1 //  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
2 //  This source code is licensed under both the GPLv2 (found in the
3 //  COPYING file in the root directory) and Apache 2.0 License
4 //  (found in the LICENSE.Apache file in the root directory).
5 
6 #ifndef ROCKSDB_LITE
7 #include "table/plain/plain_table_key_coding.h"
8 
9 #include <algorithm>
10 #include <string>
11 #include "db/dbformat.h"
12 #include "file/writable_file_writer.h"
13 #include "table/plain/plain_table_factory.h"
14 #include "table/plain/plain_table_reader.h"
15 
16 namespace ROCKSDB_NAMESPACE {
17 
18 enum PlainTableEntryType : unsigned char {
19   kFullKey = 0,
20   kPrefixFromPreviousKey = 1,
21   kKeySuffix = 2,
22 };
23 
24 namespace {
25 
26 // Control byte:
27 // First two bits indicate type of entry
28 // Other bytes are inlined sizes. If all bits are 1 (0x03F), overflow bytes
29 // are used. key_size-0x3F will be encoded as a variint32 after this bytes.
30 
31 const unsigned char kSizeInlineLimit = 0x3F;
32 
33 // Return 0 for error
EncodeSize(PlainTableEntryType type,uint32_t key_size,char * out_buffer)34 size_t EncodeSize(PlainTableEntryType type, uint32_t key_size,
35                   char* out_buffer) {
36   out_buffer[0] = type << 6;
37 
38   if (key_size < static_cast<uint32_t>(kSizeInlineLimit)) {
39     // size inlined
40     out_buffer[0] |= static_cast<char>(key_size);
41     return 1;
42   } else {
43     out_buffer[0] |= kSizeInlineLimit;
44     char* ptr = EncodeVarint32(out_buffer + 1, key_size - kSizeInlineLimit);
45     return ptr - out_buffer;
46   }
47 }
48 }  // namespace
49 
50 // Fill bytes_read with number of bytes read.
DecodeSize(uint32_t start_offset,PlainTableEntryType * entry_type,uint32_t * key_size,uint32_t * bytes_read)51 inline Status PlainTableKeyDecoder::DecodeSize(uint32_t start_offset,
52                                                PlainTableEntryType* entry_type,
53                                                uint32_t* key_size,
54                                                uint32_t* bytes_read) {
55   Slice next_byte_slice;
56   bool success = file_reader_.Read(start_offset, 1, &next_byte_slice);
57   if (!success) {
58     return file_reader_.status();
59   }
60   *entry_type = static_cast<PlainTableEntryType>(
61       (static_cast<unsigned char>(next_byte_slice[0]) & ~kSizeInlineLimit) >>
62       6);
63   char inline_key_size = next_byte_slice[0] & kSizeInlineLimit;
64   if (inline_key_size < kSizeInlineLimit) {
65     *key_size = inline_key_size;
66     *bytes_read = 1;
67     return Status::OK();
68   } else {
69     uint32_t extra_size;
70     uint32_t tmp_bytes_read;
71     success = file_reader_.ReadVarint32(start_offset + 1, &extra_size,
72                                         &tmp_bytes_read);
73     if (!success) {
74       return file_reader_.status();
75     }
76     assert(tmp_bytes_read > 0);
77     *key_size = kSizeInlineLimit + extra_size;
78     *bytes_read = tmp_bytes_read + 1;
79     return Status::OK();
80   }
81 }
82 
AppendKey(const Slice & key,WritableFileWriter * file,uint64_t * offset,char * meta_bytes_buf,size_t * meta_bytes_buf_size)83 IOStatus PlainTableKeyEncoder::AppendKey(const Slice& key,
84                                          WritableFileWriter* file,
85                                          uint64_t* offset, char* meta_bytes_buf,
86                                          size_t* meta_bytes_buf_size) {
87   ParsedInternalKey parsed_key;
88   if (!ParseInternalKey(key, &parsed_key)) {
89     return IOStatus::Corruption(Slice());
90   }
91 
92   Slice key_to_write = key;  // Portion of internal key to write out.
93 
94   uint32_t user_key_size = static_cast<uint32_t>(key.size() - 8);
95   if (encoding_type_ == kPlain) {
96     if (fixed_user_key_len_ == kPlainTableVariableLength) {
97       // Write key length
98       char key_size_buf[5];  // tmp buffer for key size as varint32
99       char* ptr = EncodeVarint32(key_size_buf, user_key_size);
100       assert(ptr <= key_size_buf + sizeof(key_size_buf));
101       auto len = ptr - key_size_buf;
102       IOStatus io_s = file->Append(Slice(key_size_buf, len));
103       if (!io_s.ok()) {
104         return io_s;
105       }
106       *offset += len;
107     }
108   } else {
109     assert(encoding_type_ == kPrefix);
110     char size_bytes[12];
111     size_t size_bytes_pos = 0;
112 
113     Slice prefix =
114         prefix_extractor_->Transform(Slice(key.data(), user_key_size));
115     if (key_count_for_prefix_ == 0 || prefix != pre_prefix_.GetUserKey() ||
116         key_count_for_prefix_ % index_sparseness_ == 0) {
117       key_count_for_prefix_ = 1;
118       pre_prefix_.SetUserKey(prefix);
119       size_bytes_pos += EncodeSize(kFullKey, user_key_size, size_bytes);
120       IOStatus io_s = file->Append(Slice(size_bytes, size_bytes_pos));
121       if (!io_s.ok()) {
122         return io_s;
123       }
124       *offset += size_bytes_pos;
125     } else {
126       key_count_for_prefix_++;
127       if (key_count_for_prefix_ == 2) {
128         // For second key within a prefix, need to encode prefix length
129         size_bytes_pos +=
130             EncodeSize(kPrefixFromPreviousKey,
131                        static_cast<uint32_t>(pre_prefix_.GetUserKey().size()),
132                        size_bytes + size_bytes_pos);
133       }
134       uint32_t prefix_len =
135           static_cast<uint32_t>(pre_prefix_.GetUserKey().size());
136       size_bytes_pos += EncodeSize(kKeySuffix, user_key_size - prefix_len,
137                                    size_bytes + size_bytes_pos);
138       IOStatus io_s = file->Append(Slice(size_bytes, size_bytes_pos));
139       if (!io_s.ok()) {
140         return io_s;
141       }
142       *offset += size_bytes_pos;
143       key_to_write = Slice(key.data() + prefix_len, key.size() - prefix_len);
144     }
145   }
146 
147   // Encode full key
148   // For value size as varint32 (up to 5 bytes).
149   // If the row is of value type with seqId 0, flush the special flag together
150   // in this buffer to safe one file append call, which takes 1 byte.
151   if (parsed_key.sequence == 0 && parsed_key.type == kTypeValue) {
152     IOStatus io_s =
153         file->Append(Slice(key_to_write.data(), key_to_write.size() - 8));
154     if (!io_s.ok()) {
155       return io_s;
156     }
157     *offset += key_to_write.size() - 8;
158     meta_bytes_buf[*meta_bytes_buf_size] = PlainTableFactory::kValueTypeSeqId0;
159     *meta_bytes_buf_size += 1;
160   } else {
161     IOStatus io_s = file->Append(key_to_write);
162     if (!io_s.ok()) {
163       return io_s;
164     }
165     *offset += key_to_write.size();
166   }
167 
168   return IOStatus::OK();
169 }
170 
GetFromBuffer(Buffer * buffer,uint32_t file_offset,uint32_t len)171 Slice PlainTableFileReader::GetFromBuffer(Buffer* buffer, uint32_t file_offset,
172                                           uint32_t len) {
173   assert(file_offset + len <= file_info_->data_end_offset);
174   return Slice(buffer->buf.get() + (file_offset - buffer->buf_start_offset),
175                len);
176 }
177 
ReadNonMmap(uint32_t file_offset,uint32_t len,Slice * out)178 bool PlainTableFileReader::ReadNonMmap(uint32_t file_offset, uint32_t len,
179                                        Slice* out) {
180   const uint32_t kPrefetchSize = 256u;
181 
182   // Try to read from buffers.
183   for (uint32_t i = 0; i < num_buf_; i++) {
184     Buffer* buffer = buffers_[num_buf_ - 1 - i].get();
185     if (file_offset >= buffer->buf_start_offset &&
186         file_offset + len <= buffer->buf_start_offset + buffer->buf_len) {
187       *out = GetFromBuffer(buffer, file_offset, len);
188       return true;
189     }
190   }
191 
192   Buffer* new_buffer;
193   // Data needed is not in any of the buffer. Allocate a new buffer.
194   if (num_buf_ < buffers_.size()) {
195     // Add a new buffer
196     new_buffer = new Buffer();
197     buffers_[num_buf_++].reset(new_buffer);
198   } else {
199     // Now simply replace the last buffer. Can improve the placement policy
200     // if needed.
201     new_buffer = buffers_[num_buf_ - 1].get();
202   }
203 
204   assert(file_offset + len <= file_info_->data_end_offset);
205   uint32_t size_to_read = std::min(file_info_->data_end_offset - file_offset,
206                                    std::max(kPrefetchSize, len));
207   if (size_to_read > new_buffer->buf_capacity) {
208     new_buffer->buf.reset(new char[size_to_read]);
209     new_buffer->buf_capacity = size_to_read;
210     new_buffer->buf_len = 0;
211   }
212   Slice read_result;
213   Status s = file_info_->file->Read(file_offset, size_to_read, &read_result,
214                                     new_buffer->buf.get(), nullptr);
215   if (!s.ok()) {
216     status_ = s;
217     return false;
218   }
219   new_buffer->buf_start_offset = file_offset;
220   new_buffer->buf_len = size_to_read;
221   *out = GetFromBuffer(new_buffer, file_offset, len);
222   return true;
223 }
224 
ReadVarint32(uint32_t offset,uint32_t * out,uint32_t * bytes_read)225 inline bool PlainTableFileReader::ReadVarint32(uint32_t offset, uint32_t* out,
226                                                uint32_t* bytes_read) {
227   if (file_info_->is_mmap_mode) {
228     const char* start = file_info_->file_data.data() + offset;
229     const char* limit =
230         file_info_->file_data.data() + file_info_->data_end_offset;
231     const char* key_ptr = GetVarint32Ptr(start, limit, out);
232     assert(key_ptr != nullptr);
233     *bytes_read = static_cast<uint32_t>(key_ptr - start);
234     return true;
235   } else {
236     return ReadVarint32NonMmap(offset, out, bytes_read);
237   }
238 }
239 
ReadVarint32NonMmap(uint32_t offset,uint32_t * out,uint32_t * bytes_read)240 bool PlainTableFileReader::ReadVarint32NonMmap(uint32_t offset, uint32_t* out,
241                                                uint32_t* bytes_read) {
242   const char* start;
243   const char* limit;
244   const uint32_t kMaxVarInt32Size = 6u;
245   uint32_t bytes_to_read =
246       std::min(file_info_->data_end_offset - offset, kMaxVarInt32Size);
247   Slice bytes;
248   if (!Read(offset, bytes_to_read, &bytes)) {
249     return false;
250   }
251   start = bytes.data();
252   limit = bytes.data() + bytes.size();
253 
254   const char* key_ptr = GetVarint32Ptr(start, limit, out);
255   *bytes_read =
256       (key_ptr != nullptr) ? static_cast<uint32_t>(key_ptr - start) : 0;
257   return true;
258 }
259 
ReadInternalKey(uint32_t file_offset,uint32_t user_key_size,ParsedInternalKey * parsed_key,uint32_t * bytes_read,bool * internal_key_valid,Slice * internal_key)260 Status PlainTableKeyDecoder::ReadInternalKey(
261     uint32_t file_offset, uint32_t user_key_size, ParsedInternalKey* parsed_key,
262     uint32_t* bytes_read, bool* internal_key_valid, Slice* internal_key) {
263   Slice tmp_slice;
264   bool success = file_reader_.Read(file_offset, user_key_size + 1, &tmp_slice);
265   if (!success) {
266     return file_reader_.status();
267   }
268   if (tmp_slice[user_key_size] == PlainTableFactory::kValueTypeSeqId0) {
269     // Special encoding for the row with seqID=0
270     parsed_key->user_key = Slice(tmp_slice.data(), user_key_size);
271     parsed_key->sequence = 0;
272     parsed_key->type = kTypeValue;
273     *bytes_read += user_key_size + 1;
274     *internal_key_valid = false;
275   } else {
276     success = file_reader_.Read(file_offset, user_key_size + 8, internal_key);
277     if (!success) {
278       return file_reader_.status();
279     }
280     *internal_key_valid = true;
281     if (!ParseInternalKey(*internal_key, parsed_key)) {
282       return Status::Corruption(
283           Slice("Incorrect value type found when reading the next key"));
284     }
285     *bytes_read += user_key_size + 8;
286   }
287   return Status::OK();
288 }
289 
NextPlainEncodingKey(uint32_t start_offset,ParsedInternalKey * parsed_key,Slice * internal_key,uint32_t * bytes_read,bool *)290 Status PlainTableKeyDecoder::NextPlainEncodingKey(uint32_t start_offset,
291                                                   ParsedInternalKey* parsed_key,
292                                                   Slice* internal_key,
293                                                   uint32_t* bytes_read,
294                                                   bool* /*seekable*/) {
295   uint32_t user_key_size = 0;
296   Status s;
297   if (fixed_user_key_len_ != kPlainTableVariableLength) {
298     user_key_size = fixed_user_key_len_;
299   } else {
300     uint32_t tmp_size = 0;
301     uint32_t tmp_read;
302     bool success =
303         file_reader_.ReadVarint32(start_offset, &tmp_size, &tmp_read);
304     if (!success) {
305       return file_reader_.status();
306     }
307     assert(tmp_read > 0);
308     user_key_size = tmp_size;
309     *bytes_read = tmp_read;
310   }
311   // dummy initial value to avoid compiler complain
312   bool decoded_internal_key_valid = true;
313   Slice decoded_internal_key;
314   s = ReadInternalKey(start_offset + *bytes_read, user_key_size, parsed_key,
315                       bytes_read, &decoded_internal_key_valid,
316                       &decoded_internal_key);
317   if (!s.ok()) {
318     return s;
319   }
320   if (!file_reader_.file_info()->is_mmap_mode) {
321     cur_key_.SetInternalKey(*parsed_key);
322     parsed_key->user_key =
323         Slice(cur_key_.GetInternalKey().data(), user_key_size);
324     if (internal_key != nullptr) {
325       *internal_key = cur_key_.GetInternalKey();
326     }
327   } else if (internal_key != nullptr) {
328     if (decoded_internal_key_valid) {
329       *internal_key = decoded_internal_key;
330     } else {
331       // Need to copy out the internal key
332       cur_key_.SetInternalKey(*parsed_key);
333       *internal_key = cur_key_.GetInternalKey();
334     }
335   }
336   return Status::OK();
337 }
338 
NextPrefixEncodingKey(uint32_t start_offset,ParsedInternalKey * parsed_key,Slice * internal_key,uint32_t * bytes_read,bool * seekable)339 Status PlainTableKeyDecoder::NextPrefixEncodingKey(
340     uint32_t start_offset, ParsedInternalKey* parsed_key, Slice* internal_key,
341     uint32_t* bytes_read, bool* seekable) {
342   PlainTableEntryType entry_type;
343 
344   bool expect_suffix = false;
345   Status s;
346   do {
347     uint32_t size = 0;
348     // dummy initial value to avoid compiler complain
349     bool decoded_internal_key_valid = true;
350     uint32_t my_bytes_read = 0;
351     s = DecodeSize(start_offset + *bytes_read, &entry_type, &size,
352                    &my_bytes_read);
353     if (!s.ok()) {
354       return s;
355     }
356     if (my_bytes_read == 0) {
357       return Status::Corruption("Unexpected EOF when reading size of the key");
358     }
359     *bytes_read += my_bytes_read;
360 
361     switch (entry_type) {
362       case kFullKey: {
363         expect_suffix = false;
364         Slice decoded_internal_key;
365         s = ReadInternalKey(start_offset + *bytes_read, size, parsed_key,
366                             bytes_read, &decoded_internal_key_valid,
367                             &decoded_internal_key);
368         if (!s.ok()) {
369           return s;
370         }
371         if (!file_reader_.file_info()->is_mmap_mode ||
372             (internal_key != nullptr && !decoded_internal_key_valid)) {
373           // In non-mmap mode, always need to make a copy of keys returned to
374           // users, because after reading value for the key, the key might
375           // be invalid.
376           cur_key_.SetInternalKey(*parsed_key);
377           saved_user_key_ = cur_key_.GetUserKey();
378           if (!file_reader_.file_info()->is_mmap_mode) {
379             parsed_key->user_key =
380                 Slice(cur_key_.GetInternalKey().data(), size);
381           }
382           if (internal_key != nullptr) {
383             *internal_key = cur_key_.GetInternalKey();
384           }
385         } else {
386           if (internal_key != nullptr) {
387             *internal_key = decoded_internal_key;
388           }
389           saved_user_key_ = parsed_key->user_key;
390         }
391         break;
392       }
393       case kPrefixFromPreviousKey: {
394         if (seekable != nullptr) {
395           *seekable = false;
396         }
397         prefix_len_ = size;
398         assert(prefix_extractor_ == nullptr ||
399                prefix_extractor_->Transform(saved_user_key_).size() ==
400                    prefix_len_);
401         // Need read another size flag for suffix
402         expect_suffix = true;
403         break;
404       }
405       case kKeySuffix: {
406         expect_suffix = false;
407         if (seekable != nullptr) {
408           *seekable = false;
409         }
410 
411         Slice tmp_slice;
412         s = ReadInternalKey(start_offset + *bytes_read, size, parsed_key,
413                             bytes_read, &decoded_internal_key_valid,
414                             &tmp_slice);
415         if (!s.ok()) {
416           return s;
417         }
418         if (!file_reader_.file_info()->is_mmap_mode) {
419           // In non-mmap mode, we need to make a copy of keys returned to
420           // users, because after reading value for the key, the key might
421           // be invalid.
422           // saved_user_key_ points to cur_key_. We are making a copy of
423           // the prefix part to another string, and construct the current
424           // key from the prefix part and the suffix part back to cur_key_.
425           std::string tmp =
426               Slice(saved_user_key_.data(), prefix_len_).ToString();
427           cur_key_.Reserve(prefix_len_ + size);
428           cur_key_.SetInternalKey(tmp, *parsed_key);
429           parsed_key->user_key =
430               Slice(cur_key_.GetInternalKey().data(), prefix_len_ + size);
431           saved_user_key_ = cur_key_.GetUserKey();
432         } else {
433           cur_key_.Reserve(prefix_len_ + size);
434           cur_key_.SetInternalKey(Slice(saved_user_key_.data(), prefix_len_),
435                                   *parsed_key);
436         }
437         parsed_key->user_key = cur_key_.GetUserKey();
438         if (internal_key != nullptr) {
439           *internal_key = cur_key_.GetInternalKey();
440         }
441         break;
442       }
443       default:
444         return Status::Corruption("Un-identified size flag.");
445     }
446   } while (expect_suffix);  // Another round if suffix is expected.
447   return Status::OK();
448 }
449 
NextKey(uint32_t start_offset,ParsedInternalKey * parsed_key,Slice * internal_key,Slice * value,uint32_t * bytes_read,bool * seekable)450 Status PlainTableKeyDecoder::NextKey(uint32_t start_offset,
451                                      ParsedInternalKey* parsed_key,
452                                      Slice* internal_key, Slice* value,
453                                      uint32_t* bytes_read, bool* seekable) {
454   assert(value != nullptr);
455   Status s = NextKeyNoValue(start_offset, parsed_key, internal_key, bytes_read,
456                             seekable);
457   if (s.ok()) {
458     assert(bytes_read != nullptr);
459     uint32_t value_size;
460     uint32_t value_size_bytes;
461     bool success = file_reader_.ReadVarint32(start_offset + *bytes_read,
462                                              &value_size, &value_size_bytes);
463     if (!success) {
464       return file_reader_.status();
465     }
466     if (value_size_bytes == 0) {
467       return Status::Corruption(
468           "Unexpected EOF when reading the next value's size.");
469     }
470     *bytes_read += value_size_bytes;
471     success = file_reader_.Read(start_offset + *bytes_read, value_size, value);
472     if (!success) {
473       return file_reader_.status();
474     }
475     *bytes_read += value_size;
476   }
477   return s;
478 }
479 
NextKeyNoValue(uint32_t start_offset,ParsedInternalKey * parsed_key,Slice * internal_key,uint32_t * bytes_read,bool * seekable)480 Status PlainTableKeyDecoder::NextKeyNoValue(uint32_t start_offset,
481                                             ParsedInternalKey* parsed_key,
482                                             Slice* internal_key,
483                                             uint32_t* bytes_read,
484                                             bool* seekable) {
485   *bytes_read = 0;
486   if (seekable != nullptr) {
487     *seekable = true;
488   }
489   Status s;
490   if (encoding_type_ == kPlain) {
491     return NextPlainEncodingKey(start_offset, parsed_key, internal_key,
492                                 bytes_read, seekable);
493   } else {
494     assert(encoding_type_ == kPrefix);
495     return NextPrefixEncodingKey(start_offset, parsed_key, internal_key,
496                                  bytes_read, seekable);
497   }
498 }
499 
500 }  // namespace ROCKSDB_NAMESPACE
501 #endif  // ROCKSDB_LIT
502