a node */ 2071 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix); 2072 } 2073 2074 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix); 2075 memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix); 2076 pTree->nData = nData + nSuffix; 2077 pTree->nEntry++; 2078 2079 if( isCopyTerm ){ 2080 if( pTree->nMalloc<nTerm ){ 2081 char *zNew = sqlite3_realloc64(pTree->zMalloc, (i64)nTerm*2); 2082 if( !zNew ){ 2083 return SQLITE_NOMEM; 2084 } 2085 pTree->nMalloc = nTerm*2; 2086 pTree->zMalloc = zNew; 2087 } 2088 pTree->zTerm = pTree->zMalloc; 2089 memcpy(pTree->zTerm, zTerm, nTerm); 2090 pTree->nTerm = nTerm; 2091 }else{ 2092 pTree->zTerm = (char *)zTerm; 2093 pTree->nTerm = nTerm; 2094 } 2095 return SQLITE_OK; 2096 } 2097 } 2098 2099 /* If control flows to here, it was not possible to append zTerm to the 2100 ** current node. Create a new node (a right-sibling of the current node). 2101 ** If this is the first node in the tree, the term is added to it. 2102 ** 2103 ** Otherwise, the term is not added to the new node, it is left empty for 2104 ** now. Instead, the term is inserted into the parent of pTree. If pTree 2105 ** has no parent, one is created here. 2106 */ 2107 pNew = (SegmentNode *)sqlite3_malloc64(sizeof(SegmentNode) + p->nNodeSize); 2108 if( !pNew ){ 2109 return SQLITE_NOMEM; 2110 } 2111 memset(pNew, 0, sizeof(SegmentNode)); 2112 pNew->nData = 1 + FTS3_VARINT_MAX; 2113 pNew->aData = (char *)&pNew[1]; 2114 2115 if( pTree ){ 2116 SegmentNode *pParent = pTree->pParent; 2117 rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm); 2118 if( pTree->pParent==0 ){ 2119 pTree->pParent = pParent; 2120 } 2121 pTree->pRight = pNew; 2122 pNew->pLeftmost = pTree->pLeftmost; 2123 pNew->pParent = pParent; 2124 pNew->zMalloc = pTree->zMalloc; 2125 pNew->nMalloc = pTree->nMalloc; 2126 pTree->zMalloc = 0; 2127 }else{ 2128 pNew->pLeftmost = pNew; 2129 rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm); 2130 } 2131 2132 *ppTree = pNew; 2133 return rc; 2134 } 2135 2136 /* 2137 ** Helper function for fts3NodeWrite(). 2138 */ 2139 static int fts3TreeFinishNode( 2140 SegmentNode *pTree, 2141 int iHeight, 2142 sqlite3_int64 iLeftChild 2143 ){ 2144 int nStart; 2145 assert( iHeight>=1 && iHeight<128 ); 2146 nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild); 2147 pTree->aData[nStart] = (char)iHeight; 2148 sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild); 2149 return nStart; 2150 } 2151 2152 /* 2153 ** Write the buffer for the segment node pTree and all of its peers to the 2154 ** database. Then call this function recursively to write the parent of 2155 ** pTree and its peers to the database. 2156 ** 2157 ** Except, if pTree is a root node, do not write it to the database. Instead, 2158 ** set output variables *paRoot and *pnRoot to contain the root node. 2159 ** 2160 ** If successful, SQLITE_OK is returned and output variable *piLast is 2161 ** set to the largest blockid written to the database (or zero if no 2162 ** blocks were written to the db). Otherwise, an SQLite error code is 2163 ** returned. 2164 */ 2165 static int fts3NodeWrite( 2166 Fts3Table *p, /* Virtual table handle */ 2167 SegmentNode *pTree, /* SegmentNode handle */ 2168 int iHeight, /* Height of this node in tree */ 2169 sqlite3_int64 iLeaf, /* Block id of first leaf node */ 2170 sqlite3_int64 iFree, /* Block id of next free slot in %_segments */ 2171 sqlite3_int64 *piLast, /* OUT: Block id of last entry written */ 2172 char **paRoot, /* OUT: Data for root node */ 2173 int *pnRoot /* OUT: Size of root node in bytes */ 2174 ){ 2175 int rc = SQLITE_OK; 2176 2177 if( !pTree->pParent ){ 2178 /* Root node of the tree. */ 2179 int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf); 2180 *piLast = iFree-1; 2181 *pnRoot = pTree->nData - nStart; 2182 *paRoot = &pTree->aData[nStart]; 2183 }else{ 2184 SegmentNode *pIter; 2185 sqlite3_int64 iNextFree = iFree; 2186 sqlite3_int64 iNextLeaf = iLeaf; 2187 for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){ 2188 int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf); 2189 int nWrite = pIter->nData - nStart; 2190 2191 rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite); 2192 iNextFree++; 2193 iNextLeaf += (pIter->nEntry+1); 2194 } 2195 if( rc==SQLITE_OK ){ 2196 assert( iNextLeaf==iFree ); 2197 rc = fts3NodeWrite( 2198 p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot 2199 ); 2200 } 2201 } 2202 2203 return rc; 2204 } 2205 2206 /* 2207 ** Free all memory allocations associated with the tree pTree. 2208 */ 2209 static void fts3NodeFree(SegmentNode *pTree){ 2210 if( pTree ){ 2211 SegmentNode *p = pTree->pLeftmost; 2212 fts3NodeFree(p->pParent); 2213 while( p ){ 2214 SegmentNode *pRight = p->pRight; 2215 if( p->aData!=(char *)&p[1] ){ 2216 sqlite3_free(p->aData); 2217 } 2218 assert( pRight==0 || p->zMalloc==0 ); 2219 sqlite3_free(p->zMalloc); 2220 sqlite3_free(p); 2221 p = pRight; 2222 } 2223 } 2224 } 2225 2226 /* 2227 ** Add a term to the segment being constructed by the SegmentWriter object 2228 ** *ppWriter. When adding the first term to a segment, *ppWriter should 2229 ** be passed NULL. This function will allocate a new SegmentWriter object 2230 ** and return it via the input/output variable *ppWriter in this case. 2231 ** 2232 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. 2233 */ 2234 static int fts3SegWriterAdd( 2235 Fts3Table *p, /* Virtual table handle */ 2236 SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */ 2237 int isCopyTerm, /* True if buffer zTerm must be copied */ 2238 const char *zTerm, /* Pointer to buffer containing term */ 2239 int nTerm, /* Size of term in bytes */ 2240 const char *aDoclist, /* Pointer to buffer containing doclist */ 2241 int nDoclist /* Size of doclist in bytes */ 2242 ){ 2243 int nPrefix; /* Size of term prefix in bytes */ 2244 int nSuffix; /* Size of term suffix in bytes */ 2245 i64 nReq; /* Number of bytes required on leaf page */ 2246 int nData; 2247 SegmentWriter *pWriter = *ppWriter; 2248 2249 if( !pWriter ){ 2250 int rc; 2251 sqlite3_stmt *pStmt; 2252 2253 /* Allocate the SegmentWriter structure */ 2254 pWriter = (SegmentWriter *)sqlite3_malloc64(sizeof(SegmentWriter)); 2255 if( !pWriter ) return SQLITE_NOMEM; 2256 memset(pWriter, 0, sizeof(SegmentWriter)); 2257 *ppWriter = pWriter; 2258 2259 /* Allocate a buffer in which to accumulate data */ 2260 pWriter->aData = (char *)sqlite3_malloc64(p->nNodeSize); 2261 if( !pWriter->aData ) return SQLITE_NOMEM; 2262 pWriter->nSize = p->nNodeSize; 2263 2264 /* Find the next free blockid in the %_segments table */ 2265 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0); 2266 if( rc!=SQLITE_OK ) return rc; 2267 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 2268 pWriter->iFree = sqlite3_column_int64(pStmt, 0); 2269 pWriter->iFirst = pWriter->iFree; 2270 } 2271 rc = sqlite3_reset(pStmt); 2272 if( rc!=SQLITE_OK ) return rc; 2273 } 2274 nData = pWriter->nData; 2275 2276 nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm); 2277 nSuffix = nTerm-nPrefix; 2278 2279 /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of 2280 ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when 2281 ** compared with BINARY collation. This indicates corruption. */ 2282 if( nSuffix<=0 ) return FTS_CORRUPT_VTAB; 2283 2284 /* Figure out how many bytes are required by this new entry */ 2285 nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */ 2286 sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */ 2287 nSuffix + /* Term suffix */ 2288 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ 2289 nDoclist; /* Doclist data */ 2290 2291 if( nData>0 && nData+nReq>p->nNodeSize ){ 2292 int rc; 2293 2294 /* The current leaf node is full. Write it out to the database. */ 2295 if( pWriter->iFree==LARGEST_INT64 ) return FTS_CORRUPT_VTAB; 2296 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData); 2297 if( rc!=SQLITE_OK ) return rc; 2298 p->nLeafAdd++; 2299 2300 /* Add the current term to the interior node tree. The term added to 2301 ** the interior tree must: 2302 ** 2303 ** a) be greater than the largest term on the leaf node just written 2304 ** to the database (still available in pWriter->zTerm), and 2305 ** 2306 ** b) be less than or equal to the term about to be added to the new 2307 ** leaf node (zTerm/nTerm). 2308 ** 2309 ** In other words, it must be the prefix of zTerm 1 byte longer than 2310 ** the common prefix (if any) of zTerm and pWriter->zTerm. 2311 */ 2312 assert( nPrefix<nTerm ); 2313 rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1); 2314 if( rc!=SQLITE_OK ) return rc; 2315 2316 nData = 0; 2317 pWriter->nTerm = 0; 2318 2319 nPrefix = 0; 2320 nSuffix = nTerm; 2321 nReq = 1 + /* varint containing prefix size */ 2322 sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */ 2323 nTerm + /* Term suffix */ 2324 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ 2325 nDoclist; /* Doclist data */ 2326 } 2327 2328 /* Increase the total number of bytes written to account for the new entry. */ 2329 pWriter->nLeafData += nReq; 2330 2331 /* If the buffer currently allocated is too small for this entry, realloc 2332 ** the buffer to make it large enough. 2333 */ 2334 if( nReq>pWriter->nSize ){ 2335 char *aNew = sqlite3_realloc64(pWriter->aData, nReq); 2336 if( !aNew ) return SQLITE_NOMEM; 2337 pWriter->aData = aNew; 2338 pWriter->nSize = nReq; 2339 } 2340 assert( nData+nReq<=pWriter->nSize ); 2341 2342 /* Append the prefix-compressed term and doclist to the buffer. */ 2343 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix); 2344 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix); 2345 assert( nSuffix>0 ); 2346 memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix); 2347 nData += nSuffix; 2348 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist); 2349 assert( nDoclist>0 ); 2350 memcpy(&pWriter->aData[nData], aDoclist, nDoclist); 2351 pWriter->nData = nData + nDoclist; 2352 2353 /* Save the current term so that it can be used to prefix-compress the next. 2354 ** If the isCopyTerm parameter is true, then the buffer pointed to by 2355 ** zTerm is transient, so take a copy of the term data. Otherwise, just 2356 ** store a copy of the pointer. 2357 */ 2358 if( isCopyTerm ){ 2359 if( nTerm>pWriter->nMalloc ){ 2360 char *zNew = sqlite3_realloc64(pWriter->zMalloc, (i64)nTerm*2); 2361 if( !zNew ){ 2362 return SQLITE_NOMEM; 2363 } 2364 pWriter->nMalloc = nTerm*2; 2365 pWriter->zMalloc = zNew; 2366 pWriter->zTerm = zNew; 2367 } 2368 assert( pWriter->zTerm==pWriter->zMalloc ); 2369 assert( nTerm>0 ); 2370 memcpy(pWriter->zTerm, zTerm, nTerm); 2371 }else{ 2372 pWriter->zTerm = (char *)zTerm; 2373 } 2374 pWriter->nTerm = nTerm; 2375 2376 return SQLITE_OK; 2377 } 2378 2379 /* 2380 ** Flush all data associated with the SegmentWriter object pWriter to the 2381 ** database. This function must be called after all terms have been added 2382 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is 2383 ** returned. Otherwise, an SQLite error code. 2384 */ 2385 static int fts3SegWriterFlush( 2386 Fts3Table *p, /* Virtual table handle */ 2387 SegmentWriter *pWriter, /* SegmentWriter to flush to the db */ 2388 sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */ 2389 int iIdx /* Value for 'idx' column of %_segdir */ 2390 ){ 2391 int rc; /* Return code */ 2392 if( pWriter->pTree ){ 2393 sqlite3_int64 iLast = 0; /* Largest block id written to database */ 2394 sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */ 2395 char *zRoot = NULL; /* Pointer to buffer containing root node */ 2396 int nRoot = 0; /* Size of buffer zRoot */ 2397 2398 iLastLeaf = pWriter->iFree; 2399 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData); 2400 if( rc==SQLITE_OK ){ 2401 rc = fts3NodeWrite(p, pWriter->pTree, 1, 2402 pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot); 2403 } 2404 if( rc==SQLITE_OK ){ 2405 rc = fts3WriteSegdir(p, iLevel, iIdx, 2406 pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot); 2407 } 2408 }else{ 2409 /* The entire tree fits on the root node. Write it to the segdir table. */ 2410 rc = fts3WriteSegdir(p, iLevel, iIdx, 2411 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData); 2412 } 2413 p->nLeafAdd++; 2414 return rc; 2415 } 2416 2417 /* 2418 ** Release all memory held by the SegmentWriter object passed as the 2419 ** first argument. 2420 */ 2421 static void fts3SegWriterFree(SegmentWriter *pWriter){ 2422 if( pWriter ){ 2423 sqlite3_free(pWriter->aData); 2424 sqlite3_free(pWriter->zMalloc); 2425 fts3NodeFree(pWriter->pTree); 2426 sqlite3_free(pWriter); 2427 } 2428 } 2429 2430 /* 2431 ** The first value in the apVal[] array is assumed to contain an integer. 2432 ** This function tests if there exist any documents with docid values that 2433 ** are different from that integer. i.e. if deleting the document with docid 2434 ** pRowid would mean the FTS3 table were empty. 2435 ** 2436 ** If successful, *pisEmpty is set to true if the table is empty except for 2437 ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an 2438 ** error occurs, an SQLite error code is returned. 2439 */ 2440 static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){ 2441 sqlite3_stmt *pStmt; 2442 int rc; 2443 if( p->zContentTbl ){ 2444 /* If using the content=xxx option, assume the table is never empty */ 2445 *pisEmpty = 0; 2446 rc = SQLITE_OK; 2447 }else{ 2448 rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid); 2449 if( rc==SQLITE_OK ){ 2450 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 2451 *pisEmpty = sqlite3_column_int(pStmt, 0); 2452 } 2453 rc = sqlite3_reset(pStmt); 2454 } 2455 } 2456 return rc; 2457 } 2458 2459 /* 2460 ** Set *pnMax to the largest segment level in the database for the index 2461 ** iIndex. 2462 ** 2463 ** Segment levels are stored in the 'level' column of the %_segdir table. 2464 ** 2465 ** Return SQLITE_OK if successful, or an SQLite error code if not. 2466 */ 2467 static int fts3SegmentMaxLevel( 2468 Fts3Table *p, 2469 int iLangid, 2470 int iIndex, 2471 sqlite3_int64 *pnMax 2472 ){ 2473 sqlite3_stmt *pStmt; 2474 int rc; 2475 assert( iIndex>=0 && iIndex<p->nIndex ); 2476 2477 /* Set pStmt to the compiled version of: 2478 ** 2479 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? 2480 ** 2481 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). 2482 */ 2483 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); 2484 if( rc!=SQLITE_OK ) return rc; 2485 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); 2486 sqlite3_bind_int64(pStmt, 2, 2487 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) 2488 ); 2489 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 2490 *pnMax = sqlite3_column_int64(pStmt, 0); 2491 } 2492 return sqlite3_reset(pStmt); 2493 } 2494 2495 /* 2496 ** iAbsLevel is an absolute level that may be assumed to exist within 2497 ** the database. This function checks if it is the largest level number 2498 ** within its index. Assuming no error occurs, *pbMax is set to 1 if 2499 ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK 2500 ** is returned. If an error occurs, an error code is returned and the 2501 ** final value of *pbMax is undefined. 2502 */ 2503 static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){ 2504 2505 /* Set pStmt to the compiled version of: 2506 ** 2507 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? 2508 ** 2509 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). 2510 */ 2511 sqlite3_stmt *pStmt; 2512 int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); 2513 if( rc!=SQLITE_OK ) return rc; 2514 sqlite3_bind_int64(pStmt, 1, iAbsLevel+1); 2515 sqlite3_bind_int64(pStmt, 2, 2516 (((u64)iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL 2517 ); 2518 2519 *pbMax = 0; 2520 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 2521 *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL; 2522 } 2523 return sqlite3_reset(pStmt); 2524 } 2525 2526 /* 2527 ** Delete all entries in the %_segments table associated with the segment 2528 ** opened with seg-reader pSeg. This function does not affect the contents 2529 ** of the %_segdir table. 2530 */ 2531 static int fts3DeleteSegment( 2532 Fts3Table *p, /* FTS table handle */ 2533 Fts3SegReader *pSeg /* Segment to delete */ 2534 ){ 2535 int rc = SQLITE_OK; /* Return code */ 2536 if( pSeg->iStartBlock ){ 2537 sqlite3_stmt *pDelete; /* SQL statement to delete rows */ 2538 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0); 2539 if( rc==SQLITE_OK ){ 2540 sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock); 2541 sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock); 2542 sqlite3_step(pDelete); 2543 rc = sqlite3_reset(pDelete); 2544 } 2545 } 2546 return rc; 2547 } 2548 2549 /* 2550 ** This function is used after merging multiple segments into a single large 2551 ** segment to delete the old, now redundant, segment b-trees. Specifically, 2552 ** it: 2553 ** 2554 ** 1) Deletes all %_segments entries for the segments associated with 2555 ** each of the SegReader objects in the array passed as the third 2556 ** argument, and 2557 ** 2558 ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir 2559 ** entries regardless of level if (iLevel<0). 2560 ** 2561 ** SQLITE_OK is returned if successful, otherwise an SQLite error code. 2562 */ 2563 static int fts3DeleteSegdir( 2564 Fts3Table *p, /* Virtual table handle */ 2565 int iLangid, /* Language id */ 2566 int iIndex, /* Index for p->aIndex */ 2567 int iLevel, /* Level of %_segdir entries to delete */ 2568 Fts3SegReader **apSegment, /* Array of SegReader objects */ 2569 int nReader /* Size of array apSegment */ 2570 ){ 2571 int rc = SQLITE_OK; /* Return Code */ 2572 int i; /* Iterator variable */ 2573 sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */ 2574 2575 for(i=0; rc==SQLITE_OK && i<nReader; i++){ 2576 rc = fts3DeleteSegment(p, apSegment[i]); 2577 } 2578 if( rc!=SQLITE_OK ){ 2579 return rc; 2580 } 2581 2582 assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL ); 2583 if( iLevel==FTS3_SEGCURSOR_ALL ){ 2584 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0); 2585 if( rc==SQLITE_OK ){ 2586 sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); 2587 sqlite3_bind_int64(pDelete, 2, 2588 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) 2589 ); 2590 } 2591 }else{ 2592 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0); 2593 if( rc==SQLITE_OK ){ 2594 sqlite3_bind_int64( 2595 pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) 2596 ); 2597 } 2598 } 2599 2600 if( rc==SQLITE_OK ){ 2601 sqlite3_step(pDelete); 2602 rc = sqlite3_reset(pDelete); 2603 } 2604 2605 return rc; 2606 } 2607 2608 /* 2609 ** When this function is called, buffer *ppList (size *pnList bytes) contains 2610 ** a position list that may (or may not) feature multiple columns. This 2611 ** function adjusts the pointer *ppList and the length *pnList so that they 2612 ** identify the subset of the position list that corresponds to column iCol. 2613 ** 2614 ** If there are no entries in the input position list for column iCol, then 2615 ** *pnList is set to zero before returning. 2616 ** 2617 ** If parameter bZero is non-zero, then any part of the input list following 2618 ** the end of the output list is zeroed before returning. 2619 */ 2620 static void fts3ColumnFilter( 2621 int iCol, /* Column to filter on */ 2622 int bZero, /* Zero out anything following *ppList */ 2623 char **ppList, /* IN/OUT: Pointer to position list */ 2624 int *pnList /* IN/OUT: Size of buffer *ppList in bytes */ 2625 ){ 2626 char *pList = *ppList; 2627 int nList = *pnList; 2628 char *pEnd = &pList[nList]; 2629 int iCurrent = 0; 2630 char *p = pList; 2631 2632 assert( iCol>=0 ); 2633 while( 1 ){ 2634 char c = 0; 2635 while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80; 2636 2637 if( iCol==iCurrent ){ 2638 nList = (int)(p - pList); 2639 break; 2640 } 2641 2642 nList -= (int)(p - pList); 2643 pList = p; 2644 if( nList<=0 ){ 2645 break; 2646 } 2647 p = &pList[1]; 2648 p += fts3GetVarint32(p, &iCurrent); 2649 } 2650 2651 if( bZero && (pEnd - &pList[nList])>0){ 2652 memset(&pList[nList], 0, pEnd - &pList[nList]); 2653 } 2654 *ppList = pList; 2655 *pnList = nList; 2656 } 2657 2658 /* 2659 ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any 2660 ** existing data). Grow the buffer if required. 2661 ** 2662 ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered 2663 ** trying to resize the buffer, return SQLITE_NOMEM. 2664 */ 2665 static int fts3MsrBufferData( 2666 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ 2667 char *pList, 2668 i64 nList 2669 ){ 2670 if( nList>pMsr->nBuffer ){ 2671 char *pNew; 2672 pMsr->nBuffer = nList*2; 2673 pNew = (char *)sqlite3_realloc64(pMsr->aBuffer, pMsr->nBuffer); 2674 if( !pNew ) return SQLITE_NOMEM; 2675 pMsr->aBuffer = pNew; 2676 } 2677 2678 assert( nList>0 ); 2679 memcpy(pMsr->aBuffer, pList, nList); 2680 return SQLITE_OK; 2681 } 2682 2683 int sqlite3Fts3MsrIncrNext( 2684 Fts3Table *p, /* Virtual table handle */ 2685 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ 2686 sqlite3_int64 *piDocid, /* OUT: Docid value */ 2687 char **paPoslist, /* OUT: Pointer to position list */ 2688 int *pnPoslist /* OUT: Size of position list in bytes */ 2689 ){ 2690 int nMerge = pMsr->nAdvance; 2691 Fts3SegReader **apSegment = pMsr->apSegment; 2692 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( 2693 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp 2694 ); 2695 2696 if( nMerge==0 ){ 2697 *paPoslist = 0; 2698 return SQLITE_OK; 2699 } 2700 2701 while( 1 ){ 2702 Fts3SegReader *pSeg; 2703 pSeg = pMsr->apSegment[0]; 2704 2705 if( pSeg->pOffsetList==0 ){ 2706 *paPoslist = 0; 2707 break; 2708 }else{ 2709 int rc; 2710 char *pList; 2711 int nList; 2712 int j; 2713 sqlite3_int64 iDocid = apSegment[0]->iDocid; 2714 2715 rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); 2716 j = 1; 2717 while( rc==SQLITE_OK 2718 && j<nMerge 2719 && apSegment[j]->pOffsetList 2720 && apSegment[j]->iDocid==iDocid 2721 ){ 2722 rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0); 2723 j++; 2724 } 2725 if( rc!=SQLITE_OK ) return rc; 2726 fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp); 2727 2728 if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){ 2729 rc = fts3MsrBufferData(pMsr, pList, (i64)nList+1); 2730 if( rc!=SQLITE_OK ) return rc; 2731 assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 ); 2732 pList = pMsr->aBuffer; 2733 } 2734 2735 if( pMsr->iColFilter>=0 ){ 2736 fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList); 2737 } 2738 2739 if( nList>0 ){ 2740 *paPoslist = pList; 2741 *piDocid = iDocid; 2742 *pnPoslist = nList; 2743 break; 2744 } 2745 } 2746 } 2747 2748 return SQLITE_OK; 2749 } 2750 2751 static int fts3SegReaderStart( 2752 Fts3Table *p, /* Virtual table handle */ 2753 Fts3MultiSegReader *pCsr, /* Cursor object */ 2754 const char *zTerm, /* Term searched for (or NULL) */ 2755 int nTerm /* Length of zTerm in bytes */ 2756 ){ 2757 int i; 2758 int nSeg = pCsr->nSegment; 2759 2760 /* If the Fts3SegFilter defines a specific term (or term prefix) to search 2761 ** for, then advance each segment iterator until it points to a term of 2762 ** equal or greater value than the specified term. This prevents many 2763 ** unnecessary merge/sort operations for the case where single segment 2764 ** b-tree leaf nodes contain more than one term. 2765 */ 2766 for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){ 2767 int res = 0; 2768 Fts3SegReader *pSeg = pCsr->apSegment[i]; 2769 do { 2770 int rc = fts3SegReaderNext(p, pSeg, 0); 2771 if( rc!=SQLITE_OK ) return rc; 2772 }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 ); 2773 2774 if( pSeg->bLookup && res!=0 ){ 2775 fts3SegReaderSetEof(pSeg); 2776 } 2777 } 2778 fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp); 2779 2780 return SQLITE_OK; 2781 } 2782 2783 int sqlite3Fts3SegReaderStart( 2784 Fts3Table *p, /* Virtual table handle */ 2785 Fts3MultiSegReader *pCsr, /* Cursor object */ 2786 Fts3SegFilter *pFilter /* Restrictions on range of iteration */ 2787 ){ 2788 pCsr->pFilter = pFilter; 2789 return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm); 2790 } 2791 2792 int sqlite3Fts3MsrIncrStart( 2793 Fts3Table *p, /* Virtual table handle */ 2794 Fts3MultiSegReader *pCsr, /* Cursor object */ 2795 int iCol, /* Column to match on. */ 2796 const char *zTerm, /* Term to iterate through a doclist for */ 2797 int nTerm /* Number of bytes in zTerm */ 2798 ){ 2799 int i; 2800 int rc; 2801 int nSegment = pCsr->nSegment; 2802 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( 2803 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp 2804 ); 2805 2806 assert( pCsr->pFilter==0 ); 2807 assert( zTerm && nTerm>0 ); 2808 2809 /* Advance each segment iterator until it points to the term zTerm/nTerm. */ 2810 rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm); 2811 if( rc!=SQLITE_OK ) return rc; 2812 2813 /* Determine how many of the segments actually point to zTerm/nTerm. */ 2814 for(i=0; i<nSegment; i++){ 2815 Fts3SegReader *pSeg = pCsr->apSegment[i]; 2816 if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){ 2817 break; 2818 } 2819 } 2820 pCsr->nAdvance = i; 2821 2822 /* Advance each of the segments to point to the first docid. */ 2823 for(i=0; i<pCsr->nAdvance; i++){ 2824 rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]); 2825 if( rc!=SQLITE_OK ) return rc; 2826 } 2827 fts3SegReaderSort(pCsr->apSegment, i, i, xCmp); 2828 2829 assert( iCol<0 || iCol<p->nColumn ); 2830 pCsr->iColFilter = iCol; 2831 2832 return SQLITE_OK; 2833 } 2834 2835 /* 2836 ** This function is called on a MultiSegReader that has been started using 2837 ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also 2838 ** have been made. Calling this function puts the MultiSegReader in such 2839 ** a state that if the next two calls are: 2840 ** 2841 ** sqlite3Fts3SegReaderStart() 2842 ** sqlite3Fts3SegReaderStep() 2843 ** 2844 ** then the entire doclist for the term is available in 2845 ** MultiSegReader.aDoclist/nDoclist. 2846 */ 2847 int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){ 2848 int i; /* Used to iterate through segment-readers */ 2849 2850 assert( pCsr->zTerm==0 ); 2851 assert( pCsr->nTerm==0 ); 2852 assert( pCsr->aDoclist==0 ); 2853 assert( pCsr->nDoclist==0 ); 2854 2855 pCsr->nAdvance = 0; 2856 pCsr->bRestart = 1; 2857 for(i=0; i<pCsr->nSegment; i++){ 2858 pCsr->apSegment[i]->pOffsetList = 0; 2859 pCsr->apSegment[i]->nOffsetList = 0; 2860 pCsr->apSegment[i]->iDocid = 0; 2861 } 2862 2863 return SQLITE_OK; 2864 } 2865 2866 static int fts3GrowSegReaderBuffer(Fts3MultiSegReader *pCsr, i64 nReq){ 2867 if( nReq>pCsr->nBuffer ){ 2868 char *aNew; 2869 pCsr->nBuffer = nReq*2; 2870 aNew = sqlite3_realloc64(pCsr->aBuffer, pCsr->nBuffer); 2871 if( !aNew ){ 2872 return SQLITE_NOMEM; 2873 } 2874 pCsr->aBuffer = aNew; 2875 } 2876 return SQLITE_OK; 2877 } 2878 2879 2880 int sqlite3Fts3SegReaderStep( 2881 Fts3Table *p, /* Virtual table handle */ 2882 Fts3MultiSegReader *pCsr /* Cursor object */ 2883 ){ 2884 int rc = SQLITE_OK; 2885 2886 int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY); 2887 int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS); 2888 int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER); 2889 int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX); 2890 int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN); 2891 int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST); 2892 2893 Fts3SegReader **apSegment = pCsr->apSegment; 2894 int nSegment = pCsr->nSegment; 2895 Fts3SegFilter *pFilter = pCsr->pFilter; 2896 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( 2897 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp 2898 ); 2899 2900 if( pCsr->nSegment==0 ) return SQLITE_OK; 2901 2902 do { 2903 int nMerge; 2904 int i; 2905 2906 /* Advance the first pCsr->nAdvance entries in the apSegment[] array 2907 ** forward. Then sort the list in order of current term again. 2908 */ 2909 for(i=0; i<pCsr->nAdvance; i++){ 2910 Fts3SegReader *pSeg = apSegment[i]; 2911 if( pSeg->bLookup ){ 2912 fts3SegReaderSetEof(pSeg); 2913 }else{ 2914 rc = fts3SegReaderNext(p, pSeg, 0); 2915 } 2916 if( rc!=SQLITE_OK ) return rc; 2917 } 2918 fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp); 2919 pCsr->nAdvance = 0; 2920 2921 /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */ 2922 assert( rc==SQLITE_OK ); 2923 if( apSegment[0]->aNode==0 ) break; 2924 2925 pCsr->nTerm = apSegment[0]->nTerm; 2926 pCsr->zTerm = apSegment[0]->zTerm; 2927 2928 /* If this is a prefix-search, and if the term that apSegment[0] points 2929 ** to does not share a suffix with pFilter->zTerm/nTerm, then all 2930 ** required callbacks have been made. In this case exit early. 2931 ** 2932 ** Similarly, if this is a search for an exact match, and the first term 2933 ** of segment apSegment[0] is not a match, exit early. 2934 */ 2935 if( pFilter->zTerm && !isScan ){ 2936 if( pCsr->nTerm<pFilter->nTerm 2937 || (!isPrefix && pCsr->nTerm>pFilter->nTerm) 2938 || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm) 2939 ){ 2940 break; 2941 } 2942 } 2943 2944 nMerge = 1; 2945 while( nMerge<nSegment 2946 && apSegment[nMerge]->aNode 2947 && apSegment[nMerge]->nTerm==pCsr->nTerm 2948 && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm) 2949 ){ 2950 nMerge++; 2951 } 2952 2953 assert( isIgnoreEmpty || (isRequirePos && !isColFilter) ); 2954 if( nMerge==1 2955 && !isIgnoreEmpty 2956 && !isFirst 2957 && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0) 2958 ){ 2959 pCsr->nDoclist = apSegment[0]->nDoclist; 2960 if( fts3SegReaderIsPending(apSegment[0]) ){ 2961 rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, 2962 (i64)pCsr->nDoclist); 2963 pCsr->aDoclist = pCsr->aBuffer; 2964 }else{ 2965 pCsr->aDoclist = apSegment[0]->aDoclist; 2966 } 2967 if( rc==SQLITE_OK ) rc = SQLITE_ROW; 2968 }else{ 2969 int nDoclist = 0; /* Size of doclist */ 2970 sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */ 2971 2972 /* The current term of the first nMerge entries in the array 2973 ** of Fts3SegReader objects is the same. The doclists must be merged 2974 ** and a single term returned with the merged doclist. 2975 */ 2976 for(i=0; i<nMerge; i++){ 2977 fts3SegReaderFirstDocid(p, apSegment[i]); 2978 } 2979 fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp); 2980 while( apSegment[0]->pOffsetList ){ 2981 int j; /* Number of segments that share a docid */ 2982 char *pList = 0; 2983 int nList = 0; 2984 int nByte; 2985 sqlite3_int64 iDocid = apSegment[0]->iDocid; 2986 fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); 2987 j = 1; 2988 while( j<nMerge 2989 && apSegment[j]->pOffsetList 2990 && apSegment[j]->iDocid==iDocid 2991 ){ 2992 fts3SegReaderNextDocid(p, apSegment[j], 0, 0); 2993 j++; 2994 } 2995 2996 if( isColFilter ){ 2997 fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList); 2998 } 2999 3000 if( !isIgnoreEmpty || nList>0 ){ 3001 3002 /* Calculate the 'docid' delta value to write into the merged 3003 ** doclist. */ 3004 sqlite3_int64 iDelta; 3005 if( p->bDescIdx && nDoclist>0 ){ 3006 if( iPrev<=iDocid ) return FTS_CORRUPT_VTAB; 3007 iDelta = (i64)((u64)iPrev - (u64)iDocid); 3008 }else{ 3009 if( nDoclist>0 && iPrev>=iDocid ) return FTS_CORRUPT_VTAB; 3010 iDelta = (i64)((u64)iDocid - (u64)iPrev); 3011 } 3012 3013 nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0); 3014 3015 rc = fts3GrowSegReaderBuffer(pCsr, 3016 (i64)nByte+nDoclist+FTS3_NODE_PADDING); 3017 if( rc ) return rc; 3018 3019 if( isFirst ){ 3020 char *a = &pCsr->aBuffer[nDoclist]; 3021 int nWrite; 3022 3023 nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a); 3024 if( nWrite ){ 3025 iPrev = iDocid; 3026 nDoclist += nWrite; 3027 } 3028 }else{ 3029 nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta); 3030 iPrev = iDocid; 3031 if( isRequirePos ){ 3032 memcpy(&pCsr->aBuffer[nDoclist], pList, nList); 3033 nDoclist += nList; 3034 pCsr->aBuffer[nDoclist++] = '\0'; 3035 } 3036 } 3037 } 3038 3039 fts3SegReaderSort(apSegment, nMerge, j, xCmp); 3040 } 3041 if( nDoclist>0 ){ 3042 rc = fts3GrowSegReaderBuffer(pCsr, (i64)nDoclist+FTS3_NODE_PADDING); 3043 if( rc ) return rc; 3044 memset(&pCsr->aBuffer[nDoclist], 0, FTS3_NODE_PADDING); 3045 pCsr->aDoclist = pCsr->aBuffer; 3046 pCsr->nDoclist = nDoclist; 3047 rc = SQLITE_ROW; 3048 } 3049 } 3050 pCsr->nAdvance = nMerge; 3051 }while( rc==SQLITE_OK ); 3052 3053 return rc; 3054 } 3055 3056 3057 void sqlite3Fts3SegReaderFinish( 3058 Fts3MultiSegReader *pCsr /* Cursor object */ 3059 ){ 3060 if( pCsr ){ 3061 int i; 3062 for(i=0; i<pCsr->nSegment; i++){ 3063 sqlite3Fts3SegReaderFree(pCsr->apSegment[i]); 3064 } 3065 sqlite3_free(pCsr->apSegment); 3066 sqlite3_free(pCsr->aBuffer); 3067 3068 pCsr->nSegment = 0; 3069 pCsr->apSegment = 0; 3070 pCsr->aBuffer = 0; 3071 } 3072 } 3073 3074 /* 3075 ** Decode the "end_block" field, selected by column iCol of the SELECT 3076 ** statement passed as the first argument. 3077 ** 3078 ** The "end_block" field may contain either an integer, or a text field 3079 ** containing the text representation of two non-negative integers separated 3080 ** by one or more space (0x20) characters. In the first case, set *piEndBlock 3081 ** to the integer value and *pnByte to zero before returning. In the second, 3082 ** set *piEndBlock to the first value and *pnByte to the second. 3083 */ 3084 static void fts3ReadEndBlockField( 3085 sqlite3_stmt *pStmt, 3086 int iCol, 3087 i64 *piEndBlock, 3088 i64 *pnByte 3089 ){ 3090 const unsigned char *zText = sqlite3_column_text(pStmt, iCol); 3091 if( zText ){ 3092 int i; 3093 int iMul = 1; 3094 u64 iVal = 0; 3095 for(i=0; zText[i]>='0' && zText[i]<='9'; i++){ 3096 iVal = iVal*10 + (zText[i] - '0'); 3097 } 3098 *piEndBlock = (i64)iVal; 3099 while( zText[i]==' ' ) i++; 3100 iVal = 0; 3101 if( zText[i]=='-' ){ 3102 i++; 3103 iMul = -1; 3104 } 3105 for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){ 3106 iVal = iVal*10 + (zText[i] - '0'); 3107 } 3108 *pnByte = ((i64)iVal * (i64)iMul); 3109 } 3110 } 3111 3112 3113 /* 3114 ** A segment of size nByte bytes has just been written to absolute level 3115 ** iAbsLevel. Promote any segments that should be promoted as a result. 3116 */ 3117 static int fts3PromoteSegments( 3118 Fts3Table *p, /* FTS table handle */ 3119 sqlite3_int64 iAbsLevel, /* Absolute level just updated */ 3120 sqlite3_int64 nByte /* Size of new segment at iAbsLevel */ 3121 ){ 3122 int rc = SQLITE_OK; 3123 sqlite3_stmt *pRange; 3124 3125 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0); 3126 3127 if( rc==SQLITE_OK ){ 3128 int bOk = 0; 3129 i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1; 3130 i64 nLimit = (nByte*3)/2; 3131 3132 /* Loop through all entries in the %_segdir table corresponding to 3133 ** segments in this index on levels greater than iAbsLevel. If there is 3134 ** at least one such segment, and it is possible to determine that all 3135 ** such segments are smaller than nLimit bytes in size, they will be 3136 ** promoted to level iAbsLevel. */ 3137 sqlite3_bind_int64(pRange, 1, iAbsLevel+1); 3138 sqlite3_bind_int64(pRange, 2, iLast); 3139 while( SQLITE_ROW==sqlite3_step(pRange) ){ 3140 i64 nSize = 0, dummy; 3141 fts3ReadEndBlockField(pRange, 2, &dummy, &nSize); 3142 if( nSize<=0 || nSize>nLimit ){ 3143 /* If nSize==0, then the %_segdir.end_block field does not not 3144 ** contain a size value. This happens if it was written by an 3145 ** old version of FTS. In this case it is not possible to determine 3146 ** the size of the segment, and so segment promotion does not 3147 ** take place. */ 3148 bOk = 0; 3149 break; 3150 } 3151 bOk = 1; 3152 } 3153 rc = sqlite3_reset(pRange); 3154 3155 if( bOk ){ 3156 int iIdx = 0; 3157 sqlite3_stmt *pUpdate1 = 0; 3158 sqlite3_stmt *pUpdate2 = 0; 3159 3160 if( rc==SQLITE_OK ){ 3161 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0); 3162 } 3163 if( rc==SQLITE_OK ){ 3164 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0); 3165 } 3166 3167 if( rc==SQLITE_OK ){ 3168 3169 /* Loop through all %_segdir entries for segments in this index with 3170 ** levels equal to or greater than iAbsLevel. As each entry is visited, 3171 ** updated it to set (level = -1) and (idx = N), where N is 0 for the 3172 ** oldest segment in the range, 1 for the next oldest, and so on. 3173 ** 3174 ** In other words, move all segments being promoted to level -1, 3175 ** setting the "idx" fields as appropriate to keep them in the same 3176 ** order. The contents of level -1 (which is never used, except 3177 ** transiently here), will be moved back to level iAbsLevel below. */ 3178 sqlite3_bind_int64(pRange, 1, iAbsLevel); 3179 while( SQLITE_ROW==sqlite3_step(pRange) ){ 3180 sqlite3_bind_int(pUpdate1, 1, iIdx++); 3181 sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0)); 3182 sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1)); 3183 sqlite3_step(pUpdate1); 3184 rc = sqlite3_reset(pUpdate1); 3185 if( rc!=SQLITE_OK ){ 3186 sqlite3_reset(pRange); 3187 break; 3188 } 3189 } 3190 } 3191 if( rc==SQLITE_OK ){ 3192 rc = sqlite3_reset(pRange); 3193 } 3194 3195 /* Move level -1 to level iAbsLevel */ 3196 if( rc==SQLITE_OK ){ 3197 sqlite3_bind_int64(pUpdate2, 1, iAbsLevel); 3198 sqlite3_step(pUpdate2); 3199 rc = sqlite3_reset(pUpdate2); 3200 } 3201 } 3202 } 3203 3204 3205 return rc; 3206 } 3207 3208 /* 3209 ** Merge all level iLevel segments in the database into a single 3210 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a 3211 ** single segment with a level equal to the numerically largest level 3212 ** currently present in the database. 3213 ** 3214 ** If this function is called with iLevel<0, but there is only one 3215 ** segment in the database, SQLITE_DONE is returned immediately. 3216 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, 3217 ** an SQLite error code is returned. 3218 */ 3219 static int fts3SegmentMerge( 3220 Fts3Table *p, 3221 int iLangid, /* Language id to merge */ 3222 int iIndex, /* Index in p->aIndex[] to merge */ 3223 int iLevel /* Level to merge */ 3224 ){ 3225 int rc; /* Return code */ 3226 int iIdx = 0; /* Index of new segment */ 3227 sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */ 3228 SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */ 3229 Fts3SegFilter filter; /* Segment term filter condition */ 3230 Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */ 3231 int bIgnoreEmpty = 0; /* True to ignore empty segments */ 3232 i64 iMaxLevel = 0; /* Max level number for this index/langid */ 3233 3234 assert( iLevel==FTS3_SEGCURSOR_ALL 3235 || iLevel==FTS3_SEGCURSOR_PENDING 3236 || iLevel>=0 3237 ); 3238 assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); 3239 assert( iIndex>=0 && iIndex<p->nIndex ); 3240 3241 rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr); 3242 if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished; 3243 3244 if( iLevel!=FTS3_SEGCURSOR_PENDING ){ 3245 rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel); 3246 if( rc!=SQLITE_OK ) goto finished; 3247 } 3248 3249 if( iLevel==FTS3_SEGCURSOR_ALL ){ 3250 /* This call is to merge all segments in the database to a single 3251 ** segment. The level of the new segment is equal to the numerically 3252 ** greatest segment level currently present in the database for this 3253 ** index. The idx of the new segment is always 0. */ 3254 if( csr.nSegment==1 && 0==fts3SegReaderIsPending(csr.apSegment[0]) ){ 3255 rc = SQLITE_DONE; 3256 goto finished; 3257 } 3258 iNewLevel = iMaxLevel; 3259 bIgnoreEmpty = 1; 3260 3261 }else{ 3262 /* This call is to merge all segments at level iLevel. find the next 3263 ** available segment index at level iLevel+1. The call to 3264 ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to 3265 ** a single iLevel+2 segment if necessary. */ 3266 assert( FTS3_SEGCURSOR_PENDING==-1 ); 3267 iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1); 3268 rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx); 3269 bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel); 3270 } 3271 if( rc!=SQLITE_OK ) goto finished; 3272 3273 assert( csr.nSegment>0 ); 3274 assert_fts3_nc( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) ); 3275 assert_fts3_nc( 3276 iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) 3277 ); 3278 3279 memset(&filter, 0, sizeof(Fts3SegFilter)); 3280 filter.flags = FTS3_SEGMENT_REQUIRE_POS; 3281 filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0); 3282 3283 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); 3284 while( SQLITE_OK==rc ){ 3285 rc = sqlite3Fts3SegReaderStep(p, &csr); 3286 if( rc!=SQLITE_ROW ) break; 3287 rc = fts3SegWriterAdd(p, &pWriter, 1, 3288 csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist); 3289 } 3290 if( rc!=SQLITE_OK ) goto finished; 3291 assert_fts3_nc( pWriter || bIgnoreEmpty ); 3292 3293 if( iLevel!=FTS3_SEGCURSOR_PENDING ){ 3294 rc = fts3DeleteSegdir( 3295 p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment 3296 ); 3297 if( rc!=SQLITE_OK ) goto finished; 3298 } 3299 if( pWriter ){ 3300 rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx); 3301 if( rc==SQLITE_OK ){ 3302 if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){ 3303 rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData); 3304 } 3305 } 3306 } 3307 3308 finished: 3309 fts3SegWriterFree(pWriter); 3310 sqlite3Fts3SegReaderFinish(&csr); 3311 return rc; 3312 } 3313 3314 3315 /* 3316 ** Flush the contents of pendingTerms to level 0 segments. 3317 */ 3318 int sqlite3Fts3PendingTermsFlush(Fts3Table *p){ 3319 int rc = SQLITE_OK; 3320 int i; 3321 3322 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ 3323 rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING); 3324 if( rc==SQLITE_DONE ) rc = SQLITE_OK; 3325 } 3326 sqlite3Fts3PendingTermsClear(p); 3327 3328 /* Determine the auto-incr-merge setting if unknown. If enabled, 3329 ** estimate the number of leaf blocks of content to be written 3330 */ 3331 if( rc==SQLITE_OK && p->bHasStat 3332 && p->nAutoincrmerge==0xff && p->nLeafAdd>0 3333 ){ 3334 sqlite3_stmt *pStmt = 0; 3335 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); 3336 if( rc==SQLITE_OK ){ 3337 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); 3338 rc = sqlite3_step(pStmt); 3339 if( rc==SQLITE_ROW ){ 3340 p->nAutoincrmerge = sqlite3_column_int(pStmt, 0); 3341 if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8; 3342 }else if( rc==SQLITE_DONE ){ 3343 p->nAutoincrmerge = 0; 3344 } 3345 rc = sqlite3_reset(pStmt); 3346 } 3347 } 3348 return rc; 3349 } 3350 3351 /* 3352 ** Encode N integers as varints into a blob. 3353 */ 3354 static void fts3EncodeIntArray( 3355 int N, /* The number of integers to encode */ 3356 u32 *a, /* The integer values */ 3357 char *zBuf, /* Write the BLOB here */ 3358 int *pNBuf /* Write number of bytes if zBuf[] used here */ 3359 ){ 3360 int i, j; 3361 for(i=j=0; i<N; i++){ 3362 j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]); 3363 } 3364 *pNBuf = j; 3365 } 3366 3367 /* 3368 ** Decode a blob of varints into N integers 3369 */ 3370 static void fts3DecodeIntArray( 3371 int N, /* The number of integers to decode */ 3372 u32 *a, /* Write the integer values */ 3373 const char *zBuf, /* The BLOB containing the varints */ 3374 int nBuf /* size of the BLOB */ 3375 ){ 3376 int i = 0; 3377 if( nBuf && (zBuf[nBuf-1]&0x80)==0 ){ 3378 int j; 3379 for(i=j=0; i<N && j<nBuf; i++){ 3380 sqlite3_int64 x; 3381 j += sqlite3Fts3GetVarint(&zBuf[j], &x); 3382 a[i] = (u32)(x & 0xffffffff); 3383 } 3384 } 3385 while( i<N ) a[i++] = 0; 3386 } 3387 3388 /* 3389 ** Insert the sizes (in tokens) for each column of the document 3390 ** with docid equal to p->iPrevDocid. The sizes are encoded as 3391 ** a blob of varints. 3392 */ 3393 static void fts3InsertDocsize( 3394 int *pRC, /* Result code */ 3395 Fts3Table *p, /* Table into which to insert */ 3396 u32 *aSz /* Sizes of each column, in tokens */ 3397 ){ 3398 char *pBlob; /* The BLOB encoding of the document size */ 3399 int nBlob; /* Number of bytes in the BLOB */ 3400 sqlite3_stmt *pStmt; /* Statement used to insert the encoding */ 3401 int rc; /* Result code from subfunctions */ 3402 3403 if( *pRC ) return; 3404 pBlob = sqlite3_malloc64( 10*(sqlite3_int64)p->nColumn ); 3405 if( pBlob==0 ){ 3406 *pRC = SQLITE_NOMEM; 3407 return; 3408 } 3409 fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob); 3410 rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0); 3411 if( rc ){ 3412 sqlite3_free(pBlob); 3413 *pRC = rc; 3414 return; 3415 } 3416 sqlite3_bind_int64(pStmt, 1, p->iPrevDocid); 3417 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free); 3418 sqlite3_step(pStmt); 3419 *pRC = sqlite3_reset(pStmt); 3420 } 3421 3422 /* 3423 ** Record 0 of the %_stat table contains a blob consisting of N varints, 3424 ** where N is the number of user defined columns in the fts3 table plus 3425 ** two. If nCol is the number of user defined columns, then values of the 3426 ** varints are set as follows: 3427 ** 3428 ** Varint 0: Total number of rows in the table. 3429 ** 3430 ** Varint 1..nCol: For each column, the total number of tokens stored in 3431 ** the column for all rows of the table. 3432 ** 3433 ** Varint 1+nCol: The total size, in bytes, of all text values in all 3434 ** columns of all rows of the table. 3435 ** 3436 */ 3437 static void fts3UpdateDocTotals( 3438 int *pRC, /* The result code */ 3439 Fts3Table *p, /* Table being updated */ 3440 u32 *aSzIns, /* Size increases */ 3441 u32 *aSzDel, /* Size decreases */ 3442 int nChng /* Change in the number of documents */ 3443 ){ 3444 char *pBlob; /* Storage for BLOB written into %_stat */ 3445 int nBlob; /* Size of BLOB written into %_stat */ 3446 u32 *a; /* Array of integers that becomes the BLOB */ 3447 sqlite3_stmt *pStmt; /* Statement for reading and writing */ 3448 int i; /* Loop counter */ 3449 int rc; /* Result code from subfunctions */ 3450 3451 const int nStat = p->nColumn+2; 3452 3453 if( *pRC ) return; 3454 a = sqlite3_malloc64( (sizeof(u32)+10)*(sqlite3_int64)nStat ); 3455 if( a==0 ){ 3456 *pRC = SQLITE_NOMEM; 3457 return; 3458 } 3459 pBlob = (char*)&a[nStat]; 3460 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); 3461 if( rc ){ 3462 sqlite3_free(a); 3463 *pRC = rc; 3464 return; 3465 } 3466 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); 3467 if( sqlite3_step(pStmt)==SQLITE_ROW ){ 3468 fts3DecodeIntArray(nStat, a, 3469 sqlite3_column_blob(pStmt, 0), 3470 sqlite3_column_bytes(pStmt, 0)); 3471 }else{ 3472 memset(a, 0, sizeof(u32)*(nStat) ); 3473 } 3474 rc = sqlite3_reset(pStmt); 3475 if( rc!=SQLITE_OK ){ 3476 sqlite3_free(a); 3477 *pRC = rc; 3478 return; 3479 } 3480 if( nChng<0 && a[0]<(u32)(-nChng) ){ 3481 a[0] = 0; 3482 }else{ 3483 a[0] += nChng; 3484 } 3485 for(i=0; i<p->nColumn+1; i++){ 3486 u32 x = a[i+1]; 3487 if( x+aSzIns[i] < aSzDel[i] ){ 3488 x = 0; 3489 }else{ 3490 x = x + aSzIns[i] - aSzDel[i]; 3491 } 3492 a[i+1] = x; 3493 } 3494 fts3EncodeIntArray(nStat, a, pBlob, &nBlob); 3495 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); 3496 if( rc ){ 3497 sqlite3_free(a); 3498 *pRC = rc; 3499 return; 3500 } 3501 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); 3502 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC); 3503 sqlite3_step(pStmt); 3504 *pRC = sqlite3_reset(pStmt); 3505 sqlite3_bind_null(pStmt, 2); 3506 sqlite3_free(a); 3507 } 3508 3509 /* 3510 ** Merge the entire database so that there is one segment for each 3511 ** iIndex/iLangid combination. 3512 */ 3513 static int fts3DoOptimize(Fts3Table *p, int bReturnDone){ 3514 int bSeenDone = 0; 3515 int rc; 3516 sqlite3_stmt *pAllLangid = 0; 3517 3518 rc = sqlite3Fts3PendingTermsFlush(p); 3519 if( rc==SQLITE_OK ){ 3520 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); 3521 } 3522 if( rc==SQLITE_OK ){ 3523 int rc2; 3524 sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid); 3525 sqlite3_bind_int(pAllLangid, 2, p->nIndex); 3526 while( sqlite3_step(pAllLangid)==SQLITE_ROW ){ 3527 int i; 3528 int iLangid = sqlite3_column_int(pAllLangid, 0); 3529 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ 3530 rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL); 3531 if( rc==SQLITE_DONE ){ 3532 bSeenDone = 1; 3533 rc = SQLITE_OK; 3534 } 3535 } 3536 } 3537 rc2 = sqlite3_reset(pAllLangid); 3538 if( rc==SQLITE_OK ) rc = rc2; 3539 } 3540 3541 sqlite3Fts3SegmentsClose(p); 3542 3543 return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc; 3544 } 3545 3546 /* 3547 ** This function is called when the user executes the following statement: 3548 ** 3549 ** INSERT INTO <tbl>(<tbl>) VALUES('rebuild'); 3550 ** 3551 ** The entire FTS index is discarded and rebuilt. If the table is one 3552 ** created using the content=xxx option, then the new index is based on 3553 ** the current contents of the xxx table. Otherwise, it is rebuilt based 3554 ** on the contents of the %_content table. 3555 */ 3556 static int fts3DoRebuild(Fts3Table *p){ 3557 int rc; /* Return Code */ 3558 3559 rc = fts3DeleteAll(p, 0); 3560 if( rc==SQLITE_OK ){ 3561 u32 *aSz = 0; 3562 u32 *aSzIns = 0; 3563 u32 *aSzDel = 0; 3564 sqlite3_stmt *pStmt = 0; 3565 int nEntry = 0; 3566 3567 /* Compose and prepare an SQL statement to loop through the content table */ 3568 char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); 3569 if( !zSql ){ 3570 rc = SQLITE_NOMEM; 3571 }else{ 3572 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); 3573 sqlite3_free(zSql); 3574 } 3575 3576 if( rc==SQLITE_OK ){ 3577 sqlite3_int64 nByte = sizeof(u32) * ((sqlite3_int64)p->nColumn+1)*3; 3578 aSz = (u32 *)sqlite3_malloc64(nByte); 3579 if( aSz==0 ){ 3580 rc = SQLITE_NOMEM; 3581 }else{ 3582 memset(aSz, 0, nByte); 3583 aSzIns = &aSz[p->nColumn+1]; 3584 aSzDel = &aSzIns[p->nColumn+1]; 3585 } 3586 } 3587 3588 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ 3589 int iCol; 3590 int iLangid = langidFromSelect(p, pStmt); 3591 rc = fts3PendingTermsDocid(p, 0, iLangid, sqlite3_column_int64(pStmt, 0)); 3592 memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); 3593 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ 3594 if( p->abNotindexed[iCol]==0 ){ 3595 const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1); 3596 rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]); 3597 aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1); 3598 } 3599 } 3600 if( p->bHasDocsize ){ 3601 fts3InsertDocsize(&rc, p, aSz); 3602 } 3603 if( rc!=SQLITE_OK ){ 3604 sqlite3_finalize(pStmt); 3605 pStmt = 0; 3606 }else{ 3607 nEntry++; 3608 for(iCol=0; iCol<=p->nColumn; iCol++){ 3609 aSzIns[iCol] += aSz[iCol]; 3610 } 3611 } 3612 } 3613 if( p->bFts4 ){ 3614 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry); 3615 } 3616 sqlite3_free(aSz); 3617 3618 if( pStmt ){ 3619 int rc2 = sqlite3_finalize(pStmt); 3620 if( rc==SQLITE_OK ){ 3621 rc = rc2; 3622 } 3623 } 3624 } 3625 3626 return rc; 3627 } 3628 3629 3630 /* 3631 ** This function opens a cursor used to read the input data for an 3632 ** incremental merge operation. Specifically, it opens a cursor to scan 3633 ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute 3634 ** level iAbsLevel. 3635 */ 3636 static int fts3IncrmergeCsr( 3637 Fts3Table *p, /* FTS3 table handle */ 3638 sqlite3_int64 iAbsLevel, /* Absolute level to open */ 3639 int nSeg, /* Number of segments to merge */ 3640 Fts3MultiSegReader *pCsr /* Cursor object to populate */ 3641 ){ 3642 int rc; /* Return Code */ 3643 sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */ 3644 sqlite3_int64 nByte; /* Bytes allocated at pCsr->apSegment[] */ 3645 3646 /* Allocate space for the Fts3MultiSegReader.aCsr[] array */ 3647 memset(pCsr, 0, sizeof(*pCsr)); 3648 nByte = sizeof(Fts3SegReader *) * nSeg; 3649 pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc64(nByte); 3650 3651 if( pCsr->apSegment==0 ){ 3652 rc = SQLITE_NOMEM; 3653 }else{ 3654 memset(pCsr->apSegment, 0, nByte); 3655 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); 3656 } 3657 if( rc==SQLITE_OK ){ 3658 int i; 3659 int rc2; 3660 sqlite3_bind_int64(pStmt, 1, iAbsLevel); 3661 assert( pCsr->nSegment==0 ); 3662 for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){ 3663 rc = sqlite3Fts3SegReaderNew(i, 0, 3664 sqlite3_column_int64(pStmt, 1), /* segdir.start_block */ 3665 sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */ 3666 sqlite3_column_int64(pStmt, 3), /* segdir.end_block */ 3667 sqlite3_column_blob(pStmt, 4), /* segdir.root */ 3668 sqlite3_column_bytes(pStmt, 4), /* segdir.root */ 3669 &pCsr->apSegment[i] 3670 ); 3671 pCsr->nSegment++; 3672 } 3673 rc2 = sqlite3_reset(pStmt); 3674 if( rc==SQLITE_OK ) rc = rc2; 3675 } 3676 3677 return rc; 3678 } 3679 3680 typedef struct IncrmergeWriter IncrmergeWriter; 3681 typedef struct NodeWriter NodeWriter; 3682 typedef struct Blob Blob; 3683 typedef struct NodeReader NodeReader; 3684 3685 /* 3686 ** An instance of the following structure is used as a dynamic buffer 3687 ** to build up nodes or other blobs of data in. 3688 ** 3689 ** The function blobGrowBuffer() is used to extend the allocation. 3690 */ 3691 struct Blob { 3692 char *a; /* Pointer to allocation */ 3693 int n; /* Number of valid bytes of data in a[] */ 3694 int nAlloc; /* Allocated size of a[] (nAlloc>=n) */ 3695 }; 3696 3697 /* 3698 ** This structure is used to build up buffers containing segment b-tree 3699 ** nodes (blocks). 3700 */ 3701 struct NodeWriter { 3702 sqlite3_int64 iBlock; /* Current block id */ 3703 Blob key; /* Last key written to the current block */ 3704 Blob block; /* Current block image */ 3705 }; 3706 3707 /* 3708 ** An object of this type contains the state required to create or append 3709 ** to an appendable b-tree segment. 3710 */ 3711 struct IncrmergeWriter { 3712 int nLeafEst; /* Space allocated for leaf blocks */ 3713 int nWork; /* Number of leaf pages flushed */ 3714 sqlite3_int64 iAbsLevel; /* Absolute level of input segments */ 3715 int iIdx; /* Index of *output* segment in iAbsLevel+1 */ 3716 sqlite3_int64 iStart; /* Block number of first allocated block */ 3717 sqlite3_int64 iEnd; /* Block number of last allocated block */ 3718 sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */ 3719 u8 bNoLeafData; /* If true, store 0 for segment size */ 3720 NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT]; 3721 }; 3722 3723 /* 3724 ** An object of the following type is used to read data from a single 3725 ** FTS segment node. See the following functions: 3726 ** 3727 ** nodeReaderInit() 3728 ** nodeReaderNext() 3729 ** nodeReaderRelease() 3730 */ 3731 struct NodeReader { 3732 const char *aNode; 3733 int nNode; 3734 int iOff; /* Current offset within aNode[] */ 3735 3736 /* Output variables. Containing the current node entry. */ 3737 sqlite3_int64 iChild; /* Pointer to child node */ 3738 Blob term; /* Current term */ 3739 const char *aDoclist; /* Pointer to doclist */ 3740 int nDoclist; /* Size of doclist in bytes */ 3741 }; 3742 3743 /* 3744 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. 3745 ** Otherwise, if the allocation at pBlob->a is not already at least nMin 3746 ** bytes in size, extend (realloc) it to be so. 3747 ** 3748 ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a 3749 ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc 3750 ** to reflect the new size of the pBlob->a[] buffer. 3751 */ 3752 static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){ 3753 if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){ 3754 int nAlloc = nMin; 3755 char *a = (char *)sqlite3_realloc64(pBlob->a, nAlloc); 3756 if( a ){ 3757 pBlob->nAlloc = nAlloc; 3758 pBlob->a = a; 3759 }else{ 3760 *pRc = SQLITE_NOMEM; 3761 } 3762 } 3763 } 3764 3765 /* 3766 ** Attempt to advance the node-reader object passed as the first argument to 3767 ** the next entry on the node. 3768 ** 3769 ** Return an error code if an error occurs (SQLITE_NOMEM is possible). 3770 ** Otherwise return SQLITE_OK. If there is no next entry on the node 3771 ** (e.g. because the current entry is the last) set NodeReader->aNode to 3772 ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output 3773 ** variables for the new entry. 3774 */ 3775 static int nodeReaderNext(NodeReader *p){ 3776 int bFirst = (p->term.n==0); /* True for first term on the node */ 3777 int nPrefix = 0; /* Bytes to copy from previous term */ 3778 int nSuffix = 0; /* Bytes to append to the prefix */ 3779 int rc = SQLITE_OK; /* Return code */ 3780 3781 assert( p->aNode ); 3782 if( p->iChild && bFirst==0 ) p->iChild++; 3783 if( p->iOff>=p->nNode ){ 3784 /* EOF */ 3785 p->aNode = 0; 3786 }else{ 3787 if( bFirst==0 ){ 3788 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix); 3789 } 3790 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix); 3791 3792 if( nPrefix>p->term.n || nSuffix>p->nNode-p->iOff || nSuffix==0 ){ 3793 return FTS_CORRUPT_VTAB; 3794 } 3795 blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc); 3796 if( rc==SQLITE_OK && ALWAYS(p->term.a!=0) ){ 3797 memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix); 3798 p->term.n = nPrefix+nSuffix; 3799 p->iOff += nSuffix; 3800 if( p->iChild==0 ){ 3801 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist); 3802 if( (p->nNode-p->iOff)<p->nDoclist ){ 3803 return FTS_CORRUPT_VTAB; 3804 } 3805 p->aDoclist = &p->aNode[p->iOff]; 3806 p->iOff += p->nDoclist; 3807 } 3808 } 3809 } 3810 3811 assert_fts3_nc( p->iOff<=p->nNode ); 3812 return rc; 3813 } 3814 3815 /* 3816 ** Release all dynamic resources held by node-reader object *p. 3817 */ 3818 static void nodeReaderRelease(NodeReader *p){ 3819 sqlite3_free(p->term.a); 3820 } 3821 3822 /* 3823 ** Initialize a node-reader object to read the node in buffer aNode/nNode. 3824 ** 3825 ** If successful, SQLITE_OK is returned and the NodeReader object set to 3826 ** point to the first entry on the node (if any). Otherwise, an SQLite 3827 ** error code is returned. 3828 */ 3829 static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){ 3830 memset(p, 0, sizeof(NodeReader)); 3831 p->aNode = aNode; 3832 p->nNode = nNode; 3833 3834 /* Figure out if this is a leaf or an internal node. */ 3835 if( aNode && aNode[0] ){ 3836 /* An internal node. */ 3837 p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild); 3838 }else{ 3839 p->iOff = 1; 3840 } 3841 3842 return aNode ? nodeReaderNext(p) : SQLITE_OK; 3843 } 3844 3845 /* 3846 ** This function is called while writing an FTS segment each time a leaf o 3847 ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed 3848 ** to be greater than the largest key on the node just written, but smaller 3849 ** than or equal to the first key that will be written to the next leaf 3850 ** node. 3851 ** 3852 ** The block id of the leaf node just written to disk may be found in 3853 ** (pWriter->aNodeWriter[0].iBlock) when this function is called. 3854 */ 3855 static int fts3IncrmergePush( 3856 Fts3Table *p, /* Fts3 table handle */ 3857 IncrmergeWriter *pWriter, /* Writer object */ 3858 const char *zTerm, /* Term to write to internal node */ 3859 int nTerm /* Bytes at zTerm */ 3860 ){ 3861 sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock; 3862 int iLayer; 3863 3864 assert( nTerm>0 ); 3865 for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){ 3866 sqlite3_int64 iNextPtr = 0; 3867 NodeWriter *pNode = &pWriter->aNodeWriter[iLayer]; 3868 int rc = SQLITE_OK; 3869 int nPrefix; 3870 int nSuffix; 3871 int nSpace; 3872 3873 /* Figure out how much space the key will consume if it is written to 3874 ** the current node of layer iLayer. Due to the prefix compression, 3875 ** the space required changes depending on which node the key is to 3876 ** be added to. */ 3877 nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm); 3878 nSuffix = nTerm - nPrefix; 3879 if(nSuffix<=0 ) return FTS_CORRUPT_VTAB; 3880 nSpace = sqlite3Fts3VarintLen(nPrefix); 3881 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; 3882 3883 if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){ 3884 /* If the current node of layer iLayer contains zero keys, or if adding 3885 ** the key to it will not cause it to grow to larger than nNodeSize 3886 ** bytes in size, write the key here. */ 3887 3888 Blob *pBlk = &pNode->block; 3889 if( pBlk->n==0 ){ 3890 blobGrowBuffer(pBlk, p->nNodeSize, &rc); 3891 if( rc==SQLITE_OK ){ 3892 pBlk->a[0] = (char)iLayer; 3893 pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr); 3894 } 3895 } 3896 blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc); 3897 blobGrowBuffer(&pNode->key, nTerm, &rc); 3898 3899 if( rc==SQLITE_OK ){ 3900 if( pNode->key.n ){ 3901 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix); 3902 } 3903 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix); 3904 assert( nPrefix+nSuffix<=nTerm ); 3905 assert( nPrefix>=0 ); 3906 memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix); 3907 pBlk->n += nSuffix; 3908 3909 memcpy(pNode->key.a, zTerm, nTerm); 3910 pNode->key.n = nTerm; 3911 } 3912 }else{ 3913 /* Otherwise, flush the current node of layer iLayer to disk. 3914 ** Then allocate a new, empty sibling node. The key will be written 3915 ** into the parent of this node. */ 3916 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); 3917 3918 assert( pNode->block.nAlloc>=p->nNodeSize ); 3919 pNode->block.a[0] = (char)iLayer; 3920 pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1); 3921 3922 iNextPtr = pNode->iBlock; 3923 pNode->iBlock++; 3924 pNode->key.n = 0; 3925 } 3926 3927 if( rc!=SQLITE_OK || iNextPtr==0 ) return rc; 3928 iPtr = iNextPtr; 3929 } 3930 3931 assert( 0 ); 3932 return 0; 3933 } 3934 3935 /* 3936 ** Append a term and (optionally) doclist to the FTS segment node currently 3937 ** stored in blob *pNode. The node need not contain any terms, but the 3938 ** header must be written before this function is called. 3939 ** 3940 ** A node header is a single 0x00 byte for a leaf node, or a height varint 3941 ** followed by the left-hand-child varint for an internal node. 3942 ** 3943 ** The term to be appended is passed via arguments zTerm/nTerm. For a 3944 ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal 3945 ** node, both aDoclist and nDoclist must be passed 0. 3946 ** 3947 ** If the size of the value in blob pPrev is zero, then this is the first 3948 ** term written to the node. Otherwise, pPrev contains a copy of the 3949 ** previous term. Before this function returns, it is updated to contain a 3950 ** copy of zTerm/nTerm. 3951 ** 3952 ** It is assumed that the buffer associated with pNode is already large 3953 ** enough to accommodate the new entry. The buffer associated with pPrev 3954 ** is extended by this function if requrired. 3955 ** 3956 ** If an error (i.e. OOM condition) occurs, an SQLite error code is 3957 ** returned. Otherwise, SQLITE_OK. 3958 */ 3959 static int fts3AppendToNode( 3960 Blob *pNode, /* Current node image to append to */ 3961 Blob *pPrev, /* Buffer containing previous term written */ 3962 const char *zTerm, /* New term to write */ 3963 int nTerm, /* Size of zTerm in bytes */ 3964 const char *aDoclist, /* Doclist (or NULL) to write */ 3965 int nDoclist /* Size of aDoclist in bytes */ 3966 ){ 3967 int rc = SQLITE_OK; /* Return code */ 3968 int bFirst = (pPrev->n==0); /* True if this is the first term written */ 3969 int nPrefix; /* Size of term prefix in bytes */ 3970 int nSuffix; /* Size of term suffix in bytes */ 3971 3972 /* Node must have already been started. There must be a doclist for a 3973 ** leaf node, and there must not be a doclist for an internal node. */ 3974 assert( pNode->n>0 ); 3975 assert_fts3_nc( (pNode->a[0]=='\0')==(aDoclist!=0) ); 3976 3977 blobGrowBuffer(pPrev, nTerm, &rc); 3978 if( rc!=SQLITE_OK ) return rc; 3979 3980 nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm); 3981 nSuffix = nTerm - nPrefix; 3982 if( nSuffix<=0 ) return FTS_CORRUPT_VTAB; 3983 memcpy(pPrev->a, zTerm, nTerm); 3984 pPrev->n = nTerm; 3985 3986 if( bFirst==0 ){ 3987 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix); 3988 } 3989 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix); 3990 memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix); 3991 pNode->n += nSuffix; 3992 3993 if( aDoclist ){ 3994 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist); 3995 memcpy(&pNode->a[pNode->n], aDoclist, nDoclist); 3996 pNode->n += nDoclist; 3997 } 3998 3999 assert( pNode->n<=pNode->nAlloc ); 4000 4001 return SQLITE_OK; 4002 } 4003 4004 /* 4005 ** Append the current term and doclist pointed to by cursor pCsr to the 4006 ** appendable b-tree segment opened for writing by pWriter. 4007 ** 4008 ** Return SQLITE_OK if successful, or an SQLite error code otherwise. 4009 */ 4010 static int fts3IncrmergeAppend( 4011 Fts3Table *p, /* Fts3 table handle */ 4012 IncrmergeWriter *pWriter, /* Writer object */ 4013 Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */ 4014 ){ 4015 const char *zTerm = pCsr->zTerm; 4016 int nTerm = pCsr->nTerm; 4017 const char *aDoclist = pCsr->aDoclist; 4018 int nDoclist = pCsr->nDoclist; 4019 int rc = SQLITE_OK; /* Return code */ 4020 int nSpace; /* Total space in bytes required on leaf */ 4021 int nPrefix; /* Size of prefix shared with previous term */ 4022 int nSuffix; /* Size of suffix (nTerm - nPrefix) */ 4023 NodeWriter *pLeaf; /* Object used to write leaf nodes */ 4024 4025 pLeaf = &pWriter->aNodeWriter[0]; 4026 nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm); 4027 nSuffix = nTerm - nPrefix; 4028 if(nSuffix<=0 ) return FTS_CORRUPT_VTAB; 4029 4030 nSpace = sqlite3Fts3VarintLen(nPrefix); 4031 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; 4032 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; 4033 4034 /* If the current block is not empty, and if adding this term/doclist 4035 ** to the current block would make it larger than Fts3Table.nNodeSize 4036 ** bytes, write this block out to the database. */ 4037 if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){ 4038 rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n); 4039 pWriter->nWork++; 4040 4041 /* Add the current term to the parent node. The term added to the 4042 ** parent must: 4043 ** 4044 ** a) be greater than the largest term on the leaf node just written 4045 ** to the database (still available in pLeaf->key), and 4046 ** 4047 ** b) be less than or equal to the term about to be added to the new 4048 ** leaf node (zTerm/nTerm). 4049 ** 4050 ** In other words, it must be the prefix of zTerm 1 byte longer than 4051 ** the common prefix (if any) of zTerm and pWriter->zTerm. 4052 */ 4053 if( rc==SQLITE_OK ){ 4054 rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1); 4055 } 4056 4057 /* Advance to the next output block */ 4058 pLeaf->iBlock++; 4059 pLeaf->key.n = 0; 4060 pLeaf->block.n = 0; 4061 4062 nSuffix = nTerm; 4063 nSpace = 1; 4064 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; 4065 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; 4066 } 4067 4068 pWriter->nLeafData += nSpace; 4069 blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc); 4070 if( rc==SQLITE_OK ){ 4071 if( pLeaf->block.n==0 ){ 4072 pLeaf->block.n = 1; 4073 pLeaf->block.a[0] = '\0'; 4074 } 4075 rc = fts3AppendToNode( 4076 &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist 4077 ); 4078 } 4079 4080 return rc; 4081 } 4082 4083 /* 4084 ** This function is called to release all dynamic resources held by the 4085 ** merge-writer object pWriter, and if no error has occurred, to flush 4086 ** all outstanding node buffers held by pWriter to disk. 4087 ** 4088 ** If *pRc is not SQLITE_OK when this function is called, then no attempt 4089 ** is made to write any data to disk. Instead, this function serves only 4090 ** to release outstanding resources. 4091 ** 4092 ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while 4093 ** flushing buffers to disk, *pRc is set to an SQLite error code before 4094 ** returning. 4095 */ 4096 static void fts3IncrmergeRelease( 4097 Fts3Table *p, /* FTS3 table handle */ 4098 IncrmergeWriter *pWriter, /* Merge-writer object */ 4099 int *pRc /* IN/OUT: Error code */ 4100 ){ 4101 int i; /* Used to iterate through non-root layers */ 4102 int iRoot; /* Index of root in pWriter->aNodeWriter */ 4103 NodeWriter *pRoot; /* NodeWriter for root node */ 4104 int rc = *pRc; /* Error code */ 4105 4106 /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment 4107 ** root node. If the segment fits entirely on a single leaf node, iRoot 4108 ** will be set to 0. If the root node is the parent of the leaves, iRoot 4109 ** will be 1. And so on. */ 4110 for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){ 4111 NodeWriter *pNode = &pWriter->aNodeWriter[iRoot]; 4112 if( pNode->block.n>0 ) break; 4113 assert( *pRc || pNode->block.nAlloc==0 ); 4114 assert( *pRc || pNode->key.nAlloc==0 ); 4115 sqlite3_free(pNode->block.a); 4116 sqlite3_free(pNode->key.a); 4117 } 4118 4119 /* Empty output segment. This is a no-op. */ 4120 if( iRoot<0 ) return; 4121 4122 /* The entire output segment fits on a single node. Normally, this means 4123 ** the node would be stored as a blob in the "root" column of the %_segdir 4124 ** table. However, this is not permitted in this case. The problem is that 4125 ** space has already been reserved in the %_segments table, and so the 4126 ** start_block and end_block fields of the %_segdir table must be populated. 4127 ** And, by design or by accident, released versions of FTS cannot handle 4128 ** segments that fit entirely on the root node with start_block!=0. 4129 ** 4130 ** Instead, create a synthetic root node that contains nothing but a 4131 ** pointer to the single content node. So that the segment consists of a 4132 ** single leaf and a single interior (root) node. 4133 ** 4134 ** Todo: Better might be to defer allocating space in the %_segments 4135 ** table until we are sure it is needed. 4136 */ 4137 if( iRoot==0 ){ 4138 Blob *pBlock = &pWriter->aNodeWriter[1].block; 4139 blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc); 4140 if( rc==SQLITE_OK ){ 4141 pBlock->a[0] = 0x01; 4142 pBlock->n = 1 + sqlite3Fts3PutVarint( 4143 &pBlock->a[1], pWriter->aNodeWriter[0].iBlock 4144 ); 4145 } 4146 iRoot = 1; 4147 } 4148 pRoot = &pWriter->aNodeWriter[iRoot]; 4149 4150 /* Flush all currently outstanding nodes to disk. */ 4151 for(i=0; i<iRoot; i++){ 4152 NodeWriter *pNode = &pWriter->aNodeWriter[i]; 4153 if( pNode->block.n>0 && rc==SQLITE_OK ){ 4154 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); 4155 } 4156 sqlite3_free(pNode->block.a); 4157 sqlite3_free(pNode->key.a); 4158 } 4159 4160 /* Write the %_segdir record. */ 4161 if( rc==SQLITE_OK ){ 4162 rc = fts3WriteSegdir(p, 4163 pWriter->iAbsLevel+1, /* level */ 4164 pWriter->iIdx, /* idx */ 4165 pWriter->iStart, /* start_block */ 4166 pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */ 4167 pWriter->iEnd, /* end_block */ 4168 (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */ 4169 pRoot->block.a, pRoot->block.n /* root */ 4170 ); 4171 } 4172 sqlite3_free(pRoot->block.a); 4173 sqlite3_free(pRoot->key.a); 4174 4175 *pRc = rc; 4176 } 4177 4178 /* 4179 ** Compare the term in buffer zLhs (size in bytes nLhs) with that in 4180 ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of 4181 ** the other, it is considered to be smaller than the other. 4182 ** 4183 ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve 4184 ** if it is greater. 4185 */ 4186 static int fts3TermCmp( 4187 const char *zLhs, int nLhs, /* LHS of comparison */ 4188 const char *zRhs, int nRhs /* RHS of comparison */ 4189 ){ 4190 int nCmp = MIN(nLhs, nRhs); 4191 int res; 4192 4193 if( nCmp && ALWAYS(zLhs) && ALWAYS(zRhs) ){ 4194 res = memcmp(zLhs, zRhs, nCmp); 4195 }else{ 4196 res = 0; 4197 } 4198 if( res==0 ) res = nLhs - nRhs; 4199 4200 return res; 4201 } 4202 4203 4204 /* 4205 ** Query to see if the entry in the %_segments table with blockid iEnd is 4206 ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before 4207 ** returning. Otherwise, set *pbRes to 0. 4208 ** 4209 ** Or, if an error occurs while querying the database, return an SQLite 4210 ** error code. The final value of *pbRes is undefined in this case. 4211 ** 4212 ** This is used to test if a segment is an "appendable" segment. If it 4213 ** is, then a NULL entry has been inserted into the %_segments table 4214 ** with blockid %_segdir.end_block. 4215 */ 4216 static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){ 4217 int bRes = 0; /* Result to set *pbRes to */ 4218 sqlite3_stmt *pCheck = 0; /* Statement to query database with */ 4219 int rc; /* Return code */ 4220 4221 rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0); 4222 if( rc==SQLITE_OK ){ 4223 sqlite3_bind_int64(pCheck, 1, iEnd); 4224 if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1; 4225 rc = sqlite3_reset(pCheck); 4226 } 4227 4228 *pbRes = bRes; 4229 return rc; 4230 } 4231 4232 /* 4233 ** This function is called when initializing an incremental-merge operation. 4234 ** It checks if the existing segment with index value iIdx at absolute level 4235 ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the 4236 ** merge-writer object *pWriter is initialized to write to it. 4237 ** 4238 ** An existing segment can be appended to by an incremental merge if: 4239 ** 4240 ** * It was initially created as an appendable segment (with all required 4241 ** space pre-allocated), and 4242 ** 4243 ** * The first key read from the input (arguments zKey and nKey) is 4244 ** greater than the largest key currently stored in the potential 4245 ** output segment. 4246 */ 4247 static int fts3IncrmergeLoad( 4248 Fts3Table *p, /* Fts3 table handle */ 4249 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ 4250 int iIdx, /* Index of candidate output segment */ 4251 const char *zKey, /* First key to write */ 4252 int nKey, /* Number of bytes in nKey */ 4253 IncrmergeWriter *pWriter /* Populate this object */ 4254 ){ 4255 int rc; /* Return code */ 4256 sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */ 4257 4258 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0); 4259 if( rc==SQLITE_OK ){ 4260 sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */ 4261 sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */ 4262 sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */ 4263 const char *aRoot = 0; /* Pointer to %_segdir.root buffer */ 4264 int nRoot = 0; /* Size of aRoot[] in bytes */ 4265 int rc2; /* Return code from sqlite3_reset() */ 4266 int bAppendable = 0; /* Set to true if segment is appendable */ 4267 4268 /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */ 4269 sqlite3_bind_int64(pSelect, 1, iAbsLevel+1); 4270 sqlite3_bind_int(pSelect, 2, iIdx); 4271 if( sqlite3_step(pSelect)==SQLITE_ROW ){ 4272 iStart = sqlite3_column_int64(pSelect, 1); 4273 iLeafEnd = sqlite3_column_int64(pSelect, 2); 4274 fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData); 4275 if( pWriter->nLeafData<0 ){ 4276 pWriter->nLeafData = pWriter->nLeafData * -1; 4277 } 4278 pWriter->bNoLeafData = (pWriter->nLeafData==0); 4279 nRoot = sqlite3_column_bytes(pSelect, 4); 4280 aRoot = sqlite3_column_blob(pSelect, 4); 4281 if( aRoot==0 ){ 4282 sqlite3_reset(pSelect); 4283 return nRoot ? SQLITE_NOMEM : FTS_CORRUPT_VTAB; 4284 } 4285 }else{ 4286 return sqlite3_reset(pSelect); 4287 } 4288 4289 /* Check for the zero-length marker in the %_segments table */ 4290 rc = fts3IsAppendable(p, iEnd, &bAppendable); 4291 4292 /* Check that zKey/nKey is larger than the largest key the candidate */ 4293 if( rc==SQLITE_OK && bAppendable ){ 4294 char *aLeaf = 0; 4295 int nLeaf = 0; 4296 4297 rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0); 4298 if( rc==SQLITE_OK ){ 4299 NodeReader reader; 4300 for(rc = nodeReaderInit(&reader, aLeaf, nLeaf); 4301 rc==SQLITE_OK && reader.aNode; 4302 rc = nodeReaderNext(&reader) 4303 ){ 4304 assert( reader.aNode ); 4305 } 4306 if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){ 4307 bAppendable = 0; 4308 } 4309 nodeReaderRelease(&reader); 4310 } 4311 sqlite3_free(aLeaf); 4312 } 4313 4314 if( rc==SQLITE_OK && bAppendable ){ 4315 /* It is possible to append to this segment. Set up the IncrmergeWriter 4316 ** object to do so. */ 4317 int i; 4318 int nHeight = (int)aRoot[0]; 4319 NodeWriter *pNode; 4320 if( nHeight<1 || nHeight>=FTS_MAX_APPENDABLE_HEIGHT ){ 4321 sqlite3_reset(pSelect); 4322 return FTS_CORRUPT_VTAB; 4323 } 4324 4325 pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT; 4326 pWriter->iStart = iStart; 4327 pWriter->iEnd = iEnd; 4328 pWriter->iAbsLevel = iAbsLevel; 4329 pWriter->iIdx = iIdx; 4330 4331 for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ 4332 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; 4333 } 4334 4335 pNode = &pWriter->aNodeWriter[nHeight]; 4336 pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight; 4337 blobGrowBuffer(&pNode->block, 4338 MAX(nRoot, p->nNodeSize)+FTS3_NODE_PADDING, &rc 4339 ); 4340 if( rc==SQLITE_OK ){ 4341 memcpy(pNode->block.a, aRoot, nRoot); 4342 pNode->block.n = nRoot; 4343 memset(&pNode->block.a[nRoot], 0, FTS3_NODE_PADDING); 4344 } 4345 4346 for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){ 4347 NodeReader reader; 4348 pNode = &pWriter->aNodeWriter[i]; 4349 4350 if( pNode->block.a){ 4351 rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n); 4352 while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader); 4353 blobGrowBuffer(&pNode->key, reader.term.n, &rc); 4354 if( rc==SQLITE_OK ){ 4355 assert_fts3_nc( reader.term.n>0 || reader.aNode==0 ); 4356 if( reader.term.n>0 ){ 4357 memcpy(pNode->key.a, reader.term.a, reader.term.n); 4358 } 4359 pNode->key.n = reader.term.n; 4360 if( i>0 ){ 4361 char *aBlock = 0; 4362 int nBlock = 0; 4363 pNode = &pWriter->aNodeWriter[i-1]; 4364 pNode->iBlock = reader.iChild; 4365 rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock,0); 4366 blobGrowBuffer(&pNode->block, 4367 MAX(nBlock, p->nNodeSize)+FTS3_NODE_PADDING, &rc 4368 ); 4369 if( rc==SQLITE_OK ){ 4370 memcpy(pNode->block.a, aBlock, nBlock); 4371 pNode->block.n = nBlock; 4372 memset(&pNode->block.a[nBlock], 0, FTS3_NODE_PADDING); 4373 } 4374 sqlite3_free(aBlock); 4375 } 4376 } 4377 } 4378 nodeReaderRelease(&reader); 4379 } 4380 } 4381 4382 rc2 = sqlite3_reset(pSelect); 4383 if( rc==SQLITE_OK ) rc = rc2; 4384 } 4385 4386 return rc; 4387 } 4388 4389 /* 4390 ** Determine the largest segment index value that exists within absolute 4391 ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus 4392 ** one before returning SQLITE_OK. Or, if there are no segments at all 4393 ** within level iAbsLevel, set *piIdx to zero. 4394 ** 4395 ** If an error occurs, return an SQLite error code. The final value of 4396 ** *piIdx is undefined in this case. 4397 */ 4398 static int fts3IncrmergeOutputIdx( 4399 Fts3Table *p, /* FTS Table handle */ 4400 sqlite3_int64 iAbsLevel, /* Absolute index of input segments */ 4401 int *piIdx /* OUT: Next free index at iAbsLevel+1 */ 4402 ){ 4403 int rc; 4404 sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */ 4405 4406 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0); 4407 if( rc==SQLITE_OK ){ 4408 sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1); 4409 sqlite3_step(pOutputIdx); 4410 *piIdx = sqlite3_column_int(pOutputIdx, 0); 4411 rc = sqlite3_reset(pOutputIdx); 4412 } 4413 4414 return rc; 4415 } 4416 4417 /* 4418 ** Allocate an appendable output segment on absolute level iAbsLevel+1 4419 ** with idx value iIdx. 4420 ** 4421 ** In the %_segdir table, a segment is defined by the values in three 4422 ** columns: 4423 ** 4424 ** start_block 4425 ** leaves_end_block 4426 ** end_block 4427 ** 4428 ** When an appendable segment is allocated, it is estimated that the 4429 ** maximum number of leaf blocks that may be required is the sum of the 4430 ** number of leaf blocks consumed by the input segments, plus the number 4431 ** of input segments, multiplied by two. This value is stored in stack 4432 ** variable nLeafEst. 4433 ** 4434 ** A total of 16*nLeafEst blocks are allocated when an appendable segment 4435 ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous 4436 ** array of leaf nodes starts at the first block allocated. The array 4437 ** of interior nodes that are parents of the leaf nodes start at block 4438 ** (start_block + (1 + end_block - start_block) / 16). And so on. 4439 ** 4440 ** In the actual code below, the value "16" is replaced with the 4441 ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT. 4442 */ 4443 static int fts3IncrmergeWriter( 4444 Fts3Table *p, /* Fts3 table handle */ 4445 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ 4446 int iIdx, /* Index of new output segment */ 4447 Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */ 4448 IncrmergeWriter *pWriter /* Populate this object */ 4449 ){ 4450 int rc; /* Return Code */ 4451 int i; /* Iterator variable */ 4452 int nLeafEst = 0; /* Blocks allocated for leaf nodes */ 4453 sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */ 4454 sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */ 4455 4456 /* Calculate nLeafEst. */ 4457 rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0); 4458 if( rc==SQLITE_OK ){ 4459 sqlite3_bind_int64(pLeafEst, 1, iAbsLevel); 4460 sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment); 4461 if( SQLITE_ROW==sqlite3_step(pLeafEst) ){ 4462 nLeafEst = sqlite3_column_int(pLeafEst, 0); 4463 } 4464 rc = sqlite3_reset(pLeafEst); 4465 } 4466 if( rc!=SQLITE_OK ) return rc; 4467 4468 /* Calculate the first block to use in the output segment */ 4469 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0); 4470 if( rc==SQLITE_OK ){ 4471 if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){ 4472 pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0); 4473 pWriter->iEnd = pWriter->iStart - 1; 4474 pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT; 4475 } 4476 rc = sqlite3_reset(pFirstBlock); 4477 } 4478 if( rc!=SQLITE_OK ) return rc; 4479 4480 /* Insert the marker in the %_segments table to make sure nobody tries 4481 ** to steal the space just allocated. This is also used to identify 4482 ** appendable segments. */ 4483 rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0); 4484 if( rc!=SQLITE_OK ) return rc; 4485 4486 pWriter->iAbsLevel = iAbsLevel; 4487 pWriter->nLeafEst = nLeafEst; 4488 pWriter->iIdx = iIdx; 4489 4490 /* Set up the array of NodeWriter objects */ 4491 for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ 4492 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; 4493 } 4494 return SQLITE_OK; 4495 } 4496 4497 /* 4498 ** Remove an entry from the %_segdir table. This involves running the 4499 ** following two statements: 4500 ** 4501 ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx 4502 ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx 4503 ** 4504 ** The DELETE statement removes the specific %_segdir level. The UPDATE 4505 ** statement ensures that the remaining segments have contiguously allocated 4506 ** idx values. 4507 */ 4508 static int fts3RemoveSegdirEntry( 4509 Fts3Table *p, /* FTS3 table handle */ 4510 sqlite3_int64 iAbsLevel, /* Absolute level to delete from */ 4511 int iIdx /* Index of %_segdir entry to delete */ 4512 ){ 4513 int rc; /* Return code */ 4514 sqlite3_stmt *pDelete = 0; /* DELETE statement */ 4515 4516 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0); 4517 if( rc==SQLITE_OK ){ 4518 sqlite3_bind_int64(pDelete, 1, iAbsLevel); 4519 sqlite3_bind_int(pDelete, 2, iIdx); 4520 sqlite3_step(pDelete); 4521 rc = sqlite3_reset(pDelete); 4522 } 4523 4524 return rc; 4525 } 4526 4527 /* 4528 ** One or more segments have just been removed from absolute level iAbsLevel. 4529 ** Update the 'idx' values of the remaining segments in the level so that 4530 ** the idx values are a contiguous sequence starting from 0. 4531 */ 4532 static int fts3RepackSegdirLevel( 4533 Fts3Table *p, /* FTS3 table handle */ 4534 sqlite3_int64 iAbsLevel /* Absolute level to repack */ 4535 ){ 4536 int rc; /* Return code */ 4537 int *aIdx = 0; /* Array of remaining idx values */ 4538 int nIdx = 0; /* Valid entries in aIdx[] */ 4539 int nAlloc = 0; /* Allocated size of aIdx[] */ 4540 int i; /* Iterator variable */ 4541 sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */ 4542 sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */ 4543 4544 rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0); 4545 if( rc==SQLITE_OK ){ 4546 int rc2; 4547 sqlite3_bind_int64(pSelect, 1, iAbsLevel); 4548 while( SQLITE_ROW==sqlite3_step(pSelect) ){ 4549 if( nIdx>=nAlloc ){ 4550 int *aNew; 4551 nAlloc += 16; 4552 aNew = sqlite3_realloc64(aIdx, nAlloc*sizeof(int)); 4553 if( !aNew ){ 4554 rc = SQLITE_NOMEM; 4555 break; 4556 } 4557 aIdx = aNew; 4558 } 4559 aIdx[nIdx++] = sqlite3_column_int(pSelect, 0); 4560 } 4561 rc2 = sqlite3_reset(pSelect); 4562 if( rc==SQLITE_OK ) rc = rc2; 4563 } 4564 4565 if( rc==SQLITE_OK ){ 4566 rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0); 4567 } 4568 if( rc==SQLITE_OK ){ 4569 sqlite3_bind_int64(pUpdate, 2, iAbsLevel); 4570 } 4571 4572 assert( p->bIgnoreSavepoint==0 ); 4573 p->bIgnoreSavepoint = 1; 4574 for(i=0; rc==SQLITE_OK && i<nIdx; i++){ 4575 if( aIdx[i]!=i ){ 4576 sqlite3_bind_int(pUpdate, 3, aIdx[i]); 4577 sqlite3_bind_int(pUpdate, 1, i); 4578 sqlite3_step(pUpdate); 4579 rc = sqlite3_reset(pUpdate); 4580 } 4581 } 4582 p->bIgnoreSavepoint = 0; 4583 4584 sqlite3_free(aIdx); 4585 return rc; 4586 } 4587 4588 static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){ 4589 pNode->a[0] = (char)iHeight; 4590 if( iChild ){ 4591 assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) ); 4592 pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild); 4593 }else{ 4594 assert( pNode->nAlloc>=1 ); 4595 pNode->n = 1; 4596 } 4597 } 4598 4599 /* 4600 ** The first two arguments are a pointer to and the size of a segment b-tree 4601 ** node. The node may be a leaf or an internal node. 4602 ** 4603 ** This function creates a new node image in blob object *pNew by copying 4604 ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes) 4605 ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode. 4606 */ 4607 static int fts3TruncateNode( 4608 const char *aNode, /* Current node image */ 4609 int nNode, /* Size of aNode in bytes */ 4610 Blob *pNew, /* OUT: Write new node image here */ 4611 const char *zTerm, /* Omit all terms smaller than this */ 4612 int nTerm, /* Size of zTerm in bytes */ 4613 sqlite3_int64 *piBlock /* OUT: Block number in next layer down */ 4614 ){ 4615 NodeReader reader; /* Reader object */ 4616 Blob prev = {0, 0, 0}; /* Previous term written to new node */ 4617 int rc = SQLITE_OK; /* Return code */ 4618 int bLeaf; /* True for a leaf node */ 4619 4620 if( nNode<1 ) return FTS_CORRUPT_VTAB; 4621 bLeaf = aNode[0]=='\0'; 4622 4623 /* Allocate required output space */ 4624 blobGrowBuffer(pNew, nNode, &rc); 4625 if( rc!=SQLITE_OK ) return rc; 4626 pNew->n = 0; 4627 4628 /* Populate new node buffer */ 4629 for(rc = nodeReaderInit(&reader, aNode, nNode); 4630 rc==SQLITE_OK && reader.aNode; 4631 rc = nodeReaderNext(&reader) 4632 ){ 4633 if( pNew->n==0 ){ 4634 int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm); 4635 if( res<0 || (bLeaf==0 && res==0) ) continue; 4636 fts3StartNode(pNew, (int)aNode[0], reader.iChild); 4637 *piBlock = reader.iChild; 4638 } 4639 rc = fts3AppendToNode( 4640 pNew, &prev, reader.term.a, reader.term.n, 4641 reader.aDoclist, reader.nDoclist 4642 ); 4643 if( rc!=SQLITE_OK ) break; 4644 } 4645 if( pNew->n==0 ){ 4646 fts3StartNode(pNew, (int)aNode[0], reader.iChild); 4647 *piBlock = reader.iChild; 4648 } 4649 assert( pNew->n<=pNew->nAlloc ); 4650 4651 nodeReaderRelease(&reader); 4652 sqlite3_free(prev.a); 4653 return rc; 4654 } 4655 4656 /* 4657 ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute 4658 ** level iAbsLevel. This may involve deleting entries from the %_segments 4659 ** table, and modifying existing entries in both the %_segments and %_segdir 4660 ** tables. 4661 ** 4662 ** SQLITE_OK is returned if the segment is updated successfully. Or an 4663 ** SQLite error code otherwise. 4664 */ 4665 static int fts3TruncateSegment( 4666 Fts3Table *p, /* FTS3 table handle */ 4667 sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */ 4668 int iIdx, /* Index within level of segment to modify */ 4669 const char *zTerm, /* Remove terms smaller than this */ 4670 int nTerm /* Number of bytes in buffer zTerm */ 4671 ){ 4672 int rc = SQLITE_OK; /* Return code */ 4673 Blob root = {0,0,0}; /* New root page image */ 4674 Blob block = {0,0,0}; /* Buffer used for any other block */ 4675 sqlite3_int64 iBlock = 0; /* Block id */ 4676 sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */ 4677 sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */ 4678 sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */ 4679 4680 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0); 4681 if( rc==SQLITE_OK ){ 4682 int rc2; /* sqlite3_reset() return code */ 4683 sqlite3_bind_int64(pFetch, 1, iAbsLevel); 4684 sqlite3_bind_int(pFetch, 2, iIdx); 4685 if( SQLITE_ROW==sqlite3_step(pFetch) ){ 4686 const char *aRoot = sqlite3_column_blob(pFetch, 4); 4687 int nRoot = sqlite3_column_bytes(pFetch, 4); 4688 iOldStart = sqlite3_column_int64(pFetch, 1); 4689 rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock); 4690 } 4691 rc2 = sqlite3_reset(pFetch); 4692 if( rc==SQLITE_OK ) rc = rc2; 4693 } 4694 4695 while( rc==SQLITE_OK && iBlock ){ 4696 char *aBlock = 0; 4697 int nBlock = 0; 4698 iNewStart = iBlock; 4699 4700 rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0); 4701 if( rc==SQLITE_OK ){ 4702 rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock); 4703 } 4704 if( rc==SQLITE_OK ){ 4705 rc = fts3WriteSegment(p, iNewStart, block.a, block.n); 4706 } 4707 sqlite3_free(aBlock); 4708 } 4709 4710 /* Variable iNewStart now contains the first valid leaf node. */ 4711 if( rc==SQLITE_OK && iNewStart ){ 4712 sqlite3_stmt *pDel = 0; 4713 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0); 4714 if( rc==SQLITE_OK ){ 4715 sqlite3_bind_int64(pDel, 1, iOldStart); 4716 sqlite3_bind_int64(pDel, 2, iNewStart-1); 4717 sqlite3_step(pDel); 4718 rc = sqlite3_reset(pDel); 4719 } 4720 } 4721 4722 if( rc==SQLITE_OK ){ 4723 sqlite3_stmt *pChomp = 0; 4724 rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0); 4725 if( rc==SQLITE_OK ){ 4726 sqlite3_bind_int64(pChomp, 1, iNewStart); 4727 sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC); 4728 sqlite3_bind_int64(pChomp, 3, iAbsLevel); 4729 sqlite3_bind_int(pChomp, 4, iIdx); 4730 sqlite3_step(pChomp); 4731 rc = sqlite3_reset(pChomp); 4732 sqlite3_bind_null(pChomp, 2); 4733 } 4734 } 4735 4736 sqlite3_free(root.a); 4737 sqlite3_free(block.a); 4738 return rc; 4739 } 4740 4741 /* 4742 ** This function is called after an incrmental-merge operation has run to 4743 ** merge (or partially merge) two or more segments from absolute level 4744 ** iAbsLevel. 4745 ** 4746 ** Each input segment is either removed from the db completely (if all of 4747 ** its data was copied to the output segment by the incrmerge operation) 4748 ** or modified in place so that it no longer contains those entries that 4749 ** have been duplicated in the output segment. 4750 */ 4751 static int fts3IncrmergeChomp( 4752 Fts3Table *p, /* FTS table handle */ 4753 sqlite3_int64 iAbsLevel, /* Absolute level containing segments */ 4754 Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */ 4755 int *pnRem /* Number of segments not deleted */ 4756 ){ 4757 int i; 4758 int nRem = 0; 4759 int rc = SQLITE_OK; 4760 4761 for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){ 4762 Fts3SegReader *pSeg = 0; 4763 int j; 4764 4765 /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding 4766 ** somewhere in the pCsr->apSegment[] array. */ 4767 for(j=0; ALWAYS(j<pCsr->nSegment); j++){ 4768 pSeg = pCsr->apSegment[j]; 4769 if( pSeg->iIdx==i ) break; 4770 } 4771 assert( j<pCsr->nSegment && pSeg->iIdx==i ); 4772 4773 if( pSeg->aNode==0 ){ 4774 /* Seg-reader is at EOF. Remove the entire input segment. */ 4775 rc = fts3DeleteSegment(p, pSeg); 4776 if( rc==SQLITE_OK ){ 4777 rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx); 4778 } 4779 *pnRem = 0; 4780 }else{ 4781 /* The incremental merge did not copy all the data from this 4782 ** segment to the upper level. The segment is modified in place 4783 ** so that it contains no keys smaller than zTerm/nTerm. */ 4784 const char *zTerm = pSeg->zTerm; 4785 int nTerm = pSeg->nTerm; 4786 rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm); 4787 nRem++; 4788 } 4789 } 4790 4791 if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){ 4792 rc = fts3RepackSegdirLevel(p, iAbsLevel); 4793 } 4794 4795 *pnRem = nRem; 4796 return rc; 4797 } 4798 4799 /* 4800 ** Store an incr-merge hint in the database. 4801 */ 4802 static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){ 4803 sqlite3_stmt *pReplace = 0; 4804 int rc; /* Return code */ 4805 4806 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0); 4807 if( rc==SQLITE_OK ){ 4808 sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT); 4809 sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC); 4810 sqlite3_step(pReplace); 4811 rc = sqlite3_reset(pReplace); 4812 sqlite3_bind_null(pReplace, 2); 4813 } 4814 4815 return rc; 4816 } 4817 4818 /* 4819 ** Load an incr-merge hint from the database. The incr-merge hint, if one 4820 ** exists, is stored in the rowid==1 row of the %_stat table. 4821 ** 4822 ** If successful, populate blob *pHint with the value read from the %_stat 4823 ** table and return SQLITE_OK. Otherwise, if an error occurs, return an 4824 ** SQLite error code. 4825 */ 4826 static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){ 4827 sqlite3_stmt *pSelect = 0; 4828 int rc; 4829 4830 pHint->n = 0; 4831 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0); 4832 if( rc==SQLITE_OK ){ 4833 int rc2; 4834 sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT); 4835 if( SQLITE_ROW==sqlite3_step(pSelect) ){ 4836 const char *aHint = sqlite3_column_blob(pSelect, 0); 4837 int nHint = sqlite3_column_bytes(pSelect, 0); 4838 if( aHint ){ 4839 blobGrowBuffer(pHint, nHint, &rc); 4840 if( rc==SQLITE_OK ){ 4841 if( ALWAYS(pHint->a!=0) ) memcpy(pHint->a, aHint, nHint); 4842 pHint->n = nHint; 4843 } 4844 } 4845 } 4846 rc2 = sqlite3_reset(pSelect); 4847 if( rc==SQLITE_OK ) rc = rc2; 4848 } 4849 4850 return rc; 4851 } 4852 4853 /* 4854 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. 4855 ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry 4856 ** consists of two varints, the absolute level number of the input segments 4857 ** and the number of input segments. 4858 ** 4859 ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs, 4860 ** set *pRc to an SQLite error code before returning. 4861 */ 4862 static void fts3IncrmergeHintPush( 4863 Blob *pHint, /* Hint blob to append to */ 4864 i64 iAbsLevel, /* First varint to store in hint */ 4865 int nInput, /* Second varint to store in hint */ 4866 int *pRc /* IN/OUT: Error code */ 4867 ){ 4868 blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc); 4869 if( *pRc==SQLITE_OK ){ 4870 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel); 4871 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput); 4872 } 4873 } 4874 4875 /* 4876 ** Read the last entry (most recently pushed) from the hint blob *pHint 4877 ** and then remove the entry. Write the two values read to *piAbsLevel and 4878 ** *pnInput before returning. 4879 ** 4880 ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does 4881 ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB. 4882 */ 4883 static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){ 4884 const int nHint = pHint->n; 4885 int i; 4886 4887 i = pHint->n-1; 4888 if( (pHint->a[i] & 0x80) ) return FTS_CORRUPT_VTAB; 4889 while( i>0 && (pHint->a[i-1] & 0x80) ) i--; 4890 if( i==0 ) return FTS_CORRUPT_VTAB; 4891 i--; 4892 while( i>0 && (pHint->a[i-1] & 0x80) ) i--; 4893 4894 pHint->n = i; 4895 i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel); 4896 i += fts3GetVarint32(&pHint->a[i], pnInput); 4897 assert( i<=nHint ); 4898 if( i!=nHint ) return FTS_CORRUPT_VTAB; 4899 4900 return SQLITE_OK; 4901 } 4902 4903 4904 /* 4905 ** Attempt an incremental merge that writes nMerge leaf blocks. 4906 ** 4907 ** Incremental merges happen nMin segments at a time. The segments 4908 ** to be merged are the nMin oldest segments (the ones with the smallest 4909 ** values for the _segdir.idx field) in the highest level that contains 4910 ** at least nMin segments. Multiple merges might occur in an attempt to 4911 ** write the quota of nMerge leaf blocks. 4912 */ 4913 int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){ 4914 int rc; /* Return code */ 4915 int nRem = nMerge; /* Number of leaf pages yet to be written */ 4916 Fts3MultiSegReader *pCsr; /* Cursor used to read input data */ 4917 Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */ 4918 IncrmergeWriter *pWriter; /* Writer object */ 4919 int nSeg = 0; /* Number of input segments */ 4920 sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */ 4921 Blob hint = {0, 0, 0}; /* Hint read from %_stat table */ 4922 int bDirtyHint = 0; /* True if blob 'hint' has been modified */ 4923 4924 /* Allocate space for the cursor, filter and writer objects */ 4925 const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter); 4926 pWriter = (IncrmergeWriter *)sqlite3_malloc64(nAlloc); 4927 if( !pWriter ) return SQLITE_NOMEM; 4928 pFilter = (Fts3SegFilter *)&pWriter[1]; 4929 pCsr = (Fts3MultiSegReader *)&pFilter[1]; 4930 4931 rc = fts3IncrmergeHintLoad(p, &hint); 4932 while( rc==SQLITE_OK && nRem>0 ){ 4933 const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex; 4934 sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */ 4935 int bUseHint = 0; /* True if attempting to append */ 4936 int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */ 4937 4938 /* Search the %_segdir table for the absolute level with the smallest 4939 ** relative level number that contains at least nMin segments, if any. 4940 ** If one is found, set iAbsLevel to the absolute level number and 4941 ** nSeg to nMin. If no level with at least nMin segments can be found, 4942 ** set nSeg to -1. 4943 */ 4944 rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0); 4945 sqlite3_bind_int(pFindLevel, 1, MAX(2, nMin)); 4946 if( sqlite3_step(pFindLevel)==SQLITE_ROW ){ 4947 iAbsLevel = sqlite3_column_int64(pFindLevel, 0); 4948 nSeg = sqlite3_column_int(pFindLevel, 1); 4949 assert( nSeg>=2 ); 4950 }else{ 4951 nSeg = -1; 4952 } 4953 rc = sqlite3_reset(pFindLevel); 4954 4955 /* If the hint read from the %_stat table is not empty, check if the 4956 ** last entry in it specifies a relative level smaller than or equal 4957 ** to the level identified by the block above (if any). If so, this 4958 ** iteration of the loop will work on merging at the hinted level. 4959 */ 4960 if( rc==SQLITE_OK && hint.n ){ 4961 int nHint = hint.n; 4962 sqlite3_int64 iHintAbsLevel = 0; /* Hint level */ 4963 int nHintSeg = 0; /* Hint number of segments */ 4964 4965 rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg); 4966 if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){ 4967 /* Based on the scan in the block above, it is known that there 4968 ** are no levels with a relative level smaller than that of 4969 ** iAbsLevel with more than nSeg segments, or if nSeg is -1, 4970 ** no levels with more than nMin segments. Use this to limit the 4971 ** value of nHintSeg to avoid a large memory allocation in case the 4972 ** merge-hint is corrupt*/ 4973 iAbsLevel = iHintAbsLevel; 4974 nSeg = MIN(MAX(nMin,nSeg), nHintSeg); 4975 bUseHint = 1; 4976 bDirtyHint = 1; 4977 }else{ 4978 /* This undoes the effect of the HintPop() above - so that no entry 4979 ** is removed from the hint blob. */ 4980 hint.n = nHint; 4981 } 4982 } 4983 4984 /* If nSeg is less that zero, then there is no level with at least 4985 ** nMin segments and no hint in the %_stat table. No work to do. 4986 ** Exit early in this case. */ 4987 if( nSeg<=0 ) break; 4988 4989 assert( nMod<=0x7FFFFFFF ); 4990 if( iAbsLevel<0 || iAbsLevel>(nMod<<32) ){ 4991 rc = FTS_CORRUPT_VTAB; 4992 break; 4993 } 4994 4995 /* Open a cursor to iterate through the contents of the oldest nSeg 4996 ** indexes of absolute level iAbsLevel. If this cursor is opened using 4997 ** the 'hint' parameters, it is possible that there are less than nSeg 4998 ** segments available in level iAbsLevel. In this case, no work is 4999 ** done on iAbsLevel - fall through to the next iteration of the loop 5000 ** to start work on some other level. */ 5001 memset(pWriter, 0, nAlloc); 5002 pFilter->flags = FTS3_SEGMENT_REQUIRE_POS; 5003 5004 if( rc==SQLITE_OK ){ 5005 rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx); 5006 assert( bUseHint==1 || bUseHint==0 ); 5007 if( iIdx==0 || (bUseHint && iIdx==1) ){ 5008 int bIgnore = 0; 5009 rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore); 5010 if( bIgnore ){ 5011 pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY; 5012 } 5013 } 5014 } 5015 5016 if( rc==SQLITE_OK ){ 5017 rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr); 5018 } 5019 if( SQLITE_OK==rc && pCsr->nSegment==nSeg 5020 && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter)) 5021 ){ 5022 int bEmpty = 0; 5023 rc = sqlite3Fts3SegReaderStep(p, pCsr); 5024 if( rc==SQLITE_OK ){ 5025 bEmpty = 1; 5026 }else if( rc!=SQLITE_ROW ){ 5027 sqlite3Fts3SegReaderFinish(pCsr); 5028 break; 5029 } 5030 if( bUseHint && iIdx>0 ){ 5031 const char *zKey = pCsr->zTerm; 5032 int nKey = pCsr->nTerm; 5033 rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter); 5034 }else{ 5035 rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter); 5036 } 5037 5038 if( rc==SQLITE_OK && pWriter->nLeafEst ){ 5039 fts3LogMerge(nSeg, iAbsLevel); 5040 if( bEmpty==0 ){ 5041 do { 5042 rc = fts3IncrmergeAppend(p, pWriter, pCsr); 5043 if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr); 5044 if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK; 5045 }while( rc==SQLITE_ROW ); 5046 } 5047 5048 /* Update or delete the input segments */ 5049 if( rc==SQLITE_OK ){ 5050 nRem -= (1 + pWriter->nWork); 5051 rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg); 5052 if( nSeg!=0 ){ 5053 bDirtyHint = 1; 5054 fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc); 5055 } 5056 } 5057 } 5058 5059 if( nSeg!=0 ){ 5060 pWriter->nLeafData = pWriter->nLeafData * -1; 5061 } 5062 fts3IncrmergeRelease(p, pWriter, &rc); 5063 if( nSeg==0 && pWriter->bNoLeafData==0 ){ 5064 fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData); 5065 } 5066 } 5067 5068 sqlite3Fts3SegReaderFinish(pCsr); 5069 } 5070 5071 /* Write the hint values into the %_stat table for the next incr-merger */ 5072 if( bDirtyHint && rc==SQLITE_OK ){ 5073 rc = fts3IncrmergeHintStore(p, &hint); 5074 } 5075 5076 sqlite3_free(pWriter); 5077 sqlite3_free(hint.a); 5078 return rc; 5079 } 5080 5081 /* 5082 ** Convert the text beginning at *pz into an integer and return 5083 ** its value. Advance *pz to point to the first character past 5084 ** the integer. 5085 ** 5086 ** This function used for parameters to merge= and incrmerge= 5087 ** commands. 5088 */ 5089 static int fts3Getint(const char **pz){ 5090 const char *z = *pz; 5091 int i = 0; 5092 while( (*z)>='0' && (*z)<='9' && i<214748363 ) i = 10*i + *(z++) - '0'; 5093 *pz = z; 5094 return i; 5095 } 5096 5097 /* 5098 ** Process statements of the form: 5099 ** 5100 ** INSERT INTO table(table) VALUES('merge=A,B'); 5101 ** 5102 ** A and B are integers that decode to be the number of leaf pages 5103 ** written for the merge, and the minimum number of segments on a level 5104 ** before it will be selected for a merge, respectively. 5105 */ 5106 static int fts3DoIncrmerge( 5107 Fts3Table *p, /* FTS3 table handle */ 5108 const char *zParam /* Nul-terminated string containing "A,B" */ 5109 ){ 5110 int rc; 5111 int nMin = (MergeCount(p) / 2); 5112 int nMerge = 0; 5113 const char *z = zParam; 5114 5115 /* Read the first integer value */ 5116 nMerge = fts3Getint(&z); 5117 5118 /* If the first integer value is followed by a ',', read the second 5119 ** integer value. */ 5120 if( z[0]==',' && z[1]!='\0' ){ 5121 z++; 5122 nMin = fts3Getint(&z); 5123 } 5124 5125 if( z[0]!='\0' || nMin<2 ){ 5126 rc = SQLITE_ERROR; 5127 }else{ 5128 rc = SQLITE_OK; 5129 if( !p->bHasStat ){ 5130 assert( p->bFts4==0 ); 5131 sqlite3Fts3CreateStatTable(&rc, p); 5132 } 5133 if( rc==SQLITE_OK ){ 5134 rc = sqlite3Fts3Incrmerge(p, nMerge, nMin); 5135 } 5136 sqlite3Fts3SegmentsClose(p); 5137 } 5138 return rc; 5139 } 5140 5141 /* 5142 ** Process statements of the form: 5143 ** 5144 ** INSERT INTO table(table) VALUES('automerge=X'); 5145 ** 5146 ** where X is an integer. X==0 means to turn automerge off. X!=0 means 5147 ** turn it on. The setting is persistent. 5148 */ 5149 static int fts3DoAutoincrmerge( 5150 Fts3Table *p, /* FTS3 table handle */ 5151 const char *zParam /* Nul-terminated string containing boolean */ 5152 ){ 5153 int rc = SQLITE_OK; 5154 sqlite3_stmt *pStmt = 0; 5155 p->nAutoincrmerge = fts3Getint(&zParam); 5156 if( p->nAutoincrmerge==1 || p->nAutoincrmerge>MergeCount(p) ){ 5157 p->nAutoincrmerge = 8; 5158 } 5159 if( !p->bHasStat ){ 5160 assert( p->bFts4==0 ); 5161 sqlite3Fts3CreateStatTable(&rc, p); 5162 if( rc ) return rc; 5163 } 5164 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); 5165 if( rc ) return rc; 5166 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); 5167 sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge); 5168 sqlite3_step(pStmt); 5169 rc = sqlite3_reset(pStmt); 5170 return rc; 5171 } 5172 5173 /* 5174 ** Return a 64-bit checksum for the FTS index entry specified by the 5175 ** arguments to this function. 5176 */ 5177 static u64 fts3ChecksumEntry( 5178 const char *zTerm, /* Pointer to buffer containing term */ 5179 int nTerm, /* Size of zTerm in bytes */ 5180 int iLangid, /* Language id for current row */ 5181 int iIndex, /* Index (0..Fts3Table.nIndex-1) */ 5182 i64 iDocid, /* Docid for current row. */ 5183 int iCol, /* Column number */ 5184 int iPos /* Position */ 5185 ){ 5186 int i; 5187 u64 ret = (u64)iDocid; 5188 5189 ret += (ret<<3) + iLangid; 5190 ret += (ret<<3) + iIndex; 5191 ret += (ret<<3) + iCol; 5192 ret += (ret<<3) + iPos; 5193 for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i]; 5194 5195 return ret; 5196 } 5197 5198 /* 5199 ** Return a checksum of all entries in the FTS index that correspond to 5200 ** language id iLangid. The checksum is calculated by XORing the checksums 5201 ** of each individual entry (see fts3ChecksumEntry()) together. 5202 ** 5203 ** If successful, the checksum value is returned and *pRc set to SQLITE_OK. 5204 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The 5205 ** return value is undefined in this case. 5206 */ 5207 static u64 fts3ChecksumIndex( 5208 Fts3Table *p, /* FTS3 table handle */ 5209 int iLangid, /* Language id to return cksum for */ 5210 int iIndex, /* Index to cksum (0..p->nIndex-1) */ 5211 int *pRc /* OUT: Return code */ 5212 ){ 5213 Fts3SegFilter filter; 5214 Fts3MultiSegReader csr; 5215 int rc; 5216 u64 cksum = 0; 5217 5218 assert( *pRc==SQLITE_OK ); 5219 5220 memset(&filter, 0, sizeof(filter)); 5221 memset(&csr, 0, sizeof(csr)); 5222 filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; 5223 filter.flags |= FTS3_SEGMENT_SCAN; 5224 5225 rc = sqlite3Fts3SegReaderCursor( 5226 p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr 5227 ); 5228 if( rc==SQLITE_OK ){ 5229 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); 5230 } 5231 5232 if( rc==SQLITE_OK ){ 5233 while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){ 5234 char *pCsr = csr.aDoclist; 5235 char *pEnd = &pCsr[csr.nDoclist]; 5236 5237 i64 iDocid = 0; 5238 i64 iCol = 0; 5239 u64 iPos = 0; 5240 5241 pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid); 5242 while( pCsr<pEnd ){ 5243 u64 iVal = 0; 5244 pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal); 5245 if( pCsr<pEnd ){ 5246 if( iVal==0 || iVal==1 ){ 5247 iCol = 0; 5248 iPos = 0; 5249 if( iVal ){ 5250 pCsr += sqlite3Fts3GetVarint(pCsr, &iCol); 5251 }else{ 5252 pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal); 5253 if( p->bDescIdx ){ 5254 iDocid = (i64)((u64)iDocid - iVal); 5255 }else{ 5256 iDocid = (i64)((u64)iDocid + iVal); 5257 } 5258 } 5259 }else{ 5260 iPos += (iVal - 2); 5261 cksum = cksum ^ fts3ChecksumEntry( 5262 csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid, 5263 (int)iCol, (int)iPos 5264 ); 5265 } 5266 } 5267 } 5268 } 5269 } 5270 sqlite3Fts3SegReaderFinish(&csr); 5271 5272 *pRc = rc; 5273 return cksum; 5274 } 5275 5276 /* 5277 ** Check if the contents of the FTS index match the current contents of the 5278 ** content table. If no error occurs and the contents do match, set *pbOk 5279 ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk 5280 ** to false before returning. 5281 ** 5282 ** If an error occurs (e.g. an OOM or IO error), return an SQLite error 5283 ** code. The final value of *pbOk is undefined in this case. 5284 */ 5285 static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){ 5286 int rc = SQLITE_OK; /* Return code */ 5287 u64 cksum1 = 0; /* Checksum based on FTS index contents */ 5288 u64 cksum2 = 0; /* Checksum based on %_content contents */ 5289 sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */ 5290 5291 /* This block calculates the checksum according to the FTS index. */ 5292 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); 5293 if( rc==SQLITE_OK ){ 5294 int rc2; 5295 sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid); 5296 sqlite3_bind_int(pAllLangid, 2, p->nIndex); 5297 while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){ 5298 int iLangid = sqlite3_column_int(pAllLangid, 0); 5299 int i; 5300 for(i=0; i<p->nIndex; i++){ 5301 cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc); 5302 } 5303 } 5304 rc2 = sqlite3_reset(pAllLangid); 5305 if( rc==SQLITE_OK ) rc = rc2; 5306 } 5307 5308 /* This block calculates the checksum according to the %_content table */ 5309 if( rc==SQLITE_OK ){ 5310 sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule; 5311 sqlite3_stmt *pStmt = 0; 5312 char *zSql; 5313 5314 zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); 5315 if( !zSql ){ 5316 rc = SQLITE_NOMEM; 5317 }else{ 5318 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); 5319 sqlite3_free(zSql); 5320 } 5321 5322 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ 5323 i64 iDocid = sqlite3_column_int64(pStmt, 0); 5324 int iLang = langidFromSelect(p, pStmt); 5325 int iCol; 5326 5327 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ 5328 if( p->abNotindexed[iCol]==0 ){ 5329 const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1); 5330 sqlite3_tokenizer_cursor *pT = 0; 5331 5332 rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, -1, &pT); 5333 while( rc==SQLITE_OK ){ 5334 char const *zToken; /* Buffer containing token */ 5335 int nToken = 0; /* Number of bytes in token */ 5336 int iDum1 = 0, iDum2 = 0; /* Dummy variables */ 5337 int iPos = 0; /* Position of token in zText */ 5338 5339 rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos); 5340 if( rc==SQLITE_OK ){ 5341 int i; 5342 cksum2 = cksum2 ^ fts3ChecksumEntry( 5343 zToken, nToken, iLang, 0, iDocid, iCol, iPos 5344 ); 5345 for(i=1; i<p->nIndex; i++){ 5346 if( p->aIndex[i].nPrefix<=nToken ){ 5347 cksum2 = cksum2 ^ fts3ChecksumEntry( 5348 zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos 5349 ); 5350 } 5351 } 5352 } 5353 } 5354 if( pT ) pModule->xClose(pT); 5355 if( rc==SQLITE_DONE ) rc = SQLITE_OK; 5356 } 5357 } 5358 } 5359 5360 sqlite3_finalize(pStmt); 5361 } 5362 5363 *pbOk = (cksum1==cksum2); 5364 return rc; 5365 } 5366 5367 /* 5368 ** Run the integrity-check. If no error occurs and the current contents of 5369 ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the 5370 ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB. 5371 ** 5372 ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite 5373 ** error code. 5374 ** 5375 ** The integrity-check works as follows. For each token and indexed token 5376 ** prefix in the document set, a 64-bit checksum is calculated (by code 5377 ** in fts3ChecksumEntry()) based on the following: 5378 ** 5379 ** + The index number (0 for the main index, 1 for the first prefix 5380 ** index etc.), 5381 ** + The token (or token prefix) text itself, 5382 ** + The language-id of the row it appears in, 5383 ** + The docid of the row it appears in, 5384 ** + The column it appears in, and 5385 ** + The tokens position within that column. 5386 ** 5387 ** The checksums for all entries in the index are XORed together to create 5388 ** a single checksum for the entire index. 5389 ** 5390 ** The integrity-check code calculates the same checksum in two ways: 5391 ** 5392 ** 1. By scanning the contents of the FTS index, and 5393 ** 2. By scanning and tokenizing the content table. 5394 ** 5395 ** If the two checksums are identical, the integrity-check is deemed to have 5396 ** passed. 5397 */ 5398 static int fts3DoIntegrityCheck( 5399 Fts3Table *p /* FTS3 table handle */ 5400 ){ 5401 int rc; 5402 int bOk = 0; 5403 rc = fts3IntegrityCheck(p, &bOk); 5404 if( rc==SQLITE_OK && bOk==0 ) rc = FTS_CORRUPT_VTAB; 5405 return rc; 5406 } 5407 5408 /* 5409 ** Handle a 'special' INSERT of the form: 5410 ** 5411 ** "INSERT INTO tbl(tbl) VALUES(<expr>)" 5412 ** 5413 ** Argument pVal contains the result of <expr>. Currently the only 5414 ** meaningful value to insert is the text 'optimize'. 5415 */ 5416 static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){ 5417 int rc = SQLITE_ERROR; /* Return Code */ 5418 const char *zVal = (const char *)sqlite3_value_text(pVal); 5419 int nVal = sqlite3_value_bytes(pVal); 5420 5421 if( !zVal ){ 5422 return SQLITE_NOMEM; 5423 }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ 5424 rc = fts3DoOptimize(p, 0); 5425 }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){ 5426 rc = fts3DoRebuild(p); 5427 }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){ 5428 rc = fts3DoIntegrityCheck(p); 5429 }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){ 5430 rc = fts3DoIncrmerge(p, &zVal[6]); 5431 }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){ 5432 rc = fts3DoAutoincrmerge(p, &zVal[10]); 5433 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) 5434 }else{ 5435 int v; 5436 if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ 5437 v = atoi(&zVal[9]); 5438 if( v>=24 && v<=p->nPgsz-35 ) p->nNodeSize = v; 5439 rc = SQLITE_OK; 5440 }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){ 5441 v = atoi(&zVal[11]); 5442 if( v>=64 && v<=FTS3_MAX_PENDING_DATA ) p->nMaxPendingData = v; 5443 rc = SQLITE_OK; 5444 }else if( nVal>21 && 0==sqlite3_strnicmp(zVal,"test-no-incr-doclist=",21) ){ 5445 p->bNoIncrDoclist = atoi(&zVal[21]); 5446 rc = SQLITE_OK; 5447 }else if( nVal>11 && 0==sqlite3_strnicmp(zVal,"mergecount=",11) ){ 5448 v = atoi(&zVal[11]); 5449 if( v>=4 && v<=FTS3_MERGE_COUNT && (v&1)==0 ) p->nMergeCount = v; 5450 rc = SQLITE_OK; 5451 } 5452 #endif 5453 } 5454 return rc; 5455 } 5456 5457 #ifndef SQLITE_DISABLE_FTS4_DEFERRED 5458 /* 5459 ** Delete all cached deferred doclists. Deferred doclists are cached 5460 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function. 5461 */ 5462 void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){ 5463 Fts3DeferredToken *pDef; 5464 for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){ 5465 fts3PendingListDelete(pDef->pList); 5466 pDef->pList = 0; 5467 } 5468 } 5469 5470 /* 5471 ** Free all entries in the pCsr->pDeffered list. Entries are added to 5472 ** this list using sqlite3Fts3DeferToken(). 5473 */ 5474 void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){ 5475 Fts3DeferredToken *pDef; 5476 Fts3DeferredToken *pNext; 5477 for(pDef=pCsr->pDeferred; pDef; pDef=pNext){ 5478 pNext = pDef->pNext; 5479 fts3PendingListDelete(pDef->pList); 5480 sqlite3_free(pDef); 5481 } 5482 pCsr->pDeferred = 0; 5483 } 5484 5485 /* 5486 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list 5487 ** based on the row that pCsr currently points to. 5488 ** 5489 ** A deferred-doclist is like any other doclist with position information 5490 ** included, except that it only contains entries for a single row of the 5491 ** table, not for all rows. 5492 */ 5493 int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){ 5494 int rc = SQLITE_OK; /* Return code */ 5495 if( pCsr->pDeferred ){ 5496 int i; /* Used to iterate through table columns */ 5497 sqlite3_int64 iDocid; /* Docid of the row pCsr points to */ 5498 Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */ 5499 5500 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; 5501 sqlite3_tokenizer *pT = p->pTokenizer; 5502 sqlite3_tokenizer_module const *pModule = pT->pModule; 5503 5504 assert( pCsr->isRequireSeek==0 ); 5505 iDocid = sqlite3_column_int64(pCsr->pStmt, 0); 5506 5507 for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){ 5508 if( p->abNotindexed[i]==0 ){ 5509 const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); 5510 sqlite3_tokenizer_cursor *pTC = 0; 5511 5512 rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC); 5513 while( rc==SQLITE_OK ){ 5514 char const *zToken; /* Buffer containing token */ 5515 int nToken = 0; /* Number of bytes in token */ 5516 int iDum1 = 0, iDum2 = 0; /* Dummy variables */ 5517 int iPos = 0; /* Position of token in zText */ 5518 5519 rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); 5520 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ 5521 Fts3PhraseToken *pPT = pDef->pToken; 5522 if( (pDef->iCol>=p->nColumn || pDef->iCol==i) 5523 && (pPT->bFirst==0 || iPos==0) 5524 && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken)) 5525 && (0==memcmp(zToken, pPT->z, pPT->n)) 5526 ){ 5527 fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); 5528 } 5529 } 5530 } 5531 if( pTC ) pModule->xClose(pTC); 5532 if( rc==SQLITE_DONE ) rc = SQLITE_OK; 5533 } 5534 } 5535 5536 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ 5537 if( pDef->pList ){ 5538 rc = fts3PendingListAppendVarint(&pDef->pList, 0); 5539 } 5540 } 5541 } 5542 5543 return rc; 5544 } 5545 5546 int sqlite3Fts3DeferredTokenList( 5547 Fts3DeferredToken *p, 5548 char **ppData, 5549 int *pnData 5550 ){ 5551 char *pRet; 5552 int nSkip; 5553 sqlite3_int64 dummy; 5554 5555 *ppData = 0; 5556 *pnData = 0; 5557 5558 if( p->pList==0 ){ 5559 return SQLITE_OK; 5560 } 5561 5562 pRet = (char *)sqlite3_malloc64(p->pList->nData); 5563 if( !pRet ) return SQLITE_NOMEM; 5564 5565 nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy); 5566 *pnData = p->pList->nData - nSkip; 5567 *ppData = pRet; 5568 5569 memcpy(pRet, &p->pList->aData[nSkip], *pnData); 5570 return SQLITE_OK; 5571 } 5572 5573 /* 5574 ** Add an entry for token pToken to the pCsr->pDeferred list. 5575 */ 5576 int sqlite3Fts3DeferToken( 5577 Fts3Cursor *pCsr, /* Fts3 table cursor */ 5578 Fts3PhraseToken *pToken, /* Token to defer */ 5579 int iCol /* Column that token must appear in (or -1) */ 5580 ){ 5581 Fts3DeferredToken *pDeferred; 5582 pDeferred = sqlite3_malloc64(sizeof(*pDeferred)); 5583 if( !pDeferred ){ 5584 return SQLITE_NOMEM; 5585 } 5586 memset(pDeferred, 0, sizeof(*pDeferred)); 5587 pDeferred->pToken = pToken; 5588 pDeferred->pNext = pCsr->pDeferred; 5589 pDeferred->iCol = iCol; 5590 pCsr->pDeferred = pDeferred; 5591 5592 assert( pToken->pDeferred==0 ); 5593 pToken->pDeferred = pDeferred; 5594 5595 return SQLITE_OK; 5596 } 5597 #endif 5598 5599 /* 5600 ** SQLite value pRowid contains the rowid of a row that may or may not be 5601 ** present in the FTS3 table. If it is, delete it and adjust the contents 5602 ** of subsiduary data structures accordingly. 5603 */ 5604 static int fts3DeleteByRowid( 5605 Fts3Table *p, 5606 sqlite3_value *pRowid, 5607 int *pnChng, /* IN/OUT: Decrement if row is deleted */ 5608 u32 *aSzDel 5609 ){ 5610 int rc = SQLITE_OK; /* Return code */ 5611 int bFound = 0; /* True if *pRowid really is in the table */ 5612 5613 fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound); 5614 if( bFound && rc==SQLITE_OK ){ 5615 int isEmpty = 0; /* Deleting *pRowid leaves the table empty */ 5616 rc = fts3IsEmpty(p, pRowid, &isEmpty); 5617 if( rc==SQLITE_OK ){ 5618 if( isEmpty ){ 5619 /* Deleting this row means the whole table is empty. In this case 5620 ** delete the contents of all three tables and throw away any 5621 ** data in the pendingTerms hash table. */ 5622 rc = fts3DeleteAll(p, 1); 5623 *pnChng = 0; 5624 memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2); 5625 }else{ 5626 *pnChng = *pnChng - 1; 5627 if( p->zContentTbl==0 ){ 5628 fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid); 5629 } 5630 if( p->bHasDocsize ){ 5631 fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid); 5632 } 5633 } 5634 } 5635 } 5636 5637 return rc; 5638 } 5639 5640 /* 5641 ** This function does the work for the xUpdate method of FTS3 virtual 5642 ** tables. The schema of the virtual table being: 5643 ** 5644 ** CREATE TABLE <table name>( 5645 ** <user columns>, 5646 ** <table name> HIDDEN, 5647 ** docid HIDDEN, 5648 ** <langid> HIDDEN 5649 ** ); 5650 ** 5651 ** 5652 */ 5653 int sqlite3Fts3UpdateMethod( 5654 sqlite3_vtab *pVtab, /* FTS3 vtab object */ 5655 int nArg, /* Size of argument array */ 5656 sqlite3_value **apVal, /* Array of arguments */ 5657 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ 5658 ){ 5659 Fts3Table *p = (Fts3Table *)pVtab; 5660 int rc = SQLITE_OK; /* Return Code */ 5661 u32 *aSzIns = 0; /* Sizes of inserted documents */ 5662 u32 *aSzDel = 0; /* Sizes of deleted documents */ 5663 int nChng = 0; /* Net change in number of documents */ 5664 int bInsertDone = 0; 5665 5666 /* At this point it must be known if the %_stat table exists or not. 5667 ** So bHasStat may not be 2. */ 5668 assert( p->bHasStat==0 || p->bHasStat==1 ); 5669 5670 assert( p->pSegments==0 ); 5671 assert( 5672 nArg==1 /* DELETE operations */ 5673 || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */ 5674 ); 5675 5676 /* Check for a "special" INSERT operation. One of the form: 5677 ** 5678 ** INSERT INTO xyz(xyz) VALUES('command'); 5679 */ 5680 if( nArg>1 5681 && sqlite3_value_type(apVal[0])==SQLITE_NULL 5682 && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL 5683 ){ 5684 rc = fts3SpecialInsert(p, apVal[p->nColumn+2]); 5685 goto update_out; 5686 } 5687 5688 if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){ 5689 rc = SQLITE_CONSTRAINT; 5690 goto update_out; 5691 } 5692 5693 /* Allocate space to hold the change in document sizes */ 5694 aSzDel = sqlite3_malloc64(sizeof(aSzDel[0])*((sqlite3_int64)p->nColumn+1)*2); 5695 if( aSzDel==0 ){ 5696 rc = SQLITE_NOMEM; 5697 goto update_out; 5698 } 5699 aSzIns = &aSzDel[p->nColumn+1]; 5700 memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2); 5701 5702 rc = fts3Writelock(p); 5703 if( rc!=SQLITE_OK ) goto update_out; 5704 5705 /* If this is an INSERT operation, or an UPDATE that modifies the rowid 5706 ** value, then this operation requires constraint handling. 5707 ** 5708 ** If the on-conflict mode is REPLACE, this means that the existing row 5709 ** should be deleted from the database before inserting the new row. Or, 5710 ** if the on-conflict mode is other than REPLACE, then this method must 5711 ** detect the conflict and return SQLITE_CONSTRAINT before beginning to 5712 ** modify the database file. 5713 */ 5714 if( nArg>1 && p->zContentTbl==0 ){ 5715 /* Find the value object that holds the new rowid value. */ 5716 sqlite3_value *pNewRowid = apVal[3+p->nColumn]; 5717 if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){ 5718 pNewRowid = apVal[1]; 5719 } 5720 5721 if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && ( 5722 sqlite3_value_type(apVal[0])==SQLITE_NULL 5723 || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid) 5724 )){ 5725 /* The new rowid is not NULL (in this case the rowid will be 5726 ** automatically assigned and there is no chance of a conflict), and 5727 ** the statement is either an INSERT or an UPDATE that modifies the 5728 ** rowid column. So if the conflict mode is REPLACE, then delete any 5729 ** existing row with rowid=pNewRowid. 5730 ** 5731 ** Or, if the conflict mode is not REPLACE, insert the new record into 5732 ** the %_content table. If we hit the duplicate rowid constraint (or any 5733 ** other error) while doing so, return immediately. 5734 ** 5735 ** This branch may also run if pNewRowid contains a value that cannot 5736 ** be losslessly converted to an integer. In this case, the eventual 5737 ** call to fts3InsertData() (either just below or further on in this 5738 ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is 5739 ** invoked, it will delete zero rows (since no row will have 5740 ** docid=$pNewRowid if $pNewRowid is not an integer value). 5741 */ 5742 if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){ 5743 rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel); 5744 }else{ 5745 rc = fts3InsertData(p, apVal, pRowid); 5746 bInsertDone = 1; 5747 } 5748 } 5749 } 5750 if( rc!=SQLITE_OK ){ 5751 goto update_out; 5752 } 5753 5754 /* If this is a DELETE or UPDATE operation, remove the old record. */ 5755 if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ 5756 assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER ); 5757 rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel); 5758 } 5759 5760 /* If this is an INSERT or UPDATE operation, insert the new record. */ 5761 if( nArg>1 && rc==SQLITE_OK ){ 5762 int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]); 5763 if( bInsertDone==0 ){ 5764 rc = fts3InsertData(p, apVal, pRowid); 5765 if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){ 5766 rc = FTS_CORRUPT_VTAB; 5767 } 5768 } 5769 if( rc==SQLITE_OK ){ 5770 rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid); 5771 } 5772 if( rc==SQLITE_OK ){ 5773 assert( p->iPrevDocid==*pRowid ); 5774 rc = fts3InsertTerms(p, iLangid, apVal, aSzIns); 5775 } 5776 if( p->bHasDocsize ){ 5777 fts3InsertDocsize(&rc, p, aSzIns); 5778 } 5779 nChng++; 5780 } 5781 5782 if( p->bFts4 ){ 5783 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); 5784 } 5785 5786 update_out: 5787 sqlite3_free(aSzDel); 5788 sqlite3Fts3SegmentsClose(p); 5789 return rc; 5790 } 5791 5792 /* 5793 ** Flush any data in the pending-terms hash table to disk. If successful, 5794 ** merge all segments in the database (including the new segment, if 5795 ** there was any data to flush) into a single segment. 5796 */ 5797 int sqlite3Fts3Optimize(Fts3Table *p){ 5798 int rc; 5799 rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); 5800 if( rc==SQLITE_OK ){ 5801 rc = fts3DoOptimize(p, 1); 5802 if( rc==SQLITE_OK || rc==SQLITE_DONE ){ 5803 int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); 5804 if( rc2!=SQLITE_OK ) rc = rc2; 5805 }else{ 5806 sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); 5807 sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); 5808 } 5809 } 5810 sqlite3Fts3SegmentsClose(p); 5811 return rc; 5812 } 5813 5814 #endif 5815