1 /* hyperloglog.c - Redis HyperLogLog probabilistic cardinality approximation. 2 * This file implements the algorithm and the exported Redis commands. 3 * 4 * Copyright (c) 2014, Salvatore Sanfilippo <antirez at gmail dot com> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions are met: 9 * 10 * * Redistributions of source code must retain the above copyright notice, 11 * this list of conditions and the following disclaimer. 12 * * Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * * Neither the name of Redis nor the names of its contributors may be used 16 * to endorse or promote products derived from this software without 17 * specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include "redis.h" 33 34 #include <stdint.h> 35 #include <math.h> 36 37 /* The Redis HyperLogLog implementation is based on the following ideas: 38 * 39 * * The use of a 64 bit hash function as proposed in [1], in order to don't 40 * limited to cardinalities up to 10^9, at the cost of just 1 additional 41 * bit per register. 42 * * The use of 16384 6-bit registers for a great level of accuracy, using 43 * a total of 12k per key. 44 * * The use of the Redis string data type. No new type is introduced. 45 * * No attempt is made to compress the data structure as in [1]. Also the 46 * algorithm used is the original HyperLogLog Algorithm as in [2], with 47 * the only difference that a 64 bit hash function is used, so no correction 48 * is performed for values near 2^32 as in [1]. 49 * 50 * [1] Heule, Nunkesser, Hall: HyperLogLog in Practice: Algorithmic 51 * Engineering of a State of The Art Cardinality Estimation Algorithm. 52 * 53 * [2] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The 54 * analysis of a near-optimal cardinality estimation algorithm. 55 * 56 * Redis uses two representations: 57 * 58 * 1) A "dense" representation where every entry is represented by 59 * a 6-bit integer. 60 * 2) A "sparse" representation using run length compression suitable 61 * for representing HyperLogLogs with many registers set to 0 in 62 * a memory efficient way. 63 * 64 * 65 * HLL header 66 * === 67 * 68 * Both the dense and sparse representation have a 16 byte header as follows: 69 * 70 * +------+---+-----+----------+ 71 * | HYLL | E | N/U | Cardin. | 72 * +------+---+-----+----------+ 73 * 74 * The first 4 bytes are a magic string set to the bytes "HYLL". 75 * "E" is one byte encoding, currently set to HLL_DENSE or 76 * HLL_SPARSE. N/U are three not used bytes. 77 * 78 * The "Cardin." field is a 64 bit integer stored in little endian format 79 * with the latest cardinality computed that can be reused if the data 80 * structure was not modified since the last computation (this is useful 81 * because there are high probabilities that HLLADD operations don't 82 * modify the actual data structure and hence the approximated cardinality). 83 * 84 * When the most significant bit in the most significant byte of the cached 85 * cardinality is set, it means that the data structure was modified and 86 * we can't reuse the cached value that must be recomputed. 87 * 88 * Dense representation 89 * === 90 * 91 * The dense representation used by Redis is the following: 92 * 93 * +--------+--------+--------+------// //--+ 94 * |11000000|22221111|33333322|55444444 .... | 95 * +--------+--------+--------+------// //--+ 96 * 97 * The 6 bits counters are encoded one after the other starting from the 98 * LSB to the MSB, and using the next bytes as needed. 99 * 100 * Sparse representation 101 * === 102 * 103 * The sparse representation encodes registers using a run length 104 * encoding composed of three opcodes, two using one byte, and one using 105 * of two bytes. The opcodes are called ZERO, XZERO and VAL. 106 * 107 * ZERO opcode is represented as 00xxxxxx. The 6-bit integer represented 108 * by the six bits 'xxxxxx', plus 1, means that there are N registers set 109 * to 0. This opcode can represent from 1 to 64 contiguous registers set 110 * to the value of 0. 111 * 112 * XZERO opcode is represented by two bytes 01xxxxxx yyyyyyyy. The 14-bit 113 * integer represented by the bits 'xxxxxx' as most significant bits and 114 * 'yyyyyyyy' as least significant bits, plus 1, means that there are N 115 * registers set to 0. This opcode can represent from 0 to 16384 contiguous 116 * registers set to the value of 0. 117 * 118 * VAL opcode is represented as 1vvvvvxx. It contains a 5-bit integer 119 * representing the value of a register, and a 2-bit integer representing 120 * the number of contiguous registers set to that value 'vvvvv'. 121 * To obtain the value and run length, the integers vvvvv and xx must be 122 * incremented by one. This opcode can represent values from 1 to 32, 123 * repeated from 1 to 4 times. 124 * 125 * The sparse representation can't represent registers with a value greater 126 * than 32, however it is very unlikely that we find such a register in an 127 * HLL with a cardinality where the sparse representation is still more 128 * memory efficient than the dense representation. When this happens the 129 * HLL is converted to the dense representation. 130 * 131 * The sparse representation is purely positional. For example a sparse 132 * representation of an empty HLL is just: XZERO:16384. 133 * 134 * An HLL having only 3 non-zero registers at position 1000, 1020, 1021 135 * respectively set to 2, 3, 3, is represented by the following three 136 * opcodes: 137 * 138 * XZERO:1000 (Registers 0-999 are set to 0) 139 * VAL:2,1 (1 register set to value 2, that is register 1000) 140 * ZERO:19 (Registers 1001-1019 set to 0) 141 * VAL:3,2 (2 registers set to value 3, that is registers 1020,1021) 142 * XZERO:15362 (Registers 1022-16383 set to 0) 143 * 144 * In the example the sparse representation used just 7 bytes instead 145 * of 12k in order to represent the HLL registers. In general for low 146 * cardinality there is a big win in terms of space efficiency, traded 147 * with CPU time since the sparse representation is slower to access: 148 * 149 * The following table shows average cardinality vs bytes used, 100 150 * samples per cardinality (when the set was not representable because 151 * of registers with too big value, the dense representation size was used 152 * as a sample). 153 * 154 * 100 267 155 * 200 485 156 * 300 678 157 * 400 859 158 * 500 1033 159 * 600 1205 160 * 700 1375 161 * 800 1544 162 * 900 1713 163 * 1000 1882 164 * 2000 3480 165 * 3000 4879 166 * 4000 6089 167 * 5000 7138 168 * 6000 8042 169 * 7000 8823 170 * 8000 9500 171 * 9000 10088 172 * 10000 10591 173 * 174 * The dense representation uses 12288 bytes, so there is a big win up to 175 * a cardinality of ~2000-3000. For bigger cardinalities the constant times 176 * involved in updating the sparse representation is not justified by the 177 * memory savings. The exact maximum length of the sparse representation 178 * when this implementation switches to the dense representation is 179 * configured via the define HLL_SPARSE_MAX. 180 */ 181 182 struct hllhdr { 183 char magic[4]; /* "HYLL" */ 184 uint8_t encoding; /* HLL_DENSE or HLL_SPARSE. */ 185 uint8_t notused[3]; /* Reserved for future use, must be zero. */ 186 uint8_t card[8]; /* Cached cardinality, little endian. */ 187 uint8_t registers[]; /* Data bytes. */ 188 }; 189 190 /* The cached cardinality MSB is used to signal validity of the cached value. */ 191 #define HLL_INVALIDATE_CACHE(hdr) (hdr)->card[0] |= (1<<7) 192 #define HLL_VALID_CACHE(hdr) (((hdr)->card[0] & (1<<7)) == 0) 193 194 #define HLL_P 14 /* The greater is P, the smaller the error. */ 195 #define HLL_REGISTERS (1<<HLL_P) /* With P=14, 16384 registers. */ 196 #define HLL_P_MASK (HLL_REGISTERS-1) /* Mask to index register. */ 197 #define HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */ 198 #define HLL_REGISTER_MAX ((1<<HLL_BITS)-1) 199 #define HLL_HDR_SIZE sizeof(struct hllhdr) 200 #define HLL_DENSE_SIZE (HLL_HDR_SIZE+((HLL_REGISTERS*HLL_BITS+7)/8)) 201 #define HLL_DENSE 0 /* Dense encoding */ 202 #define HLL_SPARSE 1 /* Sparse encoding */ 203 #define HLL_MAX_ENCODING 1 204 205 #define HLL_SPARSE_MAX 3000 206 207 static char *invalid_hll_err = "Corrupted HLL object detected"; 208 209 /* =========================== Low level bit macros ========================= */ 210 211 /* Macros to access the dense representation. 212 * 213 * We need to get and set 6 bit counters in an array of 8 bit bytes. 214 * We use macros to make sure the code is inlined since speed is critical 215 * especially in order to compute the approximated cardinality in 216 * HLLCOUNT where we need to access all the registers at once. 217 * For the same reason we also want to avoid conditionals in this code path. 218 * 219 * +--------+--------+--------+------// 220 * |11000000|22221111|33333322|55444444 221 * +--------+--------+--------+------// 222 * 223 * Note: in the above representation the most significant bit (MSB) 224 * of every byte is on the left. We start using bits from the LSB to MSB, 225 * and so forth passing to the next byte. 226 * 227 * Example, we want to access to counter at pos = 1 ("111111" in the 228 * illustration above). 229 * 230 * The index of the first byte b0 containing our data is: 231 * 232 * b0 = 6 * pos / 8 = 0 233 * 234 * +--------+ 235 * |11000000| <- Our byte at b0 236 * +--------+ 237 * 238 * The position of the first bit (counting from the LSB = 0) in the byte 239 * is given by: 240 * 241 * fb = 6 * pos % 8 -> 6 242 * 243 * Right shift b0 of 'fb' bits. 244 * 245 * +--------+ 246 * |11000000| <- Initial value of b0 247 * |00000011| <- After right shift of 6 pos. 248 * +--------+ 249 * 250 * Left shift b1 of bits 8-fb bits (2 bits) 251 * 252 * +--------+ 253 * |22221111| <- Initial value of b1 254 * |22111100| <- After left shift of 2 bits. 255 * +--------+ 256 * 257 * OR the two bits, and finally AND with 111111 (63 in decimal) to 258 * clean the higher order bits we are not interested in: 259 * 260 * +--------+ 261 * |00000011| <- b0 right shifted 262 * |22111100| <- b1 left shifted 263 * |22111111| <- b0 OR b1 264 * | 111111| <- (b0 OR b1) AND 63, our value. 265 * +--------+ 266 * 267 * We can try with a different example, like pos = 0. In this case 268 * the 6-bit counter is actually contained in a single byte. 269 * 270 * b0 = 6 * pos / 8 = 0 271 * 272 * +--------+ 273 * |11000000| <- Our byte at b0 274 * +--------+ 275 * 276 * fb = 6 * pos % 8 = 0 277 * 278 * So we right shift of 0 bits (no shift in practice) and 279 * left shift the next byte of 8 bits, even if we don't use it, 280 * but this has the effect of clearing the bits so the result 281 * will not be affacted after the OR. 282 * 283 * ------------------------------------------------------------------------- 284 * 285 * Setting the register is a bit more complex, let's assume that 'val' 286 * is the value we want to set, already in the right range. 287 * 288 * We need two steps, in one we need to clear the bits, and in the other 289 * we need to bitwise-OR the new bits. 290 * 291 * Let's try with 'pos' = 1, so our first byte at 'b' is 0, 292 * 293 * "fb" is 6 in this case. 294 * 295 * +--------+ 296 * |11000000| <- Our byte at b0 297 * +--------+ 298 * 299 * To create a AND-mask to clear the bits about this position, we just 300 * initialize the mask with the value 63, left shift it of "fs" bits, 301 * and finally invert the result. 302 * 303 * +--------+ 304 * |00111111| <- "mask" starts at 63 305 * |11000000| <- "mask" after left shift of "ls" bits. 306 * |00111111| <- "mask" after invert. 307 * +--------+ 308 * 309 * Now we can bitwise-AND the byte at "b" with the mask, and bitwise-OR 310 * it with "val" left-shifted of "ls" bits to set the new bits. 311 * 312 * Now let's focus on the next byte b1: 313 * 314 * +--------+ 315 * |22221111| <- Initial value of b1 316 * +--------+ 317 * 318 * To build the AND mask we start again with the 63 value, right shift 319 * it by 8-fb bits, and invert it. 320 * 321 * +--------+ 322 * |00111111| <- "mask" set at 2&6-1 323 * |00001111| <- "mask" after the right shift by 8-fb = 2 bits 324 * |11110000| <- "mask" after bitwise not. 325 * +--------+ 326 * 327 * Now we can mask it with b+1 to clear the old bits, and bitwise-OR 328 * with "val" left-shifted by "rs" bits to set the new value. 329 */ 330 331 /* Note: if we access the last counter, we will also access the b+1 byte 332 * that is out of the array, but sds strings always have an implicit null 333 * term, so the byte exists, and we can skip the conditional (or the need 334 * to allocate 1 byte more explicitly). */ 335 336 /* Store the value of the register at position 'regnum' into variable 'target'. 337 * 'p' is an array of unsigned bytes. */ 338 #define HLL_DENSE_GET_REGISTER(target,p,regnum) do { \ 339 uint8_t *_p = (uint8_t*) p; \ 340 unsigned long _byte = regnum*HLL_BITS/8; \ 341 unsigned long _fb = regnum*HLL_BITS&7; \ 342 unsigned long _fb8 = 8 - _fb; \ 343 unsigned long b0 = _p[_byte]; \ 344 unsigned long b1 = _p[_byte+1]; \ 345 target = ((b0 >> _fb) | (b1 << _fb8)) & HLL_REGISTER_MAX; \ 346 } while(0) 347 348 /* Set the value of the register at position 'regnum' to 'val'. 349 * 'p' is an array of unsigned bytes. */ 350 #define HLL_DENSE_SET_REGISTER(p,regnum,val) do { \ 351 uint8_t *_p = (uint8_t*) p; \ 352 unsigned long _byte = regnum*HLL_BITS/8; \ 353 unsigned long _fb = regnum*HLL_BITS&7; \ 354 unsigned long _fb8 = 8 - _fb; \ 355 unsigned long _v = val; \ 356 _p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \ 357 _p[_byte] |= _v << _fb; \ 358 _p[_byte+1] &= ~(HLL_REGISTER_MAX >> _fb8); \ 359 _p[_byte+1] |= _v >> _fb8; \ 360 } while(0) 361 362 /* Macros to access the sparse representation. 363 * The macros parameter is expected to be an uint8_t pointer. */ 364 #define HLL_SPARSE_XZERO_BIT 0x40 /* 01xxxxxx */ 365 #define HLL_SPARSE_VAL_BIT 0x80 /* 1vvvvvxx */ 366 #define HLL_SPARSE_IS_ZERO(p) (((*(p)) & 0xc0) == 0) /* 00xxxxxx */ 367 #define HLL_SPARSE_IS_XZERO(p) (((*(p)) & 0xc0) == HLL_SPARSE_XZERO_BIT) 368 #define HLL_SPARSE_IS_VAL(p) ((*(p)) & HLL_SPARSE_VAL_BIT) 369 #define HLL_SPARSE_ZERO_LEN(p) (((*(p)) & 0x3f)+1) 370 #define HLL_SPARSE_XZERO_LEN(p) (((((*(p)) & 0x3f) << 8) | (*((p)+1)))+1) 371 #define HLL_SPARSE_VAL_VALUE(p) ((((*(p)) >> 2) & 0x1f)+1) 372 #define HLL_SPARSE_VAL_LEN(p) (((*(p)) & 0x3)+1) 373 #define HLL_SPARSE_VAL_MAX_VALUE 32 374 #define HLL_SPARSE_VAL_MAX_LEN 4 375 #define HLL_SPARSE_ZERO_MAX_LEN 64 376 #define HLL_SPARSE_XZERO_MAX_LEN 16384 377 #define HLL_SPARSE_VAL_SET(p,val,len) do { \ 378 *(p) = (((val)-1)<<2|((len)-1))|HLL_SPARSE_VAL_BIT; \ 379 } while(0) 380 #define HLL_SPARSE_ZERO_SET(p,len) do { \ 381 *(p) = (len)-1; \ 382 } while(0) 383 #define HLL_SPARSE_XZERO_SET(p,len) do { \ 384 int _l = (len)-1; \ 385 *(p) = (_l>>8) | HLL_SPARSE_XZERO_BIT; \ 386 *((p)+1) = (_l&0xff); \ 387 } while(0) 388 389 /* ========================= HyperLogLog algorithm ========================= */ 390 391 /* Our hash function is MurmurHash2, 64 bit version. 392 * It was modified for Redis in order to provide the same result in 393 * big and little endian archs (endian neutral). */ 394 uint64_t MurmurHash64A (const void * key, int len, unsigned int seed) { 395 const uint64_t m = 0xc6a4a7935bd1e995; 396 const int r = 47; 397 uint64_t h = seed ^ (len * m); 398 const uint8_t *data = (const uint8_t *)key; 399 const uint8_t *end = data + (len-(len&7)); 400 401 while(data != end) { 402 uint64_t k; 403 404 #if (BYTE_ORDER == LITTLE_ENDIAN) 405 k = *((uint64_t*)data); 406 #else 407 k = (uint64_t) data[0]; 408 k |= (uint64_t) data[1] << 8; 409 k |= (uint64_t) data[2] << 16; 410 k |= (uint64_t) data[3] << 24; 411 k |= (uint64_t) data[4] << 32; 412 k |= (uint64_t) data[5] << 40; 413 k |= (uint64_t) data[6] << 48; 414 k |= (uint64_t) data[7] << 56; 415 #endif 416 417 k *= m; 418 k ^= k >> r; 419 k *= m; 420 h ^= k; 421 h *= m; 422 data += 8; 423 } 424 425 switch(len & 7) { 426 case 7: h ^= (uint64_t)data[6] << 48; 427 case 6: h ^= (uint64_t)data[5] << 40; 428 case 5: h ^= (uint64_t)data[4] << 32; 429 case 4: h ^= (uint64_t)data[3] << 24; 430 case 3: h ^= (uint64_t)data[2] << 16; 431 case 2: h ^= (uint64_t)data[1] << 8; 432 case 1: h ^= (uint64_t)data[0]; 433 h *= m; 434 }; 435 436 h ^= h >> r; 437 h *= m; 438 h ^= h >> r; 439 return h; 440 } 441 442 /* Given a string element to add to the HyperLogLog, returns the length 443 * of the pattern 000..1 of the element hash. As a side effect 'regp' is 444 * set to the register index this element hashes to. */ 445 int hllPatLen(unsigned char *ele, size_t elesize, long *regp) { 446 uint64_t hash, bit, index; 447 int count; 448 449 /* Count the number of zeroes starting from bit HLL_REGISTERS 450 * (that is a power of two corresponding to the first bit we don't use 451 * as index). The max run can be 64-P+1 bits. 452 * 453 * Note that the final "1" ending the sequence of zeroes must be 454 * included in the count, so if we find "001" the count is 3, and 455 * the smallest count possible is no zeroes at all, just a 1 bit 456 * at the first position, that is a count of 1. 457 * 458 * This may sound like inefficient, but actually in the average case 459 * there are high probabilities to find a 1 after a few iterations. */ 460 hash = MurmurHash64A(ele,elesize,0xadc83b19ULL); 461 index = hash & HLL_P_MASK; /* Register index. */ 462 hash |= ((uint64_t)1<<63); /* Make sure the loop terminates. */ 463 bit = HLL_REGISTERS; /* First bit not used to address the register. */ 464 count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */ 465 while((hash & bit) == 0) { 466 count++; 467 bit <<= 1; 468 } 469 *regp = (int) index; 470 return count; 471 } 472 473 /* ================== Dense representation implementation ================== */ 474 475 /* "Add" the element in the dense hyperloglog data structure. 476 * Actually nothing is added, but the max 0 pattern counter of the subset 477 * the element belongs to is incremented if needed. 478 * 479 * 'registers' is expected to have room for HLL_REGISTERS plus an 480 * additional byte on the right. This requirement is met by sds strings 481 * automatically since they are implicitly null terminated. 482 * 483 * The function always succeed, however if as a result of the operation 484 * the approximated cardinality changed, 1 is returned. Otherwise 0 485 * is returned. */ 486 int hllDenseAdd(uint8_t *registers, unsigned char *ele, size_t elesize) { 487 uint8_t oldcount, count; 488 long index; 489 490 /* Update the register if this element produced a longer run of zeroes. */ 491 count = hllPatLen(ele,elesize,&index); 492 HLL_DENSE_GET_REGISTER(oldcount,registers,index); 493 if (count > oldcount) { 494 HLL_DENSE_SET_REGISTER(registers,index,count); 495 return 1; 496 } else { 497 return 0; 498 } 499 } 500 501 /* Compute SUM(2^-reg) in the dense representation. 502 * PE is an array with a pre-computer table of values 2^-reg indexed by reg. 503 * As a side effect the integer pointed by 'ezp' is set to the number 504 * of zero registers. */ 505 double hllDenseSum(uint8_t *registers, double *PE, int *ezp) { 506 double E = 0; 507 int j, ez = 0; 508 509 /* Redis default is to use 16384 registers 6 bits each. The code works 510 * with other values by modifying the defines, but for our target value 511 * we take a faster path with unrolled loops. */ 512 if (HLL_REGISTERS == 16384 && HLL_BITS == 6) { 513 uint8_t *r = registers; 514 unsigned long r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, 515 r10, r11, r12, r13, r14, r15; 516 for (j = 0; j < 1024; j++) { 517 /* Handle 16 registers per iteration. */ 518 r0 = r[0] & 63; if (r0 == 0) ez++; 519 r1 = (r[0] >> 6 | r[1] << 2) & 63; if (r1 == 0) ez++; 520 r2 = (r[1] >> 4 | r[2] << 4) & 63; if (r2 == 0) ez++; 521 r3 = (r[2] >> 2) & 63; if (r3 == 0) ez++; 522 r4 = r[3] & 63; if (r4 == 0) ez++; 523 r5 = (r[3] >> 6 | r[4] << 2) & 63; if (r5 == 0) ez++; 524 r6 = (r[4] >> 4 | r[5] << 4) & 63; if (r6 == 0) ez++; 525 r7 = (r[5] >> 2) & 63; if (r7 == 0) ez++; 526 r8 = r[6] & 63; if (r8 == 0) ez++; 527 r9 = (r[6] >> 6 | r[7] << 2) & 63; if (r9 == 0) ez++; 528 r10 = (r[7] >> 4 | r[8] << 4) & 63; if (r10 == 0) ez++; 529 r11 = (r[8] >> 2) & 63; if (r11 == 0) ez++; 530 r12 = r[9] & 63; if (r12 == 0) ez++; 531 r13 = (r[9] >> 6 | r[10] << 2) & 63; if (r13 == 0) ez++; 532 r14 = (r[10] >> 4 | r[11] << 4) & 63; if (r14 == 0) ez++; 533 r15 = (r[11] >> 2) & 63; if (r15 == 0) ez++; 534 535 /* Additional parens will allow the compiler to optimize the 536 * code more with a loss of precision that is not very relevant 537 * here (floating point math is not commutative!). */ 538 E += (PE[r0] + PE[r1]) + (PE[r2] + PE[r3]) + (PE[r4] + PE[r5]) + 539 (PE[r6] + PE[r7]) + (PE[r8] + PE[r9]) + (PE[r10] + PE[r11]) + 540 (PE[r12] + PE[r13]) + (PE[r14] + PE[r15]); 541 r += 12; 542 } 543 } else { 544 for (j = 0; j < HLL_REGISTERS; j++) { 545 unsigned long reg; 546 547 HLL_DENSE_GET_REGISTER(reg,registers,j); 548 if (reg == 0) { 549 ez++; 550 E += 1; /* 2^(-reg[j]) is 1 when m is 0. */ 551 } else { 552 E += PE[reg]; /* Precomputed 2^(-reg[j]). */ 553 } 554 } 555 } 556 *ezp = ez; 557 return E; 558 } 559 560 /* ================== Sparse representation implementation ================= */ 561 562 /* Convert the HLL with sparse representation given as input in its dense 563 * representation. Both representations are represented by SDS strings, and 564 * the input representation is freed as a side effect. 565 * 566 * The function returns REDIS_OK if the sparse representation was valid, 567 * otherwise REDIS_ERR is returned if the representation was corrupted. */ 568 int hllSparseToDense(robj *o) { 569 sds sparse = o->ptr, dense; 570 struct hllhdr *hdr, *oldhdr = (struct hllhdr*)sparse; 571 int idx = 0, runlen, regval; 572 uint8_t *p = (uint8_t*)sparse, *end = p+sdslen(sparse); 573 574 /* If the representation is already the right one return ASAP. */ 575 hdr = (struct hllhdr*) sparse; 576 if (hdr->encoding == HLL_DENSE) return REDIS_OK; 577 578 /* Create a string of the right size filled with zero bytes. 579 * Note that the cached cardinality is set to 0 as a side effect 580 * that is exactly the cardinality of an empty HLL. */ 581 dense = sdsnewlen(NULL,HLL_DENSE_SIZE); 582 hdr = (struct hllhdr*) dense; 583 *hdr = *oldhdr; /* This will copy the magic and cached cardinality. */ 584 hdr->encoding = HLL_DENSE; 585 586 /* Now read the sparse representation and set non-zero registers 587 * accordingly. */ 588 p += HLL_HDR_SIZE; 589 while(p < end) { 590 if (HLL_SPARSE_IS_ZERO(p)) { 591 runlen = HLL_SPARSE_ZERO_LEN(p); 592 idx += runlen; 593 p++; 594 } else if (HLL_SPARSE_IS_XZERO(p)) { 595 runlen = HLL_SPARSE_XZERO_LEN(p); 596 idx += runlen; 597 p += 2; 598 } else { 599 runlen = HLL_SPARSE_VAL_LEN(p); 600 regval = HLL_SPARSE_VAL_VALUE(p); 601 while(runlen--) { 602 HLL_DENSE_SET_REGISTER(hdr->registers,idx,regval); 603 idx++; 604 } 605 p++; 606 } 607 } 608 609 /* If the sparse representation was valid, we expect to find idx 610 * set to HLL_REGISTERS. */ 611 if (idx != HLL_REGISTERS) { 612 sdsfree(dense); 613 return REDIS_ERR; 614 } 615 616 /* Free the old representation and set the new one. */ 617 sdsfree(o->ptr); 618 o->ptr = dense; 619 return REDIS_OK; 620 } 621 622 /* "Add" the element in the sparse hyperloglog data structure. 623 * Actually nothing is added, but the max 0 pattern counter of the subset 624 * the element belongs to is incremented if needed. 625 * 626 * The object 'o' is the String object holding the HLL. The function requires 627 * a reference to the object in order to be able to enlarge the string if 628 * needed. 629 * 630 * On success, the function returns 1 if the cardinality changed, or 0 631 * if the register for this element was not updated. 632 * On error (if the representation is invalid) -1 is returned. 633 * 634 * As a side effect the function may promote the HLL representation from 635 * sparse to dense: this happens when a register requires to be set to a value 636 * not representable with the sparse representation, or when the resulting 637 * size would be greater than HLL_SPARSE_MAX. */ 638 int hllSparseAdd(robj *o, unsigned char *ele, size_t elesize) { 639 struct hllhdr *hdr; 640 uint8_t oldcount, count, *sparse, *end, *p, *prev, *next; 641 long index, first, span; 642 long is_zero = 0, is_xzero = 0, is_val = 0, runlen = 0; 643 644 /* Update the register if this element produced a longer run of zeroes. */ 645 count = hllPatLen(ele,elesize,&index); 646 647 /* If the count is too big to be representable by the sparse representation 648 * switch to dense representation. */ 649 if (count > HLL_SPARSE_VAL_MAX_VALUE) goto promote; 650 651 /* When updating a sparse representation, sometimes we may need to 652 * enlarge the buffer for up to 3 bytes in the worst case (XZERO split 653 * into XZERO-VAL-XZERO). Make sure there is enough space right now 654 * so that the pointers we take during the execution of the function 655 * will be valid all the time. */ 656 o->ptr = sdsMakeRoomFor(o->ptr,3); 657 658 /* Step 1: we need to locate the opcode we need to modify to check 659 * if a value update is actually needed. */ 660 sparse = p = ((uint8_t*)o->ptr) + HLL_HDR_SIZE; 661 end = p + sdslen(o->ptr) - HLL_HDR_SIZE; 662 663 first = 0; 664 prev = NULL; /* Points to previos opcode at the end of the loop. */ 665 next = NULL; /* Points to the next opcode at the end of the loop. */ 666 span = 0; 667 while(p < end) { 668 long oplen; 669 670 /* Set span to the number of registers covered by this opcode. 671 * 672 * This is the most performance critical loop of the sparse 673 * representation. Sorting the conditionals from the most to the 674 * least frequent opcode in many-bytes sparse HLLs is faster. */ 675 oplen = 1; 676 if (HLL_SPARSE_IS_ZERO(p)) { 677 span = HLL_SPARSE_ZERO_LEN(p); 678 } else if (HLL_SPARSE_IS_VAL(p)) { 679 span = HLL_SPARSE_VAL_LEN(p); 680 } else { /* XZERO. */ 681 span = HLL_SPARSE_XZERO_LEN(p); 682 oplen = 2; 683 } 684 /* Break if this opcode covers the register as 'index'. */ 685 if (index <= first+span-1) break; 686 prev = p; 687 p += oplen; 688 first += span; 689 } 690 if (span == 0) return -1; /* Invalid format. */ 691 692 next = HLL_SPARSE_IS_XZERO(p) ? p+2 : p+1; 693 if (next >= end) next = NULL; 694 695 /* Cache current opcode type to avoid using the macro again and 696 * again for something that will not change. 697 * Also cache the run-length of the opcode. */ 698 if (HLL_SPARSE_IS_ZERO(p)) { 699 is_zero = 1; 700 runlen = HLL_SPARSE_ZERO_LEN(p); 701 } else if (HLL_SPARSE_IS_XZERO(p)) { 702 is_xzero = 1; 703 runlen = HLL_SPARSE_XZERO_LEN(p); 704 } else { 705 is_val = 1; 706 runlen = HLL_SPARSE_VAL_LEN(p); 707 } 708 709 /* Step 2: After the loop: 710 * 711 * 'first' stores to the index of the first register covered 712 * by the current opcode, which is pointed by 'p'. 713 * 714 * 'next' ad 'prev' store respectively the next and previous opcode, 715 * or NULL if the opcode at 'p' is respectively the last or first. 716 * 717 * 'span' is set to the number of registers covered by the current 718 * opcode. 719 * 720 * There are different cases in order to update the data structure 721 * in place without generating it from scratch: 722 * 723 * A) If it is a VAL opcode already set to a value >= our 'count' 724 * no update is needed, regardless of the VAL run-length field. 725 * In this case PFADD returns 0 since no changes are performed. 726 * 727 * B) If it is a VAL opcode with len = 1 (representing only our 728 * register) and the value is less than 'count', we just update it 729 * since this is a trivial case. */ 730 if (is_val) { 731 oldcount = HLL_SPARSE_VAL_VALUE(p); 732 /* Case A. */ 733 if (oldcount >= count) return 0; 734 735 /* Case B. */ 736 if (runlen == 1) { 737 HLL_SPARSE_VAL_SET(p,count,1); 738 goto updated; 739 } 740 } 741 742 /* C) Another trivial to handle case is a ZERO opcode with a len of 1. 743 * We can just replace it with a VAL opcode with our value and len of 1. */ 744 if (is_zero && runlen == 1) { 745 HLL_SPARSE_VAL_SET(p,count,1); 746 goto updated; 747 } 748 749 /* D) General case. 750 * 751 * The other cases are more complex: our register requires to be updated 752 * and is either currently represented by a VAL opcode with len > 1, 753 * by a ZERO opcode with len > 1, or by an XZERO opcode. 754 * 755 * In those cases the original opcode must be split into muliple 756 * opcodes. The worst case is an XZERO split in the middle resuling into 757 * XZERO - VAL - XZERO, so the resulting sequence max length is 758 * 5 bytes. 759 * 760 * We perform the split writing the new sequence into the 'new' buffer 761 * with 'newlen' as length. Later the new sequence is inserted in place 762 * of the old one, possibly moving what is on the right a few bytes 763 * if the new sequence is longer than the older one. */ 764 uint8_t seq[5], *n = seq; 765 int last = first+span-1; /* Last register covered by the sequence. */ 766 int len; 767 768 if (is_zero || is_xzero) { 769 /* Handle splitting of ZERO / XZERO. */ 770 if (index != first) { 771 len = index-first; 772 if (len > HLL_SPARSE_ZERO_MAX_LEN) { 773 HLL_SPARSE_XZERO_SET(n,len); 774 n += 2; 775 } else { 776 HLL_SPARSE_ZERO_SET(n,len); 777 n++; 778 } 779 } 780 HLL_SPARSE_VAL_SET(n,count,1); 781 n++; 782 if (index != last) { 783 len = last-index; 784 if (len > HLL_SPARSE_ZERO_MAX_LEN) { 785 HLL_SPARSE_XZERO_SET(n,len); 786 n += 2; 787 } else { 788 HLL_SPARSE_ZERO_SET(n,len); 789 n++; 790 } 791 } 792 } else { 793 /* Handle splitting of VAL. */ 794 int curval = HLL_SPARSE_VAL_VALUE(p); 795 796 if (index != first) { 797 len = index-first; 798 HLL_SPARSE_VAL_SET(n,curval,len); 799 n++; 800 } 801 HLL_SPARSE_VAL_SET(n,count,1); 802 n++; 803 if (index != last) { 804 len = last-index; 805 HLL_SPARSE_VAL_SET(n,curval,len); 806 n++; 807 } 808 } 809 810 /* Step 3: substitute the new sequence with the old one. 811 * 812 * Note that we already allocated space on the sds string 813 * calling sdsMakeRoomFor(). */ 814 int seqlen = n-seq; 815 int oldlen = is_xzero ? 2 : 1; 816 int deltalen = seqlen-oldlen; 817 818 if (deltalen > 0 && sdslen(o->ptr)+deltalen > HLL_SPARSE_MAX) goto promote; 819 if (deltalen && next) memmove(next+deltalen,next,end-next); 820 sdsIncrLen(o->ptr,deltalen); 821 memcpy(p,seq,seqlen); 822 end += deltalen; 823 824 updated: 825 /* Step 4: Merge adjacent values if possible. 826 * 827 * The representation was updated, however the resulting representation 828 * may not be optimal: adjacent VAL opcodes can sometimes be merged into 829 * a single one. */ 830 p = prev ? prev : sparse; 831 int scanlen = 5; /* Scan up to 5 upcodes starting from prev. */ 832 while (p < end && scanlen--) { 833 if (HLL_SPARSE_IS_XZERO(p)) { 834 p += 2; 835 continue; 836 } else if (HLL_SPARSE_IS_ZERO(p)) { 837 p++; 838 continue; 839 } 840 /* We need two adjacent VAL opcodes to try a merge, having 841 * the same value, and a len that fits the VAL opcode max len. */ 842 if (p+1 < end && HLL_SPARSE_IS_VAL(p+1)) { 843 int v1 = HLL_SPARSE_VAL_VALUE(p); 844 int v2 = HLL_SPARSE_VAL_VALUE(p+1); 845 if (v1 == v2) { 846 int len = HLL_SPARSE_VAL_LEN(p)+HLL_SPARSE_VAL_LEN(p+1); 847 if (len <= HLL_SPARSE_VAL_MAX_LEN) { 848 HLL_SPARSE_VAL_SET(p+1,v1,len); 849 memmove(p,p+1,end-p); 850 sdsIncrLen(o->ptr,-1); 851 end--; 852 /* After a merge we reiterate without incrementing 'p' 853 * in order to try to merge the just merged value with 854 * a value on its right. */ 855 continue; 856 } 857 } 858 } 859 p++; 860 } 861 862 /* Invalidate the cached cardinality. */ 863 hdr = o->ptr; 864 HLL_INVALIDATE_CACHE(hdr); 865 return 1; 866 867 promote: /* Promote to dense representation. */ 868 if (hllSparseToDense(o) == REDIS_ERR) return -1; /* Corrupted HLL. */ 869 hdr = o->ptr; 870 871 /* We need to call hllDenseAdd() to perform the operation after the 872 * conversion. However the result must be 1, since if we need to 873 * convert from sparse to dense a register requires to be updated. 874 * 875 * Note that this in turn means that PFADD will make sure the command 876 * is propagated to slaves / AOF, so if there is a sparse -> dense 877 * convertion, it will be performed in all the slaves as well. */ 878 int dense_retval = hllDenseAdd(hdr->registers, ele, elesize); 879 redisAssert(dense_retval == 1); 880 return dense_retval; 881 } 882 883 /* Compute SUM(2^-reg) in the sparse representation. 884 * PE is an array with a pre-computer table of values 2^-reg indexed by reg. 885 * As a side effect the integer pointed by 'ezp' is set to the number 886 * of zero registers. */ 887 double hllSparseSum(uint8_t *sparse, int sparselen, double *PE, int *ezp, int *invalid) { 888 double E = 0; 889 int ez = 0, idx = 0, runlen, regval; 890 uint8_t *end = sparse+sparselen, *p = sparse; 891 892 while(p < end) { 893 if (HLL_SPARSE_IS_ZERO(p)) { 894 runlen = HLL_SPARSE_ZERO_LEN(p); 895 idx += runlen; 896 ez += runlen; 897 E += 1*runlen; /* 2^(-reg[j]) is 1 when m is 0. */ 898 p++; 899 } else if (HLL_SPARSE_IS_XZERO(p)) { 900 runlen = HLL_SPARSE_XZERO_LEN(p); 901 idx += runlen; 902 ez += runlen; 903 E += 1*runlen; /* 2^(-reg[j]) is 1 when m is 0. */ 904 p += 2; 905 } else { 906 runlen = HLL_SPARSE_VAL_LEN(p); 907 regval = HLL_SPARSE_VAL_VALUE(p); 908 idx += runlen; 909 E += PE[regval]*runlen; 910 p++; 911 } 912 } 913 if (idx != HLL_REGISTERS && invalid) *invalid = 1; 914 *ezp = ez; 915 return E; 916 } 917 918 /* ========================= HyperLogLog Count ============================== 919 * This is the core of the algorithm where the approximated count is computed. 920 * The function uses the lower level hllDenseSum() and hllSparseSum() functions 921 * as helpers to compute the SUM(2^-reg) part of the computation, which is 922 * representation-specific, while all the rest is common. */ 923 924 /* Return the approximated cardinality of the set based on the armonic 925 * mean of the registers values. 'hdr' points to the start of the SDS 926 * representing the String object holding the HLL representation. 927 * 928 * If the sparse representation of the HLL object is not valid, the integer 929 * pointed by 'invalid' is set to non-zero, otherwise it is left untouched. */ 930 uint64_t hllCount(struct hllhdr *hdr, int *invalid) { 931 double m = HLL_REGISTERS; 932 double E, alpha = 0.7213/(1+1.079/m); 933 int j, ez; /* Number of registers equal to 0. */ 934 935 /* We precompute 2^(-reg[j]) in a small table in order to 936 * speedup the computation of SUM(2^-register[0..i]). */ 937 static int initialized = 0; 938 static double PE[64]; 939 if (!initialized) { 940 PE[0] = 1; /* 2^(-reg[j]) is 1 when m is 0. */ 941 for (j = 1; j < 64; j++) { 942 /* 2^(-reg[j]) is the same as 1/2^reg[j]. */ 943 PE[j] = 1.0/(1ULL << j); 944 } 945 initialized = 1; 946 } 947 948 /* Compute SUM(2^-register[0..i]). */ 949 if (hdr->encoding == HLL_DENSE) { 950 E = hllDenseSum(hdr->registers,PE,&ez); 951 } else { 952 E = hllSparseSum(hdr->registers, 953 sdslen((sds)hdr)-HLL_HDR_SIZE,PE,&ez,invalid); 954 } 955 956 /* Muliply the inverse of E for alpha_m * m^2 to have the raw estimate. */ 957 E = (1/E)*alpha*m*m; 958 959 /* Use the LINEARCOUNTING algorithm for small cardinalities. 960 * For larger values but up to 72000 HyperLogLog raw approximation is 961 * used since linear counting error starts to increase. However HyperLogLog 962 * shows a strong bias in the range 2.5*16384 - 72000, so we try to 963 * compensate for it. */ 964 if (E < m*2.5 && ez != 0) { 965 E = m*log(m/ez); /* LINEARCOUNTING() */ 966 } else if (m == 16384 && E < 72000) { 967 /* We did polynomial regression of the bias for this range, this 968 * way we can compute the bias for a given cardinality and correct 969 * according to it. Only apply the correction for P=14 that's what 970 * we use and the value the correction was verified with. */ 971 double bias = 5.9119*1.0e-18*(E*E*E*E) 972 -1.4253*1.0e-12*(E*E*E)+ 973 1.2940*1.0e-7*(E*E) 974 -5.2921*1.0e-3*E+ 975 83.3216; 976 E -= E*(bias/100); 977 } 978 /* We don't apply the correction for E > 1/30 of 2^32 since we use 979 * a 64 bit function and 6 bit counters. To apply the correction for 980 * 1/30 of 2^64 is not needed since it would require a huge set 981 * to approach such a value. */ 982 return (uint64_t) E; 983 } 984 985 /* Call hllDenseAdd() or hllSparseAdd() according to the HLL encoding. */ 986 int hllAdd(robj *o, unsigned char *ele, size_t elesize) { 987 struct hllhdr *hdr = o->ptr; 988 switch(hdr->encoding) { 989 case HLL_DENSE: return hllDenseAdd(hdr->registers,ele,elesize); 990 case HLL_SPARSE: return hllSparseAdd(o,ele,elesize); 991 default: return -1; /* Invalid representation. */ 992 } 993 } 994 995 /* ========================== HyperLogLog commands ========================== */ 996 997 /* Create an HLL object. We always create the HLL using sparse encoding. 998 * This will be upgraded to the dense representation as needed. */ 999 robj *createHLLObject(void) { 1000 robj *o; 1001 struct hllhdr *hdr; 1002 sds s; 1003 uint8_t *p; 1004 int sparselen = HLL_HDR_SIZE + 1005 (((HLL_REGISTERS+(HLL_SPARSE_XZERO_MAX_LEN-1)) / 1006 HLL_SPARSE_XZERO_MAX_LEN)*2); 1007 int aux; 1008 1009 /* Populate the sparse representation with as many XZERO opcodes as 1010 * needed to represent all the registers. */ 1011 aux = HLL_REGISTERS; 1012 s = sdsnewlen(NULL,sparselen); 1013 p = (uint8_t*)s + HLL_HDR_SIZE; 1014 while(aux) { 1015 int xzero = HLL_SPARSE_XZERO_MAX_LEN; 1016 if (xzero > aux) xzero = aux; 1017 HLL_SPARSE_XZERO_SET(p,xzero); 1018 p += 2; 1019 aux -= xzero; 1020 } 1021 redisAssert((p-(uint8_t*)s) == sparselen); 1022 1023 /* Create the actual object. */ 1024 o = createObject(REDIS_STRING,s); 1025 hdr = o->ptr; 1026 memcpy(hdr->magic,"HYLL",4); 1027 hdr->encoding = HLL_SPARSE; 1028 return o; 1029 } 1030 1031 /* Check if the object is a String with a valid HLL representation. 1032 * Return REDIS_OK if this is true, otherwise reply to the client 1033 * with an error and return REDIS_ERR. */ 1034 int isHLLObjectOrReply(redisClient *c, robj *o) { 1035 struct hllhdr *hdr; 1036 1037 /* Key exists, check type */ 1038 if (checkType(c,o,REDIS_STRING)) 1039 return REDIS_ERR; /* Error already sent. */ 1040 1041 if (stringObjectLen(o) < sizeof(*hdr)) goto invalid; 1042 hdr = o->ptr; 1043 1044 /* Magic should be "HYLL". */ 1045 if (hdr->magic[0] != 'H' || hdr->magic[1] != 'Y' || 1046 hdr->magic[2] != 'L' || hdr->magic[3] != 'L') goto invalid; 1047 1048 if (hdr->encoding > HLL_MAX_ENCODING) goto invalid; 1049 1050 /* Dense representation string length should match exactly. */ 1051 if (hdr->encoding == HLL_DENSE && 1052 stringObjectLen(o) != HLL_DENSE_SIZE) goto invalid; 1053 1054 /* All tests passed. */ 1055 return REDIS_OK; 1056 1057 invalid: 1058 addReplySds(c, 1059 sdsnew("-WRONGTYPE Key is not a valid " 1060 "HyperLogLog string value.\r\n")); 1061 return REDIS_ERR; 1062 } 1063 1064 /* PFADD var ele ele ele ... ele => :0 or :1 */ 1065 void pfaddCommand(redisClient *c) { 1066 robj *o = lookupKeyWrite(c->db,c->argv[1]); 1067 struct hllhdr *hdr; 1068 int updated = 0, j; 1069 1070 if (o == NULL) { 1071 /* Create the key with a string value of the exact length to 1072 * hold our HLL data structure. sdsnewlen() when NULL is passed 1073 * is guaranteed to return bytes initialized to zero. */ 1074 o = createHLLObject(); 1075 dbAdd(c->db,c->argv[1],o); 1076 updated++; 1077 } else { 1078 if (isHLLObjectOrReply(c,o) != REDIS_OK) return; 1079 o = dbUnshareStringValue(c->db,c->argv[1],o); 1080 } 1081 /* Perform the low level ADD operation for every element. */ 1082 for (j = 2; j < c->argc; j++) { 1083 int retval = hllAdd(o, (unsigned char*)c->argv[j]->ptr, 1084 sdslen(c->argv[j]->ptr)); 1085 switch(retval) { 1086 case 1: 1087 updated++; 1088 break; 1089 case -1: 1090 addReplyError(c,invalid_hll_err); 1091 return; 1092 } 1093 } 1094 hdr = o->ptr; 1095 if (updated) { 1096 signalModifiedKey(c->db,c->argv[1]); 1097 notifyKeyspaceEvent(REDIS_NOTIFY_STRING,"pfadd",c->argv[1],c->db->id); 1098 server.dirty++; 1099 HLL_INVALIDATE_CACHE(hdr); 1100 } 1101 addReply(c, updated ? shared.cone : shared.czero); 1102 } 1103 1104 /* PFCOUNT var -> approximated cardinality of set. */ 1105 void pfcountCommand(redisClient *c) { 1106 robj *o = lookupKeyRead(c->db,c->argv[1]); 1107 struct hllhdr *hdr; 1108 uint64_t card; 1109 1110 if (o == NULL) { 1111 /* No key? Cardinality is zero since no element was added, otherwise 1112 * we would have a key as HLLADD creates it as a side effect. */ 1113 addReply(c,shared.czero); 1114 } else { 1115 if (isHLLObjectOrReply(c,o) != REDIS_OK) return; 1116 o = dbUnshareStringValue(c->db,c->argv[1],o); 1117 1118 /* Check if the cached cardinality is valid. */ 1119 hdr = o->ptr; 1120 if (HLL_VALID_CACHE(hdr)) { 1121 /* Just return the cached value. */ 1122 card = (uint64_t)hdr->card[0]; 1123 card |= (uint64_t)hdr->card[1] << 8; 1124 card |= (uint64_t)hdr->card[2] << 16; 1125 card |= (uint64_t)hdr->card[3] << 24; 1126 card |= (uint64_t)hdr->card[4] << 32; 1127 card |= (uint64_t)hdr->card[5] << 40; 1128 card |= (uint64_t)hdr->card[6] << 48; 1129 card |= (uint64_t)hdr->card[7] << 56; 1130 } else { 1131 int invalid = 0; 1132 /* Recompute it and update the cached value. */ 1133 card = hllCount(hdr,&invalid); 1134 if (invalid) { 1135 addReplyError(c,invalid_hll_err); 1136 return; 1137 } 1138 hdr->card[0] = card & 0xff; 1139 hdr->card[1] = (card >> 8) & 0xff; 1140 hdr->card[2] = (card >> 16) & 0xff; 1141 hdr->card[3] = (card >> 24) & 0xff; 1142 hdr->card[4] = (card >> 32) & 0xff; 1143 hdr->card[5] = (card >> 40) & 0xff; 1144 hdr->card[6] = (card >> 48) & 0xff; 1145 hdr->card[7] = (card >> 56) & 0xff; 1146 /* This is not considered a read-only command even if the 1147 * data structure is not modified, since the cached value 1148 * may be modified and given that the HLL is a Redis string 1149 * we need to propagate the change. */ 1150 signalModifiedKey(c->db,c->argv[1]); 1151 server.dirty++; 1152 } 1153 addReplyLongLong(c,card); 1154 } 1155 } 1156 1157 /* PFMERGE dest src1 src2 src3 ... srcN => OK */ 1158 void pfmergeCommand(redisClient *c) { 1159 uint8_t max[HLL_REGISTERS]; 1160 struct hllhdr *hdr; 1161 int j, i; 1162 1163 /* Compute an HLL with M[i] = MAX(M[i]_j). 1164 * We we the maximum into the max array of registers. We'll write 1165 * it to the target variable later. */ 1166 memset(max,0,sizeof(max)); 1167 for (j = 1; j < c->argc; j++) { 1168 /* Check type and size. */ 1169 robj *o = lookupKeyRead(c->db,c->argv[j]); 1170 if (o == NULL) continue; /* Assume empty HLL for non existing var. */ 1171 if (isHLLObjectOrReply(c,o) != REDIS_OK) return; 1172 1173 /* Merge with this HLL with our 'max' HHL by setting max[i] 1174 * to MAX(max[i],hll[i]). */ 1175 hdr = o->ptr; 1176 if (hdr->encoding == HLL_DENSE) { 1177 uint8_t val; 1178 1179 for (i = 0; i < HLL_REGISTERS; i++) { 1180 HLL_DENSE_GET_REGISTER(val,hdr->registers,i); 1181 if (val > max[i]) max[i] = val; 1182 } 1183 } else { 1184 uint8_t *p = o->ptr, *end = p + sdslen(o->ptr); 1185 long runlen, regval; 1186 1187 p += HLL_HDR_SIZE; 1188 i = 0; 1189 while(p < end) { 1190 if (HLL_SPARSE_IS_ZERO(p)) { 1191 runlen = HLL_SPARSE_ZERO_LEN(p); 1192 i += runlen; 1193 p++; 1194 } else if (HLL_SPARSE_IS_XZERO(p)) { 1195 runlen = HLL_SPARSE_XZERO_LEN(p); 1196 i += runlen; 1197 p += 2; 1198 } else { 1199 runlen = HLL_SPARSE_VAL_LEN(p); 1200 regval = HLL_SPARSE_VAL_VALUE(p); 1201 while(runlen--) { 1202 if (regval > max[i]) max[i] = regval; 1203 i++; 1204 } 1205 p++; 1206 } 1207 } 1208 if (i != HLL_REGISTERS) { 1209 addReplyError(c,invalid_hll_err); 1210 return; 1211 } 1212 } 1213 } 1214 1215 /* Create / unshare the destination key's value if needed. */ 1216 robj *o = lookupKeyWrite(c->db,c->argv[1]); 1217 if (o == NULL) { 1218 /* Create the key with a string value of the exact length to 1219 * hold our HLL data structure. sdsnewlen() when NULL is passed 1220 * is guaranteed to return bytes initialized to zero. */ 1221 o = createHLLObject(); 1222 dbAdd(c->db,c->argv[1],o); 1223 } else { 1224 /* If key exists we are sure it's of the right type/size 1225 * since we checked when merging the different HLLs, so we 1226 * don't check again. */ 1227 o = dbUnshareStringValue(c->db,c->argv[1],o); 1228 } 1229 1230 /* Only support dense objects as destination. */ 1231 if (hllSparseToDense(o) == REDIS_ERR) { 1232 addReplyError(c,invalid_hll_err); 1233 return; 1234 } 1235 1236 /* Write the resulting HLL to the destination HLL registers and 1237 * invalidate the cached value. */ 1238 hdr = o->ptr; 1239 for (j = 0; j < HLL_REGISTERS; j++) { 1240 HLL_DENSE_SET_REGISTER(hdr->registers,j,max[j]); 1241 } 1242 HLL_INVALIDATE_CACHE(hdr); 1243 1244 signalModifiedKey(c->db,c->argv[1]); 1245 /* We generate an HLLADD event for HLLMERGE for semantical simplicity 1246 * since in theory this is a mass-add of elements. */ 1247 notifyKeyspaceEvent(REDIS_NOTIFY_STRING,"pfadd",c->argv[1],c->db->id); 1248 server.dirty++; 1249 addReply(c,shared.ok); 1250 } 1251 1252 /* ========================== Testing / Debugging ========================== */ 1253 1254 /* PFSELFTEST 1255 * This command performs a self-test of the HLL registers implementation. 1256 * Something that is not easy to test from within the outside. */ 1257 #define HLL_TEST_CYCLES 1000 1258 void pfselftestCommand(redisClient *c) { 1259 int j, i; 1260 sds bitcounters = sdsnewlen(NULL,HLL_DENSE_SIZE); 1261 struct hllhdr *hdr = (struct hllhdr*) bitcounters; 1262 uint8_t bytecounters[HLL_REGISTERS]; 1263 1264 /* Test 1: access registers. 1265 * The test is conceived to test that the different counters of our data 1266 * structure are accessible and that setting their values both result in 1267 * the correct value to be retained and not affect adjacent values. */ 1268 for (j = 0; j < HLL_TEST_CYCLES; j++) { 1269 /* Set the HLL counters and an array of unsigned byes of the 1270 * same size to the same set of random values. */ 1271 for (i = 0; i < HLL_REGISTERS; i++) { 1272 unsigned int r = rand() & HLL_REGISTER_MAX; 1273 1274 bytecounters[i] = r; 1275 HLL_DENSE_SET_REGISTER(hdr->registers,i,r); 1276 } 1277 /* Check that we are able to retrieve the same values. */ 1278 for (i = 0; i < HLL_REGISTERS; i++) { 1279 unsigned int val; 1280 1281 HLL_DENSE_GET_REGISTER(val,hdr->registers,i); 1282 if (val != bytecounters[i]) { 1283 addReplyErrorFormat(c, 1284 "TESTFAILED Register %d should be %d but is %d", 1285 i, (int) bytecounters[i], (int) val); 1286 goto cleanup; 1287 } 1288 } 1289 } 1290 1291 /* Test 2: approximation error. 1292 * The test is adds unique elements and check that the estimated value 1293 * is always reasonable bounds. 1294 * 1295 * We check that the error is smaller than 4 times than the expected 1296 * standard error, to make it very unlikely for the test to fail because 1297 * of a "bad" run. */ 1298 memset(hdr->registers,0,HLL_DENSE_SIZE-HLL_HDR_SIZE); 1299 double relerr = 1.04/sqrt(HLL_REGISTERS); 1300 int64_t checkpoint = 1000; 1301 uint64_t seed = (uint64_t)rand() | (uint64_t)rand() << 32; 1302 uint64_t ele; 1303 for (j = 1; j <= 10000000; j++) { 1304 ele = j ^ seed; 1305 hllDenseAdd(hdr->registers,(unsigned char*)&ele,sizeof(ele)); 1306 if (j == checkpoint) { 1307 int64_t abserr = checkpoint - (int64_t)hllCount(hdr,NULL); 1308 if (abserr < 0) abserr = -abserr; 1309 if (abserr > (uint64_t)(relerr*4*checkpoint)) { 1310 addReplyErrorFormat(c, 1311 "TESTFAILED Too big error. card:%llu abserr:%llu", 1312 (unsigned long long) checkpoint, 1313 (unsigned long long) abserr); 1314 goto cleanup; 1315 } 1316 checkpoint *= 10; 1317 } 1318 } 1319 1320 /* Success! */ 1321 addReply(c,shared.ok); 1322 1323 cleanup: 1324 sdsfree(bitcounters); 1325 } 1326 1327 /* PFDEBUG <subcommand> <key> ... args ... 1328 * Different debugging related operations about the HLL implementation. */ 1329 void pfdebugCommand(redisClient *c) { 1330 char *cmd = c->argv[1]->ptr; 1331 struct hllhdr *hdr; 1332 robj *o; 1333 int j; 1334 1335 o = lookupKeyRead(c->db,c->argv[2]); 1336 if (o == NULL) { 1337 addReplyError(c,"The specified key does not exist"); 1338 return; 1339 } 1340 if (isHLLObjectOrReply(c,o) != REDIS_OK) return; 1341 o = dbUnshareStringValue(c->db,c->argv[2],o); 1342 hdr = o->ptr; 1343 1344 /* PFDEBUG GETREG <key> */ 1345 if (!strcasecmp(cmd,"getreg")) { 1346 if (c->argc != 3) goto arityerr; 1347 1348 if (hdr->encoding == HLL_SPARSE) { 1349 if (hllSparseToDense(o) == REDIS_ERR) { 1350 addReplyError(c,invalid_hll_err); 1351 return; 1352 } 1353 server.dirty++; /* Force propagation on encoding change. */ 1354 } 1355 1356 hdr = o->ptr; 1357 addReplyMultiBulkLen(c,HLL_REGISTERS); 1358 for (j = 0; j < HLL_REGISTERS; j++) { 1359 uint8_t val; 1360 1361 HLL_DENSE_GET_REGISTER(val,hdr->registers,j); 1362 addReplyLongLong(c,val); 1363 } 1364 } 1365 /* PFDEBUG DECODE <key> */ 1366 else if (!strcasecmp(cmd,"decode")) { 1367 if (c->argc != 3) goto arityerr; 1368 1369 uint8_t *p = o->ptr, *end = p+sdslen(o->ptr); 1370 sds decoded = sdsempty(); 1371 1372 if (hdr->encoding != HLL_SPARSE) { 1373 addReplyError(c,"HLL encoding is not sparse"); 1374 return; 1375 } 1376 1377 p += HLL_HDR_SIZE; 1378 while(p < end) { 1379 int runlen, regval; 1380 1381 if (HLL_SPARSE_IS_ZERO(p)) { 1382 runlen = HLL_SPARSE_ZERO_LEN(p); 1383 p++; 1384 decoded = sdscatprintf(decoded,"z:%d ",runlen); 1385 } else if (HLL_SPARSE_IS_XZERO(p)) { 1386 runlen = HLL_SPARSE_XZERO_LEN(p); 1387 p += 2; 1388 decoded = sdscatprintf(decoded,"Z:%d ",runlen); 1389 } else { 1390 runlen = HLL_SPARSE_VAL_LEN(p); 1391 regval = HLL_SPARSE_VAL_VALUE(p); 1392 p++; 1393 decoded = sdscatprintf(decoded,"v:%d,%d ",regval,runlen); 1394 } 1395 } 1396 decoded = sdstrim(decoded," "); 1397 addReplyBulkCBuffer(c,decoded,sdslen(decoded)); 1398 sdsfree(decoded); 1399 } 1400 /* PFDEBUG ENCODING <key> */ 1401 else if (!strcasecmp(cmd,"encoding")) { 1402 char *encodingstr[2] = {"dense","sparse"}; 1403 if (c->argc != 3) goto arityerr; 1404 1405 addReplyStatus(c,encodingstr[hdr->encoding]); 1406 } else { 1407 addReplyErrorFormat(c,"Unknown PFDEBUG subcommand '%s'", cmd); 1408 } 1409 return; 1410 1411 arityerr: 1412 addReplyErrorFormat(c, 1413 "Wrong number of arguments for the '%s' subcommand",cmd); 1414 } 1415 1416