xref: /redis-3.2.3/src/hyperloglog.c (revision 32f80e2f)
1 /* hyperloglog.c - Redis HyperLogLog probabilistic cardinality approximation.
2  * This file implements the algorithm and the exported Redis commands.
3  *
4  * Copyright (c) 2014, Salvatore Sanfilippo <antirez at gmail dot com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *   * Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *   * Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *   * Neither the name of Redis nor the names of its contributors may be used
16  *     to endorse or promote products derived from this software without
17  *     specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "server.h"
33 
34 #include <stdint.h>
35 #include <math.h>
36 
37 /* The Redis HyperLogLog implementation is based on the following ideas:
38  *
39  * * The use of a 64 bit hash function as proposed in [1], in order to don't
40  *   limited to cardinalities up to 10^9, at the cost of just 1 additional
41  *   bit per register.
42  * * The use of 16384 6-bit registers for a great level of accuracy, using
43  *   a total of 12k per key.
44  * * The use of the Redis string data type. No new type is introduced.
45  * * No attempt is made to compress the data structure as in [1]. Also the
46  *   algorithm used is the original HyperLogLog Algorithm as in [2], with
47  *   the only difference that a 64 bit hash function is used, so no correction
48  *   is performed for values near 2^32 as in [1].
49  *
50  * [1] Heule, Nunkesser, Hall: HyperLogLog in Practice: Algorithmic
51  *     Engineering of a State of The Art Cardinality Estimation Algorithm.
52  *
53  * [2] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The
54  *     analysis of a near-optimal cardinality estimation algorithm.
55  *
56  * Redis uses two representations:
57  *
58  * 1) A "dense" representation where every entry is represented by
59  *    a 6-bit integer.
60  * 2) A "sparse" representation using run length compression suitable
61  *    for representing HyperLogLogs with many registers set to 0 in
62  *    a memory efficient way.
63  *
64  *
65  * HLL header
66  * ===
67  *
68  * Both the dense and sparse representation have a 16 byte header as follows:
69  *
70  * +------+---+-----+----------+
71  * | HYLL | E | N/U | Cardin.  |
72  * +------+---+-----+----------+
73  *
74  * The first 4 bytes are a magic string set to the bytes "HYLL".
75  * "E" is one byte encoding, currently set to HLL_DENSE or
76  * HLL_SPARSE. N/U are three not used bytes.
77  *
78  * The "Cardin." field is a 64 bit integer stored in little endian format
79  * with the latest cardinality computed that can be reused if the data
80  * structure was not modified since the last computation (this is useful
81  * because there are high probabilities that HLLADD operations don't
82  * modify the actual data structure and hence the approximated cardinality).
83  *
84  * When the most significant bit in the most significant byte of the cached
85  * cardinality is set, it means that the data structure was modified and
86  * we can't reuse the cached value that must be recomputed.
87  *
88  * Dense representation
89  * ===
90  *
91  * The dense representation used by Redis is the following:
92  *
93  * +--------+--------+--------+------//      //--+
94  * |11000000|22221111|33333322|55444444 ....     |
95  * +--------+--------+--------+------//      //--+
96  *
97  * The 6 bits counters are encoded one after the other starting from the
98  * LSB to the MSB, and using the next bytes as needed.
99  *
100  * Sparse representation
101  * ===
102  *
103  * The sparse representation encodes registers using a run length
104  * encoding composed of three opcodes, two using one byte, and one using
105  * of two bytes. The opcodes are called ZERO, XZERO and VAL.
106  *
107  * ZERO opcode is represented as 00xxxxxx. The 6-bit integer represented
108  * by the six bits 'xxxxxx', plus 1, means that there are N registers set
109  * to 0. This opcode can represent from 1 to 64 contiguous registers set
110  * to the value of 0.
111  *
112  * XZERO opcode is represented by two bytes 01xxxxxx yyyyyyyy. The 14-bit
113  * integer represented by the bits 'xxxxxx' as most significant bits and
114  * 'yyyyyyyy' as least significant bits, plus 1, means that there are N
115  * registers set to 0. This opcode can represent from 0 to 16384 contiguous
116  * registers set to the value of 0.
117  *
118  * VAL opcode is represented as 1vvvvvxx. It contains a 5-bit integer
119  * representing the value of a register, and a 2-bit integer representing
120  * the number of contiguous registers set to that value 'vvvvv'.
121  * To obtain the value and run length, the integers vvvvv and xx must be
122  * incremented by one. This opcode can represent values from 1 to 32,
123  * repeated from 1 to 4 times.
124  *
125  * The sparse representation can't represent registers with a value greater
126  * than 32, however it is very unlikely that we find such a register in an
127  * HLL with a cardinality where the sparse representation is still more
128  * memory efficient than the dense representation. When this happens the
129  * HLL is converted to the dense representation.
130  *
131  * The sparse representation is purely positional. For example a sparse
132  * representation of an empty HLL is just: XZERO:16384.
133  *
134  * An HLL having only 3 non-zero registers at position 1000, 1020, 1021
135  * respectively set to 2, 3, 3, is represented by the following three
136  * opcodes:
137  *
138  * XZERO:1000 (Registers 0-999 are set to 0)
139  * VAL:2,1    (1 register set to value 2, that is register 1000)
140  * ZERO:19    (Registers 1001-1019 set to 0)
141  * VAL:3,2    (2 registers set to value 3, that is registers 1020,1021)
142  * XZERO:15362 (Registers 1022-16383 set to 0)
143  *
144  * In the example the sparse representation used just 7 bytes instead
145  * of 12k in order to represent the HLL registers. In general for low
146  * cardinality there is a big win in terms of space efficiency, traded
147  * with CPU time since the sparse representation is slower to access:
148  *
149  * The following table shows average cardinality vs bytes used, 100
150  * samples per cardinality (when the set was not representable because
151  * of registers with too big value, the dense representation size was used
152  * as a sample).
153  *
154  * 100 267
155  * 200 485
156  * 300 678
157  * 400 859
158  * 500 1033
159  * 600 1205
160  * 700 1375
161  * 800 1544
162  * 900 1713
163  * 1000 1882
164  * 2000 3480
165  * 3000 4879
166  * 4000 6089
167  * 5000 7138
168  * 6000 8042
169  * 7000 8823
170  * 8000 9500
171  * 9000 10088
172  * 10000 10591
173  *
174  * The dense representation uses 12288 bytes, so there is a big win up to
175  * a cardinality of ~2000-3000. For bigger cardinalities the constant times
176  * involved in updating the sparse representation is not justified by the
177  * memory savings. The exact maximum length of the sparse representation
178  * when this implementation switches to the dense representation is
179  * configured via the define server.hll_sparse_max_bytes.
180  */
181 
182 struct hllhdr {
183     char magic[4];      /* "HYLL" */
184     uint8_t encoding;   /* HLL_DENSE or HLL_SPARSE. */
185     uint8_t notused[3]; /* Reserved for future use, must be zero. */
186     uint8_t card[8];    /* Cached cardinality, little endian. */
187     uint8_t registers[]; /* Data bytes. */
188 };
189 
190 /* The cached cardinality MSB is used to signal validity of the cached value. */
191 #define HLL_INVALIDATE_CACHE(hdr) (hdr)->card[7] |= (1<<7)
192 #define HLL_VALID_CACHE(hdr) (((hdr)->card[7] & (1<<7)) == 0)
193 
194 #define HLL_P 14 /* The greater is P, the smaller the error. */
195 #define HLL_REGISTERS (1<<HLL_P) /* With P=14, 16384 registers. */
196 #define HLL_P_MASK (HLL_REGISTERS-1) /* Mask to index register. */
197 #define HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */
198 #define HLL_REGISTER_MAX ((1<<HLL_BITS)-1)
199 #define HLL_HDR_SIZE sizeof(struct hllhdr)
200 #define HLL_DENSE_SIZE (HLL_HDR_SIZE+((HLL_REGISTERS*HLL_BITS+7)/8))
201 #define HLL_DENSE 0 /* Dense encoding. */
202 #define HLL_SPARSE 1 /* Sparse encoding. */
203 #define HLL_RAW 255 /* Only used internally, never exposed. */
204 #define HLL_MAX_ENCODING 1
205 
206 static char *invalid_hll_err = "-INVALIDOBJ Corrupted HLL object detected\r\n";
207 
208 /* =========================== Low level bit macros ========================= */
209 
210 /* Macros to access the dense representation.
211  *
212  * We need to get and set 6 bit counters in an array of 8 bit bytes.
213  * We use macros to make sure the code is inlined since speed is critical
214  * especially in order to compute the approximated cardinality in
215  * HLLCOUNT where we need to access all the registers at once.
216  * For the same reason we also want to avoid conditionals in this code path.
217  *
218  * +--------+--------+--------+------//
219  * |11000000|22221111|33333322|55444444
220  * +--------+--------+--------+------//
221  *
222  * Note: in the above representation the most significant bit (MSB)
223  * of every byte is on the left. We start using bits from the LSB to MSB,
224  * and so forth passing to the next byte.
225  *
226  * Example, we want to access to counter at pos = 1 ("111111" in the
227  * illustration above).
228  *
229  * The index of the first byte b0 containing our data is:
230  *
231  *  b0 = 6 * pos / 8 = 0
232  *
233  *   +--------+
234  *   |11000000|  <- Our byte at b0
235  *   +--------+
236  *
237  * The position of the first bit (counting from the LSB = 0) in the byte
238  * is given by:
239  *
240  *  fb = 6 * pos % 8 -> 6
241  *
242  * Right shift b0 of 'fb' bits.
243  *
244  *   +--------+
245  *   |11000000|  <- Initial value of b0
246  *   |00000011|  <- After right shift of 6 pos.
247  *   +--------+
248  *
249  * Left shift b1 of bits 8-fb bits (2 bits)
250  *
251  *   +--------+
252  *   |22221111|  <- Initial value of b1
253  *   |22111100|  <- After left shift of 2 bits.
254  *   +--------+
255  *
256  * OR the two bits, and finally AND with 111111 (63 in decimal) to
257  * clean the higher order bits we are not interested in:
258  *
259  *   +--------+
260  *   |00000011|  <- b0 right shifted
261  *   |22111100|  <- b1 left shifted
262  *   |22111111|  <- b0 OR b1
263  *   |  111111|  <- (b0 OR b1) AND 63, our value.
264  *   +--------+
265  *
266  * We can try with a different example, like pos = 0. In this case
267  * the 6-bit counter is actually contained in a single byte.
268  *
269  *  b0 = 6 * pos / 8 = 0
270  *
271  *   +--------+
272  *   |11000000|  <- Our byte at b0
273  *   +--------+
274  *
275  *  fb = 6 * pos % 8 = 0
276  *
277  *  So we right shift of 0 bits (no shift in practice) and
278  *  left shift the next byte of 8 bits, even if we don't use it,
279  *  but this has the effect of clearing the bits so the result
280  *  will not be affacted after the OR.
281  *
282  * -------------------------------------------------------------------------
283  *
284  * Setting the register is a bit more complex, let's assume that 'val'
285  * is the value we want to set, already in the right range.
286  *
287  * We need two steps, in one we need to clear the bits, and in the other
288  * we need to bitwise-OR the new bits.
289  *
290  * Let's try with 'pos' = 1, so our first byte at 'b' is 0,
291  *
292  * "fb" is 6 in this case.
293  *
294  *   +--------+
295  *   |11000000|  <- Our byte at b0
296  *   +--------+
297  *
298  * To create a AND-mask to clear the bits about this position, we just
299  * initialize the mask with the value 63, left shift it of "fs" bits,
300  * and finally invert the result.
301  *
302  *   +--------+
303  *   |00111111|  <- "mask" starts at 63
304  *   |11000000|  <- "mask" after left shift of "ls" bits.
305  *   |00111111|  <- "mask" after invert.
306  *   +--------+
307  *
308  * Now we can bitwise-AND the byte at "b" with the mask, and bitwise-OR
309  * it with "val" left-shifted of "ls" bits to set the new bits.
310  *
311  * Now let's focus on the next byte b1:
312  *
313  *   +--------+
314  *   |22221111|  <- Initial value of b1
315  *   +--------+
316  *
317  * To build the AND mask we start again with the 63 value, right shift
318  * it by 8-fb bits, and invert it.
319  *
320  *   +--------+
321  *   |00111111|  <- "mask" set at 2&6-1
322  *   |00001111|  <- "mask" after the right shift by 8-fb = 2 bits
323  *   |11110000|  <- "mask" after bitwise not.
324  *   +--------+
325  *
326  * Now we can mask it with b+1 to clear the old bits, and bitwise-OR
327  * with "val" left-shifted by "rs" bits to set the new value.
328  */
329 
330 /* Note: if we access the last counter, we will also access the b+1 byte
331  * that is out of the array, but sds strings always have an implicit null
332  * term, so the byte exists, and we can skip the conditional (or the need
333  * to allocate 1 byte more explicitly). */
334 
335 /* Store the value of the register at position 'regnum' into variable 'target'.
336  * 'p' is an array of unsigned bytes. */
337 #define HLL_DENSE_GET_REGISTER(target,p,regnum) do { \
338     uint8_t *_p = (uint8_t*) p; \
339     unsigned long _byte = regnum*HLL_BITS/8; \
340     unsigned long _fb = regnum*HLL_BITS&7; \
341     unsigned long _fb8 = 8 - _fb; \
342     unsigned long b0 = _p[_byte]; \
343     unsigned long b1 = _p[_byte+1]; \
344     target = ((b0 >> _fb) | (b1 << _fb8)) & HLL_REGISTER_MAX; \
345 } while(0)
346 
347 /* Set the value of the register at position 'regnum' to 'val'.
348  * 'p' is an array of unsigned bytes. */
349 #define HLL_DENSE_SET_REGISTER(p,regnum,val) do { \
350     uint8_t *_p = (uint8_t*) p; \
351     unsigned long _byte = regnum*HLL_BITS/8; \
352     unsigned long _fb = regnum*HLL_BITS&7; \
353     unsigned long _fb8 = 8 - _fb; \
354     unsigned long _v = val; \
355     _p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \
356     _p[_byte] |= _v << _fb; \
357     _p[_byte+1] &= ~(HLL_REGISTER_MAX >> _fb8); \
358     _p[_byte+1] |= _v >> _fb8; \
359 } while(0)
360 
361 /* Macros to access the sparse representation.
362  * The macros parameter is expected to be an uint8_t pointer. */
363 #define HLL_SPARSE_XZERO_BIT 0x40 /* 01xxxxxx */
364 #define HLL_SPARSE_VAL_BIT 0x80 /* 1vvvvvxx */
365 #define HLL_SPARSE_IS_ZERO(p) (((*(p)) & 0xc0) == 0) /* 00xxxxxx */
366 #define HLL_SPARSE_IS_XZERO(p) (((*(p)) & 0xc0) == HLL_SPARSE_XZERO_BIT)
367 #define HLL_SPARSE_IS_VAL(p) ((*(p)) & HLL_SPARSE_VAL_BIT)
368 #define HLL_SPARSE_ZERO_LEN(p) (((*(p)) & 0x3f)+1)
369 #define HLL_SPARSE_XZERO_LEN(p) (((((*(p)) & 0x3f) << 8) | (*((p)+1)))+1)
370 #define HLL_SPARSE_VAL_VALUE(p) ((((*(p)) >> 2) & 0x1f)+1)
371 #define HLL_SPARSE_VAL_LEN(p) (((*(p)) & 0x3)+1)
372 #define HLL_SPARSE_VAL_MAX_VALUE 32
373 #define HLL_SPARSE_VAL_MAX_LEN 4
374 #define HLL_SPARSE_ZERO_MAX_LEN 64
375 #define HLL_SPARSE_XZERO_MAX_LEN 16384
376 #define HLL_SPARSE_VAL_SET(p,val,len) do { \
377     *(p) = (((val)-1)<<2|((len)-1))|HLL_SPARSE_VAL_BIT; \
378 } while(0)
379 #define HLL_SPARSE_ZERO_SET(p,len) do { \
380     *(p) = (len)-1; \
381 } while(0)
382 #define HLL_SPARSE_XZERO_SET(p,len) do { \
383     int _l = (len)-1; \
384     *(p) = (_l>>8) | HLL_SPARSE_XZERO_BIT; \
385     *((p)+1) = (_l&0xff); \
386 } while(0)
387 
388 /* ========================= HyperLogLog algorithm  ========================= */
389 
390 /* Our hash function is MurmurHash2, 64 bit version.
391  * It was modified for Redis in order to provide the same result in
392  * big and little endian archs (endian neutral). */
MurmurHash64A(const void * key,int len,unsigned int seed)393 uint64_t MurmurHash64A (const void * key, int len, unsigned int seed) {
394     const uint64_t m = 0xc6a4a7935bd1e995;
395     const int r = 47;
396     uint64_t h = seed ^ (len * m);
397     const uint8_t *data = (const uint8_t *)key;
398     const uint8_t *end = data + (len-(len&7));
399 
400     while(data != end) {
401         uint64_t k;
402 
403 #if (BYTE_ORDER == LITTLE_ENDIAN)
404         k = *((uint64_t*)data);
405 #else
406         k = (uint64_t) data[0];
407         k |= (uint64_t) data[1] << 8;
408         k |= (uint64_t) data[2] << 16;
409         k |= (uint64_t) data[3] << 24;
410         k |= (uint64_t) data[4] << 32;
411         k |= (uint64_t) data[5] << 40;
412         k |= (uint64_t) data[6] << 48;
413         k |= (uint64_t) data[7] << 56;
414 #endif
415 
416         k *= m;
417         k ^= k >> r;
418         k *= m;
419         h ^= k;
420         h *= m;
421         data += 8;
422     }
423 
424     switch(len & 7) {
425     case 7: h ^= (uint64_t)data[6] << 48;
426     case 6: h ^= (uint64_t)data[5] << 40;
427     case 5: h ^= (uint64_t)data[4] << 32;
428     case 4: h ^= (uint64_t)data[3] << 24;
429     case 3: h ^= (uint64_t)data[2] << 16;
430     case 2: h ^= (uint64_t)data[1] << 8;
431     case 1: h ^= (uint64_t)data[0];
432             h *= m;
433     };
434 
435     h ^= h >> r;
436     h *= m;
437     h ^= h >> r;
438     return h;
439 }
440 
441 /* Given a string element to add to the HyperLogLog, returns the length
442  * of the pattern 000..1 of the element hash. As a side effect 'regp' is
443  * set to the register index this element hashes to. */
hllPatLen(unsigned char * ele,size_t elesize,long * regp)444 int hllPatLen(unsigned char *ele, size_t elesize, long *regp) {
445     uint64_t hash, bit, index;
446     int count;
447 
448     /* Count the number of zeroes starting from bit HLL_REGISTERS
449      * (that is a power of two corresponding to the first bit we don't use
450      * as index). The max run can be 64-P+1 bits.
451      *
452      * Note that the final "1" ending the sequence of zeroes must be
453      * included in the count, so if we find "001" the count is 3, and
454      * the smallest count possible is no zeroes at all, just a 1 bit
455      * at the first position, that is a count of 1.
456      *
457      * This may sound like inefficient, but actually in the average case
458      * there are high probabilities to find a 1 after a few iterations. */
459     hash = MurmurHash64A(ele,elesize,0xadc83b19ULL);
460     index = hash & HLL_P_MASK; /* Register index. */
461     hash |= ((uint64_t)1<<63); /* Make sure the loop terminates. */
462     bit = HLL_REGISTERS; /* First bit not used to address the register. */
463     count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */
464     while((hash & bit) == 0) {
465         count++;
466         bit <<= 1;
467     }
468     *regp = (int) index;
469     return count;
470 }
471 
472 /* ================== Dense representation implementation  ================== */
473 
474 /* "Add" the element in the dense hyperloglog data structure.
475  * Actually nothing is added, but the max 0 pattern counter of the subset
476  * the element belongs to is incremented if needed.
477  *
478  * 'registers' is expected to have room for HLL_REGISTERS plus an
479  * additional byte on the right. This requirement is met by sds strings
480  * automatically since they are implicitly null terminated.
481  *
482  * The function always succeed, however if as a result of the operation
483  * the approximated cardinality changed, 1 is returned. Otherwise 0
484  * is returned. */
hllDenseAdd(uint8_t * registers,unsigned char * ele,size_t elesize)485 int hllDenseAdd(uint8_t *registers, unsigned char *ele, size_t elesize) {
486     uint8_t oldcount, count;
487     long index;
488 
489     /* Update the register if this element produced a longer run of zeroes. */
490     count = hllPatLen(ele,elesize,&index);
491     HLL_DENSE_GET_REGISTER(oldcount,registers,index);
492     if (count > oldcount) {
493         HLL_DENSE_SET_REGISTER(registers,index,count);
494         return 1;
495     } else {
496         return 0;
497     }
498 }
499 
500 /* Compute SUM(2^-reg) in the dense representation.
501  * PE is an array with a pre-computer table of values 2^-reg indexed by reg.
502  * As a side effect the integer pointed by 'ezp' is set to the number
503  * of zero registers. */
hllDenseSum(uint8_t * registers,double * PE,int * ezp)504 double hllDenseSum(uint8_t *registers, double *PE, int *ezp) {
505     double E = 0;
506     int j, ez = 0;
507 
508     /* Redis default is to use 16384 registers 6 bits each. The code works
509      * with other values by modifying the defines, but for our target value
510      * we take a faster path with unrolled loops. */
511     if (HLL_REGISTERS == 16384 && HLL_BITS == 6) {
512         uint8_t *r = registers;
513         unsigned long r0, r1, r2, r3, r4, r5, r6, r7, r8, r9,
514                       r10, r11, r12, r13, r14, r15;
515         for (j = 0; j < 1024; j++) {
516             /* Handle 16 registers per iteration. */
517             r0 = r[0] & 63; if (r0 == 0) ez++;
518             r1 = (r[0] >> 6 | r[1] << 2) & 63; if (r1 == 0) ez++;
519             r2 = (r[1] >> 4 | r[2] << 4) & 63; if (r2 == 0) ez++;
520             r3 = (r[2] >> 2) & 63; if (r3 == 0) ez++;
521             r4 = r[3] & 63; if (r4 == 0) ez++;
522             r5 = (r[3] >> 6 | r[4] << 2) & 63; if (r5 == 0) ez++;
523             r6 = (r[4] >> 4 | r[5] << 4) & 63; if (r6 == 0) ez++;
524             r7 = (r[5] >> 2) & 63; if (r7 == 0) ez++;
525             r8 = r[6] & 63; if (r8 == 0) ez++;
526             r9 = (r[6] >> 6 | r[7] << 2) & 63; if (r9 == 0) ez++;
527             r10 = (r[7] >> 4 | r[8] << 4) & 63; if (r10 == 0) ez++;
528             r11 = (r[8] >> 2) & 63; if (r11 == 0) ez++;
529             r12 = r[9] & 63; if (r12 == 0) ez++;
530             r13 = (r[9] >> 6 | r[10] << 2) & 63; if (r13 == 0) ez++;
531             r14 = (r[10] >> 4 | r[11] << 4) & 63; if (r14 == 0) ez++;
532             r15 = (r[11] >> 2) & 63; if (r15 == 0) ez++;
533 
534             /* Additional parens will allow the compiler to optimize the
535              * code more with a loss of precision that is not very relevant
536              * here (floating point math is not commutative!). */
537             E += (PE[r0] + PE[r1]) + (PE[r2] + PE[r3]) + (PE[r4] + PE[r5]) +
538                  (PE[r6] + PE[r7]) + (PE[r8] + PE[r9]) + (PE[r10] + PE[r11]) +
539                  (PE[r12] + PE[r13]) + (PE[r14] + PE[r15]);
540             r += 12;
541         }
542     } else {
543         for (j = 0; j < HLL_REGISTERS; j++) {
544             unsigned long reg;
545 
546             HLL_DENSE_GET_REGISTER(reg,registers,j);
547             if (reg == 0) {
548                 ez++;
549                 /* Increment E at the end of the loop. */
550             } else {
551                 E += PE[reg]; /* Precomputed 2^(-reg[j]). */
552             }
553         }
554         E += ez; /* Add 2^0 'ez' times. */
555     }
556     *ezp = ez;
557     return E;
558 }
559 
560 /* ================== Sparse representation implementation  ================= */
561 
562 /* Convert the HLL with sparse representation given as input in its dense
563  * representation. Both representations are represented by SDS strings, and
564  * the input representation is freed as a side effect.
565  *
566  * The function returns C_OK if the sparse representation was valid,
567  * otherwise C_ERR is returned if the representation was corrupted. */
hllSparseToDense(robj * o)568 int hllSparseToDense(robj *o) {
569     sds sparse = o->ptr, dense;
570     struct hllhdr *hdr, *oldhdr = (struct hllhdr*)sparse;
571     int idx = 0, runlen, regval;
572     uint8_t *p = (uint8_t*)sparse, *end = p+sdslen(sparse);
573 
574     /* If the representation is already the right one return ASAP. */
575     hdr = (struct hllhdr*) sparse;
576     if (hdr->encoding == HLL_DENSE) return C_OK;
577 
578     /* Create a string of the right size filled with zero bytes.
579      * Note that the cached cardinality is set to 0 as a side effect
580      * that is exactly the cardinality of an empty HLL. */
581     dense = sdsnewlen(NULL,HLL_DENSE_SIZE);
582     hdr = (struct hllhdr*) dense;
583     *hdr = *oldhdr; /* This will copy the magic and cached cardinality. */
584     hdr->encoding = HLL_DENSE;
585 
586     /* Now read the sparse representation and set non-zero registers
587      * accordingly. */
588     p += HLL_HDR_SIZE;
589     while(p < end) {
590         if (HLL_SPARSE_IS_ZERO(p)) {
591             runlen = HLL_SPARSE_ZERO_LEN(p);
592             idx += runlen;
593             p++;
594         } else if (HLL_SPARSE_IS_XZERO(p)) {
595             runlen = HLL_SPARSE_XZERO_LEN(p);
596             idx += runlen;
597             p += 2;
598         } else {
599             runlen = HLL_SPARSE_VAL_LEN(p);
600             regval = HLL_SPARSE_VAL_VALUE(p);
601             while(runlen--) {
602                 HLL_DENSE_SET_REGISTER(hdr->registers,idx,regval);
603                 idx++;
604             }
605             p++;
606         }
607     }
608 
609     /* If the sparse representation was valid, we expect to find idx
610      * set to HLL_REGISTERS. */
611     if (idx != HLL_REGISTERS) {
612         sdsfree(dense);
613         return C_ERR;
614     }
615 
616     /* Free the old representation and set the new one. */
617     sdsfree(o->ptr);
618     o->ptr = dense;
619     return C_OK;
620 }
621 
622 /* "Add" the element in the sparse hyperloglog data structure.
623  * Actually nothing is added, but the max 0 pattern counter of the subset
624  * the element belongs to is incremented if needed.
625  *
626  * The object 'o' is the String object holding the HLL. The function requires
627  * a reference to the object in order to be able to enlarge the string if
628  * needed.
629  *
630  * On success, the function returns 1 if the cardinality changed, or 0
631  * if the register for this element was not updated.
632  * On error (if the representation is invalid) -1 is returned.
633  *
634  * As a side effect the function may promote the HLL representation from
635  * sparse to dense: this happens when a register requires to be set to a value
636  * not representable with the sparse representation, or when the resulting
637  * size would be greater than server.hll_sparse_max_bytes. */
hllSparseAdd(robj * o,unsigned char * ele,size_t elesize)638 int hllSparseAdd(robj *o, unsigned char *ele, size_t elesize) {
639     struct hllhdr *hdr;
640     uint8_t oldcount, count, *sparse, *end, *p, *prev, *next;
641     long index, first, span;
642     long is_zero = 0, is_xzero = 0, is_val = 0, runlen = 0;
643 
644     /* Update the register if this element produced a longer run of zeroes. */
645     count = hllPatLen(ele,elesize,&index);
646 
647     /* If the count is too big to be representable by the sparse representation
648      * switch to dense representation. */
649     if (count > HLL_SPARSE_VAL_MAX_VALUE) goto promote;
650 
651     /* When updating a sparse representation, sometimes we may need to
652      * enlarge the buffer for up to 3 bytes in the worst case (XZERO split
653      * into XZERO-VAL-XZERO). Make sure there is enough space right now
654      * so that the pointers we take during the execution of the function
655      * will be valid all the time. */
656     o->ptr = sdsMakeRoomFor(o->ptr,3);
657 
658     /* Step 1: we need to locate the opcode we need to modify to check
659      * if a value update is actually needed. */
660     sparse = p = ((uint8_t*)o->ptr) + HLL_HDR_SIZE;
661     end = p + sdslen(o->ptr) - HLL_HDR_SIZE;
662 
663     first = 0;
664     prev = NULL; /* Points to previos opcode at the end of the loop. */
665     next = NULL; /* Points to the next opcode at the end of the loop. */
666     span = 0;
667     while(p < end) {
668         long oplen;
669 
670         /* Set span to the number of registers covered by this opcode.
671          *
672          * This is the most performance critical loop of the sparse
673          * representation. Sorting the conditionals from the most to the
674          * least frequent opcode in many-bytes sparse HLLs is faster. */
675         oplen = 1;
676         if (HLL_SPARSE_IS_ZERO(p)) {
677             span = HLL_SPARSE_ZERO_LEN(p);
678         } else if (HLL_SPARSE_IS_VAL(p)) {
679             span = HLL_SPARSE_VAL_LEN(p);
680         } else { /* XZERO. */
681             span = HLL_SPARSE_XZERO_LEN(p);
682             oplen = 2;
683         }
684         /* Break if this opcode covers the register as 'index'. */
685         if (index <= first+span-1) break;
686         prev = p;
687         p += oplen;
688         first += span;
689     }
690     if (span == 0) return -1; /* Invalid format. */
691 
692     next = HLL_SPARSE_IS_XZERO(p) ? p+2 : p+1;
693     if (next >= end) next = NULL;
694 
695     /* Cache current opcode type to avoid using the macro again and
696      * again for something that will not change.
697      * Also cache the run-length of the opcode. */
698     if (HLL_SPARSE_IS_ZERO(p)) {
699         is_zero = 1;
700         runlen = HLL_SPARSE_ZERO_LEN(p);
701     } else if (HLL_SPARSE_IS_XZERO(p)) {
702         is_xzero = 1;
703         runlen = HLL_SPARSE_XZERO_LEN(p);
704     } else {
705         is_val = 1;
706         runlen = HLL_SPARSE_VAL_LEN(p);
707     }
708 
709     /* Step 2: After the loop:
710      *
711      * 'first' stores to the index of the first register covered
712      *  by the current opcode, which is pointed by 'p'.
713      *
714      * 'next' ad 'prev' store respectively the next and previous opcode,
715      *  or NULL if the opcode at 'p' is respectively the last or first.
716      *
717      * 'span' is set to the number of registers covered by the current
718      *  opcode.
719      *
720      * There are different cases in order to update the data structure
721      * in place without generating it from scratch:
722      *
723      * A) If it is a VAL opcode already set to a value >= our 'count'
724      *    no update is needed, regardless of the VAL run-length field.
725      *    In this case PFADD returns 0 since no changes are performed.
726      *
727      * B) If it is a VAL opcode with len = 1 (representing only our
728      *    register) and the value is less than 'count', we just update it
729      *    since this is a trivial case. */
730     if (is_val) {
731         oldcount = HLL_SPARSE_VAL_VALUE(p);
732         /* Case A. */
733         if (oldcount >= count) return 0;
734 
735         /* Case B. */
736         if (runlen == 1) {
737             HLL_SPARSE_VAL_SET(p,count,1);
738             goto updated;
739         }
740     }
741 
742     /* C) Another trivial to handle case is a ZERO opcode with a len of 1.
743      * We can just replace it with a VAL opcode with our value and len of 1. */
744     if (is_zero && runlen == 1) {
745         HLL_SPARSE_VAL_SET(p,count,1);
746         goto updated;
747     }
748 
749     /* D) General case.
750      *
751      * The other cases are more complex: our register requires to be updated
752      * and is either currently represented by a VAL opcode with len > 1,
753      * by a ZERO opcode with len > 1, or by an XZERO opcode.
754      *
755      * In those cases the original opcode must be split into muliple
756      * opcodes. The worst case is an XZERO split in the middle resuling into
757      * XZERO - VAL - XZERO, so the resulting sequence max length is
758      * 5 bytes.
759      *
760      * We perform the split writing the new sequence into the 'new' buffer
761      * with 'newlen' as length. Later the new sequence is inserted in place
762      * of the old one, possibly moving what is on the right a few bytes
763      * if the new sequence is longer than the older one. */
764     uint8_t seq[5], *n = seq;
765     int last = first+span-1; /* Last register covered by the sequence. */
766     int len;
767 
768     if (is_zero || is_xzero) {
769         /* Handle splitting of ZERO / XZERO. */
770         if (index != first) {
771             len = index-first;
772             if (len > HLL_SPARSE_ZERO_MAX_LEN) {
773                 HLL_SPARSE_XZERO_SET(n,len);
774                 n += 2;
775             } else {
776                 HLL_SPARSE_ZERO_SET(n,len);
777                 n++;
778             }
779         }
780         HLL_SPARSE_VAL_SET(n,count,1);
781         n++;
782         if (index != last) {
783             len = last-index;
784             if (len > HLL_SPARSE_ZERO_MAX_LEN) {
785                 HLL_SPARSE_XZERO_SET(n,len);
786                 n += 2;
787             } else {
788                 HLL_SPARSE_ZERO_SET(n,len);
789                 n++;
790             }
791         }
792     } else {
793         /* Handle splitting of VAL. */
794         int curval = HLL_SPARSE_VAL_VALUE(p);
795 
796         if (index != first) {
797             len = index-first;
798             HLL_SPARSE_VAL_SET(n,curval,len);
799             n++;
800         }
801         HLL_SPARSE_VAL_SET(n,count,1);
802         n++;
803         if (index != last) {
804             len = last-index;
805             HLL_SPARSE_VAL_SET(n,curval,len);
806             n++;
807         }
808     }
809 
810     /* Step 3: substitute the new sequence with the old one.
811      *
812      * Note that we already allocated space on the sds string
813      * calling sdsMakeRoomFor(). */
814      int seqlen = n-seq;
815      int oldlen = is_xzero ? 2 : 1;
816      int deltalen = seqlen-oldlen;
817 
818      if (deltalen > 0 &&
819          sdslen(o->ptr)+deltalen > server.hll_sparse_max_bytes) goto promote;
820      if (deltalen && next) memmove(next+deltalen,next,end-next);
821      sdsIncrLen(o->ptr,deltalen);
822      memcpy(p,seq,seqlen);
823      end += deltalen;
824 
825 updated:
826     /* Step 4: Merge adjacent values if possible.
827      *
828      * The representation was updated, however the resulting representation
829      * may not be optimal: adjacent VAL opcodes can sometimes be merged into
830      * a single one. */
831     p = prev ? prev : sparse;
832     int scanlen = 5; /* Scan up to 5 upcodes starting from prev. */
833     while (p < end && scanlen--) {
834         if (HLL_SPARSE_IS_XZERO(p)) {
835             p += 2;
836             continue;
837         } else if (HLL_SPARSE_IS_ZERO(p)) {
838             p++;
839             continue;
840         }
841         /* We need two adjacent VAL opcodes to try a merge, having
842          * the same value, and a len that fits the VAL opcode max len. */
843         if (p+1 < end && HLL_SPARSE_IS_VAL(p+1)) {
844             int v1 = HLL_SPARSE_VAL_VALUE(p);
845             int v2 = HLL_SPARSE_VAL_VALUE(p+1);
846             if (v1 == v2) {
847                 int len = HLL_SPARSE_VAL_LEN(p)+HLL_SPARSE_VAL_LEN(p+1);
848                 if (len <= HLL_SPARSE_VAL_MAX_LEN) {
849                     HLL_SPARSE_VAL_SET(p+1,v1,len);
850                     memmove(p,p+1,end-p);
851                     sdsIncrLen(o->ptr,-1);
852                     end--;
853                     /* After a merge we reiterate without incrementing 'p'
854                      * in order to try to merge the just merged value with
855                      * a value on its right. */
856                     continue;
857                 }
858             }
859         }
860         p++;
861     }
862 
863     /* Invalidate the cached cardinality. */
864     hdr = o->ptr;
865     HLL_INVALIDATE_CACHE(hdr);
866     return 1;
867 
868 promote: /* Promote to dense representation. */
869     if (hllSparseToDense(o) == C_ERR) return -1; /* Corrupted HLL. */
870     hdr = o->ptr;
871 
872     /* We need to call hllDenseAdd() to perform the operation after the
873      * conversion. However the result must be 1, since if we need to
874      * convert from sparse to dense a register requires to be updated.
875      *
876      * Note that this in turn means that PFADD will make sure the command
877      * is propagated to slaves / AOF, so if there is a sparse -> dense
878      * convertion, it will be performed in all the slaves as well. */
879     int dense_retval = hllDenseAdd(hdr->registers, ele, elesize);
880     serverAssert(dense_retval == 1);
881     return dense_retval;
882 }
883 
884 /* Compute SUM(2^-reg) in the sparse representation.
885  * PE is an array with a pre-computer table of values 2^-reg indexed by reg.
886  * As a side effect the integer pointed by 'ezp' is set to the number
887  * of zero registers. */
hllSparseSum(uint8_t * sparse,int sparselen,double * PE,int * ezp,int * invalid)888 double hllSparseSum(uint8_t *sparse, int sparselen, double *PE, int *ezp, int *invalid) {
889     double E = 0;
890     int ez = 0, idx = 0, runlen, regval;
891     uint8_t *end = sparse+sparselen, *p = sparse;
892 
893     while(p < end) {
894         if (HLL_SPARSE_IS_ZERO(p)) {
895             runlen = HLL_SPARSE_ZERO_LEN(p);
896             idx += runlen;
897             ez += runlen;
898             /* Increment E at the end of the loop. */
899             p++;
900         } else if (HLL_SPARSE_IS_XZERO(p)) {
901             runlen = HLL_SPARSE_XZERO_LEN(p);
902             idx += runlen;
903             ez += runlen;
904             /* Increment E at the end of the loop. */
905             p += 2;
906         } else {
907             runlen = HLL_SPARSE_VAL_LEN(p);
908             regval = HLL_SPARSE_VAL_VALUE(p);
909             idx += runlen;
910             E += PE[regval]*runlen;
911             p++;
912         }
913     }
914     if (idx != HLL_REGISTERS && invalid) *invalid = 1;
915     E += ez; /* Add 2^0 'ez' times. */
916     *ezp = ez;
917     return E;
918 }
919 
920 /* ========================= HyperLogLog Count ==============================
921  * This is the core of the algorithm where the approximated count is computed.
922  * The function uses the lower level hllDenseSum() and hllSparseSum() functions
923  * as helpers to compute the SUM(2^-reg) part of the computation, which is
924  * representation-specific, while all the rest is common. */
925 
926 /* Implements the SUM operation for uint8_t data type which is only used
927  * internally as speedup for PFCOUNT with multiple keys. */
hllRawSum(uint8_t * registers,double * PE,int * ezp)928 double hllRawSum(uint8_t *registers, double *PE, int *ezp) {
929     double E = 0;
930     int j, ez = 0;
931     uint64_t *word = (uint64_t*) registers;
932     uint8_t *bytes;
933 
934     for (j = 0; j < HLL_REGISTERS/8; j++) {
935         if (*word == 0) {
936             ez += 8;
937         } else {
938             bytes = (uint8_t*) word;
939             if (bytes[0]) E += PE[bytes[0]]; else ez++;
940             if (bytes[1]) E += PE[bytes[1]]; else ez++;
941             if (bytes[2]) E += PE[bytes[2]]; else ez++;
942             if (bytes[3]) E += PE[bytes[3]]; else ez++;
943             if (bytes[4]) E += PE[bytes[4]]; else ez++;
944             if (bytes[5]) E += PE[bytes[5]]; else ez++;
945             if (bytes[6]) E += PE[bytes[6]]; else ez++;
946             if (bytes[7]) E += PE[bytes[7]]; else ez++;
947         }
948         word++;
949     }
950     E += ez; /* 2^(-reg[j]) is 1 when m is 0, add it 'ez' times for every
951                 zero register in the HLL. */
952     *ezp = ez;
953     return E;
954 }
955 
956 /* Return the approximated cardinality of the set based on the harmonic
957  * mean of the registers values. 'hdr' points to the start of the SDS
958  * representing the String object holding the HLL representation.
959  *
960  * If the sparse representation of the HLL object is not valid, the integer
961  * pointed by 'invalid' is set to non-zero, otherwise it is left untouched.
962  *
963  * hllCount() supports a special internal-only encoding of HLL_RAW, that
964  * is, hdr->registers will point to an uint8_t array of HLL_REGISTERS element.
965  * This is useful in order to speedup PFCOUNT when called against multiple
966  * keys (no need to work with 6-bit integers encoding). */
hllCount(struct hllhdr * hdr,int * invalid)967 uint64_t hllCount(struct hllhdr *hdr, int *invalid) {
968     double m = HLL_REGISTERS;
969     double E, alpha = 0.7213/(1+1.079/m);
970     int j, ez; /* Number of registers equal to 0. */
971 
972     /* We precompute 2^(-reg[j]) in a small table in order to
973      * speedup the computation of SUM(2^-register[0..i]). */
974     static int initialized = 0;
975     static double PE[64];
976     if (!initialized) {
977         PE[0] = 1; /* 2^(-reg[j]) is 1 when m is 0. */
978         for (j = 1; j < 64; j++) {
979             /* 2^(-reg[j]) is the same as 1/2^reg[j]. */
980             PE[j] = 1.0/(1ULL << j);
981         }
982         initialized = 1;
983     }
984 
985     /* Compute SUM(2^-register[0..i]). */
986     if (hdr->encoding == HLL_DENSE) {
987         E = hllDenseSum(hdr->registers,PE,&ez);
988     } else if (hdr->encoding == HLL_SPARSE) {
989         E = hllSparseSum(hdr->registers,
990                          sdslen((sds)hdr)-HLL_HDR_SIZE,PE,&ez,invalid);
991     } else if (hdr->encoding == HLL_RAW) {
992         E = hllRawSum(hdr->registers,PE,&ez);
993     } else {
994         serverPanic("Unknown HyperLogLog encoding in hllCount()");
995     }
996 
997     /* Muliply the inverse of E for alpha_m * m^2 to have the raw estimate. */
998     E = (1/E)*alpha*m*m;
999 
1000     /* Use the LINEARCOUNTING algorithm for small cardinalities.
1001      * For larger values but up to 72000 HyperLogLog raw approximation is
1002      * used since linear counting error starts to increase. However HyperLogLog
1003      * shows a strong bias in the range 2.5*16384 - 72000, so we try to
1004      * compensate for it. */
1005     if (E < m*2.5 && ez != 0) {
1006         E = m*log(m/ez); /* LINEARCOUNTING() */
1007     } else if (m == 16384 && E < 72000) {
1008         /* We did polynomial regression of the bias for this range, this
1009          * way we can compute the bias for a given cardinality and correct
1010          * according to it. Only apply the correction for P=14 that's what
1011          * we use and the value the correction was verified with. */
1012         double bias = 5.9119*1.0e-18*(E*E*E*E)
1013                       -1.4253*1.0e-12*(E*E*E)+
1014                       1.2940*1.0e-7*(E*E)
1015                       -5.2921*1.0e-3*E+
1016                       83.3216;
1017         E -= E*(bias/100);
1018     }
1019     /* We don't apply the correction for E > 1/30 of 2^32 since we use
1020      * a 64 bit function and 6 bit counters. To apply the correction for
1021      * 1/30 of 2^64 is not needed since it would require a huge set
1022      * to approach such a value. */
1023     return (uint64_t) E;
1024 }
1025 
1026 /* Call hllDenseAdd() or hllSparseAdd() according to the HLL encoding. */
hllAdd(robj * o,unsigned char * ele,size_t elesize)1027 int hllAdd(robj *o, unsigned char *ele, size_t elesize) {
1028     struct hllhdr *hdr = o->ptr;
1029     switch(hdr->encoding) {
1030     case HLL_DENSE: return hllDenseAdd(hdr->registers,ele,elesize);
1031     case HLL_SPARSE: return hllSparseAdd(o,ele,elesize);
1032     default: return -1; /* Invalid representation. */
1033     }
1034 }
1035 
1036 /* Merge by computing MAX(registers[i],hll[i]) the HyperLogLog 'hll'
1037  * with an array of uint8_t HLL_REGISTERS registers pointed by 'max'.
1038  *
1039  * The hll object must be already validated via isHLLObjectOrReply()
1040  * or in some other way.
1041  *
1042  * If the HyperLogLog is sparse and is found to be invalid, C_ERR
1043  * is returned, otherwise the function always succeeds. */
hllMerge(uint8_t * max,robj * hll)1044 int hllMerge(uint8_t *max, robj *hll) {
1045     struct hllhdr *hdr = hll->ptr;
1046     int i;
1047 
1048     if (hdr->encoding == HLL_DENSE) {
1049         uint8_t val;
1050 
1051         for (i = 0; i < HLL_REGISTERS; i++) {
1052             HLL_DENSE_GET_REGISTER(val,hdr->registers,i);
1053             if (val > max[i]) max[i] = val;
1054         }
1055     } else {
1056         uint8_t *p = hll->ptr, *end = p + sdslen(hll->ptr);
1057         long runlen, regval;
1058 
1059         p += HLL_HDR_SIZE;
1060         i = 0;
1061         while(p < end) {
1062             if (HLL_SPARSE_IS_ZERO(p)) {
1063                 runlen = HLL_SPARSE_ZERO_LEN(p);
1064                 i += runlen;
1065                 p++;
1066             } else if (HLL_SPARSE_IS_XZERO(p)) {
1067                 runlen = HLL_SPARSE_XZERO_LEN(p);
1068                 i += runlen;
1069                 p += 2;
1070             } else {
1071                 runlen = HLL_SPARSE_VAL_LEN(p);
1072                 regval = HLL_SPARSE_VAL_VALUE(p);
1073                 while(runlen--) {
1074                     if (regval > max[i]) max[i] = regval;
1075                     i++;
1076                 }
1077                 p++;
1078             }
1079         }
1080         if (i != HLL_REGISTERS) return C_ERR;
1081     }
1082     return C_OK;
1083 }
1084 
1085 /* ========================== HyperLogLog commands ========================== */
1086 
1087 /* Create an HLL object. We always create the HLL using sparse encoding.
1088  * This will be upgraded to the dense representation as needed. */
createHLLObject(void)1089 robj *createHLLObject(void) {
1090     robj *o;
1091     struct hllhdr *hdr;
1092     sds s;
1093     uint8_t *p;
1094     int sparselen = HLL_HDR_SIZE +
1095                     (((HLL_REGISTERS+(HLL_SPARSE_XZERO_MAX_LEN-1)) /
1096                      HLL_SPARSE_XZERO_MAX_LEN)*2);
1097     int aux;
1098 
1099     /* Populate the sparse representation with as many XZERO opcodes as
1100      * needed to represent all the registers. */
1101     aux = HLL_REGISTERS;
1102     s = sdsnewlen(NULL,sparselen);
1103     p = (uint8_t*)s + HLL_HDR_SIZE;
1104     while(aux) {
1105         int xzero = HLL_SPARSE_XZERO_MAX_LEN;
1106         if (xzero > aux) xzero = aux;
1107         HLL_SPARSE_XZERO_SET(p,xzero);
1108         p += 2;
1109         aux -= xzero;
1110     }
1111     serverAssert((p-(uint8_t*)s) == sparselen);
1112 
1113     /* Create the actual object. */
1114     o = createObject(OBJ_STRING,s);
1115     hdr = o->ptr;
1116     memcpy(hdr->magic,"HYLL",4);
1117     hdr->encoding = HLL_SPARSE;
1118     return o;
1119 }
1120 
1121 /* Check if the object is a String with a valid HLL representation.
1122  * Return C_OK if this is true, otherwise reply to the client
1123  * with an error and return C_ERR. */
isHLLObjectOrReply(client * c,robj * o)1124 int isHLLObjectOrReply(client *c, robj *o) {
1125     struct hllhdr *hdr;
1126 
1127     /* Key exists, check type */
1128     if (checkType(c,o,OBJ_STRING))
1129         return C_ERR; /* Error already sent. */
1130 
1131     if (stringObjectLen(o) < sizeof(*hdr)) goto invalid;
1132     hdr = o->ptr;
1133 
1134     /* Magic should be "HYLL". */
1135     if (hdr->magic[0] != 'H' || hdr->magic[1] != 'Y' ||
1136         hdr->magic[2] != 'L' || hdr->magic[3] != 'L') goto invalid;
1137 
1138     if (hdr->encoding > HLL_MAX_ENCODING) goto invalid;
1139 
1140     /* Dense representation string length should match exactly. */
1141     if (hdr->encoding == HLL_DENSE &&
1142         stringObjectLen(o) != HLL_DENSE_SIZE) goto invalid;
1143 
1144     /* All tests passed. */
1145     return C_OK;
1146 
1147 invalid:
1148     addReplySds(c,
1149         sdsnew("-WRONGTYPE Key is not a valid "
1150                "HyperLogLog string value.\r\n"));
1151     return C_ERR;
1152 }
1153 
1154 /* PFADD var ele ele ele ... ele => :0 or :1 */
pfaddCommand(client * c)1155 void pfaddCommand(client *c) {
1156     robj *o = lookupKeyWrite(c->db,c->argv[1]);
1157     struct hllhdr *hdr;
1158     int updated = 0, j;
1159 
1160     if (o == NULL) {
1161         /* Create the key with a string value of the exact length to
1162          * hold our HLL data structure. sdsnewlen() when NULL is passed
1163          * is guaranteed to return bytes initialized to zero. */
1164         o = createHLLObject();
1165         dbAdd(c->db,c->argv[1],o);
1166         updated++;
1167     } else {
1168         if (isHLLObjectOrReply(c,o) != C_OK) return;
1169         o = dbUnshareStringValue(c->db,c->argv[1],o);
1170     }
1171     /* Perform the low level ADD operation for every element. */
1172     for (j = 2; j < c->argc; j++) {
1173         int retval = hllAdd(o, (unsigned char*)c->argv[j]->ptr,
1174                                sdslen(c->argv[j]->ptr));
1175         switch(retval) {
1176         case 1:
1177             updated++;
1178             break;
1179         case -1:
1180             addReplySds(c,sdsnew(invalid_hll_err));
1181             return;
1182         }
1183     }
1184     hdr = o->ptr;
1185     if (updated) {
1186         signalModifiedKey(c->db,c->argv[1]);
1187         notifyKeyspaceEvent(NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
1188         server.dirty++;
1189         HLL_INVALIDATE_CACHE(hdr);
1190     }
1191     addReply(c, updated ? shared.cone : shared.czero);
1192 }
1193 
1194 /* PFCOUNT var -> approximated cardinality of set. */
pfcountCommand(client * c)1195 void pfcountCommand(client *c) {
1196     robj *o;
1197     struct hllhdr *hdr;
1198     uint64_t card;
1199 
1200     /* Case 1: multi-key keys, cardinality of the union.
1201      *
1202      * When multiple keys are specified, PFCOUNT actually computes
1203      * the cardinality of the merge of the N HLLs specified. */
1204     if (c->argc > 2) {
1205         uint8_t max[HLL_HDR_SIZE+HLL_REGISTERS], *registers;
1206         int j;
1207 
1208         /* Compute an HLL with M[i] = MAX(M[i]_j). */
1209         memset(max,0,sizeof(max));
1210         hdr = (struct hllhdr*) max;
1211         hdr->encoding = HLL_RAW; /* Special internal-only encoding. */
1212         registers = max + HLL_HDR_SIZE;
1213         for (j = 1; j < c->argc; j++) {
1214             /* Check type and size. */
1215             robj *o = lookupKeyRead(c->db,c->argv[j]);
1216             if (o == NULL) continue; /* Assume empty HLL for non existing var.*/
1217             if (isHLLObjectOrReply(c,o) != C_OK) return;
1218 
1219             /* Merge with this HLL with our 'max' HHL by setting max[i]
1220              * to MAX(max[i],hll[i]). */
1221             if (hllMerge(registers,o) == C_ERR) {
1222                 addReplySds(c,sdsnew(invalid_hll_err));
1223                 return;
1224             }
1225         }
1226 
1227         /* Compute cardinality of the resulting set. */
1228         addReplyLongLong(c,hllCount(hdr,NULL));
1229         return;
1230     }
1231 
1232     /* Case 2: cardinality of the single HLL.
1233      *
1234      * The user specified a single key. Either return the cached value
1235      * or compute one and update the cache. */
1236     o = lookupKeyWrite(c->db,c->argv[1]);
1237     if (o == NULL) {
1238         /* No key? Cardinality is zero since no element was added, otherwise
1239          * we would have a key as HLLADD creates it as a side effect. */
1240         addReply(c,shared.czero);
1241     } else {
1242         if (isHLLObjectOrReply(c,o) != C_OK) return;
1243         o = dbUnshareStringValue(c->db,c->argv[1],o);
1244 
1245         /* Check if the cached cardinality is valid. */
1246         hdr = o->ptr;
1247         if (HLL_VALID_CACHE(hdr)) {
1248             /* Just return the cached value. */
1249             card = (uint64_t)hdr->card[0];
1250             card |= (uint64_t)hdr->card[1] << 8;
1251             card |= (uint64_t)hdr->card[2] << 16;
1252             card |= (uint64_t)hdr->card[3] << 24;
1253             card |= (uint64_t)hdr->card[4] << 32;
1254             card |= (uint64_t)hdr->card[5] << 40;
1255             card |= (uint64_t)hdr->card[6] << 48;
1256             card |= (uint64_t)hdr->card[7] << 56;
1257         } else {
1258             int invalid = 0;
1259             /* Recompute it and update the cached value. */
1260             card = hllCount(hdr,&invalid);
1261             if (invalid) {
1262                 addReplySds(c,sdsnew(invalid_hll_err));
1263                 return;
1264             }
1265             hdr->card[0] = card & 0xff;
1266             hdr->card[1] = (card >> 8) & 0xff;
1267             hdr->card[2] = (card >> 16) & 0xff;
1268             hdr->card[3] = (card >> 24) & 0xff;
1269             hdr->card[4] = (card >> 32) & 0xff;
1270             hdr->card[5] = (card >> 40) & 0xff;
1271             hdr->card[6] = (card >> 48) & 0xff;
1272             hdr->card[7] = (card >> 56) & 0xff;
1273             /* This is not considered a read-only command even if the
1274              * data structure is not modified, since the cached value
1275              * may be modified and given that the HLL is a Redis string
1276              * we need to propagate the change. */
1277             signalModifiedKey(c->db,c->argv[1]);
1278             server.dirty++;
1279         }
1280         addReplyLongLong(c,card);
1281     }
1282 }
1283 
1284 /* PFMERGE dest src1 src2 src3 ... srcN => OK */
pfmergeCommand(client * c)1285 void pfmergeCommand(client *c) {
1286     uint8_t max[HLL_REGISTERS];
1287     struct hllhdr *hdr;
1288     int j;
1289 
1290     /* Compute an HLL with M[i] = MAX(M[i]_j).
1291      * We we the maximum into the max array of registers. We'll write
1292      * it to the target variable later. */
1293     memset(max,0,sizeof(max));
1294     for (j = 1; j < c->argc; j++) {
1295         /* Check type and size. */
1296         robj *o = lookupKeyRead(c->db,c->argv[j]);
1297         if (o == NULL) continue; /* Assume empty HLL for non existing var. */
1298         if (isHLLObjectOrReply(c,o) != C_OK) return;
1299 
1300         /* Merge with this HLL with our 'max' HHL by setting max[i]
1301          * to MAX(max[i],hll[i]). */
1302         if (hllMerge(max,o) == C_ERR) {
1303             addReplySds(c,sdsnew(invalid_hll_err));
1304             return;
1305         }
1306     }
1307 
1308     /* Create / unshare the destination key's value if needed. */
1309     robj *o = lookupKeyWrite(c->db,c->argv[1]);
1310     if (o == NULL) {
1311         /* Create the key with a string value of the exact length to
1312          * hold our HLL data structure. sdsnewlen() when NULL is passed
1313          * is guaranteed to return bytes initialized to zero. */
1314         o = createHLLObject();
1315         dbAdd(c->db,c->argv[1],o);
1316     } else {
1317         /* If key exists we are sure it's of the right type/size
1318          * since we checked when merging the different HLLs, so we
1319          * don't check again. */
1320         o = dbUnshareStringValue(c->db,c->argv[1],o);
1321     }
1322 
1323     /* Only support dense objects as destination. */
1324     if (hllSparseToDense(o) == C_ERR) {
1325         addReplySds(c,sdsnew(invalid_hll_err));
1326         return;
1327     }
1328 
1329     /* Write the resulting HLL to the destination HLL registers and
1330      * invalidate the cached value. */
1331     hdr = o->ptr;
1332     for (j = 0; j < HLL_REGISTERS; j++) {
1333         HLL_DENSE_SET_REGISTER(hdr->registers,j,max[j]);
1334     }
1335     HLL_INVALIDATE_CACHE(hdr);
1336 
1337     signalModifiedKey(c->db,c->argv[1]);
1338     /* We generate an PFADD event for PFMERGE for semantical simplicity
1339      * since in theory this is a mass-add of elements. */
1340     notifyKeyspaceEvent(NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
1341     server.dirty++;
1342     addReply(c,shared.ok);
1343 }
1344 
1345 /* ========================== Testing / Debugging  ========================== */
1346 
1347 /* PFSELFTEST
1348  * This command performs a self-test of the HLL registers implementation.
1349  * Something that is not easy to test from within the outside. */
1350 #define HLL_TEST_CYCLES 1000
pfselftestCommand(client * c)1351 void pfselftestCommand(client *c) {
1352     unsigned int j, i;
1353     sds bitcounters = sdsnewlen(NULL,HLL_DENSE_SIZE);
1354     struct hllhdr *hdr = (struct hllhdr*) bitcounters, *hdr2;
1355     robj *o = NULL;
1356     uint8_t bytecounters[HLL_REGISTERS];
1357 
1358     /* Test 1: access registers.
1359      * The test is conceived to test that the different counters of our data
1360      * structure are accessible and that setting their values both result in
1361      * the correct value to be retained and not affect adjacent values. */
1362     for (j = 0; j < HLL_TEST_CYCLES; j++) {
1363         /* Set the HLL counters and an array of unsigned byes of the
1364          * same size to the same set of random values. */
1365         for (i = 0; i < HLL_REGISTERS; i++) {
1366             unsigned int r = rand() & HLL_REGISTER_MAX;
1367 
1368             bytecounters[i] = r;
1369             HLL_DENSE_SET_REGISTER(hdr->registers,i,r);
1370         }
1371         /* Check that we are able to retrieve the same values. */
1372         for (i = 0; i < HLL_REGISTERS; i++) {
1373             unsigned int val;
1374 
1375             HLL_DENSE_GET_REGISTER(val,hdr->registers,i);
1376             if (val != bytecounters[i]) {
1377                 addReplyErrorFormat(c,
1378                     "TESTFAILED Register %d should be %d but is %d",
1379                     i, (int) bytecounters[i], (int) val);
1380                 goto cleanup;
1381             }
1382         }
1383     }
1384 
1385     /* Test 2: approximation error.
1386      * The test adds unique elements and check that the estimated value
1387      * is always reasonable bounds.
1388      *
1389      * We check that the error is smaller than a few times than the expected
1390      * standard error, to make it very unlikely for the test to fail because
1391      * of a "bad" run.
1392      *
1393      * The test is performed with both dense and sparse HLLs at the same
1394      * time also verifying that the computed cardinality is the same. */
1395     memset(hdr->registers,0,HLL_DENSE_SIZE-HLL_HDR_SIZE);
1396     o = createHLLObject();
1397     double relerr = 1.04/sqrt(HLL_REGISTERS);
1398     int64_t checkpoint = 1;
1399     uint64_t seed = (uint64_t)rand() | (uint64_t)rand() << 32;
1400     uint64_t ele;
1401     for (j = 1; j <= 10000000; j++) {
1402         ele = j ^ seed;
1403         hllDenseAdd(hdr->registers,(unsigned char*)&ele,sizeof(ele));
1404         hllAdd(o,(unsigned char*)&ele,sizeof(ele));
1405 
1406         /* Make sure that for small cardinalities we use sparse
1407          * encoding. */
1408         if (j == checkpoint && j < server.hll_sparse_max_bytes/2) {
1409             hdr2 = o->ptr;
1410             if (hdr2->encoding != HLL_SPARSE) {
1411                 addReplyError(c, "TESTFAILED sparse encoding not used");
1412                 goto cleanup;
1413             }
1414         }
1415 
1416         /* Check that dense and sparse representations agree. */
1417         if (j == checkpoint && hllCount(hdr,NULL) != hllCount(o->ptr,NULL)) {
1418                 addReplyError(c, "TESTFAILED dense/sparse disagree");
1419                 goto cleanup;
1420         }
1421 
1422         /* Check error. */
1423         if (j == checkpoint) {
1424             int64_t abserr = checkpoint - (int64_t)hllCount(hdr,NULL);
1425             uint64_t maxerr = ceil(relerr*6*checkpoint);
1426 
1427             /* Adjust the max error we expect for cardinality 10
1428              * since from time to time it is statistically likely to get
1429              * much higher error due to collision, resulting into a false
1430              * positive. */
1431             if (j == 10) maxerr = 1;
1432 
1433             if (abserr < 0) abserr = -abserr;
1434             if (abserr > (int64_t)maxerr) {
1435                 addReplyErrorFormat(c,
1436                     "TESTFAILED Too big error. card:%llu abserr:%llu",
1437                     (unsigned long long) checkpoint,
1438                     (unsigned long long) abserr);
1439                 goto cleanup;
1440             }
1441             checkpoint *= 10;
1442         }
1443     }
1444 
1445     /* Success! */
1446     addReply(c,shared.ok);
1447 
1448 cleanup:
1449     sdsfree(bitcounters);
1450     if (o) decrRefCount(o);
1451 }
1452 
1453 /* PFDEBUG <subcommand> <key> ... args ...
1454  * Different debugging related operations about the HLL implementation. */
pfdebugCommand(client * c)1455 void pfdebugCommand(client *c) {
1456     char *cmd = c->argv[1]->ptr;
1457     struct hllhdr *hdr;
1458     robj *o;
1459     int j;
1460 
1461     o = lookupKeyWrite(c->db,c->argv[2]);
1462     if (o == NULL) {
1463         addReplyError(c,"The specified key does not exist");
1464         return;
1465     }
1466     if (isHLLObjectOrReply(c,o) != C_OK) return;
1467     o = dbUnshareStringValue(c->db,c->argv[2],o);
1468     hdr = o->ptr;
1469 
1470     /* PFDEBUG GETREG <key> */
1471     if (!strcasecmp(cmd,"getreg")) {
1472         if (c->argc != 3) goto arityerr;
1473 
1474         if (hdr->encoding == HLL_SPARSE) {
1475             if (hllSparseToDense(o) == C_ERR) {
1476                 addReplySds(c,sdsnew(invalid_hll_err));
1477                 return;
1478             }
1479             server.dirty++; /* Force propagation on encoding change. */
1480         }
1481 
1482         hdr = o->ptr;
1483         addReplyMultiBulkLen(c,HLL_REGISTERS);
1484         for (j = 0; j < HLL_REGISTERS; j++) {
1485             uint8_t val;
1486 
1487             HLL_DENSE_GET_REGISTER(val,hdr->registers,j);
1488             addReplyLongLong(c,val);
1489         }
1490     }
1491     /* PFDEBUG DECODE <key> */
1492     else if (!strcasecmp(cmd,"decode")) {
1493         if (c->argc != 3) goto arityerr;
1494 
1495         uint8_t *p = o->ptr, *end = p+sdslen(o->ptr);
1496         sds decoded = sdsempty();
1497 
1498         if (hdr->encoding != HLL_SPARSE) {
1499             addReplyError(c,"HLL encoding is not sparse");
1500             return;
1501         }
1502 
1503         p += HLL_HDR_SIZE;
1504         while(p < end) {
1505             int runlen, regval;
1506 
1507             if (HLL_SPARSE_IS_ZERO(p)) {
1508                 runlen = HLL_SPARSE_ZERO_LEN(p);
1509                 p++;
1510                 decoded = sdscatprintf(decoded,"z:%d ",runlen);
1511             } else if (HLL_SPARSE_IS_XZERO(p)) {
1512                 runlen = HLL_SPARSE_XZERO_LEN(p);
1513                 p += 2;
1514                 decoded = sdscatprintf(decoded,"Z:%d ",runlen);
1515             } else {
1516                 runlen = HLL_SPARSE_VAL_LEN(p);
1517                 regval = HLL_SPARSE_VAL_VALUE(p);
1518                 p++;
1519                 decoded = sdscatprintf(decoded,"v:%d,%d ",regval,runlen);
1520             }
1521         }
1522         decoded = sdstrim(decoded," ");
1523         addReplyBulkCBuffer(c,decoded,sdslen(decoded));
1524         sdsfree(decoded);
1525     }
1526     /* PFDEBUG ENCODING <key> */
1527     else if (!strcasecmp(cmd,"encoding")) {
1528         char *encodingstr[2] = {"dense","sparse"};
1529         if (c->argc != 3) goto arityerr;
1530 
1531         addReplyStatus(c,encodingstr[hdr->encoding]);
1532     }
1533     /* PFDEBUG TODENSE <key> */
1534     else if (!strcasecmp(cmd,"todense")) {
1535         int conv = 0;
1536         if (c->argc != 3) goto arityerr;
1537 
1538         if (hdr->encoding == HLL_SPARSE) {
1539             if (hllSparseToDense(o) == C_ERR) {
1540                 addReplySds(c,sdsnew(invalid_hll_err));
1541                 return;
1542             }
1543             conv = 1;
1544             server.dirty++; /* Force propagation on encoding change. */
1545         }
1546         addReply(c,conv ? shared.cone : shared.czero);
1547     } else {
1548         addReplyErrorFormat(c,"Unknown PFDEBUG subcommand '%s'", cmd);
1549     }
1550     return;
1551 
1552 arityerr:
1553     addReplyErrorFormat(c,
1554         "Wrong number of arguments for the '%s' subcommand",cmd);
1555 }
1556 
1557