1 /* hyperloglog.c - Redis HyperLogLog probabilistic cardinality approximation. 2 * This file implements the algorithm and the exported Redis commands. 3 * 4 * Copyright (c) 2014, Salvatore Sanfilippo <antirez at gmail dot com> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions are met: 9 * 10 * * Redistributions of source code must retain the above copyright notice, 11 * this list of conditions and the following disclaimer. 12 * * Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * * Neither the name of Redis nor the names of its contributors may be used 16 * to endorse or promote products derived from this software without 17 * specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include "redis.h" 33 34 #include <stdint.h> 35 #include <math.h> 36 37 /* The Redis HyperLogLog implementation is based on the following ideas: 38 * 39 * * The use of a 64 bit hash function as proposed in [1], in order to don't 40 * limited to cardinalities up to 10^9, at the cost of just 1 additional 41 * bit per register. 42 * * The use of 16384 6-bit registers for a great level of accuracy, using 43 * a total of 12k per key. 44 * * The use of the Redis string data type. No new type is introduced. 45 * * No attempt is made to compress the data structure as in [1]. Also the 46 * algorithm used is the original HyperLogLog Algorithm as in [2], with 47 * the only difference that a 64 bit hash function is used, so no correction 48 * is performed for values near 2^32 as in [1]. 49 * 50 * [1] Heule, Nunkesser, Hall: HyperLogLog in Practice: Algorithmic 51 * Engineering of a State of The Art Cardinality Estimation Algorithm. 52 * 53 * [2] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The 54 * analysis of a near-optimal cardinality estimation algorithm. 55 * 56 * Redis uses two representations: 57 * 58 * 1) A "dense" representation where every entry is represented by 59 * a 6-bit integer. 60 * 2) A "sparse" representation using run length compression suitable 61 * for representing HyperLogLogs with many registers set to 0 in 62 * a memory efficient way. 63 * 64 * 65 * HLL header 66 * === 67 * 68 * Both the dense and sparse representation have a 16 byte header as follows: 69 * 70 * +------+---+-----+----------+ 71 * | HYLL | E | N/U | Cardin. | 72 * +------+---+-----+----------+ 73 * 74 * The first 4 bytes are a magic string set to the bytes "HYLL". 75 * "E" is one byte encoding, currently set to HLL_DENSE or 76 * HLL_SPARSE. N/U are three not used bytes. 77 * 78 * The "Cardin." field is a 64 bit integer stored in little endian format 79 * with the latest cardinality computed that can be reused if the data 80 * structure was not modified since the last computation (this is useful 81 * because there are high probabilities that HLLADD operations don't 82 * modify the actual data structure and hence the approximated cardinality). 83 * 84 * When the most significant bit in the most significant byte of the cached 85 * cardinality is set, it means that the data structure was modified and 86 * we can't reuse the cached value that must be recomputed. 87 * 88 * Dense representation 89 * === 90 * 91 * The dense representation used by Redis is the following: 92 * 93 * +--------+--------+--------+------// //--+ 94 * |11000000|22221111|33333322|55444444 .... | 95 * +--------+--------+--------+------// //--+ 96 * 97 * The 6 bits counters are encoded one after the other starting from the 98 * LSB to the MSB, and using the next bytes as needed. 99 * 100 * Sparse representation 101 * === 102 * 103 * The sparse representation encodes registers using a run length 104 * encoding composed of three opcodes, two using one byte, and one using 105 * of two bytes. The opcodes are called ZERO, XZERO and VAL. 106 * 107 * ZERO opcode is represented as 00xxxxxx. The 6-bit integer represented 108 * by the six bits 'xxxxxx', plus 1, means that there are N registers set 109 * to 0. This opcode can represent from 1 to 64 contiguous registers set 110 * to the value of 0. 111 * 112 * XZERO opcode is represented by two bytes 01xxxxxx yyyyyyyy. The 14-bit 113 * integer represented by the bits 'xxxxxx' as most significant bits and 114 * 'yyyyyyyy' as least significant bits, plus 1, means that there are N 115 * registers set to 0. This opcode can represent from 0 to 16384 contiguous 116 * registers set to the value of 0. 117 * 118 * VAL opcode is represented as 1vvvvvxx. It contains a 5-bit integer 119 * representing the value of a register, and a 2-bit integer representing 120 * the number of contiguous registers set to that value 'vvvvv'. 121 * To obtain the value and run length, the integers vvvvv and xx must be 122 * incremented by one. This opcode can represent values from 1 to 32, 123 * repeated from 1 to 4 times. 124 * 125 * The sparse representation can't represent registers with a value greater 126 * than 32, however it is very unlikely that we find such a register in an 127 * HLL with a cardinality where the sparse representation is still more 128 * memory efficient than the dense representation. When this happens the 129 * HLL is converted to the dense representation. 130 * 131 * The sparse representation is purely positional. For example a sparse 132 * representation of an empty HLL is just: XZERO:16384. 133 * 134 * An HLL having only 3 non-zero registers at position 1000, 1020, 1021 135 * respectively set to 2, 3, 3, is represented by the following three 136 * opcodes: 137 * 138 * XZERO:1000 (Registers 0-999 are set to 0) 139 * VAL:2,1 (1 register set to value 2, that is register 1000) 140 * ZERO:19 (Registers 1001-1019 set to 0) 141 * VAL:3,2 (2 registers set to value 3, that is registers 1020,1021) 142 * XZERO:15362 (Registers 1022-16383 set to 0) 143 * 144 * In the example the sparse representation used just 7 bytes instead 145 * of 12k in order to represent the HLL registers. In general for low 146 * cardinality there is a big win in terms of space efficiency, traded 147 * with CPU time since the sparse representation is slower to access: 148 * 149 * The following table shows average cardinality vs bytes used, 100 150 * samples per cardinality (when the set was not representable because 151 * of registers with too big value, the dense representation size was used 152 * as a sample). 153 * 154 * 100 267 155 * 200 485 156 * 300 678 157 * 400 859 158 * 500 1033 159 * 600 1205 160 * 700 1375 161 * 800 1544 162 * 900 1713 163 * 1000 1882 164 * 2000 3480 165 * 3000 4879 166 * 4000 6089 167 * 5000 7138 168 * 6000 8042 169 * 7000 8823 170 * 8000 9500 171 * 9000 10088 172 * 10000 10591 173 * 174 * The dense representation uses 12288 bytes, so there is a big win up to 175 * a cardinality of ~2000-3000. For bigger cardinalities the constant times 176 * involved in updating the sparse representation is not justified by the 177 * memory savings. The exact maximum length of the sparse representation 178 * when this implementation switches to the dense representation is 179 * configured via the define server.hll_sparse_max_bytes. 180 */ 181 182 struct hllhdr { 183 char magic[4]; /* "HYLL" */ 184 uint8_t encoding; /* HLL_DENSE or HLL_SPARSE. */ 185 uint8_t notused[3]; /* Reserved for future use, must be zero. */ 186 uint8_t card[8]; /* Cached cardinality, little endian. */ 187 uint8_t registers[]; /* Data bytes. */ 188 }; 189 190 /* The cached cardinality MSB is used to signal validity of the cached value. */ 191 #define HLL_INVALIDATE_CACHE(hdr) (hdr)->card[7] |= (1<<7) 192 #define HLL_VALID_CACHE(hdr) (((hdr)->card[7] & (1<<7)) == 0) 193 194 #define HLL_P 14 /* The greater is P, the smaller the error. */ 195 #define HLL_REGISTERS (1<<HLL_P) /* With P=14, 16384 registers. */ 196 #define HLL_P_MASK (HLL_REGISTERS-1) /* Mask to index register. */ 197 #define HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */ 198 #define HLL_REGISTER_MAX ((1<<HLL_BITS)-1) 199 #define HLL_HDR_SIZE sizeof(struct hllhdr) 200 #define HLL_DENSE_SIZE (HLL_HDR_SIZE+((HLL_REGISTERS*HLL_BITS+7)/8)) 201 #define HLL_DENSE 0 /* Dense encoding. */ 202 #define HLL_SPARSE 1 /* Sparse encoding. */ 203 #define HLL_RAW 255 /* Only used internally, never exposed. */ 204 #define HLL_MAX_ENCODING 1 205 206 static char *invalid_hll_err = "-INVALIDOBJ Corrupted HLL object detected\r\n"; 207 208 /* =========================== Low level bit macros ========================= */ 209 210 /* Macros to access the dense representation. 211 * 212 * We need to get and set 6 bit counters in an array of 8 bit bytes. 213 * We use macros to make sure the code is inlined since speed is critical 214 * especially in order to compute the approximated cardinality in 215 * HLLCOUNT where we need to access all the registers at once. 216 * For the same reason we also want to avoid conditionals in this code path. 217 * 218 * +--------+--------+--------+------// 219 * |11000000|22221111|33333322|55444444 220 * +--------+--------+--------+------// 221 * 222 * Note: in the above representation the most significant bit (MSB) 223 * of every byte is on the left. We start using bits from the LSB to MSB, 224 * and so forth passing to the next byte. 225 * 226 * Example, we want to access to counter at pos = 1 ("111111" in the 227 * illustration above). 228 * 229 * The index of the first byte b0 containing our data is: 230 * 231 * b0 = 6 * pos / 8 = 0 232 * 233 * +--------+ 234 * |11000000| <- Our byte at b0 235 * +--------+ 236 * 237 * The position of the first bit (counting from the LSB = 0) in the byte 238 * is given by: 239 * 240 * fb = 6 * pos % 8 -> 6 241 * 242 * Right shift b0 of 'fb' bits. 243 * 244 * +--------+ 245 * |11000000| <- Initial value of b0 246 * |00000011| <- After right shift of 6 pos. 247 * +--------+ 248 * 249 * Left shift b1 of bits 8-fb bits (2 bits) 250 * 251 * +--------+ 252 * |22221111| <- Initial value of b1 253 * |22111100| <- After left shift of 2 bits. 254 * +--------+ 255 * 256 * OR the two bits, and finally AND with 111111 (63 in decimal) to 257 * clean the higher order bits we are not interested in: 258 * 259 * +--------+ 260 * |00000011| <- b0 right shifted 261 * |22111100| <- b1 left shifted 262 * |22111111| <- b0 OR b1 263 * | 111111| <- (b0 OR b1) AND 63, our value. 264 * +--------+ 265 * 266 * We can try with a different example, like pos = 0. In this case 267 * the 6-bit counter is actually contained in a single byte. 268 * 269 * b0 = 6 * pos / 8 = 0 270 * 271 * +--------+ 272 * |11000000| <- Our byte at b0 273 * +--------+ 274 * 275 * fb = 6 * pos % 8 = 0 276 * 277 * So we right shift of 0 bits (no shift in practice) and 278 * left shift the next byte of 8 bits, even if we don't use it, 279 * but this has the effect of clearing the bits so the result 280 * will not be affacted after the OR. 281 * 282 * ------------------------------------------------------------------------- 283 * 284 * Setting the register is a bit more complex, let's assume that 'val' 285 * is the value we want to set, already in the right range. 286 * 287 * We need two steps, in one we need to clear the bits, and in the other 288 * we need to bitwise-OR the new bits. 289 * 290 * Let's try with 'pos' = 1, so our first byte at 'b' is 0, 291 * 292 * "fb" is 6 in this case. 293 * 294 * +--------+ 295 * |11000000| <- Our byte at b0 296 * +--------+ 297 * 298 * To create a AND-mask to clear the bits about this position, we just 299 * initialize the mask with the value 63, left shift it of "fs" bits, 300 * and finally invert the result. 301 * 302 * +--------+ 303 * |00111111| <- "mask" starts at 63 304 * |11000000| <- "mask" after left shift of "ls" bits. 305 * |00111111| <- "mask" after invert. 306 * +--------+ 307 * 308 * Now we can bitwise-AND the byte at "b" with the mask, and bitwise-OR 309 * it with "val" left-shifted of "ls" bits to set the new bits. 310 * 311 * Now let's focus on the next byte b1: 312 * 313 * +--------+ 314 * |22221111| <- Initial value of b1 315 * +--------+ 316 * 317 * To build the AND mask we start again with the 63 value, right shift 318 * it by 8-fb bits, and invert it. 319 * 320 * +--------+ 321 * |00111111| <- "mask" set at 2&6-1 322 * |00001111| <- "mask" after the right shift by 8-fb = 2 bits 323 * |11110000| <- "mask" after bitwise not. 324 * +--------+ 325 * 326 * Now we can mask it with b+1 to clear the old bits, and bitwise-OR 327 * with "val" left-shifted by "rs" bits to set the new value. 328 */ 329 330 /* Note: if we access the last counter, we will also access the b+1 byte 331 * that is out of the array, but sds strings always have an implicit null 332 * term, so the byte exists, and we can skip the conditional (or the need 333 * to allocate 1 byte more explicitly). */ 334 335 /* Store the value of the register at position 'regnum' into variable 'target'. 336 * 'p' is an array of unsigned bytes. */ 337 #define HLL_DENSE_GET_REGISTER(target,p,regnum) do { \ 338 uint8_t *_p = (uint8_t*) p; \ 339 unsigned long _byte = regnum*HLL_BITS/8; \ 340 unsigned long _fb = regnum*HLL_BITS&7; \ 341 unsigned long _fb8 = 8 - _fb; \ 342 unsigned long b0 = _p[_byte]; \ 343 unsigned long b1 = _p[_byte+1]; \ 344 target = ((b0 >> _fb) | (b1 << _fb8)) & HLL_REGISTER_MAX; \ 345 } while(0) 346 347 /* Set the value of the register at position 'regnum' to 'val'. 348 * 'p' is an array of unsigned bytes. */ 349 #define HLL_DENSE_SET_REGISTER(p,regnum,val) do { \ 350 uint8_t *_p = (uint8_t*) p; \ 351 unsigned long _byte = regnum*HLL_BITS/8; \ 352 unsigned long _fb = regnum*HLL_BITS&7; \ 353 unsigned long _fb8 = 8 - _fb; \ 354 unsigned long _v = val; \ 355 _p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \ 356 _p[_byte] |= _v << _fb; \ 357 _p[_byte+1] &= ~(HLL_REGISTER_MAX >> _fb8); \ 358 _p[_byte+1] |= _v >> _fb8; \ 359 } while(0) 360 361 /* Macros to access the sparse representation. 362 * The macros parameter is expected to be an uint8_t pointer. */ 363 #define HLL_SPARSE_XZERO_BIT 0x40 /* 01xxxxxx */ 364 #define HLL_SPARSE_VAL_BIT 0x80 /* 1vvvvvxx */ 365 #define HLL_SPARSE_IS_ZERO(p) (((*(p)) & 0xc0) == 0) /* 00xxxxxx */ 366 #define HLL_SPARSE_IS_XZERO(p) (((*(p)) & 0xc0) == HLL_SPARSE_XZERO_BIT) 367 #define HLL_SPARSE_IS_VAL(p) ((*(p)) & HLL_SPARSE_VAL_BIT) 368 #define HLL_SPARSE_ZERO_LEN(p) (((*(p)) & 0x3f)+1) 369 #define HLL_SPARSE_XZERO_LEN(p) (((((*(p)) & 0x3f) << 8) | (*((p)+1)))+1) 370 #define HLL_SPARSE_VAL_VALUE(p) ((((*(p)) >> 2) & 0x1f)+1) 371 #define HLL_SPARSE_VAL_LEN(p) (((*(p)) & 0x3)+1) 372 #define HLL_SPARSE_VAL_MAX_VALUE 32 373 #define HLL_SPARSE_VAL_MAX_LEN 4 374 #define HLL_SPARSE_ZERO_MAX_LEN 64 375 #define HLL_SPARSE_XZERO_MAX_LEN 16384 376 #define HLL_SPARSE_VAL_SET(p,val,len) do { \ 377 *(p) = (((val)-1)<<2|((len)-1))|HLL_SPARSE_VAL_BIT; \ 378 } while(0) 379 #define HLL_SPARSE_ZERO_SET(p,len) do { \ 380 *(p) = (len)-1; \ 381 } while(0) 382 #define HLL_SPARSE_XZERO_SET(p,len) do { \ 383 int _l = (len)-1; \ 384 *(p) = (_l>>8) | HLL_SPARSE_XZERO_BIT; \ 385 *((p)+1) = (_l&0xff); \ 386 } while(0) 387 388 /* ========================= HyperLogLog algorithm ========================= */ 389 390 /* Our hash function is MurmurHash2, 64 bit version. 391 * It was modified for Redis in order to provide the same result in 392 * big and little endian archs (endian neutral). */ 393 uint64_t MurmurHash64A (const void * key, int len, unsigned int seed) { 394 const uint64_t m = 0xc6a4a7935bd1e995; 395 const int r = 47; 396 uint64_t h = seed ^ (len * m); 397 const uint8_t *data = (const uint8_t *)key; 398 const uint8_t *end = data + (len-(len&7)); 399 400 while(data != end) { 401 uint64_t k; 402 403 #if (BYTE_ORDER == LITTLE_ENDIAN) 404 k = *((uint64_t*)data); 405 #else 406 k = (uint64_t) data[0]; 407 k |= (uint64_t) data[1] << 8; 408 k |= (uint64_t) data[2] << 16; 409 k |= (uint64_t) data[3] << 24; 410 k |= (uint64_t) data[4] << 32; 411 k |= (uint64_t) data[5] << 40; 412 k |= (uint64_t) data[6] << 48; 413 k |= (uint64_t) data[7] << 56; 414 #endif 415 416 k *= m; 417 k ^= k >> r; 418 k *= m; 419 h ^= k; 420 h *= m; 421 data += 8; 422 } 423 424 switch(len & 7) { 425 case 7: h ^= (uint64_t)data[6] << 48; 426 case 6: h ^= (uint64_t)data[5] << 40; 427 case 5: h ^= (uint64_t)data[4] << 32; 428 case 4: h ^= (uint64_t)data[3] << 24; 429 case 3: h ^= (uint64_t)data[2] << 16; 430 case 2: h ^= (uint64_t)data[1] << 8; 431 case 1: h ^= (uint64_t)data[0]; 432 h *= m; 433 }; 434 435 h ^= h >> r; 436 h *= m; 437 h ^= h >> r; 438 return h; 439 } 440 441 /* Given a string element to add to the HyperLogLog, returns the length 442 * of the pattern 000..1 of the element hash. As a side effect 'regp' is 443 * set to the register index this element hashes to. */ 444 int hllPatLen(unsigned char *ele, size_t elesize, long *regp) { 445 uint64_t hash, bit, index; 446 int count; 447 448 /* Count the number of zeroes starting from bit HLL_REGISTERS 449 * (that is a power of two corresponding to the first bit we don't use 450 * as index). The max run can be 64-P+1 bits. 451 * 452 * Note that the final "1" ending the sequence of zeroes must be 453 * included in the count, so if we find "001" the count is 3, and 454 * the smallest count possible is no zeroes at all, just a 1 bit 455 * at the first position, that is a count of 1. 456 * 457 * This may sound like inefficient, but actually in the average case 458 * there are high probabilities to find a 1 after a few iterations. */ 459 hash = MurmurHash64A(ele,elesize,0xadc83b19ULL); 460 index = hash & HLL_P_MASK; /* Register index. */ 461 hash |= ((uint64_t)1<<63); /* Make sure the loop terminates. */ 462 bit = HLL_REGISTERS; /* First bit not used to address the register. */ 463 count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */ 464 while((hash & bit) == 0) { 465 count++; 466 bit <<= 1; 467 } 468 *regp = (int) index; 469 return count; 470 } 471 472 /* ================== Dense representation implementation ================== */ 473 474 /* "Add" the element in the dense hyperloglog data structure. 475 * Actually nothing is added, but the max 0 pattern counter of the subset 476 * the element belongs to is incremented if needed. 477 * 478 * 'registers' is expected to have room for HLL_REGISTERS plus an 479 * additional byte on the right. This requirement is met by sds strings 480 * automatically since they are implicitly null terminated. 481 * 482 * The function always succeed, however if as a result of the operation 483 * the approximated cardinality changed, 1 is returned. Otherwise 0 484 * is returned. */ 485 int hllDenseAdd(uint8_t *registers, unsigned char *ele, size_t elesize) { 486 uint8_t oldcount, count; 487 long index; 488 489 /* Update the register if this element produced a longer run of zeroes. */ 490 count = hllPatLen(ele,elesize,&index); 491 HLL_DENSE_GET_REGISTER(oldcount,registers,index); 492 if (count > oldcount) { 493 HLL_DENSE_SET_REGISTER(registers,index,count); 494 return 1; 495 } else { 496 return 0; 497 } 498 } 499 500 /* Compute SUM(2^-reg) in the dense representation. 501 * PE is an array with a pre-computer table of values 2^-reg indexed by reg. 502 * As a side effect the integer pointed by 'ezp' is set to the number 503 * of zero registers. */ 504 double hllDenseSum(uint8_t *registers, double *PE, int *ezp) { 505 double E = 0; 506 int j, ez = 0; 507 508 /* Redis default is to use 16384 registers 6 bits each. The code works 509 * with other values by modifying the defines, but for our target value 510 * we take a faster path with unrolled loops. */ 511 if (HLL_REGISTERS == 16384 && HLL_BITS == 6) { 512 uint8_t *r = registers; 513 unsigned long r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, 514 r10, r11, r12, r13, r14, r15; 515 for (j = 0; j < 1024; j++) { 516 /* Handle 16 registers per iteration. */ 517 r0 = r[0] & 63; if (r0 == 0) ez++; 518 r1 = (r[0] >> 6 | r[1] << 2) & 63; if (r1 == 0) ez++; 519 r2 = (r[1] >> 4 | r[2] << 4) & 63; if (r2 == 0) ez++; 520 r3 = (r[2] >> 2) & 63; if (r3 == 0) ez++; 521 r4 = r[3] & 63; if (r4 == 0) ez++; 522 r5 = (r[3] >> 6 | r[4] << 2) & 63; if (r5 == 0) ez++; 523 r6 = (r[4] >> 4 | r[5] << 4) & 63; if (r6 == 0) ez++; 524 r7 = (r[5] >> 2) & 63; if (r7 == 0) ez++; 525 r8 = r[6] & 63; if (r8 == 0) ez++; 526 r9 = (r[6] >> 6 | r[7] << 2) & 63; if (r9 == 0) ez++; 527 r10 = (r[7] >> 4 | r[8] << 4) & 63; if (r10 == 0) ez++; 528 r11 = (r[8] >> 2) & 63; if (r11 == 0) ez++; 529 r12 = r[9] & 63; if (r12 == 0) ez++; 530 r13 = (r[9] >> 6 | r[10] << 2) & 63; if (r13 == 0) ez++; 531 r14 = (r[10] >> 4 | r[11] << 4) & 63; if (r14 == 0) ez++; 532 r15 = (r[11] >> 2) & 63; if (r15 == 0) ez++; 533 534 /* Additional parens will allow the compiler to optimize the 535 * code more with a loss of precision that is not very relevant 536 * here (floating point math is not commutative!). */ 537 E += (PE[r0] + PE[r1]) + (PE[r2] + PE[r3]) + (PE[r4] + PE[r5]) + 538 (PE[r6] + PE[r7]) + (PE[r8] + PE[r9]) + (PE[r10] + PE[r11]) + 539 (PE[r12] + PE[r13]) + (PE[r14] + PE[r15]); 540 r += 12; 541 } 542 } else { 543 for (j = 0; j < HLL_REGISTERS; j++) { 544 unsigned long reg; 545 546 HLL_DENSE_GET_REGISTER(reg,registers,j); 547 if (reg == 0) { 548 ez++; 549 /* Increment E at the end of the loop. */ 550 } else { 551 E += PE[reg]; /* Precomputed 2^(-reg[j]). */ 552 } 553 } 554 E += ez; /* Add 2^0 'ez' times. */ 555 } 556 *ezp = ez; 557 return E; 558 } 559 560 /* ================== Sparse representation implementation ================= */ 561 562 /* Convert the HLL with sparse representation given as input in its dense 563 * representation. Both representations are represented by SDS strings, and 564 * the input representation is freed as a side effect. 565 * 566 * The function returns REDIS_OK if the sparse representation was valid, 567 * otherwise REDIS_ERR is returned if the representation was corrupted. */ 568 int hllSparseToDense(robj *o) { 569 sds sparse = o->ptr, dense; 570 struct hllhdr *hdr, *oldhdr = (struct hllhdr*)sparse; 571 int idx = 0, runlen, regval; 572 uint8_t *p = (uint8_t*)sparse, *end = p+sdslen(sparse); 573 574 /* If the representation is already the right one return ASAP. */ 575 hdr = (struct hllhdr*) sparse; 576 if (hdr->encoding == HLL_DENSE) return REDIS_OK; 577 578 /* Create a string of the right size filled with zero bytes. 579 * Note that the cached cardinality is set to 0 as a side effect 580 * that is exactly the cardinality of an empty HLL. */ 581 dense = sdsnewlen(NULL,HLL_DENSE_SIZE); 582 hdr = (struct hllhdr*) dense; 583 *hdr = *oldhdr; /* This will copy the magic and cached cardinality. */ 584 hdr->encoding = HLL_DENSE; 585 586 /* Now read the sparse representation and set non-zero registers 587 * accordingly. */ 588 p += HLL_HDR_SIZE; 589 while(p < end) { 590 if (HLL_SPARSE_IS_ZERO(p)) { 591 runlen = HLL_SPARSE_ZERO_LEN(p); 592 idx += runlen; 593 p++; 594 } else if (HLL_SPARSE_IS_XZERO(p)) { 595 runlen = HLL_SPARSE_XZERO_LEN(p); 596 idx += runlen; 597 p += 2; 598 } else { 599 runlen = HLL_SPARSE_VAL_LEN(p); 600 regval = HLL_SPARSE_VAL_VALUE(p); 601 while(runlen--) { 602 HLL_DENSE_SET_REGISTER(hdr->registers,idx,regval); 603 idx++; 604 } 605 p++; 606 } 607 } 608 609 /* If the sparse representation was valid, we expect to find idx 610 * set to HLL_REGISTERS. */ 611 if (idx != HLL_REGISTERS) { 612 sdsfree(dense); 613 return REDIS_ERR; 614 } 615 616 /* Free the old representation and set the new one. */ 617 sdsfree(o->ptr); 618 o->ptr = dense; 619 return REDIS_OK; 620 } 621 622 /* "Add" the element in the sparse hyperloglog data structure. 623 * Actually nothing is added, but the max 0 pattern counter of the subset 624 * the element belongs to is incremented if needed. 625 * 626 * The object 'o' is the String object holding the HLL. The function requires 627 * a reference to the object in order to be able to enlarge the string if 628 * needed. 629 * 630 * On success, the function returns 1 if the cardinality changed, or 0 631 * if the register for this element was not updated. 632 * On error (if the representation is invalid) -1 is returned. 633 * 634 * As a side effect the function may promote the HLL representation from 635 * sparse to dense: this happens when a register requires to be set to a value 636 * not representable with the sparse representation, or when the resulting 637 * size would be greater than server.hll_sparse_max_bytes. */ 638 int hllSparseAdd(robj *o, unsigned char *ele, size_t elesize) { 639 struct hllhdr *hdr; 640 uint8_t oldcount, count, *sparse, *end, *p, *prev, *next; 641 long index, first, span; 642 long is_zero = 0, is_xzero = 0, is_val = 0, runlen = 0; 643 644 /* Update the register if this element produced a longer run of zeroes. */ 645 count = hllPatLen(ele,elesize,&index); 646 647 /* If the count is too big to be representable by the sparse representation 648 * switch to dense representation. */ 649 if (count > HLL_SPARSE_VAL_MAX_VALUE) goto promote; 650 651 /* When updating a sparse representation, sometimes we may need to 652 * enlarge the buffer for up to 3 bytes in the worst case (XZERO split 653 * into XZERO-VAL-XZERO). Make sure there is enough space right now 654 * so that the pointers we take during the execution of the function 655 * will be valid all the time. */ 656 o->ptr = sdsMakeRoomFor(o->ptr,3); 657 658 /* Step 1: we need to locate the opcode we need to modify to check 659 * if a value update is actually needed. */ 660 sparse = p = ((uint8_t*)o->ptr) + HLL_HDR_SIZE; 661 end = p + sdslen(o->ptr) - HLL_HDR_SIZE; 662 663 first = 0; 664 prev = NULL; /* Points to previos opcode at the end of the loop. */ 665 next = NULL; /* Points to the next opcode at the end of the loop. */ 666 span = 0; 667 while(p < end) { 668 long oplen; 669 670 /* Set span to the number of registers covered by this opcode. 671 * 672 * This is the most performance critical loop of the sparse 673 * representation. Sorting the conditionals from the most to the 674 * least frequent opcode in many-bytes sparse HLLs is faster. */ 675 oplen = 1; 676 if (HLL_SPARSE_IS_ZERO(p)) { 677 span = HLL_SPARSE_ZERO_LEN(p); 678 } else if (HLL_SPARSE_IS_VAL(p)) { 679 span = HLL_SPARSE_VAL_LEN(p); 680 } else { /* XZERO. */ 681 span = HLL_SPARSE_XZERO_LEN(p); 682 oplen = 2; 683 } 684 /* Break if this opcode covers the register as 'index'. */ 685 if (index <= first+span-1) break; 686 prev = p; 687 p += oplen; 688 first += span; 689 } 690 if (span == 0) return -1; /* Invalid format. */ 691 692 next = HLL_SPARSE_IS_XZERO(p) ? p+2 : p+1; 693 if (next >= end) next = NULL; 694 695 /* Cache current opcode type to avoid using the macro again and 696 * again for something that will not change. 697 * Also cache the run-length of the opcode. */ 698 if (HLL_SPARSE_IS_ZERO(p)) { 699 is_zero = 1; 700 runlen = HLL_SPARSE_ZERO_LEN(p); 701 } else if (HLL_SPARSE_IS_XZERO(p)) { 702 is_xzero = 1; 703 runlen = HLL_SPARSE_XZERO_LEN(p); 704 } else { 705 is_val = 1; 706 runlen = HLL_SPARSE_VAL_LEN(p); 707 } 708 709 /* Step 2: After the loop: 710 * 711 * 'first' stores to the index of the first register covered 712 * by the current opcode, which is pointed by 'p'. 713 * 714 * 'next' ad 'prev' store respectively the next and previous opcode, 715 * or NULL if the opcode at 'p' is respectively the last or first. 716 * 717 * 'span' is set to the number of registers covered by the current 718 * opcode. 719 * 720 * There are different cases in order to update the data structure 721 * in place without generating it from scratch: 722 * 723 * A) If it is a VAL opcode already set to a value >= our 'count' 724 * no update is needed, regardless of the VAL run-length field. 725 * In this case PFADD returns 0 since no changes are performed. 726 * 727 * B) If it is a VAL opcode with len = 1 (representing only our 728 * register) and the value is less than 'count', we just update it 729 * since this is a trivial case. */ 730 if (is_val) { 731 oldcount = HLL_SPARSE_VAL_VALUE(p); 732 /* Case A. */ 733 if (oldcount >= count) return 0; 734 735 /* Case B. */ 736 if (runlen == 1) { 737 HLL_SPARSE_VAL_SET(p,count,1); 738 goto updated; 739 } 740 } 741 742 /* C) Another trivial to handle case is a ZERO opcode with a len of 1. 743 * We can just replace it with a VAL opcode with our value and len of 1. */ 744 if (is_zero && runlen == 1) { 745 HLL_SPARSE_VAL_SET(p,count,1); 746 goto updated; 747 } 748 749 /* D) General case. 750 * 751 * The other cases are more complex: our register requires to be updated 752 * and is either currently represented by a VAL opcode with len > 1, 753 * by a ZERO opcode with len > 1, or by an XZERO opcode. 754 * 755 * In those cases the original opcode must be split into muliple 756 * opcodes. The worst case is an XZERO split in the middle resuling into 757 * XZERO - VAL - XZERO, so the resulting sequence max length is 758 * 5 bytes. 759 * 760 * We perform the split writing the new sequence into the 'new' buffer 761 * with 'newlen' as length. Later the new sequence is inserted in place 762 * of the old one, possibly moving what is on the right a few bytes 763 * if the new sequence is longer than the older one. */ 764 uint8_t seq[5], *n = seq; 765 int last = first+span-1; /* Last register covered by the sequence. */ 766 int len; 767 768 if (is_zero || is_xzero) { 769 /* Handle splitting of ZERO / XZERO. */ 770 if (index != first) { 771 len = index-first; 772 if (len > HLL_SPARSE_ZERO_MAX_LEN) { 773 HLL_SPARSE_XZERO_SET(n,len); 774 n += 2; 775 } else { 776 HLL_SPARSE_ZERO_SET(n,len); 777 n++; 778 } 779 } 780 HLL_SPARSE_VAL_SET(n,count,1); 781 n++; 782 if (index != last) { 783 len = last-index; 784 if (len > HLL_SPARSE_ZERO_MAX_LEN) { 785 HLL_SPARSE_XZERO_SET(n,len); 786 n += 2; 787 } else { 788 HLL_SPARSE_ZERO_SET(n,len); 789 n++; 790 } 791 } 792 } else { 793 /* Handle splitting of VAL. */ 794 int curval = HLL_SPARSE_VAL_VALUE(p); 795 796 if (index != first) { 797 len = index-first; 798 HLL_SPARSE_VAL_SET(n,curval,len); 799 n++; 800 } 801 HLL_SPARSE_VAL_SET(n,count,1); 802 n++; 803 if (index != last) { 804 len = last-index; 805 HLL_SPARSE_VAL_SET(n,curval,len); 806 n++; 807 } 808 } 809 810 /* Step 3: substitute the new sequence with the old one. 811 * 812 * Note that we already allocated space on the sds string 813 * calling sdsMakeRoomFor(). */ 814 int seqlen = n-seq; 815 int oldlen = is_xzero ? 2 : 1; 816 int deltalen = seqlen-oldlen; 817 818 if (deltalen > 0 && 819 sdslen(o->ptr)+deltalen > server.hll_sparse_max_bytes) goto promote; 820 if (deltalen && next) memmove(next+deltalen,next,end-next); 821 sdsIncrLen(o->ptr,deltalen); 822 memcpy(p,seq,seqlen); 823 end += deltalen; 824 825 updated: 826 /* Step 4: Merge adjacent values if possible. 827 * 828 * The representation was updated, however the resulting representation 829 * may not be optimal: adjacent VAL opcodes can sometimes be merged into 830 * a single one. */ 831 p = prev ? prev : sparse; 832 int scanlen = 5; /* Scan up to 5 upcodes starting from prev. */ 833 while (p < end && scanlen--) { 834 if (HLL_SPARSE_IS_XZERO(p)) { 835 p += 2; 836 continue; 837 } else if (HLL_SPARSE_IS_ZERO(p)) { 838 p++; 839 continue; 840 } 841 /* We need two adjacent VAL opcodes to try a merge, having 842 * the same value, and a len that fits the VAL opcode max len. */ 843 if (p+1 < end && HLL_SPARSE_IS_VAL(p+1)) { 844 int v1 = HLL_SPARSE_VAL_VALUE(p); 845 int v2 = HLL_SPARSE_VAL_VALUE(p+1); 846 if (v1 == v2) { 847 int len = HLL_SPARSE_VAL_LEN(p)+HLL_SPARSE_VAL_LEN(p+1); 848 if (len <= HLL_SPARSE_VAL_MAX_LEN) { 849 HLL_SPARSE_VAL_SET(p+1,v1,len); 850 memmove(p,p+1,end-p); 851 sdsIncrLen(o->ptr,-1); 852 end--; 853 /* After a merge we reiterate without incrementing 'p' 854 * in order to try to merge the just merged value with 855 * a value on its right. */ 856 continue; 857 } 858 } 859 } 860 p++; 861 } 862 863 /* Invalidate the cached cardinality. */ 864 hdr = o->ptr; 865 HLL_INVALIDATE_CACHE(hdr); 866 return 1; 867 868 promote: /* Promote to dense representation. */ 869 if (hllSparseToDense(o) == REDIS_ERR) return -1; /* Corrupted HLL. */ 870 hdr = o->ptr; 871 872 /* We need to call hllDenseAdd() to perform the operation after the 873 * conversion. However the result must be 1, since if we need to 874 * convert from sparse to dense a register requires to be updated. 875 * 876 * Note that this in turn means that PFADD will make sure the command 877 * is propagated to slaves / AOF, so if there is a sparse -> dense 878 * convertion, it will be performed in all the slaves as well. */ 879 int dense_retval = hllDenseAdd(hdr->registers, ele, elesize); 880 redisAssert(dense_retval == 1); 881 return dense_retval; 882 } 883 884 /* Compute SUM(2^-reg) in the sparse representation. 885 * PE is an array with a pre-computer table of values 2^-reg indexed by reg. 886 * As a side effect the integer pointed by 'ezp' is set to the number 887 * of zero registers. */ 888 double hllSparseSum(uint8_t *sparse, int sparselen, double *PE, int *ezp, int *invalid) { 889 double E = 0; 890 int ez = 0, idx = 0, runlen, regval; 891 uint8_t *end = sparse+sparselen, *p = sparse; 892 893 while(p < end) { 894 if (HLL_SPARSE_IS_ZERO(p)) { 895 runlen = HLL_SPARSE_ZERO_LEN(p); 896 idx += runlen; 897 ez += runlen; 898 /* Increment E at the end of the loop. */ 899 p++; 900 } else if (HLL_SPARSE_IS_XZERO(p)) { 901 runlen = HLL_SPARSE_XZERO_LEN(p); 902 idx += runlen; 903 ez += runlen; 904 /* Increment E at the end of the loop. */ 905 p += 2; 906 } else { 907 runlen = HLL_SPARSE_VAL_LEN(p); 908 regval = HLL_SPARSE_VAL_VALUE(p); 909 idx += runlen; 910 E += PE[regval]*runlen; 911 p++; 912 } 913 } 914 if (idx != HLL_REGISTERS && invalid) *invalid = 1; 915 E += ez; /* Add 2^0 'ez' times. */ 916 *ezp = ez; 917 return E; 918 } 919 920 /* ========================= HyperLogLog Count ============================== 921 * This is the core of the algorithm where the approximated count is computed. 922 * The function uses the lower level hllDenseSum() and hllSparseSum() functions 923 * as helpers to compute the SUM(2^-reg) part of the computation, which is 924 * representation-specific, while all the rest is common. */ 925 926 /* Implements the SUM operation for uint8_t data type which is only used 927 * internally as speedup for PFCOUNT with multiple keys. */ 928 double hllRawSum(uint8_t *registers, double *PE, int *ezp) { 929 double E = 0; 930 int j, ez = 0; 931 uint64_t *word = (uint64_t*) registers; 932 uint8_t *bytes; 933 934 for (j = 0; j < HLL_REGISTERS/8; j++) { 935 if (*word == 0) { 936 ez += 8; 937 } else { 938 bytes = (uint8_t*) word; 939 if (bytes[0]) E += PE[bytes[0]]; else ez++; 940 if (bytes[1]) E += PE[bytes[1]]; else ez++; 941 if (bytes[2]) E += PE[bytes[2]]; else ez++; 942 if (bytes[3]) E += PE[bytes[3]]; else ez++; 943 if (bytes[4]) E += PE[bytes[4]]; else ez++; 944 if (bytes[5]) E += PE[bytes[5]]; else ez++; 945 if (bytes[6]) E += PE[bytes[6]]; else ez++; 946 if (bytes[7]) E += PE[bytes[7]]; else ez++; 947 } 948 word++; 949 } 950 E += ez; /* 2^(-reg[j]) is 1 when m is 0, add it 'ez' times for every 951 zero register in the HLL. */ 952 *ezp = ez; 953 return E; 954 } 955 956 /* Return the approximated cardinality of the set based on the harmonic 957 * mean of the registers values. 'hdr' points to the start of the SDS 958 * representing the String object holding the HLL representation. 959 * 960 * If the sparse representation of the HLL object is not valid, the integer 961 * pointed by 'invalid' is set to non-zero, otherwise it is left untouched. 962 * 963 * hllCount() supports a special internal-only encoding of HLL_RAW, that 964 * is, hdr->registers will point to an uint8_t array of HLL_REGISTERS element. 965 * This is useful in order to speedup PFCOUNT when called against multiple 966 * keys (no need to work with 6-bit integers encoding). */ 967 uint64_t hllCount(struct hllhdr *hdr, int *invalid) { 968 double m = HLL_REGISTERS; 969 double E, alpha = 0.7213/(1+1.079/m); 970 int j, ez; /* Number of registers equal to 0. */ 971 972 /* We precompute 2^(-reg[j]) in a small table in order to 973 * speedup the computation of SUM(2^-register[0..i]). */ 974 static int initialized = 0; 975 static double PE[64]; 976 if (!initialized) { 977 PE[0] = 1; /* 2^(-reg[j]) is 1 when m is 0. */ 978 for (j = 1; j < 64; j++) { 979 /* 2^(-reg[j]) is the same as 1/2^reg[j]. */ 980 PE[j] = 1.0/(1ULL << j); 981 } 982 initialized = 1; 983 } 984 985 /* Compute SUM(2^-register[0..i]). */ 986 if (hdr->encoding == HLL_DENSE) { 987 E = hllDenseSum(hdr->registers,PE,&ez); 988 } else if (hdr->encoding == HLL_SPARSE) { 989 E = hllSparseSum(hdr->registers, 990 sdslen((sds)hdr)-HLL_HDR_SIZE,PE,&ez,invalid); 991 } else if (hdr->encoding == HLL_RAW) { 992 E = hllRawSum(hdr->registers,PE,&ez); 993 } else { 994 redisPanic("Unknown HyperLogLog encoding in hllCount()"); 995 } 996 997 /* Muliply the inverse of E for alpha_m * m^2 to have the raw estimate. */ 998 E = (1/E)*alpha*m*m; 999 1000 /* Use the LINEARCOUNTING algorithm for small cardinalities. 1001 * For larger values but up to 72000 HyperLogLog raw approximation is 1002 * used since linear counting error starts to increase. However HyperLogLog 1003 * shows a strong bias in the range 2.5*16384 - 72000, so we try to 1004 * compensate for it. */ 1005 if (E < m*2.5 && ez != 0) { 1006 E = m*log(m/ez); /* LINEARCOUNTING() */ 1007 } else if (m == 16384 && E < 72000) { 1008 /* We did polynomial regression of the bias for this range, this 1009 * way we can compute the bias for a given cardinality and correct 1010 * according to it. Only apply the correction for P=14 that's what 1011 * we use and the value the correction was verified with. */ 1012 double bias = 5.9119*1.0e-18*(E*E*E*E) 1013 -1.4253*1.0e-12*(E*E*E)+ 1014 1.2940*1.0e-7*(E*E) 1015 -5.2921*1.0e-3*E+ 1016 83.3216; 1017 E -= E*(bias/100); 1018 } 1019 /* We don't apply the correction for E > 1/30 of 2^32 since we use 1020 * a 64 bit function and 6 bit counters. To apply the correction for 1021 * 1/30 of 2^64 is not needed since it would require a huge set 1022 * to approach such a value. */ 1023 return (uint64_t) E; 1024 } 1025 1026 /* Call hllDenseAdd() or hllSparseAdd() according to the HLL encoding. */ 1027 int hllAdd(robj *o, unsigned char *ele, size_t elesize) { 1028 struct hllhdr *hdr = o->ptr; 1029 switch(hdr->encoding) { 1030 case HLL_DENSE: return hllDenseAdd(hdr->registers,ele,elesize); 1031 case HLL_SPARSE: return hllSparseAdd(o,ele,elesize); 1032 default: return -1; /* Invalid representation. */ 1033 } 1034 } 1035 1036 /* Merge by computing MAX(registers[i],hll[i]) the HyperLogLog 'hll' 1037 * with an array of uint8_t HLL_REGISTERS registers pointed by 'max'. 1038 * 1039 * The hll object must be already validated via isHLLObjectOrReply() 1040 * or in some other way. 1041 * 1042 * If the HyperLogLog is sparse and is found to be invalid, REDIS_ERR 1043 * is returned, otherwise the function always succeeds. */ 1044 int hllMerge(uint8_t *max, robj *hll) { 1045 struct hllhdr *hdr = hll->ptr; 1046 int i; 1047 1048 if (hdr->encoding == HLL_DENSE) { 1049 uint8_t val; 1050 1051 for (i = 0; i < HLL_REGISTERS; i++) { 1052 HLL_DENSE_GET_REGISTER(val,hdr->registers,i); 1053 if (val > max[i]) max[i] = val; 1054 } 1055 } else { 1056 uint8_t *p = hll->ptr, *end = p + sdslen(hll->ptr); 1057 long runlen, regval; 1058 1059 p += HLL_HDR_SIZE; 1060 i = 0; 1061 while(p < end) { 1062 if (HLL_SPARSE_IS_ZERO(p)) { 1063 runlen = HLL_SPARSE_ZERO_LEN(p); 1064 i += runlen; 1065 p++; 1066 } else if (HLL_SPARSE_IS_XZERO(p)) { 1067 runlen = HLL_SPARSE_XZERO_LEN(p); 1068 i += runlen; 1069 p += 2; 1070 } else { 1071 runlen = HLL_SPARSE_VAL_LEN(p); 1072 regval = HLL_SPARSE_VAL_VALUE(p); 1073 while(runlen--) { 1074 if (regval > max[i]) max[i] = regval; 1075 i++; 1076 } 1077 p++; 1078 } 1079 } 1080 if (i != HLL_REGISTERS) return REDIS_ERR; 1081 } 1082 return REDIS_OK; 1083 } 1084 1085 /* ========================== HyperLogLog commands ========================== */ 1086 1087 /* Create an HLL object. We always create the HLL using sparse encoding. 1088 * This will be upgraded to the dense representation as needed. */ 1089 robj *createHLLObject(void) { 1090 robj *o; 1091 struct hllhdr *hdr; 1092 sds s; 1093 uint8_t *p; 1094 int sparselen = HLL_HDR_SIZE + 1095 (((HLL_REGISTERS+(HLL_SPARSE_XZERO_MAX_LEN-1)) / 1096 HLL_SPARSE_XZERO_MAX_LEN)*2); 1097 int aux; 1098 1099 /* Populate the sparse representation with as many XZERO opcodes as 1100 * needed to represent all the registers. */ 1101 aux = HLL_REGISTERS; 1102 s = sdsnewlen(NULL,sparselen); 1103 p = (uint8_t*)s + HLL_HDR_SIZE; 1104 while(aux) { 1105 int xzero = HLL_SPARSE_XZERO_MAX_LEN; 1106 if (xzero > aux) xzero = aux; 1107 HLL_SPARSE_XZERO_SET(p,xzero); 1108 p += 2; 1109 aux -= xzero; 1110 } 1111 redisAssert((p-(uint8_t*)s) == sparselen); 1112 1113 /* Create the actual object. */ 1114 o = createObject(REDIS_STRING,s); 1115 hdr = o->ptr; 1116 memcpy(hdr->magic,"HYLL",4); 1117 hdr->encoding = HLL_SPARSE; 1118 return o; 1119 } 1120 1121 /* Check if the object is a String with a valid HLL representation. 1122 * Return REDIS_OK if this is true, otherwise reply to the client 1123 * with an error and return REDIS_ERR. */ 1124 int isHLLObjectOrReply(redisClient *c, robj *o) { 1125 struct hllhdr *hdr; 1126 1127 /* Key exists, check type */ 1128 if (checkType(c,o,REDIS_STRING)) 1129 return REDIS_ERR; /* Error already sent. */ 1130 1131 if (stringObjectLen(o) < sizeof(*hdr)) goto invalid; 1132 hdr = o->ptr; 1133 1134 /* Magic should be "HYLL". */ 1135 if (hdr->magic[0] != 'H' || hdr->magic[1] != 'Y' || 1136 hdr->magic[2] != 'L' || hdr->magic[3] != 'L') goto invalid; 1137 1138 if (hdr->encoding > HLL_MAX_ENCODING) goto invalid; 1139 1140 /* Dense representation string length should match exactly. */ 1141 if (hdr->encoding == HLL_DENSE && 1142 stringObjectLen(o) != HLL_DENSE_SIZE) goto invalid; 1143 1144 /* All tests passed. */ 1145 return REDIS_OK; 1146 1147 invalid: 1148 addReplySds(c, 1149 sdsnew("-WRONGTYPE Key is not a valid " 1150 "HyperLogLog string value.\r\n")); 1151 return REDIS_ERR; 1152 } 1153 1154 /* PFADD var ele ele ele ... ele => :0 or :1 */ 1155 void pfaddCommand(redisClient *c) { 1156 robj *o = lookupKeyWrite(c->db,c->argv[1]); 1157 struct hllhdr *hdr; 1158 int updated = 0, j; 1159 1160 if (o == NULL) { 1161 /* Create the key with a string value of the exact length to 1162 * hold our HLL data structure. sdsnewlen() when NULL is passed 1163 * is guaranteed to return bytes initialized to zero. */ 1164 o = createHLLObject(); 1165 dbAdd(c->db,c->argv[1],o); 1166 updated++; 1167 } else { 1168 if (isHLLObjectOrReply(c,o) != REDIS_OK) return; 1169 o = dbUnshareStringValue(c->db,c->argv[1],o); 1170 } 1171 /* Perform the low level ADD operation for every element. */ 1172 for (j = 2; j < c->argc; j++) { 1173 int retval = hllAdd(o, (unsigned char*)c->argv[j]->ptr, 1174 sdslen(c->argv[j]->ptr)); 1175 switch(retval) { 1176 case 1: 1177 updated++; 1178 break; 1179 case -1: 1180 addReplySds(c,sdsnew(invalid_hll_err)); 1181 return; 1182 } 1183 } 1184 hdr = o->ptr; 1185 if (updated) { 1186 signalModifiedKey(c->db,c->argv[1]); 1187 notifyKeyspaceEvent(REDIS_NOTIFY_STRING,"pfadd",c->argv[1],c->db->id); 1188 server.dirty++; 1189 HLL_INVALIDATE_CACHE(hdr); 1190 } 1191 addReply(c, updated ? shared.cone : shared.czero); 1192 } 1193 1194 /* PFCOUNT var -> approximated cardinality of set. */ 1195 void pfcountCommand(redisClient *c) { 1196 robj *o; 1197 struct hllhdr *hdr; 1198 uint64_t card; 1199 1200 /* Case 1: multi-key keys, cardinality of the union. 1201 * 1202 * When multiple keys are specified, PFCOUNT actually computes 1203 * the cardinality of the merge of the N HLLs specified. */ 1204 if (c->argc > 2) { 1205 uint8_t max[HLL_HDR_SIZE+HLL_REGISTERS], *registers; 1206 int j; 1207 1208 /* Compute an HLL with M[i] = MAX(M[i]_j). */ 1209 memset(max,0,sizeof(max)); 1210 hdr = (struct hllhdr*) max; 1211 hdr->encoding = HLL_RAW; /* Special internal-only encoding. */ 1212 registers = max + HLL_HDR_SIZE; 1213 for (j = 1; j < c->argc; j++) { 1214 /* Check type and size. */ 1215 robj *o = lookupKeyRead(c->db,c->argv[j]); 1216 if (o == NULL) continue; /* Assume empty HLL for non existing var. */ 1217 if (isHLLObjectOrReply(c,o) != REDIS_OK) return; 1218 1219 /* Merge with this HLL with our 'max' HHL by setting max[i] 1220 * to MAX(max[i],hll[i]). */ 1221 if (hllMerge(registers,o) == REDIS_ERR) { 1222 addReplySds(c,sdsnew(invalid_hll_err)); 1223 return; 1224 } 1225 } 1226 1227 /* Compute cardinality of the resulting set. */ 1228 addReplyLongLong(c,hllCount(hdr,NULL)); 1229 return; 1230 } 1231 1232 /* Case 2: cardinality of the single HLL. 1233 * 1234 * The user specified a single key. Either return the cached value 1235 * or compute one and update the cache. */ 1236 o = lookupKeyRead(c->db,c->argv[1]); 1237 if (o == NULL) { 1238 /* No key? Cardinality is zero since no element was added, otherwise 1239 * we would have a key as HLLADD creates it as a side effect. */ 1240 addReply(c,shared.czero); 1241 } else { 1242 if (isHLLObjectOrReply(c,o) != REDIS_OK) return; 1243 o = dbUnshareStringValue(c->db,c->argv[1],o); 1244 1245 /* Check if the cached cardinality is valid. */ 1246 hdr = o->ptr; 1247 if (HLL_VALID_CACHE(hdr)) { 1248 /* Just return the cached value. */ 1249 card = (uint64_t)hdr->card[0]; 1250 card |= (uint64_t)hdr->card[1] << 8; 1251 card |= (uint64_t)hdr->card[2] << 16; 1252 card |= (uint64_t)hdr->card[3] << 24; 1253 card |= (uint64_t)hdr->card[4] << 32; 1254 card |= (uint64_t)hdr->card[5] << 40; 1255 card |= (uint64_t)hdr->card[6] << 48; 1256 card |= (uint64_t)hdr->card[7] << 56; 1257 } else { 1258 int invalid = 0; 1259 /* Recompute it and update the cached value. */ 1260 card = hllCount(hdr,&invalid); 1261 if (invalid) { 1262 addReplySds(c,sdsnew(invalid_hll_err)); 1263 return; 1264 } 1265 hdr->card[0] = card & 0xff; 1266 hdr->card[1] = (card >> 8) & 0xff; 1267 hdr->card[2] = (card >> 16) & 0xff; 1268 hdr->card[3] = (card >> 24) & 0xff; 1269 hdr->card[4] = (card >> 32) & 0xff; 1270 hdr->card[5] = (card >> 40) & 0xff; 1271 hdr->card[6] = (card >> 48) & 0xff; 1272 hdr->card[7] = (card >> 56) & 0xff; 1273 /* This is not considered a read-only command even if the 1274 * data structure is not modified, since the cached value 1275 * may be modified and given that the HLL is a Redis string 1276 * we need to propagate the change. */ 1277 signalModifiedKey(c->db,c->argv[1]); 1278 server.dirty++; 1279 } 1280 addReplyLongLong(c,card); 1281 } 1282 } 1283 1284 /* PFMERGE dest src1 src2 src3 ... srcN => OK */ 1285 void pfmergeCommand(redisClient *c) { 1286 uint8_t max[HLL_REGISTERS]; 1287 struct hllhdr *hdr; 1288 int j; 1289 1290 /* Compute an HLL with M[i] = MAX(M[i]_j). 1291 * We we the maximum into the max array of registers. We'll write 1292 * it to the target variable later. */ 1293 memset(max,0,sizeof(max)); 1294 for (j = 1; j < c->argc; j++) { 1295 /* Check type and size. */ 1296 robj *o = lookupKeyRead(c->db,c->argv[j]); 1297 if (o == NULL) continue; /* Assume empty HLL for non existing var. */ 1298 if (isHLLObjectOrReply(c,o) != REDIS_OK) return; 1299 1300 /* Merge with this HLL with our 'max' HHL by setting max[i] 1301 * to MAX(max[i],hll[i]). */ 1302 if (hllMerge(max,o) == REDIS_ERR) { 1303 addReplySds(c,sdsnew(invalid_hll_err)); 1304 return; 1305 } 1306 } 1307 1308 /* Create / unshare the destination key's value if needed. */ 1309 robj *o = lookupKeyWrite(c->db,c->argv[1]); 1310 if (o == NULL) { 1311 /* Create the key with a string value of the exact length to 1312 * hold our HLL data structure. sdsnewlen() when NULL is passed 1313 * is guaranteed to return bytes initialized to zero. */ 1314 o = createHLLObject(); 1315 dbAdd(c->db,c->argv[1],o); 1316 } else { 1317 /* If key exists we are sure it's of the right type/size 1318 * since we checked when merging the different HLLs, so we 1319 * don't check again. */ 1320 o = dbUnshareStringValue(c->db,c->argv[1],o); 1321 } 1322 1323 /* Only support dense objects as destination. */ 1324 if (hllSparseToDense(o) == REDIS_ERR) { 1325 addReplySds(c,sdsnew(invalid_hll_err)); 1326 return; 1327 } 1328 1329 /* Write the resulting HLL to the destination HLL registers and 1330 * invalidate the cached value. */ 1331 hdr = o->ptr; 1332 for (j = 0; j < HLL_REGISTERS; j++) { 1333 HLL_DENSE_SET_REGISTER(hdr->registers,j,max[j]); 1334 } 1335 HLL_INVALIDATE_CACHE(hdr); 1336 1337 signalModifiedKey(c->db,c->argv[1]); 1338 /* We generate an PFADD event for PFMERGE for semantical simplicity 1339 * since in theory this is a mass-add of elements. */ 1340 notifyKeyspaceEvent(REDIS_NOTIFY_STRING,"pfadd",c->argv[1],c->db->id); 1341 server.dirty++; 1342 addReply(c,shared.ok); 1343 } 1344 1345 /* ========================== Testing / Debugging ========================== */ 1346 1347 /* PFSELFTEST 1348 * This command performs a self-test of the HLL registers implementation. 1349 * Something that is not easy to test from within the outside. */ 1350 #define HLL_TEST_CYCLES 1000 1351 void pfselftestCommand(redisClient *c) { 1352 int j, i; 1353 sds bitcounters = sdsnewlen(NULL,HLL_DENSE_SIZE); 1354 struct hllhdr *hdr = (struct hllhdr*) bitcounters, *hdr2; 1355 robj *o = NULL; 1356 uint8_t bytecounters[HLL_REGISTERS]; 1357 1358 /* Test 1: access registers. 1359 * The test is conceived to test that the different counters of our data 1360 * structure are accessible and that setting their values both result in 1361 * the correct value to be retained and not affect adjacent values. */ 1362 for (j = 0; j < HLL_TEST_CYCLES; j++) { 1363 /* Set the HLL counters and an array of unsigned byes of the 1364 * same size to the same set of random values. */ 1365 for (i = 0; i < HLL_REGISTERS; i++) { 1366 unsigned int r = rand() & HLL_REGISTER_MAX; 1367 1368 bytecounters[i] = r; 1369 HLL_DENSE_SET_REGISTER(hdr->registers,i,r); 1370 } 1371 /* Check that we are able to retrieve the same values. */ 1372 for (i = 0; i < HLL_REGISTERS; i++) { 1373 unsigned int val; 1374 1375 HLL_DENSE_GET_REGISTER(val,hdr->registers,i); 1376 if (val != bytecounters[i]) { 1377 addReplyErrorFormat(c, 1378 "TESTFAILED Register %d should be %d but is %d", 1379 i, (int) bytecounters[i], (int) val); 1380 goto cleanup; 1381 } 1382 } 1383 } 1384 1385 /* Test 2: approximation error. 1386 * The test adds unique elements and check that the estimated value 1387 * is always reasonable bounds. 1388 * 1389 * We check that the error is smaller than 4 times than the expected 1390 * standard error, to make it very unlikely for the test to fail because 1391 * of a "bad" run. 1392 * 1393 * The test is performed with both dense and sparse HLLs at the same 1394 * time also verifying that the computed cardinality is the same. */ 1395 memset(hdr->registers,0,HLL_DENSE_SIZE-HLL_HDR_SIZE); 1396 o = createHLLObject(); 1397 double relerr = 1.04/sqrt(HLL_REGISTERS); 1398 int64_t checkpoint = 1; 1399 uint64_t seed = (uint64_t)rand() | (uint64_t)rand() << 32; 1400 uint64_t ele; 1401 for (j = 1; j <= 10000000; j++) { 1402 ele = j ^ seed; 1403 hllDenseAdd(hdr->registers,(unsigned char*)&ele,sizeof(ele)); 1404 hllAdd(o,(unsigned char*)&ele,sizeof(ele)); 1405 1406 /* Make sure that for small cardinalities we use sparse 1407 * encoding. */ 1408 if (j == checkpoint && j < server.hll_sparse_max_bytes/2) { 1409 hdr2 = o->ptr; 1410 if (hdr2->encoding != HLL_SPARSE) { 1411 addReplyError(c, "TESTFAILED sparse encoding not used"); 1412 goto cleanup; 1413 } 1414 } 1415 1416 /* Check that dense and sparse representations agree. */ 1417 if (j == checkpoint && hllCount(hdr,NULL) != hllCount(o->ptr,NULL)) { 1418 addReplyError(c, "TESTFAILED dense/sparse disagree"); 1419 goto cleanup; 1420 } 1421 1422 /* Check error. */ 1423 if (j == checkpoint) { 1424 int64_t abserr = checkpoint - (int64_t)hllCount(hdr,NULL); 1425 if (abserr < 0) abserr = -abserr; 1426 if (abserr > (uint64_t)(relerr*4*checkpoint)) { 1427 addReplyErrorFormat(c, 1428 "TESTFAILED Too big error. card:%llu abserr:%llu", 1429 (unsigned long long) checkpoint, 1430 (unsigned long long) abserr); 1431 goto cleanup; 1432 } 1433 checkpoint *= 10; 1434 } 1435 } 1436 1437 /* Success! */ 1438 addReply(c,shared.ok); 1439 1440 cleanup: 1441 sdsfree(bitcounters); 1442 if (o) decrRefCount(o); 1443 } 1444 1445 /* PFDEBUG <subcommand> <key> ... args ... 1446 * Different debugging related operations about the HLL implementation. */ 1447 void pfdebugCommand(redisClient *c) { 1448 char *cmd = c->argv[1]->ptr; 1449 struct hllhdr *hdr; 1450 robj *o; 1451 int j; 1452 1453 o = lookupKeyRead(c->db,c->argv[2]); 1454 if (o == NULL) { 1455 addReplyError(c,"The specified key does not exist"); 1456 return; 1457 } 1458 if (isHLLObjectOrReply(c,o) != REDIS_OK) return; 1459 o = dbUnshareStringValue(c->db,c->argv[2],o); 1460 hdr = o->ptr; 1461 1462 /* PFDEBUG GETREG <key> */ 1463 if (!strcasecmp(cmd,"getreg")) { 1464 if (c->argc != 3) goto arityerr; 1465 1466 if (hdr->encoding == HLL_SPARSE) { 1467 if (hllSparseToDense(o) == REDIS_ERR) { 1468 addReplySds(c,sdsnew(invalid_hll_err)); 1469 return; 1470 } 1471 server.dirty++; /* Force propagation on encoding change. */ 1472 } 1473 1474 hdr = o->ptr; 1475 addReplyMultiBulkLen(c,HLL_REGISTERS); 1476 for (j = 0; j < HLL_REGISTERS; j++) { 1477 uint8_t val; 1478 1479 HLL_DENSE_GET_REGISTER(val,hdr->registers,j); 1480 addReplyLongLong(c,val); 1481 } 1482 } 1483 /* PFDEBUG DECODE <key> */ 1484 else if (!strcasecmp(cmd,"decode")) { 1485 if (c->argc != 3) goto arityerr; 1486 1487 uint8_t *p = o->ptr, *end = p+sdslen(o->ptr); 1488 sds decoded = sdsempty(); 1489 1490 if (hdr->encoding != HLL_SPARSE) { 1491 addReplyError(c,"HLL encoding is not sparse"); 1492 return; 1493 } 1494 1495 p += HLL_HDR_SIZE; 1496 while(p < end) { 1497 int runlen, regval; 1498 1499 if (HLL_SPARSE_IS_ZERO(p)) { 1500 runlen = HLL_SPARSE_ZERO_LEN(p); 1501 p++; 1502 decoded = sdscatprintf(decoded,"z:%d ",runlen); 1503 } else if (HLL_SPARSE_IS_XZERO(p)) { 1504 runlen = HLL_SPARSE_XZERO_LEN(p); 1505 p += 2; 1506 decoded = sdscatprintf(decoded,"Z:%d ",runlen); 1507 } else { 1508 runlen = HLL_SPARSE_VAL_LEN(p); 1509 regval = HLL_SPARSE_VAL_VALUE(p); 1510 p++; 1511 decoded = sdscatprintf(decoded,"v:%d,%d ",regval,runlen); 1512 } 1513 } 1514 decoded = sdstrim(decoded," "); 1515 addReplyBulkCBuffer(c,decoded,sdslen(decoded)); 1516 sdsfree(decoded); 1517 } 1518 /* PFDEBUG ENCODING <key> */ 1519 else if (!strcasecmp(cmd,"encoding")) { 1520 char *encodingstr[2] = {"dense","sparse"}; 1521 if (c->argc != 3) goto arityerr; 1522 1523 addReplyStatus(c,encodingstr[hdr->encoding]); 1524 } 1525 /* PFDEBUG TODENSE <key> */ 1526 else if (!strcasecmp(cmd,"todense")) { 1527 int conv = 0; 1528 if (c->argc != 3) goto arityerr; 1529 1530 if (hdr->encoding == HLL_SPARSE) { 1531 if (hllSparseToDense(o) == REDIS_ERR) { 1532 addReplySds(c,sdsnew(invalid_hll_err)); 1533 return; 1534 } 1535 conv = 1; 1536 server.dirty++; /* Force propagation on encoding change. */ 1537 } 1538 addReply(c,conv ? shared.cone : shared.czero); 1539 } else { 1540 addReplyErrorFormat(c,"Unknown PFDEBUG subcommand '%s'", cmd); 1541 } 1542 return; 1543 1544 arityerr: 1545 addReplyErrorFormat(c, 1546 "Wrong number of arguments for the '%s' subcommand",cmd); 1547 } 1548 1549