1 /* fts2 has a design flaw which can lead to database corruption (see 2 ** below). It is recommended not to use it any longer, instead use 3 ** fts3 (or higher). If you believe that your use of fts2 is safe, 4 ** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS. 5 */ 6 #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \ 7 && !defined(SQLITE_ENABLE_BROKEN_FTS2) 8 #error fts2 has a design flaw and has been deprecated. 9 #endif 10 /* The flaw is that fts2 uses the content table's unaliased rowid as 11 ** the unique docid. fts2 embeds the rowid in the index it builds, 12 ** and expects the rowid to not change. The SQLite VACUUM operation 13 ** will renumber such rowids, thereby breaking fts2. If you are using 14 ** fts2 in a system which has disabled VACUUM, then you can continue 15 ** to use it safely. Note that PRAGMA auto_vacuum does NOT disable 16 ** VACUUM, though systems using auto_vacuum are unlikely to invoke 17 ** VACUUM. 18 ** 19 ** Unlike fts1, which is safe across VACUUM if you never delete 20 ** documents, fts2 has a second exposure to this flaw, in the segments 21 ** table. So fts2 should be considered unsafe across VACUUM in all 22 ** cases. 23 */ 24 25 /* 26 ** 2006 Oct 10 27 ** 28 ** The author disclaims copyright to this source code. In place of 29 ** a legal notice, here is a blessing: 30 ** 31 ** May you do good and not evil. 32 ** May you find forgiveness for yourself and forgive others. 33 ** May you share freely, never taking more than you give. 34 ** 35 ****************************************************************************** 36 ** 37 ** This is an SQLite module implementing full-text search. 38 */ 39 40 /* 41 ** The code in this file is only compiled if: 42 ** 43 ** * The FTS2 module is being built as an extension 44 ** (in which case SQLITE_CORE is not defined), or 45 ** 46 ** * The FTS2 module is being built into the core of 47 ** SQLite (in which case SQLITE_ENABLE_FTS2 is defined). 48 */ 49 50 /* TODO(shess) Consider exporting this comment to an HTML file or the 51 ** wiki. 52 */ 53 /* The full-text index is stored in a series of b+tree (-like) 54 ** structures called segments which map terms to doclists. The 55 ** structures are like b+trees in layout, but are constructed from the 56 ** bottom up in optimal fashion and are not updatable. Since trees 57 ** are built from the bottom up, things will be described from the 58 ** bottom up. 59 ** 60 ** 61 **** Varints **** 62 ** The basic unit of encoding is a variable-length integer called a 63 ** varint. We encode variable-length integers in little-endian order 64 ** using seven bits * per byte as follows: 65 ** 66 ** KEY: 67 ** A = 0xxxxxxx 7 bits of data and one flag bit 68 ** B = 1xxxxxxx 7 bits of data and one flag bit 69 ** 70 ** 7 bits - A 71 ** 14 bits - BA 72 ** 21 bits - BBA 73 ** and so on. 74 ** 75 ** This is identical to how sqlite encodes varints (see util.c). 76 ** 77 ** 78 **** Document lists **** 79 ** A doclist (document list) holds a docid-sorted list of hits for a 80 ** given term. Doclists hold docids, and can optionally associate 81 ** token positions and offsets with docids. 82 ** 83 ** A DL_POSITIONS_OFFSETS doclist is stored like this: 84 ** 85 ** array { 86 ** varint docid; 87 ** array { (position list for column 0) 88 ** varint position; (delta from previous position plus POS_BASE) 89 ** varint startOffset; (delta from previous startOffset) 90 ** varint endOffset; (delta from startOffset) 91 ** } 92 ** array { 93 ** varint POS_COLUMN; (marks start of position list for new column) 94 ** varint column; (index of new column) 95 ** array { 96 ** varint position; (delta from previous position plus POS_BASE) 97 ** varint startOffset;(delta from previous startOffset) 98 ** varint endOffset; (delta from startOffset) 99 ** } 100 ** } 101 ** varint POS_END; (marks end of positions for this document. 102 ** } 103 ** 104 ** Here, array { X } means zero or more occurrences of X, adjacent in 105 ** memory. A "position" is an index of a token in the token stream 106 ** generated by the tokenizer, while an "offset" is a byte offset, 107 ** both based at 0. Note that POS_END and POS_COLUMN occur in the 108 ** same logical place as the position element, and act as sentinals 109 ** ending a position list array. 110 ** 111 ** A DL_POSITIONS doclist omits the startOffset and endOffset 112 ** information. A DL_DOCIDS doclist omits both the position and 113 ** offset information, becoming an array of varint-encoded docids. 114 ** 115 ** On-disk data is stored as type DL_DEFAULT, so we don't serialize 116 ** the type. Due to how deletion is implemented in the segmentation 117 ** system, on-disk doclists MUST store at least positions. 118 ** 119 ** 120 **** Segment leaf nodes **** 121 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf 122 ** nodes are written using LeafWriter, and read using LeafReader (to 123 ** iterate through a single leaf node's data) and LeavesReader (to 124 ** iterate through a segment's entire leaf layer). Leaf nodes have 125 ** the format: 126 ** 127 ** varint iHeight; (height from leaf level, always 0) 128 ** varint nTerm; (length of first term) 129 ** char pTerm[nTerm]; (content of first term) 130 ** varint nDoclist; (length of term's associated doclist) 131 ** char pDoclist[nDoclist]; (content of doclist) 132 ** array { 133 ** (further terms are delta-encoded) 134 ** varint nPrefix; (length of prefix shared with previous term) 135 ** varint nSuffix; (length of unshared suffix) 136 ** char pTermSuffix[nSuffix];(unshared suffix of next term) 137 ** varint nDoclist; (length of term's associated doclist) 138 ** char pDoclist[nDoclist]; (content of doclist) 139 ** } 140 ** 141 ** Here, array { X } means zero or more occurrences of X, adjacent in 142 ** memory. 143 ** 144 ** Leaf nodes are broken into blocks which are stored contiguously in 145 ** the %_segments table in sorted order. This means that when the end 146 ** of a node is reached, the next term is in the node with the next 147 ** greater node id. 148 ** 149 ** New data is spilled to a new leaf node when the current node 150 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is 151 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone 152 ** node (a leaf node with a single term and doclist). The goal of 153 ** these settings is to pack together groups of small doclists while 154 ** making it efficient to directly access large doclists. The 155 ** assumption is that large doclists represent terms which are more 156 ** likely to be query targets. 157 ** 158 ** TODO(shess) It may be useful for blocking decisions to be more 159 ** dynamic. For instance, it may make more sense to have a 2.5k leaf 160 ** node rather than splitting into 2k and .5k nodes. My intuition is 161 ** that this might extend through 2x or 4x the pagesize. 162 ** 163 ** 164 **** Segment interior nodes **** 165 ** Segment interior nodes store blockids for subtree nodes and terms 166 ** to describe what data is stored by the each subtree. Interior 167 ** nodes are written using InteriorWriter, and read using 168 ** InteriorReader. InteriorWriters are created as needed when 169 ** SegmentWriter creates new leaf nodes, or when an interior node 170 ** itself grows too big and must be split. The format of interior 171 ** nodes: 172 ** 173 ** varint iHeight; (height from leaf level, always >0) 174 ** varint iBlockid; (block id of node's leftmost subtree) 175 ** optional { 176 ** varint nTerm; (length of first term) 177 ** char pTerm[nTerm]; (content of first term) 178 ** array { 179 ** (further terms are delta-encoded) 180 ** varint nPrefix; (length of shared prefix with previous term) 181 ** varint nSuffix; (length of unshared suffix) 182 ** char pTermSuffix[nSuffix]; (unshared suffix of next term) 183 ** } 184 ** } 185 ** 186 ** Here, optional { X } means an optional element, while array { X } 187 ** means zero or more occurrences of X, adjacent in memory. 188 ** 189 ** An interior node encodes n terms separating n+1 subtrees. The 190 ** subtree blocks are contiguous, so only the first subtree's blockid 191 ** is encoded. The subtree at iBlockid will contain all terms less 192 ** than the first term encoded (or all terms if no term is encoded). 193 ** Otherwise, for terms greater than or equal to pTerm[i] but less 194 ** than pTerm[i+1], the subtree for that term will be rooted at 195 ** iBlockid+i. Interior nodes only store enough term data to 196 ** distinguish adjacent children (if the rightmost term of the left 197 ** child is "something", and the leftmost term of the right child is 198 ** "wicked", only "w" is stored). 199 ** 200 ** New data is spilled to a new interior node at the same height when 201 ** the current node exceeds INTERIOR_MAX bytes (default 2048). 202 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing 203 ** interior nodes and making the tree too skinny. The interior nodes 204 ** at a given height are naturally tracked by interior nodes at 205 ** height+1, and so on. 206 ** 207 ** 208 **** Segment directory **** 209 ** The segment directory in table %_segdir stores meta-information for 210 ** merging and deleting segments, and also the root node of the 211 ** segment's tree. 212 ** 213 ** The root node is the top node of the segment's tree after encoding 214 ** the entire segment, restricted to ROOT_MAX bytes (default 1024). 215 ** This could be either a leaf node or an interior node. If the top 216 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments 217 ** and a new root interior node is generated (which should always fit 218 ** within ROOT_MAX because it only needs space for 2 varints, the 219 ** height and the blockid of the previous root). 220 ** 221 ** The meta-information in the segment directory is: 222 ** level - segment level (see below) 223 ** idx - index within level 224 ** - (level,idx uniquely identify a segment) 225 ** start_block - first leaf node 226 ** leaves_end_block - last leaf node 227 ** end_block - last block (including interior nodes) 228 ** root - contents of root node 229 ** 230 ** If the root node is a leaf node, then start_block, 231 ** leaves_end_block, and end_block are all 0. 232 ** 233 ** 234 **** Segment merging **** 235 ** To amortize update costs, segments are groups into levels and 236 ** merged in matches. Each increase in level represents exponentially 237 ** more documents. 238 ** 239 ** New documents (actually, document updates) are tokenized and 240 ** written individually (using LeafWriter) to a level 0 segment, with 241 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all 242 ** level 0 segments are merged into a single level 1 segment. Level 1 243 ** is populated like level 0, and eventually MERGE_COUNT level 1 244 ** segments are merged to a single level 2 segment (representing 245 ** MERGE_COUNT^2 updates), and so on. 246 ** 247 ** A segment merge traverses all segments at a given level in 248 ** parallel, performing a straightforward sorted merge. Since segment 249 ** leaf nodes are written in to the %_segments table in order, this 250 ** merge traverses the underlying sqlite disk structures efficiently. 251 ** After the merge, all segment blocks from the merged level are 252 ** deleted. 253 ** 254 ** MERGE_COUNT controls how often we merge segments. 16 seems to be 255 ** somewhat of a sweet spot for insertion performance. 32 and 64 show 256 ** very similar performance numbers to 16 on insertion, though they're 257 ** a tiny bit slower (perhaps due to more overhead in merge-time 258 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than 259 ** 16, 2 about 66% slower than 16. 260 ** 261 ** At query time, high MERGE_COUNT increases the number of segments 262 ** which need to be scanned and merged. For instance, with 100k docs 263 ** inserted: 264 ** 265 ** MERGE_COUNT segments 266 ** 16 25 267 ** 8 12 268 ** 4 10 269 ** 2 6 270 ** 271 ** This appears to have only a moderate impact on queries for very 272 ** frequent terms (which are somewhat dominated by segment merge 273 ** costs), and infrequent and non-existent terms still seem to be fast 274 ** even with many segments. 275 ** 276 ** TODO(shess) That said, it would be nice to have a better query-side 277 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that 278 ** optimizations to things like doclist merging will swing the sweet 279 ** spot around. 280 ** 281 ** 282 ** 283 **** Handling of deletions and updates **** 284 ** Since we're using a segmented structure, with no docid-oriented 285 ** index into the term index, we clearly cannot simply update the term 286 ** index when a document is deleted or updated. For deletions, we 287 ** write an empty doclist (varint(docid) varint(POS_END)), for updates 288 ** we simply write the new doclist. Segment merges overwrite older 289 ** data for a particular docid with newer data, so deletes or updates 290 ** will eventually overtake the earlier data and knock it out. The 291 ** query logic likewise merges doclists so that newer data knocks out 292 ** older data. 293 ** 294 ** TODO(shess) Provide a VACUUM type operation to clear out all 295 ** deletions and duplications. This would basically be a forced merge 296 ** into a single segment. 297 */ 298 299 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) 300 301 #if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE) 302 # define SQLITE_CORE 1 303 #endif 304 305 #include <assert.h> 306 #include <stdlib.h> 307 #include <stdio.h> 308 #include <string.h> 309 #include "fts2.h" 310 #include "fts2_hash.h" 311 #include "fts2_tokenizer.h" 312 #include "sqlite3.h" 313 #include "sqlite3ext.h" 314 SQLITE_EXTENSION_INIT1 315 316 317 /* TODO(shess) MAN, this thing needs some refactoring. At minimum, it 318 ** would be nice to order the file better, perhaps something along the 319 ** lines of: 320 ** 321 ** - utility functions 322 ** - table setup functions 323 ** - table update functions 324 ** - table query functions 325 ** 326 ** Put the query functions last because they're likely to reference 327 ** typedefs or functions from the table update section. 328 */ 329 330 #if 0 331 # define TRACE(A) printf A; fflush(stdout) 332 #else 333 # define TRACE(A) 334 #endif 335 336 /* It is not safe to call isspace(), tolower(), or isalnum() on 337 ** hi-bit-set characters. This is the same solution used in the 338 ** tokenizer. 339 */ 340 /* TODO(shess) The snippet-generation code should be using the 341 ** tokenizer-generated tokens rather than doing its own local 342 ** tokenization. 343 */ 344 /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ 345 static int safe_isspace(char c){ 346 return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; 347 } 348 static int safe_tolower(char c){ 349 return (c>='A' && c<='Z') ? (c - 'A' + 'a') : c; 350 } 351 static int safe_isalnum(char c){ 352 return (c>='0' && c<='9') || (c>='A' && c<='Z') || (c>='a' && c<='z'); 353 } 354 355 typedef enum DocListType { 356 DL_DOCIDS, /* docids only */ 357 DL_POSITIONS, /* docids + positions */ 358 DL_POSITIONS_OFFSETS /* docids + positions + offsets */ 359 } DocListType; 360 361 /* 362 ** By default, only positions and not offsets are stored in the doclists. 363 ** To change this so that offsets are stored too, compile with 364 ** 365 ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS 366 ** 367 ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted 368 ** into (no deletes or updates). 369 */ 370 #ifndef DL_DEFAULT 371 # define DL_DEFAULT DL_POSITIONS 372 #endif 373 374 enum { 375 POS_END = 0, /* end of this position list */ 376 POS_COLUMN, /* followed by new column number */ 377 POS_BASE 378 }; 379 380 /* MERGE_COUNT controls how often we merge segments (see comment at 381 ** top of file). 382 */ 383 #define MERGE_COUNT 16 384 385 /* utility functions */ 386 387 /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single 388 ** record to prevent errors of the form: 389 ** 390 ** my_function(SomeType *b){ 391 ** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b) 392 ** } 393 */ 394 /* TODO(shess) Obvious candidates for a header file. */ 395 #define CLEAR(b) memset(b, '\0', sizeof(*(b))) 396 397 #ifndef NDEBUG 398 # define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b))) 399 #else 400 # define SCRAMBLE(b) 401 #endif 402 403 /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ 404 #define VARINT_MAX 10 405 406 /* Write a 64-bit variable-length integer to memory starting at p[0]. 407 * The length of data written will be between 1 and VARINT_MAX bytes. 408 * The number of bytes written is returned. */ 409 static int putVarint(char *p, sqlite_int64 v){ 410 unsigned char *q = (unsigned char *) p; 411 sqlite_uint64 vu = v; 412 do{ 413 *q++ = (unsigned char) ((vu & 0x7f) | 0x80); 414 vu >>= 7; 415 }while( vu!=0 ); 416 q[-1] &= 0x7f; /* turn off high bit in final byte */ 417 assert( q - (unsigned char *)p <= VARINT_MAX ); 418 return (int) (q - (unsigned char *)p); 419 } 420 421 /* Read a 64-bit variable-length integer from memory starting at p[0]. 422 * Return the number of bytes read, or 0 on error. 423 * The value is stored in *v. */ 424 static int getVarint(const char *p, sqlite_int64 *v){ 425 const unsigned char *q = (const unsigned char *) p; 426 sqlite_uint64 x = 0, y = 1; 427 while( (*q & 0x80) == 0x80 ){ 428 x += y * (*q++ & 0x7f); 429 y <<= 7; 430 if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ 431 assert( 0 ); 432 return 0; 433 } 434 } 435 x += y * (*q++); 436 *v = (sqlite_int64) x; 437 return (int) (q - (unsigned char *)p); 438 } 439 440 static int getVarint32(const char *p, int *pi){ 441 sqlite_int64 i; 442 int ret = getVarint(p, &i); 443 *pi = (int) i; 444 assert( *pi==i ); 445 return ret; 446 } 447 448 /*******************************************************************/ 449 /* DataBuffer is used to collect data into a buffer in piecemeal 450 ** fashion. It implements the usual distinction between amount of 451 ** data currently stored (nData) and buffer capacity (nCapacity). 452 ** 453 ** dataBufferInit - create a buffer with given initial capacity. 454 ** dataBufferReset - forget buffer's data, retaining capacity. 455 ** dataBufferDestroy - free buffer's data. 456 ** dataBufferSwap - swap contents of two buffers. 457 ** dataBufferExpand - expand capacity without adding data. 458 ** dataBufferAppend - append data. 459 ** dataBufferAppend2 - append two pieces of data at once. 460 ** dataBufferReplace - replace buffer's data. 461 */ 462 typedef struct DataBuffer { 463 char *pData; /* Pointer to malloc'ed buffer. */ 464 int nCapacity; /* Size of pData buffer. */ 465 int nData; /* End of data loaded into pData. */ 466 } DataBuffer; 467 468 static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){ 469 assert( nCapacity>=0 ); 470 pBuffer->nData = 0; 471 pBuffer->nCapacity = nCapacity; 472 pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity); 473 } 474 static void dataBufferReset(DataBuffer *pBuffer){ 475 pBuffer->nData = 0; 476 } 477 static void dataBufferDestroy(DataBuffer *pBuffer){ 478 if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData); 479 SCRAMBLE(pBuffer); 480 } 481 static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){ 482 DataBuffer tmp = *pBuffer1; 483 *pBuffer1 = *pBuffer2; 484 *pBuffer2 = tmp; 485 } 486 static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){ 487 assert( nAddCapacity>0 ); 488 /* TODO(shess) Consider expanding more aggressively. Note that the 489 ** underlying malloc implementation may take care of such things for 490 ** us already. 491 */ 492 if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){ 493 pBuffer->nCapacity = pBuffer->nData+nAddCapacity; 494 pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity); 495 } 496 } 497 static void dataBufferAppend(DataBuffer *pBuffer, 498 const char *pSource, int nSource){ 499 assert( nSource>0 && pSource!=NULL ); 500 dataBufferExpand(pBuffer, nSource); 501 memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource); 502 pBuffer->nData += nSource; 503 } 504 static void dataBufferAppend2(DataBuffer *pBuffer, 505 const char *pSource1, int nSource1, 506 const char *pSource2, int nSource2){ 507 assert( nSource1>0 && pSource1!=NULL ); 508 assert( nSource2>0 && pSource2!=NULL ); 509 dataBufferExpand(pBuffer, nSource1+nSource2); 510 memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1); 511 memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2); 512 pBuffer->nData += nSource1+nSource2; 513 } 514 static void dataBufferReplace(DataBuffer *pBuffer, 515 const char *pSource, int nSource){ 516 dataBufferReset(pBuffer); 517 dataBufferAppend(pBuffer, pSource, nSource); 518 } 519 520 /* StringBuffer is a null-terminated version of DataBuffer. */ 521 typedef struct StringBuffer { 522 DataBuffer b; /* Includes null terminator. */ 523 } StringBuffer; 524 525 static void initStringBuffer(StringBuffer *sb){ 526 dataBufferInit(&sb->b, 100); 527 dataBufferReplace(&sb->b, "", 1); 528 } 529 static int stringBufferLength(StringBuffer *sb){ 530 return sb->b.nData-1; 531 } 532 static char *stringBufferData(StringBuffer *sb){ 533 return sb->b.pData; 534 } 535 static void stringBufferDestroy(StringBuffer *sb){ 536 dataBufferDestroy(&sb->b); 537 } 538 539 static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ 540 assert( sb->b.nData>0 ); 541 if( nFrom>0 ){ 542 sb->b.nData--; 543 dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1); 544 } 545 } 546 static void append(StringBuffer *sb, const char *zFrom){ 547 nappend(sb, zFrom, strlen(zFrom)); 548 } 549 550 /* Append a list of strings separated by commas. */ 551 static void appendList(StringBuffer *sb, int nString, char **azString){ 552 int i; 553 for(i=0; i<nString; ++i){ 554 if( i>0 ) append(sb, ", "); 555 append(sb, azString[i]); 556 } 557 } 558 559 static int endsInWhiteSpace(StringBuffer *p){ 560 return stringBufferLength(p)>0 && 561 safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]); 562 } 563 564 /* If the StringBuffer ends in something other than white space, add a 565 ** single space character to the end. 566 */ 567 static void appendWhiteSpace(StringBuffer *p){ 568 if( stringBufferLength(p)==0 ) return; 569 if( !endsInWhiteSpace(p) ) append(p, " "); 570 } 571 572 /* Remove white space from the end of the StringBuffer */ 573 static void trimWhiteSpace(StringBuffer *p){ 574 while( endsInWhiteSpace(p) ){ 575 p->b.pData[--p->b.nData-1] = '\0'; 576 } 577 } 578 579 /*******************************************************************/ 580 /* DLReader is used to read document elements from a doclist. The 581 ** current docid is cached, so dlrDocid() is fast. DLReader does not 582 ** own the doclist buffer. 583 ** 584 ** dlrAtEnd - true if there's no more data to read. 585 ** dlrDocid - docid of current document. 586 ** dlrDocData - doclist data for current document (including docid). 587 ** dlrDocDataBytes - length of same. 588 ** dlrAllDataBytes - length of all remaining data. 589 ** dlrPosData - position data for current document. 590 ** dlrPosDataLen - length of pos data for current document (incl POS_END). 591 ** dlrStep - step to current document. 592 ** dlrInit - initial for doclist of given type against given data. 593 ** dlrDestroy - clean up. 594 ** 595 ** Expected usage is something like: 596 ** 597 ** DLReader reader; 598 ** dlrInit(&reader, pData, nData); 599 ** while( !dlrAtEnd(&reader) ){ 600 ** // calls to dlrDocid() and kin. 601 ** dlrStep(&reader); 602 ** } 603 ** dlrDestroy(&reader); 604 */ 605 typedef struct DLReader { 606 DocListType iType; 607 const char *pData; 608 int nData; 609 610 sqlite_int64 iDocid; 611 int nElement; 612 } DLReader; 613 614 static int dlrAtEnd(DLReader *pReader){ 615 assert( pReader->nData>=0 ); 616 return pReader->nData==0; 617 } 618 static sqlite_int64 dlrDocid(DLReader *pReader){ 619 assert( !dlrAtEnd(pReader) ); 620 return pReader->iDocid; 621 } 622 static const char *dlrDocData(DLReader *pReader){ 623 assert( !dlrAtEnd(pReader) ); 624 return pReader->pData; 625 } 626 static int dlrDocDataBytes(DLReader *pReader){ 627 assert( !dlrAtEnd(pReader) ); 628 return pReader->nElement; 629 } 630 static int dlrAllDataBytes(DLReader *pReader){ 631 assert( !dlrAtEnd(pReader) ); 632 return pReader->nData; 633 } 634 /* TODO(shess) Consider adding a field to track iDocid varint length 635 ** to make these two functions faster. This might matter (a tiny bit) 636 ** for queries. 637 */ 638 static const char *dlrPosData(DLReader *pReader){ 639 sqlite_int64 iDummy; 640 int n = getVarint(pReader->pData, &iDummy); 641 assert( !dlrAtEnd(pReader) ); 642 return pReader->pData+n; 643 } 644 static int dlrPosDataLen(DLReader *pReader){ 645 sqlite_int64 iDummy; 646 int n = getVarint(pReader->pData, &iDummy); 647 assert( !dlrAtEnd(pReader) ); 648 return pReader->nElement-n; 649 } 650 static void dlrStep(DLReader *pReader){ 651 assert( !dlrAtEnd(pReader) ); 652 653 /* Skip past current doclist element. */ 654 assert( pReader->nElement<=pReader->nData ); 655 pReader->pData += pReader->nElement; 656 pReader->nData -= pReader->nElement; 657 658 /* If there is more data, read the next doclist element. */ 659 if( pReader->nData!=0 ){ 660 sqlite_int64 iDocidDelta; 661 int iDummy, n = getVarint(pReader->pData, &iDocidDelta); 662 pReader->iDocid += iDocidDelta; 663 if( pReader->iType>=DL_POSITIONS ){ 664 assert( n<pReader->nData ); 665 while( 1 ){ 666 n += getVarint32(pReader->pData+n, &iDummy); 667 assert( n<=pReader->nData ); 668 if( iDummy==POS_END ) break; 669 if( iDummy==POS_COLUMN ){ 670 n += getVarint32(pReader->pData+n, &iDummy); 671 assert( n<pReader->nData ); 672 }else if( pReader->iType==DL_POSITIONS_OFFSETS ){ 673 n += getVarint32(pReader->pData+n, &iDummy); 674 n += getVarint32(pReader->pData+n, &iDummy); 675 assert( n<pReader->nData ); 676 } 677 } 678 } 679 pReader->nElement = n; 680 assert( pReader->nElement<=pReader->nData ); 681 } 682 } 683 static void dlrInit(DLReader *pReader, DocListType iType, 684 const char *pData, int nData){ 685 assert( pData!=NULL && nData!=0 ); 686 pReader->iType = iType; 687 pReader->pData = pData; 688 pReader->nData = nData; 689 pReader->nElement = 0; 690 pReader->iDocid = 0; 691 692 /* Load the first element's data. There must be a first element. */ 693 dlrStep(pReader); 694 } 695 static void dlrDestroy(DLReader *pReader){ 696 SCRAMBLE(pReader); 697 } 698 699 #ifndef NDEBUG 700 /* Verify that the doclist can be validly decoded. Also returns the 701 ** last docid found because it is convenient in other assertions for 702 ** DLWriter. 703 */ 704 static void docListValidate(DocListType iType, const char *pData, int nData, 705 sqlite_int64 *pLastDocid){ 706 sqlite_int64 iPrevDocid = 0; 707 assert( nData>0 ); 708 assert( pData!=0 ); 709 assert( pData+nData>pData ); 710 while( nData!=0 ){ 711 sqlite_int64 iDocidDelta; 712 int n = getVarint(pData, &iDocidDelta); 713 iPrevDocid += iDocidDelta; 714 if( iType>DL_DOCIDS ){ 715 int iDummy; 716 while( 1 ){ 717 n += getVarint32(pData+n, &iDummy); 718 if( iDummy==POS_END ) break; 719 if( iDummy==POS_COLUMN ){ 720 n += getVarint32(pData+n, &iDummy); 721 }else if( iType>DL_POSITIONS ){ 722 n += getVarint32(pData+n, &iDummy); 723 n += getVarint32(pData+n, &iDummy); 724 } 725 assert( n<=nData ); 726 } 727 } 728 assert( n<=nData ); 729 pData += n; 730 nData -= n; 731 } 732 if( pLastDocid ) *pLastDocid = iPrevDocid; 733 } 734 #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o) 735 #else 736 #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 ) 737 #endif 738 739 /*******************************************************************/ 740 /* DLWriter is used to write doclist data to a DataBuffer. DLWriter 741 ** always appends to the buffer and does not own it. 742 ** 743 ** dlwInit - initialize to write a given type doclistto a buffer. 744 ** dlwDestroy - clear the writer's memory. Does not free buffer. 745 ** dlwAppend - append raw doclist data to buffer. 746 ** dlwCopy - copy next doclist from reader to writer. 747 ** dlwAdd - construct doclist element and append to buffer. 748 ** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter). 749 */ 750 typedef struct DLWriter { 751 DocListType iType; 752 DataBuffer *b; 753 sqlite_int64 iPrevDocid; 754 #ifndef NDEBUG 755 int has_iPrevDocid; 756 #endif 757 } DLWriter; 758 759 static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){ 760 pWriter->b = b; 761 pWriter->iType = iType; 762 pWriter->iPrevDocid = 0; 763 #ifndef NDEBUG 764 pWriter->has_iPrevDocid = 0; 765 #endif 766 } 767 static void dlwDestroy(DLWriter *pWriter){ 768 SCRAMBLE(pWriter); 769 } 770 /* iFirstDocid is the first docid in the doclist in pData. It is 771 ** needed because pData may point within a larger doclist, in which 772 ** case the first item would be delta-encoded. 773 ** 774 ** iLastDocid is the final docid in the doclist in pData. It is 775 ** needed to create the new iPrevDocid for future delta-encoding. The 776 ** code could decode the passed doclist to recreate iLastDocid, but 777 ** the only current user (docListMerge) already has decoded this 778 ** information. 779 */ 780 /* TODO(shess) This has become just a helper for docListMerge. 781 ** Consider a refactor to make this cleaner. 782 */ 783 static void dlwAppend(DLWriter *pWriter, 784 const char *pData, int nData, 785 sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){ 786 sqlite_int64 iDocid = 0; 787 char c[VARINT_MAX]; 788 int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */ 789 #ifndef NDEBUG 790 sqlite_int64 iLastDocidDelta; 791 #endif 792 793 /* Recode the initial docid as delta from iPrevDocid. */ 794 nFirstOld = getVarint(pData, &iDocid); 795 assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) ); 796 nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid); 797 798 /* Verify that the incoming doclist is valid AND that it ends with 799 ** the expected docid. This is essential because we'll trust this 800 ** docid in future delta-encoding. 801 */ 802 ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta); 803 assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta ); 804 805 /* Append recoded initial docid and everything else. Rest of docids 806 ** should have been delta-encoded from previous initial docid. 807 */ 808 if( nFirstOld<nData ){ 809 dataBufferAppend2(pWriter->b, c, nFirstNew, 810 pData+nFirstOld, nData-nFirstOld); 811 }else{ 812 dataBufferAppend(pWriter->b, c, nFirstNew); 813 } 814 pWriter->iPrevDocid = iLastDocid; 815 } 816 static void dlwCopy(DLWriter *pWriter, DLReader *pReader){ 817 dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader), 818 dlrDocid(pReader), dlrDocid(pReader)); 819 } 820 static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){ 821 char c[VARINT_MAX]; 822 int n = putVarint(c, iDocid-pWriter->iPrevDocid); 823 824 /* Docids must ascend. */ 825 assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid ); 826 assert( pWriter->iType==DL_DOCIDS ); 827 828 dataBufferAppend(pWriter->b, c, n); 829 pWriter->iPrevDocid = iDocid; 830 #ifndef NDEBUG 831 pWriter->has_iPrevDocid = 1; 832 #endif 833 } 834 835 /*******************************************************************/ 836 /* PLReader is used to read data from a document's position list. As 837 ** the caller steps through the list, data is cached so that varints 838 ** only need to be decoded once. 839 ** 840 ** plrInit, plrDestroy - create/destroy a reader. 841 ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors 842 ** plrAtEnd - at end of stream, only call plrDestroy once true. 843 ** plrStep - step to the next element. 844 */ 845 typedef struct PLReader { 846 /* These refer to the next position's data. nData will reach 0 when 847 ** reading the last position, so plrStep() signals EOF by setting 848 ** pData to NULL. 849 */ 850 const char *pData; 851 int nData; 852 853 DocListType iType; 854 int iColumn; /* the last column read */ 855 int iPosition; /* the last position read */ 856 int iStartOffset; /* the last start offset read */ 857 int iEndOffset; /* the last end offset read */ 858 } PLReader; 859 860 static int plrAtEnd(PLReader *pReader){ 861 return pReader->pData==NULL; 862 } 863 static int plrColumn(PLReader *pReader){ 864 assert( !plrAtEnd(pReader) ); 865 return pReader->iColumn; 866 } 867 static int plrPosition(PLReader *pReader){ 868 assert( !plrAtEnd(pReader) ); 869 return pReader->iPosition; 870 } 871 static int plrStartOffset(PLReader *pReader){ 872 assert( !plrAtEnd(pReader) ); 873 return pReader->iStartOffset; 874 } 875 static int plrEndOffset(PLReader *pReader){ 876 assert( !plrAtEnd(pReader) ); 877 return pReader->iEndOffset; 878 } 879 static void plrStep(PLReader *pReader){ 880 int i, n; 881 882 assert( !plrAtEnd(pReader) ); 883 884 if( pReader->nData==0 ){ 885 pReader->pData = NULL; 886 return; 887 } 888 889 n = getVarint32(pReader->pData, &i); 890 if( i==POS_COLUMN ){ 891 n += getVarint32(pReader->pData+n, &pReader->iColumn); 892 pReader->iPosition = 0; 893 pReader->iStartOffset = 0; 894 n += getVarint32(pReader->pData+n, &i); 895 } 896 /* Should never see adjacent column changes. */ 897 assert( i!=POS_COLUMN ); 898 899 if( i==POS_END ){ 900 pReader->nData = 0; 901 pReader->pData = NULL; 902 return; 903 } 904 905 pReader->iPosition += i-POS_BASE; 906 if( pReader->iType==DL_POSITIONS_OFFSETS ){ 907 n += getVarint32(pReader->pData+n, &i); 908 pReader->iStartOffset += i; 909 n += getVarint32(pReader->pData+n, &i); 910 pReader->iEndOffset = pReader->iStartOffset+i; 911 } 912 assert( n<=pReader->nData ); 913 pReader->pData += n; 914 pReader->nData -= n; 915 } 916 917 static void plrInit(PLReader *pReader, DLReader *pDLReader){ 918 pReader->pData = dlrPosData(pDLReader); 919 pReader->nData = dlrPosDataLen(pDLReader); 920 pReader->iType = pDLReader->iType; 921 pReader->iColumn = 0; 922 pReader->iPosition = 0; 923 pReader->iStartOffset = 0; 924 pReader->iEndOffset = 0; 925 plrStep(pReader); 926 } 927 static void plrDestroy(PLReader *pReader){ 928 SCRAMBLE(pReader); 929 } 930 931 /*******************************************************************/ 932 /* PLWriter is used in constructing a document's position list. As a 933 ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op. 934 ** PLWriter writes to the associated DLWriter's buffer. 935 ** 936 ** plwInit - init for writing a document's poslist. 937 ** plwDestroy - clear a writer. 938 ** plwAdd - append position and offset information. 939 ** plwCopy - copy next position's data from reader to writer. 940 ** plwTerminate - add any necessary doclist terminator. 941 ** 942 ** Calling plwAdd() after plwTerminate() may result in a corrupt 943 ** doclist. 944 */ 945 /* TODO(shess) Until we've written the second item, we can cache the 946 ** first item's information. Then we'd have three states: 947 ** 948 ** - initialized with docid, no positions. 949 ** - docid and one position. 950 ** - docid and multiple positions. 951 ** 952 ** Only the last state needs to actually write to dlw->b, which would 953 ** be an improvement in the DLCollector case. 954 */ 955 typedef struct PLWriter { 956 DLWriter *dlw; 957 958 int iColumn; /* the last column written */ 959 int iPos; /* the last position written */ 960 int iOffset; /* the last start offset written */ 961 } PLWriter; 962 963 /* TODO(shess) In the case where the parent is reading these values 964 ** from a PLReader, we could optimize to a copy if that PLReader has 965 ** the same type as pWriter. 966 */ 967 static void plwAdd(PLWriter *pWriter, int iColumn, int iPos, 968 int iStartOffset, int iEndOffset){ 969 /* Worst-case space for POS_COLUMN, iColumn, iPosDelta, 970 ** iStartOffsetDelta, and iEndOffsetDelta. 971 */ 972 char c[5*VARINT_MAX]; 973 int n = 0; 974 975 /* Ban plwAdd() after plwTerminate(). */ 976 assert( pWriter->iPos!=-1 ); 977 978 if( pWriter->dlw->iType==DL_DOCIDS ) return; 979 980 if( iColumn!=pWriter->iColumn ){ 981 n += putVarint(c+n, POS_COLUMN); 982 n += putVarint(c+n, iColumn); 983 pWriter->iColumn = iColumn; 984 pWriter->iPos = 0; 985 pWriter->iOffset = 0; 986 } 987 assert( iPos>=pWriter->iPos ); 988 n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos)); 989 pWriter->iPos = iPos; 990 if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){ 991 assert( iStartOffset>=pWriter->iOffset ); 992 n += putVarint(c+n, iStartOffset-pWriter->iOffset); 993 pWriter->iOffset = iStartOffset; 994 assert( iEndOffset>=iStartOffset ); 995 n += putVarint(c+n, iEndOffset-iStartOffset); 996 } 997 dataBufferAppend(pWriter->dlw->b, c, n); 998 } 999 static void plwCopy(PLWriter *pWriter, PLReader *pReader){ 1000 plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader), 1001 plrStartOffset(pReader), plrEndOffset(pReader)); 1002 } 1003 static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){ 1004 char c[VARINT_MAX]; 1005 int n; 1006 1007 pWriter->dlw = dlw; 1008 1009 /* Docids must ascend. */ 1010 assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid ); 1011 n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid); 1012 dataBufferAppend(pWriter->dlw->b, c, n); 1013 pWriter->dlw->iPrevDocid = iDocid; 1014 #ifndef NDEBUG 1015 pWriter->dlw->has_iPrevDocid = 1; 1016 #endif 1017 1018 pWriter->iColumn = 0; 1019 pWriter->iPos = 0; 1020 pWriter->iOffset = 0; 1021 } 1022 /* TODO(shess) Should plwDestroy() also terminate the doclist? But 1023 ** then plwDestroy() would no longer be just a destructor, it would 1024 ** also be doing work, which isn't consistent with the overall idiom. 1025 ** Another option would be for plwAdd() to always append any necessary 1026 ** terminator, so that the output is always correct. But that would 1027 ** add incremental work to the common case with the only benefit being 1028 ** API elegance. Punt for now. 1029 */ 1030 static void plwTerminate(PLWriter *pWriter){ 1031 if( pWriter->dlw->iType>DL_DOCIDS ){ 1032 char c[VARINT_MAX]; 1033 int n = putVarint(c, POS_END); 1034 dataBufferAppend(pWriter->dlw->b, c, n); 1035 } 1036 #ifndef NDEBUG 1037 /* Mark as terminated for assert in plwAdd(). */ 1038 pWriter->iPos = -1; 1039 #endif 1040 } 1041 static void plwDestroy(PLWriter *pWriter){ 1042 SCRAMBLE(pWriter); 1043 } 1044 1045 /*******************************************************************/ 1046 /* DLCollector wraps PLWriter and DLWriter to provide a 1047 ** dynamically-allocated doclist area to use during tokenization. 1048 ** 1049 ** dlcNew - malloc up and initialize a collector. 1050 ** dlcDelete - destroy a collector and all contained items. 1051 ** dlcAddPos - append position and offset information. 1052 ** dlcAddDoclist - add the collected doclist to the given buffer. 1053 ** dlcNext - terminate the current document and open another. 1054 */ 1055 typedef struct DLCollector { 1056 DataBuffer b; 1057 DLWriter dlw; 1058 PLWriter plw; 1059 } DLCollector; 1060 1061 /* TODO(shess) This could also be done by calling plwTerminate() and 1062 ** dataBufferAppend(). I tried that, expecting nominal performance 1063 ** differences, but it seemed to pretty reliably be worth 1% to code 1064 ** it this way. I suspect it is the incremental malloc overhead (some 1065 ** percentage of the plwTerminate() calls will cause a realloc), so 1066 ** this might be worth revisiting if the DataBuffer implementation 1067 ** changes. 1068 */ 1069 static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){ 1070 if( pCollector->dlw.iType>DL_DOCIDS ){ 1071 char c[VARINT_MAX]; 1072 int n = putVarint(c, POS_END); 1073 dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n); 1074 }else{ 1075 dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData); 1076 } 1077 } 1078 static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){ 1079 plwTerminate(&pCollector->plw); 1080 plwDestroy(&pCollector->plw); 1081 plwInit(&pCollector->plw, &pCollector->dlw, iDocid); 1082 } 1083 static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos, 1084 int iStartOffset, int iEndOffset){ 1085 plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset); 1086 } 1087 1088 static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){ 1089 DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector)); 1090 dataBufferInit(&pCollector->b, 0); 1091 dlwInit(&pCollector->dlw, iType, &pCollector->b); 1092 plwInit(&pCollector->plw, &pCollector->dlw, iDocid); 1093 return pCollector; 1094 } 1095 static void dlcDelete(DLCollector *pCollector){ 1096 plwDestroy(&pCollector->plw); 1097 dlwDestroy(&pCollector->dlw); 1098 dataBufferDestroy(&pCollector->b); 1099 SCRAMBLE(pCollector); 1100 sqlite3_free(pCollector); 1101 } 1102 1103 1104 /* Copy the doclist data of iType in pData/nData into *out, trimming 1105 ** unnecessary data as we go. Only columns matching iColumn are 1106 ** copied, all columns copied if iColumn is -1. Elements with no 1107 ** matching columns are dropped. The output is an iOutType doclist. 1108 */ 1109 /* NOTE(shess) This code is only valid after all doclists are merged. 1110 ** If this is run before merges, then doclist items which represent 1111 ** deletion will be trimmed, and will thus not effect a deletion 1112 ** during the merge. 1113 */ 1114 static void docListTrim(DocListType iType, const char *pData, int nData, 1115 int iColumn, DocListType iOutType, DataBuffer *out){ 1116 DLReader dlReader; 1117 DLWriter dlWriter; 1118 1119 assert( iOutType<=iType ); 1120 1121 dlrInit(&dlReader, iType, pData, nData); 1122 dlwInit(&dlWriter, iOutType, out); 1123 1124 while( !dlrAtEnd(&dlReader) ){ 1125 PLReader plReader; 1126 PLWriter plWriter; 1127 int match = 0; 1128 1129 plrInit(&plReader, &dlReader); 1130 1131 while( !plrAtEnd(&plReader) ){ 1132 if( iColumn==-1 || plrColumn(&plReader)==iColumn ){ 1133 if( !match ){ 1134 plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader)); 1135 match = 1; 1136 } 1137 plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader), 1138 plrStartOffset(&plReader), plrEndOffset(&plReader)); 1139 } 1140 plrStep(&plReader); 1141 } 1142 if( match ){ 1143 plwTerminate(&plWriter); 1144 plwDestroy(&plWriter); 1145 } 1146 1147 plrDestroy(&plReader); 1148 dlrStep(&dlReader); 1149 } 1150 dlwDestroy(&dlWriter); 1151 dlrDestroy(&dlReader); 1152 } 1153 1154 /* Used by docListMerge() to keep doclists in the ascending order by 1155 ** docid, then ascending order by age (so the newest comes first). 1156 */ 1157 typedef struct OrderedDLReader { 1158 DLReader *pReader; 1159 1160 /* TODO(shess) If we assume that docListMerge pReaders is ordered by 1161 ** age (which we do), then we could use pReader comparisons to break 1162 ** ties. 1163 */ 1164 int idx; 1165 } OrderedDLReader; 1166 1167 /* Order eof to end, then by docid asc, idx desc. */ 1168 static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){ 1169 if( dlrAtEnd(r1->pReader) ){ 1170 if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */ 1171 return 1; /* Only r1 atEnd(). */ 1172 } 1173 if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */ 1174 1175 if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1; 1176 if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1; 1177 1178 /* Descending on idx. */ 1179 return r2->idx-r1->idx; 1180 } 1181 1182 /* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that 1183 ** p[1..n-1] is already sorted. 1184 */ 1185 /* TODO(shess) Is this frequent enough to warrant a binary search? 1186 ** Before implementing that, instrument the code to check. In most 1187 ** current usage, I expect that p[0] will be less than p[1] a very 1188 ** high proportion of the time. 1189 */ 1190 static void orderedDLReaderReorder(OrderedDLReader *p, int n){ 1191 while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){ 1192 OrderedDLReader tmp = p[0]; 1193 p[0] = p[1]; 1194 p[1] = tmp; 1195 n--; 1196 p++; 1197 } 1198 } 1199 1200 /* Given an array of doclist readers, merge their doclist elements 1201 ** into out in sorted order (by docid), dropping elements from older 1202 ** readers when there is a duplicate docid. pReaders is assumed to be 1203 ** ordered by age, oldest first. 1204 */ 1205 /* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably 1206 ** be fixed. 1207 */ 1208 static void docListMerge(DataBuffer *out, 1209 DLReader *pReaders, int nReaders){ 1210 OrderedDLReader readers[MERGE_COUNT]; 1211 DLWriter writer; 1212 int i, n; 1213 const char *pStart = 0; 1214 int nStart = 0; 1215 sqlite_int64 iFirstDocid = 0, iLastDocid = 0; 1216 1217 assert( nReaders>0 ); 1218 if( nReaders==1 ){ 1219 dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders)); 1220 return; 1221 } 1222 1223 assert( nReaders<=MERGE_COUNT ); 1224 n = 0; 1225 for(i=0; i<nReaders; i++){ 1226 assert( pReaders[i].iType==pReaders[0].iType ); 1227 readers[i].pReader = pReaders+i; 1228 readers[i].idx = i; 1229 n += dlrAllDataBytes(&pReaders[i]); 1230 } 1231 /* Conservatively size output to sum of inputs. Output should end 1232 ** up strictly smaller than input. 1233 */ 1234 dataBufferExpand(out, n); 1235 1236 /* Get the readers into sorted order. */ 1237 while( i-->0 ){ 1238 orderedDLReaderReorder(readers+i, nReaders-i); 1239 } 1240 1241 dlwInit(&writer, pReaders[0].iType, out); 1242 while( !dlrAtEnd(readers[0].pReader) ){ 1243 sqlite_int64 iDocid = dlrDocid(readers[0].pReader); 1244 1245 /* If this is a continuation of the current buffer to copy, extend 1246 ** that buffer. memcpy() seems to be more efficient if it has a 1247 ** lots of data to copy. 1248 */ 1249 if( dlrDocData(readers[0].pReader)==pStart+nStart ){ 1250 nStart += dlrDocDataBytes(readers[0].pReader); 1251 }else{ 1252 if( pStart!=0 ){ 1253 dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); 1254 } 1255 pStart = dlrDocData(readers[0].pReader); 1256 nStart = dlrDocDataBytes(readers[0].pReader); 1257 iFirstDocid = iDocid; 1258 } 1259 iLastDocid = iDocid; 1260 dlrStep(readers[0].pReader); 1261 1262 /* Drop all of the older elements with the same docid. */ 1263 for(i=1; i<nReaders && 1264 !dlrAtEnd(readers[i].pReader) && 1265 dlrDocid(readers[i].pReader)==iDocid; i++){ 1266 dlrStep(readers[i].pReader); 1267 } 1268 1269 /* Get the readers back into order. */ 1270 while( i-->0 ){ 1271 orderedDLReaderReorder(readers+i, nReaders-i); 1272 } 1273 } 1274 1275 /* Copy over any remaining elements. */ 1276 if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); 1277 dlwDestroy(&writer); 1278 } 1279 1280 /* Helper function for posListUnion(). Compares the current position 1281 ** between left and right, returning as standard C idiom of <0 if 1282 ** left<right, >0 if left>right, and 0 if left==right. "End" always 1283 ** compares greater. 1284 */ 1285 static int posListCmp(PLReader *pLeft, PLReader *pRight){ 1286 assert( pLeft->iType==pRight->iType ); 1287 if( pLeft->iType==DL_DOCIDS ) return 0; 1288 1289 if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1; 1290 if( plrAtEnd(pRight) ) return -1; 1291 1292 if( plrColumn(pLeft)<plrColumn(pRight) ) return -1; 1293 if( plrColumn(pLeft)>plrColumn(pRight) ) return 1; 1294 1295 if( plrPosition(pLeft)<plrPosition(pRight) ) return -1; 1296 if( plrPosition(pLeft)>plrPosition(pRight) ) return 1; 1297 if( pLeft->iType==DL_POSITIONS ) return 0; 1298 1299 if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1; 1300 if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1; 1301 1302 if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1; 1303 if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1; 1304 1305 return 0; 1306 } 1307 1308 /* Write the union of position lists in pLeft and pRight to pOut. 1309 ** "Union" in this case meaning "All unique position tuples". Should 1310 ** work with any doclist type, though both inputs and the output 1311 ** should be the same type. 1312 */ 1313 static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){ 1314 PLReader left, right; 1315 PLWriter writer; 1316 1317 assert( dlrDocid(pLeft)==dlrDocid(pRight) ); 1318 assert( pLeft->iType==pRight->iType ); 1319 assert( pLeft->iType==pOut->iType ); 1320 1321 plrInit(&left, pLeft); 1322 plrInit(&right, pRight); 1323 plwInit(&writer, pOut, dlrDocid(pLeft)); 1324 1325 while( !plrAtEnd(&left) || !plrAtEnd(&right) ){ 1326 int c = posListCmp(&left, &right); 1327 if( c<0 ){ 1328 plwCopy(&writer, &left); 1329 plrStep(&left); 1330 }else if( c>0 ){ 1331 plwCopy(&writer, &right); 1332 plrStep(&right); 1333 }else{ 1334 plwCopy(&writer, &left); 1335 plrStep(&left); 1336 plrStep(&right); 1337 } 1338 } 1339 1340 plwTerminate(&writer); 1341 plwDestroy(&writer); 1342 plrDestroy(&left); 1343 plrDestroy(&right); 1344 } 1345 1346 /* Write the union of doclists in pLeft and pRight to pOut. For 1347 ** docids in common between the inputs, the union of the position 1348 ** lists is written. Inputs and outputs are always type DL_DEFAULT. 1349 */ 1350 static void docListUnion( 1351 const char *pLeft, int nLeft, 1352 const char *pRight, int nRight, 1353 DataBuffer *pOut /* Write the combined doclist here */ 1354 ){ 1355 DLReader left, right; 1356 DLWriter writer; 1357 1358 if( nLeft==0 ){ 1359 if( nRight!=0) dataBufferAppend(pOut, pRight, nRight); 1360 return; 1361 } 1362 if( nRight==0 ){ 1363 dataBufferAppend(pOut, pLeft, nLeft); 1364 return; 1365 } 1366 1367 dlrInit(&left, DL_DEFAULT, pLeft, nLeft); 1368 dlrInit(&right, DL_DEFAULT, pRight, nRight); 1369 dlwInit(&writer, DL_DEFAULT, pOut); 1370 1371 while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ 1372 if( dlrAtEnd(&right) ){ 1373 dlwCopy(&writer, &left); 1374 dlrStep(&left); 1375 }else if( dlrAtEnd(&left) ){ 1376 dlwCopy(&writer, &right); 1377 dlrStep(&right); 1378 }else if( dlrDocid(&left)<dlrDocid(&right) ){ 1379 dlwCopy(&writer, &left); 1380 dlrStep(&left); 1381 }else if( dlrDocid(&left)>dlrDocid(&right) ){ 1382 dlwCopy(&writer, &right); 1383 dlrStep(&right); 1384 }else{ 1385 posListUnion(&left, &right, &writer); 1386 dlrStep(&left); 1387 dlrStep(&right); 1388 } 1389 } 1390 1391 dlrDestroy(&left); 1392 dlrDestroy(&right); 1393 dlwDestroy(&writer); 1394 } 1395 1396 /* pLeft and pRight are DLReaders positioned to the same docid. 1397 ** 1398 ** If there are no instances in pLeft or pRight where the position 1399 ** of pLeft is one less than the position of pRight, then this 1400 ** routine adds nothing to pOut. 1401 ** 1402 ** If there are one or more instances where positions from pLeft 1403 ** are exactly one less than positions from pRight, then add a new 1404 ** document record to pOut. If pOut wants to hold positions, then 1405 ** include the positions from pRight that are one more than a 1406 ** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1. 1407 */ 1408 static void posListPhraseMerge(DLReader *pLeft, DLReader *pRight, 1409 DLWriter *pOut){ 1410 PLReader left, right; 1411 PLWriter writer; 1412 int match = 0; 1413 1414 assert( dlrDocid(pLeft)==dlrDocid(pRight) ); 1415 assert( pOut->iType!=DL_POSITIONS_OFFSETS ); 1416 1417 plrInit(&left, pLeft); 1418 plrInit(&right, pRight); 1419 1420 while( !plrAtEnd(&left) && !plrAtEnd(&right) ){ 1421 if( plrColumn(&left)<plrColumn(&right) ){ 1422 plrStep(&left); 1423 }else if( plrColumn(&left)>plrColumn(&right) ){ 1424 plrStep(&right); 1425 }else if( plrPosition(&left)+1<plrPosition(&right) ){ 1426 plrStep(&left); 1427 }else if( plrPosition(&left)+1>plrPosition(&right) ){ 1428 plrStep(&right); 1429 }else{ 1430 if( !match ){ 1431 plwInit(&writer, pOut, dlrDocid(pLeft)); 1432 match = 1; 1433 } 1434 plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0); 1435 plrStep(&left); 1436 plrStep(&right); 1437 } 1438 } 1439 1440 if( match ){ 1441 plwTerminate(&writer); 1442 plwDestroy(&writer); 1443 } 1444 1445 plrDestroy(&left); 1446 plrDestroy(&right); 1447 } 1448 1449 /* We have two doclists with positions: pLeft and pRight. 1450 ** Write the phrase intersection of these two doclists into pOut. 1451 ** 1452 ** A phrase intersection means that two documents only match 1453 ** if pLeft.iPos+1==pRight.iPos. 1454 ** 1455 ** iType controls the type of data written to pOut. If iType is 1456 ** DL_POSITIONS, the positions are those from pRight. 1457 */ 1458 static void docListPhraseMerge( 1459 const char *pLeft, int nLeft, 1460 const char *pRight, int nRight, 1461 DocListType iType, 1462 DataBuffer *pOut /* Write the combined doclist here */ 1463 ){ 1464 DLReader left, right; 1465 DLWriter writer; 1466 1467 if( nLeft==0 || nRight==0 ) return; 1468 1469 assert( iType!=DL_POSITIONS_OFFSETS ); 1470 1471 dlrInit(&left, DL_POSITIONS, pLeft, nLeft); 1472 dlrInit(&right, DL_POSITIONS, pRight, nRight); 1473 dlwInit(&writer, iType, pOut); 1474 1475 while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ 1476 if( dlrDocid(&left)<dlrDocid(&right) ){ 1477 dlrStep(&left); 1478 }else if( dlrDocid(&right)<dlrDocid(&left) ){ 1479 dlrStep(&right); 1480 }else{ 1481 posListPhraseMerge(&left, &right, &writer); 1482 dlrStep(&left); 1483 dlrStep(&right); 1484 } 1485 } 1486 1487 dlrDestroy(&left); 1488 dlrDestroy(&right); 1489 dlwDestroy(&writer); 1490 } 1491 1492 /* We have two DL_DOCIDS doclists: pLeft and pRight. 1493 ** Write the intersection of these two doclists into pOut as a 1494 ** DL_DOCIDS doclist. 1495 */ 1496 static void docListAndMerge( 1497 const char *pLeft, int nLeft, 1498 const char *pRight, int nRight, 1499 DataBuffer *pOut /* Write the combined doclist here */ 1500 ){ 1501 DLReader left, right; 1502 DLWriter writer; 1503 1504 if( nLeft==0 || nRight==0 ) return; 1505 1506 dlrInit(&left, DL_DOCIDS, pLeft, nLeft); 1507 dlrInit(&right, DL_DOCIDS, pRight, nRight); 1508 dlwInit(&writer, DL_DOCIDS, pOut); 1509 1510 while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ 1511 if( dlrDocid(&left)<dlrDocid(&right) ){ 1512 dlrStep(&left); 1513 }else if( dlrDocid(&right)<dlrDocid(&left) ){ 1514 dlrStep(&right); 1515 }else{ 1516 dlwAdd(&writer, dlrDocid(&left)); 1517 dlrStep(&left); 1518 dlrStep(&right); 1519 } 1520 } 1521 1522 dlrDestroy(&left); 1523 dlrDestroy(&right); 1524 dlwDestroy(&writer); 1525 } 1526 1527 /* We have two DL_DOCIDS doclists: pLeft and pRight. 1528 ** Write the union of these two doclists into pOut as a 1529 ** DL_DOCIDS doclist. 1530 */ 1531 static void docListOrMerge( 1532 const char *pLeft, int nLeft, 1533 const char *pRight, int nRight, 1534 DataBuffer *pOut /* Write the combined doclist here */ 1535 ){ 1536 DLReader left, right; 1537 DLWriter writer; 1538 1539 if( nLeft==0 ){ 1540 if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight); 1541 return; 1542 } 1543 if( nRight==0 ){ 1544 dataBufferAppend(pOut, pLeft, nLeft); 1545 return; 1546 } 1547 1548 dlrInit(&left, DL_DOCIDS, pLeft, nLeft); 1549 dlrInit(&right, DL_DOCIDS, pRight, nRight); 1550 dlwInit(&writer, DL_DOCIDS, pOut); 1551 1552 while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ 1553 if( dlrAtEnd(&right) ){ 1554 dlwAdd(&writer, dlrDocid(&left)); 1555 dlrStep(&left); 1556 }else if( dlrAtEnd(&left) ){ 1557 dlwAdd(&writer, dlrDocid(&right)); 1558 dlrStep(&right); 1559 }else if( dlrDocid(&left)<dlrDocid(&right) ){ 1560 dlwAdd(&writer, dlrDocid(&left)); 1561 dlrStep(&left); 1562 }else if( dlrDocid(&right)<dlrDocid(&left) ){ 1563 dlwAdd(&writer, dlrDocid(&right)); 1564 dlrStep(&right); 1565 }else{ 1566 dlwAdd(&writer, dlrDocid(&left)); 1567 dlrStep(&left); 1568 dlrStep(&right); 1569 } 1570 } 1571 1572 dlrDestroy(&left); 1573 dlrDestroy(&right); 1574 dlwDestroy(&writer); 1575 } 1576 1577 /* We have two DL_DOCIDS doclists: pLeft and pRight. 1578 ** Write into pOut as DL_DOCIDS doclist containing all documents that 1579 ** occur in pLeft but not in pRight. 1580 */ 1581 static void docListExceptMerge( 1582 const char *pLeft, int nLeft, 1583 const char *pRight, int nRight, 1584 DataBuffer *pOut /* Write the combined doclist here */ 1585 ){ 1586 DLReader left, right; 1587 DLWriter writer; 1588 1589 if( nLeft==0 ) return; 1590 if( nRight==0 ){ 1591 dataBufferAppend(pOut, pLeft, nLeft); 1592 return; 1593 } 1594 1595 dlrInit(&left, DL_DOCIDS, pLeft, nLeft); 1596 dlrInit(&right, DL_DOCIDS, pRight, nRight); 1597 dlwInit(&writer, DL_DOCIDS, pOut); 1598 1599 while( !dlrAtEnd(&left) ){ 1600 while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){ 1601 dlrStep(&right); 1602 } 1603 if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){ 1604 dlwAdd(&writer, dlrDocid(&left)); 1605 } 1606 dlrStep(&left); 1607 } 1608 1609 dlrDestroy(&left); 1610 dlrDestroy(&right); 1611 dlwDestroy(&writer); 1612 } 1613 1614 static char *string_dup_n(const char *s, int n){ 1615 char *str = sqlite3_malloc(n + 1); 1616 memcpy(str, s, n); 1617 str[n] = '\0'; 1618 return str; 1619 } 1620 1621 /* Duplicate a string; the caller must free() the returned string. 1622 * (We don't use strdup() since it is not part of the standard C library and 1623 * may not be available everywhere.) */ 1624 static char *string_dup(const char *s){ 1625 return string_dup_n(s, strlen(s)); 1626 } 1627 1628 /* Format a string, replacing each occurrence of the % character with 1629 * zDb.zName. This may be more convenient than sqlite_mprintf() 1630 * when one string is used repeatedly in a format string. 1631 * The caller must free() the returned string. */ 1632 static char *string_format(const char *zFormat, 1633 const char *zDb, const char *zName){ 1634 const char *p; 1635 size_t len = 0; 1636 size_t nDb = strlen(zDb); 1637 size_t nName = strlen(zName); 1638 size_t nFullTableName = nDb+1+nName; 1639 char *result; 1640 char *r; 1641 1642 /* first compute length needed */ 1643 for(p = zFormat ; *p ; ++p){ 1644 len += (*p=='%' ? nFullTableName : 1); 1645 } 1646 len += 1; /* for null terminator */ 1647 1648 r = result = sqlite3_malloc(len); 1649 for(p = zFormat; *p; ++p){ 1650 if( *p=='%' ){ 1651 memcpy(r, zDb, nDb); 1652 r += nDb; 1653 *r++ = '.'; 1654 memcpy(r, zName, nName); 1655 r += nName; 1656 } else { 1657 *r++ = *p; 1658 } 1659 } 1660 *r++ = '\0'; 1661 assert( r == result + len ); 1662 return result; 1663 } 1664 1665 static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, 1666 const char *zFormat){ 1667 char *zCommand = string_format(zFormat, zDb, zName); 1668 int rc; 1669 TRACE(("FTS2 sql: %s\n", zCommand)); 1670 rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); 1671 sqlite3_free(zCommand); 1672 return rc; 1673 } 1674 1675 static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, 1676 sqlite3_stmt **ppStmt, const char *zFormat){ 1677 char *zCommand = string_format(zFormat, zDb, zName); 1678 int rc; 1679 TRACE(("FTS2 prepare: %s\n", zCommand)); 1680 rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL); 1681 sqlite3_free(zCommand); 1682 return rc; 1683 } 1684 1685 /* end utility functions */ 1686 1687 /* Forward reference */ 1688 typedef struct fulltext_vtab fulltext_vtab; 1689 1690 /* A single term in a query is represented by an instances of 1691 ** the following structure. 1692 */ 1693 typedef struct QueryTerm { 1694 short int nPhrase; /* How many following terms are part of the same phrase */ 1695 short int iPhrase; /* This is the i-th term of a phrase. */ 1696 short int iColumn; /* Column of the index that must match this term */ 1697 signed char isOr; /* this term is preceded by "OR" */ 1698 signed char isNot; /* this term is preceded by "-" */ 1699 signed char isPrefix; /* this term is followed by "*" */ 1700 char *pTerm; /* text of the term. '\000' terminated. malloced */ 1701 int nTerm; /* Number of bytes in pTerm[] */ 1702 } QueryTerm; 1703 1704 1705 /* A query string is parsed into a Query structure. 1706 * 1707 * We could, in theory, allow query strings to be complicated 1708 * nested expressions with precedence determined by parentheses. 1709 * But none of the major search engines do this. (Perhaps the 1710 * feeling is that an parenthesized expression is two complex of 1711 * an idea for the average user to grasp.) Taking our lead from 1712 * the major search engines, we will allow queries to be a list 1713 * of terms (with an implied AND operator) or phrases in double-quotes, 1714 * with a single optional "-" before each non-phrase term to designate 1715 * negation and an optional OR connector. 1716 * 1717 * OR binds more tightly than the implied AND, which is what the 1718 * major search engines seem to do. So, for example: 1719 * 1720 * [one two OR three] ==> one AND (two OR three) 1721 * [one OR two three] ==> (one OR two) AND three 1722 * 1723 * A "-" before a term matches all entries that lack that term. 1724 * The "-" must occur immediately before the term with in intervening 1725 * space. This is how the search engines do it. 1726 * 1727 * A NOT term cannot be the right-hand operand of an OR. If this 1728 * occurs in the query string, the NOT is ignored: 1729 * 1730 * [one OR -two] ==> one OR two 1731 * 1732 */ 1733 typedef struct Query { 1734 fulltext_vtab *pFts; /* The full text index */ 1735 int nTerms; /* Number of terms in the query */ 1736 QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ 1737 int nextIsOr; /* Set the isOr flag on the next inserted term */ 1738 int nextColumn; /* Next word parsed must be in this column */ 1739 int dfltColumn; /* The default column */ 1740 } Query; 1741 1742 1743 /* 1744 ** An instance of the following structure keeps track of generated 1745 ** matching-word offset information and snippets. 1746 */ 1747 typedef struct Snippet { 1748 int nMatch; /* Total number of matches */ 1749 int nAlloc; /* Space allocated for aMatch[] */ 1750 struct snippetMatch { /* One entry for each matching term */ 1751 char snStatus; /* Status flag for use while constructing snippets */ 1752 short int iCol; /* The column that contains the match */ 1753 short int iTerm; /* The index in Query.pTerms[] of the matching term */ 1754 short int nByte; /* Number of bytes in the term */ 1755 int iStart; /* The offset to the first character of the term */ 1756 } *aMatch; /* Points to space obtained from malloc */ 1757 char *zOffset; /* Text rendering of aMatch[] */ 1758 int nOffset; /* strlen(zOffset) */ 1759 char *zSnippet; /* Snippet text */ 1760 int nSnippet; /* strlen(zSnippet) */ 1761 } Snippet; 1762 1763 1764 typedef enum QueryType { 1765 QUERY_GENERIC, /* table scan */ 1766 QUERY_ROWID, /* lookup by rowid */ 1767 QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ 1768 } QueryType; 1769 1770 typedef enum fulltext_statement { 1771 CONTENT_INSERT_STMT, 1772 CONTENT_SELECT_STMT, 1773 CONTENT_UPDATE_STMT, 1774 CONTENT_DELETE_STMT, 1775 CONTENT_EXISTS_STMT, 1776 1777 BLOCK_INSERT_STMT, 1778 BLOCK_SELECT_STMT, 1779 BLOCK_DELETE_STMT, 1780 BLOCK_DELETE_ALL_STMT, 1781 1782 SEGDIR_MAX_INDEX_STMT, 1783 SEGDIR_SET_STMT, 1784 SEGDIR_SELECT_LEVEL_STMT, 1785 SEGDIR_SPAN_STMT, 1786 SEGDIR_DELETE_STMT, 1787 SEGDIR_SELECT_SEGMENT_STMT, 1788 SEGDIR_SELECT_ALL_STMT, 1789 SEGDIR_DELETE_ALL_STMT, 1790 SEGDIR_COUNT_STMT, 1791 1792 MAX_STMT /* Always at end! */ 1793 } fulltext_statement; 1794 1795 /* These must exactly match the enum above. */ 1796 /* TODO(shess): Is there some risk that a statement will be used in two 1797 ** cursors at once, e.g. if a query joins a virtual table to itself? 1798 ** If so perhaps we should move some of these to the cursor object. 1799 */ 1800 static const char *const fulltext_zStatement[MAX_STMT] = { 1801 /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ 1802 /* CONTENT_SELECT */ "select * from %_content where rowid = ?", 1803 /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ 1804 /* CONTENT_DELETE */ "delete from %_content where rowid = ?", 1805 /* CONTENT_EXISTS */ "select rowid from %_content limit 1", 1806 1807 /* BLOCK_INSERT */ "insert into %_segments values (?)", 1808 /* BLOCK_SELECT */ "select block from %_segments where rowid = ?", 1809 /* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?", 1810 /* BLOCK_DELETE_ALL */ "delete from %_segments", 1811 1812 /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?", 1813 /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)", 1814 /* SEGDIR_SELECT_LEVEL */ 1815 "select start_block, leaves_end_block, root from %_segdir " 1816 " where level = ? order by idx", 1817 /* SEGDIR_SPAN */ 1818 "select min(start_block), max(end_block) from %_segdir " 1819 " where level = ? and start_block <> 0", 1820 /* SEGDIR_DELETE */ "delete from %_segdir where level = ?", 1821 1822 /* NOTE(shess): The first three results of the following two 1823 ** statements must match. 1824 */ 1825 /* SEGDIR_SELECT_SEGMENT */ 1826 "select start_block, leaves_end_block, root from %_segdir " 1827 " where level = ? and idx = ?", 1828 /* SEGDIR_SELECT_ALL */ 1829 "select start_block, leaves_end_block, root from %_segdir " 1830 " order by level desc, idx asc", 1831 /* SEGDIR_DELETE_ALL */ "delete from %_segdir", 1832 /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir", 1833 }; 1834 1835 /* 1836 ** A connection to a fulltext index is an instance of the following 1837 ** structure. The xCreate and xConnect methods create an instance 1838 ** of this structure and xDestroy and xDisconnect free that instance. 1839 ** All other methods receive a pointer to the structure as one of their 1840 ** arguments. 1841 */ 1842 struct fulltext_vtab { 1843 sqlite3_vtab base; /* Base class used by SQLite core */ 1844 sqlite3 *db; /* The database connection */ 1845 const char *zDb; /* logical database name */ 1846 const char *zName; /* virtual table name */ 1847 int nColumn; /* number of columns in virtual table */ 1848 char **azColumn; /* column names. malloced */ 1849 char **azContentColumn; /* column names in content table; malloced */ 1850 sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ 1851 1852 /* Precompiled statements which we keep as long as the table is 1853 ** open. 1854 */ 1855 sqlite3_stmt *pFulltextStatements[MAX_STMT]; 1856 1857 /* Precompiled statements used for segment merges. We run a 1858 ** separate select across the leaf level of each tree being merged. 1859 */ 1860 sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT]; 1861 /* The statement used to prepare pLeafSelectStmts. */ 1862 #define LEAF_SELECT \ 1863 "select block from %_segments where rowid between ? and ? order by rowid" 1864 1865 /* These buffer pending index updates during transactions. 1866 ** nPendingData estimates the memory size of the pending data. It 1867 ** doesn't include the hash-bucket overhead, nor any malloc 1868 ** overhead. When nPendingData exceeds kPendingThreshold, the 1869 ** buffer is flushed even before the transaction closes. 1870 ** pendingTerms stores the data, and is only valid when nPendingData 1871 ** is >=0 (nPendingData<0 means pendingTerms has not been 1872 ** initialized). iPrevDocid is the last docid written, used to make 1873 ** certain we're inserting in sorted order. 1874 */ 1875 int nPendingData; 1876 #define kPendingThreshold (1*1024*1024) 1877 sqlite_int64 iPrevDocid; 1878 fts2Hash pendingTerms; 1879 }; 1880 1881 /* 1882 ** When the core wants to do a query, it create a cursor using a 1883 ** call to xOpen. This structure is an instance of a cursor. It 1884 ** is destroyed by xClose. 1885 */ 1886 typedef struct fulltext_cursor { 1887 sqlite3_vtab_cursor base; /* Base class used by SQLite core */ 1888 QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ 1889 sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ 1890 int eof; /* True if at End Of Results */ 1891 Query q; /* Parsed query string */ 1892 Snippet snippet; /* Cached snippet for the current row */ 1893 int iColumn; /* Column being searched */ 1894 DataBuffer result; /* Doclist results from fulltextQuery */ 1895 DLReader reader; /* Result reader if result not empty */ 1896 } fulltext_cursor; 1897 1898 static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ 1899 return (fulltext_vtab *) c->base.pVtab; 1900 } 1901 1902 static const sqlite3_module fts2Module; /* forward declaration */ 1903 1904 /* Return a dynamically generated statement of the form 1905 * insert into %_content (rowid, ...) values (?, ...) 1906 */ 1907 static const char *contentInsertStatement(fulltext_vtab *v){ 1908 StringBuffer sb; 1909 int i; 1910 1911 initStringBuffer(&sb); 1912 append(&sb, "insert into %_content (rowid, "); 1913 appendList(&sb, v->nColumn, v->azContentColumn); 1914 append(&sb, ") values (?"); 1915 for(i=0; i<v->nColumn; ++i) 1916 append(&sb, ", ?"); 1917 append(&sb, ")"); 1918 return stringBufferData(&sb); 1919 } 1920 1921 /* Return a dynamically generated statement of the form 1922 * update %_content set [col_0] = ?, [col_1] = ?, ... 1923 * where rowid = ? 1924 */ 1925 static const char *contentUpdateStatement(fulltext_vtab *v){ 1926 StringBuffer sb; 1927 int i; 1928 1929 initStringBuffer(&sb); 1930 append(&sb, "update %_content set "); 1931 for(i=0; i<v->nColumn; ++i) { 1932 if( i>0 ){ 1933 append(&sb, ", "); 1934 } 1935 append(&sb, v->azContentColumn[i]); 1936 append(&sb, " = ?"); 1937 } 1938 append(&sb, " where rowid = ?"); 1939 return stringBufferData(&sb); 1940 } 1941 1942 /* Puts a freshly-prepared statement determined by iStmt in *ppStmt. 1943 ** If the indicated statement has never been prepared, it is prepared 1944 ** and cached, otherwise the cached version is reset. 1945 */ 1946 static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, 1947 sqlite3_stmt **ppStmt){ 1948 assert( iStmt<MAX_STMT ); 1949 if( v->pFulltextStatements[iStmt]==NULL ){ 1950 const char *zStmt; 1951 int rc; 1952 switch( iStmt ){ 1953 case CONTENT_INSERT_STMT: 1954 zStmt = contentInsertStatement(v); break; 1955 case CONTENT_UPDATE_STMT: 1956 zStmt = contentUpdateStatement(v); break; 1957 default: 1958 zStmt = fulltext_zStatement[iStmt]; 1959 } 1960 rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], 1961 zStmt); 1962 if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt); 1963 if( rc!=SQLITE_OK ) return rc; 1964 } else { 1965 int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); 1966 if( rc!=SQLITE_OK ) return rc; 1967 } 1968 1969 *ppStmt = v->pFulltextStatements[iStmt]; 1970 return SQLITE_OK; 1971 } 1972 1973 /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and 1974 ** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE, 1975 ** where we expect no results. 1976 */ 1977 static int sql_single_step(sqlite3_stmt *s){ 1978 int rc = sqlite3_step(s); 1979 return (rc==SQLITE_DONE) ? SQLITE_OK : rc; 1980 } 1981 1982 /* Like sql_get_statement(), but for special replicated LEAF_SELECT 1983 ** statements. idx -1 is a special case for an uncached version of 1984 ** the statement (used in the optimize implementation). 1985 */ 1986 /* TODO(shess) Write version for generic statements and then share 1987 ** that between the cached-statement functions. 1988 */ 1989 static int sql_get_leaf_statement(fulltext_vtab *v, int idx, 1990 sqlite3_stmt **ppStmt){ 1991 assert( idx>=-1 && idx<MERGE_COUNT ); 1992 if( idx==-1 ){ 1993 return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT); 1994 }else if( v->pLeafSelectStmts[idx]==NULL ){ 1995 int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx], 1996 LEAF_SELECT); 1997 if( rc!=SQLITE_OK ) return rc; 1998 }else{ 1999 int rc = sqlite3_reset(v->pLeafSelectStmts[idx]); 2000 if( rc!=SQLITE_OK ) return rc; 2001 } 2002 2003 *ppStmt = v->pLeafSelectStmts[idx]; 2004 return SQLITE_OK; 2005 } 2006 2007 /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ 2008 static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, 2009 sqlite3_value **pValues){ 2010 sqlite3_stmt *s; 2011 int i; 2012 int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); 2013 if( rc!=SQLITE_OK ) return rc; 2014 2015 rc = sqlite3_bind_value(s, 1, rowid); 2016 if( rc!=SQLITE_OK ) return rc; 2017 2018 for(i=0; i<v->nColumn; ++i){ 2019 rc = sqlite3_bind_value(s, 2+i, pValues[i]); 2020 if( rc!=SQLITE_OK ) return rc; 2021 } 2022 2023 return sql_single_step(s); 2024 } 2025 2026 /* update %_content set col0 = pValues[0], col1 = pValues[1], ... 2027 * where rowid = [iRowid] */ 2028 static int content_update(fulltext_vtab *v, sqlite3_value **pValues, 2029 sqlite_int64 iRowid){ 2030 sqlite3_stmt *s; 2031 int i; 2032 int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); 2033 if( rc!=SQLITE_OK ) return rc; 2034 2035 for(i=0; i<v->nColumn; ++i){ 2036 rc = sqlite3_bind_value(s, 1+i, pValues[i]); 2037 if( rc!=SQLITE_OK ) return rc; 2038 } 2039 2040 rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); 2041 if( rc!=SQLITE_OK ) return rc; 2042 2043 return sql_single_step(s); 2044 } 2045 2046 static void freeStringArray(int nString, const char **pString){ 2047 int i; 2048 2049 for (i=0 ; i < nString ; ++i) { 2050 if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]); 2051 } 2052 sqlite3_free((void *) pString); 2053 } 2054 2055 /* select * from %_content where rowid = [iRow] 2056 * The caller must delete the returned array and all strings in it. 2057 * null fields will be NULL in the returned array. 2058 * 2059 * TODO: Perhaps we should return pointer/length strings here for consistency 2060 * with other code which uses pointer/length. */ 2061 static int content_select(fulltext_vtab *v, sqlite_int64 iRow, 2062 const char ***pValues){ 2063 sqlite3_stmt *s; 2064 const char **values; 2065 int i; 2066 int rc; 2067 2068 *pValues = NULL; 2069 2070 rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); 2071 if( rc!=SQLITE_OK ) return rc; 2072 2073 rc = sqlite3_bind_int64(s, 1, iRow); 2074 if( rc!=SQLITE_OK ) return rc; 2075 2076 rc = sqlite3_step(s); 2077 if( rc!=SQLITE_ROW ) return rc; 2078 2079 values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *)); 2080 for(i=0; i<v->nColumn; ++i){ 2081 if( sqlite3_column_type(s, i)==SQLITE_NULL ){ 2082 values[i] = NULL; 2083 }else{ 2084 values[i] = string_dup((char*)sqlite3_column_text(s, i)); 2085 } 2086 } 2087 2088 /* We expect only one row. We must execute another sqlite3_step() 2089 * to complete the iteration; otherwise the table will remain locked. */ 2090 rc = sqlite3_step(s); 2091 if( rc==SQLITE_DONE ){ 2092 *pValues = values; 2093 return SQLITE_OK; 2094 } 2095 2096 freeStringArray(v->nColumn, values); 2097 return rc; 2098 } 2099 2100 /* delete from %_content where rowid = [iRow ] */ 2101 static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ 2102 sqlite3_stmt *s; 2103 int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); 2104 if( rc!=SQLITE_OK ) return rc; 2105 2106 rc = sqlite3_bind_int64(s, 1, iRow); 2107 if( rc!=SQLITE_OK ) return rc; 2108 2109 return sql_single_step(s); 2110 } 2111 2112 /* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if 2113 ** no rows exist, and any error in case of failure. 2114 */ 2115 static int content_exists(fulltext_vtab *v){ 2116 sqlite3_stmt *s; 2117 int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s); 2118 if( rc!=SQLITE_OK ) return rc; 2119 2120 rc = sqlite3_step(s); 2121 if( rc!=SQLITE_ROW ) return rc; 2122 2123 /* We expect only one row. We must execute another sqlite3_step() 2124 * to complete the iteration; otherwise the table will remain locked. */ 2125 rc = sqlite3_step(s); 2126 if( rc==SQLITE_DONE ) return SQLITE_ROW; 2127 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 2128 return rc; 2129 } 2130 2131 /* insert into %_segments values ([pData]) 2132 ** returns assigned rowid in *piBlockid 2133 */ 2134 static int block_insert(fulltext_vtab *v, const char *pData, int nData, 2135 sqlite_int64 *piBlockid){ 2136 sqlite3_stmt *s; 2137 int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s); 2138 if( rc!=SQLITE_OK ) return rc; 2139 2140 rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC); 2141 if( rc!=SQLITE_OK ) return rc; 2142 2143 rc = sqlite3_step(s); 2144 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 2145 if( rc!=SQLITE_DONE ) return rc; 2146 2147 *piBlockid = sqlite3_last_insert_rowid(v->db); 2148 return SQLITE_OK; 2149 } 2150 2151 /* delete from %_segments 2152 ** where rowid between [iStartBlockid] and [iEndBlockid] 2153 ** 2154 ** Deletes the range of blocks, inclusive, used to delete the blocks 2155 ** which form a segment. 2156 */ 2157 static int block_delete(fulltext_vtab *v, 2158 sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){ 2159 sqlite3_stmt *s; 2160 int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s); 2161 if( rc!=SQLITE_OK ) return rc; 2162 2163 rc = sqlite3_bind_int64(s, 1, iStartBlockid); 2164 if( rc!=SQLITE_OK ) return rc; 2165 2166 rc = sqlite3_bind_int64(s, 2, iEndBlockid); 2167 if( rc!=SQLITE_OK ) return rc; 2168 2169 return sql_single_step(s); 2170 } 2171 2172 /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found 2173 ** at iLevel. Returns SQLITE_DONE if there are no segments at 2174 ** iLevel. Otherwise returns an error. 2175 */ 2176 static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){ 2177 sqlite3_stmt *s; 2178 int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s); 2179 if( rc!=SQLITE_OK ) return rc; 2180 2181 rc = sqlite3_bind_int(s, 1, iLevel); 2182 if( rc!=SQLITE_OK ) return rc; 2183 2184 rc = sqlite3_step(s); 2185 /* Should always get at least one row due to how max() works. */ 2186 if( rc==SQLITE_DONE ) return SQLITE_DONE; 2187 if( rc!=SQLITE_ROW ) return rc; 2188 2189 /* NULL means that there were no inputs to max(). */ 2190 if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ 2191 rc = sqlite3_step(s); 2192 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 2193 return rc; 2194 } 2195 2196 *pidx = sqlite3_column_int(s, 0); 2197 2198 /* We expect only one row. We must execute another sqlite3_step() 2199 * to complete the iteration; otherwise the table will remain locked. */ 2200 rc = sqlite3_step(s); 2201 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 2202 if( rc!=SQLITE_DONE ) return rc; 2203 return SQLITE_ROW; 2204 } 2205 2206 /* insert into %_segdir values ( 2207 ** [iLevel], [idx], 2208 ** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid], 2209 ** [pRootData] 2210 ** ) 2211 */ 2212 static int segdir_set(fulltext_vtab *v, int iLevel, int idx, 2213 sqlite_int64 iStartBlockid, 2214 sqlite_int64 iLeavesEndBlockid, 2215 sqlite_int64 iEndBlockid, 2216 const char *pRootData, int nRootData){ 2217 sqlite3_stmt *s; 2218 int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s); 2219 if( rc!=SQLITE_OK ) return rc; 2220 2221 rc = sqlite3_bind_int(s, 1, iLevel); 2222 if( rc!=SQLITE_OK ) return rc; 2223 2224 rc = sqlite3_bind_int(s, 2, idx); 2225 if( rc!=SQLITE_OK ) return rc; 2226 2227 rc = sqlite3_bind_int64(s, 3, iStartBlockid); 2228 if( rc!=SQLITE_OK ) return rc; 2229 2230 rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid); 2231 if( rc!=SQLITE_OK ) return rc; 2232 2233 rc = sqlite3_bind_int64(s, 5, iEndBlockid); 2234 if( rc!=SQLITE_OK ) return rc; 2235 2236 rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC); 2237 if( rc!=SQLITE_OK ) return rc; 2238 2239 return sql_single_step(s); 2240 } 2241 2242 /* Queries %_segdir for the block span of the segments in level 2243 ** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel, 2244 ** SQLITE_ROW if there are blocks, else an error. 2245 */ 2246 static int segdir_span(fulltext_vtab *v, int iLevel, 2247 sqlite_int64 *piStartBlockid, 2248 sqlite_int64 *piEndBlockid){ 2249 sqlite3_stmt *s; 2250 int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s); 2251 if( rc!=SQLITE_OK ) return rc; 2252 2253 rc = sqlite3_bind_int(s, 1, iLevel); 2254 if( rc!=SQLITE_OK ) return rc; 2255 2256 rc = sqlite3_step(s); 2257 if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */ 2258 if( rc!=SQLITE_ROW ) return rc; 2259 2260 /* This happens if all segments at this level are entirely inline. */ 2261 if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ 2262 /* We expect only one row. We must execute another sqlite3_step() 2263 * to complete the iteration; otherwise the table will remain locked. */ 2264 int rc2 = sqlite3_step(s); 2265 if( rc2==SQLITE_ROW ) return SQLITE_ERROR; 2266 return rc2; 2267 } 2268 2269 *piStartBlockid = sqlite3_column_int64(s, 0); 2270 *piEndBlockid = sqlite3_column_int64(s, 1); 2271 2272 /* We expect only one row. We must execute another sqlite3_step() 2273 * to complete the iteration; otherwise the table will remain locked. */ 2274 rc = sqlite3_step(s); 2275 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 2276 if( rc!=SQLITE_DONE ) return rc; 2277 return SQLITE_ROW; 2278 } 2279 2280 /* Delete the segment blocks and segment directory records for all 2281 ** segments at iLevel. 2282 */ 2283 static int segdir_delete(fulltext_vtab *v, int iLevel){ 2284 sqlite3_stmt *s; 2285 sqlite_int64 iStartBlockid, iEndBlockid; 2286 int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid); 2287 if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc; 2288 2289 if( rc==SQLITE_ROW ){ 2290 rc = block_delete(v, iStartBlockid, iEndBlockid); 2291 if( rc!=SQLITE_OK ) return rc; 2292 } 2293 2294 /* Delete the segment directory itself. */ 2295 rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s); 2296 if( rc!=SQLITE_OK ) return rc; 2297 2298 rc = sqlite3_bind_int64(s, 1, iLevel); 2299 if( rc!=SQLITE_OK ) return rc; 2300 2301 return sql_single_step(s); 2302 } 2303 2304 /* Delete entire fts index, SQLITE_OK on success, relevant error on 2305 ** failure. 2306 */ 2307 static int segdir_delete_all(fulltext_vtab *v){ 2308 sqlite3_stmt *s; 2309 int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s); 2310 if( rc!=SQLITE_OK ) return rc; 2311 2312 rc = sql_single_step(s); 2313 if( rc!=SQLITE_OK ) return rc; 2314 2315 rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s); 2316 if( rc!=SQLITE_OK ) return rc; 2317 2318 return sql_single_step(s); 2319 } 2320 2321 /* Returns SQLITE_OK with *pnSegments set to the number of entries in 2322 ** %_segdir and *piMaxLevel set to the highest level which has a 2323 ** segment. Otherwise returns the SQLite error which caused failure. 2324 */ 2325 static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){ 2326 sqlite3_stmt *s; 2327 int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s); 2328 if( rc!=SQLITE_OK ) return rc; 2329 2330 rc = sqlite3_step(s); 2331 /* TODO(shess): This case should not be possible? Should stronger 2332 ** measures be taken if it happens? 2333 */ 2334 if( rc==SQLITE_DONE ){ 2335 *pnSegments = 0; 2336 *piMaxLevel = 0; 2337 return SQLITE_OK; 2338 } 2339 if( rc!=SQLITE_ROW ) return rc; 2340 2341 *pnSegments = sqlite3_column_int(s, 0); 2342 *piMaxLevel = sqlite3_column_int(s, 1); 2343 2344 /* We expect only one row. We must execute another sqlite3_step() 2345 * to complete the iteration; otherwise the table will remain locked. */ 2346 rc = sqlite3_step(s); 2347 if( rc==SQLITE_DONE ) return SQLITE_OK; 2348 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 2349 return rc; 2350 } 2351 2352 /* TODO(shess) clearPendingTerms() is far down the file because 2353 ** writeZeroSegment() is far down the file because LeafWriter is far 2354 ** down the file. Consider refactoring the code to move the non-vtab 2355 ** code above the vtab code so that we don't need this forward 2356 ** reference. 2357 */ 2358 static int clearPendingTerms(fulltext_vtab *v); 2359 2360 /* 2361 ** Free the memory used to contain a fulltext_vtab structure. 2362 */ 2363 static void fulltext_vtab_destroy(fulltext_vtab *v){ 2364 int iStmt, i; 2365 2366 TRACE(("FTS2 Destroy %p\n", v)); 2367 for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){ 2368 if( v->pFulltextStatements[iStmt]!=NULL ){ 2369 sqlite3_finalize(v->pFulltextStatements[iStmt]); 2370 v->pFulltextStatements[iStmt] = NULL; 2371 } 2372 } 2373 2374 for( i=0; i<MERGE_COUNT; i++ ){ 2375 if( v->pLeafSelectStmts[i]!=NULL ){ 2376 sqlite3_finalize(v->pLeafSelectStmts[i]); 2377 v->pLeafSelectStmts[i] = NULL; 2378 } 2379 } 2380 2381 if( v->pTokenizer!=NULL ){ 2382 v->pTokenizer->pModule->xDestroy(v->pTokenizer); 2383 v->pTokenizer = NULL; 2384 } 2385 2386 clearPendingTerms(v); 2387 2388 sqlite3_free(v->azColumn); 2389 for(i = 0; i < v->nColumn; ++i) { 2390 sqlite3_free(v->azContentColumn[i]); 2391 } 2392 sqlite3_free(v->azContentColumn); 2393 sqlite3_free(v); 2394 } 2395 2396 /* 2397 ** Token types for parsing the arguments to xConnect or xCreate. 2398 */ 2399 #define TOKEN_EOF 0 /* End of file */ 2400 #define TOKEN_SPACE 1 /* Any kind of whitespace */ 2401 #define TOKEN_ID 2 /* An identifier */ 2402 #define TOKEN_STRING 3 /* A string literal */ 2403 #define TOKEN_PUNCT 4 /* A single punctuation character */ 2404 2405 /* 2406 ** If X is a character that can be used in an identifier then 2407 ** IdChar(X) will be true. Otherwise it is false. 2408 ** 2409 ** For ASCII, any character with the high-order bit set is 2410 ** allowed in an identifier. For 7-bit characters, 2411 ** sqlite3IsIdChar[X] must be 1. 2412 ** 2413 ** Ticket #1066. the SQL standard does not allow '$' in the 2414 ** middle of identfiers. But many SQL implementations do. 2415 ** SQLite will allow '$' in identifiers for compatibility. 2416 ** But the feature is undocumented. 2417 */ 2418 static const char isIdChar[] = { 2419 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ 2420 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ 2421 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ 2422 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ 2423 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ 2424 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ 2425 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ 2426 }; 2427 #define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) 2428 2429 2430 /* 2431 ** Return the length of the token that begins at z[0]. 2432 ** Store the token type in *tokenType before returning. 2433 */ 2434 static int getToken(const char *z, int *tokenType){ 2435 int i, c; 2436 switch( *z ){ 2437 case 0: { 2438 *tokenType = TOKEN_EOF; 2439 return 0; 2440 } 2441 case ' ': case '\t': case '\n': case '\f': case '\r': { 2442 for(i=1; safe_isspace(z[i]); i++){} 2443 *tokenType = TOKEN_SPACE; 2444 return i; 2445 } 2446 case '`': 2447 case '\'': 2448 case '"': { 2449 int delim = z[0]; 2450 for(i=1; (c=z[i])!=0; i++){ 2451 if( c==delim ){ 2452 if( z[i+1]==delim ){ 2453 i++; 2454 }else{ 2455 break; 2456 } 2457 } 2458 } 2459 *tokenType = TOKEN_STRING; 2460 return i + (c!=0); 2461 } 2462 case '[': { 2463 for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} 2464 *tokenType = TOKEN_ID; 2465 return i; 2466 } 2467 default: { 2468 if( !IdChar(*z) ){ 2469 break; 2470 } 2471 for(i=1; IdChar(z[i]); i++){} 2472 *tokenType = TOKEN_ID; 2473 return i; 2474 } 2475 } 2476 *tokenType = TOKEN_PUNCT; 2477 return 1; 2478 } 2479 2480 /* 2481 ** A token extracted from a string is an instance of the following 2482 ** structure. 2483 */ 2484 typedef struct Token { 2485 const char *z; /* Pointer to token text. Not '\000' terminated */ 2486 short int n; /* Length of the token text in bytes. */ 2487 } Token; 2488 2489 /* 2490 ** Given a input string (which is really one of the argv[] parameters 2491 ** passed into xConnect or xCreate) split the string up into tokens. 2492 ** Return an array of pointers to '\000' terminated strings, one string 2493 ** for each non-whitespace token. 2494 ** 2495 ** The returned array is terminated by a single NULL pointer. 2496 ** 2497 ** Space to hold the returned array is obtained from a single 2498 ** malloc and should be freed by passing the return value to free(). 2499 ** The individual strings within the token list are all a part of 2500 ** the single memory allocation and will all be freed at once. 2501 */ 2502 static char **tokenizeString(const char *z, int *pnToken){ 2503 int nToken = 0; 2504 Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) ); 2505 int n = 1; 2506 int e, i; 2507 int totalSize = 0; 2508 char **azToken; 2509 char *zCopy; 2510 while( n>0 ){ 2511 n = getToken(z, &e); 2512 if( e!=TOKEN_SPACE ){ 2513 aToken[nToken].z = z; 2514 aToken[nToken].n = n; 2515 nToken++; 2516 totalSize += n+1; 2517 } 2518 z += n; 2519 } 2520 azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize ); 2521 zCopy = (char*)&azToken[nToken]; 2522 nToken--; 2523 for(i=0; i<nToken; i++){ 2524 azToken[i] = zCopy; 2525 n = aToken[i].n; 2526 memcpy(zCopy, aToken[i].z, n); 2527 zCopy[n] = 0; 2528 zCopy += n+1; 2529 } 2530 azToken[nToken] = 0; 2531 sqlite3_free(aToken); 2532 *pnToken = nToken; 2533 return azToken; 2534 } 2535 2536 /* 2537 ** Convert an SQL-style quoted string into a normal string by removing 2538 ** the quote characters. The conversion is done in-place. If the 2539 ** input does not begin with a quote character, then this routine 2540 ** is a no-op. 2541 ** 2542 ** Examples: 2543 ** 2544 ** "abc" becomes abc 2545 ** 'xyz' becomes xyz 2546 ** [pqr] becomes pqr 2547 ** `mno` becomes mno 2548 */ 2549 static void dequoteString(char *z){ 2550 int quote; 2551 int i, j; 2552 if( z==0 ) return; 2553 quote = z[0]; 2554 switch( quote ){ 2555 case '\'': break; 2556 case '"': break; 2557 case '`': break; /* For MySQL compatibility */ 2558 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ 2559 default: return; 2560 } 2561 for(i=1, j=0; z[i]; i++){ 2562 if( z[i]==quote ){ 2563 if( z[i+1]==quote ){ 2564 z[j++] = quote; 2565 i++; 2566 }else{ 2567 z[j++] = 0; 2568 break; 2569 } 2570 }else{ 2571 z[j++] = z[i]; 2572 } 2573 } 2574 } 2575 2576 /* 2577 ** The input azIn is a NULL-terminated list of tokens. Remove the first 2578 ** token and all punctuation tokens. Remove the quotes from 2579 ** around string literal tokens. 2580 ** 2581 ** Example: 2582 ** 2583 ** input: tokenize chinese ( 'simplifed' , 'mixed' ) 2584 ** output: chinese simplifed mixed 2585 ** 2586 ** Another example: 2587 ** 2588 ** input: delimiters ( '[' , ']' , '...' ) 2589 ** output: [ ] ... 2590 */ 2591 static void tokenListToIdList(char **azIn){ 2592 int i, j; 2593 if( azIn ){ 2594 for(i=0, j=-1; azIn[i]; i++){ 2595 if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){ 2596 dequoteString(azIn[i]); 2597 if( j>=0 ){ 2598 azIn[j] = azIn[i]; 2599 } 2600 j++; 2601 } 2602 } 2603 azIn[j] = 0; 2604 } 2605 } 2606 2607 2608 /* 2609 ** Find the first alphanumeric token in the string zIn. Null-terminate 2610 ** this token. Remove any quotation marks. And return a pointer to 2611 ** the result. 2612 */ 2613 static char *firstToken(char *zIn, char **pzTail){ 2614 int n, ttype; 2615 while(1){ 2616 n = getToken(zIn, &ttype); 2617 if( ttype==TOKEN_SPACE ){ 2618 zIn += n; 2619 }else if( ttype==TOKEN_EOF ){ 2620 *pzTail = zIn; 2621 return 0; 2622 }else{ 2623 zIn[n] = 0; 2624 *pzTail = &zIn[1]; 2625 dequoteString(zIn); 2626 return zIn; 2627 } 2628 } 2629 /*NOTREACHED*/ 2630 } 2631 2632 /* Return true if... 2633 ** 2634 ** * s begins with the string t, ignoring case 2635 ** * s is longer than t 2636 ** * The first character of s beyond t is not a alphanumeric 2637 ** 2638 ** Ignore leading space in *s. 2639 ** 2640 ** To put it another way, return true if the first token of 2641 ** s[] is t[]. 2642 */ 2643 static int startsWith(const char *s, const char *t){ 2644 while( safe_isspace(*s) ){ s++; } 2645 while( *t ){ 2646 if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; 2647 } 2648 return *s!='_' && !safe_isalnum(*s); 2649 } 2650 2651 /* 2652 ** An instance of this structure defines the "spec" of a 2653 ** full text index. This structure is populated by parseSpec 2654 ** and use by fulltextConnect and fulltextCreate. 2655 */ 2656 typedef struct TableSpec { 2657 const char *zDb; /* Logical database name */ 2658 const char *zName; /* Name of the full-text index */ 2659 int nColumn; /* Number of columns to be indexed */ 2660 char **azColumn; /* Original names of columns to be indexed */ 2661 char **azContentColumn; /* Column names for %_content */ 2662 char **azTokenizer; /* Name of tokenizer and its arguments */ 2663 } TableSpec; 2664 2665 /* 2666 ** Reclaim all of the memory used by a TableSpec 2667 */ 2668 static void clearTableSpec(TableSpec *p) { 2669 sqlite3_free(p->azColumn); 2670 sqlite3_free(p->azContentColumn); 2671 sqlite3_free(p->azTokenizer); 2672 } 2673 2674 /* Parse a CREATE VIRTUAL TABLE statement, which looks like this: 2675 * 2676 * CREATE VIRTUAL TABLE email 2677 * USING fts2(subject, body, tokenize mytokenizer(myarg)) 2678 * 2679 * We return parsed information in a TableSpec structure. 2680 * 2681 */ 2682 static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, 2683 char**pzErr){ 2684 int i, n; 2685 char *z, *zDummy; 2686 char **azArg; 2687 const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ 2688 2689 assert( argc>=3 ); 2690 /* Current interface: 2691 ** argv[0] - module name 2692 ** argv[1] - database name 2693 ** argv[2] - table name 2694 ** argv[3..] - columns, optionally followed by tokenizer specification 2695 ** and snippet delimiters specification. 2696 */ 2697 2698 /* Make a copy of the complete argv[][] array in a single allocation. 2699 ** The argv[][] array is read-only and transient. We can write to the 2700 ** copy in order to modify things and the copy is persistent. 2701 */ 2702 CLEAR(pSpec); 2703 for(i=n=0; i<argc; i++){ 2704 n += strlen(argv[i]) + 1; 2705 } 2706 azArg = sqlite3_malloc( sizeof(char*)*argc + n ); 2707 if( azArg==0 ){ 2708 return SQLITE_NOMEM; 2709 } 2710 z = (char*)&azArg[argc]; 2711 for(i=0; i<argc; i++){ 2712 azArg[i] = z; 2713 strcpy(z, argv[i]); 2714 z += strlen(z)+1; 2715 } 2716 2717 /* Identify the column names and the tokenizer and delimiter arguments 2718 ** in the argv[][] array. 2719 */ 2720 pSpec->zDb = azArg[1]; 2721 pSpec->zName = azArg[2]; 2722 pSpec->nColumn = 0; 2723 pSpec->azColumn = azArg; 2724 zTokenizer = "tokenize simple"; 2725 for(i=3; i<argc; ++i){ 2726 if( startsWith(azArg[i],"tokenize") ){ 2727 zTokenizer = azArg[i]; 2728 }else{ 2729 z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy); 2730 pSpec->nColumn++; 2731 } 2732 } 2733 if( pSpec->nColumn==0 ){ 2734 azArg[0] = "content"; 2735 pSpec->nColumn = 1; 2736 } 2737 2738 /* 2739 ** Construct the list of content column names. 2740 ** 2741 ** Each content column name will be of the form cNNAAAA 2742 ** where NN is the column number and AAAA is the sanitized 2743 ** column name. "sanitized" means that special characters are 2744 ** converted to "_". The cNN prefix guarantees that all column 2745 ** names are unique. 2746 ** 2747 ** The AAAA suffix is not strictly necessary. It is included 2748 ** for the convenience of people who might examine the generated 2749 ** %_content table and wonder what the columns are used for. 2750 */ 2751 pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) ); 2752 if( pSpec->azContentColumn==0 ){ 2753 clearTableSpec(pSpec); 2754 return SQLITE_NOMEM; 2755 } 2756 for(i=0; i<pSpec->nColumn; i++){ 2757 char *p; 2758 pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); 2759 for (p = pSpec->azContentColumn[i]; *p ; ++p) { 2760 if( !safe_isalnum(*p) ) *p = '_'; 2761 } 2762 } 2763 2764 /* 2765 ** Parse the tokenizer specification string. 2766 */ 2767 pSpec->azTokenizer = tokenizeString(zTokenizer, &n); 2768 tokenListToIdList(pSpec->azTokenizer); 2769 2770 return SQLITE_OK; 2771 } 2772 2773 /* 2774 ** Generate a CREATE TABLE statement that describes the schema of 2775 ** the virtual table. Return a pointer to this schema string. 2776 ** 2777 ** Space is obtained from sqlite3_mprintf() and should be freed 2778 ** using sqlite3_free(). 2779 */ 2780 static char *fulltextSchema( 2781 int nColumn, /* Number of columns */ 2782 const char *const* azColumn, /* List of columns */ 2783 const char *zTableName /* Name of the table */ 2784 ){ 2785 int i; 2786 char *zSchema, *zNext; 2787 const char *zSep = "("; 2788 zSchema = sqlite3_mprintf("CREATE TABLE x"); 2789 for(i=0; i<nColumn; i++){ 2790 zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]); 2791 sqlite3_free(zSchema); 2792 zSchema = zNext; 2793 zSep = ","; 2794 } 2795 zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName); 2796 sqlite3_free(zSchema); 2797 return zNext; 2798 } 2799 2800 /* 2801 ** Build a new sqlite3_vtab structure that will describe the 2802 ** fulltext index defined by spec. 2803 */ 2804 static int constructVtab( 2805 sqlite3 *db, /* The SQLite database connection */ 2806 fts2Hash *pHash, /* Hash table containing tokenizers */ 2807 TableSpec *spec, /* Parsed spec information from parseSpec() */ 2808 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ 2809 char **pzErr /* Write any error message here */ 2810 ){ 2811 int rc; 2812 int n; 2813 fulltext_vtab *v = 0; 2814 const sqlite3_tokenizer_module *m = NULL; 2815 char *schema; 2816 2817 char const *zTok; /* Name of tokenizer to use for this fts table */ 2818 int nTok; /* Length of zTok, including nul terminator */ 2819 2820 v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab)); 2821 if( v==0 ) return SQLITE_NOMEM; 2822 CLEAR(v); 2823 /* sqlite will initialize v->base */ 2824 v->db = db; 2825 v->zDb = spec->zDb; /* Freed when azColumn is freed */ 2826 v->zName = spec->zName; /* Freed when azColumn is freed */ 2827 v->nColumn = spec->nColumn; 2828 v->azContentColumn = spec->azContentColumn; 2829 spec->azContentColumn = 0; 2830 v->azColumn = spec->azColumn; 2831 spec->azColumn = 0; 2832 2833 if( spec->azTokenizer==0 ){ 2834 return SQLITE_NOMEM; 2835 } 2836 2837 zTok = spec->azTokenizer[0]; 2838 if( !zTok ){ 2839 zTok = "simple"; 2840 } 2841 nTok = strlen(zTok)+1; 2842 2843 m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok); 2844 if( !m ){ 2845 *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); 2846 rc = SQLITE_ERROR; 2847 goto err; 2848 } 2849 2850 for(n=0; spec->azTokenizer[n]; n++){} 2851 if( n ){ 2852 rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], 2853 &v->pTokenizer); 2854 }else{ 2855 rc = m->xCreate(0, 0, &v->pTokenizer); 2856 } 2857 if( rc!=SQLITE_OK ) goto err; 2858 v->pTokenizer->pModule = m; 2859 2860 /* TODO: verify the existence of backing tables foo_content, foo_term */ 2861 2862 schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, 2863 spec->zName); 2864 rc = sqlite3_declare_vtab(db, schema); 2865 sqlite3_free(schema); 2866 if( rc!=SQLITE_OK ) goto err; 2867 2868 memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); 2869 2870 /* Indicate that the buffer is not live. */ 2871 v->nPendingData = -1; 2872 2873 *ppVTab = &v->base; 2874 TRACE(("FTS2 Connect %p\n", v)); 2875 2876 return rc; 2877 2878 err: 2879 fulltext_vtab_destroy(v); 2880 return rc; 2881 } 2882 2883 static int fulltextConnect( 2884 sqlite3 *db, 2885 void *pAux, 2886 int argc, const char *const*argv, 2887 sqlite3_vtab **ppVTab, 2888 char **pzErr 2889 ){ 2890 TableSpec spec; 2891 int rc = parseSpec(&spec, argc, argv, pzErr); 2892 if( rc!=SQLITE_OK ) return rc; 2893 2894 rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); 2895 clearTableSpec(&spec); 2896 return rc; 2897 } 2898 2899 /* The %_content table holds the text of each document, with 2900 ** the rowid used as the docid. 2901 */ 2902 /* TODO(shess) This comment needs elaboration to match the updated 2903 ** code. Work it into the top-of-file comment at that time. 2904 */ 2905 static int fulltextCreate(sqlite3 *db, void *pAux, 2906 int argc, const char * const *argv, 2907 sqlite3_vtab **ppVTab, char **pzErr){ 2908 int rc; 2909 TableSpec spec; 2910 StringBuffer schema; 2911 TRACE(("FTS2 Create\n")); 2912 2913 rc = parseSpec(&spec, argc, argv, pzErr); 2914 if( rc!=SQLITE_OK ) return rc; 2915 2916 initStringBuffer(&schema); 2917 append(&schema, "CREATE TABLE %_content("); 2918 appendList(&schema, spec.nColumn, spec.azContentColumn); 2919 append(&schema, ")"); 2920 rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema)); 2921 stringBufferDestroy(&schema); 2922 if( rc!=SQLITE_OK ) goto out; 2923 2924 rc = sql_exec(db, spec.zDb, spec.zName, 2925 "create table %_segments(block blob);"); 2926 if( rc!=SQLITE_OK ) goto out; 2927 2928 rc = sql_exec(db, spec.zDb, spec.zName, 2929 "create table %_segdir(" 2930 " level integer," 2931 " idx integer," 2932 " start_block integer," 2933 " leaves_end_block integer," 2934 " end_block integer," 2935 " root blob," 2936 " primary key(level, idx)" 2937 ");"); 2938 if( rc!=SQLITE_OK ) goto out; 2939 2940 rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); 2941 2942 out: 2943 clearTableSpec(&spec); 2944 return rc; 2945 } 2946 2947 /* Decide how to handle an SQL query. */ 2948 static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ 2949 int i; 2950 TRACE(("FTS2 BestIndex\n")); 2951 2952 for(i=0; i<pInfo->nConstraint; ++i){ 2953 const struct sqlite3_index_constraint *pConstraint; 2954 pConstraint = &pInfo->aConstraint[i]; 2955 if( pConstraint->usable ) { 2956 if( pConstraint->iColumn==-1 && 2957 pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ 2958 pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */ 2959 TRACE(("FTS2 QUERY_ROWID\n")); 2960 } else if( pConstraint->iColumn>=0 && 2961 pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ 2962 /* full-text search */ 2963 pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; 2964 TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); 2965 } else continue; 2966 2967 pInfo->aConstraintUsage[i].argvIndex = 1; 2968 pInfo->aConstraintUsage[i].omit = 1; 2969 2970 /* An arbitrary value for now. 2971 * TODO: Perhaps rowid matches should be considered cheaper than 2972 * full-text searches. */ 2973 pInfo->estimatedCost = 1.0; 2974 2975 return SQLITE_OK; 2976 } 2977 } 2978 pInfo->idxNum = QUERY_GENERIC; 2979 return SQLITE_OK; 2980 } 2981 2982 static int fulltextDisconnect(sqlite3_vtab *pVTab){ 2983 TRACE(("FTS2 Disconnect %p\n", pVTab)); 2984 fulltext_vtab_destroy((fulltext_vtab *)pVTab); 2985 return SQLITE_OK; 2986 } 2987 2988 static int fulltextDestroy(sqlite3_vtab *pVTab){ 2989 fulltext_vtab *v = (fulltext_vtab *)pVTab; 2990 int rc; 2991 2992 TRACE(("FTS2 Destroy %p\n", pVTab)); 2993 rc = sql_exec(v->db, v->zDb, v->zName, 2994 "drop table if exists %_content;" 2995 "drop table if exists %_segments;" 2996 "drop table if exists %_segdir;" 2997 ); 2998 if( rc!=SQLITE_OK ) return rc; 2999 3000 fulltext_vtab_destroy((fulltext_vtab *)pVTab); 3001 return SQLITE_OK; 3002 } 3003 3004 static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 3005 fulltext_cursor *c; 3006 3007 c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor)); 3008 if( c ){ 3009 memset(c, 0, sizeof(fulltext_cursor)); 3010 /* sqlite will initialize c->base */ 3011 *ppCursor = &c->base; 3012 TRACE(("FTS2 Open %p: %p\n", pVTab, c)); 3013 return SQLITE_OK; 3014 }else{ 3015 return SQLITE_NOMEM; 3016 } 3017 } 3018 3019 3020 /* Free all of the dynamically allocated memory held by *q 3021 */ 3022 static void queryClear(Query *q){ 3023 int i; 3024 for(i = 0; i < q->nTerms; ++i){ 3025 sqlite3_free(q->pTerms[i].pTerm); 3026 } 3027 sqlite3_free(q->pTerms); 3028 CLEAR(q); 3029 } 3030 3031 /* Free all of the dynamically allocated memory held by the 3032 ** Snippet 3033 */ 3034 static void snippetClear(Snippet *p){ 3035 sqlite3_free(p->aMatch); 3036 sqlite3_free(p->zOffset); 3037 sqlite3_free(p->zSnippet); 3038 CLEAR(p); 3039 } 3040 /* 3041 ** Append a single entry to the p->aMatch[] log. 3042 */ 3043 static void snippetAppendMatch( 3044 Snippet *p, /* Append the entry to this snippet */ 3045 int iCol, int iTerm, /* The column and query term */ 3046 int iStart, int nByte /* Offset and size of the match */ 3047 ){ 3048 int i; 3049 struct snippetMatch *pMatch; 3050 if( p->nMatch+1>=p->nAlloc ){ 3051 p->nAlloc = p->nAlloc*2 + 10; 3052 p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); 3053 if( p->aMatch==0 ){ 3054 p->nMatch = 0; 3055 p->nAlloc = 0; 3056 return; 3057 } 3058 } 3059 i = p->nMatch++; 3060 pMatch = &p->aMatch[i]; 3061 pMatch->iCol = iCol; 3062 pMatch->iTerm = iTerm; 3063 pMatch->iStart = iStart; 3064 pMatch->nByte = nByte; 3065 } 3066 3067 /* 3068 ** Sizing information for the circular buffer used in snippetOffsetsOfColumn() 3069 */ 3070 #define FTS2_ROTOR_SZ (32) 3071 #define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1) 3072 3073 /* 3074 ** Add entries to pSnippet->aMatch[] for every match that occurs against 3075 ** document zDoc[0..nDoc-1] which is stored in column iColumn. 3076 */ 3077 static void snippetOffsetsOfColumn( 3078 Query *pQuery, 3079 Snippet *pSnippet, 3080 int iColumn, 3081 const char *zDoc, 3082 int nDoc 3083 ){ 3084 const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ 3085 sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ 3086 sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ 3087 fulltext_vtab *pVtab; /* The full text index */ 3088 int nColumn; /* Number of columns in the index */ 3089 const QueryTerm *aTerm; /* Query string terms */ 3090 int nTerm; /* Number of query string terms */ 3091 int i, j; /* Loop counters */ 3092 int rc; /* Return code */ 3093 unsigned int match, prevMatch; /* Phrase search bitmasks */ 3094 const char *zToken; /* Next token from the tokenizer */ 3095 int nToken; /* Size of zToken */ 3096 int iBegin, iEnd, iPos; /* Offsets of beginning and end */ 3097 3098 /* The following variables keep a circular buffer of the last 3099 ** few tokens */ 3100 unsigned int iRotor = 0; /* Index of current token */ 3101 int iRotorBegin[FTS2_ROTOR_SZ]; /* Beginning offset of token */ 3102 int iRotorLen[FTS2_ROTOR_SZ]; /* Length of token */ 3103 3104 pVtab = pQuery->pFts; 3105 nColumn = pVtab->nColumn; 3106 pTokenizer = pVtab->pTokenizer; 3107 pTModule = pTokenizer->pModule; 3108 rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); 3109 if( rc ) return; 3110 pTCursor->pTokenizer = pTokenizer; 3111 aTerm = pQuery->pTerms; 3112 nTerm = pQuery->nTerms; 3113 if( nTerm>=FTS2_ROTOR_SZ ){ 3114 nTerm = FTS2_ROTOR_SZ - 1; 3115 } 3116 prevMatch = 0; 3117 while(1){ 3118 rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); 3119 if( rc ) break; 3120 iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin; 3121 iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin; 3122 match = 0; 3123 for(i=0; i<nTerm; i++){ 3124 int iCol; 3125 iCol = aTerm[i].iColumn; 3126 if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue; 3127 if( aTerm[i].nTerm>nToken ) continue; 3128 if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue; 3129 assert( aTerm[i].nTerm<=nToken ); 3130 if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue; 3131 if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue; 3132 match |= 1<<i; 3133 if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){ 3134 for(j=aTerm[i].iPhrase-1; j>=0; j--){ 3135 int k = (iRotor-j) & FTS2_ROTOR_MASK; 3136 snippetAppendMatch(pSnippet, iColumn, i-j, 3137 iRotorBegin[k], iRotorLen[k]); 3138 } 3139 } 3140 } 3141 prevMatch = match<<1; 3142 iRotor++; 3143 } 3144 pTModule->xClose(pTCursor); 3145 } 3146 3147 3148 /* 3149 ** Compute all offsets for the current row of the query. 3150 ** If the offsets have already been computed, this routine is a no-op. 3151 */ 3152 static void snippetAllOffsets(fulltext_cursor *p){ 3153 int nColumn; 3154 int iColumn, i; 3155 int iFirst, iLast; 3156 fulltext_vtab *pFts; 3157 3158 if( p->snippet.nMatch ) return; 3159 if( p->q.nTerms==0 ) return; 3160 pFts = p->q.pFts; 3161 nColumn = pFts->nColumn; 3162 iColumn = (p->iCursorType - QUERY_FULLTEXT); 3163 if( iColumn<0 || iColumn>=nColumn ){ 3164 iFirst = 0; 3165 iLast = nColumn-1; 3166 }else{ 3167 iFirst = iColumn; 3168 iLast = iColumn; 3169 } 3170 for(i=iFirst; i<=iLast; i++){ 3171 const char *zDoc; 3172 int nDoc; 3173 zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); 3174 nDoc = sqlite3_column_bytes(p->pStmt, i+1); 3175 snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); 3176 } 3177 } 3178 3179 /* 3180 ** Convert the information in the aMatch[] array of the snippet 3181 ** into the string zOffset[0..nOffset-1]. 3182 */ 3183 static void snippetOffsetText(Snippet *p){ 3184 int i; 3185 int cnt = 0; 3186 StringBuffer sb; 3187 char zBuf[200]; 3188 if( p->zOffset ) return; 3189 initStringBuffer(&sb); 3190 for(i=0; i<p->nMatch; i++){ 3191 struct snippetMatch *pMatch = &p->aMatch[i]; 3192 zBuf[0] = ' '; 3193 sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", 3194 pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); 3195 append(&sb, zBuf); 3196 cnt++; 3197 } 3198 p->zOffset = stringBufferData(&sb); 3199 p->nOffset = stringBufferLength(&sb); 3200 } 3201 3202 /* 3203 ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set 3204 ** of matching words some of which might be in zDoc. zDoc is column 3205 ** number iCol. 3206 ** 3207 ** iBreak is suggested spot in zDoc where we could begin or end an 3208 ** excerpt. Return a value similar to iBreak but possibly adjusted 3209 ** to be a little left or right so that the break point is better. 3210 */ 3211 static int wordBoundary( 3212 int iBreak, /* The suggested break point */ 3213 const char *zDoc, /* Document text */ 3214 int nDoc, /* Number of bytes in zDoc[] */ 3215 struct snippetMatch *aMatch, /* Matching words */ 3216 int nMatch, /* Number of entries in aMatch[] */ 3217 int iCol /* The column number for zDoc[] */ 3218 ){ 3219 int i; 3220 if( iBreak<=10 ){ 3221 return 0; 3222 } 3223 if( iBreak>=nDoc-10 ){ 3224 return nDoc; 3225 } 3226 for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){} 3227 while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; } 3228 if( i<nMatch ){ 3229 if( aMatch[i].iStart<iBreak+10 ){ 3230 return aMatch[i].iStart; 3231 } 3232 if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ 3233 return aMatch[i-1].iStart; 3234 } 3235 } 3236 for(i=1; i<=10; i++){ 3237 if( safe_isspace(zDoc[iBreak-i]) ){ 3238 return iBreak - i + 1; 3239 } 3240 if( safe_isspace(zDoc[iBreak+i]) ){ 3241 return iBreak + i + 1; 3242 } 3243 } 3244 return iBreak; 3245 } 3246 3247 3248 3249 /* 3250 ** Allowed values for Snippet.aMatch[].snStatus 3251 */ 3252 #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ 3253 #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ 3254 3255 /* 3256 ** Generate the text of a snippet. 3257 */ 3258 static void snippetText( 3259 fulltext_cursor *pCursor, /* The cursor we need the snippet for */ 3260 const char *zStartMark, /* Markup to appear before each match */ 3261 const char *zEndMark, /* Markup to appear after each match */ 3262 const char *zEllipsis /* Ellipsis mark */ 3263 ){ 3264 int i, j; 3265 struct snippetMatch *aMatch; 3266 int nMatch; 3267 int nDesired; 3268 StringBuffer sb; 3269 int tailCol; 3270 int tailOffset; 3271 int iCol; 3272 int nDoc; 3273 const char *zDoc; 3274 int iStart, iEnd; 3275 int tailEllipsis = 0; 3276 int iMatch; 3277 3278 3279 sqlite3_free(pCursor->snippet.zSnippet); 3280 pCursor->snippet.zSnippet = 0; 3281 aMatch = pCursor->snippet.aMatch; 3282 nMatch = pCursor->snippet.nMatch; 3283 initStringBuffer(&sb); 3284 3285 for(i=0; i<nMatch; i++){ 3286 aMatch[i].snStatus = SNIPPET_IGNORE; 3287 } 3288 nDesired = 0; 3289 for(i=0; i<pCursor->q.nTerms; i++){ 3290 for(j=0; j<nMatch; j++){ 3291 if( aMatch[j].iTerm==i ){ 3292 aMatch[j].snStatus = SNIPPET_DESIRED; 3293 nDesired++; 3294 break; 3295 } 3296 } 3297 } 3298 3299 iMatch = 0; 3300 tailCol = -1; 3301 tailOffset = 0; 3302 for(i=0; i<nMatch && nDesired>0; i++){ 3303 if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; 3304 nDesired--; 3305 iCol = aMatch[i].iCol; 3306 zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); 3307 nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); 3308 iStart = aMatch[i].iStart - 40; 3309 iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); 3310 if( iStart<=10 ){ 3311 iStart = 0; 3312 } 3313 if( iCol==tailCol && iStart<=tailOffset+20 ){ 3314 iStart = tailOffset; 3315 } 3316 if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ 3317 trimWhiteSpace(&sb); 3318 appendWhiteSpace(&sb); 3319 append(&sb, zEllipsis); 3320 appendWhiteSpace(&sb); 3321 } 3322 iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; 3323 iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); 3324 if( iEnd>=nDoc-10 ){ 3325 iEnd = nDoc; 3326 tailEllipsis = 0; 3327 }else{ 3328 tailEllipsis = 1; 3329 } 3330 while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; } 3331 while( iStart<iEnd ){ 3332 while( iMatch<nMatch && aMatch[iMatch].iStart<iStart 3333 && aMatch[iMatch].iCol<=iCol ){ 3334 iMatch++; 3335 } 3336 if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd 3337 && aMatch[iMatch].iCol==iCol ){ 3338 nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart); 3339 iStart = aMatch[iMatch].iStart; 3340 append(&sb, zStartMark); 3341 nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte); 3342 append(&sb, zEndMark); 3343 iStart += aMatch[iMatch].nByte; 3344 for(j=iMatch+1; j<nMatch; j++){ 3345 if( aMatch[j].iTerm==aMatch[iMatch].iTerm 3346 && aMatch[j].snStatus==SNIPPET_DESIRED ){ 3347 nDesired--; 3348 aMatch[j].snStatus = SNIPPET_IGNORE; 3349 } 3350 } 3351 }else{ 3352 nappend(&sb, &zDoc[iStart], iEnd - iStart); 3353 iStart = iEnd; 3354 } 3355 } 3356 tailCol = iCol; 3357 tailOffset = iEnd; 3358 } 3359 trimWhiteSpace(&sb); 3360 if( tailEllipsis ){ 3361 appendWhiteSpace(&sb); 3362 append(&sb, zEllipsis); 3363 } 3364 pCursor->snippet.zSnippet = stringBufferData(&sb); 3365 pCursor->snippet.nSnippet = stringBufferLength(&sb); 3366 } 3367 3368 3369 /* 3370 ** Close the cursor. For additional information see the documentation 3371 ** on the xClose method of the virtual table interface. 3372 */ 3373 static int fulltextClose(sqlite3_vtab_cursor *pCursor){ 3374 fulltext_cursor *c = (fulltext_cursor *) pCursor; 3375 TRACE(("FTS2 Close %p\n", c)); 3376 sqlite3_finalize(c->pStmt); 3377 queryClear(&c->q); 3378 snippetClear(&c->snippet); 3379 if( c->result.nData!=0 ) dlrDestroy(&c->reader); 3380 dataBufferDestroy(&c->result); 3381 sqlite3_free(c); 3382 return SQLITE_OK; 3383 } 3384 3385 static int fulltextNext(sqlite3_vtab_cursor *pCursor){ 3386 fulltext_cursor *c = (fulltext_cursor *) pCursor; 3387 int rc; 3388 3389 TRACE(("FTS2 Next %p\n", pCursor)); 3390 snippetClear(&c->snippet); 3391 if( c->iCursorType < QUERY_FULLTEXT ){ 3392 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ 3393 rc = sqlite3_step(c->pStmt); 3394 switch( rc ){ 3395 case SQLITE_ROW: 3396 c->eof = 0; 3397 return SQLITE_OK; 3398 case SQLITE_DONE: 3399 c->eof = 1; 3400 return SQLITE_OK; 3401 default: 3402 c->eof = 1; 3403 return rc; 3404 } 3405 } else { /* full-text query */ 3406 rc = sqlite3_reset(c->pStmt); 3407 if( rc!=SQLITE_OK ) return rc; 3408 3409 if( c->result.nData==0 || dlrAtEnd(&c->reader) ){ 3410 c->eof = 1; 3411 return SQLITE_OK; 3412 } 3413 rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader)); 3414 dlrStep(&c->reader); 3415 if( rc!=SQLITE_OK ) return rc; 3416 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ 3417 rc = sqlite3_step(c->pStmt); 3418 if( rc==SQLITE_ROW ){ /* the case we expect */ 3419 c->eof = 0; 3420 return SQLITE_OK; 3421 } 3422 /* an error occurred; abort */ 3423 return rc==SQLITE_DONE ? SQLITE_ERROR : rc; 3424 } 3425 } 3426 3427 3428 /* TODO(shess) If we pushed LeafReader to the top of the file, or to 3429 ** another file, term_select() could be pushed above 3430 ** docListOfTerm(). 3431 */ 3432 static int termSelect(fulltext_vtab *v, int iColumn, 3433 const char *pTerm, int nTerm, int isPrefix, 3434 DocListType iType, DataBuffer *out); 3435 3436 /* Return a DocList corresponding to the query term *pTerm. If *pTerm 3437 ** is the first term of a phrase query, go ahead and evaluate the phrase 3438 ** query and return the doclist for the entire phrase query. 3439 ** 3440 ** The resulting DL_DOCIDS doclist is stored in pResult, which is 3441 ** overwritten. 3442 */ 3443 static int docListOfTerm( 3444 fulltext_vtab *v, /* The full text index */ 3445 int iColumn, /* column to restrict to. No restriction if >=nColumn */ 3446 QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ 3447 DataBuffer *pResult /* Write the result here */ 3448 ){ 3449 DataBuffer left, right, new; 3450 int i, rc; 3451 3452 /* No phrase search if no position info. */ 3453 assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS ); 3454 3455 /* This code should never be called with buffered updates. */ 3456 assert( v->nPendingData<0 ); 3457 3458 dataBufferInit(&left, 0); 3459 rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix, 3460 0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &left); 3461 if( rc ) return rc; 3462 for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){ 3463 dataBufferInit(&right, 0); 3464 rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, 3465 pQTerm[i].isPrefix, DL_POSITIONS, &right); 3466 if( rc ){ 3467 dataBufferDestroy(&left); 3468 return rc; 3469 } 3470 dataBufferInit(&new, 0); 3471 docListPhraseMerge(left.pData, left.nData, right.pData, right.nData, 3472 i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &new); 3473 dataBufferDestroy(&left); 3474 dataBufferDestroy(&right); 3475 left = new; 3476 } 3477 *pResult = left; 3478 return SQLITE_OK; 3479 } 3480 3481 /* Add a new term pTerm[0..nTerm-1] to the query *q. 3482 */ 3483 static void queryAdd(Query *q, const char *pTerm, int nTerm){ 3484 QueryTerm *t; 3485 ++q->nTerms; 3486 q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); 3487 if( q->pTerms==0 ){ 3488 q->nTerms = 0; 3489 return; 3490 } 3491 t = &q->pTerms[q->nTerms - 1]; 3492 CLEAR(t); 3493 t->pTerm = sqlite3_malloc(nTerm+1); 3494 memcpy(t->pTerm, pTerm, nTerm); 3495 t->pTerm[nTerm] = 0; 3496 t->nTerm = nTerm; 3497 t->isOr = q->nextIsOr; 3498 t->isPrefix = 0; 3499 q->nextIsOr = 0; 3500 t->iColumn = q->nextColumn; 3501 q->nextColumn = q->dfltColumn; 3502 } 3503 3504 /* 3505 ** Check to see if the string zToken[0...nToken-1] matches any 3506 ** column name in the virtual table. If it does, 3507 ** return the zero-indexed column number. If not, return -1. 3508 */ 3509 static int checkColumnSpecifier( 3510 fulltext_vtab *pVtab, /* The virtual table */ 3511 const char *zToken, /* Text of the token */ 3512 int nToken /* Number of characters in the token */ 3513 ){ 3514 int i; 3515 for(i=0; i<pVtab->nColumn; i++){ 3516 if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 3517 && pVtab->azColumn[i][nToken]==0 ){ 3518 return i; 3519 } 3520 } 3521 return -1; 3522 } 3523 3524 /* 3525 ** Parse the text at pSegment[0..nSegment-1]. Add additional terms 3526 ** to the query being assemblied in pQuery. 3527 ** 3528 ** inPhrase is true if pSegment[0..nSegement-1] is contained within 3529 ** double-quotes. If inPhrase is true, then the first term 3530 ** is marked with the number of terms in the phrase less one and 3531 ** OR and "-" syntax is ignored. If inPhrase is false, then every 3532 ** term found is marked with nPhrase=0 and OR and "-" syntax is significant. 3533 */ 3534 static int tokenizeSegment( 3535 sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ 3536 const char *pSegment, int nSegment, /* Query expression being parsed */ 3537 int inPhrase, /* True if within "..." */ 3538 Query *pQuery /* Append results here */ 3539 ){ 3540 const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; 3541 sqlite3_tokenizer_cursor *pCursor; 3542 int firstIndex = pQuery->nTerms; 3543 int iCol; 3544 int nTerm = 1; 3545 3546 int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); 3547 if( rc!=SQLITE_OK ) return rc; 3548 pCursor->pTokenizer = pTokenizer; 3549 3550 while( 1 ){ 3551 const char *pToken; 3552 int nToken, iBegin, iEnd, iPos; 3553 3554 rc = pModule->xNext(pCursor, 3555 &pToken, &nToken, 3556 &iBegin, &iEnd, &iPos); 3557 if( rc!=SQLITE_OK ) break; 3558 if( !inPhrase && 3559 pSegment[iEnd]==':' && 3560 (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ 3561 pQuery->nextColumn = iCol; 3562 continue; 3563 } 3564 if( !inPhrase && pQuery->nTerms>0 && nToken==2 3565 && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ 3566 pQuery->nextIsOr = 1; 3567 continue; 3568 } 3569 queryAdd(pQuery, pToken, nToken); 3570 if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ 3571 pQuery->pTerms[pQuery->nTerms-1].isNot = 1; 3572 } 3573 if( iEnd<nSegment && pSegment[iEnd]=='*' ){ 3574 pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1; 3575 } 3576 pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; 3577 if( inPhrase ){ 3578 nTerm++; 3579 } 3580 } 3581 3582 if( inPhrase && pQuery->nTerms>firstIndex ){ 3583 pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; 3584 } 3585 3586 return pModule->xClose(pCursor); 3587 } 3588 3589 /* Parse a query string, yielding a Query object pQuery. 3590 ** 3591 ** The calling function will need to queryClear() to clean up 3592 ** the dynamically allocated memory held by pQuery. 3593 */ 3594 static int parseQuery( 3595 fulltext_vtab *v, /* The fulltext index */ 3596 const char *zInput, /* Input text of the query string */ 3597 int nInput, /* Size of the input text */ 3598 int dfltColumn, /* Default column of the index to match against */ 3599 Query *pQuery /* Write the parse results here. */ 3600 ){ 3601 int iInput, inPhrase = 0; 3602 3603 if( zInput==0 ) nInput = 0; 3604 if( nInput<0 ) nInput = strlen(zInput); 3605 pQuery->nTerms = 0; 3606 pQuery->pTerms = NULL; 3607 pQuery->nextIsOr = 0; 3608 pQuery->nextColumn = dfltColumn; 3609 pQuery->dfltColumn = dfltColumn; 3610 pQuery->pFts = v; 3611 3612 for(iInput=0; iInput<nInput; ++iInput){ 3613 int i; 3614 for(i=iInput; i<nInput && zInput[i]!='"'; ++i){} 3615 if( i>iInput ){ 3616 tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, 3617 pQuery); 3618 } 3619 iInput = i; 3620 if( i<nInput ){ 3621 assert( zInput[i]=='"' ); 3622 inPhrase = !inPhrase; 3623 } 3624 } 3625 3626 if( inPhrase ){ 3627 /* unmatched quote */ 3628 queryClear(pQuery); 3629 return SQLITE_ERROR; 3630 } 3631 return SQLITE_OK; 3632 } 3633 3634 /* TODO(shess) Refactor the code to remove this forward decl. */ 3635 static int flushPendingTerms(fulltext_vtab *v); 3636 3637 /* Perform a full-text query using the search expression in 3638 ** zInput[0..nInput-1]. Return a list of matching documents 3639 ** in pResult. 3640 ** 3641 ** Queries must match column iColumn. Or if iColumn>=nColumn 3642 ** they are allowed to match against any column. 3643 */ 3644 static int fulltextQuery( 3645 fulltext_vtab *v, /* The full text index */ 3646 int iColumn, /* Match against this column by default */ 3647 const char *zInput, /* The query string */ 3648 int nInput, /* Number of bytes in zInput[] */ 3649 DataBuffer *pResult, /* Write the result doclist here */ 3650 Query *pQuery /* Put parsed query string here */ 3651 ){ 3652 int i, iNext, rc; 3653 DataBuffer left, right, or, new; 3654 int nNot = 0; 3655 QueryTerm *aTerm; 3656 3657 /* TODO(shess) Instead of flushing pendingTerms, we could query for 3658 ** the relevant term and merge the doclist into what we receive from 3659 ** the database. Wait and see if this is a common issue, first. 3660 ** 3661 ** A good reason not to flush is to not generate update-related 3662 ** error codes from here. 3663 */ 3664 3665 /* Flush any buffered updates before executing the query. */ 3666 rc = flushPendingTerms(v); 3667 if( rc!=SQLITE_OK ) return rc; 3668 3669 /* TODO(shess) I think that the queryClear() calls below are not 3670 ** necessary, because fulltextClose() already clears the query. 3671 */ 3672 rc = parseQuery(v, zInput, nInput, iColumn, pQuery); 3673 if( rc!=SQLITE_OK ) return rc; 3674 3675 /* Empty or NULL queries return no results. */ 3676 if( pQuery->nTerms==0 ){ 3677 dataBufferInit(pResult, 0); 3678 return SQLITE_OK; 3679 } 3680 3681 /* Merge AND terms. */ 3682 /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */ 3683 aTerm = pQuery->pTerms; 3684 for(i = 0; i<pQuery->nTerms; i=iNext){ 3685 if( aTerm[i].isNot ){ 3686 /* Handle all NOT terms in a separate pass */ 3687 nNot++; 3688 iNext = i + aTerm[i].nPhrase+1; 3689 continue; 3690 } 3691 iNext = i + aTerm[i].nPhrase + 1; 3692 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); 3693 if( rc ){ 3694 if( i!=nNot ) dataBufferDestroy(&left); 3695 queryClear(pQuery); 3696 return rc; 3697 } 3698 while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){ 3699 rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or); 3700 iNext += aTerm[iNext].nPhrase + 1; 3701 if( rc ){ 3702 if( i!=nNot ) dataBufferDestroy(&left); 3703 dataBufferDestroy(&right); 3704 queryClear(pQuery); 3705 return rc; 3706 } 3707 dataBufferInit(&new, 0); 3708 docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new); 3709 dataBufferDestroy(&right); 3710 dataBufferDestroy(&or); 3711 right = new; 3712 } 3713 if( i==nNot ){ /* first term processed. */ 3714 left = right; 3715 }else{ 3716 dataBufferInit(&new, 0); 3717 docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new); 3718 dataBufferDestroy(&right); 3719 dataBufferDestroy(&left); 3720 left = new; 3721 } 3722 } 3723 3724 if( nNot==pQuery->nTerms ){ 3725 /* We do not yet know how to handle a query of only NOT terms */ 3726 return SQLITE_ERROR; 3727 } 3728 3729 /* Do the EXCEPT terms */ 3730 for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){ 3731 if( !aTerm[i].isNot ) continue; 3732 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); 3733 if( rc ){ 3734 queryClear(pQuery); 3735 dataBufferDestroy(&left); 3736 return rc; 3737 } 3738 dataBufferInit(&new, 0); 3739 docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new); 3740 dataBufferDestroy(&right); 3741 dataBufferDestroy(&left); 3742 left = new; 3743 } 3744 3745 *pResult = left; 3746 return rc; 3747 } 3748 3749 /* 3750 ** This is the xFilter interface for the virtual table. See 3751 ** the virtual table xFilter method documentation for additional 3752 ** information. 3753 ** 3754 ** If idxNum==QUERY_GENERIC then do a full table scan against 3755 ** the %_content table. 3756 ** 3757 ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry 3758 ** in the %_content table. 3759 ** 3760 ** If idxNum>=QUERY_FULLTEXT then use the full text index. The 3761 ** column on the left-hand side of the MATCH operator is column 3762 ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand 3763 ** side of the MATCH operator. 3764 */ 3765 /* TODO(shess) Upgrade the cursor initialization and destruction to 3766 ** account for fulltextFilter() being called multiple times on the 3767 ** same cursor. The current solution is very fragile. Apply fix to 3768 ** fts2 as appropriate. 3769 */ 3770 static int fulltextFilter( 3771 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ 3772 int idxNum, const char *idxStr, /* Which indexing scheme to use */ 3773 int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ 3774 ){ 3775 fulltext_cursor *c = (fulltext_cursor *) pCursor; 3776 fulltext_vtab *v = cursor_vtab(c); 3777 int rc; 3778 3779 TRACE(("FTS2 Filter %p\n",pCursor)); 3780 3781 /* If the cursor has a statement that was not prepared according to 3782 ** idxNum, clear it. I believe all calls to fulltextFilter with a 3783 ** given cursor will have the same idxNum , but in this case it's 3784 ** easy to be safe. 3785 */ 3786 if( c->pStmt && c->iCursorType!=idxNum ){ 3787 sqlite3_finalize(c->pStmt); 3788 c->pStmt = NULL; 3789 } 3790 3791 /* Get a fresh statement appropriate to idxNum. */ 3792 /* TODO(shess): Add a prepared-statement cache in the vt structure. 3793 ** The cache must handle multiple open cursors. Easier to cache the 3794 ** statement variants at the vt to reduce malloc/realloc/free here. 3795 ** Or we could have a StringBuffer variant which allowed stack 3796 ** construction for small values. 3797 */ 3798 if( !c->pStmt ){ 3799 char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s", 3800 idxNum==QUERY_GENERIC ? "" : "where rowid=?"); 3801 rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql); 3802 sqlite3_free(zSql); 3803 if( rc!=SQLITE_OK ) return rc; 3804 c->iCursorType = idxNum; 3805 }else{ 3806 sqlite3_reset(c->pStmt); 3807 assert( c->iCursorType==idxNum ); 3808 } 3809 3810 switch( idxNum ){ 3811 case QUERY_GENERIC: 3812 break; 3813 3814 case QUERY_ROWID: 3815 rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); 3816 if( rc!=SQLITE_OK ) return rc; 3817 break; 3818 3819 default: /* full-text search */ 3820 { 3821 const char *zQuery = (const char *)sqlite3_value_text(argv[0]); 3822 assert( idxNum<=QUERY_FULLTEXT+v->nColumn); 3823 assert( argc==1 ); 3824 queryClear(&c->q); 3825 if( c->result.nData!=0 ){ 3826 /* This case happens if the same cursor is used repeatedly. */ 3827 dlrDestroy(&c->reader); 3828 dataBufferReset(&c->result); 3829 }else{ 3830 dataBufferInit(&c->result, 0); 3831 } 3832 rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q); 3833 if( rc!=SQLITE_OK ) return rc; 3834 if( c->result.nData!=0 ){ 3835 dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData); 3836 } 3837 break; 3838 } 3839 } 3840 3841 return fulltextNext(pCursor); 3842 } 3843 3844 /* This is the xEof method of the virtual table. The SQLite core 3845 ** calls this routine to find out if it has reached the end of 3846 ** a query's results set. 3847 */ 3848 static int fulltextEof(sqlite3_vtab_cursor *pCursor){ 3849 fulltext_cursor *c = (fulltext_cursor *) pCursor; 3850 return c->eof; 3851 } 3852 3853 /* This is the xColumn method of the virtual table. The SQLite 3854 ** core calls this method during a query when it needs the value 3855 ** of a column from the virtual table. This method needs to use 3856 ** one of the sqlite3_result_*() routines to store the requested 3857 ** value back in the pContext. 3858 */ 3859 static int fulltextColumn(sqlite3_vtab_cursor *pCursor, 3860 sqlite3_context *pContext, int idxCol){ 3861 fulltext_cursor *c = (fulltext_cursor *) pCursor; 3862 fulltext_vtab *v = cursor_vtab(c); 3863 3864 if( idxCol<v->nColumn ){ 3865 sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); 3866 sqlite3_result_value(pContext, pVal); 3867 }else if( idxCol==v->nColumn ){ 3868 /* The extra column whose name is the same as the table. 3869 ** Return a blob which is a pointer to the cursor 3870 */ 3871 sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); 3872 } 3873 return SQLITE_OK; 3874 } 3875 3876 /* This is the xRowid method. The SQLite core calls this routine to 3877 ** retrive the rowid for the current row of the result set. The 3878 ** rowid should be written to *pRowid. 3879 */ 3880 static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ 3881 fulltext_cursor *c = (fulltext_cursor *) pCursor; 3882 3883 *pRowid = sqlite3_column_int64(c->pStmt, 0); 3884 return SQLITE_OK; 3885 } 3886 3887 /* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0, 3888 ** we also store positions and offsets in the hash table using that 3889 ** column number. 3890 */ 3891 static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid, 3892 const char *zText, int iColumn){ 3893 sqlite3_tokenizer *pTokenizer = v->pTokenizer; 3894 sqlite3_tokenizer_cursor *pCursor; 3895 const char *pToken; 3896 int nTokenBytes; 3897 int iStartOffset, iEndOffset, iPosition; 3898 int rc; 3899 3900 rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); 3901 if( rc!=SQLITE_OK ) return rc; 3902 3903 pCursor->pTokenizer = pTokenizer; 3904 while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor, 3905 &pToken, &nTokenBytes, 3906 &iStartOffset, &iEndOffset, 3907 &iPosition)) ){ 3908 DLCollector *p; 3909 int nData; /* Size of doclist before our update. */ 3910 3911 /* Positions can't be negative; we use -1 as a terminator 3912 * internally. Token can't be NULL or empty. */ 3913 if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){ 3914 rc = SQLITE_ERROR; 3915 break; 3916 } 3917 3918 p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes); 3919 if( p==NULL ){ 3920 nData = 0; 3921 p = dlcNew(iDocid, DL_DEFAULT); 3922 fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p); 3923 3924 /* Overhead for our hash table entry, the key, and the value. */ 3925 v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes; 3926 }else{ 3927 nData = p->b.nData; 3928 if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid); 3929 } 3930 if( iColumn>=0 ){ 3931 dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset); 3932 } 3933 3934 /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */ 3935 v->nPendingData += p->b.nData-nData; 3936 } 3937 3938 /* TODO(shess) Check return? Should this be able to cause errors at 3939 ** this point? Actually, same question about sqlite3_finalize(), 3940 ** though one could argue that failure there means that the data is 3941 ** not durable. *ponder* 3942 */ 3943 pTokenizer->pModule->xClose(pCursor); 3944 if( SQLITE_DONE == rc ) return SQLITE_OK; 3945 return rc; 3946 } 3947 3948 /* Add doclists for all terms in [pValues] to pendingTerms table. */ 3949 static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid, 3950 sqlite3_value **pValues){ 3951 int i; 3952 for(i = 0; i < v->nColumn ; ++i){ 3953 char *zText = (char*)sqlite3_value_text(pValues[i]); 3954 int rc = buildTerms(v, iRowid, zText, i); 3955 if( rc!=SQLITE_OK ) return rc; 3956 } 3957 return SQLITE_OK; 3958 } 3959 3960 /* Add empty doclists for all terms in the given row's content to 3961 ** pendingTerms. 3962 */ 3963 static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){ 3964 const char **pValues; 3965 int i, rc; 3966 3967 /* TODO(shess) Should we allow such tables at all? */ 3968 if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR; 3969 3970 rc = content_select(v, iRowid, &pValues); 3971 if( rc!=SQLITE_OK ) return rc; 3972 3973 for(i = 0 ; i < v->nColumn; ++i) { 3974 rc = buildTerms(v, iRowid, pValues[i], -1); 3975 if( rc!=SQLITE_OK ) break; 3976 } 3977 3978 freeStringArray(v->nColumn, pValues); 3979 return SQLITE_OK; 3980 } 3981 3982 /* TODO(shess) Refactor the code to remove this forward decl. */ 3983 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid); 3984 3985 /* Insert a row into the %_content table; set *piRowid to be the ID of the 3986 ** new row. Add doclists for terms to pendingTerms. 3987 */ 3988 static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid, 3989 sqlite3_value **pValues, sqlite_int64 *piRowid){ 3990 int rc; 3991 3992 rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */ 3993 if( rc!=SQLITE_OK ) return rc; 3994 3995 *piRowid = sqlite3_last_insert_rowid(v->db); 3996 rc = initPendingTerms(v, *piRowid); 3997 if( rc!=SQLITE_OK ) return rc; 3998 3999 return insertTerms(v, *piRowid, pValues); 4000 } 4001 4002 /* Delete a row from the %_content table; add empty doclists for terms 4003 ** to pendingTerms. 4004 */ 4005 static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){ 4006 int rc = initPendingTerms(v, iRow); 4007 if( rc!=SQLITE_OK ) return rc; 4008 4009 rc = deleteTerms(v, iRow); 4010 if( rc!=SQLITE_OK ) return rc; 4011 4012 return content_delete(v, iRow); /* execute an SQL DELETE */ 4013 } 4014 4015 /* Update a row in the %_content table; add delete doclists to 4016 ** pendingTerms for old terms not in the new data, add insert doclists 4017 ** to pendingTerms for terms in the new data. 4018 */ 4019 static int index_update(fulltext_vtab *v, sqlite_int64 iRow, 4020 sqlite3_value **pValues){ 4021 int rc = initPendingTerms(v, iRow); 4022 if( rc!=SQLITE_OK ) return rc; 4023 4024 /* Generate an empty doclist for each term that previously appeared in this 4025 * row. */ 4026 rc = deleteTerms(v, iRow); 4027 if( rc!=SQLITE_OK ) return rc; 4028 4029 rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ 4030 if( rc!=SQLITE_OK ) return rc; 4031 4032 /* Now add positions for terms which appear in the updated row. */ 4033 return insertTerms(v, iRow, pValues); 4034 } 4035 4036 /*******************************************************************/ 4037 /* InteriorWriter is used to collect terms and block references into 4038 ** interior nodes in %_segments. See commentary at top of file for 4039 ** format. 4040 */ 4041 4042 /* How large interior nodes can grow. */ 4043 #define INTERIOR_MAX 2048 4044 4045 /* Minimum number of terms per interior node (except the root). This 4046 ** prevents large terms from making the tree too skinny - must be >0 4047 ** so that the tree always makes progress. Note that the min tree 4048 ** fanout will be INTERIOR_MIN_TERMS+1. 4049 */ 4050 #define INTERIOR_MIN_TERMS 7 4051 #if INTERIOR_MIN_TERMS<1 4052 # error INTERIOR_MIN_TERMS must be greater than 0. 4053 #endif 4054 4055 /* ROOT_MAX controls how much data is stored inline in the segment 4056 ** directory. 4057 */ 4058 /* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's 4059 ** only here so that interiorWriterRootInfo() and leafWriterRootInfo() 4060 ** can both see it, but if the caller passed it in, we wouldn't even 4061 ** need a define. 4062 */ 4063 #define ROOT_MAX 1024 4064 #if ROOT_MAX<VARINT_MAX*2 4065 # error ROOT_MAX must have enough space for a header. 4066 #endif 4067 4068 /* InteriorBlock stores a linked-list of interior blocks while a lower 4069 ** layer is being constructed. 4070 */ 4071 typedef struct InteriorBlock { 4072 DataBuffer term; /* Leftmost term in block's subtree. */ 4073 DataBuffer data; /* Accumulated data for the block. */ 4074 struct InteriorBlock *next; 4075 } InteriorBlock; 4076 4077 static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock, 4078 const char *pTerm, int nTerm){ 4079 InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock)); 4080 char c[VARINT_MAX+VARINT_MAX]; 4081 int n; 4082 4083 if( block ){ 4084 memset(block, 0, sizeof(*block)); 4085 dataBufferInit(&block->term, 0); 4086 dataBufferReplace(&block->term, pTerm, nTerm); 4087 4088 n = putVarint(c, iHeight); 4089 n += putVarint(c+n, iChildBlock); 4090 dataBufferInit(&block->data, INTERIOR_MAX); 4091 dataBufferReplace(&block->data, c, n); 4092 } 4093 return block; 4094 } 4095 4096 #ifndef NDEBUG 4097 /* Verify that the data is readable as an interior node. */ 4098 static void interiorBlockValidate(InteriorBlock *pBlock){ 4099 const char *pData = pBlock->data.pData; 4100 int nData = pBlock->data.nData; 4101 int n, iDummy; 4102 sqlite_int64 iBlockid; 4103 4104 assert( nData>0 ); 4105 assert( pData!=0 ); 4106 assert( pData+nData>pData ); 4107 4108 /* Must lead with height of node as a varint(n), n>0 */ 4109 n = getVarint32(pData, &iDummy); 4110 assert( n>0 ); 4111 assert( iDummy>0 ); 4112 assert( n<nData ); 4113 pData += n; 4114 nData -= n; 4115 4116 /* Must contain iBlockid. */ 4117 n = getVarint(pData, &iBlockid); 4118 assert( n>0 ); 4119 assert( n<=nData ); 4120 pData += n; 4121 nData -= n; 4122 4123 /* Zero or more terms of positive length */ 4124 if( nData!=0 ){ 4125 /* First term is not delta-encoded. */ 4126 n = getVarint32(pData, &iDummy); 4127 assert( n>0 ); 4128 assert( iDummy>0 ); 4129 assert( n+iDummy>0); 4130 assert( n+iDummy<=nData ); 4131 pData += n+iDummy; 4132 nData -= n+iDummy; 4133 4134 /* Following terms delta-encoded. */ 4135 while( nData!=0 ){ 4136 /* Length of shared prefix. */ 4137 n = getVarint32(pData, &iDummy); 4138 assert( n>0 ); 4139 assert( iDummy>=0 ); 4140 assert( n<nData ); 4141 pData += n; 4142 nData -= n; 4143 4144 /* Length and data of distinct suffix. */ 4145 n = getVarint32(pData, &iDummy); 4146 assert( n>0 ); 4147 assert( iDummy>0 ); 4148 assert( n+iDummy>0); 4149 assert( n+iDummy<=nData ); 4150 pData += n+iDummy; 4151 nData -= n+iDummy; 4152 } 4153 } 4154 } 4155 #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x) 4156 #else 4157 #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 ) 4158 #endif 4159 4160 typedef struct InteriorWriter { 4161 int iHeight; /* from 0 at leaves. */ 4162 InteriorBlock *first, *last; 4163 struct InteriorWriter *parentWriter; 4164 4165 DataBuffer term; /* Last term written to block "last". */ 4166 sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */ 4167 #ifndef NDEBUG 4168 sqlite_int64 iLastChildBlock; /* for consistency checks. */ 4169 #endif 4170 } InteriorWriter; 4171 4172 /* Initialize an interior node where pTerm[nTerm] marks the leftmost 4173 ** term in the tree. iChildBlock is the leftmost child block at the 4174 ** next level down the tree. 4175 */ 4176 static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm, 4177 sqlite_int64 iChildBlock, 4178 InteriorWriter *pWriter){ 4179 InteriorBlock *block; 4180 assert( iHeight>0 ); 4181 CLEAR(pWriter); 4182 4183 pWriter->iHeight = iHeight; 4184 pWriter->iOpeningChildBlock = iChildBlock; 4185 #ifndef NDEBUG 4186 pWriter->iLastChildBlock = iChildBlock; 4187 #endif 4188 block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm); 4189 pWriter->last = pWriter->first = block; 4190 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); 4191 dataBufferInit(&pWriter->term, 0); 4192 } 4193 4194 /* Append the child node rooted at iChildBlock to the interior node, 4195 ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree. 4196 */ 4197 static void interiorWriterAppend(InteriorWriter *pWriter, 4198 const char *pTerm, int nTerm, 4199 sqlite_int64 iChildBlock){ 4200 char c[VARINT_MAX+VARINT_MAX]; 4201 int n, nPrefix = 0; 4202 4203 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); 4204 4205 /* The first term written into an interior node is actually 4206 ** associated with the second child added (the first child was added 4207 ** in interiorWriterInit, or in the if clause at the bottom of this 4208 ** function). That term gets encoded straight up, with nPrefix left 4209 ** at 0. 4210 */ 4211 if( pWriter->term.nData==0 ){ 4212 n = putVarint(c, nTerm); 4213 }else{ 4214 while( nPrefix<pWriter->term.nData && 4215 pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ 4216 nPrefix++; 4217 } 4218 4219 n = putVarint(c, nPrefix); 4220 n += putVarint(c+n, nTerm-nPrefix); 4221 } 4222 4223 #ifndef NDEBUG 4224 pWriter->iLastChildBlock++; 4225 #endif 4226 assert( pWriter->iLastChildBlock==iChildBlock ); 4227 4228 /* Overflow to a new block if the new term makes the current block 4229 ** too big, and the current block already has enough terms. 4230 */ 4231 if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX && 4232 iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){ 4233 pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock, 4234 pTerm, nTerm); 4235 pWriter->last = pWriter->last->next; 4236 pWriter->iOpeningChildBlock = iChildBlock; 4237 dataBufferReset(&pWriter->term); 4238 }else{ 4239 dataBufferAppend2(&pWriter->last->data, c, n, 4240 pTerm+nPrefix, nTerm-nPrefix); 4241 dataBufferReplace(&pWriter->term, pTerm, nTerm); 4242 } 4243 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); 4244 } 4245 4246 /* Free the space used by pWriter, including the linked-list of 4247 ** InteriorBlocks, and parentWriter, if present. 4248 */ 4249 static int interiorWriterDestroy(InteriorWriter *pWriter){ 4250 InteriorBlock *block = pWriter->first; 4251 4252 while( block!=NULL ){ 4253 InteriorBlock *b = block; 4254 block = block->next; 4255 dataBufferDestroy(&b->term); 4256 dataBufferDestroy(&b->data); 4257 sqlite3_free(b); 4258 } 4259 if( pWriter->parentWriter!=NULL ){ 4260 interiorWriterDestroy(pWriter->parentWriter); 4261 sqlite3_free(pWriter->parentWriter); 4262 } 4263 dataBufferDestroy(&pWriter->term); 4264 SCRAMBLE(pWriter); 4265 return SQLITE_OK; 4266 } 4267 4268 /* If pWriter can fit entirely in ROOT_MAX, return it as the root info 4269 ** directly, leaving *piEndBlockid unchanged. Otherwise, flush 4270 ** pWriter to %_segments, building a new layer of interior nodes, and 4271 ** recursively ask for their root into. 4272 */ 4273 static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter, 4274 char **ppRootInfo, int *pnRootInfo, 4275 sqlite_int64 *piEndBlockid){ 4276 InteriorBlock *block = pWriter->first; 4277 sqlite_int64 iBlockid = 0; 4278 int rc; 4279 4280 /* If we can fit the segment inline */ 4281 if( block==pWriter->last && block->data.nData<ROOT_MAX ){ 4282 *ppRootInfo = block->data.pData; 4283 *pnRootInfo = block->data.nData; 4284 return SQLITE_OK; 4285 } 4286 4287 /* Flush the first block to %_segments, and create a new level of 4288 ** interior node. 4289 */ 4290 ASSERT_VALID_INTERIOR_BLOCK(block); 4291 rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); 4292 if( rc!=SQLITE_OK ) return rc; 4293 *piEndBlockid = iBlockid; 4294 4295 pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter)); 4296 interiorWriterInit(pWriter->iHeight+1, 4297 block->term.pData, block->term.nData, 4298 iBlockid, pWriter->parentWriter); 4299 4300 /* Flush additional blocks and append to the higher interior 4301 ** node. 4302 */ 4303 for(block=block->next; block!=NULL; block=block->next){ 4304 ASSERT_VALID_INTERIOR_BLOCK(block); 4305 rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); 4306 if( rc!=SQLITE_OK ) return rc; 4307 *piEndBlockid = iBlockid; 4308 4309 interiorWriterAppend(pWriter->parentWriter, 4310 block->term.pData, block->term.nData, iBlockid); 4311 } 4312 4313 /* Parent node gets the chance to be the root. */ 4314 return interiorWriterRootInfo(v, pWriter->parentWriter, 4315 ppRootInfo, pnRootInfo, piEndBlockid); 4316 } 4317 4318 /****************************************************************/ 4319 /* InteriorReader is used to read off the data from an interior node 4320 ** (see comment at top of file for the format). 4321 */ 4322 typedef struct InteriorReader { 4323 const char *pData; 4324 int nData; 4325 4326 DataBuffer term; /* previous term, for decoding term delta. */ 4327 4328 sqlite_int64 iBlockid; 4329 } InteriorReader; 4330 4331 static void interiorReaderDestroy(InteriorReader *pReader){ 4332 dataBufferDestroy(&pReader->term); 4333 SCRAMBLE(pReader); 4334 } 4335 4336 /* TODO(shess) The assertions are great, but what if we're in NDEBUG 4337 ** and the blob is empty or otherwise contains suspect data? 4338 */ 4339 static void interiorReaderInit(const char *pData, int nData, 4340 InteriorReader *pReader){ 4341 int n, nTerm; 4342 4343 /* Require at least the leading flag byte */ 4344 assert( nData>0 ); 4345 assert( pData[0]!='\0' ); 4346 4347 CLEAR(pReader); 4348 4349 /* Decode the base blockid, and set the cursor to the first term. */ 4350 n = getVarint(pData+1, &pReader->iBlockid); 4351 assert( 1+n<=nData ); 4352 pReader->pData = pData+1+n; 4353 pReader->nData = nData-(1+n); 4354 4355 /* A single-child interior node (such as when a leaf node was too 4356 ** large for the segment directory) won't have any terms. 4357 ** Otherwise, decode the first term. 4358 */ 4359 if( pReader->nData==0 ){ 4360 dataBufferInit(&pReader->term, 0); 4361 }else{ 4362 n = getVarint32(pReader->pData, &nTerm); 4363 dataBufferInit(&pReader->term, nTerm); 4364 dataBufferReplace(&pReader->term, pReader->pData+n, nTerm); 4365 assert( n+nTerm<=pReader->nData ); 4366 pReader->pData += n+nTerm; 4367 pReader->nData -= n+nTerm; 4368 } 4369 } 4370 4371 static int interiorReaderAtEnd(InteriorReader *pReader){ 4372 return pReader->term.nData==0; 4373 } 4374 4375 static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){ 4376 return pReader->iBlockid; 4377 } 4378 4379 static int interiorReaderTermBytes(InteriorReader *pReader){ 4380 assert( !interiorReaderAtEnd(pReader) ); 4381 return pReader->term.nData; 4382 } 4383 static const char *interiorReaderTerm(InteriorReader *pReader){ 4384 assert( !interiorReaderAtEnd(pReader) ); 4385 return pReader->term.pData; 4386 } 4387 4388 /* Step forward to the next term in the node. */ 4389 static void interiorReaderStep(InteriorReader *pReader){ 4390 assert( !interiorReaderAtEnd(pReader) ); 4391 4392 /* If the last term has been read, signal eof, else construct the 4393 ** next term. 4394 */ 4395 if( pReader->nData==0 ){ 4396 dataBufferReset(&pReader->term); 4397 }else{ 4398 int n, nPrefix, nSuffix; 4399 4400 n = getVarint32(pReader->pData, &nPrefix); 4401 n += getVarint32(pReader->pData+n, &nSuffix); 4402 4403 /* Truncate the current term and append suffix data. */ 4404 pReader->term.nData = nPrefix; 4405 dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); 4406 4407 assert( n+nSuffix<=pReader->nData ); 4408 pReader->pData += n+nSuffix; 4409 pReader->nData -= n+nSuffix; 4410 } 4411 pReader->iBlockid++; 4412 } 4413 4414 /* Compare the current term to pTerm[nTerm], returning strcmp-style 4415 ** results. If isPrefix, equality means equal through nTerm bytes. 4416 */ 4417 static int interiorReaderTermCmp(InteriorReader *pReader, 4418 const char *pTerm, int nTerm, int isPrefix){ 4419 const char *pReaderTerm = interiorReaderTerm(pReader); 4420 int nReaderTerm = interiorReaderTermBytes(pReader); 4421 int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm; 4422 4423 if( n==0 ){ 4424 if( nReaderTerm>0 ) return -1; 4425 if( nTerm>0 ) return 1; 4426 return 0; 4427 } 4428 4429 c = memcmp(pReaderTerm, pTerm, n); 4430 if( c!=0 ) return c; 4431 if( isPrefix && n==nTerm ) return 0; 4432 return nReaderTerm - nTerm; 4433 } 4434 4435 /****************************************************************/ 4436 /* LeafWriter is used to collect terms and associated doclist data 4437 ** into leaf blocks in %_segments (see top of file for format info). 4438 ** Expected usage is: 4439 ** 4440 ** LeafWriter writer; 4441 ** leafWriterInit(0, 0, &writer); 4442 ** while( sorted_terms_left_to_process ){ 4443 ** // data is doclist data for that term. 4444 ** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData); 4445 ** if( rc!=SQLITE_OK ) goto err; 4446 ** } 4447 ** rc = leafWriterFinalize(v, &writer); 4448 **err: 4449 ** leafWriterDestroy(&writer); 4450 ** return rc; 4451 ** 4452 ** leafWriterStep() may write a collected leaf out to %_segments. 4453 ** leafWriterFinalize() finishes writing any buffered data and stores 4454 ** a root node in %_segdir. leafWriterDestroy() frees all buffers and 4455 ** InteriorWriters allocated as part of writing this segment. 4456 ** 4457 ** TODO(shess) Document leafWriterStepMerge(). 4458 */ 4459 4460 /* Put terms with data this big in their own block. */ 4461 #define STANDALONE_MIN 1024 4462 4463 /* Keep leaf blocks below this size. */ 4464 #define LEAF_MAX 2048 4465 4466 typedef struct LeafWriter { 4467 int iLevel; 4468 int idx; 4469 sqlite_int64 iStartBlockid; /* needed to create the root info */ 4470 sqlite_int64 iEndBlockid; /* when we're done writing. */ 4471 4472 DataBuffer term; /* previous encoded term */ 4473 DataBuffer data; /* encoding buffer */ 4474 4475 /* bytes of first term in the current node which distinguishes that 4476 ** term from the last term of the previous node. 4477 */ 4478 int nTermDistinct; 4479 4480 InteriorWriter parentWriter; /* if we overflow */ 4481 int has_parent; 4482 } LeafWriter; 4483 4484 static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){ 4485 CLEAR(pWriter); 4486 pWriter->iLevel = iLevel; 4487 pWriter->idx = idx; 4488 4489 dataBufferInit(&pWriter->term, 32); 4490 4491 /* Start out with a reasonably sized block, though it can grow. */ 4492 dataBufferInit(&pWriter->data, LEAF_MAX); 4493 } 4494 4495 #ifndef NDEBUG 4496 /* Verify that the data is readable as a leaf node. */ 4497 static void leafNodeValidate(const char *pData, int nData){ 4498 int n, iDummy; 4499 4500 if( nData==0 ) return; 4501 assert( nData>0 ); 4502 assert( pData!=0 ); 4503 assert( pData+nData>pData ); 4504 4505 /* Must lead with a varint(0) */ 4506 n = getVarint32(pData, &iDummy); 4507 assert( iDummy==0 ); 4508 assert( n>0 ); 4509 assert( n<nData ); 4510 pData += n; 4511 nData -= n; 4512 4513 /* Leading term length and data must fit in buffer. */ 4514 n = getVarint32(pData, &iDummy); 4515 assert( n>0 ); 4516 assert( iDummy>0 ); 4517 assert( n+iDummy>0 ); 4518 assert( n+iDummy<nData ); 4519 pData += n+iDummy; 4520 nData -= n+iDummy; 4521 4522 /* Leading term's doclist length and data must fit. */ 4523 n = getVarint32(pData, &iDummy); 4524 assert( n>0 ); 4525 assert( iDummy>0 ); 4526 assert( n+iDummy>0 ); 4527 assert( n+iDummy<=nData ); 4528 ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); 4529 pData += n+iDummy; 4530 nData -= n+iDummy; 4531 4532 /* Verify that trailing terms and doclists also are readable. */ 4533 while( nData!=0 ){ 4534 n = getVarint32(pData, &iDummy); 4535 assert( n>0 ); 4536 assert( iDummy>=0 ); 4537 assert( n<nData ); 4538 pData += n; 4539 nData -= n; 4540 n = getVarint32(pData, &iDummy); 4541 assert( n>0 ); 4542 assert( iDummy>0 ); 4543 assert( n+iDummy>0 ); 4544 assert( n+iDummy<nData ); 4545 pData += n+iDummy; 4546 nData -= n+iDummy; 4547 4548 n = getVarint32(pData, &iDummy); 4549 assert( n>0 ); 4550 assert( iDummy>0 ); 4551 assert( n+iDummy>0 ); 4552 assert( n+iDummy<=nData ); 4553 ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); 4554 pData += n+iDummy; 4555 nData -= n+iDummy; 4556 } 4557 } 4558 #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n) 4559 #else 4560 #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 ) 4561 #endif 4562 4563 /* Flush the current leaf node to %_segments, and adding the resulting 4564 ** blockid and the starting term to the interior node which will 4565 ** contain it. 4566 */ 4567 static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter, 4568 int iData, int nData){ 4569 sqlite_int64 iBlockid = 0; 4570 const char *pStartingTerm; 4571 int nStartingTerm, rc, n; 4572 4573 /* Must have the leading varint(0) flag, plus at least some 4574 ** valid-looking data. 4575 */ 4576 assert( nData>2 ); 4577 assert( iData>=0 ); 4578 assert( iData+nData<=pWriter->data.nData ); 4579 ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData); 4580 4581 rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid); 4582 if( rc!=SQLITE_OK ) return rc; 4583 assert( iBlockid!=0 ); 4584 4585 /* Reconstruct the first term in the leaf for purposes of building 4586 ** the interior node. 4587 */ 4588 n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm); 4589 pStartingTerm = pWriter->data.pData+iData+1+n; 4590 assert( pWriter->data.nData>iData+1+n+nStartingTerm ); 4591 assert( pWriter->nTermDistinct>0 ); 4592 assert( pWriter->nTermDistinct<=nStartingTerm ); 4593 nStartingTerm = pWriter->nTermDistinct; 4594 4595 if( pWriter->has_parent ){ 4596 interiorWriterAppend(&pWriter->parentWriter, 4597 pStartingTerm, nStartingTerm, iBlockid); 4598 }else{ 4599 interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid, 4600 &pWriter->parentWriter); 4601 pWriter->has_parent = 1; 4602 } 4603 4604 /* Track the span of this segment's leaf nodes. */ 4605 if( pWriter->iEndBlockid==0 ){ 4606 pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid; 4607 }else{ 4608 pWriter->iEndBlockid++; 4609 assert( iBlockid==pWriter->iEndBlockid ); 4610 } 4611 4612 return SQLITE_OK; 4613 } 4614 static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){ 4615 int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData); 4616 if( rc!=SQLITE_OK ) return rc; 4617 4618 /* Re-initialize the output buffer. */ 4619 dataBufferReset(&pWriter->data); 4620 4621 return SQLITE_OK; 4622 } 4623 4624 /* Fetch the root info for the segment. If the entire leaf fits 4625 ** within ROOT_MAX, then it will be returned directly, otherwise it 4626 ** will be flushed and the root info will be returned from the 4627 ** interior node. *piEndBlockid is set to the blockid of the last 4628 ** interior or leaf node written to disk (0 if none are written at 4629 ** all). 4630 */ 4631 static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter, 4632 char **ppRootInfo, int *pnRootInfo, 4633 sqlite_int64 *piEndBlockid){ 4634 /* we can fit the segment entirely inline */ 4635 if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){ 4636 *ppRootInfo = pWriter->data.pData; 4637 *pnRootInfo = pWriter->data.nData; 4638 *piEndBlockid = 0; 4639 return SQLITE_OK; 4640 } 4641 4642 /* Flush remaining leaf data. */ 4643 if( pWriter->data.nData>0 ){ 4644 int rc = leafWriterFlush(v, pWriter); 4645 if( rc!=SQLITE_OK ) return rc; 4646 } 4647 4648 /* We must have flushed a leaf at some point. */ 4649 assert( pWriter->has_parent ); 4650 4651 /* Tenatively set the end leaf blockid as the end blockid. If the 4652 ** interior node can be returned inline, this will be the final 4653 ** blockid, otherwise it will be overwritten by 4654 ** interiorWriterRootInfo(). 4655 */ 4656 *piEndBlockid = pWriter->iEndBlockid; 4657 4658 return interiorWriterRootInfo(v, &pWriter->parentWriter, 4659 ppRootInfo, pnRootInfo, piEndBlockid); 4660 } 4661 4662 /* Collect the rootInfo data and store it into the segment directory. 4663 ** This has the effect of flushing the segment's leaf data to 4664 ** %_segments, and also flushing any interior nodes to %_segments. 4665 */ 4666 static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){ 4667 sqlite_int64 iEndBlockid; 4668 char *pRootInfo; 4669 int rc, nRootInfo; 4670 4671 rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid); 4672 if( rc!=SQLITE_OK ) return rc; 4673 4674 /* Don't bother storing an entirely empty segment. */ 4675 if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK; 4676 4677 return segdir_set(v, pWriter->iLevel, pWriter->idx, 4678 pWriter->iStartBlockid, pWriter->iEndBlockid, 4679 iEndBlockid, pRootInfo, nRootInfo); 4680 } 4681 4682 static void leafWriterDestroy(LeafWriter *pWriter){ 4683 if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter); 4684 dataBufferDestroy(&pWriter->term); 4685 dataBufferDestroy(&pWriter->data); 4686 } 4687 4688 /* Encode a term into the leafWriter, delta-encoding as appropriate. 4689 ** Returns the length of the new term which distinguishes it from the 4690 ** previous term, which can be used to set nTermDistinct when a node 4691 ** boundary is crossed. 4692 */ 4693 static int leafWriterEncodeTerm(LeafWriter *pWriter, 4694 const char *pTerm, int nTerm){ 4695 char c[VARINT_MAX+VARINT_MAX]; 4696 int n, nPrefix = 0; 4697 4698 assert( nTerm>0 ); 4699 while( nPrefix<pWriter->term.nData && 4700 pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ 4701 nPrefix++; 4702 /* Failing this implies that the terms weren't in order. */ 4703 assert( nPrefix<nTerm ); 4704 } 4705 4706 if( pWriter->data.nData==0 ){ 4707 /* Encode the node header and leading term as: 4708 ** varint(0) 4709 ** varint(nTerm) 4710 ** char pTerm[nTerm] 4711 */ 4712 n = putVarint(c, '\0'); 4713 n += putVarint(c+n, nTerm); 4714 dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm); 4715 }else{ 4716 /* Delta-encode the term as: 4717 ** varint(nPrefix) 4718 ** varint(nSuffix) 4719 ** char pTermSuffix[nSuffix] 4720 */ 4721 n = putVarint(c, nPrefix); 4722 n += putVarint(c+n, nTerm-nPrefix); 4723 dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix); 4724 } 4725 dataBufferReplace(&pWriter->term, pTerm, nTerm); 4726 4727 return nPrefix+1; 4728 } 4729 4730 /* Used to avoid a memmove when a large amount of doclist data is in 4731 ** the buffer. This constructs a node and term header before 4732 ** iDoclistData and flushes the resulting complete node using 4733 ** leafWriterInternalFlush(). 4734 */ 4735 static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter, 4736 const char *pTerm, int nTerm, 4737 int iDoclistData){ 4738 char c[VARINT_MAX+VARINT_MAX]; 4739 int iData, n = putVarint(c, 0); 4740 n += putVarint(c+n, nTerm); 4741 4742 /* There should always be room for the header. Even if pTerm shared 4743 ** a substantial prefix with the previous term, the entire prefix 4744 ** could be constructed from earlier data in the doclist, so there 4745 ** should be room. 4746 */ 4747 assert( iDoclistData>=n+nTerm ); 4748 4749 iData = iDoclistData-(n+nTerm); 4750 memcpy(pWriter->data.pData+iData, c, n); 4751 memcpy(pWriter->data.pData+iData+n, pTerm, nTerm); 4752 4753 return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData); 4754 } 4755 4756 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of 4757 ** %_segments. 4758 */ 4759 static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter, 4760 const char *pTerm, int nTerm, 4761 DLReader *pReaders, int nReaders){ 4762 char c[VARINT_MAX+VARINT_MAX]; 4763 int iTermData = pWriter->data.nData, iDoclistData; 4764 int i, nData, n, nActualData, nActual, rc, nTermDistinct; 4765 4766 ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); 4767 nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm); 4768 4769 /* Remember nTermDistinct if opening a new node. */ 4770 if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct; 4771 4772 iDoclistData = pWriter->data.nData; 4773 4774 /* Estimate the length of the merged doclist so we can leave space 4775 ** to encode it. 4776 */ 4777 for(i=0, nData=0; i<nReaders; i++){ 4778 nData += dlrAllDataBytes(&pReaders[i]); 4779 } 4780 n = putVarint(c, nData); 4781 dataBufferAppend(&pWriter->data, c, n); 4782 4783 docListMerge(&pWriter->data, pReaders, nReaders); 4784 ASSERT_VALID_DOCLIST(DL_DEFAULT, 4785 pWriter->data.pData+iDoclistData+n, 4786 pWriter->data.nData-iDoclistData-n, NULL); 4787 4788 /* The actual amount of doclist data at this point could be smaller 4789 ** than the length we encoded. Additionally, the space required to 4790 ** encode this length could be smaller. For small doclists, this is 4791 ** not a big deal, we can just use memmove() to adjust things. 4792 */ 4793 nActualData = pWriter->data.nData-(iDoclistData+n); 4794 nActual = putVarint(c, nActualData); 4795 assert( nActualData<=nData ); 4796 assert( nActual<=n ); 4797 4798 /* If the new doclist is big enough for force a standalone leaf 4799 ** node, we can immediately flush it inline without doing the 4800 ** memmove(). 4801 */ 4802 /* TODO(shess) This test matches leafWriterStep(), which does this 4803 ** test before it knows the cost to varint-encode the term and 4804 ** doclist lengths. At some point, change to 4805 ** pWriter->data.nData-iTermData>STANDALONE_MIN. 4806 */ 4807 if( nTerm+nActualData>STANDALONE_MIN ){ 4808 /* Push leaf node from before this term. */ 4809 if( iTermData>0 ){ 4810 rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); 4811 if( rc!=SQLITE_OK ) return rc; 4812 4813 pWriter->nTermDistinct = nTermDistinct; 4814 } 4815 4816 /* Fix the encoded doclist length. */ 4817 iDoclistData += n - nActual; 4818 memcpy(pWriter->data.pData+iDoclistData, c, nActual); 4819 4820 /* Push the standalone leaf node. */ 4821 rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData); 4822 if( rc!=SQLITE_OK ) return rc; 4823 4824 /* Leave the node empty. */ 4825 dataBufferReset(&pWriter->data); 4826 4827 return rc; 4828 } 4829 4830 /* At this point, we know that the doclist was small, so do the 4831 ** memmove if indicated. 4832 */ 4833 if( nActual<n ){ 4834 memmove(pWriter->data.pData+iDoclistData+nActual, 4835 pWriter->data.pData+iDoclistData+n, 4836 pWriter->data.nData-(iDoclistData+n)); 4837 pWriter->data.nData -= n-nActual; 4838 } 4839 4840 /* Replace written length with actual length. */ 4841 memcpy(pWriter->data.pData+iDoclistData, c, nActual); 4842 4843 /* If the node is too large, break things up. */ 4844 /* TODO(shess) This test matches leafWriterStep(), which does this 4845 ** test before it knows the cost to varint-encode the term and 4846 ** doclist lengths. At some point, change to 4847 ** pWriter->data.nData>LEAF_MAX. 4848 */ 4849 if( iTermData+nTerm+nActualData>LEAF_MAX ){ 4850 /* Flush out the leading data as a node */ 4851 rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); 4852 if( rc!=SQLITE_OK ) return rc; 4853 4854 pWriter->nTermDistinct = nTermDistinct; 4855 4856 /* Rebuild header using the current term */ 4857 n = putVarint(pWriter->data.pData, 0); 4858 n += putVarint(pWriter->data.pData+n, nTerm); 4859 memcpy(pWriter->data.pData+n, pTerm, nTerm); 4860 n += nTerm; 4861 4862 /* There should always be room, because the previous encoding 4863 ** included all data necessary to construct the term. 4864 */ 4865 assert( n<iDoclistData ); 4866 /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the 4867 ** following memcpy() is safe (as opposed to needing a memmove). 4868 */ 4869 assert( 2*STANDALONE_MIN<=LEAF_MAX ); 4870 assert( n+pWriter->data.nData-iDoclistData<iDoclistData ); 4871 memcpy(pWriter->data.pData+n, 4872 pWriter->data.pData+iDoclistData, 4873 pWriter->data.nData-iDoclistData); 4874 pWriter->data.nData -= iDoclistData-n; 4875 } 4876 ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); 4877 4878 return SQLITE_OK; 4879 } 4880 4881 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of 4882 ** %_segments. 4883 */ 4884 /* TODO(shess) Revise writeZeroSegment() so that doclists are 4885 ** constructed directly in pWriter->data. 4886 */ 4887 static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter, 4888 const char *pTerm, int nTerm, 4889 const char *pData, int nData){ 4890 int rc; 4891 DLReader reader; 4892 4893 dlrInit(&reader, DL_DEFAULT, pData, nData); 4894 rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1); 4895 dlrDestroy(&reader); 4896 4897 return rc; 4898 } 4899 4900 4901 /****************************************************************/ 4902 /* LeafReader is used to iterate over an individual leaf node. */ 4903 typedef struct LeafReader { 4904 DataBuffer term; /* copy of current term. */ 4905 4906 const char *pData; /* data for current term. */ 4907 int nData; 4908 } LeafReader; 4909 4910 static void leafReaderDestroy(LeafReader *pReader){ 4911 dataBufferDestroy(&pReader->term); 4912 SCRAMBLE(pReader); 4913 } 4914 4915 static int leafReaderAtEnd(LeafReader *pReader){ 4916 return pReader->nData<=0; 4917 } 4918 4919 /* Access the current term. */ 4920 static int leafReaderTermBytes(LeafReader *pReader){ 4921 return pReader->term.nData; 4922 } 4923 static const char *leafReaderTerm(LeafReader *pReader){ 4924 assert( pReader->term.nData>0 ); 4925 return pReader->term.pData; 4926 } 4927 4928 /* Access the doclist data for the current term. */ 4929 static int leafReaderDataBytes(LeafReader *pReader){ 4930 int nData; 4931 assert( pReader->term.nData>0 ); 4932 getVarint32(pReader->pData, &nData); 4933 return nData; 4934 } 4935 static const char *leafReaderData(LeafReader *pReader){ 4936 int n, nData; 4937 assert( pReader->term.nData>0 ); 4938 n = getVarint32(pReader->pData, &nData); 4939 return pReader->pData+n; 4940 } 4941 4942 static void leafReaderInit(const char *pData, int nData, 4943 LeafReader *pReader){ 4944 int nTerm, n; 4945 4946 assert( nData>0 ); 4947 assert( pData[0]=='\0' ); 4948 4949 CLEAR(pReader); 4950 4951 /* Read the first term, skipping the header byte. */ 4952 n = getVarint32(pData+1, &nTerm); 4953 dataBufferInit(&pReader->term, nTerm); 4954 dataBufferReplace(&pReader->term, pData+1+n, nTerm); 4955 4956 /* Position after the first term. */ 4957 assert( 1+n+nTerm<nData ); 4958 pReader->pData = pData+1+n+nTerm; 4959 pReader->nData = nData-1-n-nTerm; 4960 } 4961 4962 /* Step the reader forward to the next term. */ 4963 static void leafReaderStep(LeafReader *pReader){ 4964 int n, nData, nPrefix, nSuffix; 4965 assert( !leafReaderAtEnd(pReader) ); 4966 4967 /* Skip previous entry's data block. */ 4968 n = getVarint32(pReader->pData, &nData); 4969 assert( n+nData<=pReader->nData ); 4970 pReader->pData += n+nData; 4971 pReader->nData -= n+nData; 4972 4973 if( !leafReaderAtEnd(pReader) ){ 4974 /* Construct the new term using a prefix from the old term plus a 4975 ** suffix from the leaf data. 4976 */ 4977 n = getVarint32(pReader->pData, &nPrefix); 4978 n += getVarint32(pReader->pData+n, &nSuffix); 4979 assert( n+nSuffix<pReader->nData ); 4980 pReader->term.nData = nPrefix; 4981 dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); 4982 4983 pReader->pData += n+nSuffix; 4984 pReader->nData -= n+nSuffix; 4985 } 4986 } 4987 4988 /* strcmp-style comparison of pReader's current term against pTerm. 4989 ** If isPrefix, equality means equal through nTerm bytes. 4990 */ 4991 static int leafReaderTermCmp(LeafReader *pReader, 4992 const char *pTerm, int nTerm, int isPrefix){ 4993 int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm; 4994 if( n==0 ){ 4995 if( pReader->term.nData>0 ) return -1; 4996 if(nTerm>0 ) return 1; 4997 return 0; 4998 } 4999 5000 c = memcmp(pReader->term.pData, pTerm, n); 5001 if( c!=0 ) return c; 5002 if( isPrefix && n==nTerm ) return 0; 5003 return pReader->term.nData - nTerm; 5004 } 5005 5006 5007 /****************************************************************/ 5008 /* LeavesReader wraps LeafReader to allow iterating over the entire 5009 ** leaf layer of the tree. 5010 */ 5011 typedef struct LeavesReader { 5012 int idx; /* Index within the segment. */ 5013 5014 sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */ 5015 int eof; /* we've seen SQLITE_DONE from pStmt. */ 5016 5017 LeafReader leafReader; /* reader for the current leaf. */ 5018 DataBuffer rootData; /* root data for inline. */ 5019 } LeavesReader; 5020 5021 /* Access the current term. */ 5022 static int leavesReaderTermBytes(LeavesReader *pReader){ 5023 assert( !pReader->eof ); 5024 return leafReaderTermBytes(&pReader->leafReader); 5025 } 5026 static const char *leavesReaderTerm(LeavesReader *pReader){ 5027 assert( !pReader->eof ); 5028 return leafReaderTerm(&pReader->leafReader); 5029 } 5030 5031 /* Access the doclist data for the current term. */ 5032 static int leavesReaderDataBytes(LeavesReader *pReader){ 5033 assert( !pReader->eof ); 5034 return leafReaderDataBytes(&pReader->leafReader); 5035 } 5036 static const char *leavesReaderData(LeavesReader *pReader){ 5037 assert( !pReader->eof ); 5038 return leafReaderData(&pReader->leafReader); 5039 } 5040 5041 static int leavesReaderAtEnd(LeavesReader *pReader){ 5042 return pReader->eof; 5043 } 5044 5045 /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus 5046 ** leaving the statement handle open, which locks the table. 5047 */ 5048 /* TODO(shess) This "solution" is not satisfactory. Really, there 5049 ** should be check-in function for all statement handles which 5050 ** arranges to call sqlite3_reset(). This most likely will require 5051 ** modification to control flow all over the place, though, so for now 5052 ** just punt. 5053 ** 5054 ** Note the current system assumes that segment merges will run to 5055 ** completion, which is why this particular probably hasn't arisen in 5056 ** this case. Probably a brittle assumption. 5057 */ 5058 static int leavesReaderReset(LeavesReader *pReader){ 5059 return sqlite3_reset(pReader->pStmt); 5060 } 5061 5062 static void leavesReaderDestroy(LeavesReader *pReader){ 5063 /* If idx is -1, that means we're using a non-cached statement 5064 ** handle in the optimize() case, so we need to release it. 5065 */ 5066 if( pReader->pStmt!=NULL && pReader->idx==-1 ){ 5067 sqlite3_finalize(pReader->pStmt); 5068 } 5069 leafReaderDestroy(&pReader->leafReader); 5070 dataBufferDestroy(&pReader->rootData); 5071 SCRAMBLE(pReader); 5072 } 5073 5074 /* Initialize pReader with the given root data (if iStartBlockid==0 5075 ** the leaf data was entirely contained in the root), or from the 5076 ** stream of blocks between iStartBlockid and iEndBlockid, inclusive. 5077 */ 5078 static int leavesReaderInit(fulltext_vtab *v, 5079 int idx, 5080 sqlite_int64 iStartBlockid, 5081 sqlite_int64 iEndBlockid, 5082 const char *pRootData, int nRootData, 5083 LeavesReader *pReader){ 5084 CLEAR(pReader); 5085 pReader->idx = idx; 5086 5087 dataBufferInit(&pReader->rootData, 0); 5088 if( iStartBlockid==0 ){ 5089 /* Entire leaf level fit in root data. */ 5090 dataBufferReplace(&pReader->rootData, pRootData, nRootData); 5091 leafReaderInit(pReader->rootData.pData, pReader->rootData.nData, 5092 &pReader->leafReader); 5093 }else{ 5094 sqlite3_stmt *s; 5095 int rc = sql_get_leaf_statement(v, idx, &s); 5096 if( rc!=SQLITE_OK ) return rc; 5097 5098 rc = sqlite3_bind_int64(s, 1, iStartBlockid); 5099 if( rc!=SQLITE_OK ) return rc; 5100 5101 rc = sqlite3_bind_int64(s, 2, iEndBlockid); 5102 if( rc!=SQLITE_OK ) return rc; 5103 5104 rc = sqlite3_step(s); 5105 if( rc==SQLITE_DONE ){ 5106 pReader->eof = 1; 5107 return SQLITE_OK; 5108 } 5109 if( rc!=SQLITE_ROW ) return rc; 5110 5111 pReader->pStmt = s; 5112 leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), 5113 sqlite3_column_bytes(pReader->pStmt, 0), 5114 &pReader->leafReader); 5115 } 5116 return SQLITE_OK; 5117 } 5118 5119 /* Step the current leaf forward to the next term. If we reach the 5120 ** end of the current leaf, step forward to the next leaf block. 5121 */ 5122 static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){ 5123 assert( !leavesReaderAtEnd(pReader) ); 5124 leafReaderStep(&pReader->leafReader); 5125 5126 if( leafReaderAtEnd(&pReader->leafReader) ){ 5127 int rc; 5128 if( pReader->rootData.pData ){ 5129 pReader->eof = 1; 5130 return SQLITE_OK; 5131 } 5132 rc = sqlite3_step(pReader->pStmt); 5133 if( rc!=SQLITE_ROW ){ 5134 pReader->eof = 1; 5135 return rc==SQLITE_DONE ? SQLITE_OK : rc; 5136 } 5137 leafReaderDestroy(&pReader->leafReader); 5138 leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), 5139 sqlite3_column_bytes(pReader->pStmt, 0), 5140 &pReader->leafReader); 5141 } 5142 return SQLITE_OK; 5143 } 5144 5145 /* Order LeavesReaders by their term, ignoring idx. Readers at eof 5146 ** always sort to the end. 5147 */ 5148 static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){ 5149 if( leavesReaderAtEnd(lr1) ){ 5150 if( leavesReaderAtEnd(lr2) ) return 0; 5151 return 1; 5152 } 5153 if( leavesReaderAtEnd(lr2) ) return -1; 5154 5155 return leafReaderTermCmp(&lr1->leafReader, 5156 leavesReaderTerm(lr2), leavesReaderTermBytes(lr2), 5157 0); 5158 } 5159 5160 /* Similar to leavesReaderTermCmp(), with additional ordering by idx 5161 ** so that older segments sort before newer segments. 5162 */ 5163 static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){ 5164 int c = leavesReaderTermCmp(lr1, lr2); 5165 if( c!=0 ) return c; 5166 return lr1->idx-lr2->idx; 5167 } 5168 5169 /* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its 5170 ** sorted position. 5171 */ 5172 static void leavesReaderReorder(LeavesReader *pLr, int nLr){ 5173 while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){ 5174 LeavesReader tmp = pLr[0]; 5175 pLr[0] = pLr[1]; 5176 pLr[1] = tmp; 5177 nLr--; 5178 pLr++; 5179 } 5180 } 5181 5182 /* Initializes pReaders with the segments from level iLevel, returning 5183 ** the number of segments in *piReaders. Leaves pReaders in sorted 5184 ** order. 5185 */ 5186 static int leavesReadersInit(fulltext_vtab *v, int iLevel, 5187 LeavesReader *pReaders, int *piReaders){ 5188 sqlite3_stmt *s; 5189 int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s); 5190 if( rc!=SQLITE_OK ) return rc; 5191 5192 rc = sqlite3_bind_int(s, 1, iLevel); 5193 if( rc!=SQLITE_OK ) return rc; 5194 5195 i = 0; 5196 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ 5197 sqlite_int64 iStart = sqlite3_column_int64(s, 0); 5198 sqlite_int64 iEnd = sqlite3_column_int64(s, 1); 5199 const char *pRootData = sqlite3_column_blob(s, 2); 5200 int nRootData = sqlite3_column_bytes(s, 2); 5201 5202 assert( i<MERGE_COUNT ); 5203 rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData, 5204 &pReaders[i]); 5205 if( rc!=SQLITE_OK ) break; 5206 5207 i++; 5208 } 5209 if( rc!=SQLITE_DONE ){ 5210 while( i-->0 ){ 5211 leavesReaderDestroy(&pReaders[i]); 5212 } 5213 return rc; 5214 } 5215 5216 *piReaders = i; 5217 5218 /* Leave our results sorted by term, then age. */ 5219 while( i-- ){ 5220 leavesReaderReorder(pReaders+i, *piReaders-i); 5221 } 5222 return SQLITE_OK; 5223 } 5224 5225 /* Merge doclists from pReaders[nReaders] into a single doclist, which 5226 ** is written to pWriter. Assumes pReaders is ordered oldest to 5227 ** newest. 5228 */ 5229 /* TODO(shess) Consider putting this inline in segmentMerge(). */ 5230 static int leavesReadersMerge(fulltext_vtab *v, 5231 LeavesReader *pReaders, int nReaders, 5232 LeafWriter *pWriter){ 5233 DLReader dlReaders[MERGE_COUNT]; 5234 const char *pTerm = leavesReaderTerm(pReaders); 5235 int i, nTerm = leavesReaderTermBytes(pReaders); 5236 5237 assert( nReaders<=MERGE_COUNT ); 5238 5239 for(i=0; i<nReaders; i++){ 5240 dlrInit(&dlReaders[i], DL_DEFAULT, 5241 leavesReaderData(pReaders+i), 5242 leavesReaderDataBytes(pReaders+i)); 5243 } 5244 5245 return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders); 5246 } 5247 5248 /* Forward ref due to mutual recursion with segdirNextIndex(). */ 5249 static int segmentMerge(fulltext_vtab *v, int iLevel); 5250 5251 /* Put the next available index at iLevel into *pidx. If iLevel 5252 ** already has MERGE_COUNT segments, they are merged to a higher 5253 ** level to make room. 5254 */ 5255 static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){ 5256 int rc = segdir_max_index(v, iLevel, pidx); 5257 if( rc==SQLITE_DONE ){ /* No segments at iLevel. */ 5258 *pidx = 0; 5259 }else if( rc==SQLITE_ROW ){ 5260 if( *pidx==(MERGE_COUNT-1) ){ 5261 rc = segmentMerge(v, iLevel); 5262 if( rc!=SQLITE_OK ) return rc; 5263 *pidx = 0; 5264 }else{ 5265 (*pidx)++; 5266 } 5267 }else{ 5268 return rc; 5269 } 5270 return SQLITE_OK; 5271 } 5272 5273 /* Merge MERGE_COUNT segments at iLevel into a new segment at 5274 ** iLevel+1. If iLevel+1 is already full of segments, those will be 5275 ** merged to make room. 5276 */ 5277 static int segmentMerge(fulltext_vtab *v, int iLevel){ 5278 LeafWriter writer; 5279 LeavesReader lrs[MERGE_COUNT]; 5280 int i, rc, idx = 0; 5281 5282 /* Determine the next available segment index at the next level, 5283 ** merging as necessary. 5284 */ 5285 rc = segdirNextIndex(v, iLevel+1, &idx); 5286 if( rc!=SQLITE_OK ) return rc; 5287 5288 /* TODO(shess) This assumes that we'll always see exactly 5289 ** MERGE_COUNT segments to merge at a given level. That will be 5290 ** broken if we allow the developer to request preemptive or 5291 ** deferred merging. 5292 */ 5293 memset(&lrs, '\0', sizeof(lrs)); 5294 rc = leavesReadersInit(v, iLevel, lrs, &i); 5295 if( rc!=SQLITE_OK ) return rc; 5296 assert( i==MERGE_COUNT ); 5297 5298 leafWriterInit(iLevel+1, idx, &writer); 5299 5300 /* Since leavesReaderReorder() pushes readers at eof to the end, 5301 ** when the first reader is empty, all will be empty. 5302 */ 5303 while( !leavesReaderAtEnd(lrs) ){ 5304 /* Figure out how many readers share their next term. */ 5305 for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){ 5306 if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break; 5307 } 5308 5309 rc = leavesReadersMerge(v, lrs, i, &writer); 5310 if( rc!=SQLITE_OK ) goto err; 5311 5312 /* Step forward those that were merged. */ 5313 while( i-->0 ){ 5314 rc = leavesReaderStep(v, lrs+i); 5315 if( rc!=SQLITE_OK ) goto err; 5316 5317 /* Reorder by term, then by age. */ 5318 leavesReaderReorder(lrs+i, MERGE_COUNT-i); 5319 } 5320 } 5321 5322 for(i=0; i<MERGE_COUNT; i++){ 5323 leavesReaderDestroy(&lrs[i]); 5324 } 5325 5326 rc = leafWriterFinalize(v, &writer); 5327 leafWriterDestroy(&writer); 5328 if( rc!=SQLITE_OK ) return rc; 5329 5330 /* Delete the merged segment data. */ 5331 return segdir_delete(v, iLevel); 5332 5333 err: 5334 for(i=0; i<MERGE_COUNT; i++){ 5335 leavesReaderDestroy(&lrs[i]); 5336 } 5337 leafWriterDestroy(&writer); 5338 return rc; 5339 } 5340 5341 /* Accumulate the union of *acc and *pData into *acc. */ 5342 static void docListAccumulateUnion(DataBuffer *acc, 5343 const char *pData, int nData) { 5344 DataBuffer tmp = *acc; 5345 dataBufferInit(acc, tmp.nData+nData); 5346 docListUnion(tmp.pData, tmp.nData, pData, nData, acc); 5347 dataBufferDestroy(&tmp); 5348 } 5349 5350 /* TODO(shess) It might be interesting to explore different merge 5351 ** strategies, here. For instance, since this is a sorted merge, we 5352 ** could easily merge many doclists in parallel. With some 5353 ** comprehension of the storage format, we could merge all of the 5354 ** doclists within a leaf node directly from the leaf node's storage. 5355 ** It may be worthwhile to merge smaller doclists before larger 5356 ** doclists, since they can be traversed more quickly - but the 5357 ** results may have less overlap, making them more expensive in a 5358 ** different way. 5359 */ 5360 5361 /* Scan pReader for pTerm/nTerm, and merge the term's doclist over 5362 ** *out (any doclists with duplicate docids overwrite those in *out). 5363 ** Internal function for loadSegmentLeaf(). 5364 */ 5365 static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader, 5366 const char *pTerm, int nTerm, int isPrefix, 5367 DataBuffer *out){ 5368 /* doclist data is accumulated into pBuffers similar to how one does 5369 ** increment in binary arithmetic. If index 0 is empty, the data is 5370 ** stored there. If there is data there, it is merged and the 5371 ** results carried into position 1, with further merge-and-carry 5372 ** until an empty position is found. 5373 */ 5374 DataBuffer *pBuffers = NULL; 5375 int nBuffers = 0, nMaxBuffers = 0, rc; 5376 5377 assert( nTerm>0 ); 5378 5379 for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader); 5380 rc=leavesReaderStep(v, pReader)){ 5381 /* TODO(shess) Really want leavesReaderTermCmp(), but that name is 5382 ** already taken to compare the terms of two LeavesReaders. Think 5383 ** on a better name. [Meanwhile, break encapsulation rather than 5384 ** use a confusing name.] 5385 */ 5386 int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix); 5387 if( c>0 ) break; /* Past any possible matches. */ 5388 if( c==0 ){ 5389 const char *pData = leavesReaderData(pReader); 5390 int iBuffer, nData = leavesReaderDataBytes(pReader); 5391 5392 /* Find the first empty buffer. */ 5393 for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ 5394 if( 0==pBuffers[iBuffer].nData ) break; 5395 } 5396 5397 /* Out of buffers, add an empty one. */ 5398 if( iBuffer==nBuffers ){ 5399 if( nBuffers==nMaxBuffers ){ 5400 DataBuffer *p; 5401 nMaxBuffers += 20; 5402 5403 /* Manual realloc so we can handle NULL appropriately. */ 5404 p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers)); 5405 if( p==NULL ){ 5406 rc = SQLITE_NOMEM; 5407 break; 5408 } 5409 5410 if( nBuffers>0 ){ 5411 assert(pBuffers!=NULL); 5412 memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers)); 5413 sqlite3_free(pBuffers); 5414 } 5415 pBuffers = p; 5416 } 5417 dataBufferInit(&(pBuffers[nBuffers]), 0); 5418 nBuffers++; 5419 } 5420 5421 /* At this point, must have an empty at iBuffer. */ 5422 assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0); 5423 5424 /* If empty was first buffer, no need for merge logic. */ 5425 if( iBuffer==0 ){ 5426 dataBufferReplace(&(pBuffers[0]), pData, nData); 5427 }else{ 5428 /* pAcc is the empty buffer the merged data will end up in. */ 5429 DataBuffer *pAcc = &(pBuffers[iBuffer]); 5430 DataBuffer *p = &(pBuffers[0]); 5431 5432 /* Handle position 0 specially to avoid need to prime pAcc 5433 ** with pData/nData. 5434 */ 5435 dataBufferSwap(p, pAcc); 5436 docListAccumulateUnion(pAcc, pData, nData); 5437 5438 /* Accumulate remaining doclists into pAcc. */ 5439 for(++p; p<pAcc; ++p){ 5440 docListAccumulateUnion(pAcc, p->pData, p->nData); 5441 5442 /* dataBufferReset() could allow a large doclist to blow up 5443 ** our memory requirements. 5444 */ 5445 if( p->nCapacity<1024 ){ 5446 dataBufferReset(p); 5447 }else{ 5448 dataBufferDestroy(p); 5449 dataBufferInit(p, 0); 5450 } 5451 } 5452 } 5453 } 5454 } 5455 5456 /* Union all the doclists together into *out. */ 5457 /* TODO(shess) What if *out is big? Sigh. */ 5458 if( rc==SQLITE_OK && nBuffers>0 ){ 5459 int iBuffer; 5460 for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ 5461 if( pBuffers[iBuffer].nData>0 ){ 5462 if( out->nData==0 ){ 5463 dataBufferSwap(out, &(pBuffers[iBuffer])); 5464 }else{ 5465 docListAccumulateUnion(out, pBuffers[iBuffer].pData, 5466 pBuffers[iBuffer].nData); 5467 } 5468 } 5469 } 5470 } 5471 5472 while( nBuffers-- ){ 5473 dataBufferDestroy(&(pBuffers[nBuffers])); 5474 } 5475 if( pBuffers!=NULL ) sqlite3_free(pBuffers); 5476 5477 return rc; 5478 } 5479 5480 /* Call loadSegmentLeavesInt() with pData/nData as input. */ 5481 static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData, 5482 const char *pTerm, int nTerm, int isPrefix, 5483 DataBuffer *out){ 5484 LeavesReader reader; 5485 int rc; 5486 5487 assert( nData>1 ); 5488 assert( *pData=='\0' ); 5489 rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader); 5490 if( rc!=SQLITE_OK ) return rc; 5491 5492 rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); 5493 leavesReaderReset(&reader); 5494 leavesReaderDestroy(&reader); 5495 return rc; 5496 } 5497 5498 /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to 5499 ** iEndLeaf (inclusive) as input, and merge the resulting doclist into 5500 ** out. 5501 */ 5502 static int loadSegmentLeaves(fulltext_vtab *v, 5503 sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf, 5504 const char *pTerm, int nTerm, int isPrefix, 5505 DataBuffer *out){ 5506 int rc; 5507 LeavesReader reader; 5508 5509 assert( iStartLeaf<=iEndLeaf ); 5510 rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader); 5511 if( rc!=SQLITE_OK ) return rc; 5512 5513 rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); 5514 leavesReaderReset(&reader); 5515 leavesReaderDestroy(&reader); 5516 return rc; 5517 } 5518 5519 /* Taking pData/nData as an interior node, find the sequence of child 5520 ** nodes which could include pTerm/nTerm/isPrefix. Note that the 5521 ** interior node terms logically come between the blocks, so there is 5522 ** one more blockid than there are terms (that block contains terms >= 5523 ** the last interior-node term). 5524 */ 5525 /* TODO(shess) The calling code may already know that the end child is 5526 ** not worth calculating, because the end may be in a later sibling 5527 ** node. Consider whether breaking symmetry is worthwhile. I suspect 5528 ** it is not worthwhile. 5529 */ 5530 static void getChildrenContaining(const char *pData, int nData, 5531 const char *pTerm, int nTerm, int isPrefix, 5532 sqlite_int64 *piStartChild, 5533 sqlite_int64 *piEndChild){ 5534 InteriorReader reader; 5535 5536 assert( nData>1 ); 5537 assert( *pData!='\0' ); 5538 interiorReaderInit(pData, nData, &reader); 5539 5540 /* Scan for the first child which could contain pTerm/nTerm. */ 5541 while( !interiorReaderAtEnd(&reader) ){ 5542 if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break; 5543 interiorReaderStep(&reader); 5544 } 5545 *piStartChild = interiorReaderCurrentBlockid(&reader); 5546 5547 /* Keep scanning to find a term greater than our term, using prefix 5548 ** comparison if indicated. If isPrefix is false, this will be the 5549 ** same blockid as the starting block. 5550 */ 5551 while( !interiorReaderAtEnd(&reader) ){ 5552 if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break; 5553 interiorReaderStep(&reader); 5554 } 5555 *piEndChild = interiorReaderCurrentBlockid(&reader); 5556 5557 interiorReaderDestroy(&reader); 5558 5559 /* Children must ascend, and if !prefix, both must be the same. */ 5560 assert( *piEndChild>=*piStartChild ); 5561 assert( isPrefix || *piStartChild==*piEndChild ); 5562 } 5563 5564 /* Read block at iBlockid and pass it with other params to 5565 ** getChildrenContaining(). 5566 */ 5567 static int loadAndGetChildrenContaining( 5568 fulltext_vtab *v, 5569 sqlite_int64 iBlockid, 5570 const char *pTerm, int nTerm, int isPrefix, 5571 sqlite_int64 *piStartChild, sqlite_int64 *piEndChild 5572 ){ 5573 sqlite3_stmt *s = NULL; 5574 int rc; 5575 5576 assert( iBlockid!=0 ); 5577 assert( pTerm!=NULL ); 5578 assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */ 5579 assert( piStartChild!=NULL ); 5580 assert( piEndChild!=NULL ); 5581 5582 rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s); 5583 if( rc!=SQLITE_OK ) return rc; 5584 5585 rc = sqlite3_bind_int64(s, 1, iBlockid); 5586 if( rc!=SQLITE_OK ) return rc; 5587 5588 rc = sqlite3_step(s); 5589 if( rc==SQLITE_DONE ) return SQLITE_ERROR; 5590 if( rc!=SQLITE_ROW ) return rc; 5591 5592 getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0), 5593 pTerm, nTerm, isPrefix, piStartChild, piEndChild); 5594 5595 /* We expect only one row. We must execute another sqlite3_step() 5596 * to complete the iteration; otherwise the table will remain 5597 * locked. */ 5598 rc = sqlite3_step(s); 5599 if( rc==SQLITE_ROW ) return SQLITE_ERROR; 5600 if( rc!=SQLITE_DONE ) return rc; 5601 5602 return SQLITE_OK; 5603 } 5604 5605 /* Traverse the tree represented by pData[nData] looking for 5606 ** pTerm[nTerm], placing its doclist into *out. This is internal to 5607 ** loadSegment() to make error-handling cleaner. 5608 */ 5609 static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData, 5610 sqlite_int64 iLeavesEnd, 5611 const char *pTerm, int nTerm, int isPrefix, 5612 DataBuffer *out){ 5613 /* Special case where root is a leaf. */ 5614 if( *pData=='\0' ){ 5615 return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out); 5616 }else{ 5617 int rc; 5618 sqlite_int64 iStartChild, iEndChild; 5619 5620 /* Process pData as an interior node, then loop down the tree 5621 ** until we find the set of leaf nodes to scan for the term. 5622 */ 5623 getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix, 5624 &iStartChild, &iEndChild); 5625 while( iStartChild>iLeavesEnd ){ 5626 sqlite_int64 iNextStart, iNextEnd; 5627 rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix, 5628 &iNextStart, &iNextEnd); 5629 if( rc!=SQLITE_OK ) return rc; 5630 5631 /* If we've branched, follow the end branch, too. */ 5632 if( iStartChild!=iEndChild ){ 5633 sqlite_int64 iDummy; 5634 rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix, 5635 &iDummy, &iNextEnd); 5636 if( rc!=SQLITE_OK ) return rc; 5637 } 5638 5639 assert( iNextStart<=iNextEnd ); 5640 iStartChild = iNextStart; 5641 iEndChild = iNextEnd; 5642 } 5643 assert( iStartChild<=iLeavesEnd ); 5644 assert( iEndChild<=iLeavesEnd ); 5645 5646 /* Scan through the leaf segments for doclists. */ 5647 return loadSegmentLeaves(v, iStartChild, iEndChild, 5648 pTerm, nTerm, isPrefix, out); 5649 } 5650 } 5651 5652 /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then 5653 ** merge its doclist over *out (any duplicate doclists read from the 5654 ** segment rooted at pData will overwrite those in *out). 5655 */ 5656 /* TODO(shess) Consider changing this to determine the depth of the 5657 ** leaves using either the first characters of interior nodes (when 5658 ** ==1, we're one level above the leaves), or the first character of 5659 ** the root (which will describe the height of the tree directly). 5660 ** Either feels somewhat tricky to me. 5661 */ 5662 /* TODO(shess) The current merge is likely to be slow for large 5663 ** doclists (though it should process from newest/smallest to 5664 ** oldest/largest, so it may not be that bad). It might be useful to 5665 ** modify things to allow for N-way merging. This could either be 5666 ** within a segment, with pairwise merges across segments, or across 5667 ** all segments at once. 5668 */ 5669 static int loadSegment(fulltext_vtab *v, const char *pData, int nData, 5670 sqlite_int64 iLeavesEnd, 5671 const char *pTerm, int nTerm, int isPrefix, 5672 DataBuffer *out){ 5673 DataBuffer result; 5674 int rc; 5675 5676 assert( nData>1 ); 5677 5678 /* This code should never be called with buffered updates. */ 5679 assert( v->nPendingData<0 ); 5680 5681 dataBufferInit(&result, 0); 5682 rc = loadSegmentInt(v, pData, nData, iLeavesEnd, 5683 pTerm, nTerm, isPrefix, &result); 5684 if( rc==SQLITE_OK && result.nData>0 ){ 5685 if( out->nData==0 ){ 5686 DataBuffer tmp = *out; 5687 *out = result; 5688 result = tmp; 5689 }else{ 5690 DataBuffer merged; 5691 DLReader readers[2]; 5692 5693 dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData); 5694 dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData); 5695 dataBufferInit(&merged, out->nData+result.nData); 5696 docListMerge(&merged, readers, 2); 5697 dataBufferDestroy(out); 5698 *out = merged; 5699 dlrDestroy(&readers[0]); 5700 dlrDestroy(&readers[1]); 5701 } 5702 } 5703 dataBufferDestroy(&result); 5704 return rc; 5705 } 5706 5707 /* Scan the database and merge together the posting lists for the term 5708 ** into *out. 5709 */ 5710 static int termSelect(fulltext_vtab *v, int iColumn, 5711 const char *pTerm, int nTerm, int isPrefix, 5712 DocListType iType, DataBuffer *out){ 5713 DataBuffer doclist; 5714 sqlite3_stmt *s; 5715 int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); 5716 if( rc!=SQLITE_OK ) return rc; 5717 5718 /* This code should never be called with buffered updates. */ 5719 assert( v->nPendingData<0 ); 5720 5721 dataBufferInit(&doclist, 0); 5722 5723 /* Traverse the segments from oldest to newest so that newer doclist 5724 ** elements for given docids overwrite older elements. 5725 */ 5726 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ 5727 const char *pData = sqlite3_column_blob(s, 2); 5728 const int nData = sqlite3_column_bytes(s, 2); 5729 const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); 5730 rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, 5731 &doclist); 5732 if( rc!=SQLITE_OK ) goto err; 5733 } 5734 if( rc==SQLITE_DONE ){ 5735 if( doclist.nData!=0 ){ 5736 /* TODO(shess) The old term_select_all() code applied the column 5737 ** restrict as we merged segments, leading to smaller buffers. 5738 ** This is probably worthwhile to bring back, once the new storage 5739 ** system is checked in. 5740 */ 5741 if( iColumn==v->nColumn) iColumn = -1; 5742 docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, 5743 iColumn, iType, out); 5744 } 5745 rc = SQLITE_OK; 5746 } 5747 5748 err: 5749 dataBufferDestroy(&doclist); 5750 return rc; 5751 } 5752 5753 /****************************************************************/ 5754 /* Used to hold hashtable data for sorting. */ 5755 typedef struct TermData { 5756 const char *pTerm; 5757 int nTerm; 5758 DLCollector *pCollector; 5759 } TermData; 5760 5761 /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0 5762 ** for equal, >0 for greater-than). 5763 */ 5764 static int termDataCmp(const void *av, const void *bv){ 5765 const TermData *a = (const TermData *)av; 5766 const TermData *b = (const TermData *)bv; 5767 int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm; 5768 int c = memcmp(a->pTerm, b->pTerm, n); 5769 if( c!=0 ) return c; 5770 return a->nTerm-b->nTerm; 5771 } 5772 5773 /* Order pTerms data by term, then write a new level 0 segment using 5774 ** LeafWriter. 5775 */ 5776 static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){ 5777 fts2HashElem *e; 5778 int idx, rc, i, n; 5779 TermData *pData; 5780 LeafWriter writer; 5781 DataBuffer dl; 5782 5783 /* Determine the next index at level 0, merging as necessary. */ 5784 rc = segdirNextIndex(v, 0, &idx); 5785 if( rc!=SQLITE_OK ) return rc; 5786 5787 n = fts2HashCount(pTerms); 5788 pData = sqlite3_malloc(n*sizeof(TermData)); 5789 5790 for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){ 5791 assert( i<n ); 5792 pData[i].pTerm = fts2HashKey(e); 5793 pData[i].nTerm = fts2HashKeysize(e); 5794 pData[i].pCollector = fts2HashData(e); 5795 } 5796 assert( i==n ); 5797 5798 /* TODO(shess) Should we allow user-defined collation sequences, 5799 ** here? I think we only need that once we support prefix searches. 5800 */ 5801 if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp); 5802 5803 /* TODO(shess) Refactor so that we can write directly to the segment 5804 ** DataBuffer, as happens for segment merges. 5805 */ 5806 leafWriterInit(0, idx, &writer); 5807 dataBufferInit(&dl, 0); 5808 for(i=0; i<n; i++){ 5809 dataBufferReset(&dl); 5810 dlcAddDoclist(pData[i].pCollector, &dl); 5811 rc = leafWriterStep(v, &writer, 5812 pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData); 5813 if( rc!=SQLITE_OK ) goto err; 5814 } 5815 rc = leafWriterFinalize(v, &writer); 5816 5817 err: 5818 dataBufferDestroy(&dl); 5819 sqlite3_free(pData); 5820 leafWriterDestroy(&writer); 5821 return rc; 5822 } 5823 5824 /* If pendingTerms has data, free it. */ 5825 static int clearPendingTerms(fulltext_vtab *v){ 5826 if( v->nPendingData>=0 ){ 5827 fts2HashElem *e; 5828 for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){ 5829 dlcDelete(fts2HashData(e)); 5830 } 5831 fts2HashClear(&v->pendingTerms); 5832 v->nPendingData = -1; 5833 } 5834 return SQLITE_OK; 5835 } 5836 5837 /* If pendingTerms has data, flush it to a level-zero segment, and 5838 ** free it. 5839 */ 5840 static int flushPendingTerms(fulltext_vtab *v){ 5841 if( v->nPendingData>=0 ){ 5842 int rc = writeZeroSegment(v, &v->pendingTerms); 5843 if( rc==SQLITE_OK ) clearPendingTerms(v); 5844 return rc; 5845 } 5846 return SQLITE_OK; 5847 } 5848 5849 /* If pendingTerms is "too big", or docid is out of order, flush it. 5850 ** Regardless, be certain that pendingTerms is initialized for use. 5851 */ 5852 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){ 5853 /* TODO(shess) Explore whether partially flushing the buffer on 5854 ** forced-flush would provide better performance. I suspect that if 5855 ** we ordered the doclists by size and flushed the largest until the 5856 ** buffer was half empty, that would let the less frequent terms 5857 ** generate longer doclists. 5858 */ 5859 if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){ 5860 int rc = flushPendingTerms(v); 5861 if( rc!=SQLITE_OK ) return rc; 5862 } 5863 if( v->nPendingData<0 ){ 5864 fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1); 5865 v->nPendingData = 0; 5866 } 5867 v->iPrevDocid = iDocid; 5868 return SQLITE_OK; 5869 } 5870 5871 /* This function implements the xUpdate callback; it is the top-level entry 5872 * point for inserting, deleting or updating a row in a full-text table. */ 5873 static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, 5874 sqlite_int64 *pRowid){ 5875 fulltext_vtab *v = (fulltext_vtab *) pVtab; 5876 int rc; 5877 5878 TRACE(("FTS2 Update %p\n", pVtab)); 5879 5880 if( nArg<2 ){ 5881 rc = index_delete(v, sqlite3_value_int64(ppArg[0])); 5882 if( rc==SQLITE_OK ){ 5883 /* If we just deleted the last row in the table, clear out the 5884 ** index data. 5885 */ 5886 rc = content_exists(v); 5887 if( rc==SQLITE_ROW ){ 5888 rc = SQLITE_OK; 5889 }else if( rc==SQLITE_DONE ){ 5890 /* Clear the pending terms so we don't flush a useless level-0 5891 ** segment when the transaction closes. 5892 */ 5893 rc = clearPendingTerms(v); 5894 if( rc==SQLITE_OK ){ 5895 rc = segdir_delete_all(v); 5896 } 5897 } 5898 } 5899 } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ 5900 /* An update: 5901 * ppArg[0] = old rowid 5902 * ppArg[1] = new rowid 5903 * ppArg[2..2+v->nColumn-1] = values 5904 * ppArg[2+v->nColumn] = value for magic column (we ignore this) 5905 */ 5906 sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); 5907 if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || 5908 sqlite3_value_int64(ppArg[1]) != rowid ){ 5909 rc = SQLITE_ERROR; /* we don't allow changing the rowid */ 5910 } else { 5911 assert( nArg==2+v->nColumn+1); 5912 rc = index_update(v, rowid, &ppArg[2]); 5913 } 5914 } else { 5915 /* An insert: 5916 * ppArg[1] = requested rowid 5917 * ppArg[2..2+v->nColumn-1] = values 5918 * ppArg[2+v->nColumn] = value for magic column (we ignore this) 5919 */ 5920 assert( nArg==2+v->nColumn+1); 5921 rc = index_insert(v, ppArg[1], &ppArg[2], pRowid); 5922 } 5923 5924 return rc; 5925 } 5926 5927 static int fulltextSync(sqlite3_vtab *pVtab){ 5928 TRACE(("FTS2 xSync()\n")); 5929 return flushPendingTerms((fulltext_vtab *)pVtab); 5930 } 5931 5932 static int fulltextBegin(sqlite3_vtab *pVtab){ 5933 fulltext_vtab *v = (fulltext_vtab *) pVtab; 5934 TRACE(("FTS2 xBegin()\n")); 5935 5936 /* Any buffered updates should have been cleared by the previous 5937 ** transaction. 5938 */ 5939 assert( v->nPendingData<0 ); 5940 return clearPendingTerms(v); 5941 } 5942 5943 static int fulltextCommit(sqlite3_vtab *pVtab){ 5944 fulltext_vtab *v = (fulltext_vtab *) pVtab; 5945 TRACE(("FTS2 xCommit()\n")); 5946 5947 /* Buffered updates should have been cleared by fulltextSync(). */ 5948 assert( v->nPendingData<0 ); 5949 return clearPendingTerms(v); 5950 } 5951 5952 static int fulltextRollback(sqlite3_vtab *pVtab){ 5953 TRACE(("FTS2 xRollback()\n")); 5954 return clearPendingTerms((fulltext_vtab *)pVtab); 5955 } 5956 5957 /* 5958 ** Implementation of the snippet() function for FTS2 5959 */ 5960 static void snippetFunc( 5961 sqlite3_context *pContext, 5962 int argc, 5963 sqlite3_value **argv 5964 ){ 5965 fulltext_cursor *pCursor; 5966 if( argc<1 ) return; 5967 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || 5968 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ 5969 sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); 5970 }else{ 5971 const char *zStart = "<b>"; 5972 const char *zEnd = "</b>"; 5973 const char *zEllipsis = "<b>...</b>"; 5974 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); 5975 if( argc>=2 ){ 5976 zStart = (const char*)sqlite3_value_text(argv[1]); 5977 if( argc>=3 ){ 5978 zEnd = (const char*)sqlite3_value_text(argv[2]); 5979 if( argc>=4 ){ 5980 zEllipsis = (const char*)sqlite3_value_text(argv[3]); 5981 } 5982 } 5983 } 5984 snippetAllOffsets(pCursor); 5985 snippetText(pCursor, zStart, zEnd, zEllipsis); 5986 sqlite3_result_text(pContext, pCursor->snippet.zSnippet, 5987 pCursor->snippet.nSnippet, SQLITE_STATIC); 5988 } 5989 } 5990 5991 /* 5992 ** Implementation of the offsets() function for FTS2 5993 */ 5994 static void snippetOffsetsFunc( 5995 sqlite3_context *pContext, 5996 int argc, 5997 sqlite3_value **argv 5998 ){ 5999 fulltext_cursor *pCursor; 6000 if( argc<1 ) return; 6001 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || 6002 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ 6003 sqlite3_result_error(pContext, "illegal first argument to offsets",-1); 6004 }else{ 6005 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); 6006 snippetAllOffsets(pCursor); 6007 snippetOffsetText(&pCursor->snippet); 6008 sqlite3_result_text(pContext, 6009 pCursor->snippet.zOffset, pCursor->snippet.nOffset, 6010 SQLITE_STATIC); 6011 } 6012 } 6013 6014 /* OptLeavesReader is nearly identical to LeavesReader, except that 6015 ** where LeavesReader is geared towards the merging of complete 6016 ** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader 6017 ** is geared towards implementation of the optimize() function, and 6018 ** can merge all segments simultaneously. This version may be 6019 ** somewhat less efficient than LeavesReader because it merges into an 6020 ** accumulator rather than doing an N-way merge, but since segment 6021 ** size grows exponentially (so segment count logrithmically) this is 6022 ** probably not an immediate problem. 6023 */ 6024 /* TODO(shess): Prove that assertion, or extend the merge code to 6025 ** merge tree fashion (like the prefix-searching code does). 6026 */ 6027 /* TODO(shess): OptLeavesReader and LeavesReader could probably be 6028 ** merged with little or no loss of performance for LeavesReader. The 6029 ** merged code would need to handle >MERGE_COUNT segments, and would 6030 ** also need to be able to optionally optimize away deletes. 6031 */ 6032 typedef struct OptLeavesReader { 6033 /* Segment number, to order readers by age. */ 6034 int segment; 6035 LeavesReader reader; 6036 } OptLeavesReader; 6037 6038 static int optLeavesReaderAtEnd(OptLeavesReader *pReader){ 6039 return leavesReaderAtEnd(&pReader->reader); 6040 } 6041 static int optLeavesReaderTermBytes(OptLeavesReader *pReader){ 6042 return leavesReaderTermBytes(&pReader->reader); 6043 } 6044 static const char *optLeavesReaderData(OptLeavesReader *pReader){ 6045 return leavesReaderData(&pReader->reader); 6046 } 6047 static int optLeavesReaderDataBytes(OptLeavesReader *pReader){ 6048 return leavesReaderDataBytes(&pReader->reader); 6049 } 6050 static const char *optLeavesReaderTerm(OptLeavesReader *pReader){ 6051 return leavesReaderTerm(&pReader->reader); 6052 } 6053 static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){ 6054 return leavesReaderStep(v, &pReader->reader); 6055 } 6056 static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ 6057 return leavesReaderTermCmp(&lr1->reader, &lr2->reader); 6058 } 6059 /* Order by term ascending, segment ascending (oldest to newest), with 6060 ** exhausted readers to the end. 6061 */ 6062 static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ 6063 int c = optLeavesReaderTermCmp(lr1, lr2); 6064 if( c!=0 ) return c; 6065 return lr1->segment-lr2->segment; 6066 } 6067 /* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that 6068 ** pLr[1..nLr-1] is already sorted. 6069 */ 6070 static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){ 6071 while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){ 6072 OptLeavesReader tmp = pLr[0]; 6073 pLr[0] = pLr[1]; 6074 pLr[1] = tmp; 6075 nLr--; 6076 pLr++; 6077 } 6078 } 6079 6080 /* optimize() helper function. Put the readers in order and iterate 6081 ** through them, merging doclists for matching terms into pWriter. 6082 ** Returns SQLITE_OK on success, or the SQLite error code which 6083 ** prevented success. 6084 */ 6085 static int optimizeInternal(fulltext_vtab *v, 6086 OptLeavesReader *readers, int nReaders, 6087 LeafWriter *pWriter){ 6088 int i, rc = SQLITE_OK; 6089 DataBuffer doclist, merged, tmp; 6090 6091 /* Order the readers. */ 6092 i = nReaders; 6093 while( i-- > 0 ){ 6094 optLeavesReaderReorder(&readers[i], nReaders-i); 6095 } 6096 6097 dataBufferInit(&doclist, LEAF_MAX); 6098 dataBufferInit(&merged, LEAF_MAX); 6099 6100 /* Exhausted readers bubble to the end, so when the first reader is 6101 ** at eof, all are at eof. 6102 */ 6103 while( !optLeavesReaderAtEnd(&readers[0]) ){ 6104 6105 /* Figure out how many readers share the next term. */ 6106 for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){ 6107 if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break; 6108 } 6109 6110 /* Special-case for no merge. */ 6111 if( i==1 ){ 6112 /* Trim deletions from the doclist. */ 6113 dataBufferReset(&merged); 6114 docListTrim(DL_DEFAULT, 6115 optLeavesReaderData(&readers[0]), 6116 optLeavesReaderDataBytes(&readers[0]), 6117 -1, DL_DEFAULT, &merged); 6118 }else{ 6119 DLReader dlReaders[MERGE_COUNT]; 6120 int iReader, nReaders; 6121 6122 /* Prime the pipeline with the first reader's doclist. After 6123 ** one pass index 0 will reference the accumulated doclist. 6124 */ 6125 dlrInit(&dlReaders[0], DL_DEFAULT, 6126 optLeavesReaderData(&readers[0]), 6127 optLeavesReaderDataBytes(&readers[0])); 6128 iReader = 1; 6129 6130 assert( iReader<i ); /* Must execute the loop at least once. */ 6131 while( iReader<i ){ 6132 /* Merge 16 inputs per pass. */ 6133 for( nReaders=1; iReader<i && nReaders<MERGE_COUNT; 6134 iReader++, nReaders++ ){ 6135 dlrInit(&dlReaders[nReaders], DL_DEFAULT, 6136 optLeavesReaderData(&readers[iReader]), 6137 optLeavesReaderDataBytes(&readers[iReader])); 6138 } 6139 6140 /* Merge doclists and swap result into accumulator. */ 6141 dataBufferReset(&merged); 6142 docListMerge(&merged, dlReaders, nReaders); 6143 tmp = merged; 6144 merged = doclist; 6145 doclist = tmp; 6146 6147 while( nReaders-- > 0 ){ 6148 dlrDestroy(&dlReaders[nReaders]); 6149 } 6150 6151 /* Accumulated doclist to reader 0 for next pass. */ 6152 dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData); 6153 } 6154 6155 /* Destroy reader that was left in the pipeline. */ 6156 dlrDestroy(&dlReaders[0]); 6157 6158 /* Trim deletions from the doclist. */ 6159 dataBufferReset(&merged); 6160 docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, 6161 -1, DL_DEFAULT, &merged); 6162 } 6163 6164 /* Only pass doclists with hits (skip if all hits deleted). */ 6165 if( merged.nData>0 ){ 6166 rc = leafWriterStep(v, pWriter, 6167 optLeavesReaderTerm(&readers[0]), 6168 optLeavesReaderTermBytes(&readers[0]), 6169 merged.pData, merged.nData); 6170 if( rc!=SQLITE_OK ) goto err; 6171 } 6172 6173 /* Step merged readers to next term and reorder. */ 6174 while( i-- > 0 ){ 6175 rc = optLeavesReaderStep(v, &readers[i]); 6176 if( rc!=SQLITE_OK ) goto err; 6177 6178 optLeavesReaderReorder(&readers[i], nReaders-i); 6179 } 6180 } 6181 6182 err: 6183 dataBufferDestroy(&doclist); 6184 dataBufferDestroy(&merged); 6185 return rc; 6186 } 6187 6188 /* Implement optimize() function for FTS3. optimize(t) merges all 6189 ** segments in the fts index into a single segment. 't' is the magic 6190 ** table-named column. 6191 */ 6192 static void optimizeFunc(sqlite3_context *pContext, 6193 int argc, sqlite3_value **argv){ 6194 fulltext_cursor *pCursor; 6195 if( argc>1 ){ 6196 sqlite3_result_error(pContext, "excess arguments to optimize()",-1); 6197 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || 6198 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ 6199 sqlite3_result_error(pContext, "illegal first argument to optimize",-1); 6200 }else{ 6201 fulltext_vtab *v; 6202 int i, rc, iMaxLevel; 6203 OptLeavesReader *readers; 6204 int nReaders; 6205 LeafWriter writer; 6206 sqlite3_stmt *s; 6207 6208 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); 6209 v = cursor_vtab(pCursor); 6210 6211 /* Flush any buffered updates before optimizing. */ 6212 rc = flushPendingTerms(v); 6213 if( rc!=SQLITE_OK ) goto err; 6214 6215 rc = segdir_count(v, &nReaders, &iMaxLevel); 6216 if( rc!=SQLITE_OK ) goto err; 6217 if( nReaders==0 || nReaders==1 ){ 6218 sqlite3_result_text(pContext, "Index already optimal", -1, 6219 SQLITE_STATIC); 6220 return; 6221 } 6222 6223 rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); 6224 if( rc!=SQLITE_OK ) goto err; 6225 6226 readers = sqlite3_malloc(nReaders*sizeof(readers[0])); 6227 if( readers==NULL ) goto err; 6228 6229 /* Note that there will already be a segment at this position 6230 ** until we call segdir_delete() on iMaxLevel. 6231 */ 6232 leafWriterInit(iMaxLevel, 0, &writer); 6233 6234 i = 0; 6235 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ 6236 sqlite_int64 iStart = sqlite3_column_int64(s, 0); 6237 sqlite_int64 iEnd = sqlite3_column_int64(s, 1); 6238 const char *pRootData = sqlite3_column_blob(s, 2); 6239 int nRootData = sqlite3_column_bytes(s, 2); 6240 6241 assert( i<nReaders ); 6242 rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData, 6243 &readers[i].reader); 6244 if( rc!=SQLITE_OK ) break; 6245 6246 readers[i].segment = i; 6247 i++; 6248 } 6249 6250 /* If we managed to successfully read them all, optimize them. */ 6251 if( rc==SQLITE_DONE ){ 6252 assert( i==nReaders ); 6253 rc = optimizeInternal(v, readers, nReaders, &writer); 6254 } 6255 6256 while( i-- > 0 ){ 6257 leavesReaderDestroy(&readers[i].reader); 6258 } 6259 sqlite3_free(readers); 6260 6261 /* If we've successfully gotten to here, delete the old segments 6262 ** and flush the interior structure of the new segment. 6263 */ 6264 if( rc==SQLITE_OK ){ 6265 for( i=0; i<=iMaxLevel; i++ ){ 6266 rc = segdir_delete(v, i); 6267 if( rc!=SQLITE_OK ) break; 6268 } 6269 6270 if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer); 6271 } 6272 6273 leafWriterDestroy(&writer); 6274 6275 if( rc!=SQLITE_OK ) goto err; 6276 6277 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); 6278 return; 6279 6280 /* TODO(shess): Error-handling needs to be improved along the 6281 ** lines of the dump_ functions. 6282 */ 6283 err: 6284 { 6285 char buf[512]; 6286 sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s", 6287 sqlite3_errmsg(sqlite3_context_db_handle(pContext))); 6288 sqlite3_result_error(pContext, buf, -1); 6289 } 6290 } 6291 } 6292 6293 #ifdef SQLITE_TEST 6294 /* Generate an error of the form "<prefix>: <msg>". If msg is NULL, 6295 ** pull the error from the context's db handle. 6296 */ 6297 static void generateError(sqlite3_context *pContext, 6298 const char *prefix, const char *msg){ 6299 char buf[512]; 6300 if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext)); 6301 sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg); 6302 sqlite3_result_error(pContext, buf, -1); 6303 } 6304 6305 /* Helper function to collect the set of terms in the segment into 6306 ** pTerms. The segment is defined by the leaf nodes between 6307 ** iStartBlockid and iEndBlockid, inclusive, or by the contents of 6308 ** pRootData if iStartBlockid is 0 (in which case the entire segment 6309 ** fit in a leaf). 6310 */ 6311 static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s, 6312 fts2Hash *pTerms){ 6313 const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0); 6314 const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1); 6315 const char *pRootData = sqlite3_column_blob(s, 2); 6316 const int nRootData = sqlite3_column_bytes(s, 2); 6317 LeavesReader reader; 6318 int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid, 6319 pRootData, nRootData, &reader); 6320 if( rc!=SQLITE_OK ) return rc; 6321 6322 while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){ 6323 const char *pTerm = leavesReaderTerm(&reader); 6324 const int nTerm = leavesReaderTermBytes(&reader); 6325 void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm); 6326 void *newValue = (void *)((char *)oldValue+1); 6327 6328 /* From the comment before sqlite3Fts2HashInsert in fts2_hash.c, 6329 ** the data value passed is returned in case of malloc failure. 6330 */ 6331 if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){ 6332 rc = SQLITE_NOMEM; 6333 }else{ 6334 rc = leavesReaderStep(v, &reader); 6335 } 6336 } 6337 6338 leavesReaderDestroy(&reader); 6339 return rc; 6340 } 6341 6342 /* Helper function to build the result string for dump_terms(). */ 6343 static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){ 6344 int iTerm, nTerms, nResultBytes, iByte; 6345 char *result; 6346 TermData *pData; 6347 fts2HashElem *e; 6348 6349 /* Iterate pTerms to generate an array of terms in pData for 6350 ** sorting. 6351 */ 6352 nTerms = fts2HashCount(pTerms); 6353 assert( nTerms>0 ); 6354 pData = sqlite3_malloc(nTerms*sizeof(TermData)); 6355 if( pData==NULL ) return SQLITE_NOMEM; 6356 6357 nResultBytes = 0; 6358 for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){ 6359 nResultBytes += fts2HashKeysize(e)+1; /* Term plus trailing space */ 6360 assert( iTerm<nTerms ); 6361 pData[iTerm].pTerm = fts2HashKey(e); 6362 pData[iTerm].nTerm = fts2HashKeysize(e); 6363 pData[iTerm].pCollector = fts2HashData(e); /* unused */ 6364 } 6365 assert( iTerm==nTerms ); 6366 6367 assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */ 6368 result = sqlite3_malloc(nResultBytes); 6369 if( result==NULL ){ 6370 sqlite3_free(pData); 6371 return SQLITE_NOMEM; 6372 } 6373 6374 if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp); 6375 6376 /* Read the terms in order to build the result. */ 6377 iByte = 0; 6378 for(iTerm=0; iTerm<nTerms; ++iTerm){ 6379 memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm); 6380 iByte += pData[iTerm].nTerm; 6381 result[iByte++] = ' '; 6382 } 6383 assert( iByte==nResultBytes ); 6384 assert( result[nResultBytes-1]==' ' ); 6385 result[nResultBytes-1] = '\0'; 6386 6387 /* Passes away ownership of result. */ 6388 sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free); 6389 sqlite3_free(pData); 6390 return SQLITE_OK; 6391 } 6392 6393 /* Implements dump_terms() for use in inspecting the fts2 index from 6394 ** tests. TEXT result containing the ordered list of terms joined by 6395 ** spaces. dump_terms(t, level, idx) dumps the terms for the segment 6396 ** specified by level, idx (in %_segdir), while dump_terms(t) dumps 6397 ** all terms in the index. In both cases t is the fts table's magic 6398 ** table-named column. 6399 */ 6400 static void dumpTermsFunc( 6401 sqlite3_context *pContext, 6402 int argc, sqlite3_value **argv 6403 ){ 6404 fulltext_cursor *pCursor; 6405 if( argc!=3 && argc!=1 ){ 6406 generateError(pContext, "dump_terms", "incorrect arguments"); 6407 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || 6408 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ 6409 generateError(pContext, "dump_terms", "illegal first argument"); 6410 }else{ 6411 fulltext_vtab *v; 6412 fts2Hash terms; 6413 sqlite3_stmt *s = NULL; 6414 int rc; 6415 6416 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); 6417 v = cursor_vtab(pCursor); 6418 6419 /* If passed only the cursor column, get all segments. Otherwise 6420 ** get the segment described by the following two arguments. 6421 */ 6422 if( argc==1 ){ 6423 rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); 6424 }else{ 6425 rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); 6426 if( rc==SQLITE_OK ){ 6427 rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1])); 6428 if( rc==SQLITE_OK ){ 6429 rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2])); 6430 } 6431 } 6432 } 6433 6434 if( rc!=SQLITE_OK ){ 6435 generateError(pContext, "dump_terms", NULL); 6436 return; 6437 } 6438 6439 /* Collect the terms for each segment. */ 6440 sqlite3Fts2HashInit(&terms, FTS2_HASH_STRING, 1); 6441 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ 6442 rc = collectSegmentTerms(v, s, &terms); 6443 if( rc!=SQLITE_OK ) break; 6444 } 6445 6446 if( rc!=SQLITE_DONE ){ 6447 sqlite3_reset(s); 6448 generateError(pContext, "dump_terms", NULL); 6449 }else{ 6450 const int nTerms = fts2HashCount(&terms); 6451 if( nTerms>0 ){ 6452 rc = generateTermsResult(pContext, &terms); 6453 if( rc==SQLITE_NOMEM ){ 6454 generateError(pContext, "dump_terms", "out of memory"); 6455 }else{ 6456 assert( rc==SQLITE_OK ); 6457 } 6458 }else if( argc==3 ){ 6459 /* The specific segment asked for could not be found. */ 6460 generateError(pContext, "dump_terms", "segment not found"); 6461 }else{ 6462 /* No segments found. */ 6463 /* TODO(shess): It should be impossible to reach this. This 6464 ** case can only happen for an empty table, in which case 6465 ** SQLite has no rows to call this function on. 6466 */ 6467 sqlite3_result_null(pContext); 6468 } 6469 } 6470 sqlite3Fts2HashClear(&terms); 6471 } 6472 } 6473 6474 /* Expand the DL_DEFAULT doclist in pData into a text result in 6475 ** pContext. 6476 */ 6477 static void createDoclistResult(sqlite3_context *pContext, 6478 const char *pData, int nData){ 6479 DataBuffer dump; 6480 DLReader dlReader; 6481 6482 assert( pData!=NULL && nData>0 ); 6483 6484 dataBufferInit(&dump, 0); 6485 dlrInit(&dlReader, DL_DEFAULT, pData, nData); 6486 for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){ 6487 char buf[256]; 6488 PLReader plReader; 6489 6490 plrInit(&plReader, &dlReader); 6491 if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){ 6492 sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader)); 6493 dataBufferAppend(&dump, buf, strlen(buf)); 6494 }else{ 6495 int iColumn = plrColumn(&plReader); 6496 6497 sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[", 6498 dlrDocid(&dlReader), iColumn); 6499 dataBufferAppend(&dump, buf, strlen(buf)); 6500 6501 for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){ 6502 if( plrColumn(&plReader)!=iColumn ){ 6503 iColumn = plrColumn(&plReader); 6504 sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn); 6505 assert( dump.nData>0 ); 6506 dump.nData--; /* Overwrite trailing space. */ 6507 assert( dump.pData[dump.nData]==' '); 6508 dataBufferAppend(&dump, buf, strlen(buf)); 6509 } 6510 if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){ 6511 sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ", 6512 plrPosition(&plReader), 6513 plrStartOffset(&plReader), plrEndOffset(&plReader)); 6514 }else if( DL_DEFAULT==DL_POSITIONS ){ 6515 sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader)); 6516 }else{ 6517 assert( NULL=="Unhandled DL_DEFAULT value"); 6518 } 6519 dataBufferAppend(&dump, buf, strlen(buf)); 6520 } 6521 plrDestroy(&plReader); 6522 6523 assert( dump.nData>0 ); 6524 dump.nData--; /* Overwrite trailing space. */ 6525 assert( dump.pData[dump.nData]==' '); 6526 dataBufferAppend(&dump, "]] ", 3); 6527 } 6528 } 6529 dlrDestroy(&dlReader); 6530 6531 assert( dump.nData>0 ); 6532 dump.nData--; /* Overwrite trailing space. */ 6533 assert( dump.pData[dump.nData]==' '); 6534 dump.pData[dump.nData] = '\0'; 6535 assert( dump.nData>0 ); 6536 6537 /* Passes ownership of dump's buffer to pContext. */ 6538 sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free); 6539 dump.pData = NULL; 6540 dump.nData = dump.nCapacity = 0; 6541 } 6542 6543 /* Implements dump_doclist() for use in inspecting the fts2 index from 6544 ** tests. TEXT result containing a string representation of the 6545 ** doclist for the indicated term. dump_doclist(t, term, level, idx) 6546 ** dumps the doclist for term from the segment specified by level, idx 6547 ** (in %_segdir), while dump_doclist(t, term) dumps the logical 6548 ** doclist for the term across all segments. The per-segment doclist 6549 ** can contain deletions, while the full-index doclist will not 6550 ** (deletions are omitted). 6551 ** 6552 ** Result formats differ with the setting of DL_DEFAULTS. Examples: 6553 ** 6554 ** DL_DOCIDS: [1] [3] [7] 6555 ** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]] 6556 ** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]] 6557 ** 6558 ** In each case the number after the outer '[' is the docid. In the 6559 ** latter two cases, the number before the inner '[' is the column 6560 ** associated with the values within. For DL_POSITIONS the numbers 6561 ** within are the positions, for DL_POSITIONS_OFFSETS they are the 6562 ** position, the start offset, and the end offset. 6563 */ 6564 static void dumpDoclistFunc( 6565 sqlite3_context *pContext, 6566 int argc, sqlite3_value **argv 6567 ){ 6568 fulltext_cursor *pCursor; 6569 if( argc!=2 && argc!=4 ){ 6570 generateError(pContext, "dump_doclist", "incorrect arguments"); 6571 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || 6572 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ 6573 generateError(pContext, "dump_doclist", "illegal first argument"); 6574 }else if( sqlite3_value_text(argv[1])==NULL || 6575 sqlite3_value_text(argv[1])[0]=='\0' ){ 6576 generateError(pContext, "dump_doclist", "empty second argument"); 6577 }else{ 6578 const char *pTerm = (const char *)sqlite3_value_text(argv[1]); 6579 const int nTerm = strlen(pTerm); 6580 fulltext_vtab *v; 6581 int rc; 6582 DataBuffer doclist; 6583 6584 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); 6585 v = cursor_vtab(pCursor); 6586 6587 dataBufferInit(&doclist, 0); 6588 6589 /* termSelect() yields the same logical doclist that queries are 6590 ** run against. 6591 */ 6592 if( argc==2 ){ 6593 rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist); 6594 }else{ 6595 sqlite3_stmt *s = NULL; 6596 6597 /* Get our specific segment's information. */ 6598 rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); 6599 if( rc==SQLITE_OK ){ 6600 rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2])); 6601 if( rc==SQLITE_OK ){ 6602 rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3])); 6603 } 6604 } 6605 6606 if( rc==SQLITE_OK ){ 6607 rc = sqlite3_step(s); 6608 6609 if( rc==SQLITE_DONE ){ 6610 dataBufferDestroy(&doclist); 6611 generateError(pContext, "dump_doclist", "segment not found"); 6612 return; 6613 } 6614 6615 /* Found a segment, load it into doclist. */ 6616 if( rc==SQLITE_ROW ){ 6617 const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); 6618 const char *pData = sqlite3_column_blob(s, 2); 6619 const int nData = sqlite3_column_bytes(s, 2); 6620 6621 /* loadSegment() is used by termSelect() to load each 6622 ** segment's data. 6623 */ 6624 rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0, 6625 &doclist); 6626 if( rc==SQLITE_OK ){ 6627 rc = sqlite3_step(s); 6628 6629 /* Should not have more than one matching segment. */ 6630 if( rc!=SQLITE_DONE ){ 6631 sqlite3_reset(s); 6632 dataBufferDestroy(&doclist); 6633 generateError(pContext, "dump_doclist", "invalid segdir"); 6634 return; 6635 } 6636 rc = SQLITE_OK; 6637 } 6638 } 6639 } 6640 6641 sqlite3_reset(s); 6642 } 6643 6644 if( rc==SQLITE_OK ){ 6645 if( doclist.nData>0 ){ 6646 createDoclistResult(pContext, doclist.pData, doclist.nData); 6647 }else{ 6648 /* TODO(shess): This can happen if the term is not present, or 6649 ** if all instances of the term have been deleted and this is 6650 ** an all-index dump. It may be interesting to distinguish 6651 ** these cases. 6652 */ 6653 sqlite3_result_text(pContext, "", 0, SQLITE_STATIC); 6654 } 6655 }else if( rc==SQLITE_NOMEM ){ 6656 /* Handle out-of-memory cases specially because if they are 6657 ** generated in fts2 code they may not be reflected in the db 6658 ** handle. 6659 */ 6660 /* TODO(shess): Handle this more comprehensively. 6661 ** sqlite3ErrStr() has what I need, but is internal. 6662 */ 6663 generateError(pContext, "dump_doclist", "out of memory"); 6664 }else{ 6665 generateError(pContext, "dump_doclist", NULL); 6666 } 6667 6668 dataBufferDestroy(&doclist); 6669 } 6670 } 6671 #endif 6672 6673 /* 6674 ** This routine implements the xFindFunction method for the FTS2 6675 ** virtual table. 6676 */ 6677 static int fulltextFindFunction( 6678 sqlite3_vtab *pVtab, 6679 int nArg, 6680 const char *zName, 6681 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), 6682 void **ppArg 6683 ){ 6684 if( strcmp(zName,"snippet")==0 ){ 6685 *pxFunc = snippetFunc; 6686 return 1; 6687 }else if( strcmp(zName,"offsets")==0 ){ 6688 *pxFunc = snippetOffsetsFunc; 6689 return 1; 6690 }else if( strcmp(zName,"optimize")==0 ){ 6691 *pxFunc = optimizeFunc; 6692 return 1; 6693 #ifdef SQLITE_TEST 6694 /* NOTE(shess): These functions are present only for testing 6695 ** purposes. No particular effort is made to optimize their 6696 ** execution or how they build their results. 6697 */ 6698 }else if( strcmp(zName,"dump_terms")==0 ){ 6699 /* fprintf(stderr, "Found dump_terms\n"); */ 6700 *pxFunc = dumpTermsFunc; 6701 return 1; 6702 }else if( strcmp(zName,"dump_doclist")==0 ){ 6703 /* fprintf(stderr, "Found dump_doclist\n"); */ 6704 *pxFunc = dumpDoclistFunc; 6705 return 1; 6706 #endif 6707 } 6708 return 0; 6709 } 6710 6711 /* 6712 ** Rename an fts2 table. 6713 */ 6714 static int fulltextRename( 6715 sqlite3_vtab *pVtab, 6716 const char *zName 6717 ){ 6718 fulltext_vtab *p = (fulltext_vtab *)pVtab; 6719 int rc = SQLITE_NOMEM; 6720 char *zSql = sqlite3_mprintf( 6721 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" 6722 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';" 6723 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';" 6724 , p->zDb, p->zName, zName 6725 , p->zDb, p->zName, zName 6726 , p->zDb, p->zName, zName 6727 ); 6728 if( zSql ){ 6729 rc = sqlite3_exec(p->db, zSql, 0, 0, 0); 6730 sqlite3_free(zSql); 6731 } 6732 return rc; 6733 } 6734 6735 static const sqlite3_module fts2Module = { 6736 /* iVersion */ 0, 6737 /* xCreate */ fulltextCreate, 6738 /* xConnect */ fulltextConnect, 6739 /* xBestIndex */ fulltextBestIndex, 6740 /* xDisconnect */ fulltextDisconnect, 6741 /* xDestroy */ fulltextDestroy, 6742 /* xOpen */ fulltextOpen, 6743 /* xClose */ fulltextClose, 6744 /* xFilter */ fulltextFilter, 6745 /* xNext */ fulltextNext, 6746 /* xEof */ fulltextEof, 6747 /* xColumn */ fulltextColumn, 6748 /* xRowid */ fulltextRowid, 6749 /* xUpdate */ fulltextUpdate, 6750 /* xBegin */ fulltextBegin, 6751 /* xSync */ fulltextSync, 6752 /* xCommit */ fulltextCommit, 6753 /* xRollback */ fulltextRollback, 6754 /* xFindFunction */ fulltextFindFunction, 6755 /* xRename */ fulltextRename, 6756 }; 6757 6758 static void hashDestroy(void *p){ 6759 fts2Hash *pHash = (fts2Hash *)p; 6760 sqlite3Fts2HashClear(pHash); 6761 sqlite3_free(pHash); 6762 } 6763 6764 /* 6765 ** The fts2 built-in tokenizers - "simple" and "porter" - are implemented 6766 ** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following 6767 ** two forward declarations are for functions declared in these files 6768 ** used to retrieve the respective implementations. 6769 ** 6770 ** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed 6771 ** to by the argument to point a the "simple" tokenizer implementation. 6772 ** Function ...PorterTokenizerModule() sets *pModule to point to the 6773 ** porter tokenizer/stemmer implementation. 6774 */ 6775 void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); 6776 void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); 6777 void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); 6778 6779 int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *); 6780 6781 /* 6782 ** Initialize the fts2 extension. If this extension is built as part 6783 ** of the sqlite library, then this function is called directly by 6784 ** SQLite. If fts2 is built as a dynamically loadable extension, this 6785 ** function is called by the sqlite3_extension_init() entry point. 6786 */ 6787 int sqlite3Fts2Init(sqlite3 *db){ 6788 int rc = SQLITE_OK; 6789 fts2Hash *pHash = 0; 6790 const sqlite3_tokenizer_module *pSimple = 0; 6791 const sqlite3_tokenizer_module *pPorter = 0; 6792 const sqlite3_tokenizer_module *pIcu = 0; 6793 6794 sqlite3Fts2SimpleTokenizerModule(&pSimple); 6795 sqlite3Fts2PorterTokenizerModule(&pPorter); 6796 #ifdef SQLITE_ENABLE_ICU 6797 sqlite3Fts2IcuTokenizerModule(&pIcu); 6798 #endif 6799 6800 /* Allocate and initialize the hash-table used to store tokenizers. */ 6801 pHash = sqlite3_malloc(sizeof(fts2Hash)); 6802 if( !pHash ){ 6803 rc = SQLITE_NOMEM; 6804 }else{ 6805 sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1); 6806 } 6807 6808 /* Load the built-in tokenizers into the hash table */ 6809 if( rc==SQLITE_OK ){ 6810 if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple) 6811 || sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter) 6812 || (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu)) 6813 ){ 6814 rc = SQLITE_NOMEM; 6815 } 6816 } 6817 6818 /* Create the virtual table wrapper around the hash-table and overload 6819 ** the two scalar functions. If this is successful, register the 6820 ** module with sqlite. 6821 */ 6822 if( SQLITE_OK==rc 6823 && SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer")) 6824 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) 6825 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1)) 6826 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1)) 6827 #ifdef SQLITE_TEST 6828 && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1)) 6829 && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1)) 6830 #endif 6831 ){ 6832 return sqlite3_create_module_v2( 6833 db, "fts2", &fts2Module, (void *)pHash, hashDestroy 6834 ); 6835 } 6836 6837 /* An error has occurred. Delete the hash table and return the error code. */ 6838 assert( rc!=SQLITE_OK ); 6839 if( pHash ){ 6840 sqlite3Fts2HashClear(pHash); 6841 sqlite3_free(pHash); 6842 } 6843 return rc; 6844 } 6845 6846 #if !SQLITE_CORE 6847 #ifdef _WIN32 6848 __declspec(dllexport) 6849 #endif 6850 int sqlite3_fts2_init( 6851 sqlite3 *db, 6852 char **pzErrMsg, 6853 const sqlite3_api_routines *pApi 6854 ){ 6855 SQLITE_EXTENSION_INIT2(pApi) 6856 return sqlite3Fts2Init(db); 6857 } 6858 #endif 6859 6860 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */ 6861