1 // Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
2 // This source code is licensed under both the GPLv2 (found in the
3 // COPYING file in the root directory) and Apache 2.0 License
4 // (found in the LICENSE.Apache file in the root directory).
5 //
6 // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
7 // Use of this source code is governed by a BSD-style license that can be
8 // found in the LICENSE file. See the AUTHORS file for names of contributors.
9
10 #include "rocksdb/iterator.h"
11 #include "memory/arena.h"
12 #include "table/internal_iterator.h"
13 #include "table/iterator_wrapper.h"
14
15 namespace ROCKSDB_NAMESPACE {
16
Cleanable()17 Cleanable::Cleanable() {
18 cleanup_.function = nullptr;
19 cleanup_.next = nullptr;
20 }
21
~Cleanable()22 Cleanable::~Cleanable() { DoCleanup(); }
23
Cleanable(Cleanable && other)24 Cleanable::Cleanable(Cleanable&& other) {
25 *this = std::move(other);
26 }
27
operator =(Cleanable && other)28 Cleanable& Cleanable::operator=(Cleanable&& other) {
29 if (this != &other) {
30 cleanup_ = other.cleanup_;
31 other.cleanup_.function = nullptr;
32 other.cleanup_.next = nullptr;
33 }
34 return *this;
35 }
36
37 // If the entire linked list was on heap we could have simply add attach one
38 // link list to another. However the head is an embeded object to avoid the cost
39 // of creating objects for most of the use cases when the Cleanable has only one
40 // Cleanup to do. We could put evernything on heap if benchmarks show no
41 // negative impact on performance.
42 // Also we need to iterate on the linked list since there is no pointer to the
43 // tail. We can add the tail pointer but maintainin it might negatively impact
44 // the perforamnce for the common case of one cleanup where tail pointer is not
45 // needed. Again benchmarks could clarify that.
46 // Even without a tail pointer we could iterate on the list, find the tail, and
47 // have only that node updated without the need to insert the Cleanups one by
48 // one. This however would be redundant when the source Cleanable has one or a
49 // few Cleanups which is the case most of the time.
50 // TODO(myabandeh): if the list is too long we should maintain a tail pointer
51 // and have the entire list (minus the head that has to be inserted separately)
52 // merged with the target linked list at once.
DelegateCleanupsTo(Cleanable * other)53 void Cleanable::DelegateCleanupsTo(Cleanable* other) {
54 assert(other != nullptr);
55 if (cleanup_.function == nullptr) {
56 return;
57 }
58 Cleanup* c = &cleanup_;
59 other->RegisterCleanup(c->function, c->arg1, c->arg2);
60 c = c->next;
61 while (c != nullptr) {
62 Cleanup* next = c->next;
63 other->RegisterCleanup(c);
64 c = next;
65 }
66 cleanup_.function = nullptr;
67 cleanup_.next = nullptr;
68 }
69
RegisterCleanup(Cleanable::Cleanup * c)70 void Cleanable::RegisterCleanup(Cleanable::Cleanup* c) {
71 assert(c != nullptr);
72 if (cleanup_.function == nullptr) {
73 cleanup_.function = c->function;
74 cleanup_.arg1 = c->arg1;
75 cleanup_.arg2 = c->arg2;
76 delete c;
77 } else {
78 c->next = cleanup_.next;
79 cleanup_.next = c;
80 }
81 }
82
RegisterCleanup(CleanupFunction func,void * arg1,void * arg2)83 void Cleanable::RegisterCleanup(CleanupFunction func, void* arg1, void* arg2) {
84 assert(func != nullptr);
85 Cleanup* c;
86 if (cleanup_.function == nullptr) {
87 c = &cleanup_;
88 } else {
89 c = new Cleanup;
90 c->next = cleanup_.next;
91 cleanup_.next = c;
92 }
93 c->function = func;
94 c->arg1 = arg1;
95 c->arg2 = arg2;
96 }
97
GetProperty(std::string prop_name,std::string * prop)98 Status Iterator::GetProperty(std::string prop_name, std::string* prop) {
99 if (prop == nullptr) {
100 return Status::InvalidArgument("prop is nullptr");
101 }
102 if (prop_name == "rocksdb.iterator.is-key-pinned") {
103 *prop = "0";
104 return Status::OK();
105 }
106 return Status::InvalidArgument("Unidentified property.");
107 }
108
109 namespace {
110 class EmptyIterator : public Iterator {
111 public:
EmptyIterator(const Status & s)112 explicit EmptyIterator(const Status& s) : status_(s) { }
Valid() const113 bool Valid() const override { return false; }
Seek(const Slice &)114 void Seek(const Slice& /*target*/) override {}
SeekForPrev(const Slice &)115 void SeekForPrev(const Slice& /*target*/) override {}
SeekToFirst()116 void SeekToFirst() override {}
SeekToLast()117 void SeekToLast() override {}
Next()118 void Next() override { assert(false); }
Prev()119 void Prev() override { assert(false); }
key() const120 Slice key() const override {
121 assert(false);
122 return Slice();
123 }
value() const124 Slice value() const override {
125 assert(false);
126 return Slice();
127 }
status() const128 Status status() const override { return status_; }
129
130 private:
131 Status status_;
132 };
133
134 template <class TValue = Slice>
135 class EmptyInternalIterator : public InternalIteratorBase<TValue> {
136 public:
EmptyInternalIterator(const Status & s)137 explicit EmptyInternalIterator(const Status& s) : status_(s) {}
Valid() const138 bool Valid() const override { return false; }
Seek(const Slice &)139 void Seek(const Slice& /*target*/) override {}
SeekForPrev(const Slice &)140 void SeekForPrev(const Slice& /*target*/) override {}
SeekToFirst()141 void SeekToFirst() override {}
SeekToLast()142 void SeekToLast() override {}
Next()143 void Next() override { assert(false); }
Prev()144 void Prev() override { assert(false); }
key() const145 Slice key() const override {
146 assert(false);
147 return Slice();
148 }
value() const149 TValue value() const override {
150 assert(false);
151 return TValue();
152 }
status() const153 Status status() const override { return status_; }
154
155 private:
156 Status status_;
157 };
158 } // namespace
159
NewEmptyIterator()160 Iterator* NewEmptyIterator() { return new EmptyIterator(Status::OK()); }
161
NewErrorIterator(const Status & status)162 Iterator* NewErrorIterator(const Status& status) {
163 return new EmptyIterator(status);
164 }
165
166 template <class TValue>
NewErrorInternalIterator(const Status & status)167 InternalIteratorBase<TValue>* NewErrorInternalIterator(const Status& status) {
168 return new EmptyInternalIterator<TValue>(status);
169 }
170 template InternalIteratorBase<IndexValue>* NewErrorInternalIterator(
171 const Status& status);
172 template InternalIteratorBase<Slice>* NewErrorInternalIterator(
173 const Status& status);
174
175 template <class TValue>
NewErrorInternalIterator(const Status & status,Arena * arena)176 InternalIteratorBase<TValue>* NewErrorInternalIterator(const Status& status,
177 Arena* arena) {
178 if (arena == nullptr) {
179 return NewErrorInternalIterator<TValue>(status);
180 } else {
181 auto mem = arena->AllocateAligned(sizeof(EmptyInternalIterator<TValue>));
182 return new (mem) EmptyInternalIterator<TValue>(status);
183 }
184 }
185 template InternalIteratorBase<IndexValue>* NewErrorInternalIterator(
186 const Status& status, Arena* arena);
187 template InternalIteratorBase<Slice>* NewErrorInternalIterator(
188 const Status& status, Arena* arena);
189
190 template <class TValue>
NewEmptyInternalIterator()191 InternalIteratorBase<TValue>* NewEmptyInternalIterator() {
192 return new EmptyInternalIterator<TValue>(Status::OK());
193 }
194 template InternalIteratorBase<IndexValue>* NewEmptyInternalIterator();
195 template InternalIteratorBase<Slice>* NewEmptyInternalIterator();
196
197 template <class TValue>
NewEmptyInternalIterator(Arena * arena)198 InternalIteratorBase<TValue>* NewEmptyInternalIterator(Arena* arena) {
199 if (arena == nullptr) {
200 return NewEmptyInternalIterator<TValue>();
201 } else {
202 auto mem = arena->AllocateAligned(sizeof(EmptyInternalIterator<TValue>));
203 return new (mem) EmptyInternalIterator<TValue>(Status::OK());
204 }
205 }
206 template InternalIteratorBase<IndexValue>* NewEmptyInternalIterator(
207 Arena* arena);
208 template InternalIteratorBase<Slice>* NewEmptyInternalIterator(Arena* arena);
209
210 } // namespace ROCKSDB_NAMESPACE
211